

1 **macroH2A2 shapes chromatin accessibility at enhancer elements in glioblastoma to**
2 **modulate a targetable self-renewal epigenetic network**

3
4 Ana Nikolic^{1,2,3}, Anna Bobyn^{1,2,4}, Francesca Maule^{1,2}, Katrina Ellestad^{1,2}, Xueqing Lun^{1,2}, Michael
5 Johnston^{1,2}, Christopher J Gafuik^{1,2}, Franz J Zemp^{1,2}, Seungil Paik^{1,2}, Nicoletta Ninkovic^{1,2}, Sajid
6 A Marhon⁵, Parinaz Mehdipour⁵, Yaoqing Shen^{6,7}, N. Daniel Berger^{1,2,3}, Duncan K Brownsey^{1,2,8},
7 Peter B Dirks^{9,10}, Darren J Derksen^{1,2,8}, Steven JM Jones^{6,7}, Daniel de Carvalho^{5,11}, Donna L
8 Senger^{1,2,12}, Jennifer A Chan^{1,2,12}, Douglas J Mahoney^{1,2,13}, Marco Gallo^{1,2,3*}

9
10
11 ¹Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary,
12 Calgary, AB, Canada

13 ²Alberta Children's Hospital Research institute, Cumming School of Medicine, University of
14 Calgary, Calgary, AB, Canada

15 ³Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University
16 of Calgary, Calgary, AB, Canada

17 ⁴Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB,
18 Canada

19 ⁵Princess Margaret Cancer Centre, Toronto, ON, Canada

20 ⁶Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada

21 ⁷Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada

22 ⁸Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada

23 ⁹Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON,
24 Canada

25 ¹⁰Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

26 ¹¹Department of Medical Biophysics, Faculty of Science, University of Toronto, Toronto, ON,
27 Canada

28 ¹²Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB,
29 Canada

30 ¹³Department of Microbiology, Immunology and Infectious Diseases, Cumming School of
31 Medicine, University of Calgary, Calgary, AB, Canada

32
33 *Correspondence to: Marco Gallo (marco.gallo@ucalgary.ca)

34
35
36
37
38
39
40
41
42
43
44
45
46

47 **SUMMARY**

48
49 Self-renewal is a crucial property of glioblastoma cells and is enabled by the choreographed
50 function of chromatin regulators and transcription factors. Identifying targetable epigenetic
51 mechanisms of self-renewal could represent an important step toward developing new and
52 effective treatments for this universally lethal cancer. Here we uncover a targetable epigenetic axis
53 of self-renewal mediated by the histone variant macroH2A2. Using patient-derived *in vitro* and *in*
54 *vivo* models, we show that macroH2A2 has a direct role in shaping chromatin accessibility at
55 enhancer elements to antagonize transcriptional programs of self-renewal. Pharmaceutical
56 inhibition of the chromatin remodeler Menin increased macroH2A2 levels and repressed self-
57 renewal. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by
58 macroH2A2 and suggest new treatment approaches for glioblastoma patients.

59

60

61 **KEYWORDS**

62

63 Glioblastoma, cancer, brain tumor, epigenomics, chromatin, histone variants, macroH2A2, self-
64 renewal, patient-derived models.

65

66

67 **SIGNIFICANCE**

68

69 Glioblastoma is an incurable brain cancer. Malignant self-renewing cells have been shown to drive
70 tumor growth, to be refractory to current treatment approaches and to seed relapses, which
71 ultimately prove lethal. Identifying new and targetable mechanisms associated with self-renewal
72 could be a fundamental first step in designing effective therapies that slow or prevent glioblastoma
73 relapses. Using patient-derived models of glioblastoma, we deployed epigenomic approaches and
74 functional assays to define the role of the histone variant macroH2A2 in repressing self-renewal.
75 We identified compounds that increase macroH2A2 levels and repress self-renewal, including a
76 Menin inhibitor. As Menin inhibitors are being tested in clinical trials, these compounds could be
77 used in new therapeutic paradigms to target self-renewing cell populations in glioblastoma.

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 **INTRODUCTION**

94

95 Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and carries
96 abysmal prognoses, even in cases treated with gross total resection and adjuvant
97 chemoradiotherapy (Stupp et al., 2005). Several factors are thought to contribute to the
98 aggressiveness of GBM, especially at recurrence: The activation of drug resistance mechanisms
99 (Chen et al., 2012), hypermutation (Cahill et al., 2007; Hunter et al., 2006; Yip et al., 2009), a
100 highly immunosuppressive tumor microenvironment (Alvarado et al., 2017; Antonios et al., 2017),
101 and underlying disease characteristics, most notably a high degree of intratumoral heterogeneity
102 (Neftel et al., 2019; Suvà et al., 2014). Recent studies have shown that the cellular heterogeneity
103 observed in GBM occurs both at the genetic and epigenetic level (Gallo et al., 2015; Lan et al.,
104 2017; Neftel et al., 2019; Suvà et al., 2014). It is thought that epigenetic heterogeneity in GBM
105 reflects the co-existence of functionally non-equivalent populations of cells, similarly to what has
106 been observed in normal developmental paradigms. This functional interpretation of epigenetic
107 heterogeneity in GBM well aligns with the experimentally-validated concept that GBM is
108 populated by cell populations with different functional properties, including slow-cycling self-
109 renewing cells, proliferative progenitor-like cells with limited self-renewal and differentiated
110 progeny that are destined to die (Cusulin et al., 2015a; Lan et al., 2017; Lathia et al., 2010; Miller
111 et al., 2017; Singh et al., 2004; Suvà et al., 2014) .

112

113 GBM self-renewing cells (GSCs) are expandable in culture (Pollard et al., 2009), can differentiate
114 into non-self-renewing cell types *in vitro* (Galli et al., 2004; Singh et al., 2003) and are capable of
115 tumor initiation and serial propagation of the tumor in immunocompromised mice *in vivo* (Singh
116 et al., 2004). Studies have shown GSCs are more resistant to the standard of care treatment for
117 GBM than non-self-renewing cells, and they represent a larger fraction of tumor cells at relapse
118 than at diagnosis (Bao et al., 2006; Liu et al., 2006). GSCs therefore play crucial roles in tumor
119 growth, therapy resistance and in seeding relapses. However, therapeutic targeting of self-
120 renewing cells is currently an unmet clinical need.

121

122 Pro-self-renewal epigenetic programs are maintained by the choreographed function of several
123 chromatin remodelers. These include the histone methyltransferase DOT1L and arginine
124 demethylase JMJD6 (MacLeod et al., 2019), members of the mixed-lineage leukemia (MLL)
125 family (Gallo et al., 2013; Heddleston et al., 2012) and of the polycomb-repressive complexes 1
126 and 2 (PRC1/2) (Abdouh et al., 2009; Suvà et al., 2009), among others. These chromatin
127 remodelers promote self-renewal by activating transcriptional networks associated with stemness
128 and by repressing differentiation. This can be achieved through the activation of master
129 transcription factors (Rheinbay et al., 2013; Suvà et al., 2014) or by modulating the expression of
130 histone variants, which ultimately shape chromatin organization and downstream transcriptional
131 programs .

132

133 Histone variants differ from core histones at key amino acids that determine their patterns of
134 incorporation into chromatin and their effects on transcription of downstream genes (Maze et al.,
135 2014). For instance, *H2AFY* and *H2AFY2* encode two closely related variants of core histone H2A,
136 namely macroH2A1 and macroH2A2, respectively. They share only about 60% sequence identity
137 in their histone domain with core histone H2A (Buschbeck and Hake, 2017), and contain two
138 additional domains: A basic linker region with putative DNA binding function, and a “macro”

139 domain with little sequence conservation between the two paralogs (Costanzi and Pehrson, 2001).
140 Because of the large size of the macro domain, substitution of H2A with macroH2A1 or
141 macroH2A2 is predicted to have large effects on chromatin organization (Cantariño et al., 2013).
142 Loss or downregulation of macroH2A1 and macroH2A2 has been described in a number of
143 malignancies, including bladder cancer, melanoma, lung cancer, and gastric cancer (Kapoor et al.,
144 2010; Novikov et al., 2011; Sporn et al., 2009).

145
146 MacroH2A1 was first studied for its role in X chromosome inactivation in female mammalian cells
147 (Costanzi and Pehrson, 1998). It localizes to large chromatin domains throughout the genome that
148 encompass developmentally regulated genes and regions of imprinting, and it accumulates at
149 senescence-associated heterochromatic foci (Chen et al., 2015; Choo et al., 2006; Gamble et al.,
150 2010; Zhang et al., 2005, 2007). Both macroH2A1 and macroH2A2 are involved in the repair of
151 double-strand breaks, and knockdown of macroH2A1 impairs DNA double strand repair (Kim et
152 al., 2017, 2018; Kozlowski et al., 2018; Timinszky et al., 2009). MacroH2A2 loss has been
153 described in invasive melanoma (Kapoor et al., 2010). Knockdown or knockout of macroH2A
154 paralogs increase reprogramming efficiency of somatic cells into induced pluripotent stem cells
155 (Barrero et al., 2013), suggesting that these histone variants might be involved in repression of
156 stemness properties, including self-renewal.

157
158 The molecular mechanisms exploited by macroH2A paralogs in modulating stemness and self-
159 renewal are not currently understood, especially in the context of cancer. Given the current
160 inability to target self-renewing cells in most cancer types, dissection of these mechanisms could
161 be important to identify new treatment options for GBM and other malignancies characterized by
162 intratumoral functional heterogeneity. Here we deploy epigenomic and functional assays to
163 unravel the mechanisms utilized by macroH2A2 to control self-renewal programs in GBM, and
164 pursue potential translational avenues with our preclinical models.

165

166

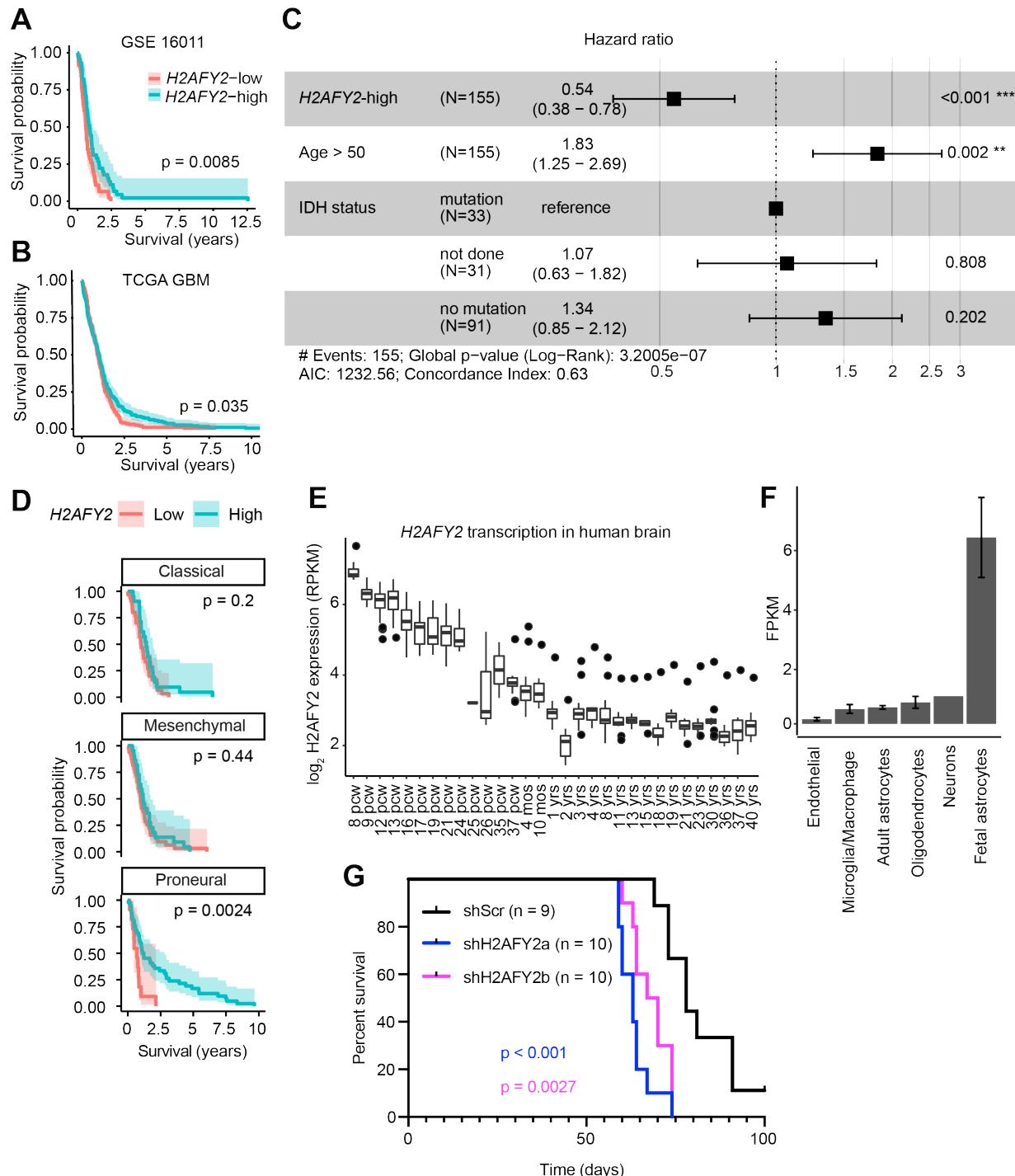
167

168 RESULTS

169

170 Low expression of *H2AFY2* is a negative prognostic factor for GBM patients

171 We embarked on a systematic analysis to identify genes encoding histone variants that may be
172 involved in GBM biology. Our approach consisted in looking for histone variant genes whose
173 expression could stratify GBM patients based on overall survival. One of our best candidates was
174 *H2AFY2*, the gene encoding the histone H2A variant macroH2A2. Median expression levels were
175 used to classify patients as high- or low-expressors. We found that low levels of *H2AFY2*
176 transcription were associated with shorter overall survival in IDH-wildtype GBM in the
177 Gravendeel cohort (Gravendeel et al., 2009) (log-rank p = 0.0069), as well as in the GBM cohort
178 collected by The Cancer Genome Atlas (TCGA, 2015) (**Figure 1A, 1B**). Age is a potent
179 confounder for overall survival, with younger glioma patients usually performing better than older
180 patients. A multivariate Cox regression model also showed that increased *H2AFY2* expression had
181 prognostic significance in both cohorts (hazard ratio: 0.54 [0.38 – 0.78]; **Figure 1C; Figure S2A–**
182 **S2C**), even when adjusted for known prognostic factors such as IDH mutation status, age, and
183 treatment status (**Figure S2C**). In the TCGA cohort, the survival benefit associated with high
184 *H2AFY2* transcription was also observed in patients with recurrent disease, and these patients were


185 noted to have significantly higher levels of *H2AFY2* expression on average (**Figure S2D; Figure**
186 **S2E**). Transcription levels of *H2AFY* (which encodes macroH2A1) had no prognostic significance
187 in either patient cohort (**Figure S1B, S1C**). Moreover, the effects of *H2AFY2* appeared to be
188 specific to IDH-wildtype GBM, as no effect was seen in IDH-mutant tumours in the Gravendeel
189 dataset (**Figure S1D**). When RNA-seq data from the TCGA are separated by transcriptional
190 subtype, the survival benefit of *H2AFY2* expression is significant specifically in proneural tumours
191 ($p = 0.0024$; log-rank test) and not in classical or mesenchymal tumours (**Figure 1D**).

192 When expression of *H2AFY2* is compared to expression of *H2AFY* in the TCGA glioblastoma
193 cohort, the former has a clear bimodal distribution, a pattern not seen for *H2AFY* (macroH2A1)
194 (**Figure S1E**). These data point to a specific role for macroH2A2 in GBM chromatin biology.

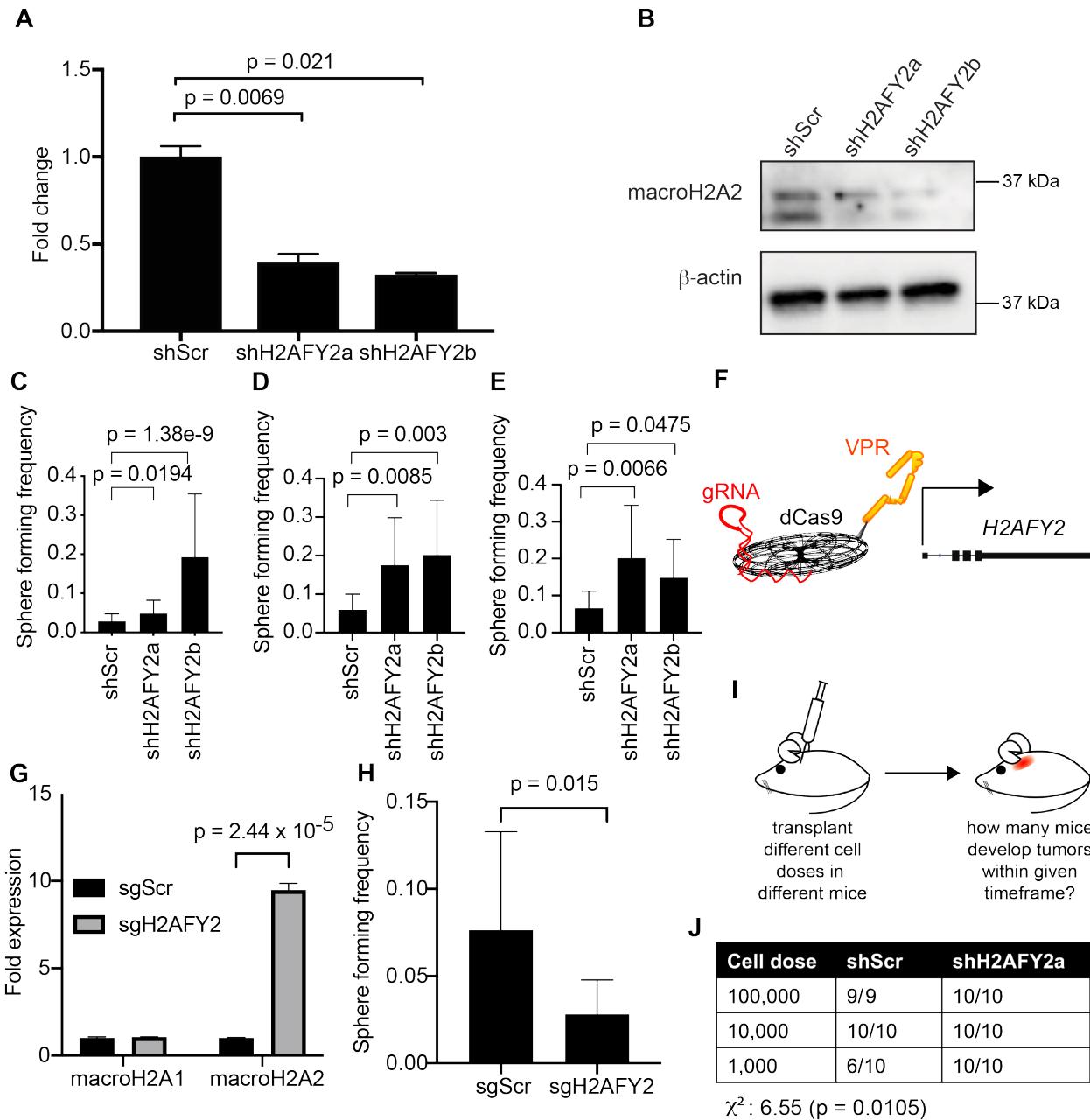
195 We used transcriptome datasets from the Allen Brain Atlas BrainSpan database (Miller et al.,
196 2014) to extract information on *H2AFY2* expression during human brain development in samples
197 collected between 8 weeks post-conception and 40 years of age. We found that *H2AFY2* expression
198 peaks at 8 weeks post-conception, steadily declines during fetal development and stabilizes at 2-3
199 years of age into adulthood (**Figure 1E**). Our analyses of data from BrainSeq2 also show that
200 expression of *H2AFY2* is particularly elevated in fetal astrocytes compared to other brain cell types
201 (**Figure 1F**) (Zhang et al., 2016). Single-cell expression data from mouse striatum highlights a
202 fetal expression pattern for *H2afy2*, with preferential expression largely in neuronal precursor cells
203 and oligodendrocyte precursor cells (**Figure S1C**) (Saunders et al., 2018). Transcription of
204 *H2AFY2* in the brain therefore appears to be temporally-regulated, with the highest expression
205 observed during early fetal development in both humans and mice.

206 Because *H2AFY2* levels have prognostic significance and are dynamically regulated during
207 brain development, we decided to investigate whether this gene plays a direct role in the biology
208 of GBM. We used our patient-derived GSC cultures to generate stable inducible *H2AFY2*
209 knockdown models of GBM. We transplanted GSCs carrying control scrambled shRNA constructs
210 (shScr) or either of two shRNAs targeting *H2AFY2* (shH2AFY2a/b) into the forebrains of NSG
211 mice. We observed reproducible negative effects of *H2AFY2* knockdown on mouse survival (log-
212 rank $p < 0.001$ for shH2AFY2a and $p = 0.0027$ for shH2AFY2b) (**Figure 1G**). Therefore our
213 patient-derived knockdown models recapitulate the association between low *H2AFY2* levels and
214 poor prognosis we observed in glioma patient cohorts (**Figures 1A,1B**). Importantly, our results
215 indicate that this gene plays a direct functional role in GBM biology and deserves further
216 investigation.

217

218
219

220 **Figure 1. Low transcription levels of H2AFY2/macroH2A2 contribute to GBM aggressiveness.**
 221 (A, B) Kaplan-Meier survival analysis of adult IDH-wildtype glioblastoma patients (GSE16011; Gravendeel et al
 222 2009; TCGA glioblastoma cohort) based on H2AFY2 transcription levels. H2AFY2-low and -high groups were
 223 determined by median gene expression. Shaded region represents 95% confidence interval. P value was obtained by
 224 log-rank test. (C) Hazard ratios for macroH2A2 expression in a multivariate Cox regression model adjusting for
 225 other factors relevant for glioblastoma (age, IDH mutation status). Error bars represent 95% confidence intervals.
 226 (D) Kaplan-Meier survival analysis of adult glioblastoma patients separated by transcriptional subtype (TCGA).


227 Shaded region represents 95% confidence interval. P values obtained by log-rank test. **E**) Expression of *H2AFY2* at
228 different timepoints of brain development. Datasets were accessed through the BrainSpan database.
229 **(F)** Transcriptional levels of *H2AFY2* were assessed in different human brain cell types. Datasets were accessed
230 through the BrainSeq2 database.
231 **(G)** Orthotopic xenograft experiments to assess the effects of *H2AFY2* knockdown on survival of transplanted mice.
232 Patient-derived GSCs carrying either scrambled control shRNA constructs (shScr; n = 9) or independent shRNAs
233 targeting *H2AFY2* (shH2AFY2a/b; n = 10 mice per group) were transplanted orthotopically in immunocompromised
234 mice. P values were calculated with the log-rank test.
235
236

237 **macroH2A2 antagonizes self-renewal in GBM**

238 We previously reported that the histone H3 variant H3.3 has a strong role in repressing self-renewal
239 in GBM (Gallo et al., 2015). Self-renewal, or self-replication, is a key property of a population of
240 cells that propagate tumor growth (Magee et al., 2012). It was shown that the fraction of GBM
241 cells that can self-renew, as well as transcriptional signatures associated with self-renewal, are
242 negative prognostic factors for this brain cancer (Murat et al., 2008). Given the significance of
243 self-renewal in GBM, we investigated whether macroH2A2 plays a role in modulating this crucial
244 functional property. The frequency of self-renewing cells in a population can be estimated with *in*
245 *vitro* limiting dilution assays (LDAs), which use sphere-forming frequency as a measure of self-
246 renewal. We used our doxycycline-inducible *H2AFY2* knockdown models (**Figure 2A,B; Figure**
247 **S2A**) for *in vitro* LDAs in three different primary patient-derived cultures (G523, GSC3, GSC5),
248 and found that knocking down *H2AFY2* resulted in increased self-renewal (**Figure 2C-2E**). These
249 *H2AFY2* knockdown constructs were specific to this H2A variant and showed no effect on protein
250 levels of the related variant macroH2A1 (**Figure S2B**). In order to cross-check these results with
251 an independent experimental system, we decided to overexpress *H2AFY2* using a fusion protein
252 composed of catalytically dead Cas9 (dCas9) and the transcriptional activator VPR (dCas9-VPR
253 system (Chavez et al., 2015); **Figure 2F**). We transduced GSCs with a lentivirus carrying dCas9-
254 VPR to generate a stable inducible overexpression model. We then transfected this GSC line with
255 a pool of five single guide RNAs (sgRNAs) targeting *H2AFY2*. RT-qPCR showed that this
256 experimental system resulted in a 10-fold overexpression of *H2AFY2* over control cells transfected
257 with scrambled sgRNAs (sgScr), with no effects on transcription levels of the close paralog *H2AFY*
258 encoding the H2A variant macroH2A1 (**Figure 2G; Figure S2C, S2D**). We therefore employed
259 this *H2AFY2*-specific overexpression models in *in vitro* LDAs, which showed that *H2AFY2*
260 overexpression causes a ~50% reduction in sphere-forming frequency (**Figure 2H**). Therefore, our
261 knockdown and overexpression systems concordantly show an antagonistic effect of macroH2A2
262 on self-renewal in patient-derived GSC cultures.

263 To further validate these findings, we performed *in vivo* LDAs. We transplanted GBM cells
264 carrying our doxycycline-inducible stable *H2AFY2* system or shScr controls into the forebrains of
265 NSG mice (**Figure 2I**). We transplanted 10 mice at each cell dose (100,000, 10,000 and 1,000
266 cells) for knockdown and control cells. At the lowest dose, 10 out of 10 mice transplanted with
267 *H2AFY2*-knockdown cells developed tumors, whereas only 6 out of 10 control mice did (**Figure**
268 **2J**). Overall, we observed a significant difference in engraftment potential between GBM cells
269 with *H2AFY2* knockdown and control cells (χ^2 p = 0.0105). Our *in vivo* LDAs therefore confirm
270 our *in vitro* experiments and support an antagonistic role of macroH2A2 on self-renewal.

271
272
273
274

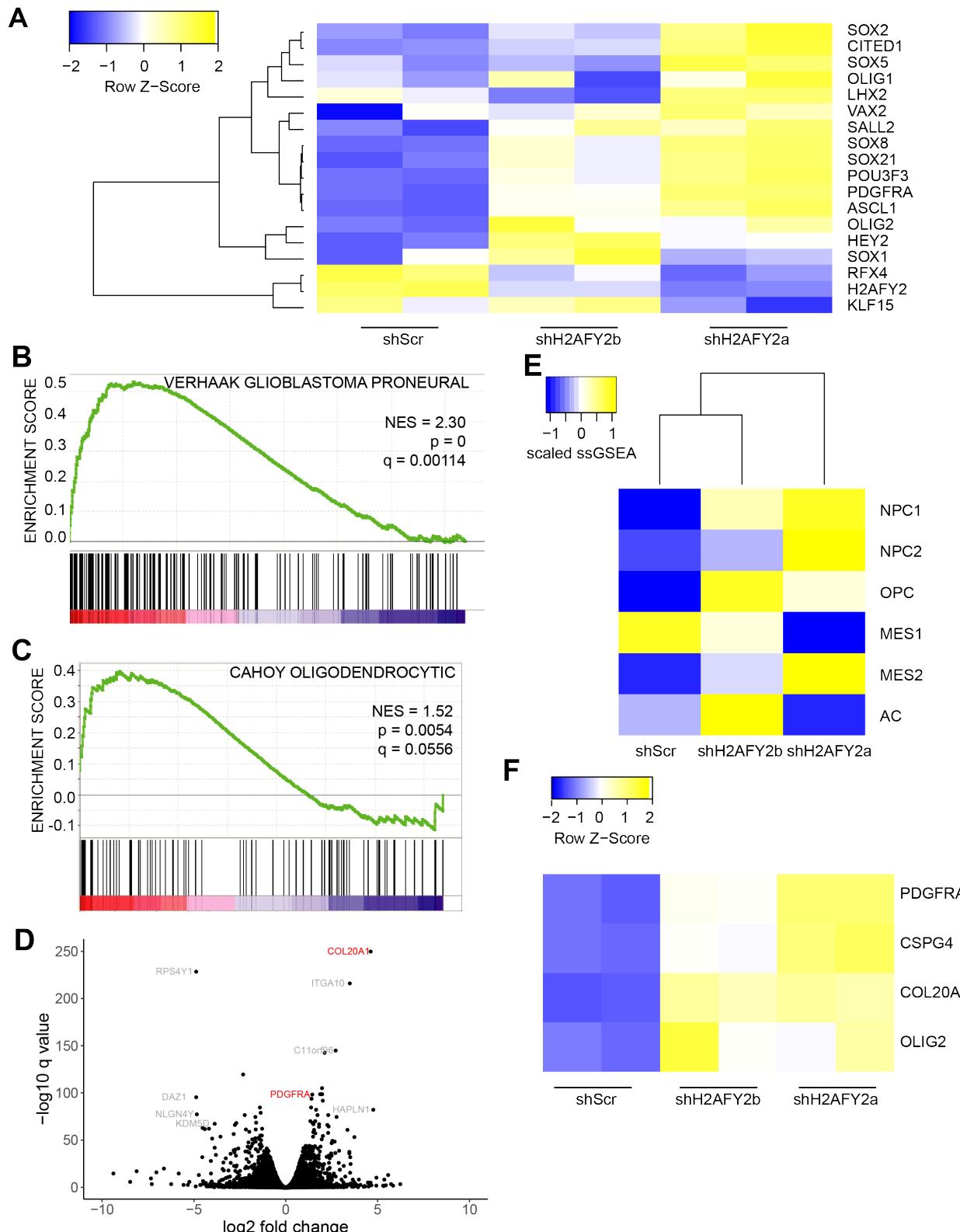
275
276

Figure 2. macroH2A2 antagonizes self-renewal in GBM.

277 (A) qRT-PCR to assess the transcriptional levels of *H2AFY2* in cells carrying control (shScr) or knockdown
278 (shH2AFY2a/b) constructs 48 hours after doxycycline induction. Expression normalized to actin and GAPDH. P
279 value were determined with a two-tailed t-test. The experiment was repeated 4 times.

280 (B) Western blot to compare macroH2A2 protein levels in control and knockdown cells after 14 days of shRNA
281 induction. The experiment was repeated 3 times.

282 (C-E) Limiting dilution assay results after 14 days of doxycycline induction in G523 glioma cells (C), GSC3 (D),
283 and GSC5 (E). P value was determined by Chi-square test with the tool ELDA (see Methods). Error bars: 95%
284 confidence interval. Statistics from 6 technical replicates; the experiment was repeated 3 times.


285 (F) Schematic of the dCas9-VPR overexpression system.

287 (G) Validation of overexpression system by qRT-PCR after 48 hours of induction by sgRNA. Transcription was
288 normalized to actin and GAPDH. P value was determined with a two-tailed t-test. The experiment was repeated 2
289 times.
290 (H) Limiting dilution assay of G523 cells with dCas9-VPR and guide RNA targeting macroH2A2 or a non-targeting
291 guide control at 7 days. P value was determined by Chi-square test with the tool ELDA (see Methods). Error bars:
292 95% confidence interval. Statistics from 6 technical replicates; the experiment was repeated 3 times.
293 (I) Schematic of *in vivo* limiting dilution assay.
294 (J) Overview of *in vivo* limiting dilution assay results. Mice were transplanted orthotopically with either shScr or
295 shH2AFY2a-transduced GSCs. P value and chi square value obtained by Chi-square test.
296
297
298
299

300 **macroH2A2 represses a transcriptional signature of self-renewal in GBM**

301 Given that our *in vitro* and *in vivo* functional assays showcased a role for macroH2A2 in repressing
302 self-renewal properties of GBM cells, we hypothesized that this histone variant might regulate
303 expression of stemness genes. To test this hypothesis, we performed RNA-seq on GBM cells with
304 *H2AFY2* knockdown (two independent hairpins) or shScr constructs (two biological replicates per
305 condition). We then looked at the effects of *H2AFY2* knockdown on a recently published GBM
306 stemness signature composed of 17 genes (Suvà et al., 2014). We found that overall, *H2AFY2*
307 knockdown resulted in increased transcription of these stemness genes, with strong and consistent
308 effects especially on *VAX2*, *SALL2*, *SOX8*, *SOX21*, *POU3F3*, *PDGFRA*, *ASCL1* and *OLIG2*
309 (**Figure 3A**). These data support a role for macroH2A2 in repressing self-renewal by antagonizing
310 a stemness transcriptional network in GBM.

311 Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) of differentially expressed
312 genes upon *H2AFY2* knockdown revealed positive enrichment for signatures associated with the
313 proneural molecular subtype of GBM (Verhaak et al., 2010) (**Figure 3B**) and with
314 oligodendrocytic gene signatures (**Figure 3C**). Volcano plots further illustrated that some of the
315 most upregulated genes upon *H2AFY2* knockdown are oligodendrocyte markers, including
316 *COL20A1* and *PDGFRA* (**Figure 3D**) (Rivers et al., 2008). When gene expression is compared to
317 the single-cell transcriptional subtypes identified by Neftel et al, we see an increase in the OPC
318 and NPC1 lineages by ssGSEA, and a reduction in mesenchymal (MES1) and astrocytic (AC)
319 lineages (**Figure 3E**). Interestingly, with shH2AFY2a, which has a stronger knockdown, we see
320 more of the MES and NPC2 phenotypes, which are not seen with the shH2AFY2b knockdown.
321 This suggests that macroH2A2 may act as a rheostat regulating the transitions between distinct
322 cellular fates. We also found that *CSPG4/NG2*, a widely-used marker of the oligodendrocyte
323 lineage, is transcribed at higher levels following *H2AFY2* knockdown (**Figure 3F**). Overall, our
324 data point to a role for macroH2A2 in repressing gene expression signatures associated with self-
325 renewal and the oligodendrocytic lineage. This is a particularly intriguing finding because
326 oligodendrocyte progenitor cells have been proposed as the cell of origin of GBM based on
327 experimental work with murine (Alcantara Llaguno et al., 2015; Liu et al., 2011) and patient-
328 derived (Yuan et al., 2018) models.
329
330
331
332
333

334
335
336

Figure 3. MacroH2A2 knockdown leads to widespread gene expression changes in stemness and oligodendroglial genes.

337 (A) RNA-seq was used to determine transcriptional levels of an established stemness gene signature at 7 days
338 following *H2AFY2*/macroH2A2 knockdown. Two biological replicates were used per condition.
339 (B,C) Two signatures enriched by GSEA in knockdown versus control cells.
340 (D) Volcano plot highlighting differentially expressed genes after 7 days of *H2AFY2*/macroH2A2 knockdown in
341 G523 cells.
342 (E) Comparative ssGSEA analysis of the Neftel scRNA-seq GBM transcriptional subtypes (Neftel et al., 2019) in
343 control versus *H2AFY2* knockdown samples.
344 (F) Heatmap showing differential expression of oligodendrocyte precursor cell-associated genes in knockdown cells
345 versus control. Two biological replicates per condition.

346
347
348

349 **MacroH2A2 maintains chromatin organization at developmentally regulated genes**

350 MacroH2A variants have been mostly studied in the context of their roles in chromatin
351 compaction, including X inactivation. However, there is emerging evidence that macroH2A
352 variants can also be found at sites of open chromatin (Sun et al., 2018; Yildirim et al., 2014). To
353 disambiguate the function of macroH2A2 in epigenetic programs in GBM, we performed the
354 sequencing-based assay for transposase-accessible chromatin (ATAC-seq) in our patient-derived
355 knockdown models. ATAC-seq was performed on two biological replicates for both shScr control
356 cells and *H2AFY2* knockdown cells. We found that *H2AFY2* knockdown caused both gains and
357 losses of chromatin accessibility (**Figure 4A**), although losses were more frequent and globally
358 resulted in fewer base pairs of DNA in accessible chromatin in knockdown cells (**Figure 4B**). The
359 data support the notion that macroH2A2 contributes to the organization of both accessible and
360 inaccessible chromatin regions, although its contributions to accessible regions are more
361 prominent in our GBM models.

362 Gene ontology analysis of genes located in differential chromatin accessibility regions upon
363 *H2AFY2* knockdown identified significant enrichment for genes involved in neurodevelopmental
364 pathways, including the terms “nervous system development” and “axonal guidance” (**Figure 4C**).
365 HOMER motif analysis (Heinz et al., 2010) revealed that chromatin accessibility changes occur at
366 sites with significant enrichment for binding sites of transcription factors associated with
367 neurodevelopment. For instance, sites that lost chromatin accessibility had an enrichment of c-
368 JUN motifs (identified at 32.89% of targets compared to 2.04% of background genomic sites, $p =$
369 1e-43, hypergeometric test; **Figure 4D**), whereas sites that gained accessibility upon macroH2A2
370 knockdown had enrichment for SOX10 motifs (identified at 31.71% of targets compared to
371 13.93% of background genome-wide sites, $p = 1e-4$; hypergeometric test; **Figure 4E**), a
372 transcription factor associated with neural crest development and oligodendrocyte differentiation
373 (Claus Stolt et al., 2002; Finzsch et al., 2008; Stolt et al., 2004). These findings, together with the
374 developmental regulation of *H2AFY2* we showed above (**Figures 1D,E**), implicate macroH2A2 in
375 fine tuning brain-specific epigenetic and transcriptional programs of self-renewal by modulating
376 chromatin organization.

377 Next, we investigated whether macroH2A2 levels had a greater impact on *global* chromatin
378 architecture, as we have reported for the histone variant H3.3, compared to its effects on the *local*
379 chromatin environment. We have previously shown that ATAC changepoint analysis provides a
380 measure of global changes in chromatin architecture. We performed changepoint analysis using
381 our ATAC-seq datasets generated with shScr and sh*H2AFY2* GBM cells and we did not observe
382 large structural differences with the exception of chromosomes 3, 5 and 10 (**Figure 4F**). We
383 conclude that macroH2A2 has dual roles in maintaining compacted and accessible regions without

384 causing large-scale chromatin reorganization. We therefore decided to investigate potential roles
385 of macroH2A2 in shaping the local chromatin environment.

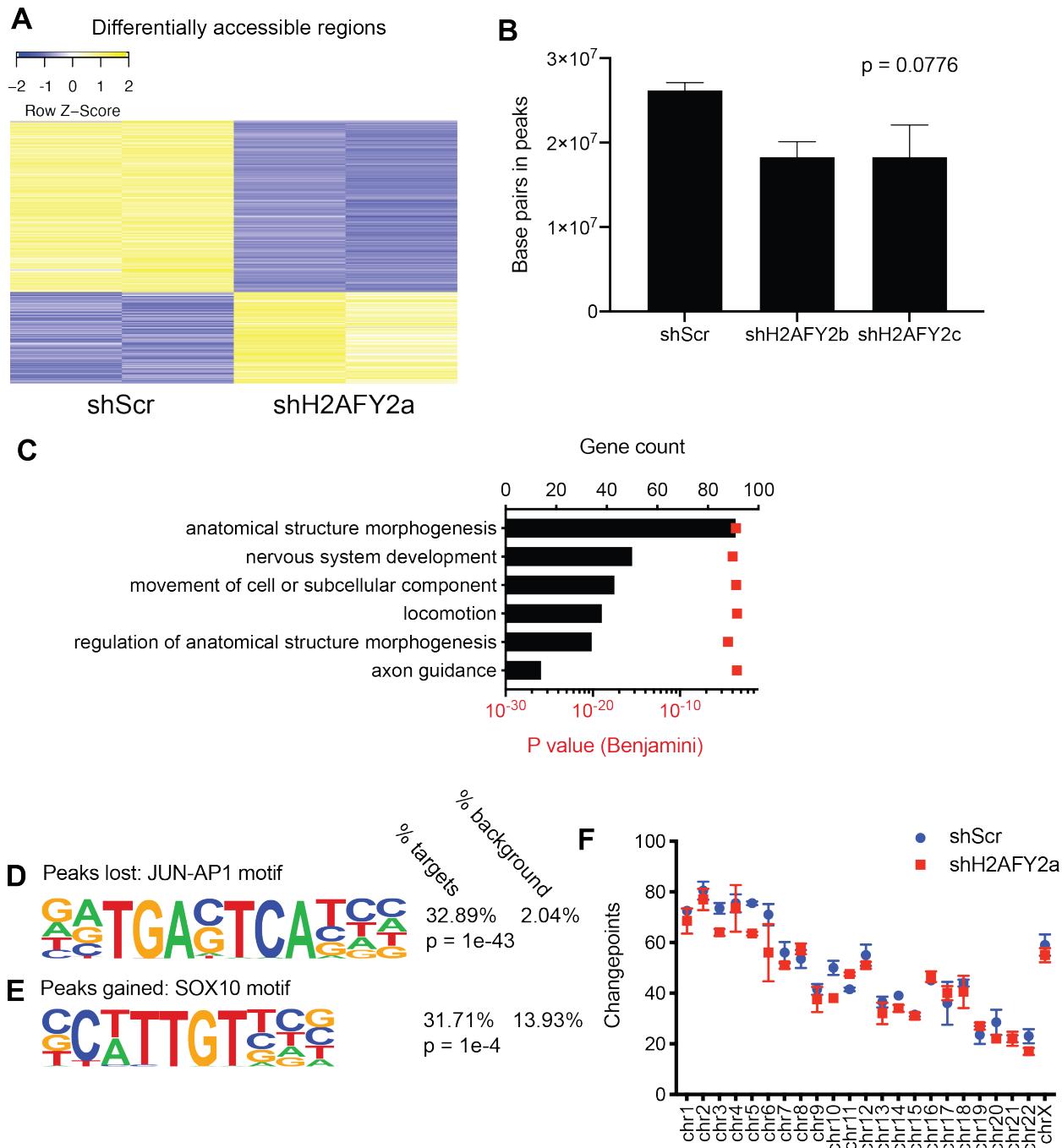
386

387

388

389

390


391

392

393

394

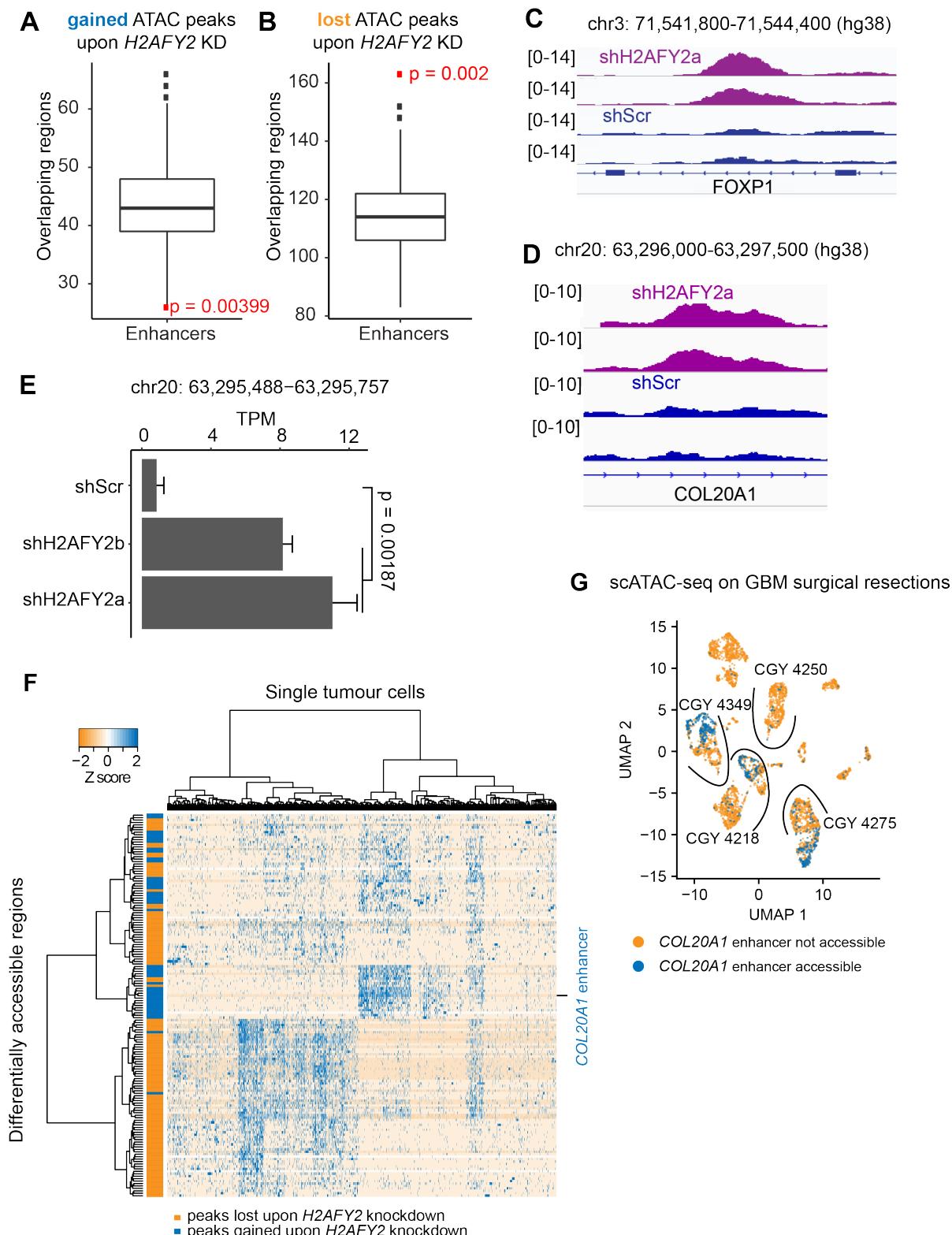
395

396
397

Figure 4. MacroH2A2 contributes to both compacted and accessible chromatin at neurodevelopmental genes in GBM.

400 (A) Heatmap of differentially accessible regions (n = 270) in two biological replicates of H2AFY2/macroH2A2
401 knockdown versus control cells.
402 (B) Total number of base pairs in peaks of accessible chromatin, as determined by ATAC-seq, in control versus
403 knockdown cells. P value was determined by one-way ANOVA.
404 (C) Top process terms resulting from Gene Ontology term analysis of differentially accessible regions.
405 (D) Example of a transcription factor motif overrepresented in regions of reduced accessibility in knockdown cells.
406 P value calculated by hypergeometric test.

407 (E) Example of a transcription factor motif overrepresented in regions of increased accessibility in knockdown cells.
408 P value calculated by hypergeometric test.
409 (F) Changepoint analysis showing number of transitions between closed and accessible chromatin regions in control
410 versus *H2AFY2*/macroH2A2 knockdown GBM cells.
411
412


413 **macroH2A2 represses enhancer function in GSCs**

414 There is very little known on the effects of macroH2A2 on chromatin organization and
415 transcriptional control, and this is particularly true in GBM. We initially hypothesized that
416 macroH2A2 might exert its effects on transcription by modulating chromatin accessibility at gene
417 bodies. Surprisingly, permutation analyses revealed a clear depletion of both gained and lost
418 ATAC peaks in gene bodies and their promoters upon *H2AFY2* knockdown ($p = 0.002$, **Figure**
419 **S3**). On the other hand, ATAC peaks that were gained upon knockdown showed only a slight but
420 significant depletion ($p = 0.0039$) at enhancer elements (**Figure 5A**), while those lost upon
421 *H2AFY2* knockdown were significantly over-represented at enhancer elements ($p = 0.002$; **Figure**
422 **5B**). Specific peaks gained upon knockdown were identified at putative enhancer regions
423 associated with developmental genes, including *FOXP1* and the oligodendrocyte lineage gene
424 *COL20A1* (**Figure 5C,D**).

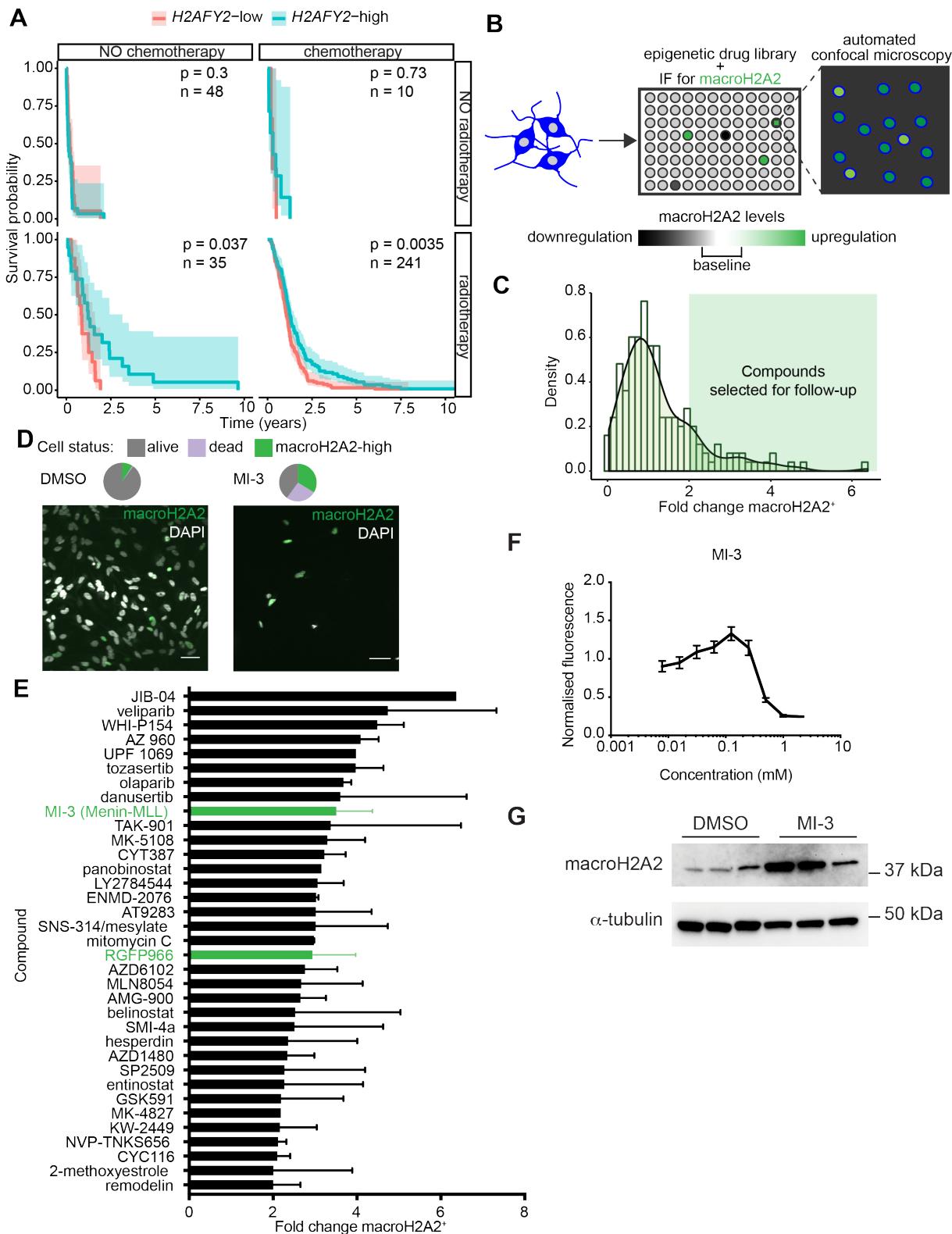
425 Active enhancers are transcribed by RNA polymerase II, resulting in the production of enhancer
426 RNA (eRNA) (Li et al., 2016). eRNA levels often closely track the transcription levels of their
427 associated genes (Azofeifa et al., 2018; Hah et al., 2013). We reasoned that if macroH2A2 affects
428 the function of enhancer elements, changes in enhancer activity associated with depletion of
429 macroH2A2 should result in alterations in eRNA transcription levels. Analysis of RNA-seq data
430 from control and *H2AFY2*/macroH2A2 knockdown GBM cells showed significant differential
431 transcription of 33 distinct eRNA transcripts (**Figure S4A-S4E**). Interestingly, we observed a
432 significant transcriptional increase of an eRNA at the *COL20A1* enhancer locus in our knockdown
433 cells (**Figure 5E**), suggesting that macroH2A2 may play a role in inhibiting this enhancer site.
434 These data are consistent with the effects of *H2AFY2* knockdown on *COL20A1* transcription, and
435 suggest a mechanism by which macroH2A2 represses this gene associated with the
436 oligodendrocytic lineage by compacting the chromatin at its cognate enhancer element.

437 To further validate the differentially accessible regions we identified in our knockdown cells,
438 we analysed single-cell ATAC-seq (scATAC-seq) we had previously generated on 4 adult GBM
439 primary patient samples (Guilhamon et al., 2021). Adult GBM resections showed accessibility in
440 the majority of differentially accessible peaks gained and lost upon *H2AFY2* knockdown,
441 confirming the relevance of the results generated with our patient-derived models. Gained and lost
442 peaks were accessible in two distinct clusters of cells, suggesting that they define populations
443 characterized by different chromatin states (**Figure 5F**). The *COL20A1* enhancer was also
444 identified in the primary tumor specimens, and its accessibility was restricted to a single cluster of
445 tumour cells in 2 out of 4 primary samples profiled by scATAC-seq (**Figure 5G**; **Figure S5A-C**).
446 All together, our data show that *H2AFY2*/macroH2A2 has an important role in mediating enhancer
447 accessibility in GBM cells, and appears to modulate a regulatory network driving GSC cell
448 identity.

449
450
451

452
453
454
455
456

Figure 5. macroH2A2 represses enhancer elements linked to neurodevelopmental genes.


(A-B) Permutation analysis of accessible regions gained (A) and lost (B) upon H2AFY2/macroH2A2 knockdown at enhancer elements genome-wide.

(C, D) Examples of ATAC-seq enhancer peaks gained upon knockdown of H2AFY2/macroH2A2.

457 (E) Expression of eRNA at the *COL20A1* locus shown in (D) in control versus knockdown cells. Two biological
458 replicates were used to generate RNA-seq libraries. P value was obtained by two-tailed t-test..
459 (F) Differentially accessible chromatin regions identified upon *H2AFY2*/macroH2A2 knockdown in a scATAC-seq
460 sample from four primary glioblastoma resections. The horizontal axis represents individual cells in the specimens,
461 with differentially accessible regions listed along the Y axis.
462 (G) Accessibility at the *COL20A1* enhancer in a scATAC-seq dataset generated from four primary GBM surgical
463 specimens. Samples are separated by arcs.
464
465
466

467 **High-content chemical screen identified compounds that increase macroH2A2 levels**

468 We performed further analyses to explore associations between *H2AFY2* levels and clinical
469 parameters in previously published patient cohorts. Interestingly, we observed that *H2AFY2* levels
470 stratify survival only in patients that received radiation with or without chemotherapy (**Figures**
471 **6A**). In all cases, we observed that higher transcription levels of *H2AFY2* were associated with
472 better response to therapy, possibly because of its repressing effects on self-renewal programs,
473 which have been linked to radiation resistance. Because of the positive association between
474 macroH2A2 levels and response to radiation, we reasoned that increasing macroH2A2 levels could
475 lead to “differentiation” of GBM cells and could sensitize tumor cells to standard of care therapy.
476 We therefore set out to perform a chemical screen with the goal of identifying compounds that
477 could increase levels of macroH2A2 (**Figure 6B**; **Figure S6A**). We screened 182 compounds from
478 the Selleckchem Epigenetic Drug Library using the GE InCell automated confocal microscopy
479 system, coupled with immunofluorescence to assess macroH2A2 levels (**Figure 6C**, **Figure 6D**).
480 We were able to identify 35 compounds that led to a greater than two-fold increase in the
481 percentage of macroH2A2⁺ GBM cells, including the MLL-menin inhibitor MI-3 and the HDAC
482 inhibitor RGFP966 (**Figure 6E**). We have previously reported that MLL-menin inhibition is a
483 potent antagonist of self-renewal and other stemness-associated properties (Gallo et al., 2015; Lan
484 et al., 2017), and we confirmed here that it has a potent negative effect on cell viability (**Figures**
485 **6F**). We validated that MI-3 increases macroH2A2 levels by western blot (**Figure 6G**). Similarly,
486 we found that RGFP966 could reduce cell viability with $IC_{50} < 1 \mu\text{M}$ (**Figure S6B**), thus
487 supporting the robustness of our screen. We decided to focus our follow up studies on MI-3
488 because of (1) its potent role at reducing self-renewal in GBM and (2) the translational potential
489 associated with Menin inhibition, as evidenced by the recently-reported development of clinical-
490 grade analogs (Krivtsov et al., 2019) and the active use of the Menin inhibitor KO-539 in a phase
491 1 clinical trial for patients with refractory or relapsed acute myelogenous leukemia
492 (ClinicalTrials.gov identifier: NCT04067336).
493
494
495
496
497
498
499
500
501

502
 503
 504
 505
 506

Figure 6. Drug screen to identify epigenetic compounds that elevate macroH2A2 levels in GBM cells.
 (A) Survival analysis of patients in the TCGA GBM cohort segregated by median *H2AFY2* expression and treatment received (none, chemotherapy, radiotherapy, or both). Shaded region represents 95% confidence interval. P value was calculated by log-rank test.

507 (B) Diagram summarizing our screening strategy to identify compounds that increase macroH2A2 levels.
508 (C) Normalized density of the log fold change of macroH2A2 positive cells for all compounds in the screen. The
509 green shaded region represents compounds with greater than 2-fold change of macroH2A2 positive cells.
510 (D) Effects of MI-3 and vehicle control (DMSO) on macroH2A2 protein levels were assessed by
511 immunofluorescence. Scale bars: 50 μ m.
512 (E) List of all compounds with greater than two fold increase of macroH2A2-positive viable cells upon treatment.
513 (F) Dose-response curve for MI-3 using GSC cultures, as measured by the Alamar Blue assay. Experiment
514 performed with six technical replicates per concentration, normalized to DMSO control. Error bars represent
515 standard deviation. The experiment was repeated 2 times.
516 (G) Western blot of macroH2A2 levels after 7 days of treatment with 200 nM of MI-3. Three replicates per
517 condition.

518

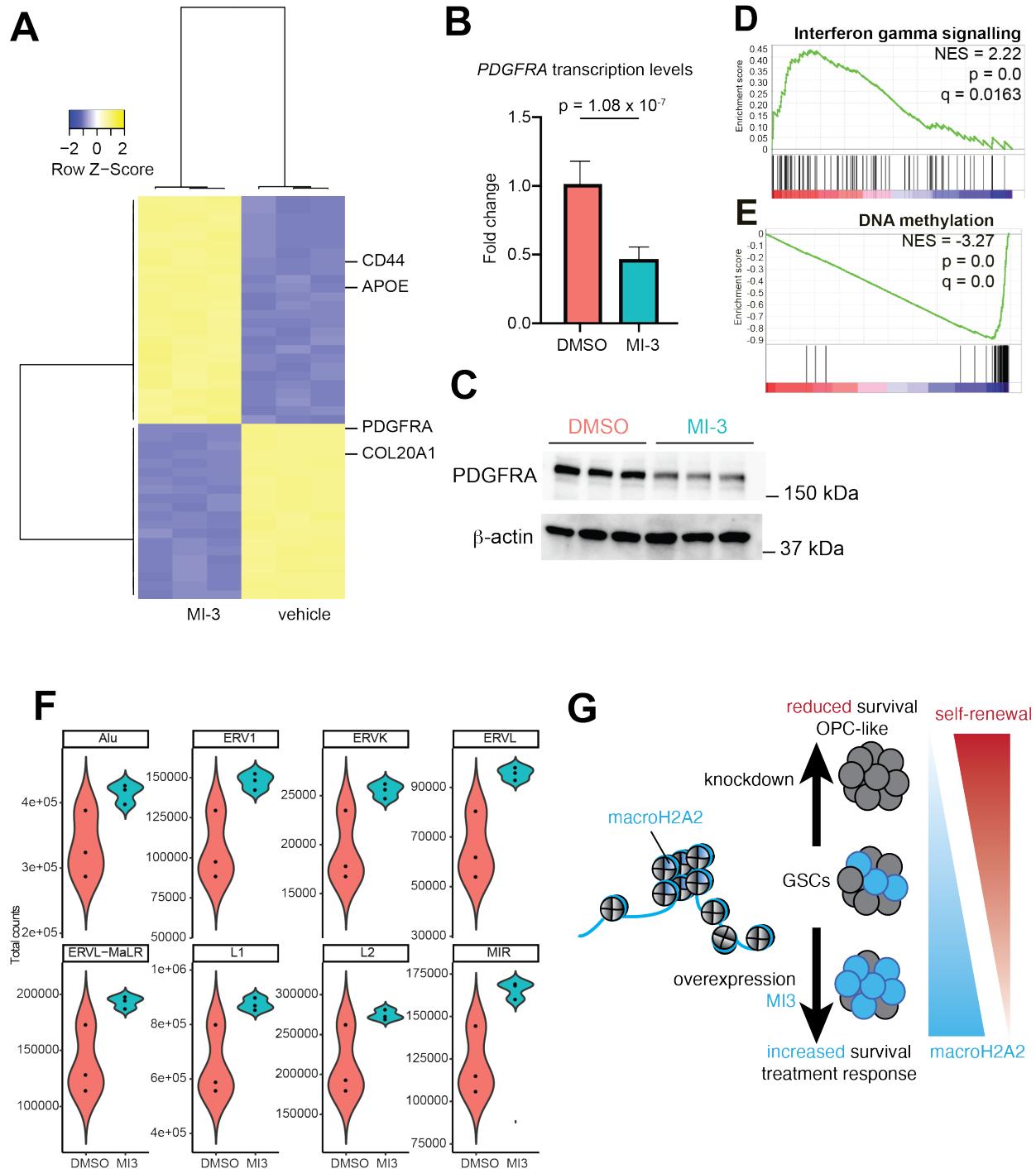
519

520

521 Menin inhibition activates viral mimicry in GBM cells

522 We then investigated potential mechanisms of action of this epigenetic compound. We treated
523 GBM cells with sub-lethal concentrations (200 nM) of MI-3 or DMSO vehicle control and
524 performed transcriptional studies by RNA-seq (3 biological replicates per condition). Our
525 transcriptomic studies showed that MI-3 treatment results in repression of markers of the
526 oligodendrocytic lineage, including *PDGFRA* and *COL20A1* (**Figure 7A**).

527 Repression of *PDGFRA* through MI-3 treatment was confirmed by RT-qPCR (**Figure 7B**) and
528 at the protein level by western blot (**Figure 7C**). Both *PDGFRA* and *COL20A1* were negatively
529 regulated by macroH2A2 (**Figure 3E**), and our data are therefore consistent with MI-3 acting
530 through macroH2A2 to execute chromatin and transcriptional programs, thus validating the
531 premises of our chemical screen.


532 We performed GSEA and found that differentially-regulated genes following MI-3 treatment
533 were positively associated with signatures of interferon gamma, alpha and beta signaling (**Figures**
534 **7D; Figure S7A**) and negatively associated with signatures linked to DNA methylation (**Figure**
535 **7E**) and PRC2-mediated methylation of histones (**Figure S7B**). Modulation of interferon
536 signalling related to altered DNA methylation has been reported with epigenetic treatments that
537 elicit viral mimicry in cancer cells (Chiappinelli et al., 2015; Roulois et al., 2015). Viral mimicry
538 is dependent on the transcription of repetitive elements across the genome, particularly ERVL
539 elements (Krug et al., 2019). We therefore re-analyzed our RNA-seq datasets to specifically look
540 at the effects of MI-3 treatment on the transcription of repetitive elements. We found that most
541 differentially transcribed repetitive elements were upregulated by MI-3 treatment, including ERVL
542 family members (**Figure 7F; Figure S7C, S7D**). Our data therefore reveal a role for Menin
543 inhibition in repressing self-renewal programs by upregulating macroH2A2 and potentially
544 activating viral mimicry pathways in GBM (**Figure 7G**).

545

546

547

548

549
550
551
552
553
554
555
556
557

Figure 7. Menin inhibition induces differentiation of GSCs and activates viral mimicry pathways in GBM.
 (A) Heatmap displaying the top 50 differentially expressed genes between MI-3 and DMSO treated cells based on RNA-seq data (3 biological replicates per treatment).
 (B) RT-qPCR results showing expression levels of *PDGFRA* in GBM cells after 7 days of MI-3 treatment. Transcription was normalized to actin and GAPDH. P value was calculated by unpaired two-tailed T test. Error bars represent standard deviation. The experiment was repeated two times.

558 (C) Western blot showing levels of PDGFRA and TNFR in MI-3 and DMSO treated GBM cells after 7 days of
559 treatment in vitro. Three biological replicates per condition. The experiment was repeated two times.
560 (D,E) GSEA analyses of differentially-expressed genes in MI-3-treated versus vehicle-treated cells.
561 (F) Transcriptional levels of repeat elements upon MI-3 treatment were determined by RNA-seq.
562 (G) Proposed model for the mechanisms of action of macroH2A2 and Menin inhibition in GSCs.
563
564
565
566

567 DISCUSSION

568
569 Self-renewal is a fundamental property of cancer cells that are therapy-resistant and responsible
570 for long-term tumor propagation. The identification of molecular mechanisms that are responsible
571 for the attainment and maintenance of self-renewal could be key to significantly improve patient
572 outcomes for difficult to treat cancers like GBM (Clarke, 2019). Self-renewal in GBM cells is
573 dependent on the achievement of specific chromatin states and transcriptional profiles through the
574 regulated function of chromatin remodelers, transcription factors and other epigenetic regulators
575 (see for instance Bender et al., 2013; Gallo et al., 2013, 2015; Heddleston et al., 2012; Jin et al.,
576 2017; Miller et al., 2017; Suvà et al., 2009). Interfering with chromatin and epigenetic factors that
577 have key roles in the self-renewal program can destabilize these chromatin states and result in
578 partial or complete loss of self-renewal.
579

580 In the present work, we identify macroH2A2 as a key antagonist of self-renewal properties in
581 GBM. This conclusion is supported by multiple orthogonal lines of evidence. First, high *H2AFY2*
582 transcript levels are associated with better response to radiotherapy and longer overall survival in
583 GBM patient cohorts. These effects of *H2AFY2* were recapitulated in our *in vivo* orthotopic
584 patient-derived models, showing a direct effect of this gene in regulating tumor aggressiveness.
585 Second, our *in vitro* and *in vivo* functional assays demonstrated that macroH2A2 has a direct
586 functional role in curbing self-renewal. Our genomic approaches showcased a new function for
587 macroH2A2 in shaping chromatin organization at enhancer elements and regulating the expression
588 of a self-renewal gene network. Overall these results indicate that macroH2A2 has an important
589 effect on the regulation of chromatin and transcriptional dynamics that inhibit self-renewal in
590 GBM.
591

592 The development of compounds that target chromatin and epigenetic factors – known as
593 “epidrugs” – has opened new opportunities to pharmaceutically inhibit self-renewal networks in
594 cancer cells. Some of these compounds have been shown to be effective and are currently in use
595 in a subset of patients with certain types of hematological malignancies (Estey, 2013; Fenaux et
596 al., 2009; San-Miguel et al., 2014) We reasoned that if high macroH2A2 levels are associated with
597 better response to radiotherapy, treatment approaches that elevate macroH2A2 levels prior to
598 radiation therapy could improve patient outcomes. We therefore performed a screen to identify
599 compounds that could increase macroH2A2 levels. The Menin inhibitor MI-3 was one of our best
600 hits.
601

602 We previously reported that Menin inhibition was a potent repressor of self-renewal in
603 GBM (Lan et al., 2017). Other groups reported effectiveness of Menin inhibition in pediatric
604 glioma models (Funato et al., 2014). However, the epigenetic mechanisms underlying the

605 effectiveness of Menin inhibition in glioma models have not yet been established. Here we show
606 that Menin inhibition acts through at least two complementary but converging mechanisms. First,
607 Menin inhibition results in increased macroH2A2 levels, which in turn repress self-renewal
608 transcriptional networks. Second, Menin inhibition causes activation of transcription of repetitive
609 elements that have been linked to the onset of viral mimicry pathways and lead to the demise of
610 cancer cells (Chiappinelli et al., 2015; Krug et al., 2019; Roulois et al., 2015). Importantly, the
611 Menin inhibitor KO-539 is being tested in a phase 1 clinical trial for patients with refractory or
612 relapsed acute myelogenous leukemia (ClinicalTrials.gov identifier: NCT04067336). A second
613 highly bioavailable Menin inhibitor was recently described and was shown to be effective against
614 patient-derived preclinical models of leukemia (Krivtsov et al., 2019). Targeting Menin is
615 therefore becoming an achievable reality in the clinic, and our findings suggest that this treatment
616 approach should further be tested in preclinical models of GBM.

617
618 Because repression of macroH2A2 contributes to aggressive phenotypes in several solid
619 malignancies, it is possible low levels of this histone variant could be used as a biomarker to
620 identify patients that could benefit from more aggressive treatment approaches. These patients
621 could receive clinical-grade Menin inhibitors to increase the levels of macroH2A2, which in turn
622 would repress self-renewal states and curb the aggressiveness of the disease. More studies will be
623 required to explore the translational opportunities presented by Menin inhibition in the context of
624 solid malignancies.

625
626 In conclusion, our work characterizes a previously unknown and targetable epigenetic
627 mechanism regulated by the histone variant macroH2A2. Our data underscore the close connection
628 between chromatin and functional states in cancer cells.

629
630
631
632 **ACKNOWLEDGMENTS**
633
634 Funding for this work was provided by a Canadian Institutes of Health Research (CIHR) grant
635 (PJT-156278) to MG; a Natural Sciences and Engineering Research Council (NSERC) Discovery
636 grant to MG; a Clinician Investigator Program fellowship to AN; an NSERC studentship to AB.
637 Our research was supported by SU2C Canada Cancer Stem Cell Dream Team Research Funding
638 (SU2C-AACR-DT-19-15) to PBD provided by the Government of Canada through Genome
639 Canada and CIHR, with supplemental support from the Ontario Institute for Cancer Research,
640 through funding provided by the Government of Ontario. SU2C Canada is a Canadian Registered
641 Charity (Reg.# 80550 6730 RR0001). Research funding is administered by the AACR
642 International - Canada, the Scientific Partner of SU2C Canada.

643
644
645

646 **MATERIALS AND METHODS**
647
648 **Experimental Model and Subject Details**
649 All specimens and primary cultures generated and used in this study were approved by the Health
650 Research Ethics Board of Alberta and the research ethics board of the Hospital for Sick Children.

651 GSC primary cultures G523, GSC3 and GSC5 were generated using previously described
652 methods; in brief, primary tumor sample was minced in Accutase (StemCell Technologies), and
653 dissociated with glass beads on a nutator for 30 minutes, followed by centrifugation and
654 resuspension in NS media (Pollard et al. 2009). Cultures were STR genotyped and confirmed to
655 match the patient tissue.

656

657 **Cell Culture**

658 Primary glioblastoma cultures were grown in adherent culture on Corning Primaria dishes coated
659 with poly-L-ornithine (Sigma-Aldrich, P4957) and laminin (Sigma-Aldrich, L2020), under
660 standard temperature, oxygen and humidity conditions. Cells were kept in NeuroCult NS-A Basal
661 Medium and Proliferation Supplement (StemCell Technologies, #05751), supplemented with 20
662 µg/mL rhEGF (Peprotech, AF-100-15), 10 µg/mL bFGF (StemCell Technologies, #78003), and 2
663 µg/mL heparin (StemCell Technologies, #07980). All cultures were used within the first 20
664 passages of generation. Adherent cells were disassociated with Accutase (Stemcell Technologies,
665 #07920) and plated onto fresh, coated plates when confluence reached 80/90%. Cell numbers and
666 viability were determined using Countess II (Thermo Fisher Scientific, AMQAX1000).

667

668 **Generation of macroH2A2 knockdown cultures**

669 Commercial inducible shRNA constructs (3 for *H2AFY2*, and non-targeting control 1) were
670 obtained from Dharmacon (Horizon Biosciences) and packaged into lentiviral particles. Primary
671 cells were infected with lentiviral particles in the presence of polybrene followed by selection
672 using 1.5 µg/mL puromycin for 72 hours.

673

674 **MacroH2A2 overexpression with CRISPRa**

675 *Generation of an inducible overexpression line.* The PB-TRE-dCas9-VPR construct (Addgene
676 #63800) (Chavez et al., 2015) was used to create a stable line using Piggybac transposase (System
677 Biosciences). A total of 500,000 cells were transfected using the using the mouse neural stem cell
678 nucleofection kit (Lonza, VPG-1004) with 0.66 µg of the construct and 0.33 µg of transposase
679 using the Lonza Amaxa Nucleofector I with protocol A-33, followed by selection with hygromycin
680 B at 50 µg/mL for 7 days.

681

682 *Generation of sgRNA plasmids.* Guide RNAs were designed using the crispr.mit.edu guide design
683 tool, using as templates the DNase accessible region directly upstream of the TSS of
684 *H2AFY2* (Kent et al., 2002). The plasmid backbone pLKO-sgRNA-GFP (Addgene #57822) was
685 used and sgRNA plasmids were constructed using BsmBI digestion followed by ligation, as
686 previously described (Heckl et al 2014).

687

688 *Transfection for overexpression experiments.* Two million cells containing the dCas9-VPR
689 construct were transfected with a pool of multiple guides targeting *H2AFY2* or a non-targeting
690 control using the Amaxa Nucleofector. Doxycycline (2 µg/mL) was added to media 24 hours after
691 transfection.

692

693 ***In vitro* limiting dilution analysis**

694 Cells were plated on uncoated low-adhesion 96-well plates in a two-fold dilution series spanning
695 from 2000 down to 4 cells per well in NeuroCult NS-A media (StemCell Technologies, #05751)
696 containing doxycycline at 2 µg/mL, with 6 replicates per concentration. Sphere formation

697 frequency was estimated using ELDA (Hu and Smyth 2009). Sphere formation was scored on day
698 7 and day 14.

699

700 **RT-qPCR**

701 RNA samples were used to generate cDNA using the SuperScript II kit (Invitrogen) and poly-A
702 primers. PCR was performed using the SSOFast EvaGreen Supermix (BioRad # 1725201) on the
703 BioRad CFX with all samples in triplicate. Results were analysed using the delta Ct method.

704

705 **Western blot**

706 Protein concentration of samples was determined using the DC (detergent compatible) protein
707 assay (Bio-Rad, #5000112). Samples were prepared in a total volume of 20 μ L at 15 μ g/ μ L in
708 Laemmli loading buffer. Samples were run on 7.5% Mini-PROTEAN gels for cytoplasmic
709 proteins and 12.5% Mini-PROTEAN gels for histones (Bio-Rad, #4568025). Primary antibodies
710 used: Rabbit anti-mH2A2 (Invitrogen; PA5-57437), mouse monoclonal anti- β -ACTIN (Sigma-
711 Aldrich, A5441, Lot# 127M4866V, Clone AC-15) at 1:1000, rabbit anti-PDGFR α (CST #3164),
712 rabbit monoclonal TNF-R1 (CST #3736). Secondary antibodies used: Goat anti-rabbit IgG H&L
713 (HRP) (Abcam, #6721, Lot# GR3192725-6) 1:20,000, Goat anti-mouse IgG H&L (HRP) (Abcam,
714 #6789).

715

716 **Mouse intracranial orthotopic xenografts**

717 *Mouse survival.* For each mouse, 100,000 tumor cells (control or knockdown) in PBS were
718 stereotactically injected into the forebrain (Location: 2.0-3.0 mm to the right of bregma, 1.0 mm
719 anterior to coronal suture) of 3 month old female NSG mice (Jackson Stock no 005557), using a
720 30 gauge needle. Mice were fed 2 mg/mL doxycycline in 2% sucrose water solution. Endpoint was
721 reached once mice showed signs of disease, including ataxia, hunching, domed heads, kyphosis,
722 paresis and lethargy.

723

724 *Orthotopic limiting dilution assay.* Stereotactic injections of 100,000, 10,000 or 1,000 cells were
725 performed into the right forebrain of NSG mice as described above. Mice were sacrificed at
726 endpoint as in the previous experiment.

727

728 **ATAC-seq**

729 *Experimental method and sequencing.* ATAC seq was performed using the Omni-ATAC protocol
730 (Corces et al., 2017). In brief, 50,000 cells were harvested fresh from culture from two biological
731 replicates, lysed on ice, spun at 4 C, and treated with Tn5 transposase (Illumina) for 30 minutes at
732 37 C. Libraries were amplified using the NebNext HiFi polymerase mastermix (New England
733 Biolabs) and standard Illumina Nextera primers, and DNA was purified using the MinElute kit
734 (Qiagen). Sequencing was performed on a NextSeq 500 using 150 cycles of paired end 75 bp
735 sequencing at the Centre for Health Genomics and Informatics (University of Calgary)..

736

737 *ATAC-seq data analysis.* ATAC-seq data was aligned to hg38 using bwa mem (Li and Durbin,
738 2009). Following this, samtools was used to remove the mitochondrial and Y chromosome reads,
739 and reads mapping to genome blacklists (Li et al., 2009). Duplicates were removed using picard.
740 Peak assignments were generated using macs2 (Zhang et al., 2008). Differential peak calls were
741 performed by generating a pileup of counts of all consensus peaks from all samples, transforming
742 the counts to counts per million using edgeR, and running these normalized counts through

743 DESeq2 (Love et al., 2014). Peaks with a fold change of > 1.5 were considered significantly
744 altered. Changepoint analysis was run on a pileup of ATAC signal reads binned into 1 mb bins
745 using bedtools, using the R package *changepoint*, as previously described (Gallo et al., 2015).
746 Permutation analysis was performed using the R package *regioneR* (Gel et al., 2016). Gene
747 ontology analysis was performed using DAVID 6.8 (Huang et al., 2009b, 2009a).

748

749 **RNA extraction and RNA sequencing**

750 *Sample preparation and sequencing.* For macroH2A2 knockdown RNA-seq, stably transduced
751 cells were induced with 2 μ g/mL doxycycline and grown for 7 days in culture and processed in
752 biological duplicates. For MI-3 vs DMSO treated cells, G523 cells were treated with either 200
753 nM MI-3 or DMSO for 7 days and processed in biological triplicate. Cells were harvested using
754 Accutase, and RNA was extracted using the RNEasy Mini kit (Qiagen) as per manufacturer
755 instructions. Libraries were constructed at the Center for Health Genomics and Informatics using
756 the NEBNext Ultra II Directional RNA Library prep kit (New England Biolabs) with ribosomal
757 RNA depletion. Samples were sequenced on a NextSeq 500 for 150 cycles in single-end mode for
758 mH2A2 knockdown, and paired-end mode for MI-3.

759
760 *RNA-seq analysis.* Samples were pseudoaligned to the human transcriptome (GRCh38.rel79) using
761 kallisto, and differential analysis was performed using sleuth (Bray et al., 2016; Pimentel et al.,
762 2017). GSEA was performed using a ranked list of all genes generated using sleuth. For analysis
763 of eRNAs, the Fantom5 CAGE (Andersson et al., 2014) consensus list of enhancers, as well as a
764 custom list of predicted enhancers based on G523 ATAC-seq and H3K27ac consensus peaks, was
765 used to construct a custom pseudotranscriptome, which was analysed using kallisto and sleuth in
766 a similar fashion. Analysis of repeat expression was performed using REdiscoverTE (Kong et al.,
767 2019). Heatmaps were constructed with R using the heatmap.2 function from the package gplots.

768
769 **Dose-response curves**

770 Cells were plated at 4000 cells/well in NS media into laminin-poly-L-ornithine coated 96-well
771 plates (Corning). The compounds MI-3, RGFP-966 and AZD6102 (Selleckchem) were tested at
772 different concentrations (range: 2 μ M to 8 nM in serial dilutions) with six technical replicates per
773 dose, and a DMSO control. Cell viability was assessed on day 7. Alamar blue (Thermo Fisher
774 Scientific, Cat# DAL1025) was added and cells were incubated at 37°C in the dark for 4 hours.
775 Fluorescence was measured on the Spectramax spectrophotometer and was normalized to the
776 DMSO control.

777
778 **Immunofluorescence High-Content Drug Screening**

779 *Screen procedure.* G523 cells were plated at a density of 5,000 cells per well in a 96-well optical
780 plate coated with PLO-laminin as per protocol. An epigenetic drug library (Z195677-L1900;
781 Selleckchem) was added at 1 μ M to plates in triplicate, with DMSO used as a control. Cells were
782 incubated for 10 days and fixed in 4% PFA for 10 minutes followed by storage at 4°C until
783 imaging.

784
785 *Immunocytochemistry and imaging.* Plates were blocked in 5% BSA in PBS with 0.1% Triton-
786 X100 for 1 hour at room temperature. Staining was performed overnight at 4°C in the same media
787 with the macroH2A2 antibody (Invitrogen; PA5-57437) at a dilution of 1:250, and a fluorescently
788 conjugated secondary antibody (Invitrogen Goat anti-rabbit IgG A568), and a DAPI counterstain

789 (1:1000; Thermo Fisher #62248). Washes were performed using PBS with 0.1% Triton-X100.
790 Samples were left in the plates in PBS and imaged using the GE InCell 6000 with a 60x objective
791 in 3 different planes of section.

792
793 *Image analysis.* Images for each well were stitched together using Fiji and the grid/collection
794 stitching plugin (Preibisch et al., 2009). The DAPI channel was used to generate a list of nuclei
795 and Fiji was used to measure intensity for both DAPI and the GFP channel using an automated
796 custom script. Data was then further analysed using R, where data for all compounds on one plate
797 was pooled together, and k-means clustering using brightness and shape parameters was used to
798 stratify live/dead cells and mH2A2 positive or negative cells. These categories were then used to
799 separate cells in each well as alive and mH2A2-negative, alive and mH2A2-positive, and dead for
800 subsequent analysis. Percentages of mH2A2-positive cells were then compared to DMSO control
801 to calculate a fold change.

802
803 **Data availability**
804 All RNA-seq and ATAC-seq data will be deposited to the Gene Expression Omnibus (GEO) upon
805 publication of the manuscript. The scATAC-seq data of adult GBM has been published and is
806 available in GEO (accession: GSE139136) (Guilhamon et al., 2021). Analysis code is available
807 upon request.

808
809
810

811 **REFERENCES**
812 Abdouh, M., Facchino, S., Chatoo, W., Balasingam, V., Ferreira, J., and Bernier, G. (2009). BMI1
813 Sustains Human Glioblastoma Multiforme Stem Cell Renewal. *J. Neurosci.* 29, 8884–8896.
814 Alcantara Llaguno, S.R., Wang, Z., Sun, D., Chen, J., Xu, J., Kim, E., Hatanpaa, K.J., Raisanen,
815 J.M., Burns, D.K., Johnson, J.E., et al. (2015). Adult Lineage-Restricted CNS Progenitors
816 Specify Distinct Glioblastoma Subtypes. *Cancer Cell* 28, 429–440.
817 Alvarado, A.G., Thiagarajan, P.S., Mulkearns-Hubert, E.E., Silver, D.J., Hale, J.S., Alban, T.J.,
818 Turaga, S.M., Jarrar, A., Reizes, O., Longworth, M.S., et al. (2017). Glioblastoma Cancer Stem
819 Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression.
820 *Cell Stem Cell*.
821 Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y.,
822 Zhao, X., Schmidl, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell
823 types and tissues. *Nature*.
824 Antonios, J.P., Soto, H., Everson, R.G., Moughon, D., Orpilla, J.R., Shin, N.P., Sedighim, S.,
825 Treger, J., Odesa, S., Tucker, A., et al. (2017). Immunosuppressive tumor-infiltrating myeloid
826 cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. *Neuro.*
827 *Oncol.*
828 Azofeifa, J.G., Allen, M.A., Hendrix, J.R., Read, T., Rubin, J.D., and Dowell, R.D. (2018).
829 Enhancer RNA profiling predicts transcription factor activity. *Genome Res.* 28, 334–344.
830 Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner,
831 D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation
832 of the DNA damage response. *Nature* 444, 756–760.
833 Barrero, M.J., Sese, B., Martí, M., and Belmonte, J.C.I. (2013). Macro histone variants are critical
834 for the differentiation of human pluripotent cells. *J. Biol. Chem.* 288, 16110–16116.

835 Bender, S., Tang, Y., Lindroth, A.M., Hovestadt, V., Jones, D.T.W., Kool, M., Zapatka, M.,
836 Northcott, P.A., Sturm, D., Wang, W., et al. (2013). Reduced H3K27me3 and DNA
837 Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade
838 Gliomas. *Cancer Cell* 24, 660–672.

839 Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq
840 quantification. *Nat. Biotechnol.*

841 Buschbeck, M., and Hake, S.B. (2017). Variants of core histones and their roles in cell fate
842 decisions, development and cancer. *Nat. Rev. Mol. Cell Biol.* 18, 299–314.

843 Cahill, D.P., Levine, K.K., Betensky, R.A., Codd, P.J., Romany, C.A., Reavie, L.B., Batchelor,
844 T.T., Futreal, P.A., Stratton, M.R., Curry, W.T., et al. (2007). Loss of the mismatch repair protein
845 MSH6 in human glioblastomas is associated with tumor progression during temozolomide
846 treatment. *Clin. Cancer Res.* 13, 2038–2045.

847 Cantariño, N., Douet, J., and Buschbeck, M. (2013). MacroH2A - An epigenetic regulator of
848 cancer. *Cancer Lett.* 336, 247–252.

849 Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., P R Iyer, E., Lin, S., Kiani, S.,
850 Guzman, C.D., Wiegand, D.J., et al. (2015). Highly efficient Cas9-mediated transcriptional
851 programming. *Nat. Methods* 12, 326–328.

852 Chen, H., Ruiz, P.D., McKimpson, W.M., Novikov, L., Kitsis, R.N., and Gamble, M.J. (2015).
853 MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-
854 Associated Secretory Phenotype. *Mol. Cell* 59, 719–731.

855 Chen, J., Li, Y., Yu, T.S., McKay, R.M., Burns, D.K., Kernie, S.G., and Parada, L.F. (2012). A
856 restricted cell population propagates glioblastoma growth after chemotherapy. *Nature* 488, 522–
857 526.

858 Chiappinelli, K.B., Strissel, P.L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote,
859 N.S., Cope, L.M., Snyder, A., et al. (2015). Inhibiting DNA Methylation Causes an Interferon
860 Response in Cancer via dsRNA Including Endogenous Retroviruses. *Cell* 162, 974–986.

861 Choo, J.H., Kim, J. Do, Chung, J.H., Stubbs, L., and Kim, J. (2006). Allele-specific deposition of
862 macroH2A1 in imprinting control regions. *Hum. Mol. Genet.* 15, 717–724.

863 Clarke, M.F. (2019). Clinical and therapeutic implications of cancer stem cells. *N. Engl. J. Med.*
864 380, 2237–2245.

865 Claus Stolt, C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U.,
866 and Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends
867 on the transcription factor Sox10. *Genes Dev.* 16, 165–170.

868 Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong, N.A., Vesuna,
869 S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B., et al. (2017). An improved ATAC-seq
870 protocol reduces background and enables interrogation of frozen tissues. *Nat. Methods*.

871 Costanzi, C., and Pehrson, J.R. (1998). Histone macroH2A1 is concentrated in the inactive X
872 chromosome of Female Mammals. *Nature* 628, 1997–1999.

873 Costanzi, C., and Pehrson, J.R. (2001). MACROH2A2, a New Member of the MACROH2A Core
874 Histone Family. *J. Biol. Chem.* 276, 21776–21784.

875 Cusulin, C., Chesnelong, C., Bose, P., Bilenky, M., Kopciuk, K., Chan, J.A., Cairncross, J.G.,
876 Jones, S.J., Marra, M.A., Luchman, H.A., et al. (2015a). Precursor States of Brain Tumor
877 Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma
878 Subtypes. *Stem Cell Reports* 5, 1–9.

879 Cusulin, C., Chesnelong, C., Bose, P., Bilenky, M., Kopciuk, K., Chan, J.A., Cairncross, J.G.,
880 Jones, S.J., Marra, M.A., Luchman, H.A., et al. (2015b). Precursor States of Brain Tumor

881 Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma
882 Subtypes. *Stem Cell Reports.*

883 Estey, E.H. (2013). Epigenetics in clinical practice: The examples of azacitidine and decitabine in
884 myelodysplasia and acute myeloid leukemia. *Leukemia.*

885 Fenaux, P., Mufti, G.J., Hellstrom-Lindberg, E., Santini, V., Finelli, C., Giagounidis, A., Schoch,
886 R., Gattermann, N., Sanz, G., List, A., et al. (2009). Efficacy of azacitidine compared with that
887 of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a
888 randomised, open-label, phase III study. *Lancet Oncol.*

889 Finzsch, M., Stolt, C.C., Lommes, P., and Wegner, M. (2008). Sox9 and Sox10 influence survival
890 and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor α
891 expression. *Development* *135*, 637–646.

892 Funato, K., Major, T., Lewis, P.W., Allis, C.D., and Tabar, V. (2014). Use of human embryonic
893 stem cells to model pediatric gliomas with H3.3K27M histone mutation. *Science* *346*, 1529–
894 1533.

895 Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C.,
896 Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like
897 neural precursors from human glioblastoma. *Cancer Res.* *64*, 7011–7021.

898 Gallo, M., Ho, J., Coutinho, F., Vanner, R., Lee, L., Head, R., Ling, E., Clarke, I., and Dirks, P.
899 (2013). A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells. *Cancer*
900 *Res.* *73*, 417–427.

901 Gallo, M., Coutinho, F.J., Vanner, R.J., Gayden, T., Mack, S.C., Murison, A., Remke, M., Li, R.,
902 Takayama, N., Desai, K., et al. (2015). MLL5 Orchestrates a Cancer Self-Renewal State by
903 Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. *Cancer Cell* *28*,
904 715–729.

905 Gamble, M.J., Frizzell, K.M., Yang, C., Krishnakumar, R., and Kraus, W.L. (2010). The histone
906 variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target
907 genes from silencing. *Genes Dev.* *24*, 21–32.

908 Gel, B., Díez-Villanueva, A., Serra, E., Buschbeck, M., Peinado, M.A., and Malinverni, R. (2016).
909 RegioneR: An R/Bioconductor package for the association analysis of genomic regions based on
910 permutation tests. *Bioinformatics.*

911 Gravendeel, L.A.M., Kouwenhoven, M.C.M., Gevaert, O., De Rooi, J.J., Stubbs, A.P., Duijm, J.E.,
912 Daemen, A., Bleeker, F.E., Bralten, L.B.C., Kloosterhof, N.K., et al. (2009). Intrinsic gene
913 expression profiles of gliomas are a better predictor of survival than histology. *Cancer Res.* *69*,
914 9065–9072.

915 Guilhamon, P., Chesnelong, C., Kushida, M.M., Nikolic, A., Singhal, D., Macleod, G.,
916 Tonekaboni, S.A.M., Cavalli, F.M.G., Arlide, C., Rajakulendran, N., et al. (2021). Single-cell
917 chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell
918 population associated with lower survival. *Elife* *10*, e64090.

919 Hah, N., Murakami, S., Nagari, A., Danko, C.G., and Lee Kraus, W. (2013). Enhancer transcripts
920 mark active estrogen receptor binding sites. *Genome Res.* *23*, 1210–1223.

921 Heddleston, J.M., Wu, Q., Rivera, M., Minhas, S., Lathia, J.D., Sloan, A.E., Iliopoulos, O.,
922 Hjelmeland, A.B., and Rich, J.N. (2012). Hypoxia-induced mixed-lineage leukemia 1 regulates
923 glioma stem cell tumorigenic potential. *Cell Death Differ.* *19*, 428–439.

924 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh,
925 H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining Transcription Factors
926 Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Mol. Cell* *38*,

927 576–589.

928 Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009a). Systematic and integrative analysis of
929 large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* **4**, 44–57.

930 Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009b). Bioinformatics enrichment tools: Paths
931 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* **37**, 1–13.

932 Hunter, C., Smith, R., Cahill, D.P., Stephens, P., Stevens, C., Teague, J., Greenman, C., Edkins,
933 S., Bignell, G., Davies, H., et al. (2006). A hypermutation phenotype and somatic MSH6
934 mutations in recurrent human malignant gliomas after alkylator chemotherapy. *Cancer Res.* **66**,
935 3987–3991.

936 Jin, X., Kim, L.J.Y., Wu, Q., Wallace, L.C., Prager, B.C., Sanvoranart, T., Gimple, R.C., Wang,
937 X., Mack, S.C., Miller, T.E., et al. (2017). Targeting glioma stem cells through combined BMI1
938 and EZH2 inhibition. *Nat. Med.* **23**, 1352–1361.

939 Kapoor, A., Goldberg, M.S., Cumberland, L.K., Ratnakumar, K., Segura, M.F., Emanuel, P.O.,
940 Menendez, S., Vardabasso, C., LeRoy, G., Vidal, C.I., et al. (2010). The histone variant
941 macroH2A suppresses melanoma progression through regulation of CDK8. *Nature* **468**, 1105–
942 1111.

943 Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler,
944 a. D. (2002). The Human Genome Browser at UCSC. *Genome Res.*

945 Kim, B.J., Chan, D.W., Jung, S.Y., Chen, Y., Qin, J., and Wang, Y. (2017). The Histone Variant
946 MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate. *Cell Rep.* **19**, 1758–1766.

947 Kim, J., Sturgill, D., Sebastian, R., Khurana, S., Tran, A.D., Edwards, G.B., Kruswick, A., Burkett,
948 S., Hosogane, E.K., Hannon, W.W., et al. (2018). Replication Stress Shapes a Protective
949 Chromatin Environment across Fragile Genomic Regions. *Mol. Cell* **69**, 36–47.e7.

950 Kong, Y., Rose, C.M., Cass, A.A., Williams, A.G., Darwish, M., Lianoglou, S., Haverty, P.M.,
951 Tong, A.J., Blanchette, C., Albert, M.L., et al. (2019). Transposable element expression in tumors
952 is associated with immune infiltration and increased antigenicity. *Nat. Commun.*

953 Kozlowski, M., Corujo, D., Hothorn, M., Guberovic, I., Mandemaker, I.K., Blessing, C., Sporn,
954 J., Gutierrez-Triana, A., Smith, R., Portmann, T., et al. (2018). MacroH2A histone variants limit
955 chromatin plasticity through two distinct mechanisms. *EMBO Rep.* **19**, e44445.

956 Krivtsov, A. V., Evans, K., Gadrey, J.Y., Eschle, B.K., Hatton, C., Uckelmann, H.J., Ross, K.N.,
957 Perner, F., Olsen, S.N., Pritchard, T., et al. (2019). A Menin-MLL Inhibitor Induces Specific
958 Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. *Cancer
959 Cell* **36**, 660–673.

960 Krug, B., De Jay, N., Harutyunyan, A.S., Deshmukh, S., Marchione, D.M., Guilhamon, P.,
961 Bertrand, K.C., Mikael, L.G., McConechy, M.K., Chen, C.C.L., et al. (2019). Pervasive H3K27
962 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas.
963 *Cancer Cell* **35**, 782–797.

964 Lan, X., Jörg, D.J., Cavalli, F.M.G., Richards, L.M., Nguyen, L. V., Vanner, R.J., Guilhamon, P.,
965 Lee, L., Kushida, M.M., Pellacani, D., et al. (2017). Fate mapping of human glioblastoma reveals
966 an invariant stem cell hierarchy. *Nature* **549**, 227–232.

967 Lathia, J.D., Gallagher, J., Heddleston, J.M., Wang, J., Eyler, C.E., MacSwords, J., Wu, Q.,
968 Vasanji, A., McLendon, R.E., Hjelmeland, A.B., et al. (2010). Integrin Alpha 6 regulates
969 glioblastoma stem cells. *Cell Stem Cell* **6**, 421–432.

970 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
971 transform. *Bioinformatics*.

972 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and

973 Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* *25*,
974 2078–2079.

975 Li, W., Notani, D., and Rosenfeld, M.G. (2016). Enhancers as non-coding RNA transcription units:
976 Recent insights and future perspectives. *Nat. Rev. Genet.* *17*, 207–223.

977 Liu, C., Sage, J.C., Miller, M.R., Verhaak, R.G.W., Hippenmeyer, S., Vogel, H., Foreman, O.,
978 Bronson, R.T., Nishiyama, A., Luo, L., et al. (2011). Mosaic analysis with double markers reveals
979 tumor cell of origin in glioma. *Cell* *146*, 209–221.

980 Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I.R., Lu, L., Irvin, D., Black, K.L., and
981 Yu, J.S. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells
982 in glioblastoma. *Mol. Cancer* *5*, 1–12.

983 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
984 for RNA-seq data with DESeq2. *Genome Biol.* *15*, 550.

985 MacLeod, G., Bozek, D.A., Rajakulendran, N., Monteiro, V., Ahmadi, M., Steinhart, Z., Kushida,
986 M.M., Yu, H., Coutinho, F.J., Cavalli, F.M.G., et al. (2019). Genome-Wide CRISPR-Cas9
987 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in
988 Glioblastoma Stem Cells. *Cell Rep.* *27*, 971-986.e9.

989 Magee, J.A., Piskounova, E., and Morrison, S.J. (2012). Cancer Stem Cells: Impact,
990 Heterogeneity, and Uncertainty. *Cancer Cell* *21*, 283–296.

991 Maze, I., Noh, K.M., Soshnev, A.A., and Allis, C.D. (2014). Every amino acid matters: Essential
992 contributions of histone variants to mammalian development and disease. *Nat. Rev. Genet.* *15*,
993 259–271.

994 Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L.,
995 Royall, J.J., Aiona, K., et al. (2014). Transcriptional landscape of the prenatal human brain.
996 *Nature*.

997 Miller, T.E., Liau, B.B., Wallace, L.C., Morton, A.R., Xie, Q., Dixit, D., Factor, D.C., Kim, L.J.Y.,
998 Morrow, J.J., Wu, Q., et al. (2017). Transcription elongation factors represent *in vivo* cancer
999 dependencies in glioblastoma. *Nature* *547*, 355–359.

1000 Murat, A., Migliavacca, E., Gorlia, T., Lambiv, W.L., Shay, T., Hamou, M.F., De Tribolet, N.,
1001 Regli, L., Wick, W., Kouwenhoven, M.C.M., et al. (2008). Stem cell-related “self-renewal”
1002 signature and high epidermal growth factor receptor expression associated with resistance to
1003 concomitant chemoradiotherapy in glioblastoma. *J. Clin. Oncol.* *26*, 3015–3024.

1004 Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R., Silverbush,
1005 D., Shaw, M.L., Hebert, C.M., et al. (2019). An Integrative Model of Cellular States, Plasticity,
1006 and Genetics for Glioblastoma. *Cell* *178*, 835-849.e21.

1007 Novikov, L., Park, J.W., Chen, H., Klerman, H., Jalloh, A.S., and Gamble, M.J. (2011). QKI-
1008 Mediated Alternative Splicing of the Histone Variant MacroH2A1 Regulates Cancer Cell
1009 Proliferation. *Mol. Cell. Biol.* *31*, 4244–4255.

1010 Pimentel, H., Bray, N.L., Puente, S., Melsted, P., and Pachter, L. (2017). Differential analysis of
1011 RNA-seq incorporating quantification uncertainty. *Nat. Methods*.

1012 Pollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head,
1013 R., Lee, M., Bernstein, M., et al. (2009). Glioma Stem Cell Lines Expanded in Adherent Culture
1014 Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. *Cell Stem
1015 Cell* *4*, 568–580.

1016 Preibisch, S., Saalfeld, S., and Tomancak, P. (2009). Globally optimal stitching of tiled 3D
1017 microscopic image acquisitions. *Bioinformatics*.

1018 Rheinbay, E., Suvà, M.L., Gillespie, S.M., Wakimoto, H., Patel, A.P., Shahid, M., Oksuz, O.,

1019 Rabkin, S.D., Martuza, R.L., Rivera, M.N., et al. (2013). An Aberrant Transcription Factor
1020 Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. *Cell Rep.* 3,
1021 1567–1579.

1022 Rivers, L.E., Young, K.M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N., and
1023 Richardson, W.D. (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and
1024 piriform projection neurons in adult mice. *Nat. Neurosci.* 11, 1392–1401.

1025 Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S.Y., Han, H., Liang, G.,
1026 Jones, P.A., Pugh, T.J., et al. (2015). DNA-Demethylating Agents Target Colorectal Cancer Cells
1027 by Inducing Viral Mimicry by Endogenous Transcripts. *Cell* 162, 961–973.

1028 San-Miguel, J.F., Hungria, V.T.M., Yoon, S.S., Beksac, M., Dimopoulos, M.A., Elghandour, A.,
1029 Jedrzejczak, W.W., Günther, A., Nakorn, T.N., Siritanaratkul, N., et al. (2014). Panobinostat plus
1030 bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients
1031 with relapsed or relapsed and refractory multiple myeloma: A multicentre, randomised, double-
1032 blind phase 3 trial. *Lancet Oncol.*

1033 Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E.,
1034 Baum, M., Bortolin, L., Wang, S., et al. (2018). Molecular Diversity and Specializations among
1035 the Cells of the Adult Mouse Brain. *Cell*.

1036 Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M.,
1037 Cusimano, M.D., Dirks, P.B., Terasaki, M., et al. (2003). Identification of a cancer stem cell in
1038 human brain tumors. *Cancer Res.* 63, 5821–5828.

1039 Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M.,
1040 Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells.
1041 *Nature* 432, 396–401.

1042 Sporn, J.C., Kustatscher, G., Hothorn, T., Collado, M., Serrano, M., Muley, T., Schnabel, P., and
1043 Ladurner, A.G. (2009). Histone macroH2A isoforms predict the risk of lung cancer recurrence.
1044 *Oncogene* 28, 3423–3428.

1045 Stolt, C.C., Lommes, P., Friedrich, R.P., and Wegner, M. (2004). Transcription factors Sox8 and
1046 Sox10 perform non-equivalent roles during oligodendrocyte development despite functional
1047 redundancy. *Development* 131, 2349–2358.

1048 Stupp, R., Mason, W.P., Van Den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., Belanger,
1049 K., Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and
1050 adjuvant temozolomide for glioblastoma. *N. Engl. J. Med.* 352, 987–996.

1051 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
1052 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment
1053 analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proc.*
1054 *Natl. Acad. Sci. U. S. A.*

1055 Sun, Z., Filipescu, D., Andrade, J., Gaspar-Maia, A., Ueberheide, B., and Bernstein, E. (2018).
1056 Transcription-associated histone pruning demarcates macroH2A chromatin domains. *Nat. Struct.*
1057 *Mol. Biol.* 25, 958–970.

1058 Suvà, M.L., Riggi, N., Janiszewska, M., Radovanovic, I., Provero, P., Stehle, J.C., Baumer, K., Le
1059 Bitoux, M.A., Marino, D., Cironi, L., et al. (2009). EZH2 is essential for glioblastoma cancer
1060 stem cell maintenance. *Cancer Res.* 69, 9211–9218.

1061 Suvà, M.L., Rheinbay, E., Gillespie, S.M., Patel, A.P., Wakimoto, H., Rabkin, S.D., Riggi, N.,
1062 Chi, A.S., Cahill, D.P., Nahed, B. V., et al. (2014). Reconstructing and reprogramming the tumor-
1063 propagating potential of glioblastoma stem-like cells. *Cell* 157, 580–594.

1064 TCGA (2015). Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

1065 N. Engl. J. Med. 372, 2481–2498.

1066 Timinszky, G., Till, S., Hassa, P.O., Hothorn, M., Kustatscher, G., Nijmeijer, B., Colombelli, J.,
1067 Altmeyer, M., Stelzer, E.H.K., Scheffzek, K., et al. (2009). A macrodomain-containing histone
1068 rearranges chromatin upon sensing PARP1 activation. *Nat. Struct. Mol. Biol.* 16, 923–929.

1069 Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R.,
1070 Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated Genomic Analysis Identifies
1071 Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA,
1072 IDH1, EGFR, and NF1. *Cancer Cell* 17, 98–110.

1073 Yildirim, O., Hung, J.H., Cedeno, R.J., Weng, Z., Lengner, C.J., and Rando, O.J. (2014). A System
1074 for Genome-Wide Histone Variant Dynamics In ES Cells Reveals Dynamic MacroH2A2
1075 Replacement at Promoters. *PLoS Genet.* 10, e1004515.

1076 Yip, S., Miao, J., Cahill, D.P., Iafrate, A.J., Aldape, K., Nutt, C.L., and Louis, D.N. (2009). MSH6
1077 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide
1078 resistance. *Clin. Cancer Res.* 15, 4622–4629.

1079 Yuan, J., Levitin, H.M., Frattini, V., Bush, E.C., Boyett, D.M., Samanamud, J., Ceccarelli, M.,
1080 Dovas, A., Zanazzi, G., Canoll, P., et al. (2018). Single-cell transcriptome analysis of lineage
1081 diversity in high-grade glioma. *Genome Med.* 10, 57.

1082 Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H.A., Chen, W., Daganzo, S.M., Erzberger, J.P.,
1083 Serebriiskii, I.G., Canutescu, A.A., Dunbrack, R.L., et al. (2005). Formation of macroH2A-
1084 containing senescence-associated heterochromatin foci and senescence driven by ASF1a and
1085 HIRA. *Dev. Cell* 8, 19–30.

1086 Zhang, R., Chen, W., and Adams, P.D. (2007). Molecular Dissection of Formation of Senescence-
1087 Associated Heterochromatin Foci. *Mol. Cell. Biol.* 27, 2343–2358.

1088 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C.,
1089 Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS).
1090 *Genome Biol.* 9, R137.

1091 Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H.,
1092 Steinberg, G.K., Edwards, M.S.B., Li, G., et al. (2016). Purification and Characterization of
1093 Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences
1094 with Mouse. *Neuron*.

1095

1096

1097

1098

1099

1100

1101

1102

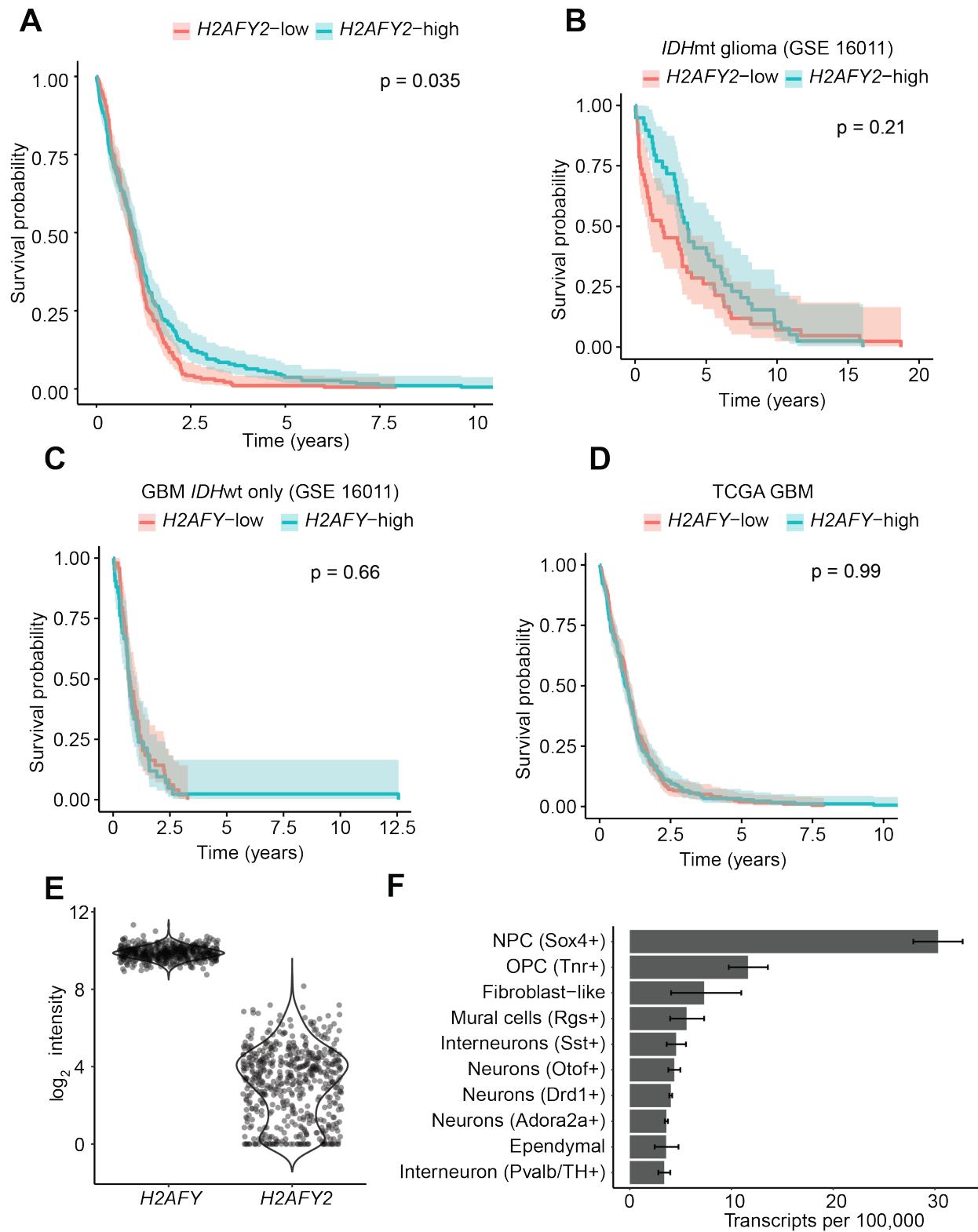
1103

1104

1105

1106

1107

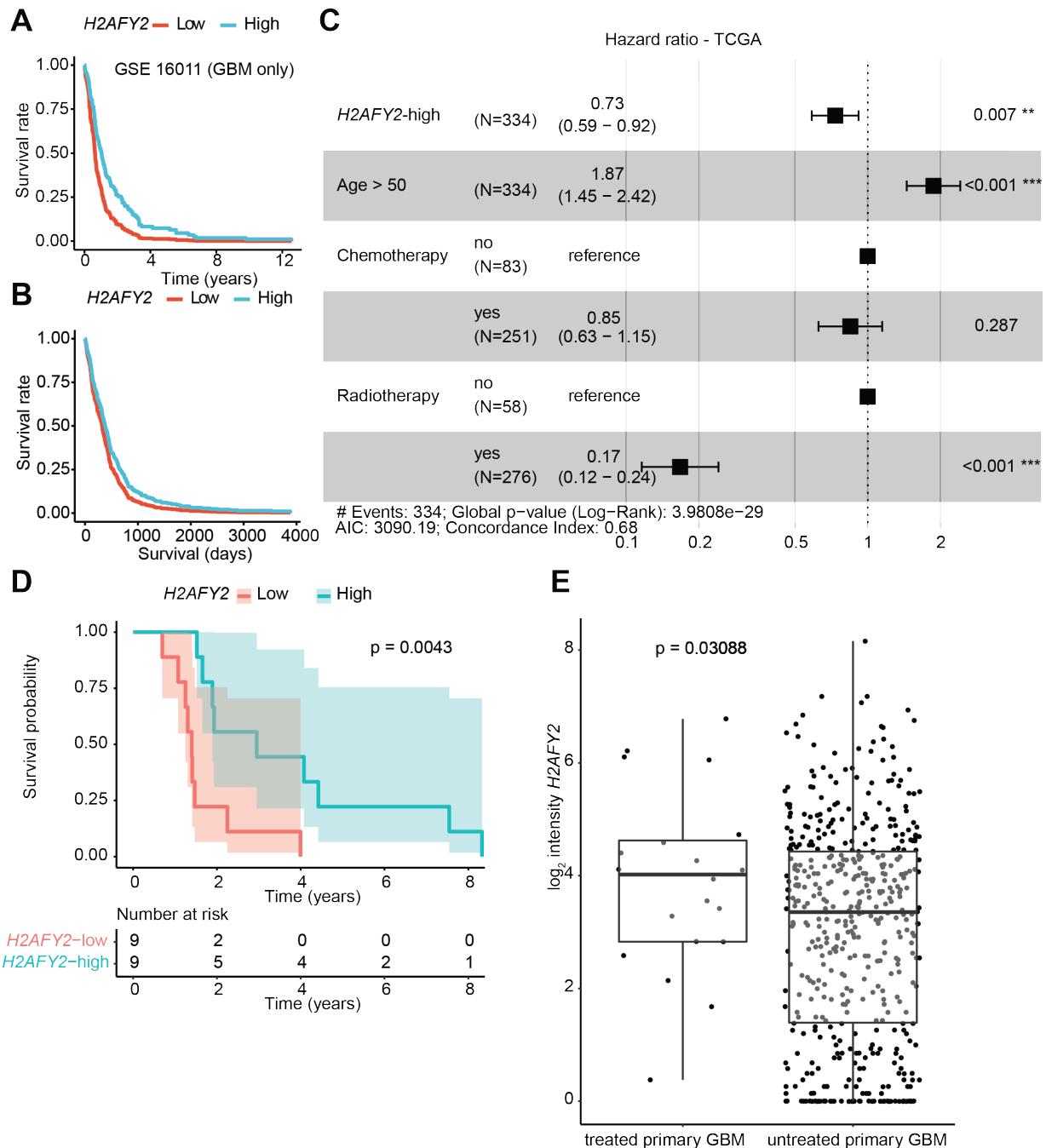

1108

1109

1110

1111

Supplementary Figures

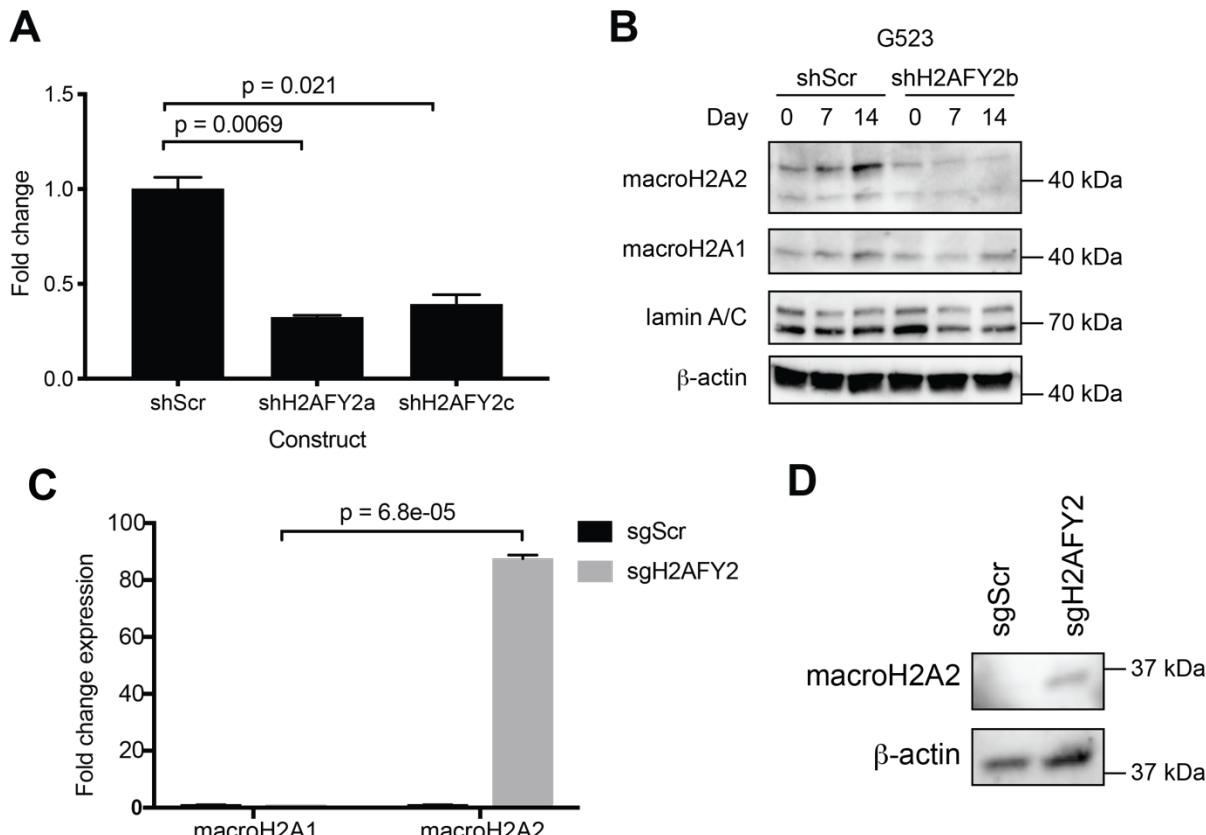


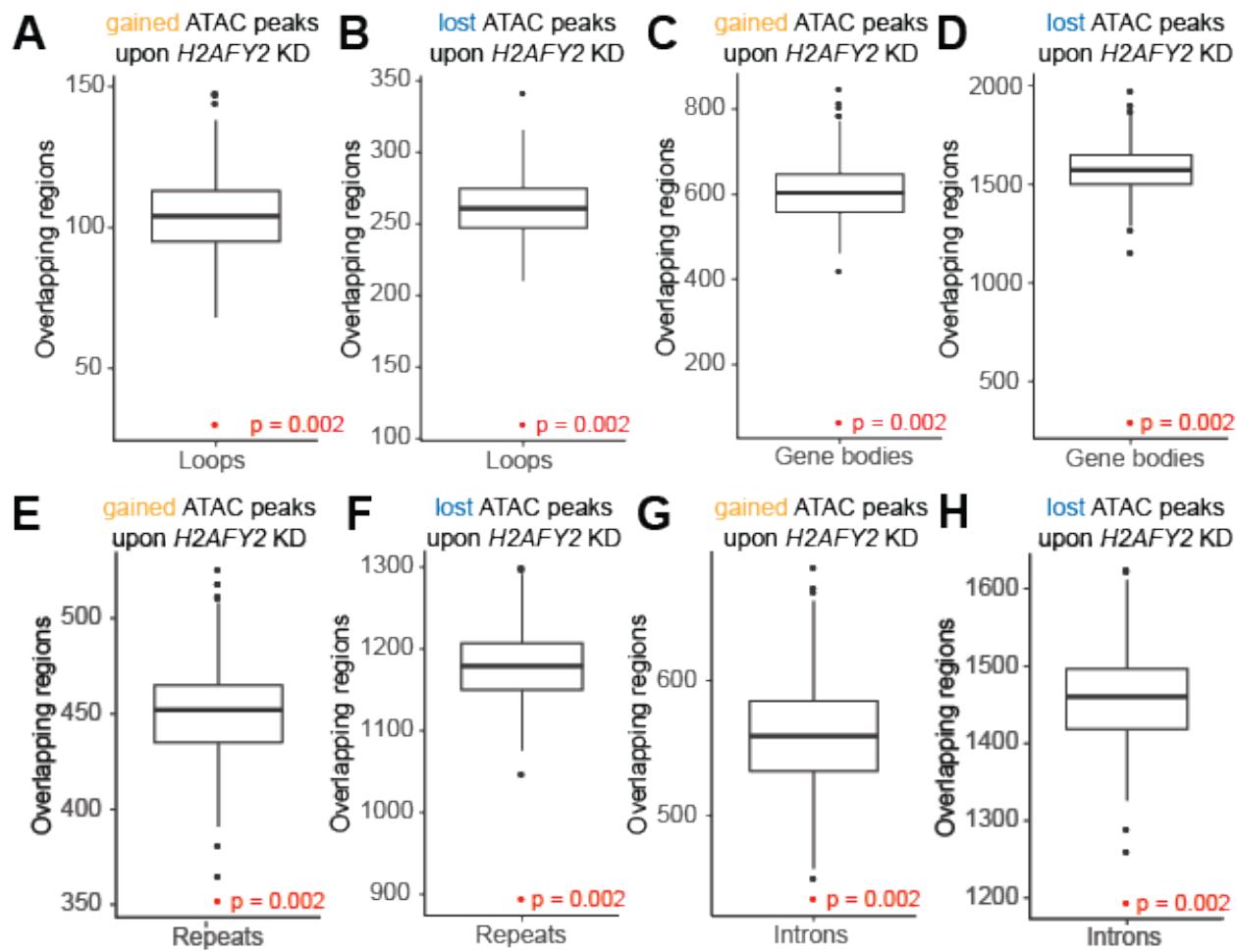
1112

1113 **Supplementary Figure S1, related to Figure 1.**

1114 (A) Overall survival of the TCGA GBM cohort stratified by median *H2AFY2* level. P value
 1115 calculated by log-rank test. Shaded region represents 95% confidence interval.

1116 (B) Overall survival for *IDH* mutant gliomas in GSE 16011 stratified by median *H2AFY2*. P
1117 value calculated by log-rank test. Shaded region represents 95% confidence interval.
1118 (C) and (D) Overall survival of *IDH* wildtype GBM (GSE 16011) and TCGA GBM stratified by
1119 median *H2AFY* level. P value calculated by log-rank test. Shaded region represents 95%
1120 confidence interval.
1121 (E) Expression data for *H2AFY* and *H2AFY2* in the TCGA GBM cohort.
1122 (F) Single cell expression data for *H2afy2* in mouse striatum (DropViz mouse datasets).
1123

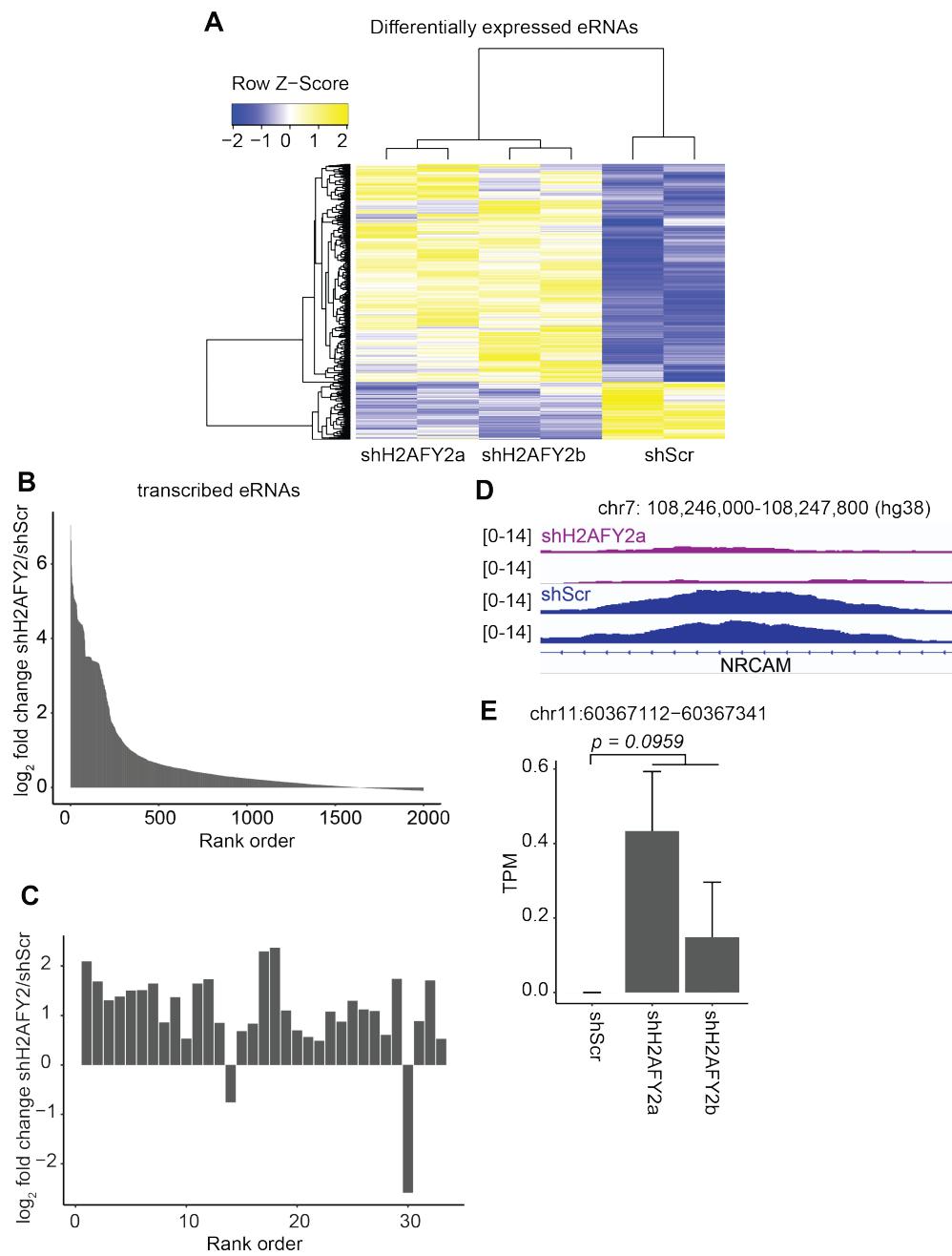

1124


1125

Supplementary Figure 2, related to Figure 1. Multivariate cox regression of *H2AFY2* expression in GSE 16011 (A) and TCGA GBM (B). (C) Cox multivariate regression and hazard ratio for *H2AFY2* expression status with age and chemotherapy and radiotherapy status in TCGA GBM. (D) Kaplan-Meier survival status for patients with recurrent glioblastoma in TCGA cohort (shaded region represents 95% confidence interval; p value calculated by log-rank test). (E) Comparison of expression levels for *H2AFY2* in TCGA data for untreated versus treated primary glioblastoma (p value: two-tailed T test with Welch's correction; whiskers represent 95% confidence interval).

1133

1134



1150
1151
1152
1153
1154
1155
1156

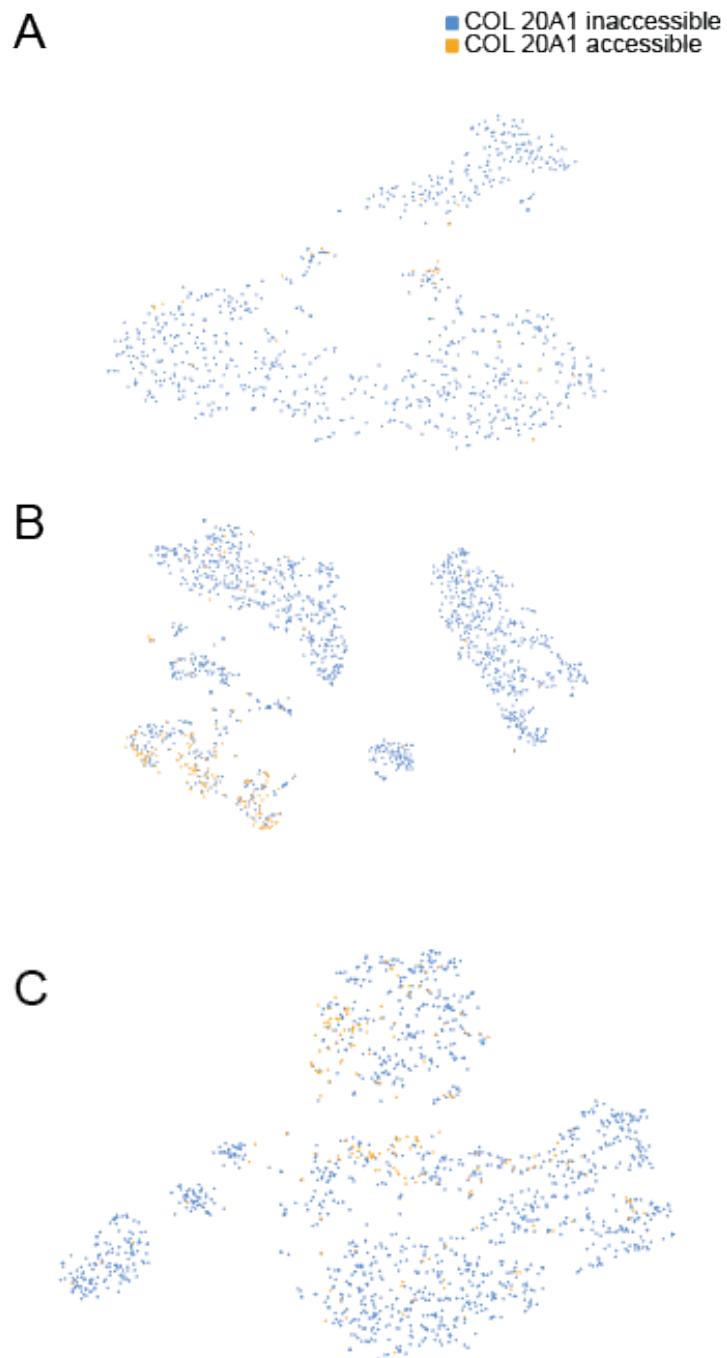
Supplementary Figure S3, related to Figure 5.

Permutation analysis of regions with at least 1.5 fold \log_2 change in accessibility upon H2AFY2 knockdown with (A-B) DNA loop boundaries (Johnston et al 2019); (C-D) Gene bodies; (E-F) repeat regions from the RepeatMasker database; (G-H) Introns. Regions of accessibility gain and loss were analysed separately. P value from 500 permutations.

1157

1158 **Supplementary Figure S4, related to Figure 5.**

1159 (A) Differential expression of top 200 differentially expressed GBM-specific putative eRNAs
1160 between *H2AFY2* knockdown and control cells.

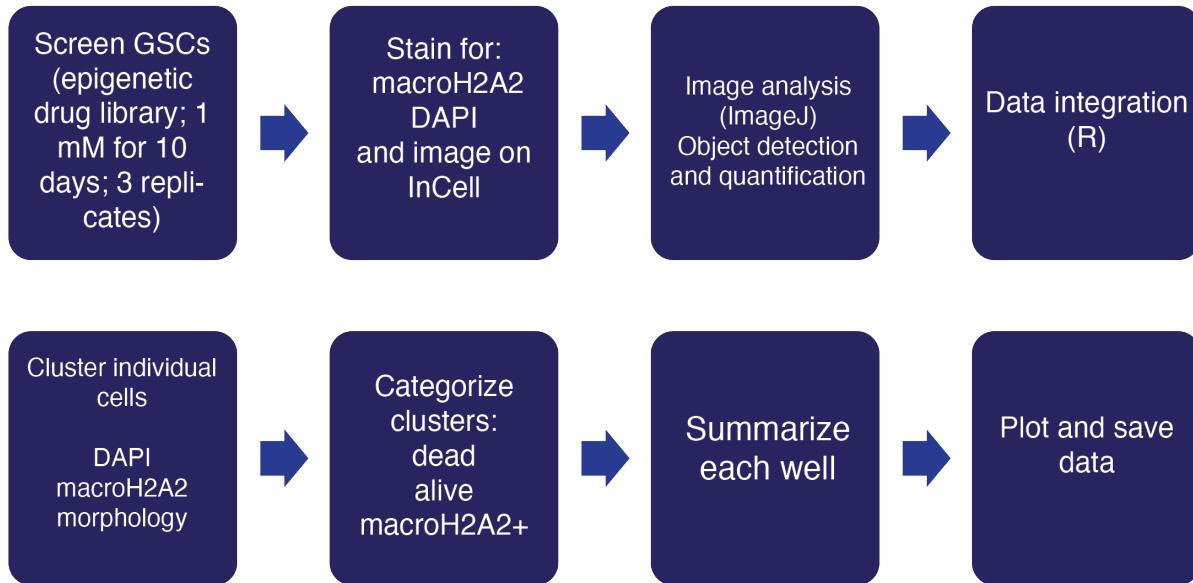

1161 (B) Top 2000 differentially transcribed GBM-specific eRNAs between *H2AFY2*/macroH2A2
1162 knockdown and control cells, ranked by fold change.

1163 (C) Close up of significantly differentially transcribed eRNA, ranked by p value.

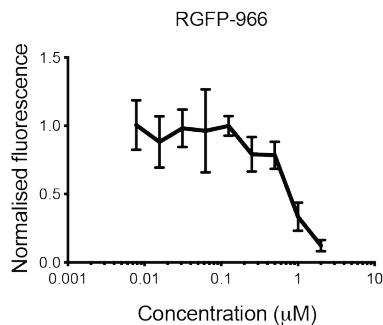
1164 (D) Example of a representative ATAC-seq enhancer peak lost upon *H2AFY2*/macroH2A2
1165 knockdown.

1166 (E) Example of eRNA at an enhancer locus with increased accessibility. P value calculated by
1167 unpaired T test. Error bars represent standard deviation.

1168



1169
1170
1171
1172
1173
1174


Supplementary Figure S5, related to Figure 5.
(A-C) tSNE plots of scATAC-seq data from three different primary GBM
resections Accessibility at the *COL20A1* enhancer locus is highlighted in orange.

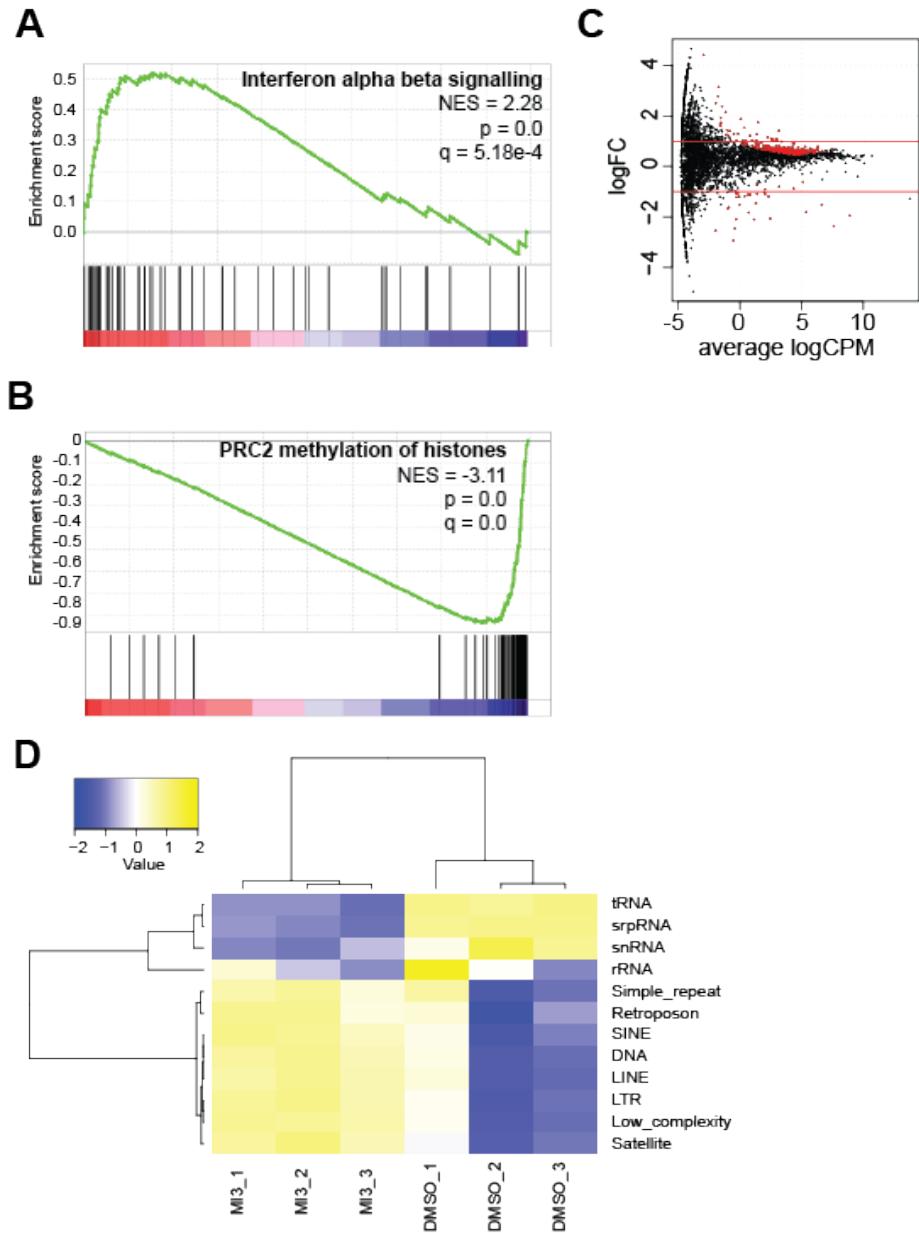
1175

A

B

1176

1177


1178 **Supplementary Figure S6, related to Figure 6.**

1179 **(A)** Overview of high-content screening strategy.

1180 **(B)** Alamar blue *in vitro* dose-response curve for RGFP-966 in G523 cells. Six technical
1181 replicates per concentration. Error bars represent standard deviation. Experiment repeated two
1182 times.

1183

1184

1185

1186 **Supplementary Figure S7, related to Figure 7.**

1187 **(A, B)** GSEA results showing altered interferon signalling and methylation signatures upon MI-3
1188 treatment compared to DMSO control.

1189 **(C)** Volcano plot showing expression of repeat elements in MI-3 treated cells versus control; points
1190 in red represent statistically significant changes (q value < 0.01). Three biological replicates per
1191 condition.

1192 **(D)** Heatmap showing differential expression of repeat families between vehicle and MI-3 treated
1193 cells. Three biological replicates per condition.

1194

1195