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Abstract
Massively parallel short read transcriptome sequencing has greatly expanded our knowledge of

fusion genes which are drivers of tumor initiation and progression. In cancer, many fusions are

also important diagnostic markers and targets for therapy. Long read transcriptome sequencing

allows the full length of fusion transcripts to be discovered, however, this data has a high rate of

errors and fusion finding algorithms designed for short reads do not work. While numerous

fusion finding algorithms now exist for short read RNA sequencing data, there are few methods

to detect fusions using third generation or long read sequencing data. Fusion finding in long

read sequencing will allow the discovery of the full isoform structure of fusion genes.

Here we present JAFFAL, a method to identify fusions from long-read transcriptome

sequencing. We validated JAFFAL using simulation, cell line and patient data from Nanopore

and PacBio. We show that fusions can be accurately detected in long read data with JAFFAL,

providing better accuracy than other long read fusion finders and with similar performance

as state-of-the-art methods applied to short read data. By comparing Nanopore transcriptome

sequencing protocols we find that numerous chimeric molecules are generated during cDNA

library preparation that are absent when RNA is sequenced directly. We demonstrate that

JAFFAL enables fusions to be detected at the level of individual cells, when applied to long read

single cell sequencing. Moreover, we demonstrate JAFFAL can identify fusions spanning three
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genes, highlighting the utility of long reads to characterise the transcriptional products of

complex structural rearrangements with unprecedented resolution. JAFFAL is open source and

available as part of the JAFFA package at https://github.com/Oshlack/JAFFA/wiki.
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Background

Genomic rearrangements are common in the landscape of cancer and when breakpoints occur

within different genes these can be transcribed into a new hybrid transcript, producing a

so-called fusion gene. Fusions may drive cancer through activation of onocogenes [1] or

inactivation of tumour suppressors. Often such fusions are recurrent across patient cohorts and

novel drugs have been developed to specifically target a number of them [2]. Fusion detection

can therefore inform cancer care, and eliciting their function in cancer initiation and progression

is an ongoing area of research.

Over the last decade, massively parallel short read transcriptome sequencing has greatly

expanded our knowledge of fusion genes across cancers and is increasingly being used for

clinical diagnostics [3–5]. For example, The Cancer Genome Atlas (TCGA) utilised short read

transcriptome sequencing across a range of tumour types to estimate that approximately 16% of

cancers have a fusion event which drives the disease [6]. Fusion discovery through sequencing

has necessitated the development of dedicated bioinformatics methods. Since the advent of the

first approaches [7,8], fusion finding has improved in both accuracy and speed, and there are

now numerous tools available [9–12].

Third generation, or long read sequencing technologies, as offered by Oxford Nanopore

Technologies (ONT) [13] and Pacific Bioscience (PacBio) [14], can provide novel insight into

fusions and their role in cancer. Unlike short read sequencing, long read sequencing does not

require fragmentation, hence the full length of individual mRNA molecules can be sequenced.

Long range information about the structure and sequence of fusion transcripts, including

splicing, SNPs or additional structural variants, not immediately adjacent to the breakpoint can

be obtained. This offers to improve predictions of open reading frames, protein sequence and

therefore biological relevance. Around 12% of fusions analysed by the Pan-Cancer Analysis of
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Whole Genomes (PCAWG) Consortium were supported by multiple genomic rearrangements

[15]. Long read sequencing will allow us to understand how these complex structural changes

are transcribed into RNA. Long read sequencing has several other advantages, for example

ONT allows RNA to be sequenced directly, without reverse transcription and therefore RNA

modifications can be measured [16]. In addition, rapid and remote diagnostics may be possible

with ultra portable sequencing machines and rapid workflows [17,18]. Finally, new protocols

allow full length sequencing of genes at the level of single cells [19–21].

Most fusion finders rely on short read alignment algorithms, which are incapable of accurately

and efficiently mapping long reads [22]. An additional challenge is that the raw data generated

by third generation technologies have a high rate of errors [23], in particular insertion and

deletions, that short read algorithms were not designed to account for. As a result, to the best of

our knowledge, only three fusion finding methods are available for long read transcriptome data:

JAFFA [24] is a pipeline we previously developed and although it can process transcriptome

sequencing data of any length, it has low sensitivity when error rates are high; Aeron [25]

detects fusions by aligning long reads to a graph based representation of the reference

transcriptome; and LongGF [26] analyses genome mapped long read data and detects fusions

by identifying reads aligning to multiple genes. An additional program, NanoGF [26] can detect

fusions in long read genome sequencing data, but is not designed for transcriptome

sequencing.

To take advantage of new long read sequencing technologies for fusion finding and

characterisation, we have developed JAFFAL, a new method which is built on the concepts

developed in JAFFA and overcomes the high error rate in long read transcriptome data by using

alignment methods and filtering heuristics which are designed to handle noisy long reads. We

validated JAFFAL using simulated data as well as cancer and healthy cell line data for ONT and

PacBio. By comparing ONT transcriptome sequencing protocols we show that numerous

chimeric molecules are generated during cDNA library preparation that are absent when RNA is

sequenced directly. JAFFAL effectively filtered these events by accurately determining

break-point positions relative to exon boundaries. We show JAFFAL is the most accurate fusion

finder available for noisy long read data, allowing fusions to be detected in long read data with

similar accuracy as short reads. On two patient ONT sequencing samples, JAFFAL was able to

detect clinically relevant fusions. Finally, as a proof-of-feasibility, we apply JAFFAL to long read

single cell sequencing of five cancer cell lines and demonstrate its ability to recover known
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fusions at the level of individual cells. Furthermore, by utilising full length transcript information

in the long reads we identified BMPR2-TYW5-ALS2CR11, a fusion composed of three genes, in

individual cells of the H838 non-small-cell lung cancer cell line. JAFFAL is open source and

available as part of the fusion finding package JAFFA, versions 2.0 and higher

(https://github.com/Oshlack/JAFFA/wiki).

Results and Discussion

JAFFAL pipeline

JAFFAL is a new multistage pipeline (Figure 1) written in bpipe [27] and was motivated by our

approach from the Direct mode of JAFFA [24]. The pipeline consists of the following steps: (1)

Fusions are detected by first aligning long reads to a reference transcriptome (hg38 gencode

version 22) [28] using the noise tolerant long read aligner minimap2 [29]. (2) Reads consistent

with a fusion gene, ie. those with sections aligning to different genes, are selected for further

analysis and (3) subsequently aligned to the reference genome hg38, also using minimap2.

Reads which do not span multiple genes after reference genome alignment are removed. This

double alignment, to a reference transcriptome and genome, ensures that false positives are

minimised, and reduces computational time, as only a small subset of reads need to be aligned

to the full reference genome.

Next, (4) JAFFAL uses the end position of reference genome alignments to determine fusion

breakpoints. Due to the high error rate in long read sequencing, alignment end positions may be

inaccurate. To account for this, JAFFAL employs a strategy which anchors transcript breakpoints

to exon boundaries. While structural rearrangements commonly occur within introns, splice sites

are usually preserved, creating fusion transcripts where the breakpoint in the RNA is at the end

or start of an exon. JAFFAL will realign breakpoints to the exon boundaries if exon boundaries

are identified within 20bp of the original alignment breakpoints. This is only done if the

adjustments on the 5’ and 3’ sides of the break are consistent with one another, and result in a

new breakpoint at exon boundaries for both the 5’ and 3’ gene. All such exon boundary

breakpoints will be reported by JAFFAL.

Due to insertion and deletion errors, or genuine breakpoints within an exon body, many reads

will not satisfy the requirements for breakpoint adjustment. These reads are clustered by
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genomic position. One breakpoint is reported for each cluster, which will be either the one

preserving exon boundaries, or the one with the highest read support. Clustering is achieved by

iterating through all non-exon boundary breakpoints, starting with the one with the least read

support. The breakpoint’s reads will be reassigned to the closest breakpoint from other reads

within 50bp (euclidean genomic distance). If no other breakpoint is found within 50bp the

breakpoint is reported.

Finally, (5) breakpoints are ranked into “High Confidence”, “Low Confidence” and “Potential

Trans-Splicing” classes (Figure 1), similar in concept to the ranking in JAFFA for short reads

[24]. “High Confidence” fusions are supported by two or more reads with breakpoints aligning to

exon boundaries. “Low Confidence” fusions are also supported by two or more reads, but

breakpoints do not align to exon boundaries. “Potential Trans-Splicing” events are supported by

a single read, with breakpoints aligning to exon boundaries (Figure 1). Numerous “Potential

Trans-Splicing” events are seen in healthy RNA-Seq samples [24,30], and should generally be

filtered out. However some true fusions may be reported as “Potential Tran-Splicing”, for

example those with low expression levels or in samples with low tumour purity. All other events

are removed. Run-through transcription, identified by breakpoints within 200kbp of each other

and where the genes are transcribed in the same order as the reference genome, are also

filtered out by default, as are fusions which involve the mitochondrial chromosome. However,

these events may be recovered by the user if needed.

For each breakpoint which passes filtering, JAFFAL reports the genes involved, genomic

coordinates, number of reads supporting the event, ranking class, whether it is inframe and

whether it has been seen before in the Mitelman database of genomic rearrangements [31].

Within each class, breakpoints are ranked by the number of supporting reads. Finally, rare

multi-fusion events, which incorporate sequences from three or more genes, are identified by

searching for reads with two or more breakpoints in the final list. These are reported in a

separate table.
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Figure 1. JAFFAL pipeline steps for fusion detection. Reads are aligned to the reference

transcriptome, reads split across different genes are identified as candidate fusion reads and

subsequently aligned to the reference genome for confirmation. Reads are clustered into

breakpoint positions which are then ranked and reported (see text for details).

Simulated fusions are accurately detected in noisy long read data with JAFFAL

JAFFAL’s ability to detect fusions was tested on simulated data for the same 2500 fusion events

simulated by Haas et al. [10]. For each fusion, Hass et al. selected two protein-coding genes at

random. The breakpoint within each fusion was decided by joining a randomly selected exon

from each gene, requiring a minimum 100bp of sequence from each. We simulated long reads

from the resulting fusion gene sequences using Badread version 0.1.5 [32], which uses a noise

model based on real data. The 2500 fusions were divided into 25 groups with varying coverage

and read identity levels. Specifically, 500 fusion events were simulated across 5 coverage

levels: x1, x2, x10, x50 and x100 reads. For each coverage we simulated 100 fusions each with

a mean read identity of 75%, 80%, 85%, 90% and 95% (standard deviation 5%). These read
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identities were designed to cover the range expected in real data. For example, the cell line data

used to validate JAFFAL was estimated to have read identities in the range 80 to 85% for ONT

and 85% to over 95% for PacBio (Supplementary Figure 1). Fusions were considered detected

if a breakpoint was reported within 1kbp euclidean distance of the simulated breakpoint. Fusions

were simulated with both ONT and PacBio noise models. To emulate a realistic background, we

combined the simulated ONT reads with 25 million cDNA reads from the non-tumour reference

cell line NA12878 generated by the Nanopore WGS consortium [33] where few fusions should

be present. JAFFAL was found to have similar fusion finding sensitivity across the three

datasets: ONT simulation without background, PacBio simulation without background and ONT

simulation with background (Figure 2, Supplementary Figure 2).

JAFFAL detected 98% of simulated fusions when the read identity was 90% or above and the

coverage was 10 or greater (Figure 2A, Supplementary Figures 2A and 2C). Across all

simulated fusions that were detected, approximately 84% were classed as high confidence and

99% with a single breakpoint. As expected, with low coverage and read identity, fewer fusions

were detected. High error rates also impacted the fraction of supporting reads identified by

JAFFAL. Amongst the fusions detected, the reported supporting reads were only 14% of the

simulated coverage when the identity was 75%, compared to 79% of coverage when the identity

was 95%. Most reads which failed to be reported did not align to two genes in the initial

reference transcriptome mapping. This impacted up to 84% of simulated reads when the read

identity was 75%, with 40% failing to align to even one gene. The number of reads lost in other

stages of the JAFFAL pipeline remained low, approximately 10%, across all scenarios

(Supplementary Figure 3).

JAFFAL’s sensitivity on the simulated data was comparable to the alternative long read fusion

finder, LongGF’s when the data contained only fusion reads (Supplementary Figures 2B and

2D). However, in the presence of background reads from NA12878, JAFFAL had higher

sensitivity than LongGF (Figure 2B), even after reducing LongGF’s default parameter of >1 read

support to >0 read support. As we were unsuccessful in running Aeron, results for that program

are not shown. We did not compare to NanoGF as it is designed for data from genome

sequencing rather than whole transcriptome sequencing. JAFFAL was also found to have

superior breakpoint resolution to LongGF; for 96% of fusions detected by JAFFAL, the exact

breakpoint was reported, compared to just 2% from LongGF. However, almost all breakpoints

were within 20bp of the simulated position for both tools.
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Figure 2: Fusion finding sensitivity on simulated ONT data with background. A) The

fraction of simulated fusions detected (y-axis) by JAFFAL across a range of fusion coverage

levels (x-axis). Read identity levels are shown in different colours (red-purple). B) The fraction of

simulated fusions detected (y-axis) by JAFFAL and LongGF for sequence identity levels of

75-95%.

JAFFAL’s fusion ranking is effective at separating false positives in non-tumor cell line
data

To assess the false positive rate of JAFFAL across different classification levels and sequencing

protocols, we applied it to ONT direct RNA and amplified cDNA sequencing of NA12878 without

simulated fusion events. Hence, almost all fusions reported should be false positives. For both

protocols JAFFAL reported few fusions with a ranking of high confidence as expected (Table 1,

Supplementary Table 1). Amongst the high confidence calls, three were common to both the

direct RNA and cDNA datasets. One of these, KANSL1-ARL17A, is a germline fusion known to

be present in a subset of the healthy population [34]. The two other fusions were consistent with

run through transcription, where the distance between breakpoints just exceeded the 200kbp

threshold for filtering. A further two fusions called in the cDNA sample could be explained as run
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through transcription for the same reason. JAFFAL reported several hundred “Potential

Trans-splicing” events, which was consistent with levels seen previously from short read

sequencing [24]. LongGF detected just five fusions with multi-read support for the direct RNA

protocol, all of which were also reported by JAFFAL (two as high and three as low confidence).

Direct RNA cDNA

Total Reads Processed 14,971,421 25,418,307

Fusion
Genes

Break
Points

Reads
Support:
Median
(Range)

Fusion
Genes

BreaP
Points

Reads
Support:
Median
(Range)

Fusion
genes
called by
JAFFAL

High
Confidence

4 4 4.5 (2-14) 8 8 6 (2-24)

Low
Confidence

5 7 2 (2-11) 94 121 2 (2-49)

Potential
Trans-splicing

344 344 1 (1-1) 412 412 1 (1-1)

Fusion
genes
called by
Long GF

> 1 Read
support

5 2 (2-14) 173 2 (2-522)

= 1 Read
support

713 1 (1-1) 386 1 (1-1)

Table 1: The number of fusion genes and breakpoints called in the non-cancer cell line
NA12878 from ONT direct RNA and amplified cDNA. Most calls are presumed to be false

positives. The number of fusions in the highest rank category for each tool is shown in bold. We

hypothesize that most of the multi-read fusions reported by LongGF applied to the cDNA

dataset (173) are chimeras introduced during library preparation. JAFFAL ranks these events as

Low Confidence. The number of breakpoints for LongGF are not shown as it only reports one

breakpoint per fusion gene by default.

On the cDNA data, LongGF reported 173 fusions with multi-read support whereas JAFFAL only

called 8 fusions as high confidence. The number of low confidence calls from JAFFAL was

similar to LongGF however with direct RNA (5 fusions reported) compared to the cDNA protocol

(94 fusions reported) (Table 1). We hypothesise this is due to chimeric molecule creation during

cDNA library preparation [35,36]. These chimeras are distinct from the chimeras commonly
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seen in nanopore data due to ligation, where two full length transcripts are joined. The chimeras

detected by JAFFAL do not contain an internal adapter sequence and only part of each gene is

seen in the sequence (Supplementary Table 2). To ensure the excess in low confidence fusions

in the cDNA sample was not a result of larger library size, we downsampled the reads to the

direct RNA library size (Supplementary Table 3) and 43 low confidence fusions were still

observed.

The ranking of these fusions as low confidence is consistent with the hypothesis that they are

created during library preparation. A hallmark of these events are breakpoints occurring within

exons, rather than at exon boundaries and allows them to be separated from true fusions by

JAFFAL’s ranking. LongGF does not appear to separate this class of artifact and reported a

large number of false positives in the cDNA dataset (Table 1).

To examine chimeras further, we switched off JAFFAL’s default filtering of mitochondrial genes,

and looked at the prevalence of fusions reported between a gene on the mitochondrial

chromosome and a gene on another chromosome. These are likely to be chimeras which are

not native to cells. 116 such mitocondrial chimeras were reported by JAFFAL in the cDNA library

at low confidence. None were reported at other confidence levels or in the direct RNA library. To

confirm this result in an independent dataset, we examined chimeras in data from five cell lines

from the Singapore Nanopore-Expression Project, SGNex [37], where several replicates of

direct RNA, direct cDNA and amplified cDNA ONT sequencing are available. A much lower rate

of mitochondrial chimeras was seen in the direct RNA sequencing, but no significant difference

was observed between direct and amplified cDNA (Supplementary Figure 4).

These results demonstrate that chimeras created during library preparation can be effectively

separated from true fusions if fusion breakpoints are accurately determined and their position

relative to exon boundaries used. The absence of chimeras in direct RNA sequencing is striking

and gives confidence in the fusions called from this protocol. In particular, the filtering based on

breaks occurring at the exon boundary can be removed allowing confident detection of the rare

instances where a breakpoint occurs within an exon.
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JAFFAL detects known fusions in cancer cell lines

To further confirm JAFFAL’s accuracy, it was applied to public long read transcriptome

sequencing of six cancer cell line, where fusions had been previously validated using RT-PCR

and Sanger sequencing, or there was orthogonal evidence of a translocation from whole

genome sequencing [4,38–47] (Table 2, Supplementary Table 4). The four cell lines MCF-7,

HCT-116, A549 and K562 were sequenced with ONT and are available as part of SGNex [37].

The direct RNA, direct cDNA and amplified cDNA replicates were combined into a single fastq

file for fusion calling on each cell line. These samples had estimated read identities of 80-85%

(Supplementary Figure 1). The three cell lines MCF-7, HCT-116 and SK-BR-3 [43] which had

PacBio SMRT sequencing were downloaded from the Sequence Read Archive (SRA) and had

estimated read identities over 95% (MCF-7 and HCT-116) and ~86% (SK-BR-3). Fusion genes

reported by JAFFAL and LongGF were compared to those previously validated using gene

identifiers. When a fusion had multiple breakpoints, we assigned the fusion gene the

classification of its highest rank breakpoint.

JAFFAL rediscovered approximately half the previously validated fusion genes (Table 2) and

84% of these were ranked as high confidence. Previously validated fusions were reported with a

range of supporting reads: 1-2,929 (median=15) and breakpoints 1-13 (median=1)

(Supplementary Tables 5 and 6). Compared to LongGF, JAFFAL reported equal or more

previously validated fusions for all datasets and ranked them higher (Figure 3A and B, Table 2).

All fusions were reported with genes in the correct 5’ and 3’ order for JAFFAL compared to 68%

for LongGF. JAFFAL also reported fewer total fusions in six of seven datasets, with unvalidated

detections likely to be predominately false positives. These were reported by JAFFAL to be

mainly in the potential trans-splicing category similar to those seen in the reference cell line

NA12878.

Although JAFFAL failed to report a number of the previously validated fusions, this could be

caused by differences in sequencing depth and cell line batch effects, and is something that has

been observed previously in short read data [24]. Hence, we also benchmarked JAFFAL’s

sensitivity against fusions called on matched short read data from the same samples. We used

MCF-7 from SGNex, as this cell line had the greatest number of validated fusions. Fusions were

called in the short read data with JAFFA, which has been independently benchmarked in

several studies [10,48,49]. Because the long and short read sequencing were from the same
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replicates, we would expect a similar set of fusions to be expressed. The short read data was

significantly more deeply sequenced (137 million 150bp paired-end Illumina reads), hence we

subsampled the datasets to approximately 22Gbp, 4Gbp, and 1Gbp to compare performance

over a range of depths. The precision and recall of JAFFAL on long reads was found to be

within the range of short read replicates, demonstrating both the accuracy of JAFFAL and the

utility of noisy long read data for fusion detection more generally (Figure 3C).

The short read data of MCF-7 was also used to assess the likelihood of JAFFAL’s unvalidated

calls being genuine fusions. Genuine fusions should be found in both the ONT and full depth

Illumina data. Of the 69 high confidence fusion genes called by JAFFAL, 60 were also detected

in the short read data. 5 of 29 low confidence and 19 of 819 potential trans-splicing events were

common, indicating that events in these categories are more likely to be artifacts, such as

chimeras generated during library preparation, which is consistent with results from NA12878.

Breakpoint positions from JAFFAL were also consistent with short read data. For the 84 fusion

genes common to the short and long read data across all confidence levels, 140 different

breakpoints were reported by JAFFAL (range: 1-13 per fusion pair) and 181 by JAFFA (range:

1-15 per fusion pair) on the short read data. 117 of these were common between the short and

long read datasets (within 20bp), with the majority, 104, an exact match. Note that the number of

breakpoints is greater than the number of fusion genes likely due to alternative splicing.

Correctly identifying all breakpoints is important for determining whether any fusion transcript is

in-frame.

Overall on the MCF-7 ONT cell line data, JAFFAL’s high and low confidence calls showed

consistency with previously validated fusions, fusions in matched short read data and fusions

called by LongGF (Figure 3D). Only 16% of fusion genes reported by JAFFAL as high or low

confidence were not seen by other approaches, compared to 70% of LongGF’s calls (>1 read

support). Taken together, these results suggest JAFFAL is highly accurate, in particular in the

high confidence class.
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PacBio
HCT-116

PacBio
SK-BR-3

PacBio
MCF-7

ONT
HCT-116

ONT
A549

ONT
K562

ONT
MCF-7

Reads 156,632 3,070,545 2,389,856 44,416,838 31,393,964 36,751,242 34,654,115

# Previously Validated Fusions 3 30 53 3 2 6 53

JAFFAL

# Previously
Validated Fusions
Rediscovered
(All Fusions)

High
Confidence

1 (1) 13 (20) 26 (73) 3 (49) 2 (21) 2 (17) 29 (69)

Low
Confidence

0 (1) 0 (5) 1 (112) 0 (81) 0 (40) 0 (31) 1 (29)

Potential
Trans-splicing

0 (21) 1 (201) 9 (435) 0 (2343) 0 (1206) 0 (615) 2 (819)

Total 1 (23) 14 (226) 36 (620) 3 (2476) 2 (1267) 2 (663) 32 (917)

LongGF

# Previously
Validated Fusions
Rediscovered
(All Fusions)

> 1 Read
Support

1 (2) 10 (20) 22 (292) 2 (307) 2 (224) 2 (168) 24 (220)

= 1 Read
Support

0 (113) 1 (2537) 6 (1800) 0 (1321) 0 (1922) 0 (2267) 4 (2172)

Total 1 (115) 11 (2557) 28 (2092) 2 (1628) 2 (2146) 2 (2435) 28 (2392)

Table 2: The number of previously validated fusions rediscovered across seven long read sequencing datasets by JAFFAL
and LongGF. The total number of fusion genes reported by each tool, including those not previously validated, are indicated in

parentheses.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.04.26.441398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441398
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Comparison of JAFFAL and LongGF on cancer cell line sequencing. Shown are

ROC style curve with the ranking of previously validated fusions against other reported fusions

for A) MCF-7, HCT-116, A549 and K562 cell lines sequenced with ONT and B) MCF-7, HCT-116

and SK-BR-3 cell lines sequenced with PacBio. C) For MCF-7 only, fusions from JAFFAL are

compared against three short read Illumina replicates across three sequencing depths.

Precision and recall are calculated using previously validated fusions in MCF-7. D) The overlap

between fusions called by JAFFAL (high and low confidence) and LongGF (>1 read support) on

MCF-7.
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Detection of clinically relevant fusions with long read sequencing in leukemia

JAFFAL was next applied to two samples from patients with leukemia to assess its ability to

detect fusions in a real-word context. One patient had acute myeloid leukemia (AML) with a

RUNX1-RUNX1T1 fusion and cDNA sequencing was performed by Lui et al. [26] on ONT

GridION, resulting in 8 million reads. The other patient had B-cell acute lymphoblastic leukemia

(B-ALL) with the rare phenomenon of both BCR-ABL1 and IGH-CRLF2 fusions detected by

cytogenetics and short read RNA sequencing. ONT sequencing was performed on amplified

cDNA with a MinION, resulting in 13 million reads.

JAFFAL detected the RUNX1-RUNX1T1 and BCR-ABL1 fusions ranked as first of 17 and fifth of

51 high confidence calls in their respective samples. Consistent with results from simulation and

cell line data, JAFFAL found the exact breakpoints. However it failed to detect the IGH-CRLF2

fusion, despite the fusion transcript being evident through manual inspection in the sequencing

data. IGH-CRLF2 was missed because the breakpoint occurred approximately 2kbp upstream

of CRLF2 and is an example of enhancer hijacking. Inability to detect fusions involving

intergenic regions is an important limitation of JAFFAL, but is one shared by most fusion finders,

with a few exceptions [9,50]. LongGF also failed to detect the IGH-CRLF2 fusion

(Supplementary Table 7).

Fusion detection at the single cell level

Single cell transcriptomics using long read sequencing is emerging as a powerful system to

investigate transcript diversity across cell types [19–21]. As tumour samples nearly always

contain multiple cell types, including infiltration of immune cells [51], or multiple clones [52], it is

of broad interest to track the presence of fusion genes within single cells. As a proof of the

feasibility for calling fusions at the single cell level, we applied JAFFAL to public data from a

mixed sample of five cancer cell lines that was sequenced with ONT in combination with 10x

Genomics and Illumina sequencing (Supplementary Table 8) [20]. A total of 18 million ONT

reads could be assigned cellular barcodes across 557 cells. As expected, cells clustered into

five distinct groups based on gene expression from short read data (Figure 4A). High

confidence fusions called by JAFFAL and found in four or more cells were investigated further.

JAFFAL identified 15 fusions, with a range of read support of 1-14 (median=1) per cell. Cells

where fusions were identified had a range of 854-147,531 reads in library size (median=43,660)
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(Supplementary Figure 5). Of the fusions, 13 were also found in short read RNA-seq of the

same cell lines as part of the Cancer Cell Line Encyclopedia, CCLE [53] (Figure 4B). Distinct

sets of fusions were associated with each cluster, enabling the annotation of the cluster to each

of the cell lines (Figure 4A). One fusion, RP11-96H19.1-RP11-446N19.1, was seen across all five

clusters. It is not present in CCLE and is consistent with run-through transcription with

constituent genes 264 kbp apart in the reference genome (Figure 4B). Some fusions were

detected in the wrong cell line cluster (Figure 4A) and we hypothesize that long read

sequencing errors in the cell barcodes have led to misassignment of reads in these cases.

However, despite errors, these results demonstrate that JAFFAL enables fusions to be detected

at the level of individual cells.
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Figure 4: Detection of fusions in single cell ONT sequencing of five cell lines. A) t-SNE

plot generated from short read gene expression. Colour indicates the cell line that a fusion

detection is known to be in from CCLE. Grey indicates a cell with no detected CCLE fusion. B)

For each of the 16 fusions detected by JAFFAL the number of cells identified in each of the five

clusters is shown. Fusion labels are coloured according to the CCLE cell line they were

previously identified in. Black indicates a novel fusion. C) JAFFAL identified BMPR2-TYW5 and

TYW5-ALS2CR11 in the H838 cell line as belonging to the same transcript and forming the

three-gene fusion BMPR2-TYW5-ALS2CR11 identified in 15 reads (two different isoforms).

Expressed exons in the fusion transcript are shown in blue, red and green, with colour indicating

the gene of origin. Red bars show the position of translocations seen in short read whole

genome sequencing of H838 in CCLE. The breakpoint within ALS2CR11 falls within its third final

exon and this exon appears to be spliced out. The six isoforms we identified for

BMPR2-TYW5-ALS2CR11 and the number of long reads supporting each are also shown. The

location of PCR forward and reverse primers which validated the translocation between BMPR2

and ALS2CR11 are shown in black (bottom).

JAFFAL detects three-gene fusions

Recent analysis of rearrangements leading to fusions has described “bridged” fusions where

genes are brought together through complex structural events that involve more than two

genomic regions [15,43]. Although sequence from the bridged region is generally not

transcribed, at least one instance of a three-gene fusion transcript has been reported [54]. Short

read sequencing has limited the detection of three (or more) gene fusions as breakpoints often

can not be linked within a fragment and short read fusion finding algorithms generally do not

attempt to link breakpoints. Full transcript sequencing with long reads and new analysis

algorithms can automatically discover these complex, linked events.

JAFFAL takes advantage of long reads to search for multiple fusion breakpoints within individual

reads. We searched for multi-fusion reads across all our validation data and identified 14

three-gene fusions (Supplementary Table 9) in our PacBio, SGNex, patient data and single cell

cell line datasets, with the majority, 9, from the highly rearranged cell line MCF-7. Four of the

three-gene fusions had both their constituent breakpoints classed as High Confidence and the

individual breakpoints were also seen in orthogonal data from short read sequencing

(Supplementary Table 4). Interestingly, in all cases, a two-gene transcript which excluded one of
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the constituent fusions was also expressed and at a higher level than the three-gene isoform

(Supplementary Table 4).

One of the high confidence three-gene fusions found by JAFFAL was

BMPR2-TYW5-ALS2CR11 in single cell sequencing of the H838 cell line. It results from a

complex rearrangement of a 2.5Mbp region on chromosome 2 and is supported by

translocations found in CCLE whole genome sequencing [53] (Figure 4C). Long reads linked the

BMPR2-TYW5 and TYW5-ALS2CR11 breakpoints in 6 cells. In 46 cells an alternative truncated

transcript was also seen which links the BMPR2-TYW5 breakpoint to a novel exon extension

event in TYW5 (Figure 4C). In both instances, the BMPR2-TYW5 breakpoint and second event

were separated by 184 bp in the RNA. Although these transcripts could in theory be inferred

with pair-end short read data, the linked events could not be covered by a single read of

conventional length (150bp or less). In total we identified 6 distinct isoforms of the

BMPR2-TYW5-ALS2CR11 fusion gene (Figure 4C), including transcripts where TYW5 is spliced

out. The three gene fusion transcript BMPR2-TYW5-ALS2CR11 and its two gene transcript,

BMPR2-ALS2CR11, were validated in the H838 cell line with PCR and Sanger sequencing

(Supplementary Figure 6). This example illustrates that fusion finding with long reads can

identify complex fusion transcripts which goes beyond just breakpoint discovery. For the first

time we now have the tools to discover multi-rearranged genes and their alternative splicing in

individual cells.

Computational Resources

The computational resources required for JAFFAL and LongGF were benchmarked on a

machine with 32 cores and 190GB of available memory. JAFFAL and minimap2 were given a

maximum of four threads. LongGF which is single threaded, used one. JAFFAL completed in

less than six hours and 21GB of memory on each of the nine healthy and cancer cell line bulk

datasets described previously (Table 4). Despite running on only a single thread, LongGF used

considerably less computational resources than JAFFAL. However, LongGF required reads

which had already been mapped to the genome. Genome alignment using minimap2 was

slower than JAFFAL, but required approximately the same memory. These results indicate that

fusion calling on large long read sequencing cohorts is unlikely to be hindered by computational

limitations using either fusion finder.
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Run-time (hours) Memory Consumption
(GB)

JAFFAL (4 threads) 2.6 (0.08 - 5.9) 20.0 (19.8 - 21.1)

LongGF Genome Mapping (4 threads) 9.5 (0.1 - 21.2) 22.6 (20.2 - 24.7)

LongGF (1 thread) 0.4 (0.01 - 1.1) 6.4 (0.8 - 13.3)

Table 4: Average and range (in parentheses) of run-time and memory consumed on nine
benchmarking datasets by JAFFAL and LongGF.

Conclusions

Long read sequencing is growing in popularity due to its ability to measure long stretches of

sequence. A natural application is therefore detecting structural rearrangements, which in the

transcriptome, can arise as fusions. However, very few computational methods exist for fusion

detection from long read transcriptome sequencing. Here we introduce JAFFAL which is one of

the first long read fusion finders. We demonstrated that JAFFAL is sensitive on simulated data

over a range of read identities and coverage levels designed to mimic ONT and PacBio data.

On real data, JAFFAL detected previously known fusions in cancer cell lines and patient

samples with few false positives.

The ranking of fusions for prioritisation is an important feature of fusion finders. While alternative

methods rely on the number of read support only, we demonstrate that other heuristics are

powerful for separating artifacts from true fusions. By applying JAFFAL to samples sequenced

with both direct RNA and cDNA we found a high rate of chimeric artifacts introduced during

reverse transcription of libraries. We showed that these can be controlled by either sequencing

RNA directly or by downranking fusions if their breakpoint does not coincide with exon

boundaries.

Although the idea of using breakpoint positions as a heuristic in fusion ranking was first

introduced for short read data [24], errors in long reads make precise breakpoints difficult to

determine. JAFFAL overcomes this challenge by clustering reads into breakpoints and

anchoring them to exon boundaries or the position with the maximum read support, per cluster.
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This approach is one clear advantage of JAFFAL and was found to give fewer false positives

compared to the competing long read tool, LongGF on cancer cell line data.

JAFFAL and LongGF were found to identify different fusions when applied to the MCF-7 cell

line. Differences between fusions called by different tools on short read data are well

documented, and this is why clinical pipelines often employ an ensemble approach combining

the results of several fusion finding tools together, to identify actionable fusions [5,49,55]. It is

likely that long read fusion finding will also benefit from multiple methods being available, and

JAFFAL represents an important early contribution towards this.

A limitation of JAFFAL is its dependence on annotated transcripts. Fusions which incorporate

intergenic or intronic sequences at a breakpoint are not detected. Hence complex fusions such

as IGH-CRLF2 in our patient sample will be missed. This highlights an area for further

development in long read fusion finding. As shown in our simulation, the detection of fusions is

limited by their coverage, which is directly related to expression levels, and by error rates in the

data. However, sequencing accuracy from long read technologies is improving and is likely to

benefit fusion finding with JAFFAL in the future.

Finally, long read sequencing has a number of novel advantages over short reads. An exciting

development has been the use of long reads in conjunction with single cell RNA sequencing,

which enables the full transcriptomes of individual cells to be sequenced. Here we demonstrate

that fusions can be called in this data, adding an extra modality to single cell analysis, providing

many new opportunities to study the heterogeneity of tumours. Long reads enable novel events

to be linked over the full length of fusion transcripts meaning additional variants, such SNPs,

splicing or other fusions can be phased. JAFFAL thus allows the automatic detection of three

gene fusions and we demonstrated the detection of a novel three gene event,

BMPR2-TYW5-ALS2CR11 in the lung cancer cell line H838. ONT sequencing has several

further advantages including the profiling of the epitranscriptome and rapid and remote

sequencing. Combined with fusion finding, these technological advances have the potential to

enable greater understanding of the mechanisms driving tumours and the potential to bring

clinical diagnostics to remote areas.
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Materials and Methods

JAFFAL pipeline
JAFFAL is a multi-stage bpipe [27] pipeline for fusion detection. A brief outline of its steps follow.

Fastq files are unzipped and converted to fasta prior to alignment to the human reference

transcriptome, gencode version 22 for hg38, with minimap2 version 2.17 and option -x map-ont.

Alignments to the transcriptome are then processed with a custom C++ program, which

identifies reads which align to two distinct genes. The two alignment intervals within a read must

have no more than 15bp of overlap, no more than a 15bp gap and be on the same strand.

Fusion candidate reads are then extracted into a fasta file and aligned to the reference genome,

hg38 using minimap2 with option -x splice. Genome alignments are processed using a custom

R script. It first finds the breakpoint positions in the genome and filters any where the start and

end are within 10kbp of each other in an order consistent with regular transcription. Next

alignments are compared against annotated transcripts, and breakpoints realigned to exon

boundaries as described in Results. Fusions involving the mitochondrial chromosome are

filtered out (by default). Reads are then aggregated by breakpoint, and clustered using the

following algorithm:
For each fusion gene:

For each breakpoint:

Identify the next closest breakpoint in euclidean distance

If (breakpoint is within an exon) and (next closest breakpoint < 50bp ):

flag breakpoint for reassignment

Order flagged breakpoints from lowest to highest supporting reads

For each flagged breakpoint:

Add the number of supporting reads to the next closest breakpoint

Remove breakpoint

Next, breakpoints are classified as either high confidence, low confidence, potential

trans-splicing (Figure 1) or run-through transcription. Run-through transcription includes any

fusion with breakpoints that are within 200kbp of each other in an order consistent with regular

transcription and these are filtered out by default. Information on whether the fusion is in frame

and seen in the Mitelman database is added. Breakpoints are then reported in a csv output file.

Finally, all candidate fusion reads are compared to the final fusions gene list. Reads consistent

with multiple fusions are aggregated and reported. The code for JAFFAL is open source and

available at https://github.com/Oshlack/JAFFA. The results presented in this manuscript were

generated with JAFFAL version 2.2 run with the flag -n4 (4 threads).
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LongGF
Samples were first mapped to version hg38 of the human reference genome using minimap2

version 2.17 with flags -t4 and -ax splice. Mapped reads were name sorted with samtools before

being processed with LongGF version 0.1.1. We ran LongGF with the annotation file

gencode.v22.chr_patch_hapl_scaff.annotation.gtf downloaded from

https://www.gencodegenes.org/human/release_22.html. This annotation used the same gene

names as the reference provided to JAFFAL. We used options “100 50 100 0 0 1” which were

recommended apart from the number of reads support which we lowered from 2 to 1 to assess

sensitivity. Fusions involving a gene on the mitochondrial chromosome were removed to allow

consistent comparison against JAFFAL which removes these by default.

Simulation
Simulated fusion transcripts created by Haas et al. [10] were downloaded and split into 25 fasta

files for each of the 25 combinations of coverage-levels (1,2,10,50,100) and read identities

(75%, 80%, 85%, 90%, 95%). Sequencing reads were then simulated using Badread version

0.1.5 with corresponding coverage and read identity levels set through the parameters --quantity

<coverage> and --identity <read identity>,95,5 respectively. The error model was set to either

pacbio or nanopore with the parameters --error_model and --qscore_model. To simplify the

simulation, we switched off artifacts with the options --junk_reads 0 --random_reads 0

--chimeras 0. Chimeras in long reads were assessed with real data rather than simulation.

Comparison
For the simulation, fusions were classed as true positives if there was a simulated breakpoint

within 1kbp euclidean distance of the reported breakpoint. For cell lines data we matched

fusions to those previously validated (Supplementary Table 2) and between fusion finders using

gene names. Novel breakpoints within known fusion gene pairs were considered true positives.

Unless stated otherwise, comparisons were performed at the fusion gene-level, meaning

fusions with multiple breakpoints were counted as a single true or false positive, and given the

ranking of their highest ranked breakpoint. LongGF does not report fusions in transcriptional

order, hence if a known fusion gene pair was not seen, we also checked the reciprocal gene

order and counted these as a match if found. Similarly, for known fusions involving antisense

genes we counted the sense gene name as a match if reported.
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Patient Sequencing
For the B-ALL patient sample, an ONT sequencing library was generated from approximately

100 ng of total RNA using the ONT cDNA-PCR Sequencing Kit (SQK-PCS109) and sequenced

using a MinION Nanopore sequencer on a R9.4 flow cell (FLO-MIN106). Basecalling was

performed using Guppy version 4.2.3.

Single cell analysis
Cellular barcodes were annotated to long reads using FLAMES [20]. JAFFAL was then run on

pooled reads. A custom script, get_cell_barcodes_by_fusion.bash, which is available in JAFFA,

was used to generate a table of fusions by cell barcode. Only fusions classes as high

confidence and found in four or more cells were analysed further. Matched short read gene

expression count data from Tian et al. [20] was downloaded from

https://github.com/LuyiTian/FLTseq_data/blob/master/data/PromethION_scmixology1.zip  and

analysed with Seurat [56]. A list of fusions called in short read CCLE data was obtained from the

CCLE data portal, https://portals.broadinstitute.org/ccle.

Validation of BMPR2-TYW5-ALS2CR11 in the H838 cell line
RNA was extracted from H838 and HEK293T cells using NuceloZOL (Macherey-Nagel),

followed by cDNA synthesis using SuperScript III (Invitrogen) with OligoDT or random hexamer

primers. PCR reactions were performed using Q5® High-Fidelity DNA Polymerase (NEB) with

the following primers: BMPR2 Fusion F: GGTAGCACCTGCTATGGCCT; BMPR2 Fusion R:

CTAAGCCTGATGAAACCATTCGACG; GAPDH F: TGAAGGTCGGAGTCAACGGATTTGGT;

GAPDH R: CATGTGGGCCATGAGGTCCACCAC. BMPR2 PCR products amplified from the

H838 cDNA were purified from agarose gel using the NucleoSpin Gel and PCR Clean‑up kit

(Macherey-Nagel), and subjected to sanger sequencing using the BMPR2 primers listed above.
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