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Abstract

In biological neuronal networks, information representation and processing are
achieved through plasticity learning rules that have been empirically characterized
as sensitive to second and higher-order statistics in spike trains. However, most mod-
els in both computational neuroscience and machine learning aim to convert diverse
statistical properties in inputs into first-order statistics in outputs, like in modern
deep learning networks. In the context of classification, such schemes have merit
for inputs like static images, but they are not well suited to capture the temporal
structure in time series. In contrast, the recently developed covariance perceptron
uses second-order statistics by mapping input covariances to output covariances in
a consistent fashion. Here, we explore the applicability of covariance-based per-
ceptron readouts in reservoir computing networks to classify synthetic multivariate
time series structured at different statistical orders (first and second). We show that
the second-order framework outperforms or matches the classical mean paradigm
in terms of accuracy. Our results highlight a nontrivial relationship between input
and reservoir properties in generating the output reservoir activity, which suggests
an important role for recurrent connectivity in transforming information represen-
tations in biologically inspired architectures. Finally, we solve a speech recognition
task for the classification of spoken digits to further demonstrate the potential of
covariance-based decoding for real data.

1 Introduction

The variability of spiking activity is a hallmark of biological neuronal networks. It has
been observed both in vivo and in vitro, in resting and active states and across a wide
variety of species, brain areas and time scales (Shadlen and Newsome, 1998; Renart
and Machens, 2014; Nogueira et al., 2018|). The role that trial-by-trial variability plays
in information processing in neuronal networks is currently under debate, after early
considerations that saw it as detrimental to (de)coding and learning (Stein et al., [2005;
Kostal et al., [2007), but were later proven to not always be the case (Gilson et al.,
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2011; Boerlin et al., 2013 [Moreno-Bote, 2014). In particular, it has recently been shown
that structured variability, corresponding to reproducible correlation patterns, can be
a substrate for robust information processing (Gilson et al., 2020). That study showed
that patterns determined by second-order statistics can be learned and transformed by
a simple linear analogue network, thereby implementing a ‘covariance perceptron’.

More generally, covariance coding offers a middle ground alternative between the
much-debated rate coding and temporal coding theories (Bair and Kochl [1996; |[Shadlen!
and Movshon, [1999; Brettel, [2015). In the new view, neither the mean nor the full
probability distribution of neuronal activity is used for information transmission, but
rather the pairwise correlation between neurons, as quantified by second-order statistics.
This view is backed up by recent experimental findings in neurophysiological data, where
spike patterns —corresponding to second-or-higher statistical orders— are informative
about stimulus or behavior (Panzeri et al., [2017; [Shahidi et al., [2019). Considering
statistics up to the second order to define informational patterns, we examine how
neurons can classify multivariate time series, which has been also used in a variety of
applications (Barachant et al, 2013} Sahidullah and Kinnunen) 2016]).

In this context, we specifically focus on the processing of patterns determined by
structured variability by a reservoir computing system. It usually consists of an un-
trained network of neurons used to filter incoming signals before feeding a readout layer
(Jaeger, 2001; Maass et al., [2002; Lukosevicius and Jaeger, 2009; Tanaka et al., 2019)),
which draws on the computational power arising from the interplay between recurrent
connectivity and neuronal nonlinearities. In particular, nonlinearities can map inputs
into spaces where linear separability is easier to achieve, as used in many network archi-
tectures like multilayer or deep networks (Hornik} 1991} LeCun et al., [2015). In addition,
reservoirs of larger size than the inputs can map them to a higher-dimensional space,
which can be beneficial to separate different input patterns. A third point is that, by
only training connections from the reservoir to the readout to perform the classification,
the weight optimization procedure is simpler (fewer resources to tune) and often more
stable as compared to the training of recurrent connections. Reservoir networks thus
appear as an interesting candidate to process statistical structures of time series in a clas-
sification task, which has been traditionally exploited by reading out the mean activity
of the reservoir (Jaeger, 2001; Jaeger et al.l 2007; Verstraeten et al., 2007} Lukosevicius
and Jaeger, 2009), although other more complex methods have been tried, such as the
model space representation (Aswolinskiy et al., [2016]).

This study explores the combination of reservoir computing systems with mean/covariance
decoding to classify multivariate time series (Fig. , top pathway), using both synthetic
and real data. Specifically, we examine the cross-talk between the first and second sta-
tistical orders of input times series in the reservoir activity, including both spatial and
temporal structure for the second order (i.e. zero-lag and lagged covariances). To do
so, we explore through exhaustive numerical simulations and analytically derived in-
sights the influence of the reservoir parameters to elucidate their interplay in shaping
the reservoir processing. We implement our reservoirs by means of echo state networks,
whose parameters of interest are the spectral radius (quantifying the overall strength
of the recurrent connectivity) and the leak rate. These parameters have been shown
to influence strongly reservoir properties such as memory capacity for Gaussian inputs
(Jaeger, |2002; |[Farkas et al.,[2016), or the processing of input time series that involve low
frequency signals (Verstraeten and Schrauwen, [2009), so we aim to test whether similar
tendencies are observed for the processing of second-order statistics.
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In addition, we compare two types of decoders: a single layer of neurons that are
fed from the reservoir inspired by biology (linear perceptron, LP); and the multinomial
logistic regression (MLR) coming from machine learning (Bishopl, [2006) (Fig [2B). The
main difference between these two decoders is that the LP processes its inputs in real
time, producing an output time series that has class-dependent structure at the first
(mean-LP) or second orders (cov-LP). The MLR, on the other hand, is fed by pre-
computed input statistics of either first (mean-MLR) or second-order (cov-MLR) and
outputs a single class-probabilities vector.

The manuscript is structured as follows. Section [2| describes the pipeline that we use
for classification of multivariate time series, namely the reservoir implementation and the
decoders (Fig. [1} followed by the datasets used to test its performance. Results are then
presented in Section [3] starting with synthetic time series to uncover general principles
and followed by real data to further verify our proposed classification scheme. They are
then discussed in Section [4] to contextualize them with respect to their biological and
machine-learning implications.

2 Methods

This section first presents the reservoir implementation used in our simulations. Among
the variety of reservoir implementations that have been proposed (Tanaka et al., [2019)),
we rely on echo state networks that employ analogue sigmoid neurons (Jaeger, 2001;
Jaeger et al., 2007} [Verstraeten et al., |2007; Lukosevicius and Jaeger, 2009), since they
provide a formalism that is compatible with the covariance perceptron (used as a de-
coder). We also provide an analysis of the reservoir first and second-order statistics using
a weakly nonlinear approximation, inspired by previous work on reservoir dynamics and
memory capacity (Aceituno et al., [2020; Verzelli et al.l 2020).

Then, we explain the training of the decoder, which is done by performing a gradient
descent on its weights (from the reservoir units) in order to minimize the mean-squared
error between output activity and target activity as a cost function. The target activity
is defined such that the classification can be performed by comparing the values (means
or variances) of the readout outputs, in a winner-take-all fashion. Importantly, the
gradient descent depends on the metric applied to the reservoir activity and the type of
target activity, which differ across the decoders as illustrated in Fig. [IB.

Last, we detail the generation of the input time series that are used to test the
classification pipeline. The classification task consists of separating the time series into
K classes, with K = 2 for the synthetic datasets and K = 10 for the real dataset.
Each of these classes consist of samples that differ by their statistical features, which
are transformed by the reservoir and must be captured by the decoder.

We remark that in all the equations to be presented throughout this work, we use
lower case greek letters for real parameters, lower case latin letters for vectors and upper
case letters (greek or latin) for matrices, except when noted (e.g M and N are natural
numbers).

2.1 Reservoir implementation

The reservoir used in the classification pipeline (‘RES-N’ in Fig. , top pathway) is
an echo state network with N leaky integrator neurons (or units), similar to previous
studies (Jaeger et al., 2007; Lukosevicius and Jaeger, 2009). The update equations for
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Figure 1: Processing pipeline for multivariate time series classification. A:
An M-dimensional input time series observed for d time steps is either filtered by a
reservoir layer of N neurons (‘RES-N’; top pathway) or directly fed to a linear decoder
(‘NO-RES’, bottom pathway) to perform a classification task. The bottom pathway
was studied in (Gilson et al., |2020)), and we implement it here for comparison purposes.
B: Our main focus of study is the linear perceptron (LP) decoder (top pathway), but
we also implement a multinomial logistic regression (MLR) decoder (bottom pathway)
whose accuracy we use as a reference. There is an important operational difference
between the LP and the MLR, given by the order in which the statistics are computed
for classification. The MLR pathway first computes the statistics of the observed activity,
and outputs a class probability vector. This implies the time series are transformed to
static features. The perceptron, on the other hand, maps the observed activity time
series to output time series, transforming time series to time series. The output time
series thus convey information in its statistics that are afterwards evaluated to make the
decision

the activity state at time t of the IV leaky neurons inside the reservoir, denoted by
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z(t) € RN when fed by a multivariate input u(t) € RM, are

T(t) = F(QMu(t) +Qz(t - 1)), (1)
t) = Q—a)z(t—1)+az(t), (2)

8

where the function F = tanh has a sigmoidal profile, Q™ € RN*M is the connection
matrix from the input time series to the reservoir units and Q' € RN*N ig the weight
matrix of recurrent connections within the reservoir. All connection weights are ran-
domly sampled from [—0.5,0.5), and the resulting matrices are dense. The parameter
« is a leak rate, o € (0, 1], which governs how each reservoir unit integrates its own dy-
namical state over time. When « tends to zero, the neuron’s dynamics becomes slower
and more dependent on previous history than on the current input state (Jaeger et al.l
2007; Lukosevicius and Jaeger, 2009). When a = 1, the activity of the reservoir (Eq.
is z(t) = Z(t), thus, no integration is performed and each unit’s activity state only
depends on the instantaneous inputs and activities of other neurons.

Using numerical simulation, we explore the different dynamical regimes of the reser-
voir, by varying a local parameter (leak rate applied homogeneously to all units) or a
global parameter (spectral radius), see Fig. [2JA. The spectral radius p (€2**%) is the largest
absolute eigenvalue of the reservoir’s weight matrix Q. It affects the reservoir perfor-
mance in different benchmark tasks typically reported in the literature, such as memory
(Jaeger, |2001; Hermans and Schrauwen, [2010; Farkas et al., |2016]). A general heuristic
when a = 1 is that p (2') should approximate 1 (from below) for tasks that require
long memory and be smaller for tasks where a too long memory might be detrimental
(Lukosevicius and Jaeger, 2009). Since we are agnostic to the effects of this parameter
for multivariate time series classification (especially those with structured dynamics as
we have detailed in the previous section), we vary it spanning a range that goes from
0 to 1.8. In the absence of inputs, a spectral radius larger than 1 implies that a linear
reservoir (i.e. when F is the identity operator in Eq. [1]) is unstable, in the sense that its
trajectory will deviate away from the zero fixed-point when started from a non-zero state
(Verstraeten and Schrauwen) 2009). However, in practice, the sigmoid function bounds
the growth of the trajectory and effectively produces a reservoir that is dynamically less
excitable. Note that, by convention, a null spectral radius implies a zero connection ma-
trix (' = 0), corresponding to a feedforward layer (left-hand side in Fig. [2]A). Thus,
a =1 and Q' = 0 implies a nonlinear and memoryless transformation of the inputs
randomly mixed by Q™. When « < 1, an effective spectral radius can be calculated for
the reservoir, corresponding to the linearization of its dynamics: 2™ + (1 — a)ZnxN,
instead of Q" (Jaeger et al., [2007)); here Zn N is the identity matrix.

Other possible parameters for exploration include the input scaling and the choice
for the sigmoid function F, which we leave for future work.

All the results we present in this study are averaged across 10 different reservoir
configurations, where a configuration is given by specific connection matrices Q™ and
Q% and we always start each reservoir from a zero state. Importantly, our work focuses
on transient states, since we are interested in learning and representations in short time
scales.

2.1.1 Reservoirs propagate diverse input statistics

Under slightly different conditions than the ones we have stated previously (see Supple-
mentary Material for full details), it can be proven that the first-order statistics of a
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neuron z; inside a reservoir with o = 1 and spectral radius p when fed by a multivariate
input time series u(t) € RM  with u;(t) a bias unit, is given by:

-2 Z 1 _ 21 < (t)ur(t+1)>v

where the angular brackets denote temporal average, € denotes the strength of connec-
tions from input to reservoir and we have assumed the neuron is in a weakly nonlinear
regime (Supplementary Material .

Likewise, the second-order zero-lag statistics of neurons x; and x; in the reservoir
are given by:

M
(wi(t)w; (1)) ~2 Z (um(t))

+§

m,r:2

Z

—
b

m (D) (t+ 1)),

where in the above derivation it is enough to assume that the neuron is behaving in a
linear regime (Supplementary Material .

Thus, the reservoir mixes input statistics and these are reflected in reservoir statistics
of first and second-order, with a dependence on input-to-reservoir and within-reservoir
connections (i.e. € and p). Full details of this derivation can be found in Supplementary
Material Below we provide some insights for a feedforward reservoir and for the
case of temporally correlated inputs.

Feedforward reservoir In the limit p — 0, the reservoir becomes essentially a feed-
forward layer. In this case, reservoir spatial statistics of first and second order do not
reflect information embedded in second-order temporal covariances (see Eq.|3|and Eq.
when setting p = 0). Thus, a purely feedforward reservoir is not useful to process this
type of structure. Nonetheless, the nonlinear behavior of the sigmoid function intro-
duces a cross-talk between first and zero lag second-order statistics, where we see that
the reservoir mean activity and covariances are influenced in both cases by both input
means and covariances. Furthermore, in terms of the strength of the input-to-reservoir
connections ¢, first order input statistics have O(e) contribution to reservoir mean and
O(£?) contribution to reservoir covariances, while input covariances have O(g?) contri-
bution to reservoir mean and O(g?). This hints that maintaining consistency betweeen
statistical orders for ‘encoding/decoding’ is better than mixed schemes when inputs have
first or second-order zero lag structure. Thus, when information about class is embedded
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in the input mean activity, this is more strongly reflected in the reservoir mean activity
but can in principle also be recovered from the (zero-lag) second-order statistics (to a
lesser extent). However, when the information is embedded in the zero-lag covariances,
the above derivation suggests that second-order statistics of the reservoir provide better
representations than first-order ones. This constitutes a strong departure from purely
linear networks, where covariance-based information representations are only possible if
indeed such a representation is present in the inputs (Gilson et al., [2020).

Temporally correlated inputs This type of inputs require p # 0. As coefficients
of the form 1_% and lf—z4 diverge as p — 1, the optimal value for the spectral radius
will be approaching one from below, as it maximizes the influence of input one lag
correlation in reservoir mean and spatial covariance statistics. In this limit, from the
coefficients in the Taylor series, we observe that reservoir means are more influenced
by input lag statistics than reservoir covariances. Note, however, that in this limit the
Taylor series approximation is not likely to hold, so we cannot conclude that a mean-

based representation be better than a covariance based one.

2.1.2 Analysis of reservoir dynamical regime

Our previous analysis, valid when the reservoir is behaving in a weakly nonlinear regime
(see Supplementary Material , points to interesting relationships between reservoir
dynamical regimes and useful input-to-reservoir statistics conversions. Therefore, we
define for each neuron three possible dynamical regimes according to its activation state
z, where the activation state is the argument inside the nonlinearity / = tanh at any
given time point (Eq.[1]). If |z| < 0.3, the regime is considered linear. If 0.3 < |z| < [0.6],
it is weakly nonlinear. Any other case is considered nonlinear. We set these bounds
for the regimes by upper-bounding by 0.01 the error in the truncated Taylor series
approximation to the hyperbolic tangent of first and third order. For each of the datasets
we work with, we numerically compute the probability of finding a neuron in each
dynamical regime as function of spectral radius and leak rate.

2.1.3 Reservoir topology

In most of our study we use a reservoir implementation as detailed above, where each
neuron is fed by all the input nodes (i.e. Q" is a full matrix) and likewise feeds the
decoder (corresponding to a full 2°% matrix).

However, it is known that the anatomical connectivity in the brain is not full, but
sparse and constrained. Getting inspiration from one of the most known pathways of
cortex from sensory areas to motor areas, we also consider a reservoir topology that
mimics this structure by simply separating input receptor nodes from output feeder
ones, as studied in previous work (Fig. 2B) (Kawai et al. 2019). To study how activity
propagates across this specialized reservoir, we place the neurons along a ring and choose
the input receptor neurons to be opposite the output feeder ones. This implies constrains
in Q™ and Q°". For all our simulations using the segregated reservoir, we use a total of
N = 500 neurons, where two disjoint sets of size 50 form the receptor and feeder groups.

Within the reservoir, we try three different naive and sparse (0.1 density) connectivity
patterns for Q2'°: random, symmetric and asymmetric. The motivation behind exploring
these different patterns comes from the design of the synthetic inputs in Section [2.3.3]
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where a mixing matrix given by an asymmetric matrix J guarantees, via the exponential
function, that the inputs are temporally but not spatially correlated. To generate these
topologies, all non-null reservoir connectivity matrix elements are uniformly sampled
from [—0.5,0.5). For the symmetric (asymmetric) matrices, we only sample elements
2;5° for the upper triangular part, while the lower triangular elements are assigned to
fulfill the symmetry (asymmetry) condition Q7% = Q2 (Q5F = —Q72°).

2.2 Decoders

We have four different learning and decoding schemes, as outlined in Fig. [IB: mean-
LP, cov-LP, mean-MLR and cov-MLR, with names following the convention ‘feature-
classifier’, where the feature corresponds to the statistical order used by the classifier to
predict the class. We denote by v(t) € RP the observed activity in Fig. [l which either
comes directly from the input time series (i.e. v(t) = u(t) with D = M) or is filtered by
the reservoir (v(t) = x(t) with D = N). The prefix ‘mean’ indicates that the classifier
relies on the mean vector of the observed activity, namely S(v(t)) = éZle v(t). The
prefix ‘cov’ indicates that the decoder relies on the matrix of zero-lag (or one-lag) covari-

ances of the observed activity, S(v(t)) = 71 324~ (v(t) —ivd v(t’)) (v(t) ~iyd v(t’))T,
with the superscript T indicating the matrix transpose. In each case, we consider two

options for the classifier: a linear perceptron (Rosenblatt, 1958; Bishopl 2006) (LP in
Fig.[IB) or a (multinomial) logistic regression classifier (Bishopl, 2006) (MLR in Fig. [I[B).

Our main focus is the performance of the LP and we implement the MLR, decoder only

as a reference.

We stress that there is an operational difference between the two classifiers. The
LP is biologically inspired in the sense that it generates, for a K-class classification
problem, an output time series y(t) € R at each time step, and the statistical moments
for classification are computed for this vector when the observation period is over (top
pathway in Fig. ) Thus, the output activity at time t is given by:

y(t) = Q"o (1), (5)

where Q° € REXD js the matrix of classifier parameters. We remark that Q°" has a
fixed dimension independently of the statistic used for classification. In the mean-based
instance, the predicted class is given by the output node with highest mean activity
during the observation period. In the covariance-based instance, the predicted class is
given by the output node with highest variance during the observation period. Note that
when using the covariance perceptron learning rule, we always implement a mapping
between spatial covariances, since we do not consider the case of recurrent connections
in the readout layer, as is needed to map temporal covariances to spatial covariances
(Gilson et al., |2020).

On the other hand, the MLR is a conventional machine-learning approach which first
computes the desired time series statistics and afterwards uses it as a vector entry for
the classifier (bottom pathway in Fig. ) To do so, the MLR produces a single output
vector y € RX from the statistics S(v(t)) of the observed time series, which is not time
dependent, but instead represents the probabilities of the input feature vector to belong
to each class:

y = exp (S (v(1))) . (6)
In Eq.[6] S (v(t)) is D-dimensional for the mean vector and D(D + 1)/2-dimensional for
the vectorized covariance matrix (taking symmetries into account), so the output matrix
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(Q2°u) dimension depends on the statistic used as feature. In practice, the output is L1-
normalized so that all the elements in y sum to 1. The class is then given by the index
of the maximum element in y. In other words, the order to the transformation by
Q°" and the calculation of the statistics is swapped between the two types of classifiers
(Fig). Therefore, the MLR for covariances is not equivalent to the linear perceptron
with an extra nonlinearity (logistic function). We further emphasize that, once both
decoders are trained, while MLR always computes the statistics of the observed activity
for classification, the perceptron instead embeds this information directly in the output
time series, which are then further processed to compute the statistics and predict the
class (Fig. [IB).

In addition, all our models make use of a bias unit at the input-to-reservoir and
reservoir-to-output levels, which can be straightforwardly included in all our previous
equations. This unit consists of a time series with constant (unit) activity as additional
entry. Thus, it has a mean equal to 1, null variance and null cross-covariance with
other input nodes. Another possibility would be to choose the bias unit that feeds
the decoder unit as a signal with zero-mean activity and variance of 1. Intuitively,
this would correspond to adjusting the offset in covariance space. However, to keep
consistency at all layers, we keep the bias as a unit constant, given its importance for

input representations (see Section and Appendix [A.1)).

2.2.1 Learning procedures

Once that the pipeline is set (with or without reservoir, statistical order of feature and
decoder), the final step is training the decoder by tuning the matrix weights Q" the
only plastic aspect of the network. In all cases, we rely on a gradient descent that aims
to minimize a cost C.

For the mean-LP, learning is achieved by minimizing a regularized mean squared
cost function between the output mean activity m = (y(¢))q and a target output mean
activity 4 € R during the observation period d:

1K N K D
C:5 (my — r) —1—522 aut)”. (7)

k=1 k=1 i=1

Given the linear nature of the readout, when A = 0, this is equivalent to matching an
output time-dependent trajectory to a constant target output trajectory (Gilson et al.|
2020J), which corresponds to the common winner-take-all readouts typically used in reser-
voir computing applications for classification (Verstraeten et al., 2007, 2006} |Skowronski
and Harris, 2007; Jaeger et al., 2007). We use the scikit-learn library (Pedregosa et al.,
2011)) to minimize this cost function. Importantly, we do not highly tune the regular-
ization parameter A, but set it to 0.02 for all models.

For the cov-LP decoder, learning consists in minimizing a squared error cost function
from output spatial (zero-lag) covariances Y° € RX*K to target spatial covariances
Y9 € REXK (Gilson et al., 2020):

1 K
Z Yk — Yk:k : (8)
2=

Note that since only the diagonal elements of these matrices are useful for classification,
we only constrain them during training, leaving the cross-covariances to vary freely. This
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is achieved through a gradient-descent learning rule derived for linear dynamics (Gilson
et al., [2020), where the weight updates AQY™ for the connection between element k in
the output and element ¢ in the observed activity are given by:

AQY = (VO - V%) @ (GikVOQoutT i QoutVOGik:T) ’ 9)

where 7 is the learning rate, VO € RP*P is the spatial covariance matrix of the observed
activity and G* € RK*P has 0s everywhere except in element (i, k) that is equal to
1. Symbol ® denotes the element-wise (Hadamard) product followed by summation of
resulting elements. The learning rate is set for all models to 0.01 and 100 optimization
steps are performed.

For the MLR decoders, learning is done through stochastic gradient descent to opti-
mize an L2-regularized cross entropy cost function (Bishop, 2006)). For this, we use the
scikit-learn library (Pedregosa et al., 2011)).

2.2.2 Subsampling procedure for observed activity

Generally, statistical models with larger number of free parameters will yield better
performing models than those with lower resources, provided they do not overfit the data
(Bishop, 2006). Since the cov-MLR decoder differs in the number of parameters to learn
when compared to the other three schemes, to fairly compare them we subsample the
dimensions of the observed activity vector v(t) so that its vectorized covariance matrix
has dimension close to D. In the reservoir pipeline, D represents the size N. Thus, if
N = 25, we train the cov-MLR decoders with neuron subsamples of size S = 6 and S =
7. The resulting decoders have, on average, 24.5 free parameters, thus approximately
matching the complexity of cov-LP, mean-LP and mean-MLR when trained on the full
size reservoir. Each reservoir initialization is randomly subsampled 100 times for each
S, so reported performance is not heavily dependent on a given subsampling (as it is
averaged across 10 reservoir initializations, with a total of 2,000 subsampling iterations).
For N =50 we use S = 9,10, and for N = 100, S = 13,14. For the pipeline without
reservoir, we subsample the number of inputs following the same approach. Therefore,
for the real dataset with 13 input features (Section we use S =4 and S = 5.
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Figure 2 (previous page): Description of reservoir properties and input datasets.
A: The reservoir dynamics are characterized by the spectral radius p(2"*), which is the
largest absolute eigenvalue of the reservoir’s connectivity matrix. By convention, a reser-
voir with p(2"%) = 0 means Q" = 0 and corresponds to a feedforward layer without
recurrent connectivity. We also modulate the reservoir processing via the local units’
dynamics by adding a leak parameter a. Small leak values indicate an integration of the
input over time yielding slower update dynamics, while o = 1 indicates that the units do
not integrate past input information. B: We explore an additional reservoir structure
where nodes connected to inputs (receptors) are segregated from nodes connected to
outputs (feeders) (Kawai et al., [2019). We choose the reservoir connectivity matrix to
be fully random, symmetric or asymmetric (see Section [2.1.3)). C: For synthetic inputs,
we first sample reference patterns from given probability distributions. Afterwards, we
randomly split them in two balanced classes. To generate a sample time series for a
given pattern, we add noise at each time point through specific dynamics (see Eqs.
13). D: The real data consist of input time series that correspond to spoken digits.
To approximate the way the human cochlea processes sound when entering the ear, the
speech signals are framed and windowed. For each time bin, a frequency spectrum is
computed through a Fourier transform, simulating the frequency-tuning of nerve cells
in the cochlea, and a logarithmic scale (mel scale) is used to represent the power coef-
ficients, simulating the nonlinear perception of pitch in humans. These coefficients are
decorrelated by means of a discrete cosine transform, keeping 13 amplitude coefficients
per time bin. This multivariate time series is afterwards passed through the processing
pipeline in B for prediction of the spoken digit. Note that the dataset is only available
as preprocessed MFCC coefficients (Hammami and Sellam, 2009; |Dua and Graff, [2019)).

2.3 Synthetic datasets

This section introduces the synthetic datasets of multivariate time series whose ‘infor-
mation’ relevant for classification is embedded in one of their statistics up to second
order. We also consider a mixed scenario where the information is embedded both in
means and zero-lag covariances, thus either of these statistics can be used for classifi-
cation. Note that we use the term ‘information’ in a colloquial manner in this study,
without a specific reference to information theory.

We consider a multivariate time series given by u(t) € RM that represents the activity
of M = 10 input nodes observed at discrete times 1 < ¢ < d with d = 20. We rely on
dynamical systems to enforce a specific spatio-temporal structure that constrains its
statistics up to the second order, namely, the empirical mean activity and their zero-lag
and one-lag covariance matrices, defined as follows:

e vector of mean activity p € RM, with elements py = (uy(t)), = 3 Zle ug(t);

c RMXM

e zero-lag covariance matrix PY , with elements

Py = cov (ug(t), w(t))y

= (ugp (W) w(t))y — (uk(t))y (wlt)),
1 d—1 1 d 1 d
=71 [Uk(t) -7 Z Uk(t/)] [uz(t) — 7 Z uz(t/)] ;

t=1 t'=1
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c RMXM

e one-lag covariance matrix P! , with elements

Pkll = cov(uk(t), w(t+1),
= (up(t)u(t + 1)) g — (uk(t)) g (w(t + 1)),

1 d—1 1 d 1 d—1
= - ! 1) — —— "1
12 g (t) d_lt;uk@)l w(t+1) d_ltglul(t +1)

Here our goal is to classify the synthetic time series into K = 2 classes. We thus gener-
ate two groups of such time series according to one of the above structures, where the
defining statistics —p, P% and P'— correspond to distinct patterns that are randomly
assigned to one of two classes (Fig. ) We first draw a number of such “reference”
patterns by sampling given probability distributions, then we generate for each pat-
tern several sample time series for our classification task (each sample involving further
stochastic randomness). In each category, there are then two sources of “noise” or vari-
ability: the different patterns belonging to a same class, and the empirical noise due to
the individual probabilistic realization of each sample. The rationale behind our choice
is to account for empirical noise that is typically observed in real time series, such as
speech sounds, where distinct phonemes have a similar spatio-temporal structure, which
is altered at each pronunciation.

We use cross-validation to assess the classification performance, relying on a 70/30
train/test split that is maintained in all synthetic datasets. For each dataset, we evaluate
how separable the two classes are in the relevant feature space by applying a multinomial
logistic regression decoder (details in Section directly on the input sample time
series statistics(see bottom pathways in Fig. [1)). The performance of this benchmark
decoding is affected by the number of patterns to classify per class (intuitively, densely
populated feature spaces are more likely to involve overlapping classes) and by the
properties of the probability distribution the patterns are drawn from. Note that we
focus on synthetic datasets with a benchmark classification accuracy below 100%, so we
can detect performance improvements and decreases across different decoding schemes
and models.

In the following subsections we describe the generative dynamics for each statistical
structure.

2.3.1 Mean or first-order structure

We use the following generative process for the time series:

u(t) =p+ 2(t), (10)

where z(t) € RM is a normally distributed random variable, with zero-mean and identity
covariance matrix. To characterize the mean activity of u(t), we use a pattern vector
p € RM, with non-null elements sampled from a zero-mean and unit variance normal
distribution. This vector is created sparse, with a 0.1 density. This means that 90% of
the input nodes will have zero-mean activity.

To generate a dataset of this type, we first draw 20 patterns of such p vectors and
randomly split them in two classes (10 in each), as shown in Fig. . Once defined
the patterns for the two classes, we generate noisy samples by using Eq. with 500
repetitions for each pattern. From each set of 500 samples, we use 350 samples for the
training set and the remaining 150 for the test set.
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2.3.2 Spatial covariance or second-order zero-lag structure

We use the following generative process for the time series:

u(t) = Wz(t), (11)

where z(t) € RM is, as before, a standard normal random variable and W € RM*M g 5
random sparse matrix with 0.1 density and non-zero elements sampled from a standard
normal distribution. The resulting zero-lag covariance matrix is given by PO = W™
(Gilson et al., 2020). Note that the generated time series has zero-mean activity over
time up to the empirical noise, as well as zero temporal correlations (P! = 0). Thus,
the only discriminative information for the binary classification is in P° (or equivalently,
W), which is the defining statistic.

To generate a dataset of this type, we sample 60 W matrices and randomly split them
in two classes before simulating the dynamical processes. As before, we then generate
500 noisy samples with a 70/30 ratio for the train and test.

2.3.3 Temporal covariance or second-order one-lag structure

We use the following generative process for the time series:
u(t) = Wu(t — 1) + 2(1), (12)

where we choose the mixing matrix W = exp(SZyxm + J), with parameter 8 < 0,
Tnixm € RMXM g the identity matrix and J € RM*M ig an antisymmetric matrix. This
guarantees that the time series will not differ neither in their mean activity vectors p
(which are null) nor in their spatial correlation structure P (which only depends on ),
but only in their one-lag covariances P = WP (Gilson et al., 2020).

To generate a dataset of this type, we sample 6 W matrices and randomly split them
in two classes before simulating the dynamical processes to generate the noisy samples
in the same manner as before. Without loss of generality, we set 3 = —0.5 and create the
matrices J by sampling unsigned upper diagonal elements from the uniform distribution
over [0.5,1). The elements’ signs are randomly assigned, and the resulting J matrices
have by construction a 0.3 density.

2.3.4 Mixed spatial inputs with first and second-order zero-lag structure

To create time series that differ in mean and spatial covariance structure, we use a
superposition of the signals given in Egs. [10| and

u(t) = p+ Wz(t). (13)

To generate a dataset of this type, we randomly sample 20 W matrices and 20 p
vectors. Each p is randomly paired to a W matrix and the tuple is randomly assigned to
one of two classes. This is done with the purpose of having mean patterns and covariance
patterns that are evenly separable. Afterwards, the dynamical processes are simulated.
Note that p and W are generated with the same density and normal distribution for
their non-zero elements, as in Sections and respectively.
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2.4 Spoken Arabic digits dataset

To test our covariance-based decoding applied to reservoir computing in a real appli-
cation, we work with the spoken Arabic digits dataset (Hammami and Sellam, |2009;
Hammami and Beddal, 2010; |Dua and Graff] 2019)). The motivation is to use time series
with spatio-temporal structures. The dataset contains 8800 multivariate time series (10
digits x 10 repetitions x 88 speakers) recorded from native Arabic speakers (44 females,
44 males, ages 18-40 years old) with the purpose of classification, split in a training
(75%) and test set (25%). Here the classification is not binary, but there are K = 10
classes (one per digit).

The time series are represented by 13 Mel Frequency Cepstral Coefficients (MFCC)
(Davis and Mermelstein, [1980), which constitute a widely used feature for tasks such as
speech recognition (Usman, |2017). They mimic the transformation of the audio signal by
the inner ear and are a model of how sound stimuli are “perceived” by the early neuronal
auditory system. As represented in Fig. 2D, when a mechanical sound wave reaches the
ear, it produces vibrations that propagate throughout the cochlea, with high frequencies
entraining the early part of the cochlea and low frequencies the end part. Hair cells in
the cochlea translate these vibrations into electrical activity in a frequency dependent
manner (depending on their position), so the sound is spectrally decomposed. This is
performed by means of the Fourier transform in the MFCC computation. Afterwards,
the spectrum is represented using a logarithmic scale (mel scale), emulating the nonlinear
perception of pitch. Finally, a discrete cosine transformation is applied with the purpose
of decorrelating the resulting coefficients.

Since the MFCC sequences vary in length (5-92 elements, median 40), as is natural
in speech, we opt to shrink or expand them (through zero-padding) to have the same size
and a consistent observation window (d = 50). This is strictly not necessary since all our
classification methods can operate on varying sequence lengths, but is only motivated
to make the implementations more straightforward and does not make the classification
problem easier. Another possibility to avoid losing the information about sequence
length, which strongly relates to digit identity, is to add it as a normalized constant
input to the reservoir (Jaeger et all 2007)), but we choose to not follow this approach.

3 Results

The purpose of our study is the comparison between mean-based and (co)variance-based
linear perceptron readouts applied to a reservoir of sigmoid neurons for the classification
of multivariate time series. To do so, we firstly consider synthetic time series with
controlled structures, characterized by either their means, spatial covariances (zero-lag)
or temporal covariances (one-lag) (see Section [2.3)).

To determine the usefulness of the reservoir in the pipeline for classification, we also
compute baseline classification accuracies (i.e. without reservoir, ‘NO-RES’ pathway in
Fig. ) for each perceptron readout type. Furthermore, we use additional multinomial
logistic regression decoders (mean-MLR and cov-MLR) to quantify in terms of their
accuracy how ‘class-informative’ the noisy statistics of the time series that reach the
perceptron readouts are. We remark that the purpose of the MLR decoders is merely
to provide a reference, and that these decoders are operationally different from the
perceptron. The later receives time series as input and likewise produces time series as
output, with class ‘information’ embedded in its statistics. MLR instead receives pre-
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computed statistics as input features and directly outputs a single static class-probability
vector (FiglI]B and see Section for further details).

We systematically vary reservoir parameters to allow for the identification of which
properties of the reservoir (size, spectral radius, leak rate) are important to extract the
relevant information for classification, in line with previous work that used mean-based
readouts with similar reservoirs (Jaeger, 2001; Farkas et al., [2016; Boedecker et al., |2012;
Schaetti et al., [2016)). In addition, we explore the influence of the reservoir connectivity
by comparing fully connected random reservoirs and segregated reservoirs where input-
receptor neurons (receptors) and output-sending ones (feeders) are separated by at least
one neighbor (Fig[2B and see Section for the decoding of inputs with different
structures.

Last, we apply our analysis under the same considerations of the first part of our
study to real data for speech recognition (see Section , which is a practical prob-
lem where reservoir computing has been efficiently applied (Verstraeten et al., 2005,
2006, 2007 [Skowronski and Harris, [2007; [Jaeger et al., [2007; [Triefenbach et al.l 2010}
Alalshekmubarak and Smith, 2014; |Zhang et al., [2015; Jin and Li, 2017).

3.1 Reservoirs enhance covariance perceptron performance and effi-
ciently represent second-order statistics from input time series
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Figure 3 (previous page): Decoding performance for spatial and temporal struc-
ture and reservoir dynamics. A: Reservoir classification performance for a spatial
structure (left panel) and a temporal structure (right panel) embedded in the input
time series, when the decoder is a linear perceptron. Accuracy is shown as a function of
spectral radius (on the x-axis) and for different reservoir sizes (see V) and leak rates (in-
dicated by the various contrasts). We compare mean-based decoder (mean-LP in blue)
and covariance-based decoder (cov-LP in red). The light-gray lines on each subplot in-
dicate the performance of a MLR classifier directly applied to the statistics (see bottom
pathways in Fig. [1]) that characterizes the information embedded in the input time series
(zero-lag covariances for the left panel and one-lag covariances for the right panel). The
dark gray line shows the performance of a covariance perceptron directly applied to the
input time series (top pathways in Fig. . Shaded areas represent 41 standard error
of the mean (sem) across 10 different simulations of time series and reservoir configu-
rations. Each class has 30 different covariance patterns in the left panel, and 6 in the
right panel. B: Probability of finding a reservoir neuron in the linear dynamics regime
(see Section (pink) or in the weakly nonlinear regime (orange) versus spectral ra-
dius, for different reservoir sizes (overlapping dotted, dashed and solid lines for N = 25,
N =50 and N = 100 respectively) and leak rates (shades). Results are averaged across
10 different data simulations and reservoir configurations. Shaded areas are +1 sem. C:
Accuracy for the best models for each decoder type: blue for mean-LP, red for cov-LP,
yellow for mean-MLR and green for cov-MLR. Error bars represent 1 sem across 10 dif-
ferent simulations of time series and reservoir configurations. Numbers in model names
indicate the size of the reservoir (RES-N, N = 25, 50, 100 as above, see the bottom
pathway in Fig. ), while NO-RES indicates that the input time series is directly fed
to the decoder (the bottom pathway in Fig. ) In the right panel, we also include the
performance of MLR on one-lag covariances (one-lag cov-MLR) for the NO-RES case,
since the other features are not informative in this case.

The linear perceptron readout (mean-LP and cov-LP in Fig. ) is trained to perform
a binary (K = 2) classification task of synthetic input time series that differ by their
second-order statistics. We create these time series in such a way that the statistical
features that determine to which of the two classes they belong to is embedded either
in their zero-lag covariances (spatial structure, Section in Methods) or in their
one-lag covariances (temporal structure, Section in Methods).

For the spatial structure where the categories differ by the zero-lag covariance pat-
terns, we first train mean-LP and cov-LP readouts without the reservoir in the pre-
processing stage. As expected, mean-LP operating directly on the input time series
does not produce above chance classification accuracy, since the inputs have, by con-
struction, zero-mean activity (up to some observation noise). On the other hand, cov-LP
achieves an accuracy of 71 + 2%. While this accuracy is much better than chance, the
decoder is not able to fully extract the second-order information embedded in the input
time series covariances, as quantified by the cov-MLR performance (88.6 = 0.9%).

We add the reservoir to the pipeline and vary its parameters (namely size, leak rate
and spectral radius) to assess how they influence the classification performance (Fig. ,
left panel). For the classical mean-based perceptron readout (in blue), we find similar
results to previous work on reservoir computing applied to others tasks (e.g. types of
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inputs): performance monotonically increases with the number of units forming the
reservoir. This is due to the increased dimensionality of the representation of the inputs
in the reservoir activity, which makes it easier to find a separating hyperplane for the
two categories of inputs. The new approach with the cov-LP readout (in red) displays
the same trend. Furthermore, the reservoir can boost the decoding performance beyond
that of a cov-LP directly applied to the inputs (dark gray line) with as little as N = 25
neurons (half the amount needed by mean-based readouts) and it even reaches the per-
formance of the MLR directly applied on input covariances (light gray line) for N = 100.
Note, however, that the number of trained weights per class is then equal to N = 100
for the cov-LP, whereas it is equal to 10 x 11/2 = 55 for the (cov)MLR-NO-RES (see
Section . For both readout types (mean/cov), we find that the performance decays
with spectral radius, the best being achieved when the reservoir is a feedforward layer
where p(Q2"®) = 0. This points to interesting relationships between reservoir dynamics
and representations. Indeed, it can be shown that when the neurons inside the reser-
voir behave linearly, then mean-based reservoir representations are not able to classify
spatially structured inputs at the second-order, while covariance-based ones can (see
Section . However, when neurons are driven in a weakly nonlinear regime, mean-
based representations become possible. On the other hand, when a reservoir is excited
at a strongly nonlinear regime (i.e. saturating the nonlinearity), it will provide repre-
sentations (at both orders) that are degraded when compared to the weakly nonlinear
case.

In fact, a neuron saturating the nonlinearity can only behave in three possible ways:
continuously saturating the nonlinearity at the top limit, at the bottom one, or alter-
nating from one to the other. Neurons constantly saturating the same limit will have
average state equal to 1 or -1, while flipping neurons will have mean states that depend
on the switching probability, with higher probabilities more likely leading to zero-mean
states that degrade the input representation. This degradation, nonetheless, is expected
to be more prominent in the mean than the covariance space, since saturated neurons
can display coordinated switching behavior.

Succinctly, when the goal is to process input spatial covariances, randomly mix-
ing inputs (via Q) and applying a point-wise nonlinearity is enough to achieve this,
while keeping a memory of past states through reservoir dynamics appears detrimen-
tal. Indeed, strong recurrent connections within the reservoir drive it away from the
linear /weakly nonlinear regime (Fig. ) and the corresponding accuracy drops as rep-
resentations lose quality by becoming sparser. In line with this, performance degrades
more slowly for the cov-LP than the mean-LP, although the effect becomes similar as
reservoir size increases.

We also observe that cov-LP performance is largely insensitive to changes in the
leak rate, as shown by the overlapping red lines in Fig (left panel). On the other
side, mean-LP performance degrades when increasing the leak rate for reservoirs whose
spectral radius is close to or larger than 1, and this effect increases with reservoir size.
Thus, the leaky integration mechanism becomes useful when using mean-based readouts
(smaller «v values yield better performance). Indeed, leaky integration drives the reser-
voir away from the nonlinear regime, therefore improving representations (see profiles
in 3B with varying leak rate).

Then, we consider the temporal structure signal (Fig. , right panel, see Sec-
tion in Methods for details) for which the input time series from the two classes only
differ by their one-lag covariances, their spatial covariances being identical. For these
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type of input structure, mean-LP and cov-LP alone (i.e. without reservoir) cannot cap-
ture the relevant statistics for classification, so they produce chance level accuracy. The
reservoir thus becomes fundamental for this task. As with the spatial structure, we find
that performance increases with reservoir size for both readout types. However, the per-
formance for the covariance-based decoders is well above that of mean-based ones, and
approximates that of the MLR directly applied to the one-lag covariances of the inputs
(98.8 £ 0.5%, dashed light gray line). Thus, the conversion from temporal second-order
patterns in the inputs to spatial second-order patterns in the reservoir is more efficient
than to spatial first-order patterns. The temporal structure yields different accuracy
dependencies on the spectral radius and leak rate, as compared to the spatial structure.
First, we note that mean-based readouts perform very poorly for all tested configurations
and that both decoders achieve their best performance for non-zero spectral radii. This
indicates that the reservoir recurrent dynamics are essential to transform the input lag
covariances into output spatial statistics of the reservoir activity, of either first or second
order. The optimal reservoir configurations have recurrent connectivity with p(2"%) ~ 1,
which have also been shown to maximize memory capacity for Gaussian inputs (Jaeger,
2002; |[Farkas et al.,|2016)). In those studies, the reservoir transforms dynamic signals in a
way that allows to retrieve past information for a given range of delays. Instead, we here
do the converse and transform the temporal structure (lag covariances) into a spatial
structure (zero-lag covariances). For a reservoir in a linear or weakly nonlinear regime,
indeed it can be shown that optimal representations at both orders are obtained when
p(*) — 1 from below (see Section2.1.1] in Methods). Nonetheless, as these tempo-
rally structured inputs produce reservoir nonlinear dynamics that are stronger than the
ones induced by spatially structured inputs (Fig. ), representation degradations seem
much more pronounced at the first-order than the second-one, explaining the larger gap
in accuracy between mean and covariance based decoders in Fig. [3A.

Second, accuracy increases with leak rate for both readout types. Nonetheless, for
covariance readouts in a feedforward reservoir with p(Q'*) = 0, leaky integration is key,
as it allows neurons to keep a memory of past inputs in their current state.

We further compare these LP decoders to the MLR decoders, in both mean-based
and covariance-based versions as illustrated in Fig. BIC. As before, we focus on the case
where a reservoir is involved in the classification pipeline (RES-N, corresponding to the
bottom pathway in Fig. ), as well as the decoders directly applied to the inputs (NO-
RES, see the top pathway in Fig. ) The best decoder performance for each case in
Fig. [BA across the considered reservoir parameters is displayed in Fig. BIC. It can be
seen that covariance-based decoders outperform mean-based ones when the information
to extract is in the second-order statistics of the inputs across all models tested, and
that the best decoder is the cov-MLR, which is also the readout with highest complexity
(number of parameters).

Ultimately, temporal and spatial input structures are efficiently processed by reser-
voirs, but distinct characteristics give the best performance (especially the radius). A
good compromise for both types of inputs and covariance-based readouts is a reser-
voir without leaky integration and medium-sized spectral radius, namely @ = 1 and
p(Qres) ~ 1.
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Linear perceptron performance on spatially
structured inputs
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Figure 4: Decoding mixed information for the mean structure and spatial
structure using feedforward reservoirs. A: Accuracy table for feedforward reser-
voirs without leaky integration coupled to a linear perceptron when using mean or covari-
ance readouts to classify time series characterized by its mean or its spatial covariance
structure. We focus on small reservoirs (N = 10, 25, 50), since the mean structure task
gives perfect performance for such reservoir size (N > 50). Each entry in the table is the
mean accuracy (with sem in parentheses) across 10 different simulations. Datasets were
designed to match the performances using the perceptron as readout: cov-LP 79(42)%,
15 patterns per class, mean-LP 81(£2)%, 10 patterns per class.
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Figure 4 (previous page): B: Classification accuracy as a function of reservoir size for
a feedforward reservoir without leaky integration coupled to a linear perceptron as a
readout when the categories of input time series differ by both their means and their
spatial covariances. As before in Fig.[3]A, the performance for the mean-LP is represented
in blue, that of the cov-LP in red. Shaded areas represent +1 sem across 10 different
simulations and gray lines indicate the performance of decoders that are directly applied
to the inputs (NO-RES). Note that the datasets are generated in such a way that the
classification performance of a mean-LP and cov-LP without reservoir is matched, equal
to 78 £ 1%, with 10 patterns of each statistic to distinguish per class (see Section m
in Methods).

3.2 Reservoirs with covariance-based readouts can also extract first-
order statistics

Thus far, we have shown that a consistent processing scheme between inputs and outputs
via the reservoir for covariance-based information processing is better than a mixed
scheme that maps input covariances to means in the reservoir activity, which are then
used by the readouts for decoding. Now, we explore for comparison the case where
the inputs have embedded information in their mean activity. When class information
is embedded in spatial statistics, we have shown analytically and numerically that a
pointwise nonlinearity is key to produce reservoir representations shaped at first and
second order, while the recurrent dynamics are less important. Thus, we restrict this
investigation to a feedforward reservoir and no leaky integration, namely p(Q'*) = 0
and o = 1, as they give the best performance in Fig. BJA. Note that the leak rate is less
crucial than the absence of recurrent connectivity here.

We firstly compare the performance of mean-LP and cov-LP decoders when the
input information is embedded in two different statistical orders: either means (input
dynamics in Section or spatial covariances (input dynamics in Section . We
intentionally work with small reservoirs to avoid the case where the mean classification
task becomes trivial, with perfect performance. To fairly compare the two structure
schemes, we create the respective datasets such that the performance of a LP classifier
acting on the distinctive input statistics (either mean or covariances) is matched up to
1% of performance. Our results in Fig. indicate that, typically, the best strategy is to
use for decoding the same order the input is structured at, for small reservoirs. However,
when the reservoirs are big enough (N > 50), switching to mean-based decoding can be
beneficial, as learning is computationally faster.

Then, we consider the situation where the input time series can be categorized by ei-
ther of their first /second-order statistics, corresponding to the dynamics in Section m
In this setting, knowing only one of these statistics is enough to perform the binary clas-
sification, and the question is whether a type of decoding can make use of both types
of information in a synergistic manner. As before, the inputs are designed to match de-
coding performances when LP is applied directly to them. We find that both decoders
perform equally well across various reservoir sizes (Fig. ), with a slight advantage for
cov-LP over mean-LP for smaller sizes and conversely for larger sizes.

These results are consistent with the fact that in a feedforward reservoir, if input-
to-reservoir weights are O(e), with |¢| < 1, then the statistical moments of reservoir
neurons will depend on input statistics with different leading orders in ¢ (see Meth-
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Figure 5: Decoding performance for spatial and temporal structure in segre-
gated reservoirs. Segregated reservoir (Fig ) classification performance of spatial
structure (left panel) and temporal structure (right panel) embedded in the input time
series when the decoder is a linear perceptron. Accuracy is shown as a function of
spectral radius and for different reservoir topologies (marker styles). Color coding is
similar to Fig. BJA. The black lines show the performance of a non-segregated reservoir
of 50 neurons without leaky integration (o« = 1, same as in Fig. , middle row) for
comparison.

ods .We have shown that reservoir mean activity has O(e) dependence on input
mean activity and O(e?) dependence on input spatial covariances. On the other hand,
reservoir spatial covariances display the same O(g?) dependence on both input statistics.
Thus, if information is on input means, it is more strongly reflected on reservoir means,
and likewise for covariances. However, when information is embedded in both statistical
orders, then fixing a representation for the reservoir settles the other one as ‘noise’.
Therefore, in a mixed scheme, mean-based representations have a better signal-to-noise
ratio than covariance-based ones.

Together, these results show that the application of covariance-based decoding, when
combined with a reservoir, goes beyond that of its same order encoding: information
about multiple input statistical orders can be effectively mapped to output second-order
moments.

3.3 Covariance-based information is more efficiently propagated in
short time scales

As a last point with the synthetic data, we consider a reservoir with separated input
receptor and output feeder units (Section|2.1.3]) to study the role of the reservoir topology
in the transmission of different statistical orders (Fig. ) In this architecture motivated
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by biology with segregated functions, signals have to propagate from end-to-end of the
reservoir to reach the decoder in a short-time window d = 20. We compare segregated
reservoirs with different sparse connectivities (Fig), as well as the architecture studied
until now with full connectivity from inputs and to outputs. Importantly, we design these
configurations such that they share the same number of decoder resources, as given by
the number of connections from reservoir units to output units (Fig. , middle row,
N = 50). The leak rate is always set to & = 1. Since the density of within reservoir
connections does not affect performance in the full connectivity configuration (it is only
important that it is non-null, see Supplementary Material Fig. , we set the reservoirs
to have 0.1 density.

For the task of decoding input spatial covariances, we observe that the performance
is improved for mean-decoding (Fig. , left panel, blue) with large spectral radii when
the segregated reservoir has symmetric structure. On the other hand, covariance-based
decoding is only reaching the not segregated reservoir performance for medium radii
(p(€2'*) = 0.9), where the segregation of receptor and feeders impedes that this task be
achieved by a feedforward reservoir.

When the information to decode is in the temporal covariances (Fig. , right panel),
mean-LP performance is degraded. Covariance decoding, on the other hand, is better
preserved and even reaches a better performance than a fully connected random topology
for p(Q2'*) ~ 0.7. For symmetric and asymmetric connectivities, accuracy is significantly
degraded across all spectral radii when compared to the not segregated reservoir, and
we also find that the relationship between optimal performance for these topologies and
spectral radius changes. This suggests a complex interplay between the input structure
and the reservoir topology, which would be interesting to explore in a more analytical
manner in future work.

On average, information about input covariances is better recovered by covariance
decoders even when the patterns must propagate along a network to reach the output
units in a short time window.

3.4 Covariance-based schemes work in classification of spoken digits

Finally, we explore the applicability of covariance-based readouts in reservoir computing
for the classification of spoken Arabic digits (Hammami and Sellam) 2009; Hammami
and Bedda, 2010; Dua and Graff, [2019)). The dataset consist of digits 0 — 9, represented
by 13 input nodes obtained after some preprocessing mimicking the cochlea as illustrated
in Fig. [2B (see Section [2.4]in Methods for further details). Our goal here is not so much
to improve the best performance obtained so far on this dataset. Rather we aim to
evaluate our covariance-based decoding in a real case study and speech recognition is
a common area of application for reservoir computing, given the sequential nature of
the task (Verstraeten et al., 2005, 2006, [2007; [Skowronski and Harrisl |2007; | Triefenbach:
et al.| 2010 |Alalshekmubarak and Smithl 2014} Zhang et al.l 2015} |Jin and Lil 2017;
Aceituno et al., [2020). Indeed, the classical mean-based decoding reaches a competitive
performance of 99.9923% for a reservoir of size bounded by N = 1,000 (Aswolinskiy
et al |2018), and it can be further increased to 99.9945% when using a predictive model
space representation instead of the natural reservoir space (Aswolinskiy et al., |2018]).
As before, we use the two pipelines for classification, with and without reservoir
(same as Fig. [I]A) and we vary reservoir properties (size, spectral radius and leak rate)
across a grid. For brevity, we only report the test accuracy of the best performing
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Top performing models in spoken digits classification
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Figure 6: Decoding performance in spoken Arabic digits classification. A:
Accuracy for the best performing models of each size, distinguished by decoder type.
Colors and model label conventions are the same as in Fig. [3B. Results are averaged
across 10 different reservoir instantiations. Error bars displaying £1 sem are also in-
cluded. B: Accuracy for the best performing models with varying reservoir size, when
the decoder is covariance-based (cov-LP and cov-MLR) and the number of parameters
of each decoder are approximately matched. Error bars displaying +1 sem are also in-
cluded.
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models for each reservoir size and decoder in Fig. [6]A, which are obtained for o = 0.2
and p(Q"*) = 1.2 (see Supplementary Material Fig. [J] for all results). This is in line with
decoding temporal structure (Fig. ), rather than spatial structure, suggesting that the
temporal structure of the real data is best captured by the reservoir to perform efficient
classification. First, we note that when we do not use a reservoir, the best decoders
are the nonlinear ones (mean-MLR and cov-MLR), and that both statistical orders
contain relevant information to classify the time series. However, the higher accuracy
obtained with the cov-MLR indicates that the covariance patterns are potentially easier
to extract than the mean patterns. Indeed, the performance of cov-MLR with N = 100
is 98.7 £ 0.1%, better than using a mean-based decoder with an echo state network
of N = 900 neurons (96.91%(Alalshekmubarak and Smith) [2013])), but obtained with
9 times fewer neurons within the reservoir. Furthermore, the performance is at the
same level of that obtained with a much more complex network model, as is the long
short-term memory network in (Zerari et al 2019) (98.77%).

In addition, the linear decoders (mean-LP and cov-LP) perform well above chance
level, which corresponds here to 10% because the dataset is balanced across the 10
possible digits. The use of a reservoir in the pipeline is beneficial to all decoders, and the
resulting performance increases with reservoir size. When N = 100, the performances
of the mean-MLR, mean-LP and cov-LP are closely matched, but they are still below
that of the cov-MLR. Our insight is that this gap could be further reduced by increasing
the reservoir size.

To further compare the cov-LP and cov-MLR, we subsample the number of neurons
in the reservoir, so that its vectorized covariance matrix has dimensionality close to N,
instead of N(N +1)/2 (see Section for details). We find that both models exhibit
similar performance under this constrain (see Fig. [6B), which confirms that the cov-LP
decoder extracts information about covariances in an optimal manner given its limited
number of resources.

All in all, covariance-based decoders can be successfully applied within reservoir
computing frameworks to classify spoken digits. The covariance perceptron (cov-LP)
applied to reservoir computing offers a good compromise between good performance
and limited resources as in a biological context.

4 Discussion

In this study, we have explored how a neuronal reservoir can be efficiently paired with
covariance-based readouts for the classification tasks of time series. Our goal was to
investigate the potential of this new type of decoding as compared to the classical mean-
based decoding that has been used with reservoir computing until now, with a two-
fold motivation. First, we aimed to characterize how reservoir dynamics can process
the statistical structure embedded in the input time series, up to the second order
including spatial and temporal structures. Second, we wanted to compare a biologically
inspired configuration —a perceptron network mapping time series to time series—
with a machine learning configuration —multinomial logistic regression mapping static
features to class probabilities. Our results demonstrate the efficiency of covariance-based
readouts applied to reservoirs, even in the biological configuration that involves limited
resources as implemented by a (linear) covariance perceptron.

We have shown using synthetic data that covariance decoding allows for capturing
a broad diversity of input structures after their transformation by the reservoir. To do
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so, a compromise configuration for our echo state networks, corresponding to a = 1
and p(Q') = 1, is robust to variations in second-order input structure. These findings
are confirmed with the classification of spoken digits from a real dataset, for which
we find better performance for covariance decoding: the performance of cov-MLR with
N = 100 (98.7 + 0.1%) is better than the mean decoding with N = 900 (96.91%)
(Alalshekmubarakl, |2014; |Alalshekmubarak and Smith, 2014). Moreover, the cov-LP
maximally extracts information about covariances given its restricted resources. For
the real digits dataset, the best radius is similar to the compromise configuration for
synthetic data, but the best leak rate is smaller. This is in line with previous work in
reservoir computing studies with mean-based readouts, which suggest that small leak
rates better suit the intrinsic time scale of the input time series, as speech spectral
features vary slowly when compared to the sampling frequency (i.e. the spacing between
the windows used to compute MFCC) (Verstraeten and Schrauwen, 2009). In such a
case, the usefulness of the reservoir is to transform signals at those slow timescales into
zero-lag correlations of the reservoir activity.

In more detail, the collective dynamics of the reservoir, as governed by the interplay
between the spectral radius and the leak rate, has a crucial effect on the input-output
mapping in terms of statistics. For large radii, small leak rates produce slower dynamics
that tend to drive the reservoir towards the linear or weakly non linear regimes, which
in turn enhances mean decoding of spatial structure. When inputs are endowed with
spatial structure, covariance decoding is less dependent on leak rate, which suggests
that reservoir pairwise correlation patterns mostly depend on global dynamic features.
On the other hand, mean decoding of temporal structure performs very poorly and is
negatively affected by slow unit and global dynamics, as information from the past has
to rapidly produce spatial patterns distinguishable by the mean decoder. For covariance
decoding when the information source are the one-lag covariances, the global memory
mechanism given by the spectral radius and the individual one given by the leak rate
operate best when acting alone, as we find that the presence of slow unit dynamics
decreases performance when the reservoir is scaled to operate close to the unstable
regime (p(2'**) ~ 1). The optimal reservoir in this case is one without leaky integration
and p(Q'®) ~ 1, which is balanced between the linear, weakly nonlinear and nonlinear
regimes. Thus, driving the system closer to the linear regime by decreasing the leak rate
(and effectively reducing the strength of the recurrent connections for a given spectral
radius) degrades performance. While most analytical studies in the reservoir computing
literature focus on the linear approximation (Jaeger, 2001} 2002 Jaeger et al., 2007;
Aceituno et al., [2020)), our numerical results suggest that other input-induced dynamical
regimes should be further examined theoretically (Manjunath and Jaeger, 2013; Verzelli
et al., 2020).

Early studies in echo state networks failed to report performance improvements in
time series prediction when using small-world or scale-free topologies (Liebald, 2004;
Rad}, 2008). However, it was later shown that connectivity plays a role when the reservoir
network displays cortex-like topological properties (Song and Feng), 2010; Kawai et al.,
2019), a finding that had been observed in reservoirs of spiking neurons earlier (Haeusler
and Maass, 2006). In those studies as replicated in ours, nodes receiving inputs differ
from those feeding the readouts, thereby mimicking the separation of sensory areas from
motor areas. This scheme is most efficient to transform input temporal covariances
into output spatial covariances when the reservoir connectivity is random; note that in
this case the optimal spectral radius is smaller than for the non-segregated reservoirs
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(p(Q2***) = 0.7 instead of 1). This could be due to the overall bigger reservoir size that
provides a faster mixing of the inputs (N = 500). Surprisingly, symmetric connectivity
enhances mean decoding of spatial structure. Overall, there is a nontrivial interaction
between reservoir topology and input structure which should be further investigated. We
note that future work could explore more elaborate topologies, like small-world, scale-
free, clustered (Weidel et al.,2020)) or even real connectome patterns (Suarez et al., 2020;
Damicelli et al., |2021)), beyond the simple connectivities studied here. Furthermore, we
constrained our study to random input projections, which take part in shaping the
input representations that arise in the reservoir (as hinted in Section . Along
this line, it has been shown that unsupervised plasticity at the input-to-reservoir layer
improves performance in pattern recognition tasks with mean-based decoding (Weidel
et al., 2020)), so it is natural to question whether this effect is also observed, or even
further enhanced, for covariance-based readouts.

Last, we stress that the use of the reservoir here offers several advantages with respect
to the linear network studied in (Gilson et al., 2020)). First, it avoids the training of
recurrent connections in the readout layer to classify temporal covariance structures,
by retaining past information in its own activity. Thus, learning is computationally
cheaper, as there is no need to numerically solve Lyapunov equations, which is the
case in the recurrent covariance perceptron (Gilson et al.l 2020). Second, the cross-talk
among statistical orders induced by the reservoir allows the covariance perceptron to
capture a broader variety of input statistics, in particular when the input information
is embedded in the first statistical order. Meanwhile, the neuronal system remains
biologically plausible and takes advantages of the interplay between nonlinearities and
recurrent connectivity (Maass et al. |2002; |[Enel et al., 2016]). Although we have not
examined the influence of the nonlinearity used in the reservoir, we expect a variety of
biologically inspired functions to lead to efficient computations, provided they keep the
recurrent dynamics under control for medium radii (i.e. bounded activity). Our work
may also bring a novel perspective in training recurrent networks with feedback in the
line of the FORCE algorithm, where the focus is on generating patterns (time series)
that consist of trajectories (Sussillo and Abbott, 2009; Miconi, [2017; Klos et al., [2020)).
A possible extension is to generate time series with desired covariance-based patterns
instead.

Another extension in the direction of biological realism is to transpose the scheme
to spiking neurons (Maass et al.l 2002). Following from our results when our analogue
reservoir is close to a linear regime, we expect our covariance-based decoding framework
to give interesting perspectives in terms of operations on covariances for spiking networks
in similar linear regimes. However, the specific nonlinearities involved in spiking neurons
should have significant effects on the input-output mapping and require a thorough
study. Such covariance-based learning for spiking neurons would be an intermediate
between learning spike rate patterns and precise spike trains, as with the ‘tempotron’
(Gitig and Sompolinskyl 2006) or ReSuMe (Ponulak and Kasinski, [2010)).

An important limitation of our study has been on the size of the reservoirs we were
able to implement, as the perceptron learning procedure for covariances becomes nu-
merically unstable as the number of parameters to tune increases. Current work on
overcoming this and studying the scaling behavior of covariance-based reservoirs is fo-
cused on using techniques such as gradient-clipping (Pascanu et al., 2013)). Nonetheless,
this approach makes the learning procedure slow as the number of optimization steps
needed to find a good solution increases. Another issue to also address in the future is
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how to efficiently regularize covariance-based decoders, since going for larger reservoirs
might lead to overfitting. These considerations underlie a cost-benefit trade-off between
covariance and mean-based representations. While covariances offer higher-dimensional
representational spaces than means for the same number of resources, learning is still
computationally cheaper and more stable for mean-based representations (Gilson et al.
2020; [Dahmen et al., 2020)).
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A Supplementary Material

A.1 Reservoirs propagate diverse input statistics

Let u(t) € RM be a multivariate time series fed to an echo state network, with u;(t) a
bias unit. The update equations for an arbitrary neuron x;(t) inside a reservoir with N
units are given by:

M
zi(t) = F (Z QI (¢ Z Poyresa (t — 1)) (14)

m=1
() = 1—a)z(t—1)+ aa:i(t), (15)
where the function F = tanh has a sigmoidal profile, Q™ € RN*M s the connection

matrix from the input time series to the reservoir units and Q¢ € RN*N is the weight
matrix of recurrent connections within the reservoir. Factor 5 allows to control the

spectral radius of the effective matrix of recurrent connections Q°f := gQreS, where 7 is
the spectral radius of Q.

In a fully leaky reservoir (¢« = 1) and assuming a left-infinite sequence of inputs is
presented to the reservoir, then the state at time ¢ of a neuron can be written as

k
_tanh<zlkzo<< Qf%) Qi“). um(t—k:)> (16)

If @« = 1 and neurons are in a weakly nonlinear activation state, we can approximate
Eq. by a Taylor series truncated at the third order:

M oo k '
i(t) ~ ((”Q) Q) U (t — k)
m=1 k=0 v i

-1 f: 3 (<SQ>’“QH>

(2= o) ((20) o).

m ir

(17)

where we have collapsed the sums Zm roml = Zm 1 Zr 1 ZS 1 and Zk ln=0 =
Y oreo a0 2on, for ease of notation and have used that tanh(z) ~ z — % When z~ 0.
In the following, we will assume:

e ()" elements are independently sampled from the uniform distribution over [—&/M, /M]

e (' elements are independent and identically distributed random variables with
zero mean and variance o = N, and thus in the limit N — oo, v — 1 (Ginibre,
1965)).

We want to observe how reservoir first and second-order statistics are influenced by
input statistics. Therefore, note that:

k
e In magnitude, elements in 20 follow (BQreS) ~ L = (BQres> ~
7 7 Pq K pq

Nk—l p2k k 2
L__gF = £
NEk 'Y2

2

2"@
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e Elements in Q" follow Q;r; ~ £

o — ((ggres)inn)l ~ ep2k

m

Thus, we get that:

M oo M 0o
Z Zep U (t — k) — % Z Z 3 p2 )y (t— K)up(t — Dus(t — n),

=1k=0 m,r,s=1 k,l,n=0
(18)
Thus, if we compute the mean (z;(t)), we obtain:
t+T
_ -+ N 34
(x;) = Tlgl;o T/t x;(t)dt
A 2k 1 o / /
SDIDILLN R ST (19
m=1 k=0 t
L S g (e I
~3 Z Z g3 p?2(ktitn) Th—IgoT/t Um (' — B)ur (' — Dug(t —n)dt’
m,r,s=1k,l,n=0
M oo
= (@) =Y > ep™ (um(t —k))
m=1 k=0 (20)

M o]
. é Z Z 63p2(k+l+”) <Um(t — k:)uT(t — l)us(t - n>>’

If we assume that the input time series are stationary, then their statistical moments
do not change when time shifted, i.e. (un,(t — k)) = (un(t)) and (up(t — k)u,(t —
E)us(t — k)) = (um(t)u,(t)us(t)) (they are time invariant). Thus, we can compute the
infinite sums (which are convergent geometrical series if p < 1), and get the dependence
of (x;(t)) in terms of the first order and second (zero and one lag) covariances of the
inputs:

UEPIE

m=1

i

1 (um (t)ur(t)) (21)

2y Tt st 1),

m,r=2

Following the same procedure, we can compute (x;(t)x;(t)) using the linear approx-
imation to the state of each neuron. Thus, we get:

(zi(t) Z Z 2 p2 ) (u (t — K)up (t — 1)) (22)

m,r=1k,l=0
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And in terms of first and second order moments (zero and one-lag), we find:

2

M
(it (1) %2 3 (lf/ﬂ)zwm(t»

S
3 e (0) (23)

m,r=2

M £2p?
+2 ) 1_p4<um(t)ur(t+1)).

m,r=2

Thus, we observe that p plays a key role in how input statistics are reflected in
reservoir statistics.

A.2 Section results when using MLR decoders as benchmarks
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A Linear perceptron performance on spatially
structured inputs
structure
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Figure 7: Decoding mixed information for the mean structure and spatial
structure using feedforward reservoirs. A: Accuracy table for feedforward reser-
voirs without leaky integration coupled to a linear perceptron when using mean or
covariance readouts to classify time series characterized by its mean or its spatial co-
variance structure. Same conventions as Fig Datasets were designed to match the
performances using the MLR as readout: cov-MLR 85(£1)%, 30 patterns per class,
mean-MLR 83(%2)%, 10 patterns per class.
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Figure 7 (previous page): B: Classification accuracy as a function of reservoir size for
a feedforward reservoir without leaky integration coupled to a linear perceptron as a
readout when the categories of input time series differ by both their means and their
spatial covariances. Same conventions as in Fig[dl Note that the datasets are generated
in such a way that the classification performance of a mean-MLR and cov-MLR, without
reservoir is matched, equal to 78 1%, with 10 patterns of mean vectors and 20 patterns
of covariances to distinguish per class.

In Section we compare the performance of cov-LP and mean-LP decoding when
the statistical information is embedded in the first or second-order moments of the
inputs (Fig[4h) or in both (Fig[4p). To be able to compare performance across different
datasets, we chose the number of patterns to distinguish per class such that mean-LP
and cov-LP decoders acting directly on the inputs obtained matching performances.
Using instead MLR decoders to match datasets, we can produce the same figure. Note
that in this case, for Fig , we have 30 covariance patterns per class (as in Fig , left
pannel) instead of 20. For Fig we have 20 covariance patterns per class, instead of the
10 in Fig[dp. There is now a difference between the number of patterns to distinguish
in each space, given mainly because cov-MLR decoders have a higher model complexity.
Thus, to generate the dataset each mean pattern is randomly paired to 2 covariance
patterns, and then the set is randomly assigned to a class. We observe, nonetheless,
that the results of Fig[4 are mostly preserved. The difference relies in that in the mixed
scenario, cov-LP decoders now lag behind mean-LP across all sizes tested. We venture
that this difference is due to two sources. One is that when using mean decoders, each
noisy pattern is observed twice when compared with each covariance pattern when using
covariance decoders. The other is that resources are low for small reservoirs when the
input covariance space needs to be covered. This could be overcomed with increasing
reservoir size. We observe such decrease in the performance gap between decoders up
to 25 neurons. Afterwards, the decreasing stops. This might be due to numerical
instabilities when trying to optimize covariance decoders for large number of weights.
Overall, Fig [7] suggests that the first-order information overrides the second-order one.
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Linear perceptron performance in random topology reservoir
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Figure 8: Linear perceptron classification performance in synthetic time series
with second-order structure. Similar color conventions as in Fig [BA. Reservoir
parameters are N = 100, o = 1 and p(Q2'*) = 1.2.
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Figure 9: Linear perceptron classification performance for spoken digits
across reservoir configurations. Similar color conventions as in Fig [FJA. Missing
points for N = 100, large leaks and spectral radii are due to numerical instabilities
during covariance learning.
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Dynamical regimes probabilities
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Figure 10: Dynamical regime probabilities for the spoken digits task. Proba-
bility of finding a reservoir neuron in the linear or weakly nonlinear activation regimes
versus spectral radius, for different reservoir sizes (overlapping dotted, dashed and solid
lines for N =25, N = 50 and N = 100 respectively) and leak rates (shades of gray).
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