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Abstract

The pan-genome is defined as the combined set of all genes in the gene pool of a species.
Pan-genome analyses have been very useful in helping to understand different evolutionary
dynamics of bacterial species: an open pan-genome often indicates a free-living lifestyle with
metabolic versatility, while closed pan-genomes are linked to host-restricted, ecologically
specialised bacteria. A detailed understanding of the species pan-genome has also been
instrumental in tracking the phylodynamics of emerging drug resistance mechanisms and drug
resistant pathogens. However, current approaches to analyse a species’ pan-genome do not
take the species population structure into account, nor do they account for the uneven
sampling of different lineages, as is commonplace due to over-sampling of clinically relevant
representatives. Here we present the application of a population structure-aware approach for
classifying genes in a pan-genome based on within-species distribution. We demonstrate our
approach on a collection of 7,500 E. coli genomes, one of the most-studied bacterial species
used as a model for an open pan-genome. We reveal clearly distinct groups of genes,
clustered by different underlying evolutionary dynamics, and provide a more biologically

informed and accurate description of the species’ pan-genome.
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Main

Advances in whole genome sequencing in the last two decades and the ability to sequence
multiple isolates of the same species have revealed that, often, only a small fraction of genes
are shared by all species members. Conversely, a substantial proportion of the combined pool
of genes within a species — the pan-genome — consists of highly mobile genetic material with

heterogeneous distributions across its members (Brockhurst et al. 2019).

In a traditional pan-genome analysis, genes are divided into core genes, describing those
present across the majority of the members of the species, and accessory genes, which are
only present in some. The accessory genome is often further subdivided into rare and
intermediate genes based on their frequency in the dataset. However, measuring gene
frequencies across the whole dataset does not account for the population structure or biased
sampling of the genomes in the dataset. Such simple classification can be particularly
problematic when the population of interest consists of multiple deep-branching lineages that
are unevenly represented in the collection. For example, if 50% of a genome collection is
represented by one lineage that was heavily over-sampled compared to other lineages, and
all isolates of that lineage have a particular gene which is absent in all other lineages, this
gene will simply be defined as an “intermediate” gene. Based on these definitions alone, it
would not be differentiated from a gene that is found in all isolates of all the other lineages, or
evenly distributed across the different lineages comprising 50% of the total isolates. Notably,
ecological adaptation of a globally disseminated lineage may be driven by a large set of genes
found in all isolates of that lineage, which are rare outside the lineage (Lassalle et al. 2017).
Hence, the biological reality requires more refined concepts when classifying genes in the

pan-genomic context.

Here, we introduce a population structure-aware approach to classify the genes of a pan-
genome beyond accessory and core categories, which accounts for the relative representation
of the lineages in the population being studied. This refined classification allows us to better
describe the pan-genome and its underlying evolutionary dynamics in organisms with complex
population structures. Recent hypotheses on the evolution of the pan-genome have
highlighted that different evolutionary mechanisms are required to explain the observed

patterns of large open pan-genomes (Vos and Eyre-Walker 2017; Andreani, Hesse, and Vos
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2017; Shapiro 2017; Mclnerney, McNally, and O’Connell 2017). Several competing and non-
exclusive hypotheses have been proposed, including the selectively neutral spread of
accessory genes — including, but not limited to highly mobile selfish elements (Andreani,
Hesse, and Vos 2017; Vos and Eyre-Walker 2017), or indeed adaptive evolution (Mclnerney,
McNally, and O’Connell 2017). Here we illustrate how an analysis of the patterns of within-
species gene distribution informed by population structure can provide a more precise view of
genes following different evolutionary trajectories. We demonstrate this on a compiled dataset
of over 7,500 carefully curated Escherichia coli genomes: one of the most-studied bacterial
species and used frequently as a model to illustrate an open pan-genome (Touchon et al.
2009; Rasko et al. 2008; Gordienko, Kazanov, and Gelfand 2013).

Results

Case study: population structure-aware pan-genome analysis of a
collection of 7,500 E. coli genomes.

To demonstrate how one can refine a pan-genome description while accounting for population
structure, we used a recently published genome collection that includes over 7,500 E. coli and
Shigella sp. genomes isolated from human hosts, referred to as the Horesh collection (Horesh
et al. 2021). Shigellae are in fact specialised pathotypes of E. coli and were thus included
(Pettengill, Pettengill, and Binet 2015; Chattaway et al. 2017). Briefly, the genomes in the
Horesh collection were collated from publications and other public resources, representing the
known diversity of the clinical E. coli isolate genomes available in public databases and
underwent quality-control steps to ensure a final set of high-quality genomes. The genomes
were grouped into lineages of closely related isolates (Figure 1A) using a whole genome-
based clustering method that was designed to determine bacterial within-species population
structure (Lees et al., 2019.). In total, the collection featured 1,158 lineages representing the
E. coli species (as described in (Horesh et al. 2021)). We restricted our population-structure
aware pan-genome analysis to the largest 47 lineages, which represented the majority of this
dataset (7,692/10,158 genomes). Importantly regarding the demonstration of our approach,
70% (5,349/7692) of all genomes in this collection belong to six highly overrepresented
lineages. The pan-genome of the Horesh collection was classified into 50,039 homologous

gene clusters (as described in (Horesh et al. 2021)).
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99
100  Figure 1: Twilight pan-genome analysis workflow. A A collection of genomes are grouped

101 into lineages of closely related isolates. B Each gene is classified as core, intermediate or rare
102  in each lineage, depending on its frequency within the lineage (as defined in the grey box). C
103  The classification of the entire gene pool across all lineages consists of a total of 13 distribution
104  classes. These include the number of lineages is which a gene is present (all lineages, multiple
105 lineages or a single lineage), and the combination of frequency assignments of the gene in

106 those lineages (core, intermediate or rare).

107 The classical definition of the core genome is heavily influenced by the
108 underlying biases of the studied datasets

109  We defined the distribution for each gene cluster in the E. coli and Shigella genome dataset
110 by considering their frequency in each of the above-defined lineages independently. A gene
111 cluster can thus be core, intermediate, rare or absent based on its frequency within each
112 respective lineage (Figure 1B) but can have varied distributions in different lineages (Figure
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113  1C, e.g. core in some and rare in other lineages). We summarised the combination of gene
114  cluster occurrence patterns across lineages into a set of 13 species-wide distribution patterns,
115  which we propose as novel categories for a more appropriate description of datasets with
116  complex underlying population structure (Figure 1C). Compared to traditional pan-genome
117  analyses, the “collection core” genes represent the classical definition of the core genome,
118  whereas we consider the accessory genome as subdivided into 12 new classes, informed by
119  the population structure, whose distribution reflects several different evolutionary dynamics.
120

121 Figure 2A illustrates the new distribution classes, based on the number of lineages in which
122  they were observed and their mean frequency within those lineages. Only the top right corner
123  represents the traditional set of core genes. The rest of the pane is what is usually summarised
124  as the accessory genome; the colours describe the underlying distribution classes. The plot
125  shows the continuity of gene frequencies across the entire collection, with genes present
126  across almost the entire distribution frequency spectrum.

127

128  Within this expanded classification, “collection core genes” are equivalent to the traditional
129  classification of core (assuming a threshold of 295% of the genomes in the collection encoding
130 for a gene for it to be defined as core). In this analysis, the collection core is comprised of
131 1,426 gene clusters; representing 3% of the total number of gene clusters comprising the E.
132  coli pan-genome (1,426/50,039) and 30% of the total number of genes in a typical E. coli
133  genome (defined as the weighted median across the 47 lineages, see methods, Figure 2B,C,
134  Supplementary Table S1).

135

136  An additional 1,532 gene clusters (3% of the pan-genome) are now defined as multi-lineage
137  core: that is, they are present in 295% of isolates per lineage in multiple (but not all) lineages
138  (2-46 lineages, Figure 2B). Another 2,040 genes (4% of all genes) were core to only a single
139 lineage (Figure 2B). Both classes would have been assigned to the accessory genome
140 following the classical definition of the pan-genome, as genes that are core to lineages with
141 low representation in the dataset would have been categorised as rare genes. Importantly,
142  these two additional distribution classes allow us to capture more recent acquisition or loss
143  events that have remained fixed in a respective lineage or lineages.

144
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145
146  Figure 2: Population-structure aware pan-genome of E. coli. A Hexagonal binning of all

147  genes of the E. coli pan-genome, presented as the number of lineages in which each gene
148  was observed (x-axis) against the mean frequency across the lineages containing it (y-axis).
149  Each hexagon is coloured by the most common distribution class on the pane (see colour
150  key). B Number of gene clusters of the E. coli pan-genome from each of the novel distribution
151 classes. C The relative abundance and gene count of each of the distribution classes in a
152  typical E. coli genome in the collection. Only the collection core genes represent the traditional
153  set of core genes, the rest represent what would usually all be summarised as the accessory

154  genome.

155  The majority of rare and intermediate genes are lineage-specific

156  The majority of the E. coli gene clusters were classified as “rare genes” (Figure 2B, defined
157  as present in <15% of isolates of a lineage) in one or multiple lineages within the dataset. In
158 total, 63% (34,624/55,039) of the E. coli pan-genome was classified as rare, with 67% of all
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159 rare genes being specific to a single lineage (23,175/34,624; Figure 2B). In relation to a single
160 E. coligenome, these genes only form 0.1% of a typical genome (Figure 2C).

161

162 Intermediate frequency gene clusters on the contrary formed only 4% (2,685/55,039) of the
163  entire gene pool; however, similar to the rare gene clusters, 86% of intermediate gene clusters
164  (2,329/2,685) were only observed in a single lineage. Rare and intermediate genes observed
165 in multiple lineages were most commonly observed in up to four lineages (Figure 2C,
166  Supplementary Figure S1). We did not observe any rare or intermediate genes present across
167  more than 30 lineages, and there were no collection rare or collection intermediate genes in
168 this dataset (Figure 1A, 2A,B, Supplementary Figure S1).

169 A fifth of the pan-genome consists of genes observed in different

170 frequencies across the lineages

171 “Varied genes” were defined as those observed in several lineages, but at different
172  frequencies within the respective lineages (e.g. core in one and intermediate in another
173  lineage). These represented 23% of the pan-genome (12,732/55,039) (Figure 2B) and 57% of
174  all genes in a typical E. coli genome (Figure 2C). To summarise all of these observations,
175  genes were categorised as “core and intermediate”, “core, intermediate and rare”, “core and
176 rare” or “intermediate and rare” depending on the combination of frequencies in which they
177  appeared (Figure 1C). “Core and intermediate” genes were commonly observed in more
178 lineages and in higher frequencies within those lineages and represented 38% of the genes
179  in a typical E. coli genome (Figure 2A,C Supplementary Figure S1). On the other hand, the
180  group of “intermediate and rare" had a lower frequency and were observed in fewer lineages

181 (Figure 2A, Supplementary Figure S1).

182 Low frequency genes are four times more likely to have been horizontally

183 transferred than high frequency genes.

184  As the pan-genome in any collection represents a snapshot of the gene pool at the time of
185  sampling, our refined view of the different distribution classes may be used to infer how the
186  genes are gained and lost and can indicate a gene’s future trajectory within a population. For
187 instance, genes that are self-mobile or carried as cargo on mobile genetic elements will have
188  a markedly different pattern of distribution relative to genes that may be in the process of being
189  selectively lost in any particular lineage.

190
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191  To assess whether genes from the different distribution classes showed varying evidence of
192  levels of mobility and estimate the probability of genes having been horizontally transferred,
193  we applied a species-tree gene-tree reconciliation method (Morel et al. 2020) to each gene
194  cluster of the pan-genome. As expected, higher frequency genes (Figure 2B), ie. those present
195 in the “collection core”, “core and intermediate” and “multi-lineage core”, gene sets were
196 estimated to have the lowest probabilities of having been horizontally transferred (median
197 0.12,0.13 and 0.1, respectively) (Figure 3A, Supplementary Figure S2). Conversely, the lower

198 frequency gene classes, i.e. “multi-lineage rare”, “multi-lineage intermediate”, “intermediate
199 and rare” and “core, intermediate and rare” gene sets were estimated to be up to four times
200 more likely to have been horizontally transferred than the high frequency genes (median
201  probabilities of 0.48, 0.46, 0.44 and 0.31, respectively, Supplementary Figure S2). Consistent
202  with this, by counting the total number of gene gain events predicted to have occurred on each
203 branch using ancestral state-reconstruction, multi-lineage core gene gains most commonly
204  occurred along the internal branches (Figure 3B) whereas “intermediate and rare” genes were

205 predominantly gained at the branch tips (Figure 3C).
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207  Figure 3: Different evolutionary dynamics of genes within the accessory genome. A

208 Inferred probability of transfer using species-tree gene-tree reconciliation for the entire

209  accessory genome (i.e. all 12 distribution classes which make up the accessory genome), only
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210 the “multi-lineage core” genes, and only ‘intermediate and rare’ genes (Wilcoxon rank sum
211 test, ***p < 0.001). B,C number of gain events estimated to have occurred on each branch
212  using ancestral state reconstruction when considering the ‘multi-lineage core’ genes (B) or all
213  the ‘infermediate and rare’ genes (C). Darker colours represent more gain events were
214  estimated to have occurred on a branch.

215

216  Of the multi-lineage core genes, 54% could be assigned as basic cellular processes such as
217  metabolism, information storage and processing and cell signalling (Supplementary Figure
218  S3). On the other hand, 73% of “intermediate and rare” genes were either assigned to a poorly
219  characterised function (often associated with genetic mobility) or of unknown function

220  (Supplementary Figure S4).

221  Detection of shared horizontally transferred genes between lineages is
222  strongly dependent on unbiased sampling.

223  We observed that the number of “intermediate and rare” genes shared between every two
224  lineages was positively correlated with the size of the two lineages being compared, with larger
225  lineages sharing more mobile genes (Figure 4A, log linear regression, R?=0.45, p<2.2e-16).
226  Contrarily, we did not observe a relationship between the number of “intermediate and rare”
227  genes shared between every two lineages and their phylogenetic distance (Figure 4B; linear
228  regression, R?=0.005, p=0.01). Using our population-structure aware approach to measure
229  sharing of the genes belonging to the different distribution classes suggests a lack of barrier
230 to gene flow between lineages. With that being said, our analysis highlights the need to
231 increase sampling of under-studied lineages in order to overcome sampling-related biases

232  and truly understand the level of horizontal transfer of genes between them.
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233
234  Figure 4: Relationship between sharing of “intermediate and rare” genes, phylogenetic

235 distance and lineage size. Relationship between the number of ‘intermediate and rare”


https://doi.org/10.1101/2021.02.15.431222
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.15.431222; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

236  genes shared between every two lineages and the size of the smaller lineage of the two being
237 compared (A) or the phylogenetic distance between them (B). Pairwise comparisons were

238 considered between every two of the 47 lineages.

239 Novel distribution classes can highlight lineages with evolutionary

240 trajectories unusual for the species.

241  We normalised the counts of shared genes to correct for the bias led by the size of the lineages
242  and any sharing of genes driven by phylogenetic relatedness (see Methods, Supplementary
243  Figure S5). This revealed that two lineages (12 and 40) tended to share more “intermediate
244  andrare” genes than expected compared to other lineages in the collection (Pairwise Wilcoxon
245  rank sum test, p<0.001, FDR corrected, Figure 5A, Supplementary Figure S6). Genomes in
246 lineages 12 and 40 however, are smaller than those in other lineages (Pairwise Wilcoxon rank
247  sum test, p<0.001, FDR corrected, Figure 5B), and the mean number of lineage-specific rare
248 genes in a single genome was 32 and 30 genes, respectively, compared to 5 in a typical E.
249  coli genome (Pairwise Wilcoxon rank sum test, p<0.001, FDR corrected; Figure 2C, Figure
250 5C, Supplementary Figure S7). Overall, the relative fraction of lineage-specific rare genes in
251 the genomes of these lineages was seven times higher relative to the median fraction in the
252  entire collection (median fraction in collection = 0.001; median fraction in lineages 12 and 40:
253  0.007; Figure 2C). Similar to the other low frequency genes, the “lineage-specific rare” genes
254  were also most commonly predicted to be phage-derived or otherwise had other annotations

255  related to genetic mobility (Supplementary Figure S4).

A B

(@]

*kk *k K 1504 *k K

<
ko] § w 6.0 IR o FEE
[0] ®©
§ § 20009 ¢ o S .
< C ° Q = £ . .
) . ‘ =55 8o
"6 %) = 5.51 c .
= @ 1500 1 2 o 100 3 .
50 O £ o 3
] = | =3 el 1
S g .
€ 2 £ 1000 L 501 g2 | ‘
8 o =
R es | | E 5 8 501
N @© O —
=5 5007 S 451 é’ 5
E g : o E
S g od @ z I
“E : : : a0 : : g S : :
= Allother 12 40 Allother 12 40 Allother 12 40
lineages lineages lineages
Lineage Lineage Lineage

256
257  Figure 5: Redefining the pan-genome reveals key insights into particular lineages. A

258  Number of shared mobile genes per isolate, for isolates belonging to lineage 12, 40 or all other
259 lineages. Counts were normalised to consider the dependency on the lineage size, and to
260  correct for gene sharing driven by phylogenetic relatedness (Pairwise Wilcoxon rank sum test,
261 FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001). B Genome length of each isolate, for
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262  jsolates belonging to lineage 12, 40 and all other lineages (Pairwise Wilcoxon rank sum test,
263  FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001). C Number of ‘lineage specific rare” genes
264  observed in each isolate, for isolates belonging to lineage 12, 40 and all other lineages.
265  (Pairwise Wilcoxon rank sum test, FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001).

266 Discussion

267 To date, the existence of complex population structure and diverse lineages in the bacterial
268 populations has not been taken into account in pan-genome analyses. We introduce a
269  population-structure aware classification of the pan-genome as an extended set of thirteen
270 classes. Our study reveals distinctive patterns in the evolutionary dynamics of these gene
271  classes, with differences in the relative importance of these gene classes between lineages
272  within E. coli. Our approach can be further applied to other bacterial species of public health
273  interest to provide insight into the evolutionary dynamics of genes within such species.

274

275  Subcategorising the genes of the accessory genome allowed us to distinguish the evolutionary
276  dynamics of different gene classes within the accessory genome. Grouping all the genes of
277 the accessory genome together showed a large spread of probabilities of genes being
278  horizontally transferred. Our refined approach showed that low-frequency genes transfer more
279  frequently than the high-frequency genes. Importantly, the study of outliers, which disagree
280  with the general trend of each of the distribution classes, can reveal gene-specific evolutionary
281  dynamics, including adaptive processes. For instance, multi-lineage core genes estimated to
282  have high rates of transfer may represent genes that were acquired and fixed independently
283  on multiple occasions and could be cases of convergent evolution and adaptation to similar
284  niches.

285

286 By expanding the number of distribution classes of the accessory genome relative to traditional
287 approaches, we were able to observe a relationship between the number of rare genes per
288 genome and high levels of sharing of horizontally transferred genes in two lineages, 12 and
289  40. This relationship has biological implications, as it suggests that the higher levels of gene
290 sharing are driven by an increased ability to retain mobile genes in each genome for isolates
291 belonging to these lineages, or an inability to prevent invasion by foreign selfish elements.
292  78% of the isolates from lineage 12 are of ST10 and 43% of the isolates in lineage 40 are from
293 ST23. ST10 and ST23 are ubiquitous as they have been described as both commensal and
294  pathogenic, multidrug resistant, as well as isolated from human and animal sources (Bortolaia
295 et al. 2011; Oteo et al. 2009). These properties have labelled these lineages as generalists

296 and as potential facilitators of gene movement in the population (Matamoros et al. 2017). Here
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297 we showed that these differences can be identified and exemplified through more refined
298 analysis of the pan-genome of the entire dataset, as well as within each lineage separately. In
299 doing so, we can also identify lineages that have a greater propensity as vectors for facilitating
300 gene movement.

301

302 It is clear that as available genomic data grows, and our understanding of the population
303  structure becomes richer, a population structure-aware approach to analysing the gene
304 frequency distribution is necessary to overcome several biases inherent in large datasets
305 consisting of variably sampled populations, as these biases can overshadow the true
306 distribution of the genes in a population. For example, using a traditional approach, treating
307 all gene counts across the entire collection equally, genes that are core and specific to a single
308 lineage that has a low representation or penetrance in the collection could be mistaken for
309 rare genes. Identification of these genes is highly important, as being core to only a subset of
310 the population suggests that they have an evolutionary advantage in a particular genetic
311 context or ecological setting (Lassalle, Muller, and Nesme 2015; Gori et al. 2020). Additionally,
312  genes that are core to a subset of the population are particularly relevant to investigate further

313  for their potential use in diagnostics and epidemiology.

314 Materials and methods

315 Gene classification into “distribution classes”

316  Each gene cluster was assigned to a distribution class based on its frequency within genomes
317  belonging to the same phylogenetic clusters, termed lineages (Figure 1A). Within each
318 lineage, a gene was defined as “core” if it was present in more than 95% of the isolates of that
319 lineage, “intermediate” if present in 15% to 95% of isolates of the lineage, and “rare” if present
320 inup to 15% of the isolates of the lineage (Figure 1B). Three main distribution classes, “Core”,
321  ‘“Intermediate” and “Rare”, contained all the genes that were always observed as being “core”,
322  “intermediate” or “rare” respectively across the lineages in which they were present (Figure
323 1C). “Collection core”, “collection intermediate” and “collection rare” genes were present and
324  in their respective frequencies across all the lineages of the collection. “Multi-lineage core”,
325 “multi-lineage intermediate” and “multi-lineage rare” genes were present in multiple lineages
326 in their respective frequencies. “Lineage specific core”, “lineage specific intermediate” and
327  “lineage specific rare” genes were present only in one lineage in their respective frequencies.
328 The final main distribution class or “varied” genes, included all the genes which were observed
329 as either combination of “core”, “intermediate” or “rare” across multiple lineages. All the

330 possible combinations are “core, intermediate and rare”, “core and intermediate”, “core and
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331 rare” and “intermediate and rare” (Figure 1C). The classification of all genes in the E. coli

332  collection is available as Supplementary Table S1.

333 Measuring the genetic composition of each lineage

334  The number of genes from each of the thirteen distribution classes was counted in each of the
335 7,693 E. coli genomes in the collection. The median number of genes from each distribution
336 class was calculated per lineage. The genetic composition of a typical E. coli genome was

337  measured as the median across the medians calculated per lineage for each distribution class.

338 Gene-tree species-tree reconciliation

339 GeneRax (v1.2.2) was used to infer the probability of a horizontal gene transfer event for each
340 gene using species-tree gene-tree reconciliation (Morel et al. 2020). A multiple sequence
341  alignment of all the representative sequences of each gene cluster which had at least four
342  members (available as file F6 at (Horesh et al. 2021)) were performed using mafft (v7.310)
343 (Katoh and Standley 2013). An initial tree for each gene cluster, used as the input for
344  GeneRax, was constructed using igtree (v1.6.10) with SH-like approximate likelihood ratio test
345 (SH-aLRT) with 1000 replicates (Nguyen et al. 2015). The reconciliation was performed
346  against the species tree provided in (Horesh et al. 2021) with strategy SPR, reconciliation
347  model UndatedDTL and substitution model GTR+G. The probability of transfer was inferred

348 by GeneRax for each of the gene-clusters when reconciled against the species tree.

349 Counting gain events

350 The phylogenetic tree representing the 47 lineages was downloaded from (Horesh et al. 2021).
351  The phylogenetic distance between every two lineages was measured as the patristic
352  distance using the function ‘cophenetic’ from the R package ape (v5.3) (Paradis, Claude, and
353  Strimmer 2004). The patristic distance is the sum of the total distance between two leaves of
354  the tree, which represent the lineages, and hence summarises the total genetic change in the
355  core gene alignment represented in the tree.

356

357  The leaves or tips of the phylogenetic tree represent the 47 lineages. Presence of a gene in a
358 lineage (tree leaf) was defined as the gene being observed at least once in at least one isolate
359  of the lineage, i.e. the frequency in the lineage was ignored. The presence or absence of a
360 gene in an ancestral node, i.e. an internal node, was determined using accelerated
361  transformation (ACCTRAN) reconstruction implemented in R (Farris 1970). ACCTRAN is a

362  maximum parsimony-based approach which minimises the number of transition events on the
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363 tree (from absence to presence and vice versa) while preferring changes along tree branches
364  closer to the root of the tree.

365

366  Gain and loss events were counted based on the results of the ancestral state reconstruction.
367 If there was a change from absence to presence from an ancestor to a child along a branch
368 in the phylogeny, a gain event was counted. If there was a change from presence to absence
369 a loss event was counted. The total number of gain and loss events was counted for each
370 gene as well as on each branch for all distribution classes. ggtree (v1.16.6) was used for

371  phylogenetic visualisation (Yu et al. 2017).

372 Measuring gene sharing between lineages

373  The number of genes shared from each distribution class between every two lineages was
374  counted using custom R and python scripts. In order to identify where some lineages shared
375 more genes than expected, we corrected for gene sharing driven by the phylogeny or by a
376 large sample size. To correct for phylogenetically driven gene sharing, for each lineage we
377  only counted the number of genes shared with lineages which had a patristic distance of 0.15
378 or more from it on the species tree. This threshold was chosen based on the observation that
379 isolates from the same phylogroup had a patristic distance lower than 0.15 (Supplementary
380  Figure 4). To correct for the lineage size, we fitted a linear model for the number of genes
381  shared between every two lineages against the size of the lineage, which showed a positive
382  coefficient. We adjusted the values as follows: countsy,,, = countyrig — f X logl0(size) —
383 a, where g is the coefficient of the line and «a is the intercept (Supplementary Figure S5). We
384  then scaled the numbers to be larger than 0 by adding the lowest value to all counts. The new

385  counts no longer correlated with the size of the lineages (Supplementary Figure S5).

386 Functional assignment of COG categories

387  The predicted function and COG category of each gene cluster were assigned using eggNOG-
388  mapper (1.0.3) on the representative sequence of each of the gene clusters (Huerta-Cepas et
389 al.2017). Diamond was used for a fast local protein alignment of the representative sequences
390 against the eggNOG protein database (implemented within eggNOG-mapper). The COG
391  (Clusters of Orthologous Groups) classification scheme comprises 22 COG categories which
392  are broadly divided into functions relating to cellular processes and signaling, information
393 storage and processing, metabolism and genes which are poorly categorised (Galperin et al.
394  2015). When no match was found in the eggNOG database, the genes were marked as “?” in
395  their COG category.

396
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397  Sub-sentences of all lengths were extracted from each of the functional predictions for each
398 gene cluster using the function “combinations” from the python package ‘“itertools”, while
399 ignoring common words. For instance, for the functional prediction “atp-binding component of
400 a transport system”, the words “of’, “a” and “system” were ignored, and the extracted sub-
401  sentences were “atp-binding component”, “atp-binding component transport” and “component
402 transport”. The number of times each sub-sentence appeared in each distribution class was
403 counted. Overlapping sub-sentences which only had a difference of 3 or smaller in their total
404  counts per distribution class were merged in the final count to include only the longer sub-
405 sentence. Forinstance, if “atp-binding component transport” was counted 100 times and “atp-
406  binding component” was counted 103 times, the final count would only include the longer sub-

407  sentence “atp-binding component transport” with a count of 100.

408 Code availability

409 All analyses were performed using custom R and Python scripts, available at

410  https://github.com/ghoresh11/twilight/tree/master/manuscript_scripts. The script used to

411  classify the genes into distribution classes and generate the figures presented in this study is

412  available at https://github.com/ghoresh11/twilight. The script can be applied on any other

413  dataset, given a gene presence absence file as generated by pan-genome analysis tools and

414  a grouping of each genome into a lineage. ggplot2 was used for all plotting (Wickham 2016).
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