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Abstract 19 

The pan-genome is defined as the combined set of all genes in the gene pool of a species. 20 

Pan-genome analyses have been very useful in helping to understand different evolutionary 21 

dynamics of bacterial species: an open pan-genome often indicates a free-living lifestyle with 22 

metabolic versatility, while closed pan-genomes are linked to host-restricted, ecologically 23 

specialised bacteria. A detailed understanding of the species pan-genome has also been 24 

instrumental in tracking the phylodynamics of emerging drug resistance mechanisms and drug 25 

resistant pathogens. However, current approaches to analyse a species’ pan-genome do not 26 

take the species population structure into account, nor do they account for the uneven 27 

sampling of different lineages, as is commonplace due to over-sampling of clinically relevant 28 

representatives. Here we present the application of a population structure-aware approach for 29 

classifying genes in a pan-genome based on within-species distribution. We demonstrate our 30 

approach on a collection of 7,500 E. coli genomes, one of the most-studied bacterial species 31 

used as a model for an open pan-genome. We reveal clearly distinct groups of genes, 32 

clustered by different underlying evolutionary dynamics, and provide a more biologically 33 

informed and accurate description of the species’ pan-genome.  34 
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Main 37 

Advances in whole genome sequencing in the last two decades and the ability to sequence 38 

multiple isolates of the same species have revealed that, often, only a small fraction of genes 39 

are shared by all species members. Conversely, a substantial proportion of the combined pool 40 

of genes within a species – the pan-genome – consists of highly mobile genetic material with 41 

heterogeneous distributions across its members (Brockhurst et al. 2019). 42 

 43 

In a traditional pan-genome analysis, genes are divided into core genes, describing those 44 

present across the majority of the members of the species, and accessory genes, which are 45 

only present in some. The accessory genome is often further subdivided into rare and 46 

intermediate genes based on their frequency in the dataset. However, measuring gene 47 

frequencies across the whole dataset does not account for the population structure or biased 48 

sampling of the genomes in the dataset. Such simple classification can be particularly 49 

problematic when the population of interest consists of multiple deep-branching lineages that 50 

are unevenly represented in the collection. For example, if 50% of a genome collection is 51 

represented by one lineage that was heavily over-sampled compared to other lineages, and 52 

all isolates of that lineage have a particular gene which is absent in all other lineages, this 53 

gene will simply be defined as an “intermediate” gene. Based on these definitions alone, it 54 

would not be differentiated from a gene that is found in all isolates of all the other lineages, or 55 

evenly distributed across the different lineages comprising 50% of the total isolates. Notably, 56 

ecological adaptation of a globally disseminated lineage may be driven by a large set of genes 57 

found in all isolates of that lineage, which are rare outside the lineage (Lassalle et al. 2017). 58 

Hence, the biological reality requires more refined concepts when classifying genes in the 59 

pan-genomic context. 60 

 61 

Here, we introduce a population structure-aware approach to classify the genes of a pan-62 

genome beyond accessory and core categories, which accounts for the relative representation 63 

of the lineages in the population being studied. This refined classification allows us to better 64 

describe the pan-genome and its underlying evolutionary dynamics in organisms with complex 65 

population structures. Recent hypotheses on the evolution of the pan-genome have 66 

highlighted that different evolutionary mechanisms are required to explain the observed 67 

patterns of large open pan-genomes (Vos and Eyre-Walker 2017; Andreani, Hesse, and Vos 68 
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2017; Shapiro 2017; McInerney, McNally, and O’Connell 2017). Several competing and non-69 

exclusive hypotheses have been proposed, including the selectively neutral spread of 70 

accessory genes – including, but not limited to highly mobile selfish elements (Andreani, 71 

Hesse, and Vos 2017; Vos and Eyre-Walker 2017), or indeed adaptive evolution (McInerney, 72 

McNally, and O’Connell 2017). Here we illustrate how an analysis of the patterns of within-73 

species gene distribution informed by population structure can provide a more precise view of 74 

genes following different evolutionary trajectories. We demonstrate this on a compiled dataset 75 

of over 7,500 carefully curated Escherichia coli genomes: one of the most-studied bacterial 76 

species and used frequently as a model to illustrate an open pan-genome (Touchon et al. 77 

2009; Rasko et al. 2008; Gordienko, Kazanov, and Gelfand 2013). 78 

Results  79 

Case study: population structure-aware pan-genome analysis of a 80 

collection of 7,500 E. coli genomes. 81 

To demonstrate how one can refine a pan-genome description while accounting for population 82 

structure, we used a recently published genome collection that includes over 7,500 E. coli and 83 

Shigella sp. genomes isolated from human hosts, referred to as the Horesh collection (Horesh 84 

et al. 2021). Shigellae are in fact specialised pathotypes of E. coli and were thus included 85 

(Pettengill, Pettengill, and Binet 2015; Chattaway et al. 2017). Briefly, the genomes in the 86 

Horesh collection were collated from publications and other public resources, representing the 87 

known diversity of the clinical E. coli isolate genomes available in public databases and 88 

underwent quality-control steps to ensure a final set of high-quality genomes. The genomes 89 

were grouped into lineages of closely related isolates (Figure 1A) using a whole genome-90 

based clustering method that was designed to determine bacterial within-species population 91 

structure (Lees et al., 2019.). In total, the collection featured 1,158 lineages representing the 92 

E. coli species (as described in (Horesh et al. 2021)). We restricted our population-structure 93 

aware pan-genome analysis to the largest 47 lineages, which represented the majority of this 94 

dataset (7,692/10,158 genomes). Importantly regarding the demonstration of our approach, 95 

70% (5,349/7692) of all genomes in this collection belong to six highly overrepresented 96 

lineages. The pan-genome of the Horesh collection was classified into 50,039 homologous 97 

gene clusters (as described in (Horesh et al. 2021)). 98 
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 99 
Figure 1: Twilight pan-genome analysis workflow. A A collection of genomes are grouped 100 

into lineages of closely related isolates. B Each gene is classified as core, intermediate or rare 101 

in each lineage, depending on its frequency within the lineage (as defined in the grey box). C 102 

The classification of the entire gene pool across all lineages consists of a total of 13 distribution 103 

classes. These include the number of lineages is which a gene is present (all lineages, multiple 104 

lineages or a single lineage), and the combination of frequency assignments of the gene in 105 

those lineages (core, intermediate or rare). 106 

The classical definition of the core genome is heavily influenced by the 107 

underlying biases of the studied datasets 108 

We defined the distribution for each gene cluster in the E. coli and Shigella genome dataset 109 

by considering their frequency in each of the above-defined lineages independently. A gene 110 

cluster can thus be core, intermediate, rare or absent based on its frequency within each 111 

respective lineage (Figure 1B) but can have varied distributions in different lineages (Figure 112 
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1C, e.g. core in some and rare in other lineages). We summarised the combination of gene 113 

cluster occurrence patterns across lineages into a set of 13 species-wide distribution patterns, 114 

which we propose as novel categories for a more appropriate description of datasets with 115 

complex underlying population structure (Figure 1C). Compared to traditional pan-genome 116 

analyses, the “collection core” genes represent the classical definition of the core genome, 117 

whereas we consider the accessory genome as subdivided into 12 new classes, informed by 118 

the population structure, whose distribution reflects several different evolutionary dynamics.  119 

 120 

Figure 2A illustrates the new distribution classes, based on the number of lineages in which 121 

they were observed and their mean frequency within those lineages. Only the top right corner 122 

represents the traditional set of core genes. The rest of the pane is what is usually summarised 123 

as the accessory genome; the colours describe the underlying distribution classes. The plot 124 

shows the continuity of gene frequencies across the entire collection, with genes present 125 

across almost the entire distribution frequency spectrum.  126 

 127 

Within this expanded classification, “collection core genes” are equivalent to the traditional 128 

classification of core (assuming a threshold of ≥95% of the genomes in the collection encoding 129 

for a gene for it to be defined as core). In this analysis, the collection core is comprised of 130 

1,426 gene clusters; representing 3% of the total number of gene clusters comprising the E.  131 

coli pan-genome (1,426/50,039) and 30% of the total number of genes in a typical E. coli 132 

genome (defined as the weighted median across the 47 lineages, see methods, Figure 2B,C, 133 

Supplementary Table S1).  134 

 135 

An additional 1,532 gene clusters (3% of the pan-genome) are now defined as multi-lineage 136 

core: that is, they are present in ≥95% of isolates per lineage in multiple (but not all) lineages 137 

(2-46 lineages, Figure 2B). Another 2,040 genes (4% of all genes) were core to only a single 138 

lineage (Figure 2B). Both classes would have been assigned to the accessory genome 139 

following the classical definition of the pan-genome, as genes that are core to lineages with 140 

low representation in the dataset would have been categorised as rare genes. Importantly, 141 

these two additional distribution classes allow us to capture more recent acquisition or loss 142 

events that have remained fixed in a respective lineage or lineages.  143 

 144 
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 145 
Figure 2: Population-structure aware pan-genome of E. coli. A Hexagonal binning of all 146 

genes of the E. coli pan-genome, presented as the number of lineages in which each gene 147 

was observed (x-axis) against the mean frequency across the lineages containing it (y-axis). 148 

Each hexagon is coloured by the most common distribution class on the pane (see colour 149 

key). B Number of gene clusters of the E. coli pan-genome from each of the novel distribution 150 

classes. C The relative abundance and gene count of each of the distribution classes in a 151 

typical E. coli genome in the collection. Only the collection core genes represent the traditional 152 

set of core genes, the rest represent what would usually all be summarised as the accessory 153 

genome.  154 

The majority of rare and intermediate genes are lineage-specific 155 

The majority of the E. coli gene clusters were classified as “rare genes” (Figure 2B, defined 156 

as present in <15% of isolates of a lineage) in one or multiple lineages within the dataset. In 157 

total, 63% (34,624/55,039) of the E. coli pan-genome was classified as rare, with 67% of all 158 
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rare genes being specific to a single lineage (23,175/34,624; Figure 2B). In relation to a single 159 

E. coli genome, these genes only form 0.1% of a typical genome (Figure 2C).  160 

 161 

Intermediate frequency gene clusters on the contrary formed only 4% (2,685/55,039) of the 162 

entire gene pool; however, similar to the rare gene clusters, 86% of intermediate gene clusters 163 

(2,329/2,685) were only observed in a single lineage. Rare and intermediate genes observed 164 

in multiple lineages were most commonly observed in up to four lineages (Figure 2C, 165 

Supplementary Figure S1). We did not observe any rare or intermediate genes present across 166 

more than 30 lineages, and there were no collection rare or collection intermediate genes in 167 

this dataset (Figure 1A, 2A,B, Supplementary Figure S1).  168 

A fifth of the pan-genome consists of genes observed in different 169 

frequencies across the lineages 170 

“Varied genes” were defined as those observed in several lineages, but at different 171 

frequencies within the respective lineages (e.g. core in one and intermediate in another 172 

lineage). These represented 23% of the pan-genome (12,732/55,039) (Figure 2B) and 57% of 173 

all genes in a typical E. coli genome (Figure 2C). To summarise all of these observations, 174 

genes were categorised as “core and intermediate”, “core, intermediate and rare”, “core and 175 

rare” or “intermediate and rare” depending on the combination of frequencies in which they 176 

appeared (Figure 1C). “Core and intermediate” genes were commonly observed in more 177 

lineages and in higher frequencies within those lineages and represented 38% of the genes 178 

in a typical E. coli genome (Figure 2A,C Supplementary Figure S1). On the other hand, the 179 

group of “intermediate and rare'' had a lower frequency and were observed in fewer lineages 180 

(Figure 2A, Supplementary Figure S1).  181 

Low frequency genes are four times more likely to have been horizontally 182 

transferred than high frequency genes. 183 

As the pan-genome in any collection represents a snapshot of the gene pool at the time of 184 

sampling, our refined view of the different distribution classes may be used to infer how the 185 

genes are gained and lost and can indicate a gene’s future trajectory within a population. For 186 

instance, genes that are self-mobile or carried as cargo on mobile genetic elements will have 187 

a markedly different pattern of distribution relative to genes that may be in the process of being 188 

selectively lost in any particular lineage.  189 

 190 
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To assess whether genes from the different distribution classes showed varying evidence of 191 

levels of mobility and estimate the probability of genes having been horizontally transferred, 192 

we applied a species-tree gene-tree reconciliation method (Morel et al. 2020) to each gene 193 

cluster of the pan-genome. As expected, higher frequency genes (Figure 2B), ie. those present 194 

in the “collection core”, “core and intermediate” and “multi-lineage core”, gene sets were 195 

estimated to have the lowest probabilities of having been horizontally transferred (median 196 

0.12, 0.13 and 0.1, respectively) (Figure 3A, Supplementary Figure S2). Conversely, the lower 197 

frequency gene classes, i.e. “multi-lineage rare”, “multi-lineage intermediate”, “intermediate 198 

and rare” and “core, intermediate and rare” gene sets were estimated to be up to four times 199 

more likely to have been horizontally transferred than the high frequency genes (median 200 

probabilities of 0.48, 0.46, 0.44 and 0.31, respectively, Supplementary Figure S2). Consistent 201 

with this, by counting the total number of gene gain events predicted to have occurred on each 202 

branch using ancestral state-reconstruction, multi-lineage core gene gains most commonly 203 

occurred along the internal branches (Figure 3B) whereas “intermediate and rare” genes were 204 

predominantly gained at the branch tips (Figure 3C).  205 

 206 
Figure 3: Different evolutionary dynamics of genes within the accessory genome. A 207 

Inferred probability of transfer using species-tree gene-tree reconciliation for the entire 208 

accessory genome (i.e. all 12 distribution classes which make up the accessory genome), only 209 
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the “multi-lineage core” genes, and only ‘intermediate and rare’ genes (Wilcoxon rank sum 210 

test, ***p < 0.001). B,C number of gain events estimated to have occurred on each branch 211 

using ancestral state reconstruction when considering the ‘multi-lineage core’ genes (B) or all 212 

the ‘intermediate and rare’ genes (C). Darker colours represent more gain events were 213 

estimated to have occurred on a branch. 214 

 215 

Of the multi-lineage core genes, 54% could be assigned as basic cellular processes such as 216 

metabolism, information storage and processing and cell signalling (Supplementary Figure 217 

S3). On the other hand, 73% of “intermediate and rare” genes were either assigned to a poorly 218 

characterised function (often associated with genetic mobility) or of unknown function 219 

(Supplementary Figure S4). 220 

Detection of shared horizontally transferred genes between lineages is 221 

strongly dependent on unbiased sampling.  222 

We observed that the number of “intermediate and rare” genes shared between every two 223 

lineages was positively correlated with the size of the two lineages being compared, with larger 224 

lineages sharing more mobile genes (Figure 4A, log linear regression, R2=0.45, p<2.2e-16). 225 

Contrarily, we did not observe a relationship between the number of “intermediate and rare” 226 

genes shared between every two lineages and their phylogenetic distance (Figure 4B; linear 227 

regression, R2=0.005, p=0.01). Using our population-structure aware approach to measure 228 

sharing of the genes belonging to the different distribution classes suggests a lack of barrier 229 

to gene flow between lineages. With that being said, our analysis highlights the need to 230 

increase sampling of under-studied lineages in order to overcome sampling-related biases 231 

and truly understand the level of horizontal transfer of genes between them.  232 

 233 
Figure 4: Relationship between sharing of “intermediate and rare” genes, phylogenetic 234 

distance and lineage size. Relationship between the number of “intermediate and rare” 235 
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genes shared between every two lineages and the size of the smaller lineage of the two being 236 

compared (A) or the phylogenetic distance between them (B). Pairwise comparisons were 237 

considered between every two of the 47 lineages. 238 

Novel distribution classes can highlight lineages with evolutionary 239 

trajectories unusual for the species.  240 

We normalised the counts of shared genes to correct for the bias led by the size of the lineages 241 

and any sharing of genes driven by phylogenetic relatedness (see Methods, Supplementary 242 

Figure S5). This revealed that two lineages (12 and 40) tended to share more “intermediate 243 

and rare” genes than expected compared to other lineages in the collection (Pairwise Wilcoxon 244 

rank sum test, p<0.001, FDR corrected, Figure 5A, Supplementary Figure S6). Genomes in 245 

lineages 12 and 40 however, are smaller than those in other lineages (Pairwise Wilcoxon rank 246 

sum test, p<0.001, FDR corrected, Figure 5B), and the mean number of lineage-specific rare 247 

genes in a single genome was 32 and 30 genes, respectively, compared to 5 in a typical E. 248 

coli genome (Pairwise Wilcoxon rank sum test, p<0.001, FDR corrected; Figure 2C, Figure 249 

5C, Supplementary Figure S7). Overall, the relative fraction of lineage-specific rare genes in 250 

the genomes of these lineages was seven times higher relative to the median fraction in the 251 

entire collection (median fraction in collection = 0.001; median fraction in lineages 12 and 40: 252 

0.007; Figure 2C). Similar to the other low frequency genes, the “lineage-specific rare” genes 253 

were also most commonly predicted to be phage-derived or otherwise had other annotations 254 

related to genetic mobility (Supplementary Figure S4).  255 

 256 
Figure 5: Redefining the pan-genome reveals key insights into particular lineages. A 257 

Number of shared mobile genes per isolate, for isolates belonging to lineage 12, 40 or all other 258 

lineages. Counts were normalised to consider the dependency on the lineage size, and to 259 

correct for gene sharing driven by phylogenetic relatedness (Pairwise Wilcoxon rank sum test, 260 

FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001). B Genome length of each isolate, for 261 
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isolates belonging to lineage 12, 40 and all other lineages (Pairwise Wilcoxon rank sum test, 262 

FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001). C Number of “lineage specific rare” genes 263 

observed in each isolate, for isolates belonging to lineage 12, 40 and all other lineages. 264 

(Pairwise Wilcoxon rank sum test, FDR corrected, *p < 0.05, **p< 0.01, ***p < 0.001).   265 

Discussion 266 

To date, the existence of complex population structure and diverse lineages in the bacterial 267 

populations has not been taken into account in pan-genome analyses. We introduce a 268 

population-structure aware classification of the pan-genome as an extended set of thirteen 269 

classes. Our study reveals distinctive patterns in the evolutionary dynamics of these gene 270 

classes, with differences in the relative importance of these gene classes between lineages 271 

within E. coli. Our approach can be further applied to other bacterial species of public health 272 

interest to provide insight into the evolutionary dynamics of genes within such species. 273 

 274 

Subcategorising the genes of the accessory genome allowed us to distinguish the evolutionary 275 

dynamics of different gene classes within the accessory genome. Grouping all the genes of 276 

the accessory genome together showed a large spread of probabilities of genes being 277 

horizontally transferred. Our refined approach showed that low-frequency genes transfer more 278 

frequently than the high-frequency genes. Importantly, the study of outliers, which disagree 279 

with the general trend of each of the distribution classes, can reveal gene-specific evolutionary 280 

dynamics, including adaptive processes. For instance, multi-lineage core genes estimated to 281 

have high rates of transfer may represent genes that were acquired and fixed independently 282 

on multiple occasions and could be cases of convergent evolution and adaptation to similar 283 

niches.   284 

 285 

By expanding the number of distribution classes of the accessory genome relative to traditional 286 

approaches, we were able to observe a relationship between the number of rare genes per 287 

genome and high levels of sharing of horizontally transferred genes in two lineages, 12 and 288 

40. This relationship has biological implications, as it suggests that the higher levels of gene 289 

sharing are driven by an increased ability to retain mobile genes in each genome for isolates 290 

belonging to these lineages, or an inability to prevent invasion by foreign selfish elements. 291 

78% of the isolates from lineage 12 are of ST10 and 43% of the isolates in lineage 40 are from 292 

ST23. ST10 and ST23 are ubiquitous as they have been described as both commensal and 293 

pathogenic, multidrug resistant, as well as isolated from human and animal sources (Bortolaia 294 

et al. 2011; Oteo et al. 2009). These properties have labelled these lineages as generalists 295 

and as potential facilitators of gene movement in the population (Matamoros et al. 2017). Here 296 
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we showed that these differences can be identified and exemplified through more refined 297 

analysis of the pan-genome of the entire dataset, as well as within each lineage separately. In 298 

doing so, we can also identify lineages that have a greater propensity as vectors for facilitating 299 

gene movement.  300 

 301 

It is clear that as available genomic data grows, and our understanding of the population 302 

structure becomes richer, a population structure-aware approach to analysing the gene 303 

frequency distribution is necessary to overcome several biases inherent in large datasets 304 

consisting of variably sampled populations, as these biases can overshadow the true 305 

distribution of the genes in a population. For example, using a traditional approach, treating 306 

all gene counts across the entire collection equally, genes that are core and specific to a single 307 

lineage that has a low representation or penetrance in the collection could be mistaken for 308 

rare genes. Identification of these genes is highly important, as being core to only a subset of 309 

the population suggests that they have an evolutionary advantage in a particular genetic 310 

context or ecological setting (Lassalle, Muller, and Nesme 2015; Gori et al. 2020). Additionally, 311 

genes that are core to a subset of the population are particularly relevant to investigate further 312 

for their potential use in diagnostics and epidemiology.  313 

Materials and methods 314 

Gene classification into “distribution classes” 315 

Each gene cluster was assigned to a distribution class based on its frequency within genomes 316 

belonging to the same phylogenetic clusters, termed lineages (Figure 1A). Within each 317 

lineage, a gene was defined as “core” if it was present in more than 95% of the isolates of that 318 

lineage, “intermediate” if present in 15% to 95% of isolates of the lineage, and “rare” if present 319 

in up to 15% of the isolates of the lineage (Figure 1B). Three main distribution classes, “Core”, 320 

“Intermediate” and “Rare”, contained all the genes that were always observed as being “core”, 321 

“intermediate” or “rare” respectively across the lineages in which they were present (Figure 322 

1C). “Collection core”, “collection intermediate” and “collection rare” genes were present and 323 

in their respective frequencies across all the lineages of the collection. “Multi-lineage core”, 324 

“multi-lineage intermediate” and “multi-lineage rare” genes were present in multiple lineages 325 

in their respective frequencies. “Lineage specific core”, “lineage specific intermediate” and 326 

“lineage specific rare” genes were present only in one lineage in their respective frequencies. 327 

The final main distribution class or “varied” genes, included all the genes which were observed 328 

as either combination of “core”, “intermediate” or “rare” across multiple lineages. All the 329 

possible combinations are “core, intermediate and rare”, “core and intermediate”, “core and 330 
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rare” and “intermediate and rare” (Figure 1C). The classification of all genes in the E. coli 331 

collection is available as Supplementary Table S1. 332 

Measuring the genetic composition of each lineage 333 

The number of genes from each of the thirteen distribution classes was counted in each of the 334 

7,693 E. coli genomes in the collection. The median number of genes from each distribution 335 

class was calculated per lineage. The genetic composition of a typical E. coli genome was 336 

measured as the median across the medians calculated per lineage for each distribution class. 337 

Gene-tree species-tree reconciliation 338 

GeneRax (v1.2.2) was used to infer the probability of a horizontal gene transfer event for each 339 

gene using species-tree gene-tree reconciliation (Morel et al. 2020). A multiple sequence 340 

alignment of all the representative sequences of each gene cluster which had at least four 341 

members (available as file F6 at (Horesh et al. 2021)) were performed using mafft (v7.310) 342 

(Katoh and Standley 2013). An initial tree for each gene cluster, used as the input for 343 

GeneRax, was constructed using iqtree (v1.6.10) with SH-like approximate likelihood ratio test 344 

(SH-aLRT) with 1000 replicates (Nguyen et al. 2015). The reconciliation was performed 345 

against the species tree provided in (Horesh et al. 2021) with strategy SPR, reconciliation 346 

model UndatedDTL and substitution model GTR+G. The probability of transfer was inferred 347 

by GeneRax for each of the gene-clusters when reconciled against the species tree. 348 

Counting gain events 349 

The phylogenetic tree representing the 47 lineages was downloaded from (Horesh et al. 2021). 350 

The phylogenetic distance between every two lineages was measured as the patristic 351 

distance using the function ‘cophenetic’ from the R package ape (v5.3) (Paradis, Claude, and 352 

Strimmer 2004). The patristic distance is the sum of the total distance between two leaves of 353 

the tree, which represent the lineages, and hence summarises the total genetic change in the 354 

core gene alignment represented in the tree.  355 

 356 

The leaves or tips of the phylogenetic tree represent the 47 lineages. Presence of a gene in a 357 

lineage (tree leaf) was defined as the gene being observed at least once in at least one isolate 358 

of the lineage, i.e. the frequency in the lineage was ignored. The presence or absence of a 359 

gene in an ancestral node, i.e. an internal node, was determined using accelerated 360 

transformation (ACCTRAN) reconstruction implemented in R (Farris 1970). ACCTRAN is a 361 

maximum parsimony-based approach which minimises the number of transition events on the 362 
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tree (from absence to presence and vice versa) while preferring changes along tree branches 363 

closer to the root of the tree.  364 

 365 

Gain and loss events were counted based on the results of the ancestral state reconstruction. 366 

If there was a change from absence to presence from an ancestor to a child along a branch 367 

in the phylogeny, a gain event was counted. If there was a change from presence to absence 368 

a loss event was counted. The total number of gain and loss events was counted for each 369 

gene as well as on each branch for all distribution classes. ggtree (v1.16.6) was used for 370 

phylogenetic visualisation (Yu et al. 2017).  371 

Measuring gene sharing between lineages 372 

The number of genes shared from each distribution class between every two lineages was 373 

counted using custom R and python scripts. In order to identify where some lineages shared 374 

more genes than expected, we corrected for gene sharing driven by the phylogeny or by a 375 

large sample size. To correct for phylogenetically driven gene sharing, for each lineage we 376 

only counted the number of genes shared with lineages which had a patristic distance of 0.15 377 

or more from it on the species tree. This threshold was chosen based on the observation that 378 

isolates from the same phylogroup had a patristic distance lower than 0.15 (Supplementary 379 

Figure 4). To correct for the lineage size, we fitted a linear model for the number of genes 380 

shared between every two lineages against the size of the lineage, which showed a positive 381 

coefficient. We adjusted the values as follows: 𝑐𝑜𝑢𝑛𝑡𝑠!"# 	= 𝑐𝑜𝑢𝑛𝑡$%&' − 	𝛽 × 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒) 	−382 

	𝛼, where 𝛽 is the coefficient of the line and 𝛼 is the intercept (Supplementary Figure S5). We 383 

then scaled the numbers to be larger than 0 by adding the lowest value to all counts. The new 384 

counts no longer correlated with the size of the lineages (Supplementary Figure S5). 385 

Functional assignment of COG categories 386 

The predicted function and COG category of each gene cluster were assigned using eggNOG-387 

mapper (1.0.3) on the representative sequence of each of the gene clusters (Huerta-Cepas et 388 

al. 2017). Diamond was used for a fast local protein alignment of the representative sequences 389 

against the eggNOG protein database (implemented within eggNOG-mapper). The COG 390 

(Clusters of Orthologous Groups) classification scheme comprises 22 COG categories which 391 

are broadly divided into functions relating to cellular processes and signaling, information 392 

storage and processing, metabolism and genes which are poorly categorised (Galperin et al. 393 

2015). When no match was found in the eggNOG database, the genes were marked as “?” in 394 

their COG category.  395 

 396 
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Sub-sentences of all lengths were extracted from each of the functional predictions for each 397 

gene cluster using the function “combinations” from the python package “itertools”, while 398 

ignoring common words. For instance, for the functional prediction “atp-binding component of 399 

a transport system”, the words “of”, “a” and “system” were ignored, and the extracted sub-400 

sentences were “atp-binding component”, “atp-binding component transport” and “component 401 

transport”. The number of times each sub-sentence appeared in each distribution class was 402 

counted. Overlapping sub-sentences which only had a difference of 3 or smaller in their total 403 

counts per distribution class were merged in the final count to include only the longer sub-404 

sentence. For instance, if “atp-binding component transport” was counted 100 times and “atp-405 

binding component” was counted 103 times, the final count would only include the longer sub-406 

sentence “atp-binding component transport” with a count of 100. 407 

Code availability 408 

All analyses were performed using custom R and Python scripts, available at 409 

https://github.com/ghoresh11/twilight/tree/master/manuscript_scripts. The script used to 410 

classify the genes into distribution classes and generate the figures presented in this study is 411 

available at https://github.com/ghoresh11/twilight. The script can be applied on any other 412 

dataset, given a gene presence absence file as generated by pan-genome analysis tools and 413 

a grouping of each genome into a lineage. ggplot2 was used for all plotting (Wickham 2016).  414 
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