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Abstract 

The application of genetic relationships among individuals, characterized by a genetic relationship 

matrix (GRM), has far-reaching effects in human genetics. However, the current standard to 

calculate the GRM generally does not take advantage of linkage information and does not reflect 

the underlying genealogical history of the study sample. Here, we propose a coalescent-informed 

framework to infer the expected relatedness between pairs of individuals given an ancestral 

recombination graph (ARG) of the sample. Through extensive simulations we show that the 

eGRM is an unbiased estimate of latent pairwise genome-wide relatedness and is robust when 

computed using genealogies inferred from incomplete genetic data. As a result, the eGRM better 

captures the structure of a population than the canonical GRM, even when using the same genetic 

information. More importantly, our framework allows a principled approach to estimate the eGRM 

at different time depths of the ARG, thereby revealing the time-varying nature of population 

structure in a sample. When applied to genotyping data from a population sample from Northern 

and Eastern Finland, we find that clustering analysis using the eGRM reveals population structure 

driven by subpopulations that would not be apparent using the canonical GRM, and that 
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temporally the population model is consistent with recent divergence and expansion. Taken 

together, our proposed eGRM provides a robust tree-centric estimate of relatedness with wide 

application to genetic studies. 

 

 

Introduction 

Genetic relationships among individuals, commonly characterized by a genetic relationship matrix 

(GRM), has fueled major advances in modern human genetics. Its applications include the 

detection of population structure1,2, adjusting for shared genetic backgrounds in genome-wide 

association testing3–10, and heritability estimation11. Historically, genetic relationships across pairs 

of individuals in a known pedigree were estimated using the expected proportion of co-inherited 

alleles, which neglects the variance in the distribution of alleles from meiosis12–14. The advent of 

high-throughput genomics has enabled estimating pairwise relationships directly from genotype  

data, without the need to rely on expectations determined from an inheritance model15. 

 

The current standard to calculate the GRM is based on computing a weighted expectation across 

genotyped variants (i.e. identity-by-state or IBS)11,12,14. While straightforward to compute, this 

approach generally does not utilize linkage information between markers (though also see ref. 

4,16). The canonical GRM is not designed to reflect the shared genealogies that connect everyone 

in a population and inadequately reflects the contribution of ungenotyped variation to 

relatedness17–19. Thus, genome-wide IBS-based relatedness is sensitive to ascertainment biases 

of genetic variation and only partially captures individuals’ relationships compared with 

relatedness based on the underlying genealogies of the population. An identity-by-descent (IBD) 

based GRM could incorporate linkage information to infer finer-scale genetic relationships 

underlying the structure or demographic history of the study population. However, current 

bioinformatic approaches estimating shared IBD segments are subject to technical and 
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methodological constraints that effectively limit the resolution of inferred relatedness to only the 

most recent branches nearing the tips of the underlying genealogies (i.e. over the last 50-100 

generations)12,13,20–24. Because of its methodological simplicity, the canonical, IBS-based, GRM 

continues to be the standard in statistical genetics despite its shortcomings12,20. Nevertheless, 

these shortcomings motivate the search of an approach that better captures the genealogical 

relatedness in a population sample.  

 

In this study, we describe a model for pairwise relatedness using a coalescent-based framework 

relating everyone in a population sample. Given a coalescent tree at a locus, we define 

relatedness between individuals by tracing the tree backwards to a single common ancestor. The 

locus-specific tree provides generalized IBD information across the population sample, unlike 

conventional definitions of IBD that are restricted to recent branches of the tree in forms of 

detectable IBD segments of defined multi-generational pedigrees. The entire genealogy of a 

sample of individuals can be represented by a sequence of coalescent trees, encoded in a 

structure called the Ancestral Recombination Graph25,26 (ARG). The ARG carries substantial 

linkage information as mutations on the same branch are by definition linked, and historical 

recombination events are encoded across the sequence of trees. In practice, the ARG is inferred 

through haplotypic linkage that exists in genetic data. As such, a genealogical measure of 

relatedness conditioned on the ARG can exploit linkage information that is commonly ignored in 

the canonical GRM. 

 

Here, we propose a novel coalescent-based framework to estimate the expected genetic 

relatedness, or the eGRM, for pairs of individuals given the ARG of the population. Conceptually, 

the eGRM is based on the expected number of mutations occurring randomly on each branch of 

the ARG, rather than directly genotyped variants. Our framework provides two primary benefits 

compared with previous approaches. First, because the ARG encodes historical recombination 
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events and the estimation of the ARG generally leverages patterns of haplotype sharing, the 

eGRM in practice is expected to be more robust to ungenotyped genetic variation and retains 

greater information of IBD relatedness among individuals than the canonical GRM. Second, and 

more importantly, our framework seamlessly provides insights to the time-varying nature of 

population structure by estimating relatedness at specific depths in the coalescent tree. To enable 

efficient calculation of the eGRM, our framework leverages recent computational advancements 

for scalable ARG inferences27,28 , thus enabling investigation of populations in larger datasets. 

 

We characterized the behavior of our ARG-based eGRM through extensive simulations starting 

from standard population genetic models. In simulations of a single, exponentially growing, 

population, we demonstrate that the eGRM better captures latent genome-wide relatedness 

compared with the canonical GRM. Importantly, we find the improved performance of eGRM is 

robust when performing inference using noisier ARGs inferred from a subset of common 

genotyped variants rather than true ARGs. It is believed that common variants are not sufficiently 

informative to detect recent population structure29. However, in simulations of a recently 

structured population with multiple demes, we find that principal component analysis (PCA) of the 

eGRM better reflects overall population structure and more accurately identifies each deme, 

compared to PCA of the canonical GRM. Finally, in analyses of 2,644 genotyped samples from 

Northern and Eastern Finland21, we observe that PCs derived from the eGRM reveal fine-scale 

structure previously not identified when using the canonical GRM. We estimate multiple partial 

eGRMs at multiple epochs across the history of the sample and show that time-specific patterns 

of population structure are qualitatively similar to simulated results of a recently structured 

population model, which is consistent with the known history of this region of Finland.  

 

Results 

Method Overview: a conceptual shift in defining genetic relatedness 
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The eGRM, conditioned on the ARG, is conceptually different from the canonical GRM. We 

demonstrate this difference through a toy example on a single genealogical tree with 4 branches 

and 6 mutations (Figure 1A). The canonical GRM is variant-centric and is the average of the six 

relatedness matrices based on each mutation. The eGRM, however, defines relatedness through 

tree branches that relate a pair of haplotypes. Assuming constant mutation rates across branches, 

the eGRM is the average of the four relatedness matrices based on each branch, weighted by 

their branch lengths. A single tree is shown in Figure 1A for simplicity, but the eGRM can be 

generalized to a sequence of trees along a chromosome by weighting each tree by its total branch 

length times the number of base pairs covered by each tree (Methods). In this toy example, 

haplotypes a and b are expected to be equally related to c in the eGRM, while in the canonical 

GRM b will be more closely related to c. Under the canonical GRM framework, the relative genetic 

distance to c is subject to the randomness and ascertainment of mutations. Instead of relying on 

ascertained mutations, branch lengths from the true ARG (or from the inferred ARG, 

reconstructed based on linkage information among nearby markers) provide an estimate of 

genetic relatedness that is more robust to ascertainment effects. In addition, while the eGRM is 

defined as a function of the genealogy, it maintains the mathematical properties of canonical 

GRMs (e.g., positive definiteness) as eGRM is the expectation of the canonical GRM. The eGRM 

is thus compatible with all downstream applications of the GRM. 

 

To help distinguish between various eGRM estimators, here we define some useful notation. We 

denote the eGRM estimated conditioned on the true ARG as EK. When conditioned on an ARG 

inferred from genetic data using either RELATE28 or TSINFER+TSDATE27,30 we denote such 

eGRM as EKrelate and EKtsdate, respectively. We denote the canonical GRM computed using all 

latent genetic data as Kall and using only the observed genetic data as Kobs. In empirical data 

analysis, Kobs are constructed using all genotyped data passing quality controls; in simulations, 

Kobs are constructed using only 20% of the genetic data oversampled from the common variation 
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of the frequency spectrum (Methods) to mimic a genotyping array. Importantly, EKrelate and 

EKtsdate are constructed only using the same set of the observed genetic data as Kobs. 

 

eGRM accurately measures relatedness on a genealogical tree 

To establish that the eGRM estimator better reflects genealogical relatedness compared with the 

canonical GRM approach, we first sought to quantify the performance of eGRM in capturing 

relatedness in a single tree, defined here as the TMRCA between pairs of individuals, when using 

the true ARG. We simulated a 1 Mb genetic region with 1,000 individuals under a single population 

growth model, computed EK and Kobs (see Methods; Figure 1B). Unsurprisingly, the eGRM 

based on the true genealogy, EK, is better correlated with TMRCA than Kobs in 97.5% of the 

simulations (P = 4e-252 by sign test; Figure 2A) and more accurately captures recent genetic 

relatedness between pairs of individuals (Figure S1A). More importantly, eGRM constructed 

using genealogies inferred under RELATE or TSINFER+TSDATE on the same set of observed 

variants (EKrelate and EKtsdate) also showed better correlation with TMRCA than the canonical GRM 

in ~70% of the simulations (P < 1e-26 in all cases; Figure 2A, Figure S1B), suggesting that the 

eGRM is robust to noise in inferred ARGs. Our results thus demonstrate a consistent advantage 

of the eGRM over the canonical GRM in capturing local relatedness represented by TMRCA. 

Because common variants are individually uninformative for recent relatedness, our results also 

suggest the eGRM framework based on predominantly common variants can provide insight for 

the recent part of the genealogical tree. 

 

eGRM provides an unbiased estimate of genome-wide relatedness across realistic scenarios 

While TMRCA provides an intuitive measure of the local genetic relatedness between a pair of 

haplotypes, the eGRM is formulated as the expectation of the latent GRM so that it adheres to 

the mathematical properties of a GRM necessary for many downstream statistical genetic 

applications1–11. Therefore, we next sought to evaluate how well eGRM is capturing the genome-
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wide relatedness measured by the latent GRM. Even though the mutation rate in humans is small, 

we reasoned that a GRM computed using all variants (Kall) in a sufficiently large genomic region 

and sample will precisely estimate the latent GRM by the law of large numbers. Therefore, we 

next sought to evaluate how well the eGRM measures genome-wide relatedness, as quantified 

by the GRM computed from all latent variants (Kall). Briefly, we repeatedly simulated a 30-Mb 

genomic region of 1,000 individuals with recombination rate set as 1e-8 per bp per generation 

(see Methods). We found that EK provides an approximately unbiased estimate of Kall (Pearson 

correlation = 0.98 ± 0.0008; Figure 2B; regression slope of 0.951, 95% CI [0.949, 0.953], intercept 

-6.7e-5, 95% CI [-9.1e-5, -4.3e-5]; Figure 2C), when compared with Kobs (Pearson correlation = 

0.82 ± 0.003; regression slope of 2.69, 95% CI [2.67, 2.71], intercept 1.8e-3, 95% CI [1.6e-3, 

2.0e-3]). We observed similar performance gains when computing the eGRM using genealogies 

inferred by RELATE, with EKrelate attaining a highly correlated (r = 0.90 +/- 0.004; Figure 2B) and 

approximately unbiased estimate of Kall (regression slope of 0.96, intercept 3.7e-5; Figure 2C). 

We found EKtsdate demonstrated lower correlation and biased estimates of Kall (Figure 2B, C). 

Taken together, our results suggest the eGRM is an unbiased and accurate estimator of the 

idealized canonical GRM containing all variants.  

 

Next, we quantified the performance of eGRM when computed using genealogies inferred from a 

varying proportion of observed genetic variants. We found that the correlation between Kall and 

EKrelate was consistently higher than the correlation between Kall and Kobs (Figure 2D left). 

Moreover, for a fixed proportion of observed common SNPs (e.g., 20%; similar to SNP arrays), 

we observed the performance gap widened between EKrelate and Kobs as sample size increased 

(Figure 2D right). Intuitively, this improvement reflects the increasing contribution from rare 

variants to kinship in a larger sample that would not be captured by the canonical GRM based on 

only variants assayed on an array. Our results imply that eGRM can in principle more effectively 

capture relatedness in large-scale studies.  
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In practice, the construction of the GRM often uses imputed variants and/or is restricted to 

relatively common variants after pruning of correlated variants by LD. However, in simulations we 

found that pruning SNPs by LD before computing the GRM (Kobs (pruned)) further decreased 

correlation with Kall (Figure S2A). When using imputed variants to construct the canonical GRM 

(Kobs (imputed)), we found it more strongly correlated with Kall on average when compared with Kobs 

(Figure S2A). However, we observed performance in this scenario depends on relatedness 

between individuals in the imputation reference panel with target individuals, with correlation 

between Kobs (imputed) and Kall decreasing with average panel-relatedness (Figure S2B). The 

dependence on the availability of a closely related reference panel suggests that 

underrepresented populations would be at a disadvantage for genetic analysis using the 

canonical GRM31. Most importantly, across all of these scenarios, we observed our eGRM based 

on inferred genealogy (i.e., EKrelate) consistently exhibited better correlation with Kall than Kobs 

(pruned) or Kobs (imputed) (Figure S2A). 

 

eGRM captures recent demographic events 

Population structure, as the result of historical demographic processes that are encoded in the 

ARG, is conventionally visualized through principal components analysis (PCA) of the canonical 

GRM4,32. Because the eGRM is conditioned on the ARG encoding these historical events, we 

expected the eGRM to be more sensitive to population structure than the canonical GRM based 

on only common variants. To this end, we quantified the performance of the eGRM in capturing 

recent population structure through PCA. A. Motivated by recent work demonstrating that recent 

population structure (i.e. < 100 generations) is not well-captured by PCA computed from common 

SNP GRMs29, we simulated a stepping-stone population model with 25 demes spatially distributed 

in a 5x5 grid, with demes coalescing into a single deme 100 generations ago (Figure 1B, Figure 

3; see Methods). We then compared the ability of the eGRM or the canonical GRM to identify 
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recent population structure through PCA as quantified by the separation index (SI), which 

measures the proportion of neighbors in multi-dimensional space that are of the same deme or 

cluster (Methods). 

 

To establish a baseline, we first recapitulated previous results demonstrating that PCA based on 

the GRM constructed using common variants (defined as MAF ≥ 0.05; Kcommon), or the observed 

variants (defined as 20% of the variants, oversampling common variants; Kobs), cannot distinguish 

the spatial structure of the demes (SI = 0.07-0.08 for Kcommon and Kobs; Figure 3, Figure S3A). In 

comparison, the GRM constructed from rare variants (minor allele count = 2, 3, 4 or 5) alone (Krare; 

SI = 0.25) or all of the variants (Kall; SI = 0.20; Figure S3A) can better detect structure.  

 

We repeated this PCA analysis using EKrelate computed from the same set of variants used to 

construct Kobs and found it to better identify recent population structure (SI = 0.22; Figure 3). We 

next applied a UMAP transformation to the top 10 PCs based on each of the evaluated 

relatedness matrices, and found cluster separation performance improved when using Krare, Kall, 

or EKrelate (SI = 0.80-0.82), but with little benefit when using Kcommon or Kobs (SI = 0.08-0.09; Figure 

3 and Figure S3B). We also simulated a demographic history with older population split times of 

200 or 500 generations. In these scenarios, EKrelate (SI = 0.36 and 0.64 when split time is 200 and 

500, respectively) consistently outperformed Kobs (SI = 0.13 and 0.34, respectively) in capturing 

population structure (Figure S4), likely due to additional haplotypic information captured by the 

inferred ARG, even though Kobs also improved in its performance capturing population structure 

than a scenario with more recent population split because the common variants are more 

informative of the population structure in these simulations. Therefore, under a structured model 

the eGRM consistently extract more information of the population structure compared to the 

canonical GRM based on the same set of variants. 
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Partial eGRM reveals dynamic relatedness through history 

By defining genome-wide relatedness as a function of coalescent trees, a major advantage of our 

eGRM framework is its natural generalization of relatedness constrained to a specific time 

window. We denote the eGRM computed from the ARG when considering only branches of a 

certain age as the partial eGRM (see Methods). To demonstrate the benefit of limiting 

relatedness calculation to certain generations, we re-analyzed our grid simulations but estimated 

EKrelate restricted to the most recent 100 generations (Figure 3). We observed that PCA based 

on EKrelate of the most recent 100 generations improved its ability to delineate population structure 

(SI = 0.44 for, compared to SI = 0.22 for EKrelate or 0.25 for Krare; Figure 3, Figure S3A). We found 

performance to further improve when applying an additional UMAP transformation on PCs (SI = 

0.94; Figure 3).  

 

The partial eGRM also provides new insight into the limitation of the canonical GRM method. In 

our single population simulation, GRM (Kobs) was best correlated with very ancient partial eGRM, 

because the allelic ages of observed SNPs are generally much older (mean age of 12,872 

generations; Figure S5A, D). In our grid structure simulations, due to smaller population sizes 

and stronger genetic drift, the common SNPs are much younger (mean age of 2,089 generations), 

resulting in Kobs having the highest correlation with partial eGRM between 2000-3000 generations 

ago (Figure S5B, D). The correlation with partial eGRM decreased going further back in time, 

likely due to older variants becoming fixed in the population and thus being excluded from Kobs 

computation. The expansion into multiple demes only occurred 100 generations ago, but 

because the allelic ages of observed SNPs used to construct Kobs generally predated this event 

(Figure S5D), individually these SNPs contained little information for the recent structure. Taken 

together, these results indicate that the canonical GRM provides a coarse measure of 
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relatedness in which older, common SNPs are enriched, while the eGRM and partial eGRM 

provide a more fine-grained measure of relatedness at different time points. 

 

eGRM improves prediction of geographical pattern in empirical data 

We evaluated the ability of eGRM to detect population structure in real world data by applying the 

framework to the genotyping array data of a Finnish cohort, FinMetSeq. We computed the 

canonical GRM and EKrelate based on 208,681 SNPs genotyped on 2644 individuals with both 

parents born in the same municipality in Finland21 (Methods). Using parental birthplaces as 

population labels, we found PCA of EKrelate was able to identify patterns of structure (SI = 0.52; 

Figure 4A) whereas the canonical GRM displayed mild separation between individuals with 

recent ancestry along differing regions of Finland (SI = 0.39; Figure 4A). Lower-order PCs 

computed from EKrelate revealed additional structure not matched by Kobs (SI = 0.47 vs SI = 0.29 

for PC3-PC6; Figure S6). Notably, the first two PCs of EKrelate were explained in part by individuals 

with both parents born in the Surrendered Karelia (magenta color in Figure 4). Similar to our 

simulated results, when we applied UMAP to top PCs we observed improved resolution of fine-

scale structure, with UMAP based on EKrelate continues to be more informative of the fine-scale 

structure within Finland than that based on the canonical GRM, regardless of the number of PCs 

included in UMAP (Figure 4B).  

 

Next, to shed light on historical migration and population movements for FinMetSeq data, we 

computed and analyzed the partial eGRM considering only branches for the past 0-100 

generations (Figure S5C).  PCA of the partial eGRM suggests that recent structure in Northern 

and Eastern Finland is mainly driven by individuals from Lapland (colored red in Figure 4; the 

Northernmost part of Finland and home to the indigenous Finno-Urgic people, Sami), 

Surrendered Karelia (magenta), and Turku-Pori and Vaasa (light green and light blue, sharing 
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major port borders with Sweden). Computing a partial eGRM further in the past exhibited 

patterns more similar to those found in the canonical GRM (Figure S5C). Qualitatively, the 

pattern of the partial eGRM at varying time depth and its correlation with a fixed canonical GRM 

are more reminiscent of the pattern observed in the grid structure simulation (Figure S5B) than 

the pattern in a single homogenous population (Figure S5A). Together these findings further 

support previous claims that common variants are enriched for those that survived a bottleneck 

in Finland and that there are extensive internal structure due to recent population movement, 

isolation, and drift21,33–35.  

 

Time and memory considerations for eGRM algorithm 

We implemented the eGRM in a flexible Python framework using custom C extensions to 

accelerate core eGRM calculations. Our implementation of eGRM is memory-efficient. The main 

memory usage throughout the algorithm is a matrix of size 𝑁 × 𝑁, which takes 8𝑁! bytes of 

memory when stored as doubles in C. However, outputting the resulting matrix into a NumPy 

array dominates the overall memory consumption (Figure S7). The time cost of computing eGRM 

is 𝛩(𝑚𝑁!), where 𝑚 is the number of genealogical trees (see Supplementary Text). In the case 

of the FinMetSeq data, the genome-wide eGRM takes ~30 hours on a single CPU to compute 

for 2644 samples and ~120,000 genealogical trees. 

 

 
Discussion 

In the current study we introduce the eGRM, a genealogical estimate of genetic relatedness. The 

eGRM is conceptually distinct from the canonical GRM, which is variant- or mutation-centric. As 

a result, analyses utilizing the canonical GRM need to be interpreted within the context of the 

marker ascertainment. Ascertainment could be biased because of availability of data, technical 
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errors in data generation, or inconsistent analytical conventions across analysts. In contrast, the 

eGRM does not depend directly on the detection of variation (eGRM based on the true ARG 

does not depend on variation; but haplotypes based on a set of variant is used for inferring the 

ARG in practice), and thus is more robust when used in analyses with incomplete data.  

 

A number of methods have been proposed to exploit the rich information stored in the ARG to 

make inference of population genetic parameters (e.g. for selection36,37 or population history38,39). 

Similarly, recent theoretical work has demonstrated the relationship between mutational 

processes by site, or on branches and nodes of the ARG40. Given the ARG, our framework 

considers mutations as appearing uniformly at random on the ARG, and relatedness between 

pairs of individuals is based on the probability of shared mutation, which is proportional to the 

branch lengths relating the two individuals. Our decision to explore this framework over 

alternative paths such as manipulating a matrix of TMRCAs is driven by the conceptual shift in 

treating mutations as random. We expect that our genealogical framework to compute genetic 

relatedness will enable seamless incorporation with downstream statistical applications, such as 

its inclusion in a linear mixed model for controlling population structure in association testing. 

 

Through extensive simulations, we demonstrated that the eGRM is highly correlated with TMRCA 

and importantly provides an approximately unbiased estimate of Kall. The former we used as the 

standard for true relatedness given a single tree, while the latter is an idealized GRM assuming 

all variants are perfectly observed. We illustrated the improvement and new insights that could 

be garnered using the eGRM with an application in the detection of population structure. First, 

common SNPs were thought to be uninformative about recent population structures because 

they tend to predate recent population divergence and are likely shared across all populations29. 

However, since haplotypes derived from common variants are used to infer the ARG, we showed 
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that the eGRM detects the recent split and can better separate the spatial structure among 

demes, despite relying on only the common SNPs. Second, our framework provides a means to 

flexibly probe into the population structure at arbitrary time depths through the partial eGRM, 

suggesting that it can be optimized to account for structure at varying time scales. Third, we 

demonstrated empirically the insights of population structure that can be learned from eGRM 

using Finnish genotyping data. In contrast to the GRM, PCA and PCA+UMAP based on the 

eGRM could better delineate subpopulations such as individuals from the Surrendered Karelia 

region or from the southwestern region of Finland. The Surrendered Karelia region was a 

geographical region at the border of Finland and Russia but was ceded to Russia in 1940. Finnish 

citizens in this area were evacuated and resettled throughout the rest of Finland41. Contribution 

to the population structure of Finnish due to the evacuees and their descendants would not have 

been apparent if we examined only the PCA based on the canonical GRM (Figure 4A). Finally, 

by examining the partial eGRMs, the structure in Northern and Eastern Finland appeared to be 

more recently established, and the pattern of variation from this dataset is more consistent with 

a recently structured population with enhanced drift, rather than the conventional belief that 

Finnish composes a single homogeneous population21,42. 

 

We have found that eGRM inference is stable when using computationally reconstructed 

genealogies rather than the true ARG (e.g., EKrelate). However, we note that underlying 

assumptions required for accurate ARG inference may not be met in massive sample sizes. For 

example, it is often assumed that there are no recurrent mutations and multiple coalescent 

events per generation; both of these assumptions would be violated in extremely large samples. 

Mutation rate is often assumed to be constant across all branches of the inferred tree, which 

may not be true empirically43, and ARG inferences currently may not appropriately model all 

recombination events44. The extent to which relaxation or violation of these assumptions impact 
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the ARG inference and its downstream computation of the eGRM will need to be evaluated 

systematically. Furthermore, a major current impediment is the scalability of ARG inference. In 

our simulations, eGRM from RELATE-reconstructed ARGs performs better than that of 

TSINFER+TSDATE, perhaps due to the inferred branch length information in RELATE, but the 

computational time is also orders of magnitude longer. As a result, even though the eGRM 

computation usually takes less than 5% of the total runtime, we were unable to efficiently 

compute eGRM on RELATE-reconstructed ARGs beyond 10,000 diploid individuals. 

Nevertheless, computational advances may well continue to make ARG inferences more 

accurate and scalable; until recently ARG inferences were restricted to only tens of individuals. 

As faster or more accurate ARG inference algorithms become available, our method will be 

primed to achieve advanced usability and performance with little adjustment. 

 

Even without a more scalable ARG inference methods, eGRM will have the potential to make an 

immediate impact in genetic studies of humans and other species. For instance, most 

understudied populations are not resourced with a matched imputation reference panel or 

whole-genome sequencing data31,45. Even when genotyping array data are available, the arrays 

are rarely designed to represent variation found in the population of interest46,47. The biased 

ascertainment of incomplete genomic information is anticipated to exacerbate the disparity in 

our understanding of the genetic architecture between different populations. The eGRM could 

overcome these limitations because it is able to improve relatedness estimation, using only a 

subset of common markers nonetheless, to a level comparable to the canonical GRM 

constructed in presence of a population-matched imputation reference. The eGRM could thus 

enable analysis of limited genetic data and genetic mapping studies from under-resourced 

populations. Stepping outside of human studies, the genetic studies of other ecological species 

are rarely equipped with complete genomic information. In some cases, complete genomes of a 
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sample are impossible to obtain, such as phylogenetic or ancestral studies on historical 

specimens. However, ARG could be inferred from limited genotyping data48, suggesting the 

eGRM can fill in the void in these studies. 

 
 
Methods 

Pairwise genetic relatedness with unobserved markers 

We first describe the canonical and expected GRM (eGRM) in a haploid scenario; our framework 

can easily be generalized to diploid scenarios as describe in Supplementary Methods. We 

model the haplotypes of 𝑁 samples with 𝑀 variants as an 𝑁 ×𝑀 binary matrix 𝑋 and denote the 

𝑁 × 1 vector at the 𝑘-th variant as 𝑋". The sample allele frequency is 𝑋",,,, 	=
#
$
∑ 𝑋"%$
%&# , and it is 

required that 0 < 𝑋",,,, < 1 for 𝑘 to be a variant site. Given 𝑋, the genetic relationship matrix (GRM) 

is commonly defined as 

GRM ∶= 𝐾(𝑋) =
1

𝑀(𝑋)
7

(𝑋" − 𝑋",,,,𝟏)(𝑋" − 𝑋",,,,𝟏)'

𝑋",,,,(1 − 𝑋",,,,)(!∈(

=
1

𝑀(𝑋)
7 𝐾(𝑋")
(!∈(

 

where 𝟏 is the all-ones vector and 𝑀(𝑋) is the number of variants in 𝑋. However, in practice only 

𝑀* < 𝑀 markers are observed, resulting in the 𝑁 ×𝑀′ observed haplotype matrix 𝑋′. The GRM 

computed using 𝑋′  is given by 𝐾(𝑋′). As its definition suggests, 𝐾(𝑋′) reflects the pair-wise 

relatedness conditioned on the observed haplotype data 𝑋′, and provides an incomplete picture 

of relatedness measure between individuals. Even though the complete haplotype matrix 𝑋 is 

unknown (𝑀  is also unknown), through linkage between the unobserved markers in 𝑋  and 

observed markers in 𝑋′, there may exist a more reasonable estimate of 𝐾(𝑋) than 𝐾(𝑋′) itself. 

Specifically, we show that when the ancestral recombination graph (ARG) 𝐺 that connects the 𝑁 

samples is given, the expectation of  𝐾(𝑋) can be derived, which we denote as the expected GRM 

(eGRM) on 𝐺. 

eGRM ∶= 𝐸(𝐾(𝑋)|𝐺) 
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In practice, the ancestral recombination graph 𝐺 can be inferred from the observed haplotypes 𝑋′ 

using recently emerging genealogical tree reconstruction tools27,28. Intuitively, we wish to define 

an eGRM where each entry represents the expected similarity between a pair of individuals 

should a mutation arise randomly in the ARG, after accounting for the expected similarity between 

a random pair of individuals in the same context given the structure of the ARG. 

 
Expectation of pairwise relatedness given a genealogy 

The recombination and coalescent history of the 𝑁  haploid samples can be completely 

represented by the ancestral recombination graph25,26 (ARG) denoted as 𝐺, which consists of a 

sequence of genealogical trees 𝐺 = {𝑇+|1 < 𝑗 < 𝑚} across the whole genome. Each tree 𝑇+ =

(𝑉+ , 𝐸+) is a directed binary tree with each node 𝑣 ∈ 𝑉+ representing a chromosomal segment of a 

sample or an ancestor, and each branch 𝑒 ∈ 𝐸+ representing the history of its child node until it 

coalesced into its parent node. We define 𝑥(𝑒) as the haplotype vector associated with 𝑒, that is  

𝑥%(𝑒) = I1, if	sample	𝑖	is	descendant	of	𝑒
0, otherwise ,								1 ≤ 𝑖 ≤ 𝑁. 

We assume 𝐺 is fixed, and 𝑋 is generated randomly through mutations occurring on 𝐺, implying 

expectation or variance over 𝑋  is conditional on 𝐺  by default. We overload set membership 

notation over 𝐺 and denote that 𝑒 is a branch in the ARG 𝐺 as 𝑒 ∈ 𝐺, to mean 𝑒 ∈ 𝐸+ ∈ 𝑇+ ∈ 𝐺 for 

some 𝑗.  

 

Here, we define how mutations arise on 𝐺. For each branch 𝑒 ∈ 𝐸+ we define 𝑡(𝑒) as its length in 

generations, 𝑙(𝑒) as the number of base pairs that 𝑇+ covers, and 𝑢(𝑒) as the mutation rate on 

this branch. We model the number of mutations occurring on branch 𝑒  as being Poisson 

distributed 𝑀(𝑒)~Poisa𝜇(𝑒)c  with rate 𝜇(𝑒) = 𝑡(𝑒)𝑙(𝑒)𝑢(𝑒)  which implies the total number of 

mutations over 𝐺 also follows a Poisson distribution	𝑀~Poisa𝜇(𝐺)c with rate 𝜇(𝐺) = ∑ 𝜇(𝑒),∈- .  
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Next, we consider the sampling distribution of the complete haplotype matrix 𝑋 and 𝐾(𝑋) given 𝐺. 

All column vectors in 𝑋 should be from {𝑥(𝑒)|𝑒 ∈ 𝐺}, and 𝑥(𝑒) should have repeated 𝑀(𝑒) times 

in 𝑋. We have 

𝐾(𝑋) =
1
𝑀

7 𝐾(𝑋")
(!∈(

=7
𝑀(𝑒)
𝑀

𝐾a𝑥(𝑒)c
,∈-

. 

Note that 𝐾(𝑋) can only be defined when 𝑀 > 0. The expectation of 𝐾(𝑋) is 

eGRM ∶= 𝐸(𝐾(𝑋)|𝑀 > 0) = 7𝐾a𝑥(𝑒)c𝐸 e
𝑀(𝑒)
𝑀

|𝑀 > 0f
,∈-

 

Using the fact that whenever 𝑀 > 0, 𝑀(𝑒)|𝑀	~	Binomh𝑀, .(,)
.(-)

i, we can compute the expectation, 

𝐸 e
𝑀(𝑒)
𝑀

|𝑀 > 0f = 𝐸 e𝐸 e
𝑀(𝑒)
𝑀

|𝑀f |𝑀 > 0f = 𝐸 j
1
𝑀
𝐸(𝑀(𝑒)|𝑀)|𝑀 > 0k = 𝐸 e

𝜇(𝑒)
𝜇(𝐺)

f =
𝜇(𝑒)
𝜇(𝐺)

. 

We have  

eGRM:= 𝐸(𝐾(𝑥)|𝑀 > 0) =7𝐾a𝑥(𝑒)c
𝜇(𝑒)
𝜇(𝐺)

,∈-

=7
a𝑥(𝑒) − 𝑥(𝑒),,,,,,𝟏ca𝑥 − 𝑥(𝑒),,,,,,𝟏c

'

𝑥(𝑒),,,,,,a1 − 𝑥(𝑒),,,,,,c
𝜇(𝑒)
𝜇(𝐺)

,∈-

 

= 𝐶$ n7
𝑥(𝑒)𝑥(𝑒)'

𝑥(𝑒),,,,,,a1 − 𝑥(𝑒),,,,,,c,∈-

𝜇(𝑒)
𝜇(𝐺)

o 𝐶$ 

where 𝐶$ = 𝐼$ −
#
$
𝟏𝟏𝑻 is a centering matrix, and 𝐼$ is the 𝑁 × 𝑁 identity matrix. 

 

Computationally, we can compute eGRM by traversing 𝑒 ∈ 𝐺 in any order while updating a buffer 

matrix. For each branch 𝑒, we first compute .(,)
2(,)3333334#52(,)3333336 and add this number to a square submatrix 

of elements indexed by nonzero elements of 𝑥(𝑒)𝑥(𝑒)'. Finally, we divide the resulting matrix by 

𝜇(𝐺) and then center it by column and by row to get the eGRM of 𝐺.  

 

Extension of the haploid eGRM to diploid organisms are straight-forward by considering and 

weighing the paternal and maternal haplotypes separately; details are provided in the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.08.18.456747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456747
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Methods. Furthermore, given our probabilistic formulation of relatedness given 

a genealogy, it is natural to define higher central moments. Thus, we also defined the element-

wise Var(𝐾(𝑋)|𝐺), which we term varGRM and captures the expected deviation around the 

individual entries in the eGRM, and explored its behavior briefly in Figure S8. Derivation of the 

varGRM can be found in Supplementary Methods. 

 

Genealogy and genotype simulations 

We used two different demographic models in our simulation experiments (Figure 1B) for a 

comprehensive comparison between GRM and eGRM. To investigate the accuracy of eGRM 

compared with the canonical GRM in estimating true relatedness, we simulated genealogies and 

genotypes under a single-population exponential-growth model based on the published out-of-

Africa demography49. Model parameters were suggested by the msprime documentation, based 

on the European branch of the model. We did not simulate the other two branches of population, 

nor the migration rates between the populations. To investigate the performance of eGRM 

compared with the canonical GRM in detecting recent population structure, we simulated 

genealogies and genotypes of a structured population with a 5x5 grid stepping-stone 

demographic model motivated by a similar model recently published by Zaidi and Mathieson29. 

We simulated 50 individuals per deme, with population size of 500 and migration rate of 0.01 per 

generation between neighboring demes. The 25 demes split from a single ancestral population of 

the same population size 100 generations ago.  

 

We simulate genotypes and tree sequences by MSPRIME50, with mutation rate and 

recombination rates set to 1e-8 per bp per generation. To mimick observed genetic data derived 

from a genotyping array that biases towards the common variants, we restricted the observed set 

of variation to a subset (20% by default, unless otherwise specified) of the simulated variants with 

minor allele count ≥ 5. To oversample the common variants, we sampled with probability 
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proportional to #
(!3333(#5(!3333)

, where 𝑋",,,,  is the sample allele frequency of variant 𝑘 . To show the 

practical use of eGRM, we reconstruct the sequence of trees from observed variants using 

RELATE28 and TSINFER+TSDATE27,30, using default parameters as suggested by the user 

manuals. The tree sequence output of RELATE is converted to TSKIT format, which contains a 

gap-filler tree with no genetic information between basepair zero and the first genetic marker in 

the dataset. In order to prevent overrepresenting a tree that covers a long region but with little 

actual information, we always skip the first tree in the tree sequence in our empirical analysis. We 

denote the canonical GRM based on observed variants as Kobs, the eGRM computed using true 

genealogies as EK, and the eGRM computed using genealogies inferred from observed variants 

as input for RELATE or TSINFER+TSDATE as EKrelate or EKtsdate. Unless otherwise noted, by 

default all simulations are performed on a 30Mb chromosome with both mutation rates and 

recombination rates set to 1057 per generation per base pair.  

 

FinMetSeq genotyping and quality control 

To exam the performance of eGRM on real genotyping data, we applied our method to a subset 

of the FinMetSeq dataset21 (dbGaP accession numbers: phs000743.v1.p1.c999, 

phs000756.v1.p1.c999) consisted of 2,644 samples who have self-reported that both parents 

were born in the same municipality in Finland. The dataset contained 1,504,461 SNPs from whole 

exome sequencing and a genotyping array backbone21. We retained only biallelic SNPs. We 

filtered variants with MAF ≥ 0.01 and missingness ≤ 0.01, resulting in 208,681 common SNPs. 

We phased the genotypes by EAGLE using its default hg19 genetic map. We reconstructed the 

genealogical tree sequence using RELATE with all parameters same as in its official manual. We 

then applied our eGRM algorithm on the resulting tree sequence to compute EKrelate. The 

Canonical GRM was computed based on the same set of 208,681 SNPs after phasing with 

EAGLE.  
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Population structure analysis 

We contrasted and visualized the information of population structure contained in GRM and 

eGRM through principal components analysis (PCA) and uniform manifold approximation and 

projection (UMAP). PCA was computed using the "linalg.eig" function in the python "numpy" 

library, UMAP was computed by the R "umap" package with all default parameters. To 

quantitatively assess the improvement of eGRM over GRM in informing clustering analysis from 

structured populations, we devised a separation index to assess proportion of nearest neighbors 

that are in the same population in multi-dimensional space.  Suppose we have a set of sample 

points 𝐴 in a metric space with metric 𝑑. Each point 𝑎 ∈ 𝐴 has a true label 𝑙(𝑎). The separation 

index defines 𝑆(𝑎) 	= 	 {𝑏 ∈ 𝐴|𝑙(𝑏) 	= 	𝑙(𝑎)} as the true class that 𝑎 belongs. In simulated data, the 

true label is the deme or population membership of each individual. In empirical data, the birth 

place of the parents or grandparents was assumed to be the true label. We also define the size-

𝑛  neighbor of 𝑎  as the 𝑛  nearest point of 	𝑎  including 𝑎  itself, denoted as  𝑅8(𝑎) 	= 	 {𝑏 ∈

𝐴	such	that	|{𝑐 ∈ 𝐴|𝑑(𝑏, 𝑎) ≥ 𝑑(𝑐, 𝑎)}| ≤ 𝑛} . The separation index is defined as the average 

proportion of same-class neighbors 

SI	 = 	
1
|𝐴|

7
|𝑆(𝑎) ∩ 𝑅|:(;)|(𝑎)|

|𝑆(𝑎)|
;	∈=

 

which is a real number between 0 and 1 indicating how well the metric 𝑑 is capturing the true 

classification 𝑙. Note that SI is only dependent on the relative order of distances between pairs of 

points, making it a unified measure of clustering performance among PCA, UMAP and other 

distance-based methods. 

 
 
eGRM Software  
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We have implemented the algorithms related to eGRM in a python package ‘egrm’, which is 

publicly available in PyPI. Documentation of this package as well as simulation commands used 

in this study can be found on its github page (https://github.com/Ephraim-usc/egrm). 
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Figure 1
Illustrative example of eGRM and methodological overview. (A) An illustrative example of a single 
genealogical tree containing 3 samples, 4 branches and 6 mutations to contrast the eGRM and GRM. 
Each mutation has a corresponding length-3 haplotype vector (e.g., mutation m1 has haplotype vector 
(1, 1, 0)). The "single-variant GRM" can be computed as the outer product of the centered and 
normalized haplotype vector (e.g., ⁄1 2 , ⁄1 2 , − 2 for mutation m1) with itself. The canonical GRM 
is then the unweighted average of the single-variant GRMs of the 6 mutations. The eGRM is based on 
the 4 branches, weighted by their lengths (i.e., the expected number of mutations on this branch). (B) 
Overview of simulation workflow to test the performance of eGRM. ARGs are simulated by MSPRIME 
based on a single-growth demographic model and a grid-like spatial structure model. Observed variants 
are oversampled from common variants to mimic real genotyping array data. We then compute the 
complete GRM (Kall), the observed GRM (Kobs), eGRM based on the true ARG (EK), eGRM based on 
RELATE- or TSINFER+TSDATE-reconstructed ARG (EKrelate and EKtsdate).
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Figure 2
eGRM is highly and unbiasedly correlated with measures of relatedness in simulations. (A) Negative
Spearman correlation between TMRCA and Kobs, EK (left) or EKrelate (right) on a 1Mb non-recombining locus.
Spearman correlation is used because GRM by definition normalizes according to allele frequency to upweight
rare mutations, and thus is not expected to correlate linearly with TMRCA. (B) Heatmap summarizing the Pearson
correlations between GRM and eGRM matrices on a 30Mb chromosome. Note that EK and EKrelate are highly
correlated with Kall. (C) Scatter plots of the GRM and eGRM values for all pairs of individuals, using the same
simulated data as in B. All simulations from A to C simulated 1000 individuals. (D) Pearson correlation with Kall,
with varying proportion of SNPs observed (sample size is fixed to 1000; left) or varying sample size (20%
common SNPs observed; right) on a 30Mb chromosome.
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Figure 3
PCA based on eGRM more effectively captures recently established spatial structure in simulation 
compared to the canonical GRM. A 30Mb region was simulated, with 20% of common variants observed. Each 
deme has a constant population size of 500, in which 50 individuals are sampled. The first two PCs based on 
PCA of three GRMs are shown (top): the canonical GRM based on observed SNPs (Kobs), the eGRM based on 
RELATE-reconstructed ARG using the observed SNPs (EKrelate), or the partial eGRM based on the subset of 
branches between 0 and 100 generations across the ARG (EKrelate (0-100 gen)). Separation index (SI; see 
Method for a precise definition) is shown at the topright corner of each plot, which is the average proportion of 
same-label neighbors for each sample, indicating how well populations are separated. The first two features of 
UMAP transformation (bottom) applied to the top 10 PCs further accentuate the detected structure, as measured 
by SI. 
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Figure 4
Clustering analysis based on eGRM revealed novel population structure in the population of Northern and
Eastern Finland. (A) PCA and PCA+UMAP based on either Kobs or EKrelate are shown. A map of Finland with
regions colored is provided for reference. Main geographical locations referenced in the text are labeled
(Surrendered Karelia colored in magenta, Lapland colored in red, Turku-Pori colored in light green, and Vassa
colored in light blue). Scatterplot of the first two features of UMAP transformation was based on the first 24 and 58
components of PCA of Kobs and EKrelate, respectively. These numbers were chosen as they respectively are the
number of components at which the separation index (SI) is maximized after applying the UMAP transformation.
(B) Separation index achieved as successive PCs were included in UMAP transformation of PCA of Kobs and
EKrelate.
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