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Adult cortex is organized into distributed functional communities. Yet, little is known about community
architecture of children’s brains. Here, we uncovered the community structure of cortex in childhood using
fMRI data from 670 children aged 9-11 years from the Adolescent Brain and Cognitive Development study.
Children showed similar community structure to adults in early-developing sensory and motor communi-
ties, but differences emerged in transmodal areas. Children have more cortical territory in the limbic com-
munity, which is involved in emotion processing, than adults. Regions of association cortex interact more
flexibly across communities, creating uncertainty for the model-based assignment algorithm, and perhaps
reflecting cortical boundaries that are not yet solidified. Uncertainty was highest for cingulo-opercular ar-
eas involved in flexible deployment of cognitive control. Collectively, our findings suggest that community
boundaries are not solidified by middle childhood, an instability that provides important context for chil-
dren’s thoughts and behaviors.
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INTRODUCTION

The human cortex is made up of distributed functional
communities. Each community is a set of preferentially
interacting regions that can be reliably detected across
individuals1–3. Communities follow a gradient from uni-
modal to heteromodal4, which aligns with a hierarchical
gradient of intrinsic timescales, from fast to slow5. Com-
munities comprised of higher-order association areas are
expanded in humans compared to other primates6, have
high expression of genes diverging most swiftly from pri-
mates in recent human lineage7, and show high interindi-
vidual variability in adulthood2,8,9. Dorsal and ventral at-
tention communities are involved in processing and act-
ing on sensory information10. The default community, in
contrast, supports internally-constructed representations
of information that cannot be sensed directly, such as re-
membering the past, envisioning the future, and imagin-
ing the minds of others11. The frontoparietal commu-
nity flexibly coordinates other communities to meet task
demands12, and maintains information no longer present
in the environment13. The clear organization of functional
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communities and their mapping to cognitive processes begs
the question of how these communities are organized dur-
ing human development.

Humans have the longest childhood of all primates. Pro-
longed cognitive immaturity is thought to provide a longer
window of sensitivity to the environment14,15. After the first
decade of life, humans have still not reached adult levels of
cognitive control or emotion regulation16,17. However, 10-
year-olds have made considerable progress in their cogni-
tive development: gains with age in skills like working mem-
ory, inhibition, and reasoning are much steeper before age
10 than after18. In the brain, by age 10, sensory cortex is rel-
atively mature, but association cortex continues to change
well into adolescence19,20. Cortical thickness in associa-
tion cortex declines and surface area transitions to an adult-
like pattern at age 10, shifting from early childhood ex-
pansion to the protracted decrease that continues through
adulthood21,22. Myelination, as reflected by diffusion mea-
sures, is near-complete in occipital and commissural tracts,
but frontotemporal-associated tracts show continuing de-
velopment through adolescence23,24. Some evidence from
a recent study of 9- and 10-year-olds suggests that commu-
nity organization resembles that of adults25, although their
approach only analyses strong connections, which may ob-
scure finer-grained distinctions in still-developing associ-
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ation cortex. From these studies, one might think that in
middle childhood children’s brains are organized more or
less like adults. However, it is also true that adolescence in-
volves major cognitive and neural reorganization26,27. Ac-
cordingly, one might also think that in middle childhood
children’s brains are not organized like adults. Which is
true?

To probe the organization of children’s brains in mid-
dle childhood, we turn to tools from network science, for-
malizing the brain as a collection of nodes and edges30.
Network analyses of child brain development have shown
increased segregation and integration with age, resulting
in the eventual efficient small-world architecture of adult
networks31–35. However, these studies have largely focused
on developmental processes, or employed adult group-
level communities to probe changes in network architec-
ture (e.g., Ref.36). During adolescence, age is associated with
shifts in the boundaries of functional communities27, sug-
gesting that the cortical patterning of community bound-
aries might be quite different in childhood than in adult-
hood. To our knowledge, however, few studies have ex-
plicitly compared cortical patterns of functional communi-
ties in childhood with those found in adults. Further, it is
an open question whether group-level community assign-
ments might map to individual children more poorly than in
adults, because of greater interindividual variability in chil-
dren. Despite this gap, many developmental studies have
applied adult group-level communities, which may lead to
incorrect conclusions37,38, either because children’s brains
are not like adults, or because they are more different from
each other39.

Here, we sought to test whether the patterns and con-
tours of children’s group-level cortical functional commu-
nities resemble those previously found in adults or whether
they differ, as we predicted, primarily in higher-order as-
sociation areas. We first employed a widely-used data-
driven approach to cluster points on the gray matter sur-
face based on their patterns of connectivity to the rest of
the brain. The clustering approach was developed by Yeo et
al.28 in their influential adult partition. The resulting devel-
opmental partition raised further questions about the inter-
actions between communities: to probe these interactions
and the reliability of community assignments, we turned
to the weighted stochastic block model (WSBM), a gener-
ative model-based approach developed by Aicher et al.40.
The WSBM explicitly models interactions both within and
between communities, attempting to partition communi-
ties such that nodes with similar patterns of connectivity
are grouped together. The WSBM also has the biologically-
motivated assumption of fewer organizing principles, and
thus may align better with large-scale brain organization,
and provides a greater flexibility and sensitivity to detect a
diverse set of network architectures41,42. As many devel-
opmental processes, such as synaptic pruning and myeli-
nation, are still occurring in middle childhood, we hypoth-
esized that connectivity might still be undifferentiated in
higher-order communities, thus in each approach, we ex-
amined regions of high and low certainty in community as-

signment. Finally, to investigate the variability we observed
in transmodal association cortex in middle childhood, we
chose a task with strong patterns of activation and deactiva-
tion in association cortex communities, the n-back task, to
test the relationship between children’s community topog-
raphy and their patterns of task activity.

RESULTS

Children show limbic community expansion and greater
integration of somatomotor and language communities

We first examined how cortical patterns of functional
communities differed in middle childhood from patterns
previously found in adults. We used a well-established com-
munity detection algorithm, applied to adults in Ref.28, to
create a group-level developmental partition from vertex
connectivity profiles (Figure 1). We investigated the stability
of community partitions across different numbers of com-
munities with a resampling approach to determine whether
k=7 was a reasonable choice. Local minima in instability
indicate the number of communities that can stably esti-
mated using the clustering algorithm; we observe a marked
increase in instability after k = 7 (Figure 1b). Though
our primary goal was ease of comparison to the adult 7-
community partition in Ref.28, our findings of a local min-
imum at k=7, as was found in an adult sample28, suggests
that 7 communities is an appropriate starting point for par-
titioning cortex in children.

The resulting child clustering partition with 7 communi-
ties is shown in Figure 2b. In Figure 2c, we show the allo-
cation of cortex to communities in the clustering partition
and a comparison to the adult partition. In the clustering
partition, more total surface area was assigned to the lim-
bic and visual communities than in the adult partition, and
less to the default and frontoparietal communities than in
the adult partition. This observation is suggestive of a rel-
ative expansion of limbic and visual territory, and contrac-
tion of default and frontoparietal territory, in children rela-
tive to adults.

To further probe the differences between the contours of
children’s functional communities and those of adults, we
investigated measures of partition similarity and the spe-
cific brain regions that showed differences in community
assignment. The clustering partition is significantly more
similar to the adult partition than expected by chance: the
normalized mutual information of the two partitions is 0.64
(p<0.001, permutation test), and the normalized informa-
tion distance43 is 0.36 (p<0.001, permutation test). Further,
39.53 % of vertices (ignoring the medial wall) have a differ-
ent assignment in the clustering partition than in the adult
partition. Of these vertices, the majority of switches were in
assignment of (i) adult default system regions to the limbic
community in children (29.63 %), and of (ii) adult somato-
motor regions to the ventral attention community in chil-
dren (23.8 %) (Figure 2d). 9.46 % of switches were from the
frontoparietal to the default community, and 8.63 % were
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FIG. 1. Overview of methods. The adult partition of cortical regions into 7 communities28 (inset) was compared to two developmen-
tal partitions: one generated using a data-driven clustering approach and one generated using a model-based WSBM approach. a, We
investigated the stability of different numbers of communities (k) using a resampling approach with the clustering algorithm (see STAR
Methods). With increasing number of estimated communities, we observe less stability, which is expected as the number of estimated
communities enlarges the solution space of the clustering problem. Local minima indicate the number of communities that can stably
estimated using the clustering algorithm; we observe a marked increase in instability after k = 7 (black line). b, Schematic of pipeline for
generating the clustering partition. Vertex-wise surface data was extracted and correlation profiles across 1,175 equally-spaced regions
of interest (ROIs) were calculated for each vertex (average correlation profiles depicted). These profiles were then used as input to the
clustering algorithm, which attempts to cluster vertices into k = 7 communities. c, We investigated the goodness-of-fit (log-likelihood) of
different numbers of communities (k) across our main (black) and replication (purple) datasets using the WSBM, finding a noted decrease
in goodness-of-fit in the replication dataset around k = 5−6 (left panel). We observed a distinct plateau in the number of communities
detected at the group level at k = 7 (right panel). d, Schematic of pipeline for generating the WSBM partition. Regional timeseries were ex-
tracted using a 400-region parcellation29, and correlations between regional timeseries were represented as a network (average adjacency
matrix depicted). These networks were then used as input to the WSBM, which attempts to group parcels into k = 7 communities.

from the ventral attention to the frontoparietal community.
The ventral regions of the precentral (primary motor cortex)
and postcentral gyri (primary somatosensory cortex), re-
gions that typically encode the face44, are clustered with the
ventral attention community, a fractionation that was pre-
viously observed in the 17-community partition in adults in
Yeo et al.28.

Uncertainty in community assignment is high in transmodal
regions

When connectivity is distributed evenly in a similar pat-
tern across communities, the assignment of regions to com-
munities will be uncertain, whereas when connectivity is
clearly segregated into differentiated patterns, the assign-
ment of regions to communities will be certain. Here we
sought to understand where connectivity may not yet be
clearly segregated in the child brain, and we therefore cal-
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FIG. 2. Overview of partitions generated using a data-driven clustering approach. a, The partition of cortical regions into 7 communities
estimated by Ref.28 by applying a clustering approach to adult neuroimaging data. b, A partition estimated from developmental data
using the same clustering approach. Note the overall similarity between the child partition and the adult partition (normalized mutual
information (NMI) = 0.64, p < 0.001, permutation test). c, Surface area assigned to each community in the two partitions. d, Areas that
were assigned to different communities in the adult partition and the child partition. Switches in community assignment from the adult
partition to the child partition are shown in color.

culated the certainty in the assignment of regions to com-
munities. We employed the confidence measure used in
Ref.28 to index certainty in community assignment across
vertices (see Methods); higher values of confidence are in-
dicative of higher certainty in community assignment. In
the adult sample examined by Ref.28, areas of low confi-
dence fall primarily along borders between communities,
and sometimes indicate where communities could be frac-
tionated in a higher-resolution partition (Figure 2a). Simi-
larly, areas of low confidence also fall along boundaries be-
tween communities in the clustering partition (Figure 2b),
but there are additional regions in the clustering partition
that show low confidence in assignment in the posterior
cingulate, precuneus, and inferior parietal lobule (circled in
Figure 3a and 3b). Despite lower confidence, the precuneus
and posterior cingulate area maintain similar community

assignment across both the adult partition and the two de-
velopmental partitions (Figure 2b and 4a-c), varying only in
their spatial extent. Similarly to adults, areas of low con-
fidence in children seem to primarily indicate fuzzy delin-
eations between communities, but it is difficult to ascertain
visually whether the certainty along boundaries of higher-
order communities is lower than the certainty along bound-
aries of primary sensory areas. For that, we turn to an inves-
tigation at the level of functional systems.

We asked whether fuzzy delineations of boundaries are
distributed broadly across association cortex in both child-
hood and adulthood, or whether children show areas of un-
differentiated connectivity primarily within the limbic and
somatomotor systems that are assigned differently than in
adults. We quantified this by calculating the median confi-
dence within each community in both the adult and child
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FIG. 3. Confidence in community assignment using a data-driven clustering approach. a, Confidence maps estimated from an adult
sample28 using the silhouette method. This method measures the similarity of a given vertex’s timeseries to that of other vertices assigned
to the same community, compared to the next most similar community (see Methods). For the purposes of visualization, negative sil-
houette values were set to 0. b, Confidence maps estimated from the developmental sample using the same method. For the purposes of
visualization, negative silhouette values were set to 0. c, Average confidence in the adult sample within each of the systems in the adult
partition. d, Average confidence in the developmental sample within each of the communities in the child clustering partition. Note the
higher confidence in the visual community and relatively lower confidence in higher-order association communities, particularly the dor-
sal attention and default communities. e, Summed confidence in community assignments from adult and developmental samples. Dark
brown indicates areas of low confidence in both adult and developmental samples. f, Difference in confidence maps between adult and
developmental samples. Red indicates higher confidence in the adult sample, while blue indicates higher confidence in the child sample;
these differences should be interpreted with caution, as there are other differences between the adult data and the developmental data
used here.
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samples (Figure 3c,d). In the adult sample examined in
Ref.28, confidence was highest in vertices assigned to the
visual and somatomotor systems and slightly lower in ver-
tices assigned to higher-order association systems (Figure
3c, H(6) = 21179.38, p < 2 × 10−16). In particular, there
was lowest confidence in assignment in regions in the fron-
toparietal (all pairwise comparisons p < 0.01, Bonferroni
corrected) and dorsal attention systems (all pairwise com-
parisons significant except ventral attention, p < 0.01, Bon-
ferroni corrected). In our developmental sample, confi-
dence was again highest in vertices assigned to the vi-
sual community, with significantly lower confidence in ver-
tices assigned to other communities (Figure 3d, H(6) =
25933.24, p < 2 × 10−16). There was lowest confidence in
assignment in regions assigned to higher-order association
communities, in particular, the dorsal attention (all pair-
wise comparisons p < 0.01, Bonferroni corrected), default
(all pairwise comparisons significant except dorsal atten-
tion p < 0.01, Bonferroni corrected), and frontoparietal sys-
tems (all pairwise comparisons significant, p < 0.01, Bon-
ferroni corrected). These results are robust to using the
community assignments from the adult clustering parti-
tion instead of the child clustering partition (see Figure S1a,
H(6) = 28310.69, p < 2 × 10−16), finding again that confi-
dence was highest in vertices assigned to the visual system,
and lowest in frontoparietal (all pairwise comparisons p <
0.01, Bonferroni corrected), dorsal attention (all pairwise
comparisons p < 0.01, Bonferroni corrected), and default
(all pairwise comparisons except ventral attention p < 0.01,
Bonferroni corrected). Note that values of confidence in the
developmental sample are overall lower than those of the
adult sample used in Ref.28, though we do not conduct sta-
tistical tests comparing the two, as this difference could be
due to other discrepancies between the adult data and the
developmental data used here. Our results suggest that in
the child brain, connectivity in higher-order association re-
gions, particularly the dorsal attention, default, and fron-
toparietal communities, is not yet clearly segregated.

We wondered whether areas of undifferentiated connec-
tivity in children were similar or different to those found in
adults. We began by comparing the spatial distributions of
confidence in the adult and child samples. Summing the
confidence maps, we found that areas of low confidence are
predominantly in higher-order association cortex in both
children and adults (Figure 3e). Visual cortex and the so-
matomotor strip show relatively high confidence in both
samples. Examining the differences in confidence between
adult and child samples, we found that overall, children
show lower confidence in community assignment (Figure
3f). We did not strongly interpret this difference because
it could arise from several distinct differences between the
adult data used by Ref.28 and the child data used here. Note
that visual areas show no differences in confidence between
adult and child samples, as they are relatively high confi-
dence in both adults and children. Overall, these results
above suggest that children’s cortical patterns of connectiv-
ity may be less differentiated than those of the adult brain.

When examining the distribution of certainty across

communities, we found that the dorsal attention commu-
nity in particular had some regions with very low values of
confidence. Investigating these values, we found that these
regions were located along the border between the visual
and dorsal attention communities (see Supplemental Fig-
ure S2). Some of these areas are assigned to the visual com-
munity in the adult clustering partition (see negative values
in the visual community in Supplemental Figure S1). We ob-
serve the assignment of a coherent region in the superior
parietal lobule, adjacent to the intraparietal sulcus, to the
visual community in the child clustering partition. In the
adult partition, a smaller region in this area is assigned to
the visual system. This is also consistent with the increased
surface area allocated to the visual community in the child
clustering partition, compared to in the adult partition (see
Figure 2c), suggesting that these areas may be more tightly
linked to extrastriate cortex (area MT and anterior MT) in
childhood than in adulthood.

Data-driven community assignments are highly stable across
samples

If children’s patterns of brain connectivity are simply
more different from each other (i.e. higher interindividual
variability) than adult’s patterns of brain connectivity are,
then partitions derived from developmental data might be
less stable across samples. Therefore, we employed a repli-
cation dataset of children from the Adolescent Brain and
Cognitive Development (ABCD) study to assess the relia-
bility and generalizability of our findings. Identical pre-
processing and clustering algorithm implementations were
used on the replication dataset, drawn from two ABCD sites.
Community assignments in the replication clustering par-
tition are highly consistent with those generated using the
original dataset (see Figure S4a and S4b). A total of 94.99
% vertices are assigned to the same community across both
datasets, with 94.76 % of vertices in the right hemisphere
and 95.21 % of vertices in the left hemisphere being as-
signed to the same community. Normalized mutual infor-
mation of the two partitions is 0.88, and normalized infor-
mation distance is 0.12. These results suggest that the corti-
cal patterning of functional communities in middle child-
hood is stable, and reliably shows differences from adult
community organization.

Children show less-solidified higher-order community
interactions in association cortex

Using the data-driven approach, we observed that there
were stable and reliable patterns of cortical community
structure in middle childhood that differ from those estab-
lished in adults. Notably, we found considerable reappor-
tionment of adult default system regions to the limbic com-
munity, as well somatomotor regions to the ventral atten-
tion community. This raises the question of the origins of
these assignments–is it due to changes in connectivity be-
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FIG. 4. Child partition generated using the model-based WSBM approach. a, The 7-community adult partition28. Colors in panels a-c
correspond to the communities shown in panel d. b, A partition estimated from developmental data by applying the clustering approach
(see Fig 2b). c, A partition estimated from developmental data by applying the WSBM approach. Note the high overall similarity to the
adult partition (NMI=0.58, p < 0.001, permutation-based testing). d, Surface area assigned to each community in the adult partition and
WSBM partition. e, Areas that were assigned to different communities in the adult partition and the child WSBM partition. Switches in
community assignment from the adult partition to the child partition are shown in color.

tween these specific systems, or broader differences in pat-
terns of connectivity across all other functional communi-
ties? To address this question, we turned to another com-
munity detection approach, a generative model-based ap-
proach called the weighted stochastic block model (WSBM),
that differs from the data-driven approach in several impor-
tant ways. For one, it explicitly models the interactions be-
tween communities. While the data-driven approach mod-
els patterns of connectivity and attempts to group regions
with similar patterns together into a community, the model-
based approach partitions cortex by maximizing the likeli-
hood that each "block" of connections between two com-
munities is internally similar and coherent. Additionally,

using WSBM allows us to assess not just the reliability of
these cortical patterns of communities across approaches,
but also employ a more biologically-motivated method with
fewer motivating principles.

We first examined whether cortical patterns of commu-
nities estimated using the model-based approach resemble
those found in adults or those found using the data-driven
approach in children. We used the WSBM to create a group-
level developmental partition from average parcel connec-
tivity patterns (Figure 1). To determine whether 7 commu-
nities was a reasonable choice when using the model-based
approach, we first systematically investigated the goodness-
of-fit of the WSBM across different numbers of communi-
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ties (k). When fitting the WSBM to our main dataset, we
observe the goodness-of-fit steadily increases with increas-
ing k (Figure 1c, left panel, black). However, when calcu-
lating the goodness-of-fit of the WSBM partition at a given
k on our replication dataset, we observe a noted decrease
in goodness-of-fit as k increases past k = 6 (Figure 1c, left
panel, purple). Furthermore, we examined the number of
communities detected at the group consensus level using
the WSBM across different values of k, and observe the
longest distinct plateau at k = 7, indicative of a stable group
partition40,45 (Figure 1d, right panel).

The resulting WSBM partition with 7 communities is
shown in Figure 4c. In Figure 4d, we show the allocation
of cortex to communities in the WSBM partition and a com-
parison to the adult partition. In the WSBM partition, more
total surface area was assigned to the default, visual, and
somatomotor communities than in the adult partition, and
less to the attentional communities than in the adult par-
tition. By visually comparing Figures 4a-c, we observed
that the WSBM partition resulted in a more diffuse, scat-
tered pattern of community assignments in prefrontal cor-
tex, suggesting that the variability in assignment seen in the
clustering partition in the assignment of adult default and
somatomotor regions to limbic and ventral attention com-
munities, respectively, may be broadly distributed across
association regions of cortex rather than isolated to those
specific systems.

To probe whether the pattern of functional communities
estimated in the WSBM partition differs from that of the
adult partition in a consistent fashion, we again examined
the specific brain regions that showed differences in com-
munity assignment. The WSBM partition is significantly
more similar to the adult partition partition than expected
by chance: the normalized mutual information of the two
partitions is 0.58 (p < 0.001, permutation test), and the nor-
malized information distance is 0.44 (p < 0.001, permuta-
tion test; see Figure 4c). Note that the WSBM partition is
more different from the adult clustering partition than is
the child clustering partition. Further, 37.23 % of vertices
(ignoring the medial wall) have different assignments than
in the adult partition. Of these vertices, the majority of
switches were in assignment of (i) adult ventral attention
system regions to the somatomotor community in children
(15.11 %), and of (ii) adult limbic regions to the default com-
munity in children (9.98 %) (Figure 4e). 9.18 % of switches
were from the dorsal attention to the visual community, 7.6
% were from the limbic to the frontoparietal community,
and 7.52 % were from the frontoparietal to the default com-
munity. Visual inspection of Figure 4c demonstrates a re-
versal of the pattern observed in the clustering partition,
where face and head areas of the somatomotor commu-
nity were clustered with the ventral attention community.
In the WSBM partition, these regions, which include the in-
sula and parts of auditory cortex, are preferentially grouped
with the somatomotor community. The switches in com-
munity assignment observed in the WSBM partition some-
what recapitulate the switches in seen in the clustering par-
tition, but suggest that while adult default and ventral atten-

tion systems regions do interact differently with the limbic
and somatomotor communities (respectively) as seen in the
clustering partition, interactions between communities in
higher-order association cortex more broadly may be flexi-
ble in childhood.

Uncertainty in assignment is high in regions supporting
attentional processes

Next, we sought to examine where interactions between
communities might still be quite flexible and undifferen-
tiated, reasoning that the scattered pattern of community
assignment in prefrontal areas might be indicative of less-
solidified community boundaries in those areas. We em-
ployed a measure of variability in community assignment
derived from the consensus partitioning algorithm (de-
scribed in Methods: Consensus partition algorithm) to in-
dex uncertainty in community assignment. The majority
of parcels were assigned to the same community across
optimizations of the consensus partitioning algorithm, as
we expected, but 48 % of parcels were not consistently as-
signed across optimizations. We used the proportion of
inconsistent community assignments across optimizations
to index uncertainty in community assignment. As in the
clustering partition, areas of high variability in commu-
nity assignment are predominantly in higher-order associ-
ation cortex, found in rostrolateral prefrontal cortex, ante-
rior cingulate, and insula (Figure 5a). These results suggest
that in these brain regions, patterns of connectivity are not
clearly segregated, and interactions between communities
may still be quite flexible. We next turned to investigation
at the level of cognitive systems, and asked whether areas of
low certainty are distributed broadly across association cor-
tex, or whether they are confined to specific communities.
To quantify whether uncertainty in community assignment
varied in a systematic manner across the cortex, we calcu-
lated the percentage of parcels within each community that
were inconsistently assigned (Figure 5b). Variability in as-
signment was low in regions assigned to primary sensory
systems, and varied only to any large extent in higher-order
association regions (H(6) = 198.34, p < 2×1016). In particu-
lar, there was the highest variability in assignment in regions
in the ventral attention (all pairwise comparisons, p < 0.01,
Bonferroni corrected) and limbic (all pairwise comparisons
p < 0.01, Bonferroni corrected) communities. These results
are robust to using the system assignments from the adult
clustering partition instead of the child WSBM communi-
ties; we find again that the highest variability in assignment
was in the ventral attention community (Supplemental Fig-
ure S1b, (H(6) = 83.68, p < 2 × 1016), all pairwise compar-
isons except frontoparietal, p < 0.03), though areas defined
as part of the frontoparietal system in the adult clustering
partition also show high variability in assignment (pairwise
comparisons with visual, somatomotor, and default com-
munities, p < 0.01, Bonferroni corrected). Taken together
with findings from the data-driven approach, our findings
suggest that complex undifferentiated connectivity patterns
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FIG. 5. Variability in community assignment using a model-based WSBM approach. a, Maps of variability in community assignment
estimated from the developmental sample. Parcels that were inconsistently assigned to communities during optimizations of the WSBM
consensus partition algorithm are shown in brown. The majority of parcels were consistently assigned to the same community across
optimizations. b, Variability in community assignment within each of the communities in the child WSBM partition. Note that variability
in parcel assignment predominates in the ventral attention and limbic communities. c, Areas of low certainty in community assignments
across both developmental partitions, regions of low certainty are shown in dark sandstone. Low certainty across approaches is localized
to cingulo-opercular regions, namely, the anterior insula and anterior cingulate. Percentage of inconsistent assignment in the WSBM
partition is scaled to [0,1] and inverted, then summed with confidence values from the clustering partition scaled to [0,1]. Values close to
zero show high certainty in both partitioning approaches.

are primarily present in middle childhood in higher-order
areas, particularly those supporting attentional processes.

Model-based community assignments are moderately stable
across samples

To determine the reliability and generalizability of our
findings, we repeated our WSBM analyses using a replica-
tion dataset of children from ABCD. Identical preprocess-
ing and WSBM implementations were used on the replica-
tion dataset drawn from two ABCD sites. Community as-
signments in the child WSBM partition generated from the
replication dataset are somewhat consistent with those gen-
erated using the original dataset (see Figure S5a and S5b). A
total of 74.62 % of parcels are assigned to the same com-
munity across both datasets, with 73.63 % of parcels in the
right hemisphere and 75.62 % of parcels in the left hemi-
sphere being assigned to the same community. Normalized
mutual information of the two partitions is 0.84, and nor-
malized information distance is 0.17. These results suggest
that in middle childhood interactions between functional
communities are slightly less stable than the broad cortical
patterning of connectivity detected by the data-driven ap-
proach. Much of cortex outside prefrontal areas, however,
especially primary sensory areas, has clearly-defined stable
interactions between communities, which are reliably de-
tectable across samples and across approaches.

Across both approaches, uncertainty in community assignment
is high in cingulo-opercular regions

Finally, we sought to determine where complex undiffer-
entiated connectivity patterns might be present in the child
brain, comprising areas where connectivity is not clearly
segregated and where interactions between communities
remain flexible. Thus, we examined areas of high uncer-
tainty in community assignment across both community
detection approaches we employed. We combined the con-
fidence measure from the data-driven community detec-
tion approach and the variability measure from the model-
based approach to examine the overlap of areas where it was
difficult to assign a community identity. The percentage of
inconsistent assignments in the WSBM partition was scaled
to [0,1] and inverted, and confidence values from the clus-
tering partition were scaled to [0,1]; then the two estimates
were summed (Figure 5c). Insular and anterior cingulate ar-
eas show low certainty in both approaches, suggesting that
during middle childhood, these regions may still be flexibly
associated with several functional communities.

We found a similar spatial distribution of regions of low
confidence across approaches when using the silhouette
measure to index uncertainty in community assignment
in the WSBM partition. We previously used the silhouette
measure when examining uncertainty in assignment in the
child clustering partition. Higher values of the silhouette
measure are indicative of higher confidence in community
assignment, while lower values of confidence are indica-
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tive of lower confidence. Regions of low confidence in the
WSBM partition were primarily located in the insula, lat-
eral prefrontal areas, and cingulate (Supplemental Figure
S6a). Regions of low confidence using the silhouette mea-
sure covered more territory than regions of high variabil-
ity in community assignment using the measure derived
from optimizations of the consensus community algorithm
(compare Figure 5a to Supplemental Figure S6a). Insula
and anterior cingulate areas again showed low confidence
in assignment across both partitioning approaches, though
additional regions in the parahippocampal and entorhinal
cortex also showed low confidence across partitioning ap-
proaches when using the silhouette measure of confidence
(Supplemental Figure S7b). We qualitatively observed that
posterior regions seemed to have more consistently simi-
lar community assignments across partitions. To quantify
this observation, we calculated for each vertex the number
of different communities it was assigned to across the three
partitions. We observed that anterior higher-order associa-
tion regions tended to vary in assignment more across the
three partitions (Supplemental Figure S7b), suggesting that
these transmodal areas do not yet have solidified commu-
nity identities in middle childhood.

The clustering partition and the adult partition capture
functional organization during task performance well

Functional communities have been shown to comprise
brain regions that are co-activated during performance of
specific cognitive tasks2,3,46. In the ABCD study, three tasks
were collected: an inhibitory control task (stop-signal), a
reward processing task (monetary incentive delay), and a
working memory (n-back) task47. The n-back task effec-
tively localizes both the frontoparietal community (activity
greater than baseline), and the default community (activity
less than baseline)47. No tasks specifically localized sensory,
motor, or attention communities.

Frontoparietal community

If the frontoparietal community simply comprises dif-
ferent spatial territory in middle childhood than in adult-
hood, we would expect to see the differences in the topog-
raphy of the frontoparietal community found in our devel-
opmental partitions reflected in the spatial extent of activa-
tion during the n-back task. To examine whether this in-
deed is the case, we thresholded the task activation maps
to retain only the highest 20 % of the contrast weights (Fig-
ure 6b), and compared these to the frontoparietal com-
munities in each partition. Task activation in the 2-back
versus 0-back contrast of the n-back is shown in Figure
6a. The clustering partition and the adult partition show
equally good correspondence to task activation in the n-
back task (clustering partition Sørensen-Dice coefficient =
0.8052±0.001(0.8025−0.808), adult partition Sørensen-Dice
coefficient = 0.8078±0.001(0.8051−0.8105)), with the WSBM

partition doing worse in comparison (Sørensen-Dice coeffi-
cient = 0.7445±0.001(0.7416−0.7473)). This set of findings
suggests that both the clustering partition and adult parti-
tion capture community structure that corresponds well to
task activity.

We next sought to investigate whether brain areas that
are most strongly involved in working memory are well-
captured by the frontoparietal community in our develop-
mental partitions. To do so, we examined the positive con-
trast weights, quantifying which partition had the strongest
activation within the frontoparietal community during the
cognitively demanding working memory portion of the task
(Figure 6c). We found that the adult partition had the
strongest positive activation (M = 0.38,SD = 0.24), with
the clustering partition also showing strongly positive con-
trast weights (M = 0.32,SD = 0.20) and the WSBM partition
showing the least positive task activation (M = 0.27,SD =
0.23, Kruskal-Wallis test, H(2) = 740.63, p < 2 × 10−16, all
pairwise comparisons were significant, p < 2×10−16). Over-
all, these analyses of task activity suggest that the adult
clustering partition corresponds best to task-evoked activity
during the n-back task, though the child clustering partition
also corresponds well.

Default community

Next, we turned to areas of deactivation during the n-
back task, examining whether differences in the topogra-
phy of the default community found in our developmental
partitions were reflected in the spatial extent of deactivation
during the n-back task. We thresholded the task activation
maps to retain only the lowest 20 % of contrast weights (Fig-
ure 6b), and compared these to the default communities in
each partition. The clustering partition shows the best cor-
respondence to deactivation in the n-back task (Sørensen-
Dice coefficient= 0.7273± 0.001(0.7248− 0.7299)), with the
adult partition also showing correspondence (Sørensen-
Dice coefficient = 0.6779 ± 0.001(0.6753 − 0.6802)) and the
WSBM partition shows the worst performance (Sørensen-
Dice coefficient = 0.6496±0.001(0.6473−0.6518)). This set
of findings suggests that the clustering partition captures
community structure that corresponds best to deactivation
during tasks.

We next investigated whether brain areas that are deac-
tivated during the cognitively-undemanding portion of the
n-back task are well-captured by the default community in
our developmental partitions. We examined the negative
contrast weights within the default community of each par-
tition, to quantify which partition had the strongest deacti-
vation during the cognitively undemanding 0-back portion
of the task (Figure 6d). We found that again, the clustering
partition had the strongest deactivation (M = −0.23,SD =
0.19), with the adult partition also showing strongly nega-
tive contrast weights (M =−0.20,SD = 0.14) and the WSBM
partition showing the least negative task deactivation (M =
−0.17,SD = 0.12, Kruskal-Wallis test, (H(2) = 296.67, p <
2×10−16), all pairwise comparisons significant, p < 0.001).
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FIG. 6. Overlap between task activation and communities in the estimated partitions. a, Contrast of 2-back versus 0-back in the emo-
tional n-back task, controlling for age, sex, scanner, and performance. b, Overlap of highest 20 % of contrast weights with the frontopari-
etal community in each of the three partitions. Higher Sørensen-Dice coefficient indicates better correspondence. c, Positive task contrast
weights within the frontoparietal community in each of the three partitions; adult partition shows significantly stronger positive activation
than the clustering partition and WSBM partition (H(2) = 740.63, p < 2×10−16). d, Overlap of lowest 20 % of contrast weights with the
default community in each of the three partitions. Higher Sørensen-Dice coefficient indicates better correspondence. e, Negative task
contrast weights within the default community in each of the three partitions; clustering partition shows significantly stronger negative
deactivation than the adult partition and WSBM partition (p < 0.001).
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This set of findings again suggests that the clustering parti-
tion captures community structure that corresponds best to
deactivation during tasks.

DISCUSSION

Does the architecture of children’s functional brain net-
works differ from that of adults? Using a data-driven com-
munity detection approach, we found that sensory and mo-
tor communities resembled those of adults, but the lim-
bic community was expanded into areas typically assigned
the default system in adults, and ventral somatomotor ar-
eas were assigned to the ventral attention community and
clustered with language-related brain regions. To further
probe the interactions between communities, we turned
to a model-based approach called the weighted stochastic
block model (WSBM). We found a diffuse, scattered pattern
of community assignments in prefrontal cortex, perhaps in-
dicative of broadly less-solidified higher-order community
interactions and boundaries in children of this age, and
again found limbic representation in lateral prefrontal cor-
tex not seen in adults. Across both approaches, the greatest
uncertainty in algorithmic assignment of regions to com-
munities was localized to the dorsal and ventral attention
communities, including cingulo-opercular regions. Repli-
cation in another dataset yielded consistent community as-
signments for both methods. Activation and deactivation
patterns during a working memory task showed that the
clustering partition, and the adult partition, captured func-
tional organization in middle childhood well.

The relative expansion of limbic spatial territory in the
developmental clustering partition compared to the adult
partition is suggestive of a higher importance of limbic cir-
cuitry in children48, and potentially consistent with com-
pression of limbic territory as emotion regulation abilities
develop16,49. It is worth noting that while we focus on the
adult partition estimated by Ref.28, many if not all adult par-
titions display a hub of the default community in medial
prefrontal cortex (e.g. Refs.3,50). We also observe some lim-
bic community representation in lateral prefrontal cortex in
the developmental WSBM partition, which is not typically
observed in adult partitions.
Variation in transmodal association cortex
We find that community assignments in higher-order asso-
ciation cortex differ the most across approaches. This pat-
tern is consistent with the slow structural development of
association cortex, reflected in a prolonged course of thin-
ning and myelination20,21,23,51, and with previous findings
in children of this age, showing similar community bound-
aries in primary sensory areas as adults25. It is also con-
sistent with the finding that, through adolescence and into
adulthood, community assignment remains most variable
across individuals in association cortex2,27,52. In prefrontal
regions of the child clustering partition, we observe sub-
stantial changes in assignment between children and adults
in frontoparietal, default, and limbic communities, perhaps
indicative of unsolidified community assignments in these

regions, consistent with evidence that in adults interindi-
vidual variability is highest in these areas6,8. Another in-
dication of increased flexibility in these areas is the consis-
tency of community assignments across datasets: while the
clustering approach yields an almost identical partition in
a replication dataset, the WSBM approach shows some dif-
ferences in assignment, primarily in prefrontal cortex, in the
limbic, frontoparietal, and attentional communities.

Even within association cortex, we observe variability in
the extent to which children’s assignments look like adults.
We see gradients from low to high consistency along the
posterior-anterior and medial-lateral axes, with posterior
medial regions showing the most consistent community as-
signments across partitions. In both developmental parti-
tions, the dorsal attention community aligns well with the
adult definition, and with known anatomy, encompassing
the frontal eye fields and superior parietal lobule10. The
posterior midline hubs of the default community, the pre-
cuneus and posterior cingulate, maintain similar commu-
nity assignment across the adult partition and both devel-
opmental partitions. This posterior hub of the default com-
munity plays a mature role even in infant brain networks53,
and thus its adult-like community assignment in middle
childhood and its strong deactivation during the working
memory task may be unsurprising evidence for maturity.
The evidence for earlier maturity of posterior default hubs,
relative to anterior hubs, is mixed, however, as children
also show lower confidence in the precuneus and poste-
rior cingulate than adults. In the developmental cluster-
ing partition, the ventral aspects of the somatomotor com-
munity, which encode the tongue and head44, are clustered
with the ventral attention community and language-related
brain regions, suggestive that, in children, language pro-
cesses may be more integrated with motor regions involved
in the production of language as expertise continues to be
built54. Similarly, fractionation of the somatomotor com-
munity into a set of regions encoding the tongue and head
clustered with parts of auditory cortex, was previously ob-
served in the 17-community solution in the adult cluster-
ing partition derived by Yeo et al.28. In the WSBM partition,
the ventral aspects of the somatomotor community are but
part of an expanded somatomotor community, which ex-
tends again to cover language-related brain regions, cover-
ing similar territory to the ventral attention community in
the clustering partition. It is also possible that the topo-
graphic arrangement of the community boundaries in this
area of the brain arises simply from the proximity of these
regions in volumetric space, as there is some possibility of
blurring across sulci.

We focused specifically on localizing the frontoparietal
and default communities when probing the relationship be-
tween children’s community topography and their patterns
of task activity, as we were constrained to the limited set of
tasks collected in the full ABCD sample47. Despite the vari-
ation in community assignment we observed in transmodal
association cortex, it seems that both the adult partition by
Ref.28 and the developmental clustering partition align well
with patterns of functional organization as indicated by task
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activity. This is somewhat unsurprising, as the default com-
munity in particular shows some evidence for maturity in
posterior areas, and has been shown to be present even in
infancy53, and the posterior hubs of the default community
are consistent across the adult and child clustering parti-
tions. The poor performance of the WSBM partition, how-
ever, is particularly notable when examining the frontopari-
etal community results: there is a clear lack of overlap be-
tween the frontoparietal community in the WSBM partition
and the areas of high task activation. These results suggest
that the flexible interactions between higher-order commu-
nities at rest–as implied by the diffuse, scattered community
assignments in lateral prefrontal cortex–may "firm up" in
the context of a cognitively demanding task, when children
shows patterns of functional brain activity that are more
adult-like; prior work has shown that functional community
organization reconfigures during task performance55. To
stringently test these partitions, however, ideally we would
use several different tasks that tapped the cognitive func-
tions subserved by several sets of communities that show
differences in assignment (e.g. limbic, ventral attention),
and this was not possible within the scope of tasks collected
in the ABCD sample.

Algorithmic uncertainty in community assignment
Across both partitioning approaches, areas of highest un-
certainty are located in dorsal and ventral attention com-
munities. In the developmental clustering partition, regions
assigned to the dorsal attention community show the high-
est uncertainty, while in the WSBM partition, regions as-
signed to the ventral attention community show the high-
est uncertainty, indicative of still-maturing attentional pro-
cesses in middle childhood17,18. Specifically, the anterior in-
sula and anterior cingulate cortex, core components of the
midcingulo-insular or "salience" community3, show high
uncertainty across both approaches. These brain areas are
involved in the detection of relevant environmental stimuli
(hence the term "salience") and flexible switching between
other large-scale communities56,57. Recent work in adults
demonstrates that these regions show altered connectivity
in response to recent experience58, suggesting that they play
a key role in flexibly modulating communication with other
large-scale communities even in adulthood.

High uncertainty in attention communities may also re-
flect developing interactions with visual regions. In the de-
velopmental clustering partition, the areas of overall lowest
confidence are along the border between the visual and dor-
sal attention communities. This pattern suggests the pro-
tracted development of higher-order visual cortex in rela-
tion to dorsal attentional circuitry, and is consistent with the
slight increase in surface area allocated to the visual com-
munity in the developmental clustering partition compared
to the adult clustering partition. We observe the assignment
of a coherent region in the superior parietal lobule, adja-
cent to the intraparietal sulcus, to the visual community in
the child clustering partition. This area is typically involved
in perception of space, spatially-coordinated movements,
and magnitude59. In the adult partition, a smaller region
in the superior parietal lobule is assigned to the visual sys-

tem, suggesting that an expanded part of this area may be
more tightly linked to extrastriate cortex (area MT and ante-
rior MT) in middle childhood28.

Methodological considerations
We first employed a well-established data-driven clustering
approach developed by Yeo et al.28, then used the model-
based generative WSBM40 to further probe interactions be-
tween communities. The two approaches are both similar
and distinct. They are similar in that they both attempt to
group regions with similar brain-wide patterns of functional
connectivity into communities. The WSBM in particular
can capture both modular and non-modular types of com-
munity structure, with its ability to detect a diverse set of
network architectures. The WSBM bears more resemblance
to the clustering algorithm than do methods like modularity
maximization, which simply seek to maximize connectivity
within communities, irrespective of similarities and differ-
ences in regional connections between communities. How-
ever, the two approaches also have important differences.
The WSBM has a precise motivating approach, assuming
that nodes can be partitioned such that the distribution of
edge weights between sets of communities is governed by
parameterized generative processes, and that the parame-
terization of these processes depends only on the commu-
nities to which nodes are assigned. The clustering algo-
rithm, on the other hand, uses a mixture model to cluster
regions in a complex high-dimensional space.

We followed Ref.28 for the clustering approach and
thresholded subject connectivity profiles at 10 % density
(i.e., retained only the most positive 10 % of connections),
while in the WSBM we were able to retain all edge weights,
both negative and positive. This difference implies that
the clustering method may be more reliant on strong edges
that occur with high frequency across subjects, while the
WSBM explicitly groups all nodes into communities with
similar connectivity patterns. If weak or negative edges are
more variable or noisier than strong edges, the prevalence
of weak edges in the unthresholded WSBM approach may
account for the diffuse, scattered pattern of community as-
signments seen in the child WSBM partition in prefrontal
cortex. This possibility is also consistent with the pattern
observed in our replication dataset: when using the clus-
tering approach, which relies on only the strongest con-
nections, we find a very consistent pattern of community
assignments, but when using the WSBM, which incorpo-
rates a range of connection strengths, we find more vari-
ability in assignments in lateral prefrontal cortex. This dif-
ference between approaches–the clustering approach being
driven by strong edges, and the WSBM being driven by all
edges–may explain the high reproducibility of the cluster-
ing approach, but might also sacrifice sensitivity to individ-
ual variation, as a growing literature has suggested that mid-
dling strength or weak edges best reflect individual differ-
ences in cognition60,61.

Limitations
A few limitations of this study should be noted. Most im-
portantly, we do not know ground truth: we are not able to
validate our in vivo estimates of functional network com-
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munity structure with histological pediatric data. Pediatric
ex vivo data are thankfully scarce, but could be helpful in
determining which of our two parcellations is most simi-
lar to cytoarchitecture or myeloarchitecture. For example,
in the WSBM partition but not in the child clustering par-
tition, we observe a patch of the ventral attention commu-
nity in middle frontal gyrus that resembles a pattern seen
in the adult partition. Histology work in adults confirms
the presence of a patch of cortex that is cytoarchitectoni-
cally differentiated from the surrounding areas, with an ex-
panded layer IV62. Relatedly, we cannot use localizer tasks
to determine which partition better matches task activation
for each community because the ABCD study only includes
a few tasks63. Second, motion artifact remains a challeng-
ing confound in studies of neurodevelopment. In addition
to rigorous quality assurance protocols and validated im-
age preprocessing to reduce the impact of motion, we de-
liberately examined only a subsample of low-motion par-
ticipants. While this approach mitigates the possible im-
pact of motion artifact on our findings, it may have re-
duced the generalizability of our sample. Third, imaging
techniques have progressed considerably in the last decade,
and there are differences in scan acquisition parameters be-
tween the dataset used by Ref.28 to estimate the adult clus-
tering partition and the child dataset we employ here. This
may have led to differences in the distribution of signal to
noise ratio (SNR) across the brain. There have been con-
cerns that low SNR in orbitofrontal cortex and temporal
pole might hamper community definition in limbic cortex
in adults64. We conducted additional analyses to rule out
the possibility that differences in SNR fully account for the
communities we detect in children. Finally, due to com-
putational limitations of the model-based approach, we
took a dimensionality-reduction step prior to employing the
WSBM, and used a parcellation to downsample the data,
rather than using full vertex-wise data. This was a necessary
step to make the computations of the WSBM tractable; how-
ever, true community boundaries might not be captured if
they cut through parcels.

Broader implications and future directions
Our work builds on prior literature in adults showing that
cortex can be divided into reproducible group-average
functional communities3,28,50. Studies examining func-
tional brain networks typically must choose a partition to
apply to characterize their results at the mesoscale or re-
gional level, and we show that a commonly used adult par-
tition may not accurately capture the community structure
of children’s brain networks. Instead, we generate two new
developmental partitions that can be used for future analy-
ses examining functional brain networks in children of this
age. While there is a growing movement towards individ-
ualized functional communities, group-level partitions are
still widely used, as they allow researchers to easily compare
results across participants without the confound of differ-
ences in the size or number of communities. Further, in-
dividualized approaches typically require large amounts of
data per individual9,65,66, and thus may not always be feasi-
ble in developmental studies.

Many important questions remain. First, how does the
architecture of children’s brain networks change as they ma-
ture? Future work with longitudinal data will allow us to
examine the trajectory of developmental change during the
dynamic period of adolescence, and to track how commu-
nity boundaries shift and stabilize during this time period.
Second, what is the cognitive significance of different pat-
terns of community structure in childhood? Answering this
question will require well-designed measures of cognition
(see Ref.67 for an examination of the reliability of the main
cognitive assessment tool in the ABCD study). Recent work
with the ABCD sample has revealed that the true effect sizes
of brain-cognition relationships in this sample are smaller
than would be expected based on prior literature68, but
some studies have shown relationships between variation
in functional community topography and cognition27,52. Fi-
nally, are children’s brains simply less well-captured by par-
titions into separate communities than adults brains? A
group-level partition may not be as useful in children as
in adults if children’s brains are simply more variable than
adults, and if some regions of cortex are not well-captured
by a single community assignment. Our examination of un-
certainty in community assignment suggests that capturing
this variability is important, and that some brain regions are
still highly flexible in middle childhood. Prioritizing meth-
ods that estimate the uncertainty and variation in commu-
nity assignment, such as soft partitioning approaches that
assign weighted probabilities of community assignment to
each vertex (e.g., Refs.27,66), will enable us to test whether
functional brain network architecture becomes more solid-
ified as children grow up.

In sum, this work emphasizes the utility of approaches
that capture variability and uncertainty in brain network
organization. Our findings suggest that one key develop-
mental process might be increasing solidity of brain net-
work architecture as children develop, and set the stage for
both theory change and insight into the protracted period
of human childhood. These results advance our knowl-
edge about the organization of children’s brains, suggest-
ing a greater representation of regions involved in emotion
processing, greater integration of language and somatomo-
tor systems, and more uncertainty in the assignment of as-
sociation cortex to communities relative to adults. These
findings broadly align with differences in the mental lives
of children and adults, and with theories about enhanced
plasticity in childhood.
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STAR METHODS

Resource Availability

Lead Contact

Further information and requests for resources and
reagents should be directed to and will be fulfilled by the
Lead Contact, Allyson Mackey (mackeya@upenn.edu).

Materials Availability

We provide two freely available partitions (in
fsaverage6, fsLR, and MNI volumetric spaces), at
https://github.com/utooley/Tooley_2020_child_functional
_comms/tree/master/partitions.

Data and Code Availability

The ABCD dataset (https://abcdstudy.org) is freely
available from the NIMH Data Archive (NDA). The
ABCD data used in this report came from the Fast
Track data release. The raw data are available at
https://nda.nih.gov/edit_collection.html?id=2573.
All other analysis code is available at
https://github.com/utooley/Tooley_2020_child_functional
_comms, along with the two developmen-
tal partitions generated in this study. Other
toolboxes used in this project are available at
https://github.com/ThomasYeoLab/CBIG/tree/master
/stable_projects and https://aaronclauset.github.io/wsbm.

Experimental Model and Subject Details

Human participants

Data are from 670 children in the Adolescent Brain Cog-
nitive Development (ABCD) study at the first time point
(Release 2.0.1), between the ages of 9 and 11 years (M =
9.94,SD = 0.67,47.61% female)74. Children were recruited
from schools at 21 sites across the United States of Amer-
ica. Due to known scanner effects in the ABCD study25,63,75,
we selected a subset of children from one scanner at one
site who had at least one usable T1-weighted (T1w) image
(passed ABCD’s Freesurfer visual assessment checks), had 2
or more resting-state functional magnetic resonance imag-
ing (fMRI) runs with average framewise displacement < 0.5
mm and < 50% of volumes > 0.2 mm76, and had an average
framewise displacement over all runs < 0.2 mm, after cor-
recting for respiratory artifacts77. These parameters were
chosen to ensure that we could retain as many participants
with high-quality resting-state data as possible, while min-
imizing the effect of motion on our analyses. Participants
were 84 % white, 9 % Hispanic, 6 % other, < 1 % Black, and

< 1 % Asian. Average parental education ranged from 7 to
20 years (M = 15.41,SD = 1.88 years, 52 % with bachelor’s
degree or higher education).

Replication data are from 544 children from two ABCD
sites between the ages of 9 and 11 years (M = 10.2,SD =
0.53,55.7% female). Both sites used Siemens scanners. All
replication sample participants met the above imaging data
quality criteria. Replication sample participants were 74
% white, 15 % Black, 8 % other, 3 % Hispanic, and < 1 %
Asian. Average parental education ranged from 10 to 20
years (M = 15.36,SD = 2 years, 48 % with bachelor’s degree
or higher education).

Method Details

Image Acquisition

The ABCD scan session included T1w and T2-weighted
(T2w) images, one dMRI series, four 5-minute resting-state
fMRI series, and three sets of two task fMRI series. One set
of two 5-min resting-state fMRI runs is acquired immedi-
ately after the T1w scan and another set is acquired after
the T2w scans, followed by task fMRI runs. Resting-state
data were acquired with eyes open during passive viewing
of a cross hair. The T1w acquisition (1 mm isotropic) is a 3D
T1w inversion prepared RF-spoiled gradient echo scan us-
ing prospective motion correction78. The fMRI acquisitions
(2.4 mm isotropic, TR=800 ms) use multiband echo-planar
imaging with slice acceleration factor 6. Details about ABCD
image acquisition are available elsewhere63,79.

Data quality and exclusion criteria

Due the nature of the ABCD Fast Track data, which en-
ables almost immediate access to the raw images from this
study, there are occasional errors in data quality or subject
ID assignment. We excluded any participants from the tar-
get site whose data on Amazon S3 was incomplete as of
Spring 2019 or whose data contained sequences not offi-
cially part of the ABCD study. Runs of resting-state fMRI that
contained < 360 volumes or where quality metrics indicated
poor coregistration (cross-correlation or Jaccard coefficient
< 0.95, mincost of bbregister > 0.6) were excluded. Fol-
lowing preprocessing, runs with > 50% of volumes flagged
as outliers for average framewise displacement > 0.2 mm
were removed from analyses. Any subjects with less than
2 runs of resting-state fMRI data remaining after these ex-
clusions were not included in analyses.

Preprocessing

Results included in this manuscript come from prepro-
cessed data, where the preprocessing was performed us-
ing fMRIPprep 1.4.1 (80;81; RRID:SCR_016216), which is
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based on Nipype 1.2.0(82;83; RRID:SCR_002502), as well as
XCPEngine 1.084.

The T1-weighted (T1w) image was corrected for inten-
sity non-uniformity with N4BiasFieldCorrection85, dis-
tributed with ANTs 2.2.086 (RRID:SCR_004757), and used
as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype implemen-
tation of the antsBrainExtraction.sh workflow (from
ANTs), using OASIS30ANTs as the target template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast87. Brain surfaces were re-
constructed using recon-all88, and the brain mask esti-
mated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived
segmentations of the cortical gray-matter of Mindboggle89.

For each of the up to 4 resting-state blood oxygen level-
dependent (BOLD) runs found per subject (across all tasks
and sessions), the following preprocessing was performed.
First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A de-
formation field to correct for susceptibility distortions was
estimated based on two echo-planar imaging references
with opposing phase-encoding directions, using 3dQwarp90

(AFNI 20160207). Based on the estimated susceptibility dis-
tortion, an unwarped BOLD reference was calculated for
a more accurate co-registration with the anatomical refer-
ence. The BOLD reference was then co-registered to the
T1w reference using bbregister (FreeSurfer) which imple-
ments boundary-based registration91. Co-registration was
configured with nine degrees of freedom to account for dis-
tortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transfor-
mation matrices, and six corresponding rotation and trans-
lation parameters) are estimated before any spatiotempo-
ral filtering using mcflirt92. The BOLD time-series were
resampled onto their original, native space by applying a
single, composite transform to correct for head-motion and
susceptibility distortions. These resampled BOLD time-
series will be referred to as preprocessed BOLD in the origi-
nal space, or just preprocessed BOLD.

Several confounding time-series were calculated based
on the preprocessed BOLD: framewise displacement (FD),
the rate of change of BOLD signal across the brain at each
frame (DVARS), and three region-wise global signals. FD
and DVARS are calculated for each functional run, using
the implementations in Nipype93. The three global signals
are extracted within the CSF, the WM, and the whole-brain
masks. The head-motion estimates calculated in the cor-
rection step were also placed within the corresponding con-
founds file. The confound time series derived from head
motion estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for
each94.

All resamplings can be performed with a single inter-
polation step by composing all the pertinent transforma-
tions (i.e. head-motion transform matrices, susceptibility
distortion correction when available, and co-registrations

to anatomical spaces). Gridded (volumetric) resamplings
were performed using antsApplyTransforms (ANTs), con-
figured with Lanczos interpolation to minimize the smooth-
ing effects of other kernels95.

Many internal operations of fMRIPrep use Nilearn 0.5.296

(RRID:SCR_001362), mostly within the functional process-
ing workflow. For more details of the pipeline, see the sec-
tion corresponding to workflows in fMRIPrep’s documenta-
tion.

Further preprocessing was performed using a confound
regression procedure that has been optimized to reduce
the influence of subject motion94,97; preprocessing was im-
plemented in XCPEngine 1.084, a multi-modal toolkit that
deploys processing instruments from frequently used soft-
ware libraries, including FSL98 and AFNI99. Further docu-
mentation is available at https://xcpengine.readthedocs.io
and https://github.com/PennBBL/xcpEngine. Functional
timeseries were band-pass filtered to retain frequencies be-
tween 0.01 Hz and 0.08 Hz. Data were demeaned, and
linear and quadratic trends were removed. Confound re-
gression was performed using a 36-parameter model; con-
founds included mean signal from the whole brain, white
matter, and CSF compartments, 6 motion parameters as
well as their temporal derivatives, quadratic terms, and the
temporal derivatives of the quadratic terms94. Prior to con-
found regression, all confound parameters were band-pass
filtered in a fashion identical to that applied to the origi-
nal timeseries data, ensuring comparability of the signals
in frequency content100. Motion censoring was applied by
removing frames with FD > 0.2 mm or standardized DVARS
> 2. To avoid variability in scan duration influencing results,
the first 2 runs from each subject that met all inclusion cri-
teria were used as input to both partitioning algorithms.

Data-driven community detection approach: Clustering algorithm

For both partitions, we first systematically investigated
the number of communities, or the optimal k, that best de-
scribes cortical organization in childhood (see Number of
communities sections below). Based on our findings, and
prior evidence that functional brain networks can be di-
vided into 6-10 communities28,101–103, we chose k = 7 for
our main analyses to facilitate comparison with the adult
partition derived in Ref.28. The clustering algorithm and the
WSBM both attempt to group vertices or parcels into com-
munities based on their patterns of connectivity with the
rest of the brain, but the extent of their mathematical def-
inition and the level at which they operate varies.
Surface-based processing
Following temporal filtering and confound regression,
functional data were projected onto the surface using
mri_vol2surf (FreeSurfer) and downsampled to fsaverage6
surface space (where the vertex spacing is roughly 2 mm).
Data were smoothed using a 4.8 mm full-width half-
maximum (FWHM) kernel, similarly to the adult dataset
from which the adult partition was derived28.
Number of communities
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We systematically varied the number of communities de-
tected, from k = 2− 17, and implemented the vertex-wise
instability analysis from Ref.28 to examine the optimal k for
the child clustering partition. Briefly, the instability anal-
ysis involves repeatedly and randomly dividing the 74,846
vertices into two groups, and applying the clustering algo-
rithm to each group separately. The parameters learned
from clustering the first group of vertices are then used to
predict the clustering results for the second set of vertices,
and the agreement between the prediction and clustering
results of the second group of vertices measures the gen-
eralizability of the clustering results at that k. The vertex
resampling was iterated 100 times at each k, with a differ-
ent random split of vertices into groups each time. All other
clustering parameters were set the same as in the clustering
algorithm, above. Less stability is observed with increasing
number of estimated communities, which is an expected
property, since the number of estimated communities en-
larges the solution space of the clustering problem. Lower
values of instability indicate higher consistency across re-
samplings at a given k, and thus better partition fit.

Clustering algorithm
The clustering algorithm attempts to detect functionally
coupled regions and was implemented following Ref.28.
Here we provide a brief overview of the algorithm for clar-
ity. Time-varying BOLD signals were extracted from each
vertex on the surface. Connectivity between each vertex
and 1,175 evenly-spaced regions of interest (ROIs) was esti-
mated by calculating the Pearson correlation coefficient be-
tween their timeseries and normalized. The resulting 74,846
× 1,175 correlation matrix was averaged across runs, and
then binarized to keep the top 10% of the correlations; the
resulting connectivity profiles were averaged across sub-
jects. The averaged connectivity profiles were clustered
using a mixture of von Mises–Fisher distributions104 with
k = 7 based on our previous results and for ease of com-
parison with the adult partition. This approach modeled
the 74,846 points of data on a 1,174-dimensional hyper-
sphere in a 1,175-dimensional space, and attempted to min-
imize the geodesic distances between points (i.e. attempted
to group vertices with similar connectivity profiles to the
1,174 ROIs together in the same community). This proce-
dure also means that vertices were clustered based on their
connectivity profiles rather than their absolute connectivity
strength; at each iteration the algorithm attempted to max-
imize the agreement of connectivity profiles within a com-
munity. The algorithm was iterated 1000 times with a differ-
ent random initialization of vertices to communities each
time, then the best solution of those 1000 tries chosen based
on the likelihood of that partition. The clustering algorithm
was implemented using publicly available code from Ref.28,
using v0.17.0 at https://github.com/ThomasYeoLab/CBIG.

Uncertainty in community assignment
As has been done in prior work, we used the silhouette
measure105, called confidence in Ref.28, as a vertex-wise
measure of uncertainty in community assignment. The sil-
houette measure captures the similarity of a vertex’s time-
series to other vertices assigned to the same community,

compared to the next most similar community. The silhou-
ette for point i is defined as:

Si = bi −ai

max(ai ,bi )
, (1)

where ai is the average distance (correlation, in our case)
from point i to the other points in the same community as i ,
and bi is the minimum average distance from the i th point
to points in a different community (minimized over com-
munities). The resulting measure ranges from -1 to 1, with
higher values indicating greater confidence in community
assignment. Negative values are unlikely, but possible, as
the cost function of the clustering algorithm is not equiva-
lent to the silhouette measure. We employ publicly released
adult confidence maps from Ref.28 for comparison, and as
these were estimated in fsaverage5 space, we upsampled
them to fsaverage6 space for comparison to the clustering
partition.
Signal to noise ratio
To estimate the effects of susceptibility artifacts on the child
data, we calculated the voxel-wise temporal signal to noise
ratio in the child dataset. Following Ref.28 and the GSP
dataset64, we computed the SNR of the fMRI time series for
each voxel in subjects’ native volumetric space after pre-
processing with fMRIPprep by averaging the signal intensity
across the whole run and dividing it by the standard devia-
tion over time. SNR maps were averaged across runs, then
projected to fsaverage5 surface space and averaged across
subjects. Low SNR is present in expected areas, namely, the
anterior portion of the inferior and medial temporal lobe,
as well as areas of orbitofrontal cortex (see Supplemental
Figure S3). We employed publicly released adult SNR maps
from Ref.28 for comparison with the child SNR data.

Model-based community detection approach: Weighted stochastic
block model

Network construction
Mean BOLD timeseries were extracted from a 400-region
parcellation29. We estimated the functional connectivity106

between any two brain regions by calculating the product-
moment correlation coefficient r107 between the mean ac-
tivity time series of region i and the mean activity time se-
ries of region j 108. Correlations were subsequently r-to-z-
transformed. We represented the n ×n functional connec-
tivity matrix as a graph or network109, in which regions were
represented by network nodes, and in which the functional
connectivity between region i and region j was represented
by the network edge between node i and node j . We used
this encoding of the data as a network to produce an undi-
rected, signed and weighted adjacency matrix A. Adjacency
matrices were then averaged across the 2 runs, for consis-
tency with the procedures employed in the data-driven ap-
proach. We note that despite common use, averaging in-
dividual subject matrices to produce a group-average adja-
cency matrix may result in a structure that is not central to
the ensemble of individual matrices110.
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Weighted stochastic block model
Following Ref.40, the weighted stochastic block model
places each of n nodes of the adjacency matrix A of sub-
ject f into one of k communities, by maximizing the likeli-
hood that each block of connections between two commu-
nities is internally similar. In the classic SBM, the probabil-
ity of edge existence is learned for each block (system). In
the weighted SBM, the edge weight distribution parameter-
ized by µ and σ is learned for each block. For each subject,
we maximize the likelihood of a partition y such that µ and
σ parameterize the normally distributed probability of edge
weights between nodes in community i and community j ,
where nodes in this case are parcels from the Schafer400
parcellation. The WSBM seeks to partition a subject’s brain
network such that nodes with similar patterns of connec-
tivity to other nodes are grouped together, under the as-
sumption that each community’s set of edge weights can
be modeled with a normal distribution with mu and sigma.
This placement is accomplished by finding a network parti-
tion y ∈ Y nx1 where yi ∈ 1,2, ...,k and wi denotes the mem-
bership of node i . Following Refs.40 and42, we model edge
weights with an normal family distribution and discount the
contribution of the edge existence distribution. Then the
generative model takes the following form:

P (A|y,µ,σ2) =
n∏

i=1

n∏
j=1

exp(Ai , j ·
µyi ,y j

θ2
yi ,y j

−
A2

i , j

2σ2
yi ,y j

−
µ2

y j ,y j

θ2
yi ,y j

), (2)

where µ ∈ Rkxk and σ2 ∈ Rkxk are model parameters, and
µyi ,y j and σ2

yi ,y j
parameterize the weights of normally dis-

tributed connections between community yi and commu-
nity y j . The quantity Ai , j denotes the i , j th element of the
network adjacency matrix A. The quantity P (A|y,µ,σ2) is
the probability of generating the observed network A given
the parameters; this model is fit to A to estimate the y,µ
and σ2 parameters. For a given subject’s n ×n functional
brain network, we maximize the likelihood of the weighted
stochastic block model using a variational Bayes technique
described by40 and implemented in MATLAB code freely
available at https://aaronclauset.github.io/wsbm/. We re-
peated the optimization procedure 50 times for each sub-
ject, each time initializing the algorithm with a different set
of parameters. We selected k = 7 based on our goodness-
of-fit results, as well as prior evidence that functional brain
networks can be divided into 7 separate components28 and
to facilitate ease of comparison with our set of a priori com-
munity assignments. The weighted stochastic block model
generated a single maximum likelihood partition of regions
into functional communities for each subject.
Number of communities
We systematically varied the number of communities de-
tected, from k = 2 − 17, and implemented analyses of
goodness-of-fit to examine the optimal k for the child
WSBM partition. We first examined the log-likelihood of the
WSBM, fit to the main dataset across values of k for each
subject, repeating the optimization procedure 30 times per
subject and each time initializing the algorithm with a dif-
ferent set of parameters. Then, we calculated the log-

likelihood of the consensus WSBM partition at a given k (de-
rived from our main dataset) fit to the replication dataset.
Finally, we examined the number of communities detected
at the group level when using the iterative consensus par-
titioning procedure to derive a representative group WSBM
partition at a given k.
Consensus partition algorithm
To derive a representative consensus WSBM partition, we
used an iterative consensus partitioning procedure111. This
procedure tabulates the co-occurrence of two regions be-
ing assigned to the same community across all subjects,
subtracts a null model of the chance occurrence of two re-
gions being assigned to the same community, then uses a
Louvain-like algorithm to maximize the modularity of the
co-occurrence matrix112. This final step is iterated n=670
times, once for each subject in the sample. We relabeled the
communities in the representative consensus WSBM par-
tition using the Hungarian algorithm for maximal overlap
with the adult partition communities113. Note that although
the choice of k constrains the number of communities de-
tected at the subject level, we observed that the number of
communities detected at the group consensus level can vary
from the k set at the subject level.
Uncertainty in community assignment
As a parcel-wise measure of uncertainty in community as-
signment, we used the proportion of inconsistent assign-
ments across iterations of our consensus partitioning algo-
rithm. Typically, the consensus partitioning algorithm will
consistently assign parcels to the same community across
iterations, however, in our case some parcels were inconsis-
tently assigned to communities across iterations. In a sup-
plemental analysis, we also used the silhouette measure in-
troduced above on the WSBM partition, using parcel time-
series and WSBM community assignments to estimate the
silhouette of each parcel.

Partition comparisons

We used information-theoretic measures for clustering
comparison to compare the adult partition to the two esti-
mated partitions, namely, the normalized mutual informa-
tion and the normalized information distance43. Permuta-
tion tests across vertices (n = 81,924) were conducted to es-
timate a distribution and calculate a p-value. To compare
activation and deactivation maps from the n-back task to
specific communities, we used measures of set similarity
designed for binary comparison, namely the Sørensen-Dice
coefficient. All adult partition comparisons were conducted
using the publicly released 7-system partition from Ref.28 in
fsaverage6 space.

Uncertainty across both developmental partitions

To examine areas of high uncertainty in assignment
across both partitions, we combined the variability in as-
signment measure from the WSBM with the confidence
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measure from the clustering algorithm. Percentages of
inconsistent assignment in the iterative consensus parti-
tioning procedure were scaled to [0,1] and inverted before
summing with confidence maps from the clustering parti-
tion. Additionally, we examined at the vertex resolution how
many times a vertex changed assignment between the adult
partition, the clustering partition, and the WSBM partition
(Supplemental Figure S7). This measure ranges simply from
1 to 3, as a vertex can be assigned at maximum to 3 different
communities across the 3 partitions.

Task-evoked activity

We used maps of task-evoked activity in the emotional n-
back task from the ABCD Study47. The emotional n-back
has both 0-back (low working memory load) and 2-back
(high working memory load) conditions. Comparison of
the two conditions allows for the assessment of activation
specifically related to working memory. Each trial requires
a motor response from the subject, specifying whether the
stimuli was seen 2 trials ago (in the 2-back condition), or is
a target stimuli for the block (0-back). Specifically, we used
the 2-back versus 0-back group average-contrast, control-

ling for age, sex, scanner, and performance on the task.

Quantification and Statistical Analysis

For information-theoretic measures of partition sim-
ilarity (normalized mutual information and normalized
information distance), we conducted resampling permuta-
tion tests to estimate a distribution to calculate a p-value.
We employed Kruskal-Wallis tests and post-hoc Wilcoxon
rank sum tests to test differences in uncertainty of commu-
nity assignments and differences in the contrast weights
in our task activation analyses. We bootstrapped standard
errors and confidence intervals for binary measures of set
similarity (Sørensen-Dice coefficient) using the package
boot with 1000 repetitions. We conducted all analyses in R
and MATLAB using custom code, including that available
at https://github.com/ThomasYeoLab/CBIG/tree/master
/stable_projects.

Data visualization

Surfaces and partitions were shown on cortical surfaces
generated by Freesurfer88, using fsbrain 0.3.0 and freesurfer-
formats 0.1.11. Connectivity matrices were visualized in
MATLAB, all other figures were produced using R114.
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FIG. S1. Uncertainty in community assignment using adult clustering partition systems. a, Average confidence in the developmental
sample, using the data-driven community detection approach, within each of the systems in the adult clustering partition. Note the higher
confidence in the visual community and relatively lower confidence in higher-order association systems, particularly the dorsal attention
and frontoparietal systems. b, Variability in community assignment in the developmental sample, using the model-based community
detection approach, within each of the systems in the adult clustering partition. Variability in parcel assignment is predominantly located
in the ventral attention and frontoparietal systems.
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FIG. S2. Negative confidence values. a, Negative silhouette values in the child clustering partition shown in blue. Negative values are
unlikely, but possible, as the cost function of the clustering algorithm is not equivalent to that of the silhouette measure. In the adult
sample, negative silhouette values occur along borders between communities (panel (b)). Here, too, these values predominantly fall along
borders between communities. b, Negative silhouette values in the adult clustering partition, data from Ref.28. c, In the child clustering
partition, the vast majority of negative values occur along the border between the visual and dorsal attention communities. These are
vertices assigned to the dorsal attention community in the clustering algorithm, but their timeseries are highly similar to that of the visual
community. d, In the adult clustering partition, negative values occur sporadically along the borders between communities.
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FIG. S3. Signal to noise ratio (SNR) in adult and child data. a, SNR by adult clustering partition communities, data from Ref.28. Variance
in SNR in adults is greater within communities than between communities; the limbic community shows the lowest average SNR. b, SNR
by child clustering partition communities. Though average overall SNR is lower than in the adult data, likely due to differences in scan
acquisition parameters between datasets, variation in SNR is again greater within communities than between communities. c, In the
child clustering partition, the boundaries between communities do not fall neatly along shifts in SNR, indicating that SNR is likely not the
primary driver of community assignments.
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FIG. S4. Community assignments using the clustering approach are highly consistent in a replication dataset. a, Clustering partition
derived from original dataset, shown for visual comparison with panel (b). b, Clustering partition derived from the replication dataset.
Community assignments are highly consistent across the original and replication datasets; 94.99 % of vertices had the same community
assignment across the two datasets. c, Vertices with differing community assignments between the original and replication partitions (≈ 5
% of vertices). d, Confidence maps from the developmental replication sample, using the silhouette method. Note the visual resemblance
to Figure 3b.
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FIG. S5. Community assignments using the WSBM approach are highly consistent in a replication dataset. a, WSBM partition derived
from original dataset, shown for visual comparison with panel b). b, WSBM partition derived from replication dataset. Community
assignments are consistent across the original and replication datasets; 74.62 % of parcels had the same community assignment across
the two datasets. c, Parcels with differing community assignments between the original and replication partitions (≈ 15 % of vertices). In
keeping with other findings, most variation in community assignment is in lateral prefrontal cortex. d, Parcels that were inconsistently
assigned to communities during the optimizations of the WSBM consensus partition algorithm.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.01.21.427677doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427677
http://creativecommons.org/licenses/by-nd/4.0/


29

�������������������������������
��
���������������������


�	�����������������������
�����������������	�����

��������������

����
����������

��	��
����������

�

�

�� ���� ���� ���
�����������������
���������������

��	���������������
���������������

FIG. S6. Confidence in community assignment using a model-based (WSBM) approach. a, Confidence maps estimated from the devel-
opmental sample using the silhouette method. This method measures the similarity of a given vertex’s timeseries to that of other vertices
assigned to the same community, compared to the next most similar community (see Methods). For the purposes of visualization, negative
silhouette values were set to 0. c, Areas of low certainty in community assignments across both developmental partitioning approaches.
Regions of low certainty are shown in dark sandstone. Confidence values from the WSBM partition are scaled to [0,1], then summed with
confidence values from the clustering partition scaled to [0,1]. Values close to zero show high certainty in both partitioning approaches.
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FIG. S7. Frequency of changes in community assignment follows an anterior-posterior gradient. a, Number of different community
assignments for each vertex, calculated between the two developmental partitions and the adult clustering partition. b, Number of differ-
ent community assignments for each vertex, calculated across all three partitions. c, Proportions of variability in community assignment
in the model-based (WSBM) approach. As an alternative to visualizing the percentage of parcels that had any inconsistent assignments
across optimizations of the WSBM consensus community algorithm, we examined the proportions of inconsistent community assign-
ments across optimizations by child WSBM partition communities. Each datapoint is a parcel; 52 % of parcels were consistently assigned
to the same community across all optimizations of the consensus partitioning algorithm, resulting in many datapoints at 0. Variability in
community assignment is predominantly located in the ventral attention and limbic communities. d, Proportions of inconsistent com-
munity assignment by adult clustering partition systems. Variability in community assignment is predominantly located in the ventral
attention and frontoparietal systems.
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