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Abstract

The prerequisite of therapeutic drug design is to identify novel molecules with
desired biophysical and biochemical properties. Deep generative models have demon-
strated their ability to find such molecules by exploring a huge chemical space efficiently.
An effective way to obtain molecules with desired target properties is the preservation
of critical scaffolds in the generation process. To this end, we propose a domain aware
generative framework called 3D-Scaffold that takes 3D coordinates of the desired scaf-

fold as an input and generates 3D coordinates of novel therapeutic candidates as an
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output while always preserving the desired scaffolds in generated structures. We show
that our framework generates predominantly valid, unique, novel, and experimentally
synthesizable molecules that have drug-like properties similar to the molecules in the
training set. Using domain specific datasets, we generate covalent and non-covalent an-
tiviral inhibitors. To measure the success of our framework in generating therapeutic
candidates, generated structures were subjected to high throughput virtual screening
via docking simulations, which shows favorable interaction against SARS-CoV-2 main
protease and non-structural protein endoribonuclease (NSP15) targets. Most impor-
tantly, our model performs well with relatively small volumes of training data and

generalizes to new scaffolds, making it applicable to other domains.

Introduction

The COVID-19 pandemic, caused by SARS-CoV-2, posed a serious challenge to the public
health worldwide.? With the aim to address such challenges in developing lead candidates
against different diseases, it is necessary to have a disease aware generative model that
quickly generates effective therapeutics from the unknown and massive chemical space and
could be tested with cell based assay screening.

The discovery and development of a new therapeutic is a long, expensive, and risky pro-
cess that sometime takes many years before clinical approval. One of the challenges in drug
design is to find small molecules with desired functionalities.? This is a daunting task with
conventional methods, which has slowed down the discovery of high impact molecules for di-
verse applications.® The huge chemical space (10%°) of molecules still remains unexplored.*®
Recently, with the rise of deep learning models, several approaches to efficiently explore
the astronomically large chemical space have been proposed. The majority of existing ap-
proaches focus mainly on de-novo drug design using variational auto-encoders, generative
adversarial networks, or reinforcement learning generating molecules mainly in the form of

SMILES strings.” '8
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An alternate and robust way to find drug-like molecules is by generating molecules with
desired functional groups, core structures, or scaffolds.®?° Such fragments play an impor-
tant role in determining the functionalities of generated molecules, thus making tuning of
properties more flexible. Moreover, molecules with certain scaffolds are likely to have desired
interactions with a given protein target as a drug. Scaffold-based approaches allow to in-
corporate such prior knowledge in the generation process in order to increase the chances of
obtaining molecules with desired properties compared to simply generating molecules from
scratch. Several approaches have been proposed recently to generate therapeutic candidates
building on the core structures.?®?* Some of these methods are constrained to certain def-
initions of scaffolds (e.g. Murcko?* scaffolds) or do not guarantee that the desired scaffold
is always preserved during molecule generation while others do not generalize well for new
scaffolds.?!23 To the best of our knowledge, none of the existing approaches focuses on gen-
erating 3D coordinates of drug-like molecules that can be directly tested against the protein
target via computational and experimental screening. However, 3D coordinates of generated
molecules are required for physics-based simulations as well as for robust graph-based pre-
dictive models for modeling the properties. Moreover, these molecules can be directly used
for high throughput virtual screening through structure based docking against the proteins
to determine their affinity and efficacy as drugs against a particular disease. Consequently,
we believe that 3D molecule generation will accelerate the hit identification and lead opti-
mization for drug discovery and development.

In this work, we propose a deep learning framework called 3D-Scaffold that can generate
3D coordinates of therapeutic candidates given a desired scaffold. It is guaranteed that
100% of the generated molecules contain the desired scaffold and the model generalizes well
to previously unknown scaffolds not included in the training data. Our current framework
is different from existing scaffold-based approaches for multiple reasons: (I) In contrast
to existing approaches, which generate SMILES strings or molecular graphs, our model

generates 3D coordinates of the molecules with a given core structure; (II) It works equally
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well for any type of scaffold definition including BM, cyclic skeletons, or side chains provided
SMILES strings exist for the desired scaffolds; (III) Our model is transferable to generate
molecules with novel scaffolds where the model is not trained on; (IV) Without constraining
the model directly on desired properties, our model can generate molecules with properties
similar to the training set.

A few issues arise when constructing physics informed machine learning approaches based
on 3D nuclear coordinates in contrast to more abstract molecule representations such as
strings or molecular graphs.?®> The coordinate representation is not invariant to rotation,
translation, and indexing of atoms while most properties of interest (e.g. the potential en-
ergy or the logP score) are invariant to these transformations or change equivariantly (e.g.
atomic forces rotate and translate with the coordinates). The G-SchNet?® neural network
architecture used in our 3D-Scaffold framework systematically obeys these constraints by
design. This allow our model to extract features from the coordinates that capture local
symmetries and are invariant to rotation, translation, and indexing of the input coordinates.
Furthermore, the distributions it predicts for atom positions equivariantly rotate and trans-
late with respect to the coordinates. Most importantly, we show that our framework designs
reasonable molecules even with small training datasets due to the robust architecture of the
underlying model. By training it on limited, already known and drug-like molecules, we
aim to generate more and previously unseen novel candidates with desired scaffolds that
can be synthesized, which ultimately will contribute towards accelerating the discovery of
therapeutic drugs.

In this contribution, we applied our 3D-Scaffold for de-novo discovery of molecules specif-
ically tailored to bind with given SARS-Cov-2 diseases targets. Our methodology is exem-
plified by the task of designing antiviral candidates to target SARS-CoV-2 related proteins.
Using carefully curated covalent and non-covalent antiviral datasets, we were able to con-
strain the generation space for domain aware deep generative framework to generate novel

covalent and non-covalent inhibitor candidates. Properties of generated molecules are com-
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pared with the molecules in the training set. Generated 3D-coordinates of molecules were
further examined for their efficacy as antiviral inhibitors against SARS-COV-2 main protease

(Mpro) and a SARS-CoV-2 non-structural protein endoribonuclease (NSP15).

Methods

3D-Scaffold framework

The 3D-Scaffold framework is based on an autoregressive, generative deep neural network
named G-SchNet,?%27 which builds molecular structures from scratch by iteratively placing
one atom after another in 3D space, respecting global and local symmetries by design. The

2831 3 state-of-the-art predictive model

neural network uses SchNet for feature extraction,
that can predict several quantum mechanical properties of small molecules with benchmark
chemical accuracy. In 3D-Scaffold, instead of starting from scratch, molecules are build
around a desired scaffold.

From a computational perspective, the neural network used in our framework for de-
novo therapeutic candidate design is broken down into two major blocks: feature learning
and atom placement as shown in Figure 1. In the feature learning block, embedding and
interaction layers are used to extract and update rotationally and translationally invariant
atom-wise features that capture the chemical environment of an unfinished molecule. Here,
the neural network utilizes continuous-filter convolution layers as a means to learn robust
representations of molecules starting only from positions of atoms and corresponding nuclear
charges. In the atom placement block, the extracted features are used to predict distributions
for the type of next atom and its 3D coordinates, where the latter distribution is constructed
from predictions of pairwise distances between the next atom and all preceding atoms. In

order to do the actual placement of the next atom in 3D space, a distribution on a small

grid with candidate positions focused on one of the preceding atoms is constructed from the
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Figure 1: 3D-Scaffold framework used as generative model to produce drug-like molecules
with desired functionality. The bottom panel shows the scaffold-based molecular generation
scheme, where origin token, focus token, and stop type aid the generation of the molecules
from scaffolds.


https://doi.org/10.1101/2021.06.02.446845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446845; this version posted June 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

predicted pairwise distances. The whole procedure is repeated successively in order to build
a complete molecule with desired scaffold: after the type and position of the next atom has
been sampled from the predicted distributions, new atom-wise features incorporating the
added atom are extracted in the feature learning block and then used to place the following
atom with the atom placement block.

The generation process is aided by two auxiliary tokens with unique, artificial types,
namely the origin and focus tokens. At each generation step, one of the already placed
atoms is uniformly randomly chosen as focus token. The origin token, in contrast, stays fixed
throughout the whole generation procedure. In previous work with G-SchNet by Gebauer
et al.?%, the origin token marks the center of mass of molecules. In our 3D-Scaffold frame-
work, however, we instead use it to mark the center of mass of the scaffold that is the starting
point of the generation procedure. At each step, the unplaced neighbour of the focus token
that is closest to the origin token is supposed to be sampled. This means that while the
structure grows around the center of mass of the resulting molecule in the previous G-SchNet
model, in our current 3D-Scaffold framework it grows from the center of mass of the desired
scaffold given to the model as a starting point. If the currently focused atom has no neigh-
bors left to place, the model should predict the stop type instead of a proper atom type and
in this way mark the focused atom as finished. Atoms marked as finished cannot be chosen
as focus anymore and after all atoms have been marked as finished, the generation process
terminates. The resulting schemes for training of the model and generation of molecules are
summarized as pseudo code in Table 1.

The model is trained end-to-end with backpropagation using the ground truth types and
pairwise distances of atoms in training data molecules split into sequential atom placement
steps as described in the pseudo code. At each training step, the model predicts the type
of the next atom and its distances to all preceding atoms. The distributions predicted by
the model are discrete: the type distribution contains a probability value for each atom

type occurring in the training dataset and the stop type and the distance distributions cover
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distances between 0 A and 15 A in 300 equally spaced bins. At any step, let Zyex be the

ground truth type of the next atom and ﬁtZyrgg"

the probability that the model assigns to
that type at the current step. Then, we use negative log-likelihood as the loss for the type

prediction:
(7 = —log (p) (1)

For the loss on distance predictions, we use the cross-entropy between true and predicted

distances:

N

gdists _ Z Z q;) lOg (ﬁ?) (2)

j=1 beB
with Gaussian expanded ground truth distances

e (Irnexi—r;]12—b)*

b
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Here 1,6 is the ground truth position of the next atom, r; is the position of an already placed
atom, NN is the number of preceding atoms, v determines the width of the expansions, B are
the 300 binned distances between 0 A and 15 A, and ]33’ is the probability that the model
assigns for the distance between r; and rp. to fall into distance bin b € B at the current
step. In steps where the ground truth type is the stop type, the loss on distance predictions
is set to zero as no distances are predicted. Descriptions about the hyper-parameters used

in this work is provided in SI.

Training data

Therapeutic candidates interact with target proteins either by forming a covalent bond or
non-covalently with non bonding interactions. Depending on the kind of interaction, they

are known as covalent or non-covalent drug candidates. The focus of our study is to develop
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Table 1: Pseudo code for training and generation phases in 3D-Scaffold framework.

Training phase

Input: M, Iscag

> training molecule, indices of the atoms in the desired scaffold

origin < get_center_of mass(M, Iscasr)
Mart < {origin, focus}

A + {origin}

while A # {¢}

focus < random(A)

> set position of origin token to center of mass of atoms in the scaffold

> initialize partial molecule with the two auxiliary tokens

> initialize set of available atoms with origin token

> while set of available atoms is not empty, i.e. not all atoms marked as finished
> randomly select any atom available as focus

neighbors < get_unplaced neighbors(focus, M, Mpart) > get all neighbors of focus not in Mpare

if neighbors = {¢} then
next_atom < stop
A+ A\ {focus}
else

next_atom <« get_closest_atom(origin, neighbors)

A <+ A U {next_atom}
model.predict_and_backprop(Mpart, next_atom)
if next_atom # stop then

Mpart ¢ Mpare U {next_atom}
if focus = origin then

> no neighbors left for the current focus
> predict stop type to mark current focus as finished
> remove focus from the set of available atoms, i.e. mark it as finished

> find atom in neighbors closest to origin

> add next atom to set of available atoms

> predict distributions for type and distances and update model weights
> if the next atom is not the stop type

> add next atom to the partial molecule

> in the very first step (focus is on the origin)

A + A\ {origin} > remove origin from the set of available atoms to only focus proper atoms afterwards

Generation phase

Input: model, max_atoms, Agcas

> trained model, maximum number of atoms, atoms in the scaffold

origin <— get_center_of_mass(Ascaft)
M <« {origin, focus, Agcasr }
A {Ascaﬂ'}
t 2
N« |Ascaﬁ"
for i =t+ N +1 to t + max_atoms do
while A # {¢}
focus < random(A)
next_type « sample(model.predict_type(M))
if next_type = stop then
A + A\ {focus}
else
break
if A ={¢} then
return M \ {origin, focus}
p(d;;) = model.predict_dists(M, next_type) Vj < i
plri =) = LT[72 p(diy = |Ir —1jl]2)
next_position < sample(p(r;))
M <+ MU {(next_type, next_position) }
A +— A U {(next_type, next_position)}

> set position of origin token to center of mass of atoms in the scaffold
> initialize molecule with auxiliary tokens and the atoms in the scaffold
> initialize set of available atoms with atoms in the scaffold

> number of tokens (origin and focus)

> number of atoms in the scaffold

> atom placement loop

> type prediction loop

> randomly select an atom to be focused from set of available atoms

> predict and sample from distribution over type of the next atom

> if stop type was sampled

> remove current focus from A and repeat type prediction loop

> if a proper atom type was sampled

> proceed to the actual atom placement

> no atoms in set of available atoms, i.e. all are marked as finished

> return the finished molecule without auxiliary tokens

> predict distributions over pairwise distances d;; to preceding atoms
> compute probabilities of grid positions r from distance probabilities
> sample position of next atom from computed 3d grid distribution

> Add sampled atom to molecule

> Add sampled atom to set of available atoms

del M > max_atoms atoms are placed but not all of them marked as finished, thus discard the molecule
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a general framework capable of producing both covalent and non-covalent novel therapeutic
candidates with specific scaffolds, so we performed experiments for two different datasets.

First, we performed experiments on covalent inhibitors data (hereafter called covalent
dataset) taken from multiple sources.?*33 For the covalent dataset, we used ~4000 candi-
dates from a database of FDA approved drugs3? and cysteine molecules from the enamine
database3?® with 6 different scaffolds namely acrylamides, chloroamides, nitriles, disulfides,
maleimides, and pyrodines.®? These functional groups react with the cysteine residue of the
target protein by forming covalent bonds. The distribution of each scaffold in the data set
is provided in the pie chart in Figure 2. Nearly 95 % of the training set is dominated by 3
scaffolds. We later show that, irrespective of the fraction of data for each scaffold, our model
generalize equally well for all of them. SMILES strings of the molecules are extracted from
the respective databases. RDkit3* with MMFF9435 forcefield was used to convert SMILES
into the 3D coordinates required as an input for our model.

BindingDB datab
(1.8 million mol

= Acrylamide
= Chloroacetamide
= Nitrile

Atom type filter

IC50 filter (600k molecules)

» Maleimide

Pyrodine
= Disulphide

Warhead filter (200k molecules)

Molecular weight filter (MW<600 D)

36k molecules (training set)

(a) Covalent dataset (b) Non-covalent dataset
Figure 2: (a) Distribution of covalent dataset based on scaffolds. (b) Filtering criteron used

to generate non-covalent training dataset. See SI for details used for atomtype and warhead
filter.

In addition, for non-covalent inhibitor design we curated and filtered a large dataset of

synthesizable molecules from BindingDB,?¢ MCULE?" and Enamine®® databases to create

10
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the non-covalent dataset. We used different filtering criterons as shown in Figure 2 for
creating the dataset. Our non-covalent inhibitor design model is trained with 36k molecules
consisting of 10k unique scaffolds. For the non-covalent dataset, we use Murcko scaffolds?
as a definition of scaffolds, which demonstrates the flexibility of our model not only in
allowing different scaffold definitions, but also for generating non-covalent inhibitors. We
used RDkit to obtain Murcko scaffolds from SMILES strings of molecules in the training
set. For generation with this dataset, we randomly select 25 out of the 10k scaffolds and
generate 1000 molecules for each of them, providing ample generated molecules to assess the

performance of the model.

Results and Discussion

Despite tremendous effort, COVID-19 lacks effective therapeutics. As of now, no antiviral
drugs were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV,
regardless of previous zoonotic outbreaks.® To identify starting points for such therapeutics,
our focus is to develop a domain informed ML framework to generate covalent electrophiles
and non-covalent inhibitor candidates against the SARS-CoV-2 main protease (Mpro) and
SARS-CoV-2 non-structural protein endoribonuclease (NSP15), two main viral proteases
essential for viral replication. Most of the therapeutic candidates for SARS-CoV-2 have
been taken from existing databases to screen against the target proteins. However, it is
challenging to generate novel yet target specific molecules knowing the functionality and

scaffold that can lead to high potency and efficacy.

Covalent antiviral inhibitor design for Mpro

Using the covalent antiviral dataset, we first trained the model to generate molecules with
6 different scaffolds that are common electrophilic warheads for different drug applications.

For each of the scaffolds, we generated 2000 molecules and inspected them for their validity,

11
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uniqueness and novelty. To calculate the percentage of valid, unique, and novel molecules,

we use

Number of valid molecules

Validity =

Number of generated molecules’

Number of unique molecules

Uni =
ique Number of valid molecules ’

Number of generated molecules not in training set

Novelty = .
overy Number of unique and valid generated molecules

The validity of generated molecules is examined by converting generated 3D coordinates
into canonical SMILES strings using the zyz2mol script from the Jensen group,®®4° which
relies on Rdkit.?* The conversion could also be done using only Rdkit or other open source
tools like Open Babel but they are less reliable when determining bond orders during con-
version. We then used the sanitize functionality of Rdkit to examine the validity of thus
obtained SMILES strings. Alternatively, the validity of generated molecules can be measured
by performing physics based simulations such as density functional theory. But due to enor-
mous computational cost required to perform such calculations on thousands of generated
molecules, we resort to empirical approaches for the same. To examine the novelty of gen-
erated molecules, we compared the Rdkit topological fingerprint similarity of the molecules
in training set and generated set. The uniqueness metric is determined similarly by using
molecular fingerprints. In addition, to further authenticates the performance of our model in
generating valid and synthesizable molecules, we also query the MCULE database®” for gen-
erated molecules to check how many already exist in the MCULE dataset. The performance
of our model in terms of these metrics is listed in Table 2.

The performance of our model is similar to existing scaffold-based generative models in

12


https://doi.org/10.1101/2021.06.02.446845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446845; this version posted June 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2: Table showing the statistics of valid, unique, and novel molecules generated for
different scaffolds. The number of generated molecules that exist in MCULE database (not
in the training set) is also listed in column "Known’. For the model trained on the non-
covalent dataset, mean values of validity, uniqueness and novelty for 25 different scaffolds
is provided. For comparison, performances of recent methods from the literature are also
provided. However, note that literature results stem from experiments with different datasets
than the ones used in this work.

Validity (%) Uniqueness (%) Novelty (%) Known

Scaffolds Covalent dataset

Acrylamides 79 96 99 29
Chloroamides 83 93 99 34
Pyrodines 84 83 100 71
Maleamides 86 85 99 73
Nitriles 81 97 100 59
Disulphides 75 98 100 1
Piperazine® 80 92 100 52

Non-covalent dataset
90 73 100
Literature

(G-SchNet 26 7 92 88 —
Lim et al.?! 99 85 99 —
DeepScaffold 23 99 69 - —
GraphVAE# 56 76 62 —
MolGAN# 98 10 94 —

¢ Novel scaffold

13
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terms of generating valid, unique and novel molecules. For all the scaffolds in the covalent
dataset, our model performs similarly well, with on average 92% uniqueness among the
generated molecules. 81% of generated molecules are valid and ~100% are novel. These
metrics remain similar even for the molecules generated using a novel scaffold (piperazine)
as starting point, thus demonstrating the transferrability of our model to scaffolds not in
the training set. Compared to the existing generative models in the literature, our model
shows superior performance in generating unique and novel molecules, while the percentage
of valid molecules generated is in general slightly lower than for other generative models.
We however note that these models were trained on different datasets, making a direct
comparison of the reported numbers difficult. Moreover, the performance of our model is
especially promising when one takes into account the relatively small amount of training
data used (4000) compared to cited models from the literature which were trained on larger
training sets. Training our model on larger training sets might further improve the reported
statistics. In addition, compared to ours, models from the literature were trained to generate
relatively small molecules with the QM9 dataset. When querying the MCULE database,
we found that some of the molecules generated for each scaffold are already known and
available in the database, demonstrating the success of our model in generating synthesizable
molecules. This also holds for the molecules generated with the novel scaffold piperazines.
An important goal of our work is to generate novel molecules with drug-like properties
while retaining desired scaffolds. To this end, we do not directly condition molecule gen-
eration on the desired properties but instead constrain it to the generation of molecules
with desired scaffolds. We expect that this will indirectly constrain the properties, as well.
The properties of interest are synthetic accessibility (SA) score, quantitative estimation of
drug-likeliness (QED), and the partition coefficient (logP). The SA score measures the syn-
thesizability of generated molecules and has values in the range 0-10, where the lower end
suggests increased accessibility. QED is a useful measure for quantifying and ranking the

drug-likeness of a compound. The values range from 0 for unfavorable to 1 for favorable
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molecules. The partition coefficient, logP, estimates the lipophilicity or hydrophilicity of a
compound. It measures the physical nature of a compound and its permeability and ability
to reach the target in the body. A positive logP value indicates the compound is lipophilic

and a negative logP value indicates a hydrophilic compound.

Table 3: Statistics of molecules from the training and generated data set, respectively for
each scaffold. The mean and standard deviation for each property in each set are provided.

Training Set Generated Set
SA LogP QED SA LogP QED
Chloronmid Mean 255 2.30 0.84 159 1.73 0.65
oroatniaes Std 057 1.00 0.15 1.31 1.97 0.23
Aervlamides Mean  2.65 2.40 0.76 4.26 2.00 0.60
Y Std  0.55 1.33 0.21 1.42 1.99 0.25
Disulohides Mean 2.94 2.64 0.88 5.60 3.15 0.52
P Std  0.89 0.82 0.22 0.95 2.15 0.26
Purodine Mean  2.90 1.62 0.70 4.62 0.80 0.52
Y > Std  0.59 1.47 0.25 1.55 1.71 0.28
Maleammides Mean  2.30 1.32 0.66 4.36 0.72 0.63
i Std  0.27 1.02 0.17 1.40 1.62 0.24
Nitl Mean  2.40 3.12 0.87 4.47 2.10 0.61
HTes Std  0.40 1.00 0.13 1.28 1.84 0.23
i et Mean — _ _ 4.75 1.09 0.54
tperazin Std  — _ _ 1.31 1.86 0.29

@ Novel scaffold

We compare the properties of the generated molecules with the ones in the training set
to see whether our model can generate new molecules with properties similar to those of the
molecules in the training set. Ideally, having similar statistics of properties is an indicator
that our model is performing as expected with the constraints imposed upon it. For the
statistical analysis, we report the mean and standard deviation of the SA, LogP, and QED

scores in both the training and the generated sets in Table 3. The mean SA score of both
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generated and training set molecules falls in the lower half of the SA scale 0—10, implying in
general synthesizability of generated molecules. Slight deviation observed between the two
sets can be attributed to the lack of explicit conditioning on target properties. The mean
value of QED for generated molecules is slightly lower (on average by 0.2 units) compared
to molecules from the training set. However, the model also generated molecules with high
QED, i.e. strong drug-likeliness. logP follows similar trends for its mean value among two
sets. We consistently observed relatively large standard deviation for SA, QED and logP in
generated molecules for each scaffolds, reflecting diversity in generated molecules compared
to the well curated training dataset. To further visualize this data, we display the probability
density plots for SA, QED, and logP of the molecules in the training set and the generated
set for each scaffolds in Figure 3. Solid lines mark the distributions of generated molecules
while dashed lines correspond to molecules in the training set. The distributions of generated
molecules with respect to the SA score in Figure 3(a) show that a good fraction of generated
molecules are experimentally synthesizable. Moreover, the distribution of the SA score for
the novel functional group, piperazine (not in training set), is similar to other scaffolds in
the training set, showing the transferability of our model. This also demonstrate the success
of our model in generating experimentally synthesizable molecules, which is a big issue
with most generative models. For the logP metric (see Figure 3(c)), similar distributions are
observed between generated and training molecules. We were able to generate both lipophilic
as well as hydrophilic compounds as indicated by positive and negative logP, respectively,
with the former category being the majority, similar to the molecules in the training set. This
again indicates that our model is generating novel molecules with properties similar to the
training set. From the QED distribution plot (Figure 3(b)), we see that the majority (60%)
of the molecules have a QED score greater than 0.5, with a good chunk of molecules being
close to 1 as evident from the peaks of probability distribution curves around 0.9. Minor
discrepancies between the properties of generated molecules and the training set may be due

to the lack of directly constrained property optimization in our work. Although our model
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generates molecules with desired properties, it would be interesting to see its performance
when explicitly constraining the desired property range. However, this is beyond the scope

of our current work and is kept aside for future work.

—— maleamides 0.4 a|l— Piperazines

2.0 n —— Acryl amides ] —— Acryl amides —— Acryl amides A
H —— Chloro amides :'. —— Chloro amides —— Chloro amides i
" — disulphides 0.6 0 — disulphides — dsulphides |
15 i —— pyrodines I!'. —— pyrodines 6 { — pyrodines I
i — Nitriles i —— maleamides —— maleamides lt"
: —— Piperazines Py ~—Nitriles
[
. P
]
1]
]

Probability density
=] =
w o

o
(=]

o
[ ¥]
Fey
s
Sk
-]
|
=
o

QED

Figure 3: Probability density plots of SA score, logP, and QED for molecules in the training
set as well as generated set for each functional group. Solid lines correspond to metrics of
data in the generated set, whereas dashed lines of same color correspond to molecules in the
training set.

We further analyzed the diversity of molecules using heatmaps of the Tanimoto coefficient
between molecules within the training set (Figure 4(a)) and within the generated set (Figure
4(b)). The tanimoto coefficient is a measure of the similarity of molecules. The heatmap
shows that the training set we use is quite diverse as evident by the many green spots (low
similarity). A similar heatmap is observed for the generated set, showing that generated
molecules are quite different from each other, while predominantly maintaining similar prop-
erties (as discussed before). We also note that our model generates diverse molecules in
terms of their size, i.e. the number of atoms, while always preserving the given scaffolds.

To check the transferability of our model to generate valid molecules for functional groups
that are not in training set, we generated 2000 molecules with ”Piperazine” as the starting
building block. Generated molecules are checked against the MCULE databases to see if
any of the generated molecules are already known. We found that nearly 50 of the molecules
generated are available in the MCULE database. This shows the capacity of our model to
generate valid, synthesizable molecules even for novel scaffolds. The distribution plot for
the SA, logP, and QED of the molecules generated for piperazine is included in Figure 3.

It shows that the properties of molecules generated follow similar distributions as for other
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Figure 4: Heatmap showing the fingerpoint similarity between molecules in the training set
(a) and the generated set (b) for the scaffold acrylamide.

functional groups.

We visualize representative generated molecules that we also found in the MCULE
database with corresponding SA score, QED, and logP values along with the corresponding
MCULE ids in Figure 5. Overall, our results show that our model constrained to generating
molecules with desired scaffolds indirectly also successfully constrains the properties. De-
spite the significant variation in the amount of training data for each scaffold, our model
consistently generates valid, unique, novel, and experimentally synthesizable molecules with

desired drug-like properties for each scaffold within and outside of the training set.

Binding affinities of covalent inhibitors against Mpro

Finally, as a proof of concept application for generated molecules, we docked them against
main protease (Mpro). Mpro is the key enzyme of SARS-CoV-2 that gets the maximum
attention because of its ability to trigger viral replication and transcription. Significant
effort has been made since the rapid rise of SARS-CoV-2 worldwide to find therapeutic
candidates/vaccines that have desired activity against its protein. Most of the early efforts
were focused on drug repurposing using already known drug molecules. For future pandemic
events, it is possible that an effective drug molecule for repurposing is not yet known. In

those scenarios, models that generate novel molecules with certain functionalities as proposed
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Figure 5: Sample of generated candidates along with their SA score, QED, logP values, and
corresponding MCULE ids. These candidates are synthesizable and available to order from
MCULE database.
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Figure 6: Violin plots showing the distribution of the docking score against the MPro protein
for generated molecules with different scaffolds and training molecules in the covalent dataset.
Larger values imply favorable binding.
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here will be an efficient alternative. First step for such generated molecules is to examine
their efficacy against the target protein using docking simulations. Docking simulations use
empirical approaches to determine the favorable/unfavorable binding of ligands with target
proteins and numerically rank them using a docking score.

For our molecular docking simulations we utilized the AutoDock for Flexible Receptors
(ADFR) package.*? Ligands were covalently bound to Cystine-145 of the target protein
(PDB ID: 6WQF), which is part of a catalytic dyad formed with Hystine-41. We compared
the docking score of generated molecules against the training molecules in the covalent
dataset which is shown in Figure 6. A larger magnitude of the docking score implies higher
favorability for the docking process. We found that generated molecules show similar docking
performance when compared to the molecules in the training covalent dataset as illustrated
in the violin plots and the corresponding mean docking score noted in the labels of the x-
axis. For the majority of scaffolds, including the novel scaffold piperazines and the three
scaffolds that make up 95% of the training data, the generated molecules on average show
higher affinity for docking against the Mpro-target protein than molecules in the covalent
dataset. The only scaffolds that have a smaller mean docking score compared to the training

molecules are maleamides and pyrodines with docking scores of 8.96 and 8.64, respectively.

Non-covalent antiviral inhibitor design for NSP15

With the goal of generating non-covalent inhibitors for SAR-Cov-2 targets, we trained our
model on the non-covalent dataset using Murcko scaffolds. The training data consist of 36k
molecules with 10k unique scaffolds. The performance of our model trained for generating
non-covalent inhibitors is similar (Table 2) to the one for the covalent dataset in terms of
validity and novelty. However, the percentage of unique molecules generated drops to a
mean value of 73 % for about 25 different scaffolds. This may be a direct consequence of
the limited number of molecules (on average 4) for each scaffold in the non-covalent training

set. When generating 1000 molecules for each of the 25 scaffolds, the model repeats some of
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the generated molecules. However, the absolute amount of uniquely generated molecules per
scaffold is still remarkable considering the limited number of training examples per scaffold.
As a part of DOE National Virtual Biotechnology Laboratories (NVBL) therapeutic de-
sign project, we screened millions of compounds in repurposing libraries of drug compound
for activity against nspl-nspl5 from SARS-CoV-2 followed by experimental validation. In
particular, the coronavirus nonstructural protein NSP15 is highly conserved among coron-
aviruses. It is also a key component for viral replication with no corresponding counterpart in
host cells which makes it an intriguing candidate for drug development. Our recent compu-
tational and experimental results demonstrated that Exebryl-1, a 8-amyloid anti-aggregation
molecule designed for Alzheimer’s disease therapy can bind to NSP15 but it did not have
sufficient anti-viral activity in cell-based assays for immediate drug repurposing efforts.*?
This provide us an interesting target to optimize the Exebryl-1 hit based on 3D-Scaffold
framework with better activity and antiviral properties. Our goal is to lead optimization
together with in silico molecular docking calculations onto the crystal structure of NSP15.
As a test case example, we generated non-covalent inhibitors for the SAR-CoV-2 non-
structural protein endoribonuclease (NSP15) target (PDB ID: 6XDH) by optimizing Exebryl-
1 based compounds.*® Exebryl-1 has experimentally been found to be active®? against NSP15
from high-throughput assay screening from drug and lead repurposing libraries. Our goal is to
modify and generate more active compounds against the NSP15 target by building molecules
on top of Murcko scaffolds of the Exebryl-1 molecule. When examining the structure-activity
relationship, some of such generated molecules (see Figure 7) show good binding-activity
against the NSP15 target. Moreover, these molecules are easily synthesizable (low SA scores)
and have desired drug likeliness (large QED values). Generated molecules from our work
that showed high activity against NSP15 from docking and molecular dynamics simulations

are further being investigated by our experimental collaborators.
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Figure 7: Exebryl-1 and representative generated molecules from our 3D-Scaffold framework
with high binding affinity against NSP15 protein-target. For each molecule, we list the
SA score, QED, logP, binding affinity, and fingerprint similarity (labelled sim in figure)
with respect to experimentally known NSP15 inhibitor Exebryl-1. The scaffold used for
optimization is highlighted in red in generated molecules.

Conclusions

In this report, we developed a generative framework that can generate 3D coordinates of
therapeutic candidates with any desired scaffold. The model is trained end-to-end incor-
porating robust atomistic representation learning techniques and generates 3D coordinates
from the learned probability distributions of atom types and the pairwise distances. Due
to starting the sequential atom-by-atom generation scheme of our framework from a given
scaffold, the desired scaffold is 100 % guaranteed in the generated 3D coordinates. We
use covalent and non-covalent antiviral datasets to optimally narrow the search towards
novel compounds with therapeutic significance that are reasonable to design as covalent and
non-covalent inhibitors. We show that our model generates predominantly valid, unique,
and novel molecules that have therapeutic drug-like properties similar to the molecules in
the training set. The success of our framework lies in generating synthesizable molecules

with desired properties without directly constraining on the target properties. Moreover,
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it performs well for relatively small volumes of training data and generalizes equally well
for generating molecules with a new scaffold, which demonstrates the transferability of the
proposed framework.

Our framework offers the advantage that the generated 3D-coordinates of molecules can
be directly used for further simulations such as DF'T, MD, or docking calculations in contrast
to SMILES or graph based models where empirical approaches are used to generate 3D
coordinates. As an application, the 3D coordinates of generated molecules from our work
were examined for their interaction against the Mpro and NSP15 targets of SARS-CoV-
2 using docking simulations. Our results show that generated molecules have favorable
interaction against the target protein similar to the molecules in the training set. This holds
true for novel scaffolds as well. Although we used our framework to generate covalent and
non-covalent inhibitors in this work, our model in principle can be used to generates any
kind of molecules with desired scaffolds making it applicable to many domains. We believe
that the robust performance of our model on relatively small data sets and its generalization
on new scaffolds provides an efficient and flexible way of generating new molecules while
simultaneously optimizing the functionalities by constraining the types of scaffolds included.
Further improvement in the performance of the 3D-Scaffold framework may be observed
by generating molecules while also explicitly constraining on the target properties or by

generating molecules with more than one critical scaffold.
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