

1 Title: *Salmonella* Typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent,
2 caspase-1/4-dependent inflammasome activation in human intestinal epithelial cells

3

4 Running title: Human epithelial inflammasome responses to *Salmonella*

5

6 Authors: Nawar Naseer^a, Renate Bauer^{bd}, Jenna Zhang^a, Igor E. Brodsky^c, Isabella
7 Rauch^b, and Sunny Shin^{a#}

8

9 Author affiliations:

10 ^aDepartment of Microbiology, University of Pennsylvania Perelman School of Medicine,
11 Philadelphia, PA 19104

12 ^bDepartment of Molecular Microbiology and Immunology, Oregon Health & Science
13 University, Portland, OR 97239

14 ^cDepartment of Pathobiology, University of Pennsylvania School of Veterinary Medicine,
15 Philadelphia, PA 19104

16 ^dDepartment of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria

17

18 #: Email correspondence to Sunny Shin: sunshin@pennmedicine.upenn.edu

19 **Abstract**

20 *Salmonella enterica* serovar Typhimurium is a gram-negative pathogen that causes
21 diseases ranging from gastroenteritis to systemic infection and sepsis. *Salmonella* uses
22 type III secretion systems (T3SSs) to inject effectors into host cells. While these
23 effectors are necessary for bacterial invasion and intracellular survival, intracellular
24 delivery of T3SS products also enables detection of *Salmonella* by cytosolic immune
25 sensors. Upon detecting translocated *Salmonella* ligands, these sensors form
26 multimeric complexes called inflammasomes, which activate caspases that lead to
27 proinflammatory cytokine release and pyroptosis. In particular, the *Salmonella* T3SS
28 needle, inner rod, and flagellin proteins activate the NAIP/NLRC4 inflammasome in
29 murine intestinal epithelial cells (IECs), which leads to restriction of bacterial replication
30 and extrusion of infected IECs into the intestinal lumen, thereby preventing systemic
31 dissemination of *Salmonella*. While these processes are studied quite well in mice, the
32 role of the NAIP/NLRC4 inflammasome in human IECs remains unknown.

33 Unexpectedly, we found the NAIP/NLRC4 inflammasome is dispensable for early
34 inflammasome responses to *Salmonella* in both human intestinal epithelial cell lines and
35 organoids. Additionally, the NLRP3 inflammasome and the adaptor protein ASC are not
36 required for inflammasome activation in Caco-2 cells. Instead, we observed a partial
37 requirement for caspase-1, and a necessity for caspase-4 and GSDMD pore-forming
38 activity in mediating inflammasome responses to *Salmonella* in Caco-2 cells. These
39 findings suggest that unlike murine IECs, human IECs do not rely on NAIP/NLRC4, and
40 also do not use NLRP3/ASC. Instead, they primarily use caspases-1 and -4 to mediate
41 early inflammasome responses to SPI-1-expressing *Salmonella*.

42 Introduction

43 Enteric bacterial pathogens such as *Salmonella enterica* serovar Typhimurium
44 (hereafter referred to as *Salmonella*) are leading causes of global morbidity and
45 mortality from diarrheal diseases (1). Contracted upon ingestion of contaminated food or
46 water, *Salmonella* colonizes the intestinal tract, where it uses evolutionarily conserved
47 molecular syringes called type III secretion systems (T3SS) to inject effectors, or
48 virulence factors, into the host cell cytosol (2). *Salmonella* contains two T3SS: the SPI-1
49 T3SS is expressed early in infection and enables *Salmonella* to invade host cells, while
50 the SPI-2 T3SS is expressed at later timepoints during infection and allows *Salmonella*
51 to replicate within host cells such as intestinal epithelial cells (IECs) (2). IECs thus serve
52 as both the targets of, as well as the first line of physical and innate immune defense
53 against enteric pathogens like *Salmonella*. Most studies of *Salmonella*'s interactions
54 with the innate immune system have been conducted in mice. However, key differences
55 in innate immune genes encoded by mice and humans make it unclear whether mice
56 fully recapitulate how humans respond to *Salmonella*. Here, we interrogated how
57 human IECs sense and respond to *Salmonella* infection.

58 The mammalian immune system can recognize invading intracellular pathogens
59 through cytosolic sensors such as nucleotide-binding domain, leucine-rich repeat (NLR)
60 receptors. Upon detecting a bacterial ligand or activity, these receptors oligomerize to
61 form multimeric signaling complexes called inflammasomes (3). Inflammasomes recruit
62 and activate cysteine proteases, such as caspase-1 and caspase-8 (3, 4). Some
63 inflammasomes require an adaptor protein called apoptosis-associated speck-like
64 protein containing a CARD (ASC) to mediate their interaction with caspases (3). Active

65 caspases can process the proinflammatory cytokines IL-1 α , IL-1 β , and IL-18 (3), and
66 the pore-forming protein GSDMD (5). This leads to GSDMD-dependent release of the
67 processed cytokines and an inflammatory form of cell death known as pyroptosis (3).
68 Release of these proinflammatory cytokines alerts nearby cells of the infection, while
69 pyroptosis can eliminate the pathogen's replicative niche within the infected host cell.

70 Various cellular insults during infection can trigger activation of different
71 inflammasomes. Inflammasome activation is critical for control of *Salmonella* infection in
72 mice (6). In both murine and human macrophages and murine IECs, *Salmonella*
73 infection activates a family of inflammasome sensors termed NAIPs, which detect the
74 *Salmonella* SPI-1 T3SS needle, inner rod, and flagellin proteins (7–12). Activation of the
75 NAIP/NLRC4 inflammasome specifically in murine IECs restricts bacterial replication,
76 causes extrusion of infected cells from the intestinal epithelial layer, and prevents
77 dissemination of *Salmonella* to systemic sites (13–15). In contrast to mice, humans
78 encode a single NAIP inflammasome sensor, which promiscuously recognizes the
79 T3SS needle, inner rod, and flagellin proteins in human macrophages (10, 16, 17). The
80 role of the NAIP/NLRC4 inflammasome in human IECs during *Salmonella* infection
81 remains unknown.

82 *Salmonella* infection can also induce the NLRP3 inflammasome, which can be
83 activated by a variety of stimuli during infection, including potassium efflux (18). In
84 murine macrophages, the NLRP3 inflammasome is thought to be important for late
85 timepoints during *Salmonella* infection (19). In murine macrophages and murine and
86 human intestinal epithelial cells, the caspase-11 (mice) or caspase-4/5 (humans)
87 inflammasome is activated late in *Salmonella* infection (19–23). Caspase-4/5/11 detect

88 cytosolic LPS and form the noncanonical inflammasome, which can secondarily activate
89 the NLRP3 inflammasome (24, 25). In human macrophages, *Salmonella* infection
90 triggers recruitment of both NLRC4 and NLRP3 to the same macromolecular complex
91 (26). However, whether the NLRP3 inflammasome plays a functional role during
92 *Salmonella* infection of human IECs has not been previously tested.

93 Human IECs infected with *Salmonella* undergo caspase-4 inflammasome
94 activation at late time points following infection (10hpi), when there is a considerable
95 population of replicating cytosolic bacteria (20, 22). However, early inflammasome
96 responses to SPI-1-expressing *Salmonella* have not been previously investigated. In
97 this study, we have found that human IECs undergo inflammasome activation in
98 response to SPI-1-expressing *Salmonella*. However, T3SS ligands and flagellin were
99 not sufficient to activate the inflammasome in human Caco-2 cells or intestinal
100 organoids. Additionally, using a combination of pharmacological inhibitors and
101 CRISPR/Cas9 technology, we found that the NAIP inflammasome, the NLRP3
102 inflammasome, and the adaptor protein ASC are all dispensable for early
103 inflammasome responses to SPI-1-expressing *Salmonella* in Caco-2 cells. Instead, we
104 observed that caspase-1 is partially required, whereas caspase-4 is necessary for
105 inflammasome activation in Caco-2 cells in response to *Salmonella* infection. Our
106 findings delineate the role of several inflammasomes in human IECs *Salmonella*
107 infection. Importantly, these findings indicate how widely inflammasome responses to
108 infection can vary between species as well as cell types.

109 Materials and Methods

110

111 Ethics statement

112 All studies involving human peripheral blood mononuclear cells (PBMCs) and human
113 intestinal organoids were performed in compliance with the requirements of the US
114 Department of Health and Human Services and the principles expressed in the
115 Declaration of Helsinki. Both human PBMCs and organoids are considered to be a
116 secondary use of deidentified human specimens and are exempt via Title 55 Part 46,
117 Subpart A of 46.101 (b) of the Code of Federal Regulations. All experiments performed
118 with murine organoids were done so in compliance with the regulatory standards of, and
119 were approved by the Oregon Health & Science University Institutional Animal Care and
120 Use Committee.

121

122 Bacterial strains and growth conditions

123 *Salmonella enterica* serovar Typhimurium SL1344 WT and Δ sipB (27) isogenic
124 strains were routinely grown shaking overnight at 37°C in Luria-Bertani (LB) broth with
125 streptomycin (100 μ g/ml). Cells were infected with *Salmonella* grown under SPI-1-
126 inducing conditions (28).

127 *Listeria monocytogenes* WT and isogenic strains on the 10403S background
128 were routinely grown shaking overnight at 30°C in brain heart infusion (BHI) broth (29).
129 S. Typhimurium ligands PrgJ or PrgI were translationally fused to the truncated N-
130 terminus of ActA and under the control of the *actA* promoter (29). The *Listeria* strain
131 expressing S. Typhimurium Ssal was constructed using a codon-optimized gene

132 fragment (IDT) cloned into the pPL2 vector and introduced into *Listeria* as previously
133 described (29, 30).

134

135 **Bacterial infections**

136 Where indicated, cells were primed with 100ng/ml or 400ng/ml of Pam3CSK4
137 (Invivogen) for 3 hours prior to infection. To induce SPI-1 expression, overnight cultures
138 of *Salmonella* were diluted into LB broth containing 300 mM NaCl and grown for 3 hours
139 standing at 37°C (28). Overnight cultures of *Listeria* were diluted and grown shaking for
140 3 hours in BHI. All cultures were pelleted at 6,010 × g for 3 minutes, washed once with
141 PBS, and resuspended in PBS. Cells were infected with *Salmonella* at a multiplicity of
142 infection (MOI) of 60 or *Listeria* at the indicated MOI for each experiment in the figure
143 legend. Infected cells were centrifuged at 290 × g for 10 minutes and incubated at
144 37°C. 1 hour post-infection, cells were treated with 100ng/mL or 50ng/mL of gentamicin
145 to kill any extracellular *Salmonella* or *Listeria* respectively. Infections proceeded at 37°C
146 for the indicated length of time for each experiment. Control cells were mock-infected
147 with PBS for all experiments.

148

149 **Cell culture of intestinal epithelial cell lines**

150 All cell lines were obtained from American Type Culture Collection (ATCC).
151 Caco-2 cells (HTB-37; ATCC) were maintained in DMEM supplemented with 10%
152 (vol/vol) heat-inactivated FBS, 100 IU/mL penicillin, and 100 µg/mL streptomycin. T84
153 cells (CCL-248; ATCC) were maintained in DMEM F-12 supplemented with 5% (vol/vol)
154 heat-inactivated FBS, 100 IU/mL penicillin, and 100 µg/mL streptomycin.

155 One day prior to infection or treatment, cells were dissociated with 0.25%
156 Trypsin-EDTA (Gibco) diluted 1:1 with 1X PBS. Cells were incubated with trypsin at
157 37°C for 15 minutes, after which the trypsin was neutralized with serum-containing
158 media. Cells were replated in media without antibiotics in a 24-well plate at a
159 concentration of 3×10^5 cells/well. Where indicated, cells were primed with 100ng/mL or
160 400ng/ml Pam3CSK4 (Invivogen) or 500ng/ml LPS (Sigma-Aldrich) for 3h or 16h prior
161 to anthrax toxin treatment or bacterial infections.

162

163 Culture of intestinal organoids in spheroid culture

164 Spheroids derived from human duodenum or colon were kindly provided by
165 Jared Fisher at Oregon Health & Science University. Human and murine organoids
166 were cultivated in special conditioned medium as described by Myoshi & Stappenbeck
167 (31). Briefly, spheroids were grown in Corning® Matrigel® Basement Membrane Matrix
168 (VWR). Spheroids were dissociated with Trypsin-EDTA (1X PBS, 0.25% trypsin, 0.5
169 mM EDTA) at 37°C for 5 minutes. Subsequently, washing medium (DMEM/F12 with
170 HEPES (Sigma), 10% FBS (heat-inactivated), 1X P/S) was added to stop trypsinization.
171 After washing the cells with washing medium at $200 \times g$ for 5 minutes at room
172 temperature (RT), the supernatant was completely aspirated and the cell pellet
173 resuspended in Matrigel®. 20 μ L matrigel-cell drops were placed into 24-well plates and
174 polymerized for 5 minutes at 37°C upside down. Afterwards, cells were cultured in
175 organoid medium consisting of 50% primary culture medium (Advanced DMEM/F12
176 (Gibco), 20% FBS, 1X P/S, 1X L-Glu) and 50% conditioned medium (L-WRN-cell

177 supernatant) supplemented with 10 μ M of ROCK inhibitor Y27632 (Sigma) and 10 μ M
178 TGF- β inhibitor SB431542 (Millipore) (for murine organoids only).

179

180 ELISAs

181 Supernatants harvest from infected cells were assayed using ELISA kits for
182 human IL-18 (R&D Systems) and IL-8 (R&D Systems).

183

184 Immunoblot analysis

185 Cell lysates were harvested for immunoblot analysis by adding 1X SDS/PAGE
186 sample buffer to cells following infection. Cells were incubated and infected in serum-
187 free media to collect supernatant samples. Supernatant samples were centrifuged at
188 200 \times g to pellet any cell debris. The supernatant was then treated with trichloroacetic
189 acid (TCA) (25 μ L of TCA for 500 μ L of supernatant) overnight at 4°C. The next day, the
190 samples were centrifuged at maximum speed (15871 \times g) for 15 minutes at 4°C.

191 Precipitated supernatant pellets were washed with ice-cold acetone, centrifuged at
192 maximum speed (15871 \times g) for 10 minutes at 4°C, and resuspended in 1X SDS/PAGE
193 sample buffer. All protein samples (lysates and supernatants) were boiled for 5 minutes.

194 Samples were separated by SDS/PAGE on a 12% (vol/vol) acrylamide gel, and
195 transferred to PVDF Immobilon-P membranes (Millipore). Primary antibodies specific for
196 human IL-18 (MBL International PM014) and β -actin (4967L; Cell Signaling) and HRP-
197 conjugated secondary antibody anti-rabbit IgG (7074S; Cell Signaling) were used. ECL
198 Western Blotting Substrate or SuperSignal West Femto (both from Pierce Thermo
199 Scientific) were used as the HRP substrate for detection.

200

201 Propidium iodide (PI) uptake assay

202 7.5×10^4 Caco-2 cells per well were plated in a black, flat-bottom 96-well plate
203 (Cellstar) in PI uptake media containing 1X HBSS without phenol red, 20 mM HEPES,
204 and 10% (vol/vol) heat-inactivated FBS. Cells were infected at an MOI=60 and control
205 wells were treated with 1% Triton. After infection, cells were centrifuged at $290 \times g$ for
206 10 minutes following infection. 5 μ M propidium iodide (PI, P3566, Invitrogen) diluted in
207 PI uptake media was added to the cells. The plate was sealed with adhesive optical
208 plate sealing film (Microseal, Bio-Rad) and placed in a Synergy H1 microplate reader
209 (BioTek) pre-heated to 37°C. PI fluorescence was measured every 10 minutes for the
210 indicated number of hours.

211

212 Anthrax toxin-mediated delivery of bacterial ligands into organoids

213 Organoids were seeded in 96-well plates with transparent bottom and opaque
214 walls in 5 μ l Matrigel domes. After two days in organoid media, organoids were grown for
215 an additional 3 days in differentiation media: DMEM/F12 supplemented with 20%
216 murine R-Spondin1 supernatant, 10% murine Noggin supernatant, 50 ng/mL
217 recombinant murine EGF (Fisher Scientific), 1X P/S, 1X L-Glu, 10 mM HEPES
218 (HiMedia), 1X N2 (Life Technologies), 1X B27 (Life Technologies), and 1 mM N-
219 acetylcysteine (Fisher Scientific). 5 μ M DAPT was added for the last 24 hours.
220 Differentiated organoids were then treated with 16 μ g/ml PA and 8 μ g/ml LFn-FlaA or 0.1
221 μ g/ml LFn-PrgJ in differentiation media containing 10 μ g/ml propidium iodide for 4 hours.
222 Total lysis wells were treated with 1%Triton.

223

224 Expression of inflammasome genes in human small intestinal organoids

225 To analyze inflammasome expression under different media conditions,
226 spheroids were cultured in differentiation medium: DMEM/F12 supplemented with 20%
227 supernatant from R-Spondin1 expressing L-cells, 10% supernatant from Noggin
228 expressing cells, 50 ng/mL recombinant murine EGF (Fisher Scientific), 1X P/S, 1X L-
229 Glu, 10 mM HEPES (HiMedia), 1X N2 (Life Technologies), 1X B27 (Life Technologies),
230 1 mM N-acetylcysteine (Fisher Scientific), and 5 μ M DAPT. After 4 days of incubation at
231 37°C, Matrigel domes were dissolved in PBS-EDTA (5 mM) for 1 hour at 4°C on an
232 orbital shaker. After centrifugation at 300 \times g for 5 minutes at 4°C, the cell pellet was
233 resuspended in TRIzolTM to analyze mRNA expression.

234

235 Isolation of peripheral blood mononuclear cells (PBMCs)

236 To compare expression levels of inflammasome components in human intestinal
237 epithelial cells with immune cells, PBMC-derived cDNA was kindly provided by William
238 Messer at Oregon Health & Science University. Briefly, PBMCs were isolated using
239 density gradient centrifugation. After overlay of LymphoprepTM (Alere Technologies AS)
240 with blood mixed 1:2 with 1X PBS (pH 7.4, Gibco), the sample was centrifuged at 800 \times
241 g for 20 minutes at room temperature (RT). Residual erythrocytes were lysed with 1X
242 RBC lysis buffer (10X, BioLegend), followed by three washing steps with fresh PBS for
243 10 minutes at 250 \times g. Subsequently cells were harvested in TRIzolTM Reagent
244 (Thermo Fisher Scientific) for mRNA analysis.

245

246 RNA extraction, cDNA synthesis, and real-time quantitative polymerase chain reaction
247 (RT-qPCR) of organoid and PBMC samples

248 After thawing the TRIzol™ samples, chloroform was added and the tubes
249 centrifuged for 15 minutes at 12,000 × g at 4°C. The aqueous phase was transferred to
250 a new tube containing linear polyacrylamide (Gene-Elute™ LPA, Sigma). To allow RNA
251 precipitation, the samples were incubated with isopropanol for 10 minutes and
252 subsequently centrifuged for 10 minutes at 12,000 × g. After aspiration of the
253 supernatant, the RNA pellet was washed once with 75% ethanol for 5 minutes at 7,500
254 × g at 4°C. The supernatant was aspirated and the dried pellet resuspended in
255 Molecular Biology Grade Water (Corning). After determination of RNA content and
256 quality (260/280 and 260/230 ratios), 1 µg of RNA was reversely transcribed into cDNA.
257 Reaction steps were performed in a Biorad T100 Cycler. First, residual DNA was
258 removed using RQ1 RNase-free DNase (Promega) in RQ1 DNase 1X Reaction buffer
259 (Promega) for 30 minutes at 37°C. After stopping the reaction with RQ1 DNase Stop
260 Solution (Promega) for 10 minutes at 65°C, Oligo dTs (Sigma) and dNTPs (Sigma) were
261 added for 5 minutes at 65°C. Reverse transcription was performed with SuperScript™
262 IV Reverse Transcriptase (Invitrogen), 5 mM DTT and SuperScript™ IV Reaction Buffer
263 (Invitrogen) for 10 minutes at 50-55°C. Subsequently the enzyme was inactivated at
264 80°C for 10 minutes.

265 To analyze RNA expression, cDNA was mixed with 10 µM forward and reverse
266 primers and PowerUp™ SYBR™ Green Master Mix (Applied Biosystems) according to
267 manufacturer's instructions. The following primers were used:
268 *RPLP0* Forward: 5'- GGCACCATTGAAATCCTGAGTGATGTG -3'

283
284 RNA extraction, cDNA synthesis, and RT-qPCR of Caco-2, T84, and THP-1 samples
285 RNA was isolated using the RNeasy Plus Mini Kit (Qiagen) following the
286 manufacturer's instructions. Cells were lysed in 350 μ L RLT buffer with β -
287 mercaptoethanol and centrifuged through a QIAshredder spin column (Qiagen). cDNA
288 was synthesized from isolated RNA using SuperScript II Reverse Transcriptase
289 (Invitrogen) following the manufacturer's protocol. Quantitative PCR was conducted w
290 the CFX96 real-time system from Bio-Rad using the SsoFast EvaGreen Supermix with
291 Low ROX (Bio-Rad). To calculate relative gene expression, mRNA levels of target

292 genes were normalized to housekeeping gene *HPRT* and the formula $x = 2^{-\Delta CT}$ was
293 used. The following primers from PrimerBank (PrimerBank identification listed within
294 parentheses) were used (32–34):

295 *HPRT* (164518913c1) Forward: 5'- CCTGGCGTCGTGATTAGTGAT -3'
296 Reverse: 5' - AGACGTTCAGTCCTGTCCATAA -3'
297 *NAIP* (119393877c3) Forward: 5' - CCCATTAGACGATCACACCAGA -3'
298 Reverse: 5' - GGAGTCACTTCCGCAGAGG -3'
299 *NLRC4* (312433959c2) Forward: 5' - TGCATCATTGAAGGGGAATCTG -3'
300 Reverse: 5' - GATTGTGCCAGGTATATCCAGG -3'
301 *NLRP3* (208879435c1) Forward: 5' - GATCTTCGCTGCGATCAACAG -3'
302 Reverse: 5' - CGTGCATTATCTGAACCCAC -3'
303 *PYCARD* (313482805c1) Forward: 5' - TGGATGCTCTGTACGGGAAG -3'
304 Reverse: 5' - CCAGGCTGGTGTGAAACTGAA -3'
305 *CASP1* (380254454c1) Forward: 5' - TTTCCGCAAGGTTCGATTTCA -3'
306 Reverse: 5' - GGCATCTGCGCTTACCATC -3'

307

308 Inhibitor experiments

309 Cells were treated 1 hour prior to infection at the indicated concentrations with
310 inhibitors: varying concentrations of MCC950 (Sigma Aldrich PZ0280), 20 μ M of pan-
311 caspase inhibitor Z-VAD(OMe)-FMK (SM Biochemicals SMFMK001), 25 μ M of
312 caspase-1 inhibitor Ac-YVAD-cmk (Sigma Aldrich SML0429), 30 μ M of disulfiram
313 (Sigma).

314

315 siRNA-mediated knockdown of genes

316 The following Silencer Select siRNA oligos were purchased from Ambion (Life
317 Technologies): *CASP4* (s2412), *CASP5* (s2417), two Silencer Select negative control
318 siRNAs (Silencer Select Negative Control No. 1 siRNA and Silencer Select Negative
319 Control No. 2 siRNA). Three days before infection, 30 nM of siRNA was transfected into
320 Caco-2s using Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific)
321 following the manufacturer's protocol. Cells were primed with 400 ng/ml of Pam3CSK4
322 (Invivogen) for 3 hours prior to infection.

323

324 Statistical analysis

325 Prism 9.1.1 (GraphPad Software) was used to graph all data and for all statistical
326 analyses. Statistical significance for experiments was determined using the appropriate
327 test and are indicated in each figure legend. Differences were considered statistically
328 significant if the *p* value was <0.05.

329 **Results**

330

331 Salmonella infection induces inflammasome activation in human intestinal epithelial
332 cells

333 Once inside the host, *Salmonella* upregulates expression of its SPI-1 T3SS,
334 which delivers effectors that enable *Salmonella* to invade intestinal epithelial cells (2).
335 Human IECs infected with *Salmonella* undergo inflammasome activation at late time
336 points following infection (10hpi) (20, 22). However, early inflammasome responses to
337 SPI-1-expressing *Salmonella* have not been previously investigated. To test if human
338 IECs undergo early inflammasome activation in response to *Salmonella* grown under
339 SPI-1-inducing conditions (28), we infected WT Caco-2 cells, a human colorectal cell
340 line, with WT *Salmonella* (WT Stm) or *Salmonella* lacking its SPI-1 T3SS (Δ sipB Stm)
341 and assayed for subsequent inflammasome activation by measuring release and
342 cleavage of the inflammasome-dependent cytokine IL-18 at 6hpi, an early time point
343 following *Salmonella* infection (Fig. 1A, B). Cells infected with WT Stm released
344 significantly increased levels of cleaved IL-18 into the supernatant compared to mock-
345 infected cells (Fig. 1A, B). In contrast, cells infected with Δ sipB Stm, which is unable to
346 invade cells, failed to release cleaved IL-18 (Fig. 1A, B). We measured cell death as
347 another readout of inflammasome activation by assaying for uptake of the cell-
348 impermeable dye propidium iodide (PI), which enters cells as they form pores in their
349 plasma membrane and undergo cell death. In cells infected with WT Stm, PI uptake
350 began to occur between 4-6hpi, and gradually increased over time, indicating that
351 infected cells begin to undergo cell death as early as 4-6hpi. As expected, cells infected

352 with Δ sipB Stm, which cannot enter the host cell, did not uptake any PI. We found that
353 inflammasome activation in response to *Salmonella* also occurs in another human
354 colorectal cell line, T84 cells (Fig. 1D). T84 cells infected with SPI-1-expressing WT Stm
355 also released IL-18 into the supernatant at 6hpi (Fig. 1D). As a control, we found that in
356 both Caco-2 and T84 cells, the inflammasome-independent cytokine, IL-8, is released in
357 response to WT and Δ sipB Stm (Fig. S1A, S1B).

358 Inflammasome activation leads to cleavage of the pore-forming protein GSDMD
359 (5, 35). The N-terminal fragment of cleaved GSDMD inserts into the host cell plasma
360 membrane and oligomerizes to create a pore through which cellular components such
361 as cleaved IL-1 and IL-18 can be released (36–39). These pores eventually cause
362 rupture of the cell through osmotic flux, resulting in pyroptosis (3). To determine if pore
363 formation by GSDMD is required for release of IL-18 and PI uptake in human IECs
364 infected with *Salmonella*, we pretreated Caco-2 cells with disulfiram, which prevents
365 cleaved GSDMD from inserting into the plasma membrane and thus abrogates pore
366 formation (40). Treatment with disulfiram led to loss of IL-18 release and PI uptake
367 during *Salmonella* infection (Fig. 1E, 1F). Importantly, release of the inflammasome-
368 independent cytokine IL-8 was not affected by disulfiram treatment (Fig. S1C).
369 Collectively, these results suggest that as early as 4-6hpi, human IECs infected with WT
370 Stm grown under SPI-1-inducing conditions undergo inflammasome activation, and
371 GSDMD-mediated pore formation is required to observe IL-18 release and PI uptake in
372 response to *Salmonella* in human IECs.

373

374 Bacterial T3SS ligands do not activate the inflammasome in human intestinal epithelial
375 cells

376 We next sought to determine the bacterial ligands that trigger inflammasome
377 activation in human IECs. The *Salmonella* SPI-1 T3SS inner rod protein (PrgJ), the SPI-
378 1 T3SS needle protein (PrgI), and flagellin activate the NAIP/NLRC4 inflammasome in
379 both murine and human macrophages, (8, 11). Given that *Salmonella* grown under SPI-
380 1-inducing conditions triggered inflammasome activation in human IECs (Fig. 1), we
381 hypothesized that this inflammasome activation was due to NAIP-mediated recognition
382 of *Salmonella* T3SS ligands. First, we asked whether *Salmonella* T3SS ligands are
383 sufficient to activate the inflammasome in human IECs. We used the Gram-positive
384 bacterium *Listeria monocytogenes* to deliver *Salmonella* T3SS ligands into IECs. We
385 have previously used the *Listeria* system to deliver *Salmonella* T3SS ligands into the
386 cytosol of human macrophages to examine NAIP-dependent inflammasome activation
387 (17). In this system, ligands of interest are translationally fused to the N-terminus of
388 truncated ActA, enabling the ligands to be delivered into the host cell cytosol (17, 29).
389 Human macrophages infected with *Listeria* expressing the *Salmonella* SPI-1 T3SS inner
390 rod PrgJ or needle PrgI undergo robust inflammasome activation (17). Surprisingly,
391 IECs infected with *Listeria* expressing either the SPI-1 inner rod (PrgJ) or needle (PrgI)
392 proteins failed to induce IL-18 release (Fig. 2A, B; Fig. S2A, B). Polarized Caco-2 cells
393 and C2Bbe1 cells, a Caco-2 subtype, infected with *Listeria* expressing the SPI-1 inner
394 rod PrgJ also failed to release IL-18 levels above that observed in cells infected with WT
395 Lm (Fig. S2C, D). Collectively, these data indicate that *Listeria* delivery of bacterial
396 T3SS ligands is not sufficient to induce inflammasome activation in human IEC lines.

397 As we did not observe inflammasome activation by bacterial T3SS ligands
398 delivered using *Listeria*, we tested a second delivery method, the *Bacillus anthracis*
399 toxin system, to deliver these bacterial ligands into the cytosol of IECs (41). The anthrax
400 toxin delivery system contains two subunits: a protective antigen (PA) that creates a
401 pore in the host endosomal membrane and a truncated lethal factor (LFn) that is
402 delivered through the PA pore into the cytosol. T3SS ligands that are translationally
403 fused to the N-terminal domain of the *B. anthracis* LFn are delivered into the host cell
404 cytosol upon treatment with both PA and the LFn fusion (41) (collectively referred to as
405 Tox). We delivered the *Salmonella* SPI-1 T3SS inner rod protein (PrgJTox) into Caco-2
406 cells (Fig. S3A), polarized Caco-2 cells (Fig. S3B), C2Bbe1 cells (Fig. S3C), and T84
407 cells (Fig. S3D) and assayed the release of the inflammasome-dependent cytokine IL-
408 18. In all cell types, we failed to observe IL-18 secretion in response to PrgJTox that
409 was above the PA alone control (Fig. S3). Thus, our data indicate that human IEC lines
410 did not undergo inflammasome activation in response to bacterial T3SS ligands
411 delivered with the anthrax toxin system.

412 To determine if this absence of inflammasome responses to T3SS ligands was
413 limited to immortalized IECs or extended to non-immortalized IECs as well, we delivered
414 flagellin (FlaTox) or the SPI-1 T3SS inner rod PrgJ (PrgJTox) into human intestinal
415 organoids and measured levels of cell death (Fig. 2C). Both human small intestinal
416 organoids and colonoids failed to undergo cell death when treated with FlaTox or
417 PrgJTox (Fig. 2C). In contrast, murine organoids underwent robust cell death in
418 response to FlaTox or PrgJTox, as expected, indicating that these preparations of

419 FlaTox and PrgJTox had the expected biological activity, but were not able to activate
420 the inflammasome in primary or transformed human intestinal cells (Fig. 2C).

421

422 Human intestinal epithelial cells express low levels of NAIP and NLRC4 compared to
423 human myeloid cells

424 Given the role of NAIP/NLRC4 in detecting and responding to *Salmonella* and
425 bacterial T3SS ligands in murine IECs as well as murine and human macrophages (7–
426 12, 14, 16, 17), our findings that human IECs do not respond to T3SS ligands were
427 surprising. Thus, we next asked if expression of *NAIP* and *NLRC4* in human IECs is
428 comparable in Caco-2 cells, T84 cells, and human THP-1 macrophages (Fig. 3A, B).
429 Consistent with their poor responsiveness to cytosolic delivery of NAIP ligands, both
430 Caco-2 and T84 cells had very low expression of *NAIP* and *NLRC4* mRNA compared to
431 human macrophages. Moreover, primary small intestinal organoids also expressed very
432 low levels of *NAIP* and *NLRC4* compared to human PBMCs, indicating that this low
433 expression was a general feature of human IECs (Fig. 3C, D). Collectively, these data
434 suggest that human IECs express very low levels of NAIP and NLRC4, and this may
435 partially explain why human IECs do not mount inflammasome responses to T3SS
436 ligands.

437

438 NAIP is not required for inflammasome activation in response to *Salmonella* infection of
439 human intestinal cells

440 In murine macrophages and IECs as well as human macrophages, NAIP/NLRC4
441 contributes to inflammasome responses during *Salmonella* infection (11, 13, 14, 42).

442 Even low levels of *NAIP* expression are sufficient to induce inflammasome responses in
443 human macrophages (17). To formally test if the inflammasome activation we observe
444 in human IECs infected with *Salmonella* (Fig. 1) requires NAIP, we used the Clustered
445 Regularly Interspersed Palindromic Repeat (CRISPR) system, in conjunction with the
446 RNA-guided exonuclease Cas9, to disrupt the *NAIP* gene in Caco-2 cells (Fig. S4). We
447 sequenced two independent single cell clones each of *NAIP*^{-/-} Caco-2 cells (*NAIP*^{-/-} #7,
448 *NAIP*^{-/-} #8) to confirm appropriate targeting of *NAIP* in each line (Fig. S4). Caco-2 cells
449 are polyploid, and we therefore found multiple mutant alleles for each CRISPR clone we
450 sequenced (Fig. S4). For the two *NAIP*^{-/-} clones, all of the changes resulted in a
451 premature stop codon (Fig. S4).

452 To test whether inflammasome activation during *Salmonella* infection of human
453 IECs requires NAIP, we infected WT or *NAIP*^{-/-} Caco-2 cells with WT Stm or Δ *sipB* Stm
454 and assayed for inflammasome activation by measuring IL-18 release and PI uptake
455 (Fig. 4). As expected, WT Caco-2 cells infected with WT Stm released significantly
456 increased levels of IL-18 and underwent cell death (Fig. 4A, 4B) and this response was
457 dependent on the presence of the SPI-1 T3SS, as cells infected with Δ *sipB* Stm failed to
458 undergo inflammasome activation (Fig. 4A, 4B). In *NAIP*^{-/-} Caco-2 cells infected with WT
459 Stm, we did not observe a decrease in inflammasome activation compared to WT Caco-
460 2 cells (Fig. 4A, 4B). Both WT and *NAIP*^{-/-} Caco-2 cells secreted similar levels of the
461 inflammasome-independent cytokine IL-8 (Fig. 4C). Overall, these data indicate that
462 NAIP is not required for inflammasome responses to SPI-1-expressing *Salmonella* in
463 human IECs.

464

465 NLRP3 and ASC are dispensable for inflammasome activation in response to
466 Salmonella in human intestinal epithelial cells

467 Since the NAIP/NLRC4 inflammasome did not have a role in responding to
468 *Salmonella* grown under SPI-1-inducing conditions in human IECs, we sought to
469 determine whether another host cytosolic sensor could be responsible for
470 inflammasome activation. One candidate is the NLRP3 inflammasome, which can be
471 activated by a variety of stimuli during infection, including potassium efflux (18). In
472 murine macrophages, the NLRP3 inflammasome is activated late during *Salmonella*
473 infection (19). *Salmonella* infection also activates the NLRP3 inflammasome in human
474 macrophages (26, 43). To determine if the inflammasome activation we observed in
475 human IECs is dependent on the NLRP3 inflammasome, we infected WT Caco-2 cells
476 that were pre-treated with MCC950, a potent chemical inhibitor of the NLRP3
477 inflammasome (44) and measured IL-18 release (Fig. 5A). As expected, cells treated
478 with the DMSO control underwent robust inflammasome activation in response to WT
479 Stm infection (Fig. 5A). Interestingly, cells treated with varying concentrations of
480 MCC950 also exhibited similar levels of inflammasome activation as DMSO-control
481 treated cells (Fig. 5A), suggesting that the NLRP3 inflammasome is not required for
482 inflammasome responses to *Salmonella* in human IECs. We found that like *NAIP* and
483 *NLRC4*, mRNA expression of *NLRP3* is also very low in Caco-2 cells compared to THP-
484 1 macrophages (Fig. 5B), which may explain why NLRP3 inhibition does not prevent
485 inflammasome activation in human IECs.

486 In addition to the NAIP/NLRC4 and NLRP3 inflammasomes, there are many
487 other inflammasomes that can get activated in response to bacterial infections. The

488 majority of these inflammasomes, including AIM2, IFI16, NLRP3, NLRP6, NLRP7, and
489 pyrin, use an adaptor protein called ASC to recruit and activate downstream caspases
490 (4). To determine if ASC-dependent inflammasomes participate in the response to
491 *Salmonella* in human IECs, we tested if ASC is required for inflammasome activation.
492 Using CRISPR/Cas9, we disrupted *PYCARD*, the gene that encodes for ASC, in Caco-2
493 cells (Fig. S5). We sequence-validated two independent single cell clones of *PYCARD*^{-/-}
494 Caco-2 cells (*PYCARD*^{-/-} #4, *PYCARD*^{-/-} #6) (Fig. S5). Most of the mutations resulted in
495 a premature stop codon or the mutated protein bore no resemblance to the WT protein
496 sequence (Fig. S5). mRNA expression of *PYCARD* was also abrogated in the KO
497 clones relative to WT Caco-2 cells (Fig. S6A). We did not detect any ASC protein
498 expression even in WT Caco-2 cells (Fig. S6B).

499 We next infected WT or *PYCARD*^{-/-} Caco-2 cells with WT Stm or Δ *sipB* Stm and
500 assayed for inflammasome activation (Fig. 5C, D). As expected, WT Caco-2 cells
501 infected with WT Stm released significantly increased levels of IL-18 and underwent cell
502 death (Fig. 5C, D). This was dependent on the presence of the SPI-1 T3SS, as cells
503 infected with Δ *sipB* Stm failed to undergo inflammasome activation (Fig. 5C, D). In
504 *PYCARD*^{-/-} Caco-2 cells infected with WT Stm, we did not observe a decrease in
505 inflammasome activation compared to WT Caco-2 cells, indicating that ASC is
506 dispensable for IL-18 release and cell death in Caco-2 cells in response to Stm. Both
507 WT and *PYCARD*^{-/-} Caco-2 cells exhibited similar levels of IL-8 release, an
508 inflammasome-independent cytokine (Fig. 5E). In addition, expression of *PYCARD*
509 mRNA in Caco-2 cells was very low compared to THP-1 macrophages (Fig. 5F).

510 Collectively, these data indicate that NLRP3 and ASC-dependent inflammasomes are
511 not required for inflammasome responses to *Salmonella* infection in human IECs.

512

513 Caspase-1 is partially required for inflammasome activation in response to *Salmonella*
514 in human intestinal epithelial cells

515 Inflammasomes recruit various caspases which can then cleave and process IL-1
516 and IL-18 cytokines and mediate pyroptosis (45). For example, the murine NAIP/NLRC4
517 inflammasome can recruit both caspase-1 and caspase-8 in response to *Salmonella*
518 infection of murine IECs (14). In human macrophages, NAIP/NLRC4, NLRP3, caspase-
519 1, and caspase-8 are recruited to the same macromolecular complex during *Salmonella*
520 infection (26). Notably, although expression of *CASP1* mRNA in Caco-2 cells is lower
521 than that in THP-1 macrophages (Fig. 6A), *CASP1* expression in Caco-2 cells is still
522 higher than expression of other inflammasome genes we have assessed so far
523 (compare axes in Fig. 6A to Fig. 3A, 3B, 5B, 5F). Similarly, expression of *CASP1* in
524 small intestinal organoids, although lower than that observed in human PBMCs, is
525 higher than expression of other inflammasome-related genes (compare axes in Fig. 6B
526 to Fig. 3C, 3D). This suggests that caspase-1 may be an important contributor to
527 inflammasome responses in IECs.

528 To test the contribution of caspases to inflammasome responses during
529 *Salmonella* infection in human IECs, we pretreated Caco-2 cells with pharmacological
530 inhibitors targeting caspases of interest (ZVAD: pan-caspase inhibitor or YVAD: inhibitor
531 for caspase-1). We then infected cells with WT Stm or Δ *sipB* Stm and assayed for
532 inflammasome activation by measuring IL-18 release (Fig. 6C). DMSO-treated cells

533 infected with WT Stm released IL-18, whereas cells treated with the inhibitors had a
534 significant defect in IL-18 release. Treatment with ZVAD, the pan-caspase inhibitor,
535 resulted in a lower level of IL-18 release compared to treatment with the caspase-1
536 inhibitor YVAD, suggesting that in addition to caspase-1, other caspases are also
537 important during *Salmonella* infection of human IECs. As expected, cells infected with
538 Δ sipB Stm demonstrated no inflammasome activation regardless of inhibitor treatment.
539 These results suggest that caspase-1 contributes to inflammasome responses to
540 *Salmonella* in human IECs.

541 Since pharmacological inhibitors preferentially targeting individual caspases can
542 have cross-reactivity with other caspases, we used CRISPR/Cas9 to disrupt *CASP1* in
543 Caco-2 cells (Fig. S7, S8). We sequenced and validated two independent single cell
544 clones of *CASP1*^{-/-} Caco-2 cells (*CASP1*^{-/-} #7, *CASP1*^{-/-} #12) (Fig. S7, S8). All mutations
545 resulted in a premature stop codon (Fig. S7, S8). We further confirmed decreased
546 mRNA expression of *CASP1* in *CASP1*^{-/-} #7 Caco-2 cells (Fig. S7B). We were unable to
547 detect protein expression in both WT Caco-2 cells and *CASP1*^{-/-} #7 Caco-2 cells by
548 western blot (Fig. S7C), indicating that caspase-1 is poorly expressed in Caco-2 cells.

549 To test whether inflammasome activation during *Salmonella* infection requires
550 caspase-1 in human IECs, we infected WT or *CASP1*^{-/-} Caco-2 cells with WT or Δ sipB
551 Stm and assayed for subsequent inflammasome activation (Fig. 6D, E). As expected,
552 WT Caco-2 cells infected with WT Stm released significant levels of IL-18 and
553 underwent cell death (Fig. 6D, E). This response was dependent on the presence of the
554 SPI-1 T3SS, as cells infected with Δ sipB Stm failed to undergo inflammasome activation
555 (Fig. 6D). Consistent with YVAD inhibitor treatment, *CASP1*^{-/-} Caco-2 cells infected with

556 WT Stm showed a statistically significant decrease in, but not complete abrogation of,
557 IL-18 release at 6hpi (Fig. 6D). There was also a slight delay in uptake of PI in *CASP1*^{-/-}
558 #7 Caco-2 cells relative to WT Caco-2 cells (Fig. 6E). In contrast, both WT and KO
559 Caco-2 cells exhibited similar levels of IL-8 release, an inflammasome-independent
560 cytokine (Fig. 6F). Overall, these data suggest that caspase-1 is partially required for
561 the inflammasome response to *Salmonella* infection in human IECs.

562

563 Caspase-4 is required for inflammasome responses to *Salmonella* in human intestinal
564 epithelial cells

565 In mice, in addition to caspase-1, a second caspase, caspase-11, responds to
566 *Salmonella* infection (19, 21). Caspase-11 and its human orthologs caspases-4/5 detect
567 cytosolic LPS and form the noncanonical inflammasome (24, 25). Caspases-4/5 are
568 important for late inflammasome responses to *Salmonella* infection of human intestinal
569 epithelial cells, specifically when *Salmonella* escapes to the cytoplasm from its
570 *Salmonella*-containing vacuole (SCV) (20). To test the contribution of the caspase-4/5
571 inflammasome earlier during infection with *Salmonella* grown under SPI-1-inducing
572 conditions, we transfected Caco-2 cells with siRNAs targeting *CASP4*, *CASP5* or both.
573 We then infected the cells with WT or Δ *sipB* Stm and assayed for inflammasome
574 activation by measuring IL-18 release (Fig. 7A). As expected, cells treated with a control
575 scrambled siRNA exhibited IL-18 secretion upon infection with WT Stm, but failed to
576 undergo IL-18 secretion when infected with Δ *sipB* Stm (Fig. 7A). However, knockdown
577 of *CASP4*, either alone, or in conjunction with *CASP5*, resulted in nearly complete
578 abrogation of IL-18 secretion in cells infected with WT Stm compared to control siRNA-

579 treated cells, suggesting that caspase-4 is required for inflammasome activation (Fig.
580 7A). Knockdown of CASP5 alone resulted in a partial and significant decrease in IL-18
581 secretion, indicating that while caspase-5 may be playing a role, it is not absolutely
582 required (Fig. 7A). We observed moderately high (67 – 75%) siRNA-mediated
583 knockdown efficiencies (Fig. S9A). Release of the inflammasome-independent cytokine
584 IL-8 was comparable across conditions (Fig. S9B).

585 To definitively test the requirement of caspase-4 in early inflammasome
586 responses to SPI-1-expressing *Salmonella*, we disrupted CASP4 in Caco-2 cells using
587 CRISPR/Cas9 (Fig. S10, S11). We sequenced and validated two independent single
588 cell clones of CASP4^{-/-} Caco-2 cells (CASP4^{-/-} #3, CASP4^{-/-} #4) (Fig. S10). All mutations
589 resulted in a premature stop codon (Fig. S10). Both clones exhibited decreased mRNA
590 expression of CASP4 and no protein expression relative to WT Caco- 2 cells (Fig. S11).

591 We then infected WT or CASP4^{-/-} Caco-2 cells with WT or Δ sipB Stm and
592 assayed for subsequent IL-18 secretion and cell death as readouts for inflammasome
593 activation (Fig. 7B – E). As expected, WT Caco-2 cells infected with WT Stm released
594 significant levels of cleaved IL-18 and underwent cell death (Fig. 7B – E), whereas cells
595 infected with Δ sipB Stm failed to release IL-18 (Fig. 7B). Consistent with our findings
596 with siRNA knockdown of CASP4, CASP4^{-/-} Caco-2 cells infected with WT Stm failed to
597 release IL-18 and exhibited a delay in PI uptake at 4-6 hpi (Fig. 7B – E). Interestingly,
598 CASP4^{-/-} Caco-2 cells began to undergo cell death later in infection, suggesting that
599 while caspase-4 is required for inducing cell death early in infection, it may not be
600 absolutely required at later timepoints of infection. Like WT cells, CASP4^{-/-} cells still
601 released substantial levels of the inflammasome-independent cytokine IL-8 following

602 infection (Fig. S9C). Collectively, these data suggest that caspase-4 is required for early
603 inflammasome responses to SPI-1-expressing *Salmonella* infection in human IECs.

604 Discussion

605 In this study, we have demonstrated that Caco-2 cells undergo inflammasome
606 activation in response to early infection with SPI-1-expressing *Salmonella* that requires
607 the presence of the SPI-1 T3SS, and that GSDMD-mediated pore formation is required
608 for release of IL-18 and cell death (Fig. 1, S1). Unexpectedly however, individual
609 bacterial T3SS ligands or flagellin were not sufficient to induce inflammasome activation
610 in Caco-2 cells or intestinal organoids (Fig. 2, S2, S3). Additionally, we found that
611 neither the NAIP nor NLRP3 canonical inflammasomes (Fig. 4, S4, 5), are required for
612 inflammasome responses during *Salmonella* infection, which may be due to low mRNA
613 expression of *NAIP*, *NLRC4*, and *NLRP3* in human IECs and human intestinal
614 organoids (Fig. 3, 5). Moreover, we found that ASC, a shared adaptor protein that
615 several inflammasomes use to recruit caspases, is also not required for inflammasome
616 activation (Fig. 5, S5, S6), suggesting that inflammasomes that require ASC for their
617 function are likely not playing a role in human IECs during *Salmonella* infection.
618 Interestingly, we found that caspase-1 is partially required for inflammasome activation
619 in human IECs (Fig. 6, S7, S8), leaving the unanswered question of what upstream
620 sensor is activating caspase-1. Finally, we found that caspase-4 is necessary for early
621 inflammasome responses to SPI-1-expressing *Salmonella* (Fig. 7, S9 – S11).

622 NAIP/NLRC4 inflammasome activation in IECs is critical for control of *Salmonella*
623 infection in mice (13–15). It was therefore surprising that NAIP was dispensable in
624 human IECs during *Salmonella* infection (Fig. 3, S3 – S6). Perhaps a lack of robust
625 NAIP/NLRC4 inflammasome responses in human IECs partially underlies why some
626 intestinal bacterial pathogens with T3SSs, such as *Shigella flexneri*, enterohemorrhagic

627 *Escherichia coli*, and enteropathogenic *E. coli*, can cause disease in humans but not
628 mice. Indeed, mice are normally resistant to *S. flexneri*, but mice lacking the
629 NAIP/NLRC4 inflammasome can be robustly colonized by *S. flexneri* and develop a
630 disease resembling human shigellosis (46).

631 The lack of NAIP activation may be due to low expression of *NAIP* and *NLRC4*
632 mRNA in human IEC lines as well as human small intestinal organoids (Fig. 3). Single
633 cell transcriptome analysis of cells intestinal cells from human donors demonstrate that
634 only a small subset of intestinal cells express *NAIP* at detectable levels, while *NLRC4*
635 expression is below the limit of detection (47). However, it is possible that a population
636 of IECs exist that express *NAIP* and *NLRC4* at low levels that may be below the limit of
637 detection of single-cell transcriptome analysis, but may be sufficient to activate the
638 inflammasome in response to infection under physiological conditions. Indeed, single
639 cell transcriptome analysis of murine small intestines reveal that expression of *NLRC4*
640 is also very low in murine IECs (48), but murine IECs undergo robust NAIP/NLRC4
641 inflammasome activation despite this relatively low expression (13–15). Despite our
642 findings that NAIP is dispensable in Caco-2 cells to respond to *Salmonella* infection and
643 human intestinal organoids do not mount inflammasome responses to T3SS ligands, it
644 is possible that under physiological conditions, this inflammasome still plays an
645 important role during bacterial infection or disease pathogenesis. Indeed, human
646 patients with activating *NLRC4* mutations exhibit gastrointestinal symptoms (49–52).

647 A recent study comparing inflammasome responses of human and murine IECs
648 during *Salmonella* infection reported that while caspase-1 was required for
649 inflammasome activation in murine IECs, it was dispensable in late inflammasome

650 responses to *Salmonella* in human IECs (22). We found caspase-1 to be partially
651 required for inflammasome activation in IECs infected with *Salmonella* (Fig. 6, S7, S8).
652 Differences in our experimental conditions likely explain this difference in findings. Our
653 *Salmonella* was grown under SPI-1-inducing conditions, and we assayed for
654 inflammasome activation at a slightly earlier timepoint. Perhaps caspase-1 plays a role
655 in early inflammasome responses to SPI-1-expressing *Salmonella* in human IECs, and
656 it is less important at later timepoints when *Salmonella* has shifted to expressing its SPI-
657 2 T3SS.

658 The identity of the host sensor that is acting upstream of caspase-1 in human
659 IECs remains unknown. Humans have 22 NLRs that could serve as potential cytosolic
660 sensors of bacterial structures and activity (53). Most of these NLRs do not contain a
661 CARD domain, and they would therefore require an adaptor protein such as ASC to
662 recruit caspases. Given our finding that ASC is not required for inflammasome
663 activation in human IECs (Fig. 5, S5, S6), it is likely that the putative host sensor
664 upstream of caspase-1 contains its own CARD domain. Alternatively, it may interact
665 with a different CARD domain-containing adaptor protein than ASC. Future studies will
666 focus on identifying host factors that different caspases interact with during *Salmonella*
667 infection of human IECs.

668 In agreement with previous studies (20, 22), we found caspase-4 to be required
669 for inflammasome activation in response to *Salmonella* in human IECs (Fig 7, S9 –
670 S11). Importantly, caspase-4 activation restricts bacterial replication, and specifically
671 restricts replication of a subpopulation of cytosolic *Salmonella* (20, 22). It is unclear
672 whether *Salmonella*'s access into the cytosol is mediated by the bacteria or host, and

673 future studies will explore the mechanisms by which cytosolic populations of *Salmonella*
674 arise and how they influence inflammasome activation in human IECs.

675 In mice, inflammasome activation mediates control of *Salmonella* by restricting
676 bacterial replication, extruding infected cells, and preventing systemic dissemination of
677 *Salmonella* (13, 15, 20). Human IECs have been shown to undergo extrusion, but
678 whether this occurs in a caspase-4-dependent manner remains unknown (54). While we
679 know that human IECs and enteroids restrict bacterial replication in a caspase-4-
680 dependent manner (20, 22), it remains unknown if inflammasome activation results in
681 other mechanisms of control of infection. In mice, IL-18 release during *Salmonella*
682 infection recruits natural killer (NK) cells that are critical for early mucosal inflammatory
683 responses (55). We observe robust release of the inflammasome-dependent cytokine
684 IL-18, but the downstream role of this cytokine in the human intestine during *Salmonella*
685 infection has not been explored. Additionally, while our study focused exclusively on
686 *Salmonella* infection, it is worth exploring if enteric pathogens with similar lifestyles to
687 *Salmonella*, such as *Shigella*, or ones with different lifestyles, such as the extracellular
688 pathogen *Yersinia*, elicit similar responses. Future studies that interrogate downstream
689 consequences of inflammasome activation in human IECs in response to various
690 enteric pathogens could shed light on human mucosal inflammatory responses to
691 bacterial pathogens.

692 Overall, our data indicate that *Salmonella* infection of human IECs triggers
693 inflammasome pathways that are distinct from that in mice. Pathways that are activated
694 in mice and important for control of infection, such as the NAIP and NLRP3
695 inflammasomes, were unexpectedly not required for inflammasome responses in

696 human IECs under the conditions we investigated. Instead, inflammasome responses in
697 human IECs required caspases-1 and -4. Our findings provide a foundation for future
698 studies aimed at uncovering the relative contribution of different caspases, and the
699 downstream responses that they mediate in human IECs.

700 Acknowledgements

701 We thank members of Igor Brodsky's and Sunny Shin's laboratories for scientific
702 discussion. We thank Meghan Wynosky-Dolfi for technical advice. We thank Russell
703 Vance, Randilea Nichols, and Jeannette Tenthorey for providing anthrax toxin-based
704 reagents, and JD Sauer for providing the *Listeria* strains and constructs for generating
705 ActA fusion proteins. We thank Jared Fisher for providing spheroids of human
706 duodenum and colon, and William Messer and Zoe Lyski for providing cDNA of human
707 PBMCs. Work in the Shin laboratory is supported by NIH/NIAID grants AI118861 and
708 AI123243, and the Linda Pechenik Montague Investigator Award from the University of
709 Pennsylvania Perelman School of Medicine. Work in the Brodsky laboratory is
710 supported by NIH/NIAID grants AI128520 and AI139102. S.S. and I.B. are both
711 recipients of the Burroughs-Wellcome Fund Investigators in the Pathogenesis of
712 Infectious Disease Award. I.R. is supported by OHSU start-up funding. N.N. is a
713 recipient of the American Heart Association Predoctoral Fellowship 19PRE34380315.
714 R.B. was supported by the FWF-Immunity in Cancer & Allergy PhD program of the
715 University of Salzburg and the Austrian Marshall Plan Foundation Scholarship. J.Z. is a
716 recipient of the NIH/NIAID Microbial Pathogenesis and Genomics training grant
717 5T32AI141393-03.

718 **References**

719 1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra
720 RM, Studies IC on ED "Burden of I. 2010. The global burden of nontyphoidal *Salmonella*
721 gastroenteritis. *Clinical infectious diseases* 50:882–889.

722 2. Crowley SM, Knodler LA, Vallance BA. 2016. *Salmonella* and the inflammasome: battle for
723 intracellular dominance. *Inflammasome signaling and bacterial infections* 43–67.

724 3. Lamkanfi M, Dixit VM. 2014. Mechanisms and functions of inflammasomes. *Cell* 157:1013–
725 22.

726 4. Zheng D, Liwinski T, Elinav E. 2020. Inflammasome activation and regulation: toward a
727 better understanding of complex mechanisms. *Cell Discov* 6:36.

728 5. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015.
729 Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. *Nature*,
730 2015/09/16 ed. 526:660–5.

731 6. Raupach B, Peuschel S-K, Monack DM, Zychlinsky A. 2006. Caspase-1-Mediated Activation
732 of Interleukin-1 β (IL-1 β) and IL-18 Contributes to Innate Immune Defenses against
733 *Salmonella enterica* Serovar Typhimurium Infection. *IAI* 74:4922–4926.

734 7. Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs
735 determines inflammasome specificity. *Nature* 477:592–595.

736 8. Rauch I, Tenthorey JL, Nichols RD, Al Moussawi K, Kang JJ, Kang C, Kazmierczak BI, Vance RE.

737 2016. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.

738 *Journal of Experimental Medicine* 213:657–665.

739 9. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA. 2013. Cutting edge: Mouse

740 NAIP1 detects the type III secretion system needle protein. *The Journal of Immunology*

741 191:3986–3989.

742 10. Yang J, Zhao Y, Shi J, Shao F. 2013. Human NAIP and mouse NAIP1 recognize bacterial type

743 III secretion needle protein for inflammasome activation. *Proceedings of the National*

744 *Academy of Sciences* 110:14408–14413.

745 11. Zhao Y, Shi J, Shi X, Wang Y, Wang F, Shao F. 2016. Genetic functions of the NAIP family of

746 inflammasome receptors for bacterial ligands in mice. *Journal of Experimental Medicine*

747 213:647–656.

748 12. Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H, Liu L, Shao F. 2011. The NLRC4 inflammasome

749 receptors for bacterial flagellin and type III secretion apparatus. *Nature* 477:596–600.

750 13. Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM, Hardt W-

751 D. 2014. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte

752 expulsion to restrict *Salmonella* replication in the intestinal mucosa. *Cell host & microbe*

753 16:237–248.

754 14. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE,
755 Gronert K. 2017. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion
756 with eicosanoid and IL-18 release via activation of caspase-1 and-8. *Immunity* 46:649–659.

757 15. Hausmann A, Böck D, Geiser P, Berthold DL, Fattinger SA, Furter M, Bouman JA, Barthel-
758 Scherrer M, Lang CM, Bakkeren E. 2020. Intestinal epithelial NAIP/NLRC4 restricts systemic
759 dissemination of the adapted pathogen *Salmonella Typhimurium* due to site-specific
760 bacterial PAMP expression. *Mucosal immunology* 13:530–544.

761 16. Kortmann J, Brubaker SW, Monack DM. 2015. Cutting edge: inflammasome activation in
762 primary human macrophages is dependent on flagellin. *The Journal of Immunology*
763 195:815–819.

764 17. Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ, Yan BM, Boyer MA,
765 Pensinger DA, Sauer J-D, Shin S. 2017. Broad detection of bacterial type III secretion system
766 and flagellin proteins by the human NAIP/NLRC4 inflammasome. *Proceedings of the
767 National Academy of Sciences* 114:13242–13247.

768 18. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. 2013. K⁺
769 efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and
770 particulate matter. *Immunity* 38:1142–53.

771 19. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. 2010. Redundant
772 roles for inflammasome receptors NLRP3 and NLRC4 in host defense against *Salmonella*.
773 *Journal of Experimental Medicine* 207:1745–1755.

774 20. Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, Ernst RK, Steele-Mortimer O,

775 Celli J, Vallance BA. 2014. Noncanonical inflammasome activation of caspase-4/caspase-11

776 mediates epithelial defenses against enteric bacterial pathogens. *Cell host & microbe*

777 16:249–256.

778 21. Crowley SM, Han X, Allaire JM, Stahl M, Rauch I, Knodler LA, Vallance BA. 2020. Intestinal

779 restriction of *Salmonella Typhimurium* requires caspase-1 and caspase-11 epithelial intrinsic

780 inflammasomes. *PLoS Pathog* 16:e1008498.

781 22. Holly MK, Han X, Zhao EJ, Crowley SM, Allaire JM, Knodler LA, Vallance BA, Smith JG. 2020.

782 *Salmonella enterica* Infection of Murine and Human Enteroid-Derived Monolayers Elicits

783 Differential Activation of Epithelium-Intrinsic Inflammasomes. *Infect Immun* 88:e00017-20,

784 /iai/88/7/IAI.00017-20.atom.

785 23. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM. 2012. Caspase-

786 11 increases susceptibility to *Salmonella* infection in the absence of caspase-1. *Nature*

787 490:288–291.

788 24. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. 2014. Inflammatory caspases are

789 innate immune receptors for intracellular LPS. *Nature* 514:187–192.

790 25. Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V. 2015. Caspase-4

791 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells.

792 *European journal of immunology* 45:2911–2917.

793 26. Man SM, Hopkins LJ, Nugent E, Cox S, Glück IM, Tourlomousis P, Wright JA, Cicuta P, Monie
794 TP, Bryant CE. 2014. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3
795 to the same macromolecular complex. *Proceedings of the National Academy of Sciences*
796 111:7403–7408.

797 27. Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM. 2006. Genome-wide
798 screen for *Salmonella* genes required for long-term systemic infection of the mouse. *PLoS*
799 *Pathog* 2:e11.

800 28. Lee CA, Falkow S. 1990. The ability of *Salmonella* to enter mammalian cells is affected by
801 bacterial growth state. *Proceedings of the national academy of sciences* 87:4304–4308.

802 29. Sauer J-D, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA. 2011. *Listeria*
803 *monocytogenes* engineered to activate the Nlrc4 inflammasome are severely attenuated
804 and are poor inducers of protective immunity. *Proceedings of the National Academy of*
805 *Sciences* 108:12419–12424.

806 30. Lauer P, Chow MYN, Loessner MJ, Portnoy DA, Calendar R. 2002. Construction,
807 characterization, and use of two *Listeria monocytogenes* site-specific phage integration
808 vectors. *Journal of bacteriology* 184:4177–4186.

809 31. Miyoshi H, Stappenbeck TS. 2013. In vitro expansion and genetic modification of
810 gastrointestinal stem cells in spheroid culture. *Nat Protoc* 8:2471–2482.

811 32. Spandidos A, Wang X, Wang H, Dragnev S, Thurber T, Seed B. 2008. A comprehensive
812 collection of experimentally validated primers for Polymerase Chain Reaction quantitation
813 of murine transcript abundance. *BMC Genomics* 9:633.

814 33. Spandidos A, Wang X, Wang H, Seed B. 2010. PrimerBank: a resource of human and mouse
815 PCR primer pairs for gene expression detection and quantification. *Nucleic Acids Research*
816 38:D792–D799.

817 34. Wang X. 2003. A PCR primer bank for quantitative gene expression analysis. *Nucleic Acids*
818 *Research* 31:154e–1154.

819 35. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B,
820 Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas
821 SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. 2015.
822 Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. *Nature*,
823 2015/09/16 ed. 526:666–71.

824 36. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang D-C, Shao F. 2016. Pore-forming
825 activity and structural autoinhibition of the gasdermin family. *Nature* 535:111–116.

826 37. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P,
827 Hiller S. 2016. GSDMD membrane pore formation constitutes the mechanism of pyroptotic
828 cell death. *EMBO J* 35:1766–1778.

829 38. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. 2016. Inflammasome-
830 activated gasdermin D causes pyroptosis by forming membrane pores. *Nature* 535:153–
831 158.

832 39. He W, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang Z-H, Zhong C-Q, Han J. 2015. Gasdermin
833 D is an executor of pyroptosis and required for interleukin-1 β secretion. *Cell Res* 25:1285–
834 1298.

835 40. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y, Wang J,
836 Hollingsworth LR, Magupalli VG, Zhao L, Luo HR, Kim J, Lieberman J, Wu H. 2020. FDA-
837 approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. *Nat*
838 *Immunol* 21:736–745.

839 41. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, Brown CR,
840 Krantz BA, Leppla SH, Gronert K. 2012. Rapid induction of inflammatory lipid mediators by
841 the inflammasome *in vivo*. *Nature* 490:107–111.

842 42. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A.
843 2010. Innate immune detection of the type III secretion apparatus through the NLRC4
844 inflammasome. *Proceedings of the National Academy of Sciences* 107:3076–3080.

845 43. Gram AM, Wright JA, Pickering RJ, Lam NL, Booty LM, Webster SJ, Bryant CE. 2021.
846 *Salmonella* Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human
847 Macrophages. *The Journal of Immunology* 206:631–640.

848 44. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan
849 LS, Monks BG, Stutz A. 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the
850 treatment of inflammatory diseases. *Nature medicine* 21:248–255.

851 45. von Moltke J, Ayres JS, Kofoed EM, Chavarría-Smith J, Vance RE. 2013. Recognition of
852 Bacteria by Inflammasomes. *Annu Rev Immunol* 31:73–106.

853 46. Mitchell PS, Roncaglioni JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I, Vance
854 RE. 2020. NAIP–NLRC4-deficient mice are susceptible to shigellosis. *eLife* 9:e59022.

855 47. Wang Y, Song W, Wang J, Wang T, Xiong X, Qi Z, Fu W, Yang X, Chen Y-G. 2020. Single-cell
856 transcriptome analysis reveals differential nutrient absorption functions in human intestine.
857 *Journal of Experimental Medicine* 217:e20191130.

858 48. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt
859 MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-
860 Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A. 2017. A single-cell survey of the small
861 intestinal epithelium. *Nature* 551:333–339.

862 49. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMatta MA, Zaal KJM,
863 Sanchez GAM, Kim H, Chapelle D, Plass N, Huang Y, Villarino AV, Biancotto A, Fleisher TA,
864 Duncan JA, O’Shea JJ, Benseler S, Grom A, Deng Z, Laxer RM, Goldbach-Mansky R. 2014. An
865 activating NLRC4 inflammasome mutation causes autoinflammation with recurrent
866 macrophage activation syndrome. *Nat Genet* 46:1140–1146.

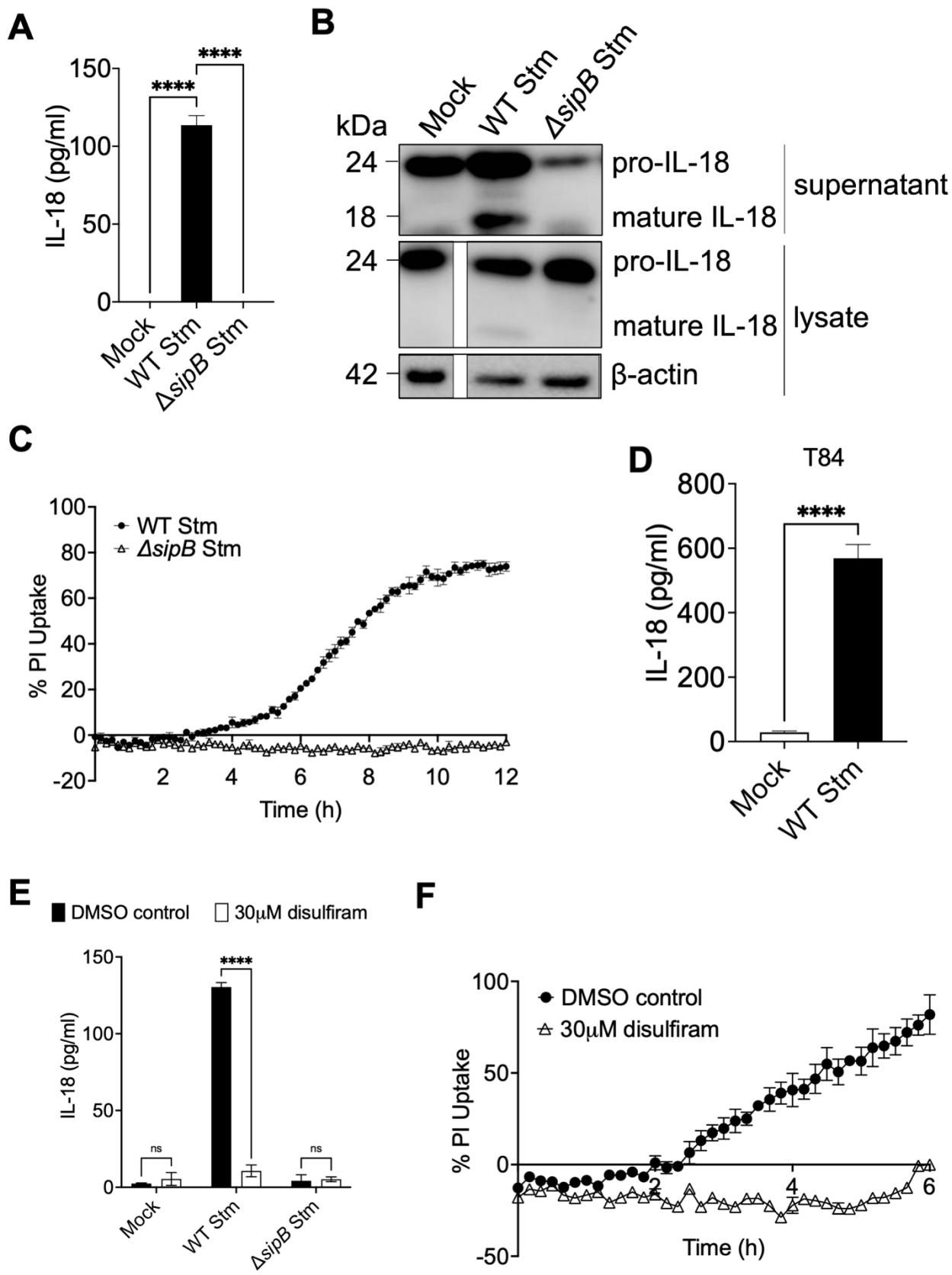
867 50. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. 2014. An inherited mutation in NLRC4
868 causes autoinflammation in human and mice. *Journal of Experimental Medicine* 211:2385–
869 2396.

870 51. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J,
871 Meffre E, Khokha MK, Huttner AJ, West B, Podoltsev NA, Boggon TJ, Kazmierczak BI, Lifton
872 RP. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. *Nat
873 Genet* 46:1135–1139.

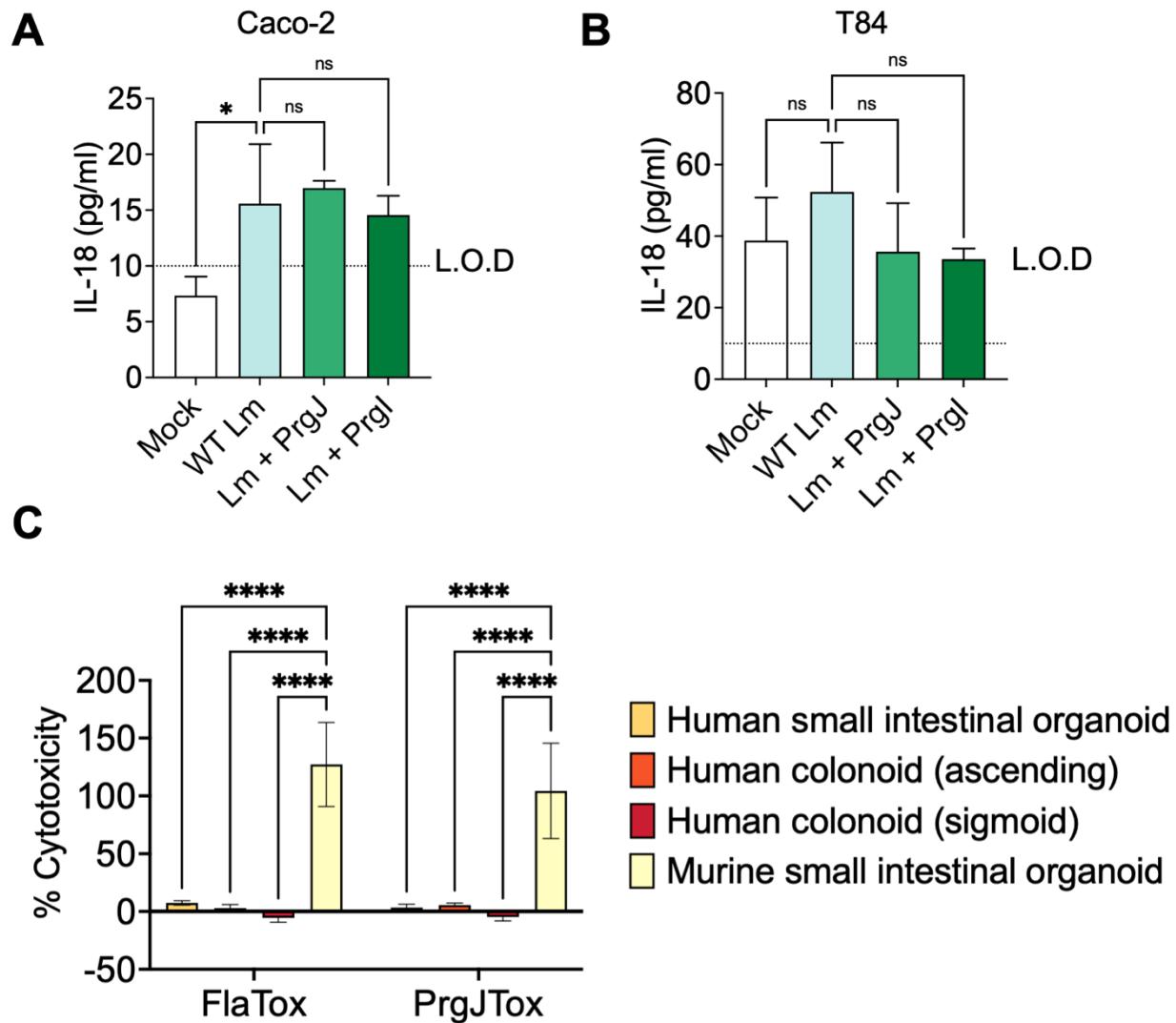
874 52. Steiner A, Reygaerts T, Pontillo A, Ceccherini I, Moecking J, Moghaddas F, Davidson S, Caroli
875 F, Grossi A, Castro FFM, Kalil J, Gohr FN, Schmidt FI, Bartok E, Zillinger T, Hartmann G, Geyer
876 M, Gattorno M, Mendonça LO, Masters SL. 2021. Recessive NLRC4-Autoinflammatory
877 Disease Reveals an Ulcerative Colitis Locus. *J Clin Immunol* <https://doi.org/10.1007/s10875-021-01175-4>.

879 53. Chen G, Shaw MH, Kim Y-G, Nuñez G. 2009. NOD-Like Receptors: Role in Innate Immunity
880 and Inflammatory Disease. *Annu Rev Pathol Mech Dis* 4:365–398.

881 54. Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O. 2010.
882 Dissemination of invasive *Salmonella* via bacterial-induced extrusion of mucosal epithelia.
883 *Proc Natl Acad Sci USA* 107:17733–17738.

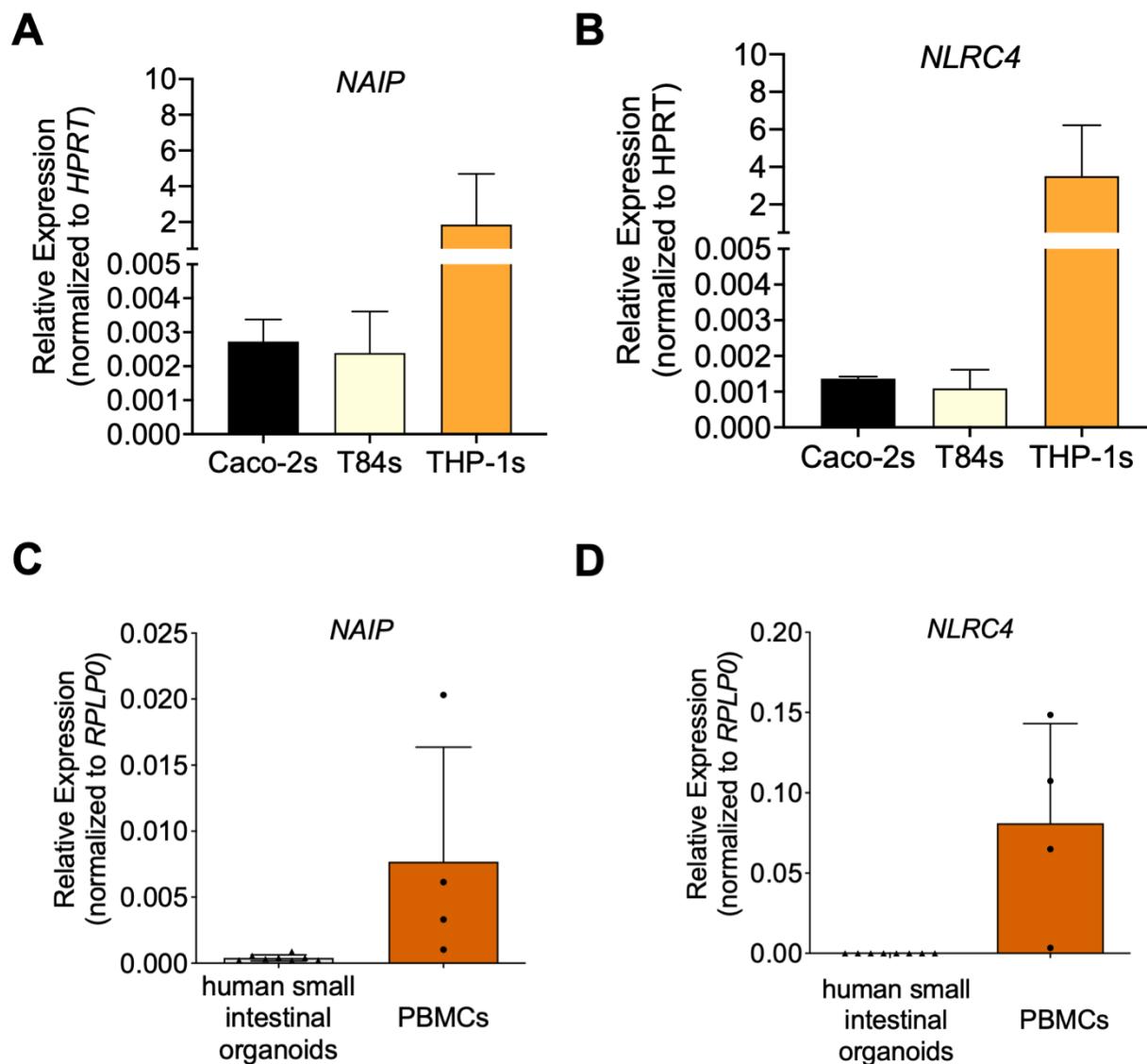

884 55. Müller AA, Dolowschiak T, Sellin ME, Felmy B, Verbree C, Gadient S, Westermann AJ, Vogel
885 J, LeibundGut-Landmann S, Hardt W-D. 2016. An NK Cell Perforin Response Elicited via IL-18

886 Controls Mucosal Inflammation Kinetics during *Salmonella* Gut Infection. PLoS Pathog

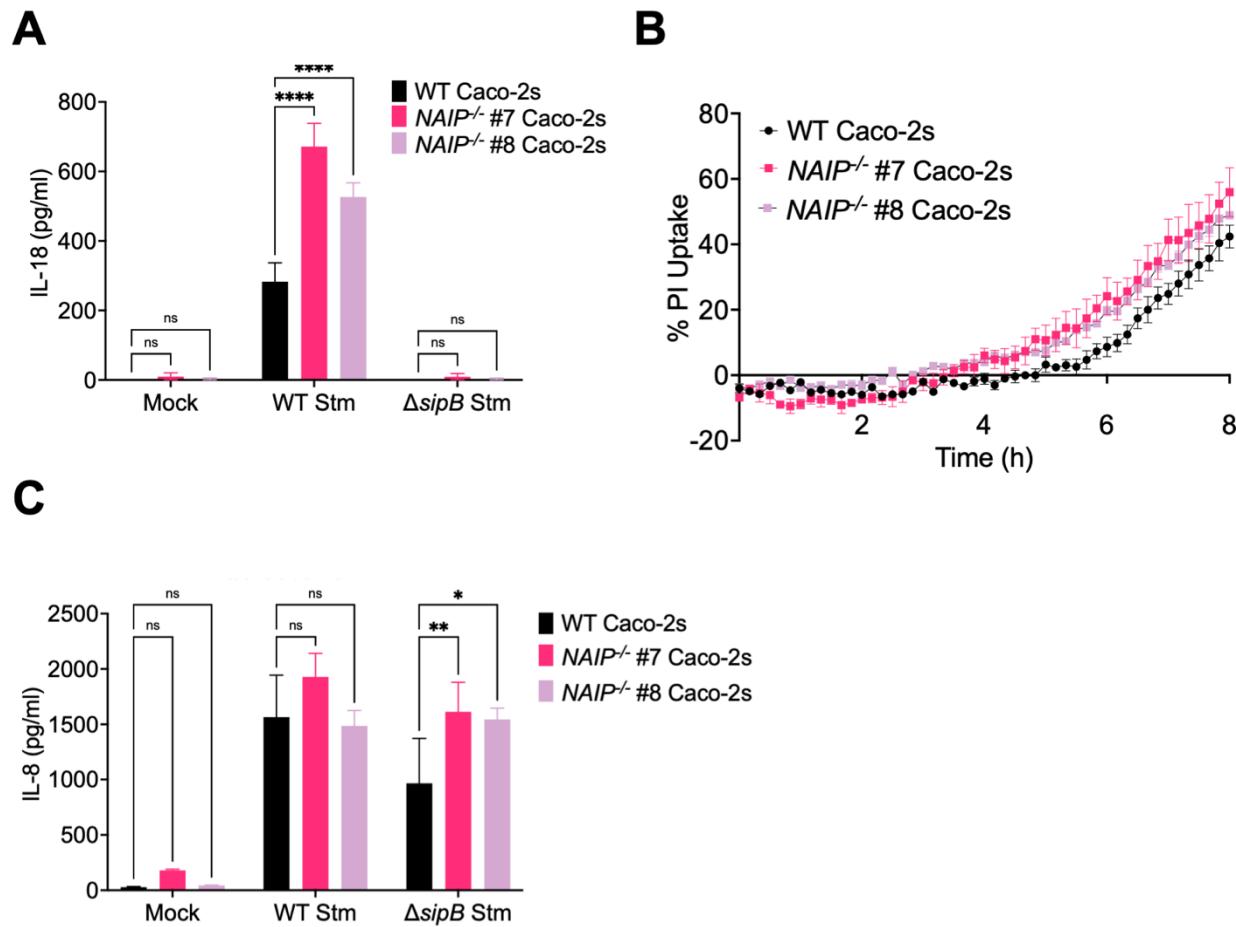

887 12:e1005723.

888

889 Figures

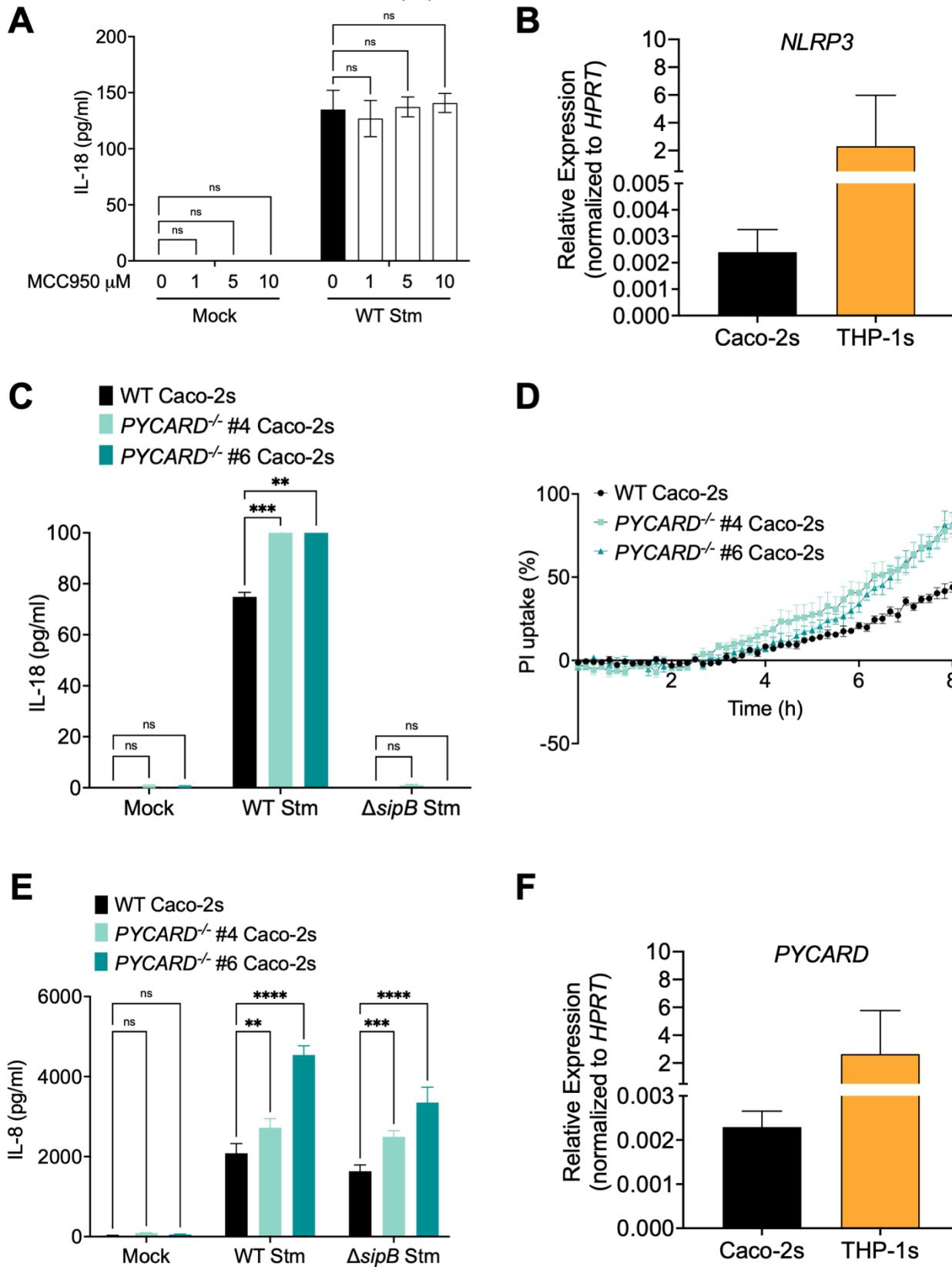

891 **Figure 1: *Salmonella* infection induces inflammasome activation in human**
892 **intestinal epithelial cells.** Caco-2 cells (A – C, E, F) or T84 cells (D) were infected with
893 PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S. Typhimurium*. (A, D) Release of IL-18
894 into the supernatant was measured by ELISA at 6hpi. (B) Lysates and supernatants
895 collected 6hpi were immunoblotted for IL-18 and β -actin. (C) Cell death was measured
896 as percentage uptake of propidium iodide, normalized to cells treated with 1% Triton.
897 (E, F) Caco-2 cells were treated with 30 μ M disulfiram or DMSO as a vehicle control 1
898 hour prior to infection. Cells were then infected with PBS (Mock), WT *S. Typhimurium*,
899 or Δ *sipB* *S. Typhimurium*. (E) Release of IL-18 into the supernatant was measured by
900 ELISA at 6hpi. (F) Cell death as percentage uptake of propidium iodide, normalized to
901 cells treated with 1% Triton. ns – not significant, **** $p < 0.0001$ by Dunnett's multiple
902 comparisons test (A), or by unpaired t-test (C, D, F) or by Šídák's multiple comparisons
903 test (E). Error bars represent the standard deviation or the standard error of the mean
904 (SEM) (C, F) of triplicate wells from one experiment. Data shown are representative of
905 at least three independent experiments.

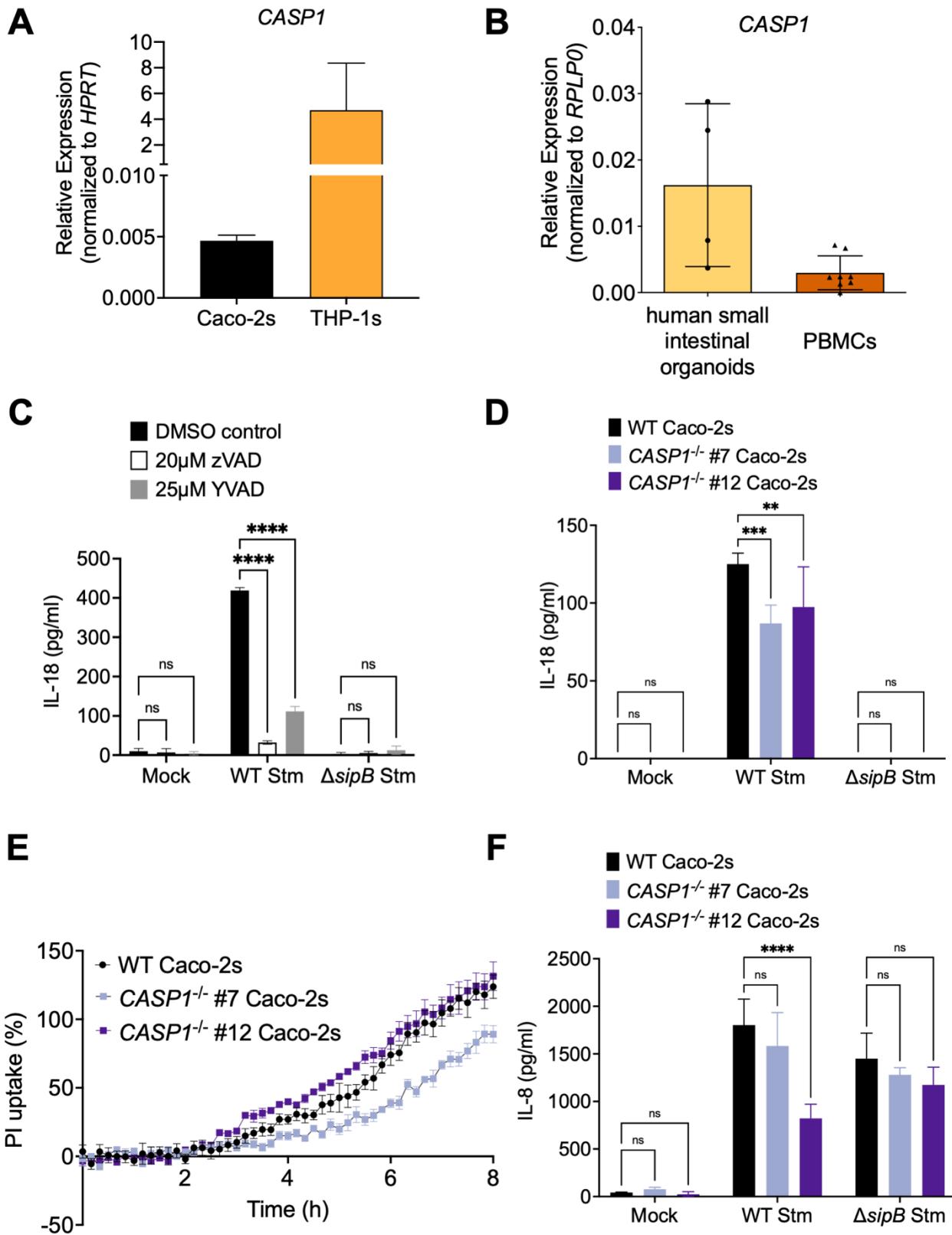
906


907 **Figure 2: Bacterial T3SS ligands do not activate the inflammasome in human**
908 **intestinal epithelial cells.** (A, B) Caco-2 (A) or T84 cells (B) were primed for 3h with
909 100 ng/ml of Pam3CSK4 and infected with PBS (Mock), WT *L. monocytogenes* (WT
910 Lm), or *L. monocytogenes* expressing *S. Typhimurium* SPI-1 inner rod (Lm + PrgJ), or
911 SPI-1 needle (Lm + PrgI), at an MOI of 100. Release of IL-18 into the supernatant was
912 measured by ELISA at 16hpi. L.O.D indicates the limit of detection of the assay. (C)
913 Differentiated intestinal organoids were treated with FlaTox (PA + LFn-Fla) or Inner Rod
914 Tox (PA + LFn-Rod) in media containing propidium iodide for 4h. Cell death was

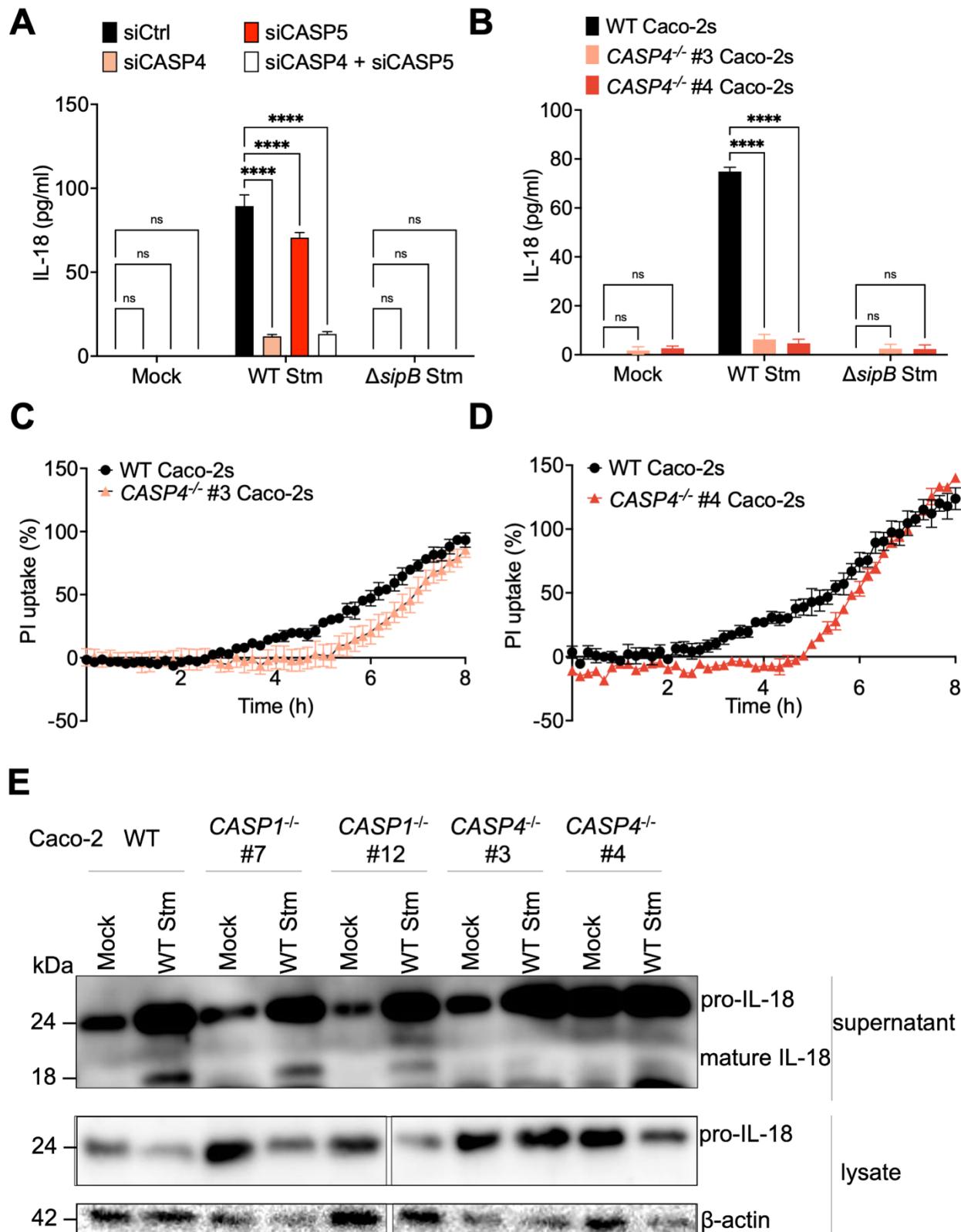
915 measured as percentage uptake of propidium iodide, normalized to organoids treated
916 with 1% Triton. ns – not significant, * $p < 0.05$, **** $p < 0.0001$ by Dunnett's multiple
917 comparisons test. Error bars represent the standard deviation of triplicate wells from
918 one experiment. Data shown are representative of at least three independent
919 experiments.

920
921 **Figure 3: Human intestinal epithelial cells express low levels of NAIP/NLRC4**
922 **compared to human myeloid cells.** Relative mRNA expression of *NAIP* and *NLRC4*
923 compared to the housekeeping control *HPRT* or *RPLP0* as measured by qRT-PCR in


924 (A, B) Caco-2 cells, T84 cells, and THP-1 macrophages, and in (C, D) human peripheral
925 blood mononuclear cells (PBMCs) and human small intestinal organoids. Error bars
926 represent the standard deviation of multiple wells. Data shown are representative of at
927 least three independent experiments.


928

929 **Figure 4: NAIP is not required for inflammasome responses to *Salmonella* in**
930 **human intestinal epithelial cells.** WT or two independent single cell clones of *NAIP*^{-/-}
931 Caco-2 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S.*
932 *Typhimurium* for 6hrs. (A, C) Release of IL-18 or IL-8 into the supernatant was
933 measured by ELISA. (B) Cell death was measured as percentage uptake of propidium
934 iodide, normalized to cells treated with 1% Triton. (A, C) ns – not significant, * $p < 0.05$,


935 ** $p < 0.01$, ***** $p < 0.0001$ by Dunnett's multiple comparisons test. Error bars represent
936 the standard deviation or the standard error of the mean (SEM) (B) of triplicate wells
937 from one experiment. Data shown are representative of at least three independent
938 experiments.

940 **Figure 5: NLRP3 and ASC are dispensable for inflammasome responses to**
941 ***Salmonella* in human intestinal epithelial cells.** (A) WT Caco-2 cells were primed for
942 3hrs with 400 ng/ml of Pam3CSK4. One hour prior to infection, cells were treated with
943 the indicated concentrations of MCC950 or DMSO as a vehicle control. Cells were then
944 infected with PBS (Mock) or WT *S. Typhimurium* for 6hrs. Release of IL-18 into the
945 supernatant was measured by ELISA. (B, F) Relative mRNA expression of *NLRP3* and
946 *PYCARD* compared to the housekeeping control *HPRT* as measured by qRT-PCR in
947 Caco-2 cells and THP-1 macrophages. (C, D, E) WT or two independent single cell
948 clones of *PYCARD*^{-/-} Caco-2 cells were infected with PBS (Mock), WT *S. Typhimurium*,
949 or Δ *sipB* *S. Typhimurium*. (C, D) Release of IL-18 or IL-8 into the supernatant were
950 measured by ELISA at 6hpi. (E) Cell death was measured as percentage uptake of
951 propidium iodide, normalized to cells treated with 1% Triton. (A, C, E) ns – not
952 significant, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ by Dunnett's multiple comparisons
953 test. Error bars represent the standard deviation or the standard error of the mean
954 (SEM) (D) of triplicate wells from one experiment. Data shown are representative of at
955 least three independent experiments.

957 **Figure 6: Caspase-1 is partially required for inflammasome responses to**
958 ***Salmonella* in human intestinal epithelial cells.** (A, B) Relative mRNA expression of
959 *CASP1* compared to the housekeeping control *HPRT* as measured by qRT-PCR in
960 Caco-2 cells, THP-1 macrophages, human peripheral blood mononuclear cells
961 (PBMCs), and human small intestinal organoids. (C) WT Caco-2 cells were primed with
962 400 ng/ml of Pam3CSK4 for 3h. One hour prior to infection, cells were treated with 20
963 μ M of pan-caspase inhibitor Z-VAD(OMe)-FMK, 25 μ M of caspase-1 inhibitor Ac-YVAD-
964 cmk, or DMSO as a vehicle control. Cells were then infected with PBS (Mock), WT *S.*
965 *Typhimurium*, or Δ *sipB* *S. Typhimurium* for 6hrs. Release of IL-18 into the supernatant
966 was measured by ELISA. (D – F) WT or two independent single cell clones of *CASP1*^{-/-}
967 Caco-2 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S.*
968 *Typhimurium*. (D, F) Release of IL-18 or IL-8 into the supernatant were measured by
969 ELISA at 6hpi. (E) Cell death was measured as percentage uptake of propidium iodide,
970 normalized to cells treated with 1% Triton. (C, D, F) ns – not significant, ** $p < 0.01$, ****
971 $p < 0.0001$ by Dunnett's multiple comparisons test. Error bars represent the standard
972 deviation or the standard error of the mean (SEM) (E) of triplicate wells from one
973 experiment. Data shown are representative of at least three independent experiments.

975 **Figure 7: Caspase-4 is required for inflammasome responses to *Salmonella* in**
976 **human intestinal epithelial cells.** (A) WT Caco-2 cells were treated with siRNA
977 targeting *CASP4*, *CASP5*, or a control scrambled siRNA for 72h. Cells were primed with
978 400 ng/ml of Pam3CSK4 for 3hrs. Cells were then infected with PBS (Mock), WT *S.*
979 *Typhimurium*, or Δ *sipB* *S. Typhimurium* for 6hrs. Release of IL-18 was measured by
980 ELISA (B – E) WT or two independent clones of *CASP4*^{-/-} or *CASP1*^{-/-} (E only) Caco-2
981 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S. Typhimurium* for
982 6hrs. (B) Release of IL-18 into the supernatant was measured by ELISA at 6hpi. (C, D)
983 Cell death was measured as percentage uptake of propidium iodide, normalized to cells
984 treated with 1% Triton. (E) Lysates and supernatants collected 6hpi were
985 immunoblotted for IL-18 and β -actin. (A, B) ns – not significant, **** $p < 0.0001$ by
986 Tukey's (A) or Dunnett's (B) multiple comparisons test. Error bars represent the
987 standard deviation or the standard error of the mean (SEM) (C, D) of triplicate wells
988 from one experiment. Data shown are representative of at least three independent
989 experiments.

990 Figure Legends

991 **Figure 1: *Salmonella* infection induces inflammasome activation in human**
992 **intestinal epithelial cells.** Caco-2 cells (A – C, E, F) or T84 cells (D) were infected with
993 PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S. Typhimurium*. (A, D) Release of IL-18
994 into the supernatant was measured by ELISA at 6hpi. (B) Lysates and supernatants
995 collected 6hpi were immunoblotted for IL-18 and β -actin. (C) Cell death was measured
996 as percentage uptake of propidium iodide, normalized to cells treated with 1% Triton.
997 (E, F) Caco-2 cells were treated with 30 μ M disulfiram or DMSO as a vehicle control 1
998 hour prior to infection. Cells were then infected with PBS (Mock), WT *S. Typhimurium*,
999 or Δ *sipB* *S. Typhimurium*. (E) Release of IL-18 into the supernatant was measured by
1000 ELISA at 6hpi. (F) Cell death as percentage uptake of propidium iodide, normalized to
1001 cells treated with 1% Triton. ns – not significant, **** $p < 0.0001$ by Dunnett's multiple
1002 comparisons test (A), or by unpaired t-test (C, D, F) or by Šídák's multiple comparisons
1003 test (E). Error bars represent the standard deviation or the standard error of the mean
1004 (SEM) (C, F) of triplicate wells from one experiment. Data shown are representative of
1005 at least three independent experiments.

1006

1007 **Figure 2: Bacterial T3SS ligands do not activate the inflammasome in human**
1008 **intestinal epithelial cells.** (A, B) Caco-2 (A) or T84 cells (B) were primed for 3h with
1009 100 ng/ml of Pam3CSK4 and infected with PBS (Mock), WT *L. monocytogenes* (WT
1010 Lm), or *L. monocytogenes* expressing *S. Typhimurium* SPI-1 inner rod (Lm + PrgJ), or
1011 SPI-1 needle (Lm + PrgI), at an MOI of 100. Release of IL-18 into the supernatant was
1012 measured by ELISA at 16hpi. L.O.D indicates the limit of detection of the assay. (C)

1013 Differentiated intestinal organoids were treated with FlaTox (PA + LFn-Fla) or Inner Rod
1014 Tox (PA + LFn-Rod) in media containing propidium iodide for 4h. Cell death was
1015 measured as percentage uptake of propidium iodide, normalized to organoids treated
1016 with 1% Triton. ns – not significant, * $p < 0.05$, **** $p < 0.0001$ by Dunnett's multiple
1017 comparisons test. Error bars represent the standard deviation of triplicate wells from
1018 one experiment. Data shown are representative of at least three independent
1019 experiments.

1020

1021 **Figure 3: Human intestinal epithelial cells express low levels of NAIP/NLRC4**
1022 **compared to human myeloid cells.** Relative mRNA expression of *NAIP* and *NLRC4*
1023 compared to the housekeeping control *HPRT* or *RPLP0* as measured by qRT-PCR in
1024 (A, B) Caco-2 cells, T84 cells, and THP-1 macrophages, and in (C, D) human peripheral
1025 blood mononuclear cells (PBMCs) and human small intestinal organoids. Error bars
1026 represent the standard deviation of multiple wells. Data shown are representative of at
1027 least three independent experiments.

1028

1029 **Figure 4: NAIP is not required for inflammasome responses to *Salmonella* in**
1030 **human intestinal epithelial cells.** WT or two independent single cell clones of *NAIP*
1031 Caco-2 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S.*
1032 *Typhimurium* for 6hrs. (A, C) Release of IL-18 or IL-8 into the supernatant was
1033 measured by ELISA. (B) Cell death was measured as percentage uptake of propidium
1034 iodide, normalized to cells treated with 1% Triton. (A, C) ns – not significant, * $p < 0.05$,
1035 ** $p < 0.01$, **** $p < 0.0001$ by Dunnett's multiple comparisons test. Error bars represent

1036 the standard deviation or the standard error of the mean (SEM) (B) of triplicate wells
1037 from one experiment. Data shown are representative of at least three independent
1038 experiments.

1039

1040 **Figure 5: NLRP3 and ASC are dispensable for inflammasome responses to**
1041 **Salmonella in human intestinal epithelial cells.** (A) WT Caco-2 cells were primed for
1042 3hrs with 400 ng/ml of Pam3CSK4. One hour prior to infection, cells were treated with
1043 the indicated concentrations of MCC950 or DMSO as a vehicle control. Cells were then
1044 infected with PBS (Mock) or WT S. Typhimurium for 6hrs. Release of IL-18 into the
1045 supernatant was measured by ELISA. (B, F) Relative mRNA expression of *NLRP3* and
1046 *PYCARD* compared to the housekeeping control *HPRT* as measured by qRT-PCR in
1047 Caco-2 cells and THP-1 macrophages. (C, D, E) WT or two independent single cell
1048 clones of *PYCARD*^{-/-} Caco-2 cells were infected with PBS (Mock), WT S. Typhimurium,
1049 or Δ *sipB* S. Typhimurium. (C, D) Release of IL-18 or IL-8 into the supernatant were
1050 measured by ELISA at 6hpi. (E) Cell death was measured as percentage uptake of
1051 propidium iodide, normalized to cells treated with 1% Triton. (A, C, E) ns – not
1052 significant, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ by Dunnett's multiple comparisons
1053 test. Error bars represent the standard deviation or the standard error of the mean
1054 (SEM) (D) of triplicate wells from one experiment. Data shown are representative of at
1055 least three independent experiments.

1056

1057 **Figure 6: Caspase-1 is partially required for inflammasome responses to**
1058 **Salmonella in human intestinal epithelial cells.** (A, B) Relative mRNA expression of

1059 *CASP1* compared to the housekeeping control *HPRT* as measured by qRT-PCR in
1060 Caco-2 cells, THP-1 macrophages, human peripheral blood mononuclear cells
1061 (PBMCs), and human small intestinal organoids. (C) WT Caco-2 cells were primed with
1062 400 ng/ml of Pam3CSK4 for 3h. One hour prior to infection, cells were treated with 20
1063 μ M of pan-caspase inhibitor Z-VAD(OMe)-FMK, 25 μ M of caspase-1 inhibitor Ac-YVAD-
1064 cmk, or DMSO as a vehicle control. Cells were then infected with PBS (Mock), WT *S.*
1065 *Typhimurium*, or Δ *sipB* *S. Typhimurium* for 6hrs. Release of IL-18 into the supernatant
1066 was measured by ELISA. (D – F) WT or two independent single cell clones of *CASP1*^{-/-}
1067 Caco-2 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S.*
1068 *Typhimurium*. (D, F) Release of IL-18 or IL-8 into the supernatant were measured by
1069 ELISA at 6hpi. (E) Cell death was measured as percentage uptake of propidium iodide,
1070 normalized to cells treated with 1% Triton. (C, D, F) ns – not significant, ** $p < 0.01$, ****
1071 $p < 0.0001$ by Dunnett's multiple comparisons test. Error bars represent the standard
1072 deviation or the standard error of the mean (SEM) (E) of triplicate wells from one
1073 experiment. Data shown are representative of at least three independent experiments.
1074

1075 **Figure 7: Caspase-4 is required for inflammasome responses to *Salmonella* in**
1076 **human intestinal epithelial cells.** (A) WT Caco-2 cells were treated with siRNA
1077 targeting *CASP4*, *CASP5*, or a control scrambled siRNA for 72h. Cells were primed with
1078 400 ng/ml of Pam3CSK4 for 3hrs. Cells were then infected with PBS (Mock), WT *S.*
1079 *Typhimurium*, or Δ *sipB* *S. Typhimurium* for 6hrs. Release of IL-18 was measured by
1080 ELISA (B – E) WT or two independent clones of *CASP4*^{-/-} or *CASP1*^{-/-} (E only) Caco-2
1081 cells were infected with PBS (Mock), WT *S. Typhimurium*, or Δ *sipB* *S. Typhimurium* for

1082 6hrs. (B) Release of IL-18 into the supernatant was measured by ELISA at 6hpi. (C, D)
1083 Cell death was measured as percentage uptake of propidium iodide, normalized to cells
1084 treated with 1% Triton. (E) Lysates and supernatants collected 6hpi were
1085 immunoblotted for IL-18 and β -actin. (A, B) ns – not significant, **** $p < 0.0001$ by
1086 Tukey's (A) or Dunnett's (B) multiple comparisons test. Error bars represent the
1087 standard deviation or the standard error of the mean (SEM) (C, D) of triplicate wells
1088 from one experiment. Data shown are representative of at least three independent
1089 experiments.