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Abstract

The application of genetic relationships among individuals, characterized by a genetic relationship
matrix (GRM), has far-reaching effects in human genetics. However, the current standard to
calculate the GRM generally does not take advantage of linkage information and does not reflect
the underlying genealogical history of the study sample. Here, we propose a coalescent-informed
framework to infer the expected relatedness between pairs of individuals given an ancestral
recombination graph (ARG) of the sample. Through extensive simulations we show that the
eGRM is an unbiased estimate of latent pairwise genome-wide relatedness and is robust when
computed using genealogies inferred from incomplete genetic data. As a result, the eGRM better
captures the structure of a population than the canonical GRM, even when using the same genetic
information. More importantly, our framework allows a principled approach to estimate the eGRM
at different time depths of the ARG, thereby revealing the time-varying nature of population
structure in a sample. When applied to genotyping data from a population sample from Northern
and Eastern Finland, we find that clustering analysis using the eGRM reveals population structure

driven by subpopulations that would not be apparent using the canonical GRM, and that
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temporally the population model is consistent with recent divergence and expansion. Taken
together, our proposed eGRM provides a robust tree-centric estimate of relatedness with wide

application to genetic studies.

Introduction

Genetic relationships among individuals, commonly characterized by a genetic relationship matrix
(GRM), has fueled major advances in modern human genetics. Its applications include the
detection of population structure’?, adjusting for shared genetic backgrounds in genome-wide

310 and heritability estimation'". Historically, genetic relationships across pairs

association testing
of individuals in a known pedigree were estimated using the expected proportion of co-inherited
alleles, which neglects the variance in the distribution of alleles from meiosis'?"*. The advent of
high-throughput genomics has enabled estimating pairwise relationships directly from genotype
data, without the need to rely on expectations determined from an inheritance model'®.

The current standard to calculate the GRM is based on computing a weighted expectation across
genotyped variants (i.e. identity-by-state or IBS)'"'2'*. While straightforward to compute, this
approach generally does not utilize linkage information between markers (though also see ref.
418) The canonical GRM is not designed to reflect the shared genealogies that connect everyone
in a population and inadequately reflects the contribution of ungenotyped variation to

relatedness’’~

' Thus, genome-wide IBS-based relatedness is sensitive to ascertainment biases
of genetic variation and only partially captures individuals’ relationships compared with
relatedness based on the underlying genealogies of the population. An identity-by-descent (IBD)
based GRM could incorporate linkage information to infer finer-scale genetic relationships

underlying the structure or demographic history of the study population. However, current

bioinformatic approaches estimating shared IBD segments are subject to technical and
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methodological constraints that effectively limit the resolution of inferred relatedness to only the
most recent branches nearing the tips of the underlying genealogies (i.e. over the last 50-100
generations)'#1320-2¢ Because of its methodological simplicity, the canonical, IBS-based, GRM
continues to be the standard in statistical genetics despite its shortcomings'??°. Nevertheless,
these shortcomings motivate the search of an approach that better captures the genealogical

relatedness in a population sample.

In this study, we describe a model for pairwise relatedness using a coalescent-based framework
relating everyone in a population sample. Given a coalescent tree at a locus, we define
relatedness between individuals by tracing the tree backwards to a single common ancestor. The
locus-specific tree provides generalized IBD information across the population sample, unlike
conventional definitions of IBD that are restricted to recent branches of the tree in forms of
detectable IBD segments of defined multi-generational pedigrees. The entire genealogy of a
sample of individuals can be represented by a sequence of coalescent trees, encoded in a
structure called the Ancestral Recombination Graph®*? (ARG). The ARG carries substantial
linkage information as mutations on the same branch are by definition linked, and historical
recombination events are encoded across the sequence of trees. In practice, the ARG is inferred
through haplotypic linkage that exists in genetic data. As such, a genealogical measure of
relatedness conditioned on the ARG can exploit linkage information that is commonly ignored in

the canonical GRM.

Here, we propose a novel coalescent-based framework to estimate the expected genetic
relatedness, or the eGRM, for pairs of individuals given the ARG of the population. Conceptually,
the eGRM is based on the expected number of mutations occurring randomly on each branch of
the ARG, rather than directly genotyped variants. Our framework provides two primary benefits

compared with previous approaches. First, because the ARG encodes historical recombination
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events and the estimation of the ARG generally leverages patterns of haplotype sharing, the
eGRM in practice is expected to be more robust to ungenotyped genetic variation and retains
greater information of IBD relatedness among individuals than the canonical GRM. Second, and
more importantly, our framework seamlessly provides insights to the time-varying nature of
population structure by estimating relatedness at specific depths in the coalescent tree. To enable
efficient calculation of the eGRM, our framework leverages recent computational advancements

for scalable ARG inferences?’?® | thus enabling investigation of populations in larger datasets.

We characterized the behavior of our ARG-based eGRM through extensive simulations starting
from standard population genetic models. In simulations of a single, exponentially growing,
population, we demonstrate that the eGRM better captures latent genome-wide relatedness
compared with the canonical GRM. Importantly, we find the improved performance of eGRM is
robust when performing inference using noisier ARGs inferred from a subset of common
genotyped variants rather than true ARGs. It is believed that common variants are not sufficiently
informative to detect recent population structure?®. However, in simulations of a recently
structured population with multiple demes, we find that principal component analysis (PCA) of the
eGRM better reflects overall population structure and more accurately identifies each deme,
compared to PCA of the canonical GRM. Finally, in analyses of 2,644 genotyped samples from
Northern and Eastern Finland?!, we observe that PCs derived from the eGRM reveal fine-scale
structure previously not identified when using the canonical GRM. We estimate multiple partial
eGRMs at multiple epochs across the history of the sample and show that time-specific patterns
of population structure are qualitatively similar to simulated results of a recently structured

population model, which is consistent with the known history of this region of Finland.

Results

Method Overview: a conceptual shift in defining genetic relatedness
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The eGRM, conditioned on the ARG, is conceptually different from the canonical GRM. We
demonstrate this difference through a toy example on a single genealogical tree with 4 branches
and 6 mutations (Figure 1A). The canonical GRM is variant-centric and is the average of the six
relatedness matrices based on each mutation. The eGRM, however, defines relatedness through
tree branches that relate a pair of haplotypes. Assuming constant mutation rates across branches,
the eGRM is the average of the four relatedness matrices based on each branch, weighted by
their branch lengths. A single tree is shown in Figure 1A for simplicity, but the eGRM can be
generalized to a sequence of trees along a chromosome by weighting each tree by its total branch
length times the number of base pairs covered by each tree (Methods). In this toy example,
haplotypes a and b are expected to be equally related to ¢ in the eGRM, while in the canonical
GRM b will be more closely related to ¢. Under the canonical GRM framework, the relative genetic
distance to c is subject to the randomness and ascertainment of mutations. Instead of relying on
ascertained mutations, branch lengths from the true ARG (or from the inferred ARG,
reconstructed based on linkage information among nearby markers) provide an estimate of
genetic relatedness that is more robust to ascertainment effects. In addition, while the eGRM is
defined as a function of the genealogy, it maintains the mathematical properties of canonical
GRMs (e.g., positive definiteness) as eGRM is the expectation of the canonical GRM. The eGRM

is thus compatible with all downstream applications of the GRM.

To help distinguish between various eGRM estimators, here we define some useful notation. We
denote the eGRM estimated conditioned on the true ARG as EK. When conditioned on an ARG
inferred from genetic data using either RELATE?® or TSINFER+TSDATE?*® we denote such
eGRM as EKieate and EKisqate, respectively. We denote the canonical GRM computed using all
latent genetic data as Kai and using only the observed genetic data as Kows. In empirical data
analysis, Kops are constructed using all genotyped data passing quality controls; in simulations,

Kobs are constructed using only 20% of the genetic data oversampled from the common variation
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of the frequency spectrum (Methods) to mimic a genotyping array. Importantly, EKeate and

EKisqate are constructed only using the same set of the observed genetic data as Kops.

eGRM accurately measures relatedness on a genealogical tree

To establish that the eGRM estimator better reflects genealogical relatedness compared with the
canonical GRM approach, we first sought to quantify the performance of eGRM in capturing
relatedness in a single tree, defined here as the TMRCA between pairs of individuals, when using
the true ARG. We simulated a 1 Mb genetic region with 1,000 individuals under a single population
growth model, computed EK and Kqus (see Methods; Figure 1B). Unsurprisingly, the eGRM
based on the true genealogy, EK, is better correlated with TMRCA than Kobs in 97.5% of the
simulations (P = 4e-252 by sign test; Figure 2A) and more accurately captures recent genetic
relatedness between pairs of individuals (Figure S1A). More importantly, eGRM constructed
using genealogies inferred under RELATE or TSINFER+TSDATE on the same set of observed
variants (EKreiate and EKisqate) also showed better correlation with TMRCA than the canonical GRM
in ~70% of the simulations (P < 1e-26 in all cases; Figure 2A, Figure S1B), suggesting that the
eGRM is robust to noise in inferred ARGs. Our results thus demonstrate a consistent advantage
of the eGRM over the canonical GRM in capturing local relatedness represented by TMRCA.
Because common variants are individually uninformative for recent relatedness, our results also
suggest the eGRM framework based on predominantly common variants can provide insight for

the recent part of the genealogical tree.

eGRM provides an unbiased estimate of genome-wide relatedness across realistic scenarios

While TMRCA provides an intuitive measure of the local genetic relatedness between a pair of
haplotypes, the eGRM is formulated as the expectation of the latent GRM so that it adheres to
the mathematical properties of a GRM necessary for many downstream statistical genetic

applications'"". Therefore, we next sought to evaluate how well eGRM is capturing the genome-
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wide relatedness measured by the latent GRM. Even though the mutation rate in humans is small,
we reasoned that a GRM computed using all variants (Kai) in a sufficiently large genomic region
and sample will precisely estimate the latent GRM by the law of large numbers. Therefore, we
next sought to evaluate how well the eGRM measures genome-wide relatedness, as quantified
by the GRM computed from all latent variants (Kai). Briefly, we repeatedly simulated a 30-Mb
genomic region of 1,000 individuals with recombination rate set as 1e-8 per bp per generation
(see Methods). We found that EK provides an approximately unbiased estimate of Ka (Pearson
correlation = 0.98 £ 0.0008; Figure 2B; regression slope of 0.951, 95% CI1[0.949, 0.953], intercept
-6.7e-5, 95% CI [-9.1e-5, -4.3e-5]; Figure 2C), when compared with Kqs (Pearson correlation =
0.82 + 0.003; regression slope of 2.69, 95% CI [2.67, 2.71], intercept 1.8e-3, 95% CI [1.6e-3,
2.0e-3]). We observed similar performance gains when computing the eGRM using genealogies
inferred by RELATE, with EKeiate attaining a highly correlated (r = 0.90 +/- 0.004; Figure 2B) and
approximately unbiased estimate of Kai (regression slope of 0.96, intercept 3.7e-5; Figure 2C).
We found EKissate demonstrated lower correlation and biased estimates of Kai (Figure 2B, C).
Taken together, our results suggest the eGRM is an unbiased and accurate estimator of the

idealized canonical GRM containing all variants.

Next, we quantified the performance of eGRM when computed using genealogies inferred from a
varying proportion of observed genetic variants. We found that the correlation between Ka and
EKriate Was consistently higher than the correlation between Kai and Kobs (Figure 2D left).
Moreover, for a fixed proportion of observed common SNPs (e.g., 20%; similar to SNP arrays),
we observed the performance gap widened between EKieiate and Kons as sample size increased
(Figure 2D right). Intuitively, this improvement reflects the increasing contribution from rare
variants to kinship in a larger sample that would not be captured by the canonical GRM based on
only variants assayed on an array. Our results imply that eGRM can in principle more effectively

capture relatedness in large-scale studies.
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In practice, the construction of the GRM often uses imputed variants and/or is restricted to
relatively common variants after pruning of correlated variants by LD. However, in simulations we
found that pruning SNPs by LD before computing the GRM (Kobs (prunea)) further decreased
correlation with Kai (Figure S2A). When using imputed variants to construct the canonical GRM
(Kobs (imputed)), We found it more strongly correlated with Kai on average when compared with Kobs
(Figure S2A). However, we observed performance in this scenario depends on relatedness
between individuals in the imputation reference panel with target individuals, with correlation
between Kobs (mputedy and Kai decreasing with average panel-relatedness (Figure S2B). The
dependence on the availability of a closely related reference panel suggests that
underrepresented populations would be at a disadvantage for genetic analysis using the
canonical GRM*'. Most importantly, across all of these scenarios, we observed our eGRM based
on inferred genealogy (i.e., EKriate) consistently exhibited better correlation with Kai than Kobs

(pruned) OF Kobs (imputed) (Figure SZA)

eGRM captures recent demographic events

Population structure, as the result of historical demographic processes that are encoded in the
ARG, is conventionally visualized through principal components analysis (PCA) of the canonical
GRM*32, Because the eGRM is conditioned on the ARG encoding these historical events, we
expected the eGRM to be more sensitive to population structure than the canonical GRM based
on only common variants. To this end, we quantified the performance of the eGRM in capturing
recent population structure through PCA. A. Motivated by recent work demonstrating that recent
population structure (i.e. < 100 generations) is not well-captured by PCA computed from common
SNP GRMs?, we simulated a stepping-stone population model with 25 demes spatially distributed
in a 5x5 grid, with demes coalescing into a single deme 100 generations ago (Figure 1B, Figure

3; see Methods). We then compared the ability of the eGRM or the canonical GRM to identify
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recent population structure through PCA as quantified by the separation index (Sl), which
measures the proportion of neighbors in multi-dimensional space that are of the same deme or

cluster (Methods).

To establish a baseline, we first recapitulated previous results demonstrating that PCA based on
the GRM constructed using common variants (defined as MAF = 0.05; Kcommon), Or the observed
variants (defined as 20% of the variants, oversampling common variants; Kobs), cannot distinguish
the spatial structure of the demes (S| = 0.07-0.08 for Keommon and Kops; Figure 3, Figure S3A). In
comparison, the GRM constructed from rare variants (minor allele count = 2, 3, 4 or 5) alone (Krare;

S| = 0.25) or all of the variants (Kai; SI = 0.20; Figure S3A) can better detect structure.

We repeated this PCA analysis using EKeate computed from the same set of variants used to
construct Kobs and found it to better identify recent population structure (SI = 0.22; Figure 3). We
next applied a UMAP transformation to the top 10 PCs based on each of the evaluated
relatedness matrices, and found cluster separation performance improved when using Krare, Kai,
or EKreiate (SI = 0.80-0.82), but with little benefit when using Kcommon 0Or Kops (SI = 0.08-0.09; Figure
3 and Figure S3B). We also simulated a demographic history with older population split times of
200 or 500 generations. In these scenarios, EKrelate (SI = 0.36 and 0.64 when split time is 200 and
500, respectively) consistently outperformed Kobs (SI = 0.13 and 0.34, respectively) in capturing
population structure (Figure S4), likely due to additional haplotypic information captured by the
inferred ARG, even though Ko also improved in its performance capturing population structure
than a scenario with more recent population split because the common variants are more
informative of the population structure in these simulations. Therefore, under a structured model
the eGRM consistently extract more information of the population structure compared to the

canonical GRM based on the same set of variants.
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Partial e GRM reveals dynamic relatedness through history

By defining genome-wide relatedness as a function of coalescent trees, a major advantage of our
eGRM framework is its natural generalization of relatedness constrained to a specific time
window. We denote the eGRM computed from the ARG when considering only branches of a
certain age as the partial eGRM (see Methods). To demonstrate the benefit of limiting
relatedness calculation to certain generations, we re-analyzed our grid simulations but estimated
EK.eiate restricted to the most recent 100 generations (Figure 3). We observed that PCA based
on EK:iate Of the most recent 100 generations improved its ability to delineate population structure
(SI =0.44 for, compared to Sl = 0.22 for EKejate Or 0.25 for Krare; Figure 3, Figure S3A). We found
performance to further improve when applying an additional UMAP transformation on PCs (S| =

0.94; Figure 3).

The partial eGRM also provides new insight into the limitation of the canonical GRM method. In
our single population simulation, GRM (Kows) Was best correlated with very ancient partial eGRM,
because the allelic ages of observed SNPs are generally much older (mean age of 12,872
generations; Figure S5A, D). In our grid structure simulations, due to smaller population sizes
and stronger genetic drift, the common SNPs are much younger (mean age of 2,089 generations),
resulting in Koos having the highest correlation with partial eGRM between 2000-3000 generations
ago (Figure S5B, D). The correlation with partial eGRM decreased going further back in time,
likely due to older variants becoming fixed in the population and thus being excluded from Kqps
computation. The expansion into multiple demes only occurred 100 generations ago, but
because the allelic ages of observed SNPs used to construct Kq.s generally predated this event
(Figure S5D), individually these SNPs contained little information for the recent structure. Taken

together, these results indicate that the canonical GRM provides a coarse measure of
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relatedness in which older, common SNPs are enriched, while the eGRM and partial eGRM

provide a more fine-grained measure of relatedness at different time points.

eGRM improves prediction of geographical pattern in empirical data

We evaluated the ability of eGRM to detect population structure in real world data by applying the
framework to the genotyping array data of a Finnish cohort, FinMetSeq. We computed the
canonical GRM and EKeiate based on 208,681 SNPs genotyped on 2644 individuals with both
parents born in the same municipality in Finland?' (Methods). Using parental birthplaces as
population labels, we found PCA of EKate Was able to identify patterns of structure (SI = 0.52;
Figure 4A) whereas the canonical GRM displayed mild separation between individuals with
recent ancestry along differing regions of Finland (Sl = 0.39; Figure 4A). Lower-order PCs
computed from EKeiate revealed additional structure not matched by Kobs (S1 = 0.47 vs Sl = 0.29
for PC3-PC6; Figure S6). Notably, the first two PCs of EK ciate Were explained in part by individuals
with both parents born in the Surrendered Karelia (magenta color in Figure 4). Similar to our
simulated results, when we applied UMAP to top PCs we observed improved resolution of fine-
scale structure, with UMAP based on EKreiate cOntinues to be more informative of the fine-scale
structure within Finland than that based on the canonical GRM, regardless of the number of PCs

included in UMAP (Figure 4B).

Next, to shed light on historical migration and population movements for FinMetSeq data, we
computed and analyzed the partial eGRM considering only branches for the past 0-100
generations (Figure S5C). PCA of the partial eGRM suggests that recent structure in Northern
and Eastern Finland is mainly driven by individuals from Lapland (colored red in Figure 4; the
Northernmost part of Finland and home to the indigenous Finno-Urgic people, Sami),

Surrendered Karelia (magenta), and Turku-Pori and Vaasa (light green and light blue, sharing
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major port borders with Sweden). Computing a partial eGRM further in the past exhibited
patterns more similar to those found in the canonical GRM (Figure S5C). Qualitatively, the
pattern of the partial eGRM at varying time depth and its correlation with a fixed canonical GRM
are more reminiscent of the pattern observed in the grid structure simulation (Figure S5B) than
the pattern in a single homogenous population (Figure S5A). Together these findings further
support previous claims that common variants are enriched for those that survived a bottleneck
in Finland and that there are extensive internal structure due to recent population movement,

isolation, and drift*"**-%.

Time and memory considerations for eGRM algorithm

We implemented the eGRM in a flexible Python framework using custom C extensions to
accelerate core eGRM calculations. Our implementation of eGRM is memory-efficient. The main
memory usage throughout the algorithm is a matrix of size N x N, which takes 8N? bytes of
memory when stored as doubles in C. However, outputting the resulting matrix into a NumPy
array dominates the overall memory consumption (Figure S7). The time cost of computing eGRM
is @(mN?), where m is the number of genealogical trees (see Supplementary Text). In the case
of the FinMetSeq data, the genome-wide eGRM takes ~30 hours on a single CPU to compute

for 2644 samples and ~120,000 genealogical trees.

Discussion

In the current study we introduce the eGRM, a genealogical estimate of genetic relatedness. The
eGRM is conceptually distinct from the canonical GRM, which is variant- or mutation-centric. As
a result, analyses utilizing the canonical GRM need to be interpreted within the context of the

marker ascertainment. Ascertainment could be biased because of availability of data, technical
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errors in data generation, or inconsistent analytical conventions across analysts. In contrast, the
eGRM does not depend directly on the detection of variation (€GRM based on the true ARG
does not depend on variation; but haplotypes based on a set of variant is used for inferring the

ARG in practice), and thus is more robust when used in analyses with incomplete data.

A number of methods have been proposed to exploit the rich information stored in the ARG to

36,37 38,39).

make inference of population genetic parameters (e.g. for selection*®*" or population history
Similarly, recent theoretical work has demonstrated the relationship between mutational
processes by site, or on branches and nodes of the ARG*. Given the ARG, our framework
considers mutations as appearing uniformly at random on the ARG, and relatedness between
pairs of individuals is based on the probability of shared mutation, which is proportional to the
branch lengths relating the two individuals. Our decision to explore this framework over
alternative paths such as manipulating a matrix of TMRCAs is driven by the conceptual shift in
treating mutations as random. We expect that our genealogical framework to compute genetic

relatedness will enable seamless incorporation with downstream statistical applications, such as

its inclusion in a linear mixed model for controlling population structure in association testing.

Through extensive simulations, we demonstrated that the eGRM is highly correlated with TMRCA
and importantly provides an approximately unbiased estimate of K.i. The former we used as the
standard for true relatedness given a single tree, while the latter is an idealized GRM assuming
all variants are perfectly observed. We illustrated the improvement and new insights that could
be garnered using the eGRM with an application in the detection of population structure. First,
common SNPs were thought to be uninformative about recent population structures because
they tend to predate recent population divergence and are likely shared across all populations®.

However, since haplotypes derived from common variants are used to infer the ARG, we showed


https://doi.org/10.1101/2021.08.18.456747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456747; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

that the eGRM detects the recent split and can better separate the spatial structure among
demes, despite relying on only the common SNPs. Second, our framework provides a means to
flexibly probe into the population structure at arbitrary time depths through the partial eGRM,
suggesting that it can be optimized to account for structure at varying time scales. Third, we
demonstrated empirically the insights of population structure that can be learned from eGRM
using Finnish genotyping data. In contrast to the GRM, PCA and PCA+UMAP based on the
eGRM could better delineate subpopulations such as individuals from the Surrendered Karelia
region or from the southwestern region of Finland. The Surrendered Karelia region was a
geographical region at the border of Finland and Russia but was ceded to Russia in 1940. Finnish
citizens in this area were evacuated and resettled throughout the rest of Finland*'. Contribution
to the population structure of Finnish due to the evacuees and their descendants would not have
been apparent if we examined only the PCA based on the canonical GRM (Figure 4A). Finally,
by examining the partial eGRMs, the structure in Northern and Eastern Finland appeared to be
more recently established, and the pattern of variation from this dataset is more consistent with
a recently structured population with enhanced drift, rather than the conventional belief that

Finnish composes a single homogeneous population?'#,

We have found that eGRM inference is stable when using computationally reconstructed
genealogies rather than the true ARG (e.g9., EKwa). However, we note that underlying
assumptions required for accurate ARG inference may not be met in massive sample sizes. For
example, it is often assumed that there are no recurrent mutations and multiple coalescent
events per generation; both of these assumptions would be violated in extremely large samples.
Mutation rate is often assumed to be constant across all branches of the inferred tree, which
may not be true empirically*”®, and ARG inferences currently may not appropriately model all

recombination events*. The extent to which relaxation or violation of these assumptions impact
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the ARG inference and its downstream computation of the eGRM will need to be evaluated
systematically. Furthermore, a major current impediment is the scalability of ARG inference. In
our simulations, eGRM from RELATE-reconstructed ARGs performs better than that of
TSINFER+TSDATE, perhaps due to the inferred branch length information in RELATE, but the
computational time is also orders of magnitude longer. As a result, even though the eGRM
computation usually takes less than 5% of the total runtime, we were unable to efficiently
compute eGRM on RELATE-reconstructed ARGs beyond 10,000 diploid individuals.
Nevertheless, computational advances may well continue to make ARG inferences more
accurate and scalable; until recently ARG inferences were restricted to only tens of individuals.
As faster or more accurate ARG inference algorithms become available, our method will be

primed to achieve advanced usability and performance with little adjustment.

Even without a more scalable ARG inference methods, eGRM will have the potential to make an
immediate impact in genetic studies of humans and other species. For instance, most
understudied populations are not resourced with a matched imputation reference panel or
whole-genome sequencing data®'*°. Even when genotyping array data are available, the arrays
are rarely designed to represent variation found in the population of interest*®*’. The biased
ascertainment of incomplete genomic information is anticipated to exacerbate the disparity in
our understanding of the genetic architecture between different populations. The eGRM could
overcome these limitations because it is able to improve relatedness estimation, using only a
subset of common markers nonetheless, to a level comparable to the canonical GRM
constructed in presence of a population-matched imputation reference. The eGRM could thus
enable analysis of limited genetic data and genetic mapping studies from under-resourced
populations. Stepping outside of human studies, the genetic studies of other ecological species

are rarely equipped with complete genomic information. In some cases, complete genomes of a
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sample are impossible to obtain, such as phylogenetic or ancestral studies on historical
specimens. However, ARG could be inferred from limited genotyping data*®, suggesting the

eGRM can fill in the void in these studies.

Methods

Pairwise genetic relatedness with unobserved markers

We first describe the canonical and expected GRM (eGRM) in a haploid scenario; our framework
can easily be generalized to diploid scenarios as describe in Supplementary Methods. We

model the haplotypes of N samples with M variants as an N x M binary matrix X and denote the
N x 1 vector at the k-th variant as X,,. The sample allele frequency is X, = %Zf’:lei, and it is

required that 0 < X, < 1 for k to be a variant site. Given X, the genetic relationship matrix (GRM)
is commonly defined as
1 X — X DX — X, DT 1
GRM := K(X) = Z ——— = Z K (X)
MO L X=X M(X) *

XKEX

where 1 is the all-ones vector and M(X) is the number of variants in X. However, in practice only
M' < M markers are observed, resulting in the N x M’ observed haplotype matrix X’. The GRM
computed using X' is given by K(X'). As its definition suggests, K(X") reflects the pair-wise
relatedness conditioned on the observed haplotype data X', and provides an incomplete picture
of relatedness measure between individuals. Even though the complete haplotype matrix X is
unknown (M is also unknown), through linkage between the unobserved markers in X and
observed markers in X', there may exist a more reasonable estimate of K(X) than K(X') itself.
Specifically, we show that when the ancestral recombination graph (ARG) G that connects the N
samples is given, the expectation of K(X) can be derived, which we denote as the expected GRM
(eGRM) on G.

eGRM := E(K(X)|6)
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In practice, the ancestral recombination graph G can be inferred from the observed haplotypes X’
using recently emerging genealogical tree reconstruction tools®”%, Intuitively, we wish to define
an eGRM where each entry represents the expected similarity between a pair of individuals
should a mutation arise randomly in the ARG, after accounting for the expected similarity between

a random pair of individuals in the same context given the structure of the ARG.

Expectation of pairwise relatedness given a genealogy

The recombination and coalescent history of the N haploid samples can be completely
represented by the ancestral recombination graph?*2® (ARG) denoted as G, which consists of a
sequence of genealogical trees G = {T;|1 < j < m} across the whole genome. Each tree T; =
(V;, E;) is a directed binary tree with each node v € V; representing a chromosomal segment of a
sample or an ancestor, and each branch e € E; representing the history of its child node until it

coalesced into its parent node. We define x(e) as the haplotype vector associated with e, that is

x;(e) = {1, if sample i is descendant of e
o, otherwise

, 1<i<N.
We assume G is fixed, and X is generated randomly through mutations occurring on G, implying
expectation or variance over X is conditional on G by default. We overload set membership

notation over G and denote that e is a branch inthe ARG G ase € G,to mean e € E €T, €G for

some j.

Here, we define how mutations arise on G. For each branch e € E; we define t(e) as its length in
generations, [(e) as the number of base pairs that T; covers, and u(e) as the mutation rate on
this branch. We model the number of mutations occurring on branch e as being Poisson
distributed M(e)~Pois(u(e)) with rate u(e) = t(e)l(e)u(e) which implies the total number of

mutations over G also follows a Poisson distribution M~Pois(u(G)) with rate u(G) = Xeeq (e).
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Next, we consider the sampling distribution of the complete haplotype matrix X and K(X) given G.
All column vectors in X should be from {x(e)|e € G}, and x(e) should have repeated M(e) times

in X. We have

1 M
KO = 2 K(X,) = E%K(x(e)).

XREX eeG

Note that K(X) can only be defined when M > 0. The expectation of K(X) is

M(e)
eGRM := E(K(X)|M > 0) = 2 K(x(@)E (=M >0
eeaq
Using the fact that whenever M > 0, M(e)|M ~ Binom (M, %) we can compute the expectation,
M(e) (M (e) ) ) 1 (u(e)> u(e)
E{\——M>0)=E|(E|——|M )M >0 =E<—EMeMM>O>=E = .
<M| ) ( MI | M(()I )] )~ 1
We have

ue) _ y (x(e) = x(@1)(x —x()1)" u(e)
eeq

eGRM: = E(K(x)|M > 0) = 2 K(x(e))'u(G) @(1 _ m) u(@)

eeq

B x(@x(e)”  p(e)
= Cw (2 *@(1 - x@) u(G)) e

eeq

where Cy = Iy — 1117 is a centerin matrix, and Iy is the N x N identity matrix.
N 9

Computationally, we can compute eGRM by traversing e € G in any order while updating a buffer

ule)

OEI0) and add this number to a square submatrix

matrix. For each branch e, we first compute

of elements indexed by nonzero elements of x(e)x(e)”. Finally, we divide the resulting matrix by

u(G) and then center it by column and by row to get the eGRM of G.

Extension of the haploid eGRM to diploid organisms are straight-forward by considering and

weighing the paternal and maternal haplotypes separately; details are provided in the
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Supplementary Methods. Furthermore, given our probabilistic formulation of relatedness given
a genealogy, it is natural to define higher central moments. Thus, we also defined the element-
wise Var(K(X)|G), which we term varGRM and captures the expected deviation around the
individual entries in the eGRM, and explored its behavior briefly in Figure S8. Derivation of the

varGRM can be found in Supplementary Methods.

Genealogy and genotype simulations

We used two different demographic models in our simulation experiments (Figure 1B) for a
comprehensive comparison between GRM and eGRM. To investigate the accuracy of eGRM
compared with the canonical GRM in estimating true relatedness, we simulated genealogies and
genotypes under a single-population exponential-growth model based on the published out-of-
Africa demography*°. Model parameters were suggested by the msprime documentation, based
on the European branch of the model. We did not simulate the other two branches of population,
nor the migration rates between the populations. To investigate the performance of eGRM
compared with the canonical GRM in detecting recent population structure, we simulated
genealogies and genotypes of a structured population with a 5x5 grid stepping-stone
demographic model motivated by a similar model recently published by Zaidi and Mathieson®.
We simulated 50 individuals per deme, with population size of 500 and migration rate of 0.01 per
generation between neighboring demes. The 25 demes split from a single ancestral population of

the same population size 100 generations ago.

We simulate genotypes and tree sequences by MSPRIME®, with mutation rate and
recombination rates set to 1e-8 per bp per generation. To mimick observed genetic data derived
from a genotyping array that biases towards the common variants, we restricted the observed set
of variation to a subset (20% by default, unless otherwise specified) of the simulated variants with

minor allele count = 5. To oversample the common variants, we sampled with probability


https://doi.org/10.1101/2021.08.18.456747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456747; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

proportional to X_(11 ok where X, is the sample allele frequency of variant k. To show the
k\1—=4k

practical use of eGRM, we reconstruct the sequence of trees from observed variants using
RELATE?® and TSINFER+TSDATE?*°, using default parameters as suggested by the user
manuals. The tree sequence output of RELATE is converted to TSKIT format, which contains a
gap-filler tree with no genetic information between basepair zero and the first genetic marker in
the dataset. In order to prevent overrepresenting a tree that covers a long region but with little
actual information, we always skip the first tree in the tree sequence in our empirical analysis. We
denote the canonical GRM based on observed variants as Kobs, the eGRM computed using true
genealogies as EK, and the eGRM computed using genealogies inferred from observed variants
as input for RELATE or TSINFER+TSDATE as EKielate Or EKisdate. Unless otherwise noted, by
default all simulations are performed on a 30Mb chromosome with both mutation rates and

recombination rates set to 10~8 per generation per base pair.

FinMetSeq genotyping and quality control

To exam the performance of eGRM on real genotyping data, we applied our method to a subset
of the FinMetSeq dataset’’ (dbGaP accession numbers: phs000743.v1.p1.c999,
phs000756.v1.p1.c999) consisted of 2,644 samples who have self-reported that both parents
were born in the same municipality in Finland. The dataset contained 1,504,461 SNPs from whole
exome sequencing and a genotyping array backbone?'. We retained only biallelic SNPs. We
filtered variants with MAF = 0.01 and missingness < 0.01, resulting in 208,681 common SNPs.
We phased the genotypes by EAGLE using its default hg19 genetic map. We reconstructed the
genealogical tree sequence using RELATE with all parameters same as in its official manual. We
then applied our eGRM algorithm on the resulting tree sequence to compute EKiate. The
Canonical GRM was computed based on the same set of 208,681 SNPs after phasing with

EAGLE.
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Population structure analysis

We contrasted and visualized the information of population structure contained in GRM and
eGRM through principal components analysis (PCA) and uniform manifold approximation and
projection (UMAP). PCA was computed using the "linalg.eig" function in the python "numpy"
library, UMAP was computed by the R "umap" package with all default parameters. To
quantitatively assess the improvement of eGRM over GRM in informing clustering analysis from
structured populations, we devised a separation index to assess proportion of nearest neighbors
that are in the same population in multi-dimensional space. Suppose we have a set of sample
points A in a metric space with metric d. Each point a € A has a true label I(a). The separation
index defines S(a) = {b € A|l(b) = l(a)} as the true class that a belongs. In simulated data, the
true label is the deme or population membership of each individual. In empirical data, the birth
place of the parents or grandparents was assumed to be the true label. We also define the size-
n neighbor of a as the n nearest point of a including a itself, denoted as R,(a) = {b €
A such that [{c € A|d(b,a) = d(c,a)}| <n}. The separation index is defined as the average
proportion of same-class neighbors

_ 1 IS(a) N Riscay(@)]
1Al & IS(@)]

SI

which is a real number between 0 and 1 indicating how well the metric d is capturing the true
classification [. Note that SI is only dependent on the relative order of distances between pairs of
points, making it a unified measure of clustering performance among PCA, UMAP and other

distance-based methods.

eGRM Software
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We have implemented the algorithms related to eGRM in a python package ‘egrm’, which is
publicly available in PyPIl. Documentation of this package as well as simulation commands used

in this study can be found on its github page (https://github.com/Ephraim-usc/egrm).
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Figure 1

lllustrative example of eGRM and methodological overview. (A) An illustrative example of a single
genealogical tree containing 3 samples, 4 branches and 6 mutations to contrast the eGRM and GRM.
Each mutation has a corresponding length-3 haplotype vector (e.g., mutation m1 has haplotype vector
(1, 1, 0)). The "single-variant GRM" can be computed as the outer product of the centered and
normalized haplotype vector (e.g., (1/v2,1/V2,—V2) for mutation m1) with itself. The canonical GRM
is then the unweighted average of the single-variant GRMs of the 6 mutations. The eGRM is based on
the 4 branches, weighted by their lengths (i.e., the expected number of mutations on this branch). (B)
Overview of simulation workflow to test the performance of eGRM. ARGs are simulated by MSPRIME
based on a single-growth demographic model and a grid-like spatial structure model. Observed variants
are oversampled from common variants to mimic real genotyping array data. We then compute the
complete GRM (K,,), the observed GRM (K,,s), eGRM based on the true ARG (EK), eGRM based on
RELATE- or TSINFER+TSDATE-reconstructed ARG (EKgjatc aNd EKigyate)-
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Figure 2

eGRM is highly and unbiasedly correlated with measures of relatedness in simulations. (A) Negative
Spearman correlation between TMRCA and K, EK (left) or EKgate (right) on a 1Mb non-recombining locus.
Spearman correlation is used because GRM by definition normalizes according to allele frequency to upweight
rare mutations, and thus is not expected to correlate linearly with TMRCA. (B) Heatmap summarizing the Pearson
correlations between GRM and eGRM matrices on a 30Mb chromosome. Note that EK and EK,, are highly
correlated with K. (C) Scatter plots of the GRM and eGRM values for all pairs of individuals, using the same
simulated data as in B. All simulations from A to C simulated 1000 individuals. (D) Pearson correlation with K,
with varying proportion of SNPs observed (sample size is fixed to 1000; left) or varying sample size (20%
common SNPs observed; right) on a 30Mb chromosome.
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Figure 3

PCA based on eGRM more effectively captures recently established spatial structure in simulation
compared to the canonical GRM. A 30Mb region was simulated, with 20% of common variants observed. Each
deme has a constant population size of 500, in which 50 individuals are sampled. The first two PCs based on
PCA of three GRMs are shown (top): the canonical GRM based on observed SNPs (K,s), the eGRM based on
RELATE-reconstructed ARG using the observed SNPs (EKg4t), OF the partial eGRM based on the subset of
branches between 0 and 100 generations across the ARG (EK 5 (0-100 gen)). Separation index (Sl; see
Method for a precise definition) is shown at the topright corner of each plot, which is the average proportion of
same-label neighbors for each sample, indicating how well populations are separated. The first two features of
UMAP transformation (bottom) applied to the top 10 PCs further accentuate the detected structure, as measured
by SI.
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Clustering analysis based on eGRM revealed novel population structure in the population of Northern and
Eastern Finland. (A) PCA and PCA+UMAP based on either K,,s or EK¢ae @are shown. A map of Finland with
regions colored is provided for reference. Main geographical locations referenced in the text are labeled
(Surrendered Karelia colored in magenta, Lapland colored in red, Turku-Pori colored in light green, and Vassa
colored in light blue). Scatterplot of the first two features of UMAP transformation was based on the first 24 and 58
components of PCA of Ky, and EK 5, respectively. These numbers were chosen as they respectively are the
number of components at which the separation index (Sl) is maximized after applying the UMAP transformation.
(B) Separation index achieved as successive PCs were included in UMAP transformation of PCA of K, and
EKreIate-
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