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Data-Driven Network Models for Genetic Circuits
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Abstract—Synthetic gene networks are frequently conceptu-
alized and visualized as static graphs. This view of biological
programming stands in stark contrast to the transient nature of
biomolecular interaction, which is frequently enacted by labile
molecules that are often unmeasured. Thus, the network topology
and dynamics of synthetic gene networks can be difficult to
verify in vivo or in vitro, due to the presence of unmeasured
biological states. Here we introduce the dynamical structure
function as a new mesoscopic, data-driven class of models
to describe gene networks with incomplete measurements. We
introduce a network reconstruction algorithm and a code base
for reconstructing the dynamical structure function from data,
to enable discovery and visualization of graphical relationships
in a genetic circuit diagram as time-dependent functions rather
than static, unknown weights. We prove a theorem, showing that
dynamical structure functions can provide a data-driven estimate
of the size of crosstalk fluctuations from an idealized model. We
illustrate this idea with numerical examples. Finally, we show
how data-driven estimation of dynamical structure functions can
explain failure modes in two experimentally implemented genetic
circuits, a historical genetic circuit and a new E. coli based
transcriptional event detector.

I. INTRODUCTION

Synthetic gene networks fulfill diverse roles in realizing cir-
cuit logic [1] and timing in living organisms [2]. Ranging from
single-input inverters [3], [4] to combinatorial input logic gates
[5], [6], reduction in DNA synthesis and sequencing costs
have made it possible to build increasingly complex genetic
circuits with tens to hundreds of components. However, the
ability to build novel biological circuitry often outpaces our
ability to revise designs or to take verify what has been built
behaves as intended. As the fields of synthetic and systems
biology continue to build and integrate on successes of circuit
and device-level complexity to engineer entire genetic systems
or pathways, we are consistently seeing failure modes that
arise from a lack of modularity, retroactivity [7], [8], [9], and
context effects [10].

Likewise, the expansion of CRISPR-based methods for
genome editing and targeted gene knockdown [11], [12] has
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enabled a broader category of systems biology design prob-
lems, centered on redesigning genomes [13] or reprogramming
host regulatory networks [14] to target specific environmental
niches or to exhibit a particular phenotype. The underlying
genetic program implicit in these systems biology objectives
is often a vast, complex, and dynamic network of interacting
genes, mRNA, and proteins. The expansion in DNA sequenc-
ing read depth has made it possible to profile individual genes
via the transcriptome [15], which combined with quantitative
proteomics [16] or metabolomics [17], enables systems-level
analysis of network activity. But prohibitive sampling and
library preparation costs make obtaining highly time-resolved
omics’ measurements hard. This makes it difficult to infer
dynamic network activity at the scale of whole cell models
[18] without extensive experimental investment.

Dynamic network models that describe the intricate in-
teractions between every biomolecular state or species are
referred to as state-space models. Two key variables that
often determine the behavior of these network models are its
network topology [19], [20] and parametric realization [21],
[22]. The structure of a network is generally determined by
how states in the system causally affect each other [22]; edges
in the network are determined by causal dependence while
nodes are determined by the states of the system [23].

Identifying the active, dynamic network structure of a
biological network is critical, since the hypothesized network
architecture of a genetic circuit may be very different from
the realized network architecture using a specific collection
of parts, sequences, and composition approach [24]. While
network structure alone does not determine dynamical be-
havior, though, parametric information is also important in
determining what dynamical behaviors a system can achieve
[25]. Rather, network structure, or topology, often defines
or narrows the possible behaviors a system can achieve.
Without any structural constraints, a dynamical system can
have arbitrary input-output behavior. Once network structure
is imposed, the set of realizable input-output trajectories can be
reduced [26], [27]. If the realized network differs significantly
from the intended network design, the dynamics of the system
may produce faults or glitches when appropriately excited or
interrogated [28], [29]. Getting the actual network topology
to match the intended network motif is thus a key element to
robust synthetic biological design.

In systems and synthetic biology, canonical network motifs
are broadly accepted as enabling useful dynamical behavior
[27], [30]. For example, an incoherent feedforward loop can
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be used for fold-change detection or adaptation [31], [32].
A cyclic network of repressors is associated with either
oscillations [33], [34], [35] or multi-stability [36] while a dual
negative feedback network of two nodes is used as memory
module or toggle switch [37]. Still, the active, dynamic net-
work architecture of most realizations of these network motifs
in the form of genetic circuits are not formally characterized
or catalogued [38]. Systematic, generalizable tools that can
discover and model dynamic network topology from data are
valuable. [1].

Circuit network discovery is, at its core, a network re-
construction problem. Given a desired network motif and a
physical system, we need to use measurements of the system
to determine if the actual, active network of the system
matches the intended design. There have been many network
reconstruction algorithms developed for natural and synthetic
biological networks [39], [40], [24], [41], [42], [43], [44], [45].
Historically, the approach to discovering network interactions
has involved direct perturbation of biochemical species or
components in a network [41], [45], [46]. Individual nodes
are perturbed and depending on if nearby nodes positively or
negatively correlate, an activating or repressing relationship
between two network nodes can be inferred. In [24], this
framework was taken a step further, by showing that the
behavior of direct and indirect links in a benchmark circuit
is network topology dependent. This provided a means for
using steady state perturbation data [39], [47], [45] to estimate
network models. Further, these steady-state estimation algo-
rithms have been verified using a benchmark synthetic gene
cirucit [43]. More recently, the authors in [42] and [40] showed
that retroactivity in gene networks can paradoxically confound
network predictions that are based wholly on correlation
measures. The core issue is that even when measurement
data for all biological states is available, causality is difficult
to determine from steady-state measurement data affected by
back-action or retroactivity in genetic networks [40].

At the single cell level, the reconstruction problem for
biological networks introduces challenges of inferring non-
linear stochastic models from noisy data [48], [49], [44]. In
[48], the authors show that by comparing average abundances,
molecule lifetimes, covariances, and magnitude of step, they
can map pairwise interaction dynamics, even when the rest
of the system is completely unspecified. The key observation
is that assembly stoichiometry of new molecules is fixed,
so unbalanced production of linked precursor components
will exacerbate imbalance further, resulting in empirically
observed large fluctuations. Further, Hilfinger, Norman and
Paulsson show in [49] that there are statistical invariants for
certain kinds of network interactions, which can be used to
evaluate and challenge existing hypotheses of stochastic gene
interaction. More recently, Wang, Lin, Sontag and Sorger show
that effective stoichiometric spaces can be used to determine
network structure from the covariances of single-cell multiplex
data [44]. These studies show that it is possible to infer
meaningful structural information about a genetic network,
even only when a portion of the network states are observed
and the data is fundamentally noisy.

In this paper we introduce a class of mesoscopic network

reconstruction models with adaptable resolution, commen-
surate with the depth or coverage of the circuit states (or
genome) available from fluorimetric, spectometry-based, or
sequencing based measurements. Our method is distinct in
that we consider the use of high-resolution time-series data,
but where only partial measurement of the network’s nodes
is feasible. Further, we consider dynamic measurements of
bulk culture rather than single cell, where we benefit from the
assumptions of high molecular copy number and large reaction
volumes [49]. Specifically, we present the dynamical structure
function, an abstract model class from linear time-invariant
systems theory and show it can be used as a generalized
representation of measured interactions between biological or
biochemical states. The contributions of this paper are: 1) we
show how a dynamical structure function can encode both
direct and crosstalk network interactions, by way of theorem
and simulated examples, 2) we develop a direct estimation
algorithm and code to directly estimate the dynamical structure
function, as well as visualization tools to monitor repression
and activation in genetic circuits, and 3) we demonstrate this
theory on two experimental systems: A) an in vitro genelet
repressilator from the synthetic biology literature and B) a
novel transcriptional event detector that we build specifically
to illustrate dynamical structure reconstruction.

II. REPRESENTING NETWORK INTERACTIONS IN
PARTIALLY MEASURED BIOLOGICAL NETWORKS WITH

DYNAMICAL STRUCTURE FUNCTIONS

The tradeoffs between cost of network reconstruction and
the “informativity” of the structural representation are es-
pecially clear in synthetic and systems biology research. In
this area, finding or verifying the network of a biological
system is an important problem. However, discovering the
entire chemical reaction network is typically an ill-posed
problem, since additional reactions may be introduced due
to host or environmental context [52], loading effects, or
unanticipated retroactivity effects [53], [54], [55], [56], [7].
Even without these effects, the reconstruction problem is
equivalent to finding a unique realization for the dynamical
system from direct measurements of every state of the system.
Unique realization problems are difficult, unless the system
of interest has specific structure, e.g., measurement functions
of the state that are diffeomorphic [57], [58]. On the other
hand, there are many inputs that can be used to perturb the
system of interest, e.g. silencing RNA [59], genetic knock-outs
[60], and small chemical inducers [61]. Using these inputs,
it is straightforward to reconstruct the transfer function of
the system [73], [51]. However, the transfer function contains
virtually no information about how chemical species within
the system are interacting.

An intermediate representation of network structure that
addresses this trade-off is the dynamical structure function
[62]. The dynamical structure function is a representation
derived from linear systems theory, and thus can be used
to model transients of a genetic circuit around an operating
point or even unstable network dynamics diverging from an
equilibrium point. It is a more detailed description of network
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Fig. 1. Dynamical structure functions can be used to analyze synthetic gene networks: (A) Synthetic biological parts for a incoherent feedforward loop
(IFFL) using the LasR activator, the TetR repressor, and reporter proteins CFP, YFP, and RFP. (B-C) The dynamical structure graphs of the crosstalk-free IFFL
from system (6), in (B) and the crosstalk-impacted IFFL from system (7), in (C). Nodes represent measured biochemical species, with black edges denoting
causal dependencies stemming from designed interactions, and red edges denoting causal dependencies arising from crosstalk or loading effects. Notice that
the dynamical structure captures network models interactions that are not described by the system transfer function G(s).

structure than the transfer function since it models the causal
interactions between measured outputs, in addition to the
causal dependencies of outputs on input variables. At the same
time, it does not require complete state feedback for recon-
struction, since it only models the interactions among output
states. In biological systems, this is especially applicable since
the output variables of a system are also a subset of the state
variables. All unmeasured states are subsumed in the edge-
weight functions that describe interactions between measured
variables. It is thus possible to experimentally target specific
biochemical species to measure and verify that the network
structure of a biological system is functioning as intended.
Most notably, necessary and sufficient conditions for recovery
of dynamical network models have been developed and well-
studied [62], [22], [63], [64], [65], [66], but so far no open-
source algorithms, code bases, or applications of this theory
have been developed directly for synthetic biology.

A. Dynamical Structure Functions

We briefly review the theory of dynamical structure func-
tions, as they pertain to biochemical reaction networks.
In practice, the state of the dynamical system x =[
yT xTh

]T ∈ Rn, where y ∈ Rp are the measured
chemical states of the dynamical system, corresponding to
components of the biochemical reaction network tagged with
fluorescent reporters, and xh ∈ Rn−p are the unmeasured
chemical states. It is also the cases that there are exogenous
inputs u ∈ Rm that can be introduced to influence the
dynamics of the state x. With the exception of oscillators,
many biochemical reaction networks converge to a steady
state. Moreover, it is generally the case that the parameters
of biochemical reaction networks are time-invariant, so long
as macroscopic experimental settings of the system such as
temperature, growth media, and dissolved oxygen content
remain fixed. Therefore, while the model of a biochemical

Fig. 2. Dynamical structure functions describe how network structure
evolves over time (and as a function of frequency): The time-lapse response
of the dynamical structure convolution kernel Qa(t) = L−1 (Qa(s)) for
the incoherent feedforward loop in system (6). By examining the functional
response of each entry in Qa(t) (or Qa(s)), we see that the network structure
of the incoherent feedforward loop in Example II-A1 is a time-evolving, or
dynamic, entity.

reaction network is of the form

ẏ = fy(y, xh, u), y(0) = y0

ẋh = fxh
(y, xh, u), xh(0) = xh,0,

y =
[
Ip×p 0

] [ y
xh

] (1)

we will suppose that we can linearize the system about either
an equilibrium point, a nominal operating point, or even an
(unstable or oscillatory) initial condition to extract network
dynamics. In biological systems, networks are almost never
precisely linear, but we presume to model local fluctuations
or perturbations from a target point in the state space. As we
will see in the sequel, this will be enough to extract relevant
network information. Proceeding with the linearization, we can
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write the system in the form:[
ẏ
ẋh

]
=

[
A11 A12

A21 A22

] [
y
xh

]
+

[
B1

B2

]
u

y = C

[
y
xh

]
.

(2)

where
C =

[
Ip×p 0

]
.

We also assume the system’s initial condition of the linearized
system is x(0) = 0, and the entries in A ∈ Rn×n and B ∈
Rn×m are calculated as

A11 ≡ ∂fy(y,xh,u)

∂y
|x=xe,u=ue , A12 ≡ ∂fy(y,xh,u)

∂xh
|x=xe,u=ue

A21 ≡
∂fxh

(y,xh,u)

∂y
|x=xe,u=ue , A22 ≡

∂fxh
(y,xh,u)

∂xh
|x=xe,u=ue

B1 ≡ ∂fy(y,xh,u)

∂u
|x=xe,u=ue , B2 ≡

∂fxh
(y,xh,u)

∂u
|x=xe,u=ue

Taking Laplace transforms, solving for Xh(s) and replacing
it in Y (s) we obtain

sY = W (s)Y (s) + V (s)U(s) (3)

where
W (s) = A11 +A12(sI −A22)−1A21

V (s) = B1 +A12(sI −A22)−1B2.
(4)

Defining D(s) = diag (W (s)) and subtracting D(s)Y (s) from
both sides of equation (3) and solving for Y (s) we obtain the
following equation

Y = Q(s)Y (s) + P (s)U(s) (5)

where Q(s) = (sI − D)−1(W − D) is a p × p transfer
function matrix and P (s) = (sI −D)−1V is a p×m transfer
function matrix. Each entry Qij(s) is a transfer function that
describes the causal dependency of measured state Yi(s) on
measured state Yj(s). Similarly, the transfer function Pij(s)
describes the causal dependency of measured state Yi(s) on
input Uj(s). The matrix pair (Q(s), P (s)) is known as the
dynamical structure function, where Q(s) is referred to as the
network structure and P (s) as the control structure.

Note that Q(s) is defined as Q(s) = (sI −D)−1(W −D)
rather than Q(s) = 1/sW (s). This guarantees that the di-
agonal entries of Q(s) are 0, which implies that any non-
zero terms Qij(s) are A) strictly proper transfer functions
and thus causal, B) descriptions of causal interactions among
measured Yi and Yj . This also means that Q(s), defined in
this way, is unique and has p less parameters to identify on
its diagonal. This construction of Q(s) and P (s) ultimately
ensures identifiability [62] under reasonable assumptions of
independent input perturbation [39], [40], [24], [41], [42],
[43], [44], [45]. Further, if Q(s) = W/s, then we would face
two simultaneous challenges in estimation 1) disentangling
autoregulatory dynamics (Yi to Yi) from pairwise interactions
(Yi to Yj), 2) too many unknown parameters in both Q(s) and
P (s). Lastly, we find that studying the pairwise interactions
QIj(s) can already elicit important functional information
about a genetic network, as illustrated by the next two ex-
amples.

1) Example: The DSF of an Idealized Incoherent Feed-
forward Loop: Consider the following synthetic biology de-

sign problem: design and implement an incoherent feed-
forward loop. Specifically, we consider implementing a feed-
forward loop using the synthetic parts pLac-LasR-CFP-
LVA, pLas-TetR-YFP-LVA, and pLas-Tet-RFP-LVA and IPTG,
C3O6H12−HSL, and aTc as inputs (see Figure 1). We model
the protein concentration of LasR-CFP, TetR-YFP, and RFP
as x1, x2, and x3, respectively. We denote the corresponding
mRNA species for each of these proteins as m1,m2, and m3.
A simple model without any loading effects, describing the
dynamics of these states can be written as:

ẋ1 = ρ1m1 −
C0x1/k1,d

1 + x1/k1,d

ẋ2 = ρ2m2 −
C0x2/k2,d

1 + x2/k2,d

ẋ3 = ρ3m3 −
C0x3/k3,d

1 + x3/k3,d
(6)

ṁ1 =
α1u1

kM,u1 + u1
− δmm1

ṁ2 =
α2x1u2/kM,u2

1 + x1u2/kM,u2
− δmm2

ṁ3 =
α3x1u2/kM,u2

1 + x1u2/kM,u2 + x2/ (kM,2 + u3/kM,u3)
− δmm3

y =
[
I3×3 03×3

] [
~xT ~mT

]T
The dynamical structure function for this system is derived by
taking Laplace transforms and eliminating the hidden mRNA
states of x1, x2, and x3, namely m1,m2,m3, see [62] or [66]
for a detailed derivation of dynamical structure functions. The
network and control structure matrix transfer functions are
written (Qa(s), P a(s)) where Qa(s) is written as 0 0 0

0.045
s2+1.5 s+5.7·10−4 0 0

1.5·10−4

s2+1.7 s+0.2 − 1.5·10−4

s2+1.7 s+0.2 0


and P a(s) is 6.7·10−7

s2+1.5 s+5.7·10−4 0 0

0 244.0
s2+1.5 s+5.7·10−4 0

0 0.78
s2+1.7 s+0.2

7.8
s2+1.7 s+0.2


The network, with edge weight functions corresponding to the
entries of Qa(s), is drawn in Figure 1B. Notice that if we take
s ∈ R>0, the sign of the entries in Qa(s) coincides with the
form of transcriptional regulation implemented by TetR and
LasR, respectively. In [67] it was shown that the sign definite
properties of entries in Q(R>0) are useful for reasoning about
the monotonicity of interactions between measured outputs
and how fundamental limits in system performance relate to
network structure.

Let us now consider the inverse Laplace transform of
L−1 (Qa(s)), we remark that Y (t) =

∫ t

0
Qa(t)Y (t − τ)

follows from the equation

L−1 (Y (s)) = L−1 (QaY (s) + P aU(s))

whenever u(t) ≡ 0 such that U(s) is 0. This argument holds
in general for any system of the form (2). In particular, the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.03.10.434835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434835
http://creativecommons.org/licenses/by/4.0/


5

entries Qa(t) act as convolution kernels, and taken with the
integral, define an operator for mapping yj(t) to yi(t). Most
interestingly, we can see that the network structure of this
incoherent feedforward loop is dynamical, hence our usage of
the term dynamical structure function to describe the network
structure among the measured chemical species y(t). In this
particular case, the time-domain analogue of the dynamical
structure (or dynamical structure convolution kernel) is given
as

Qa(t) ≡

 0 0 0
Q21(t) 0 0
Q31(t) Q32(t) 0


where

Q21(t) =
(
5.5 · 10−3

)
e−(8.3·10−4) t sinh

((
6.0 · 10−5

)
t
)

Q31(t) =
(
4.1 · 10−7

)
e−(4.9·10−3) t sinh

((
4.1 · 10−3

)
t
)

Q32(t) = −
(
9.7 · 10−8

)
e−(4.9·10−3) t sinh

((
4.1 · 10−3

)
t
)

A visualization of each of these impulse kernel functions
and their corresponding location in the dynamic adjacency
matrix, defined by Qa(t), is given in Figure 2. Notice how the
activating or repressing nature of genetic regulation is encoded
by the positive or negative sign of the corresponding kernel
response. In addition to uncovering the Boolean network of
interactions between biological states, the dynamical network
convolution kernel Qa(t) reveals the time-scales of response
of each network edge, as well as the amplitude and the rate of
decay of the gain from the time of impulse. Similar response
profiles can be generated for step function inputs, though
finite impulse inputs are typically more common in biological
networks. Interestingly, the transfer function Ga(s) of the
system is likewise lower triangular, reflecting the feedforward
network topology in the genetic circuit. Specifically, Ga(s)
has a sparsity structure of the form

Ga(s) ≡

Ga
11(s) 0 0

Ga
21(s) Ga

22(s) 0
Ga

31(s) Ga
32(s) Ga

33(s)

 .
2) Example: The DSF of an Incoherent Feedforward Loop

with crosstalk: In prototyping a feedforward loop, it is im-
portant to anticipate in vivo context effects. We consider the
same biocircuit as described in Example II-A1, except now
we specifically consider loading effects frequently neglected
in the design process of synthetic biology. First, we note that
each gene may be susceptible to loading effects [7]. For each
gene in Figure 1A, a degradation tag is added, to provide
tunability, to the rate of degradation of the protein. Inside
the cell, a protease called ClpXP targets these degradation
tags and degrades the associated protein. Different tags can be
incorporated to modulate the gain of the degradation process.
Further, these degradation tags can be subject to mutagenesis
experiments, as a means to modulate tunability.

Tunability of degradation introduces a tradeoff in perfor-
mance. Since the ClpXP protease is a housekeeping protein
expressed to form a common pool of proteases for all genes
in the cell, there is a limit to the supply of free ClpXP protein
in any instant of the cell’s growth cycle. When there are

too many degradation-tagged proteins [68], the overloading
of the protein degradation queue can trigger unwanted effects
such as stress response. More directly, the competition for
scarce proteases can induce coupled dynamics or a virtual
or indirect interaction between two genes competing for the
same protease pool. Even if the genes were engineered to
have no direct transcriptional or translational cross-regulation,
the competition for the same protease effectively couples the
protein states of both genes. Modifying the above model to
account for these type of loading effects yields:

ẋ1 = ρ1m1 −
C0x1/k1,d

1 + x1/k1,d + x2/k2,d + x3/k3,d

ẋ2 = ρ2m2 −
C0x2/k2,d

1 + x1/k1,d + x2/k2,d + x3/k3,d

ẋ3 = ρ3m3 −
C0x3/k3,d

1 + x1/k1,d + x2/k2,d + x3/k3,d

ṁ1 =
α1u1

kM,u1 + u1
− δmm1

ṁ2 =
α2(x1u2/kM,u2)

1 + x1u2/kM,u2
− δmm2

ṁ3 =
α3x1u2/kM,u2

1 + x1u2/kM,u2 + x2/ (kM,2 + u3/kM,u3)
− δmm3

y =
[
I3×3 03×3

] [
~xT ~mT

]T
(7)

Computing the dynamical structure function, we obtain Qc(s)
0 1.6·10−3

s+2.1·10−3
0.041

s+2.1·10−3

(1.6·10−3) s+0.048

s2+1.5 s+3.3·10−3 0 0.041
s+2.1·10−3

(3.8·10−4) s+7.4·10−4

s2+1.6 s+0.13

(3.8·10−4) s+4.4·10−4

s2+1.6 s+0.13 0


and P c(s) 6.7·10−7

s2+1.5 s+3.2·10−3 0 0

0 244.0
s2+1.5 s+3.3·10−3 0

0 0.78
s2+1.6 s+0.13

7.8
s2+1.6 s+0.13

 .

Notice that Qc(s) is no longer lower-triangular, but fully con-
nected. Introducing loading effects creates additional coupling
between nodes in the network. If the coupling is significant, the
designed network interactions of the incoherent feedforward
loop are overcome by the crosstalk network interactions [67],
[56], [69], [70], [20], [71], [8]. Thus, the coupling that is
introduced into the biochemical reaction network by loading
effects is reflected in the structure of (Qc, P c)(s).

In contrast, the transfer function of the crosstalk system only
characterizes how system outputs causally depend on inputs.
In particular, Gc(s) is also a full matrix like Qc(s) of 6th
order SISO transfer functions

Gc ≡

Gc
11(s) Gc

12(s) Gc
13(s)

Gc
21(s) Gc

22(s) Gc
23(s)

Gc
31(s) Gc

32(s) Gc
33(s)

 (s)

but all structural information about how loading effects cause
interference among system states is mixed with the informa-
tion about how outputs causally depend on inputs in G(s). An
identification algorithm of entries in G(s) will thus be unable
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Fig. 3. Dynamical structure functions describe how network structure
evolves over time (and as a function of frequency): The time-lapse response
of the dynamical structure convolution kernel Qc(t) = L−1 (Qc(s)) for
the incoherent feedforward loop in system (7). By examining the functional
response of each entry in Qc(t) (or Qc(s)), we see that the network structure
of the incoherent feedforward loop in Example II-A1 is a time-evolving, or
dynamic, entity.

to quantify the size of crosstalk or interference among system
states.

To what extent can the entries of (Q(s), P (s)) can be used
to quantify the size of crosstalk in a synthetic gene networks?
The following theorem shows that the dynamical structure
function can be used to quantify crosstalk in biochemical
reaction networks.

Theorem 1: Let L denote the two-sided Laplace operator.
Suppose the states xc and xa of the systems (15) are (16)
are shifted, so that the origin is a locally asymptotically stable
equilibrium point and Qc and Qa are the respective dynamical
structure functions calculated for each linearized system about
the origin. Then

∂L (ζi)

∂Yj
= Qa

ij(s)−Qc
ij(s) +

∂

∂Yj
L
(
O(x2)

)
(8)

and in particular, if
Qa

ij(s) ≡ 0

then
∂L(ζi)

∂Yj
= −Qc

ij(s) +
∂

∂Yj
L
(
O(x2)

)
and can be estimated from input output data (Y (s), U(s)).

The proof of this theorem is provided in the Supplementary
Information. There are two ways to apply this result. First, if
one has an idealized or reference dynamical structure model of
the circuit, then this can be compared to the dynamical struc-
ture model estimated from the data. Second, in the absence
of a reference model, the dynamical structure model can be
estimated directly from data to observe new edge functions
or gain mismatch directly from the data-driven dynamical
structure model. In the latter scenario, if the crosstalk interac-
tions are mediated on an existing edge, it will not be possible
to separate the magnitude of the crosstalk from the existing
(intended) dynamics of a given active edge in the network.
However, the discovered edge dynamics can be compared to

the intended behavior, e.g., intentional activation or repression
over a certain growth phase of the cells.

III. DIRECT ESTIMATION ALGORITHM FOR DYNAMICAL
STRUCTURE FUNCTIONS

In this section, we will introduce a direct estimation al-
gorithm for estimating the dynamical structure function. The
dynamical structure function is a tuple of matrix transfer
functions (Q(s), P (s)) and can be directly estimated from
experimental or simulation data so long as the data and the
conditions of the experiment satisfy the assumptions of the
following theorem, proved in [62].

Theorem 2: Given a p×m transfer function G(s), dynam-
ical structure reconstruction is possible from partial structure
information if and only if p − 1 elements in each column of
[Q(s) P (s)]

∗ are known that uniquely specify the component
of (Q,P ) in the nullspace of [G(s)∗ I].

It follows from this theorem that without additional
structural information about the columns of the matrix
[Q(s) P (s)]

∗, it is not possible to identify (Q(s), P (s)). In
synthetic gene circuits with complex internal network interac-
tions encoded by Q(s), we can still solve for the structure and
parameters of Q(s), as long as enough elements of P (s) are
known. For example, targeted gene knockdowns (CRISPRi) or
knockouts (engineered genomic mutations) can be engineered
so that P (s) is a diagonal matrix transfer function. That is,
all genes or biological states in the network of interest are A)
monitored by some measurement channel over time and B)
independently perturbed by a diagonal element in P (s). These
are necessary and sufficient conditions for reconstruction of
Q(s) and P (s) and align with the conditions developed by
Sontag, Kholodenko, Wolkenhauer, Kang, Prabakaran et al.
for network reconstruction of full state measurement systems
[39], [40], [24], [41], [42], [43], [44], [45].

Under the above premises, the task is to estimate the
diagonal transfer function entries of P (s) and to estimate
all off-diagonal entries of Q(s). Recall from the derivation
in Section II-A that the diagonal entries of Q(s) are set
to 0 by subtracting the diagonal entries of the precursor
W (s) transfer function matrix from W (s). Further, by left-
multiplying (sI − D)−1 with W (s) − D(s), this guarantees
that the representation for Y = QY +PU yields a unique Q(s)
and P (s). The entries of Q(s) and P (s) are all strictly proper
rational transfer functions and thus encode causal dynamics.

There are two approaches to solve for Q(s) and P (s). The
first is to estimate the transfer function G(s) using a standard
transfer function estimation routine, followed by inversion of
G and calculation of the entries of Pii(s) and subsequently
the entries of Q(s). This approach has the drawback of relying
on inversion of the matrix transfer function G(s), which often
requires symbolic inversion and is thus prone to numerical
instability and scaling issues for larger networks.

The second approach, which we propose here and develop
code for, is to identify the dynamical structure function directly
from data by writing the model estimation problem in normal
form. First, we can estimate the discrete time approximations
of Q(s) and P (s), as Q̂(z), P̂ (z), which will follow the same
identifiability conditions [62].
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Specifically, we have that

Y (z) = Q̂(z)Y (z) + P̂ (z)U(z). (9)

which given that Q̂ and P̂ share the same denominator, we
can multiply the characteristic polynomial of Q̂(z) on both
sides, to obtain(

znd + a1z
nd−1 + . . .+ and

)
Y (z) = Q̂num(z)Y (z)

+ P̂num(z)U(z).
(10)

The matrices Q̂num(z) contain unknown coefficients like
a1, ..., and

and so we can express the known quantity zndY (z)
after inverse Z-transforming to obtain

Y [t− nd] = −a1Y [t− nd + 1]− a2Y [t− nd + 2]−
. . .− and

Y [t− nd]−ΘQ,numYt−md:t

−ΘP,numYt−md:t

(11)

which can be written in normal form as

b = xT Θ. (12)

This equation can be stacked for multiple time traces, collected
from different conditions or experimental replicates, or by
staggering the time horizon, to obtain the stacked normal form
equations

B = XΘ. (13)

where B and X are known values of time-series data and Θ
contains the coefficients determining the characteristic polyno-
mial and the numerators of the dynamical structure function.
Once these estimates are obtained, a standard discrete-to-
continuous transformation can be used to estimate Q(s) and
P (s). The steps of our algorithm are summarized in Algorithm
1 and the full MATLAB code is provided at the Github repos-
itory https://github.com/YeungRepo/NetRecon.

A couple remarks are in order. First, there are two distinct
hyperparameters that require optimization in generating the
estimates for Q(s) and P (s): 1) nd, the order of the char-
acteristic polynomial and 2) the selection of the number of
subsampled timepoints hmax in a given time-series traces.
The optimal value of hmax will depend on the dataset, to
ensure the condition number of the matrix X must be small.
In high resolution time-series measurements, a small or short
subsampled horizon hmax may produce virtually identical data
if the transient has a slow rate of change, which can result
in ill-conditioning of X . We optimize nd, hmax to minimize
the n-step L1 prediction error across all Nexp experimental
samples. In practice, we observe that this criteria, by necessity,
guarantees an appropriate selection of hmax as well as a lower
optimal nd value.

Secondly, the routine described above may appear to be
easily cast as a classic transfer function estimation routine,
similar to the tools developed by [73] in MATLAB. The
primary difference in this procedure from a standard transfer
function estimation procedure for[

Q(z) P (z)
]

is that we must impose structural information about Q(z) and
P (z) on the estimation process. This results in a structured

Algorithm 1: Direct QP Estimation Algorithm

1 Input: YData, UData ∈ RN×p×NExp

2 Result: Dynamical structure function (Q(s),P(s))
3 Initialize:
4 ndmin

(min. num. of poles),
5 ndmax (max. num. of poles),
6 hmax (max. horizon of subsampled time-series trace)
7 for nord = ndmin

, , ..., ndmax
do

8 while 1 < hmax < N − nord − 1 do
9 Initialize:

10 YLH = [ ] (stacked snapshots of time-series data
corresponding to char. polynomial of Q(s)

11 YRH = [ ] (stacked snapshots of time-series data
corresponding to numerator terms of Q)

12 URH = [ ] (stacked snapshots of time-series data
corresponding to numerator terms of P )

13 for expid = 1, ...Nexp do
14 for c = 1, ...p do
15 for r = 1, ...hmax do
16 ts = N − (r − 1)− nord
17 te = N − (r − 1)

YLH .append(Y [ts : te, c, expid])
18 Initialize: Yalt as empty array.
19 for yalt = 1, .., p− 1 do
20 if yalt + c > p then
21 calt = mod(yalt + c), p)
22 else
23 calt = yalt + c
24 end
25 end
26 ts,alt = N − (r − 1)− nord
27 te,alt = N − (r − 1)
28 Yalt.append(Y [ts,alt : te,alt, calt, expid])
29 end
30 zpre = nord(c− 1)(p− 1)
31 zpost = nord(y − c)(p− 1)
32 YRH .append(

[
1c≡101×zpre |Yalt|1c≡p01×zpost

]
)

Initialize: Utemp as empty array.
33 tus = N − r + 1− nord + 1
34 tue = N − r + 1
35 for uind = 1, ...,m(or p since m = p) do
36 Utemp.append(1uind≡cUData [tus : tue )])
37 end
38 URH .append(Utemp)
39 end
40 end
41 end
42 X = [−YLH [:, 2 : nord + 1] |YRH |URH ]
43 B = [YLH [: , 1 ]]
44 Θ(hmax) = X†B
45 end
46 end
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system identification problem, which typically is non-convex
and difficult to initialize properly. Specifically, the diagonal
entries of the estimated Q(z) and the off-diagonal entries of
P (z) must be exactly 0, as per the premises of [62]. Again,
these structural constraints guarantee a unique representation
of the dynamical structure function and identifiability of
the model. When using standard transfer function estimation
tools (in MATLAB’s System Identification toolbox), we found
repeatedly over thousands of numerical trials that imposing
structural constraints as model priors resulted in A) models
with extremely poor n-step prediction capacity (forecasting)
or B) models with extremely poor 1-step fit scores. This
motivated the development of a direct estimation algorithm,
that mirrors the standard estimation of an discrete-time transfer
function model, but where structural constraints of Q(z) and
P (z) are directly encoded into the formulation of the normal
form of equations (Lines 19-28, 32 and 36 of Algorithm 1).

IV. THE DYNAMICAL STRUCTURE OF AN in vitro GENELET
REPRESSILATOR

We now illustrate the process of data-driven estimation of
dynamical structure functions, using experimental data. In this
section, we take as a first test case the synthetic genelet
repressilator developed by Kim and Winfree [72]. The genelet
repressilator consists of three DNA switches that repress one
another through indirect sequestration. Specifically, each DNA
switch transcribes its mRNA product only when its activator
strand binds to complete its T7 RNA polymerase promoter
sequence. The RNA product produced from each DNA switch,
in turn, acts as an inhibitor to the downstream switch by
binding to the downstream switch’s DNA activator molecule.
Thus, by sequestering the DNA activator from completing
the T7 RNA polymerase promoter region, the mRNA product
of the upstream switch inhibits activation of the downstream
switch. Figure 4A shows the mechanistic design of the genelet
switch.

The genelet switch relies heavily on RNase H to degrade any
activator-mRNA inhibitor complexes. Without degradation, the
binding of activator to mRNA inhibitor is much faster than
unbinding and so sequestration is effectively irreversible. Thus,
in order for the repressilator to function properly, RNase H
must degrade its target substrates sufficiently fast. If RNase
H is saturated with high levels of a particular substrate, this
slows the degradation of other substrates, creating a crosstalk
interaction between competing DNA-RNA complexes.

By performing network reconstruction on the genelet re-
pressilator, we can determine how much crosstalk exists in
the biocircuit. Further, we can validate our dynamical structure
reconstruction algorithm in an in vitro setting, by deliberately
attenuating one of the components to create a gain imbalance.
We can see if the reconstruction process recovers the deliberate
imbalance we introduce into the genelet repressilator, even
when simply measuring local perturbations of an operating
point for a normally oscillatory circuit.

To reconstruct Q(s) and P (s), we performed a single
experiment with three perturbations applied in series [39],
[40], [24], [41], [42], [43], [44], [45], [62]. To perturb each

switch we pipetted a small perturbative concentration of DNA
inhibitor (a DNA analogue of RNA inhibitor). Since DNA
is not degradable in a T7 expression system by RNase H, it
effectively acts as a step input since it binds to DNA activator
and does not degrade. In this way, our perturbation design
ensures sufficiency of excitation and independent perturbation
of each activator (and downstream switch), thereby satisfying
the identifiability conditions in [62] and the persistence of
excitation conditions described in [73]. Further, we attenuated
the concentration of the third switch T31 by 20%, to create
a deliberate gain imbalance for evaluating our reconstruction
algorithm.

A detailed model of the repressilator can be found in the
supplement of [72]. Since the derivation is lengthy, it suffices
to write the idealized dynamical structure function Qa(s) of
this system, corresponding to the detailed model provided in
Supplementary Section 1.6 [72]. The structure is obtained by
linearizing the system, transforming into the Laplace domain,
eliminating hidden variables to obtain the following: 0 0 Qa

13(s)
Qa

21(s) 0 0
0 Qa

32(s) 0


reflecting the cyclic structure of the system. This represents
an idealized model of the system. As stated in Theorem ??
every entry where Qa

ij(s) ≡ 0, the corresponding entry in
Q(s) estimated directly from experimental data, will be a
crosstalk interaction present in the network. Here Q(s) is used
to denote Qc(s), the dynamical structure function estimated
directly from data.

The experimental data used to fit Q(s) and P (s) are plotted
in Figure 5, along with their respective fits. For each row i of
Q(s), we use Yj , j 6= i and Ui as inputs and Yi as the output
for a direct MIMO p×1 transfer function estimation problem.
The impulse response for the convolution kernel Q(t) of the
reconstructed Q(s) is plotted in Figure 6.

If we compute the corresponding H∞ gain of each entry in
Qij(s) and scale by the maximum gain, we obtain

||Q(s)||∞ =

 0 0.07 0.73
1.0 0 0.3

0.053 0.17 0

 .

We see significant crosstalk on the edge Q23(s) and minor
crosstalk from entries Q31(s) and Q12(s) . This crosstalk need
not occur simultaneously, since the H∞ gain calculates the
worst-case or maximum gain over all possible frequencies.
With the exception of Q23(s), all other crosstalk entries have
strictly smaller H∞ gain than the designed edge. Examining
the impulse response of the convolution kernel confirms these
observations; the crosstalk edge Q23(t) has a larger impulse
response than designed edge Q32(t).

As intended in the design of the experiment, our estimated
network model shows a gain imbalance between the designed
edges Q32(s), Q13(s) and Q21(s). In order for the oscillator
to perform properly, it needs to have approximately the same
gain along each edge in the network. This example verifies that
our reconstruction algorithm can identify important functional
dynamics of a genetic circuit; especially for debugging pur-
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Fig. 4. Network representations of a synthetic genelet repressilator: (A) A reaction network using push-arrow reaction notation of the synthetic genelet
repressilator. (B) A diagram representing the reaction dynamics in panel (A) as state dependencies from a nonlinear ODE model in [72]. (C) The dynamical
structure of the repressilator (without inputs), with nodes representing measured chemical species and edge weights corresponding to entries in Q(s).

Fig. 5. Time-series experimental data from in vitro network perturbation
experiments of a T7 RNAP genelet repressilator. Three outputs are measured
simultaneously, y1, y2, and y3, corresponding to DNA switches T31, T12 and
T23. DNA homologues of the RNA inhibitors rIj j = 1, 2, 3 are injected at
small concentrations to provide a step input perturbation to the corresponding
component Yj in the genelet circuit.

poses. The linearization scheme is valid, so long as we model
fluctuations in dynamics from a nominal initial condition, even
if the initial condition is not stable or leads to oscillatory
dynamics Our results here illustrate how linearized models can
provide insight into local dynamics. In this simple, controlled
dataset, we know we can increase the gain of the edge in
Q32(s) by adjusting the binding affinity of the activator DNA
with its inhibitor RNA, or by increasing the concentration of
the corresponding downstream switch T31. Notice that this
design insight may not be obvious by direct examination of
experimental trajectories of each switch in Figure 5. As long

Fig. 6. Impulse response of the estimated convolution kernel Q(t) matrix.
Q(s) is estimated directly from experimental data, transformed into the
frequency domain, and simulated in time for t = 0 to t = 300 minutes.

as we have an idealized network model, we can measure
the deviation from that model Qa(s) in the network model
identified from the data Qc = Q(s) and identify edges or
nodes in our network that need tuning.
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V. THE DYNAMICAL STRUCTURE OF AN in vivo
TRANSCRIPTIONAL EVENT DETECTOR

We now introduce a new transcriptional event detector cir-
cuit, one that is designed, built, and constructed for illustrating
the use of our dynamical structure estimation algorithm in
in vivo circuit design. Event detectors are useful because of
their ability to perform temporal logic. Making temporal logic
decisions enable applications such as programmed differenti-
ation, where the goal is to perform some operation based on
a combinatorial and temporal sequences of events that dictate
cell fate.

So far there are two demonstrations of temporal logic gates:
1) a temporal logic gate that differentiates start times of two
chemical outputs [76] and 2) a molecular counter that counts
the number of sequential pulses of inducers [77]. Both event
detectors use serine integrases to perform irreversible recombi-
nation, while [77] demonstrates the use of transcription-based
event detecting to perform event counting. The advantage of
an integrase-based approach is the persistent nature of DNA-
based memory. At the same time, the drawback of integrase-
based event detection is that it is limited to one-time use.

In contrast, transcription based event detectors use proteins
instead of DNA to encode a memory state [77], [78]. The
advantage of a transcription-based event detector is that pro-
teins are labile, since they are diluted through cell growth
or can be tagged for degradation. Thus, a transcriptional
event detector’s memory state can be reset after some period
of time. On the other hand, maintaining protein state over
multiple generations is metabolically expensive [71] and the
dynamics of the circuit can become sensitive to production
and growth phase of the cells. Therefore, a transcription based
event detector biocircuit must be designed with precise timing,
balance of production rates, and carefully tuned gain of each
transcriptional regulator. This presents a suitable application
for our network reconstruction algorithm.

A. Designing a transcriptional event detector

We designed our transcriptional event detector to be made
of two constitutively expressed relay genes, AraC and LasR,
and an internal toggle switch. The two relay genes transmit
the arrival of two distinct induction events (arabinose and
HSL) to relay output promoters pBAD and pLas respectively,
which drive production of a fluorescent response in two
relay promoters. To record these induction events historically,
the output of each relay gene is coupled to one of two
combinatorial promoters (pBAD-Lac or pLas-Tet) in a toggle
switch. Each combinatorial promoter implements NIMPLY
logic, e.g. pBAD-Lac (pLas-Tet) expresses TetR (LacI) only
when arabinose (HSL) and AraC (LasR) are present and LacI
(TetR) is absent. Thus, when one analyte (e.g. arabinose)
arrives, it triggers latching of the toggle switch only if the
toggle switch is unlatched to begin with or the prior latching
protein state has been diluted out. The relay outputs thus
transmit the current or recent induction event state while the
toggle switch maintains the historical induction event state.
Depending on the order of arrival of each inducer, we obtain
different biocircuit states. Figure 7 details the genetic elements

in the event detector biocircuit and the designed component
interaction network.

We can write down an idealized model for the event detector
(assuming no crosstalk), assuming first order degradation and
production, with Hill functions encoding the NIMPLY logic
of each promoter in the memory module.

ẋ1 = ρ1m1 − δpx1,
ẋ2 = ρ2m2 − δpx2,
ẋ3 = ρ3m3 − δpx3,
ẋ4 = ρ4m4 − δpx4,

ṁ1 =
k1(kl + u1/kM,u1)

(1 + u1/kM,u1)
− δmm1,

ṁ2 =
k2(kl + u1/kM,u1)

(1 + x3/kM,3 + u1/kM,u1)
− δmm2,

ṁ3 =
k3(kl + u2/kM,u2)

(1 + x2/kM,2 + u2/kM,u2)
− δmm3,

ṁ4 =
k4(kl + u2/kM,u2)

(1 + u2/kM,u2)
− δmm4,

y =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 [ xT mT
]T

(14)

where the measured outputs of the system are yi = xi, i =
2, 3, ρi is the translation rate of mi into xi, δp is the effective
dilution rate of xi, i = 1, ..., 4, δm is the combined dilution and
degradation rate of mi, i = 1, ..., 4, kM , ui is the Michaelis
constant for ui, kl is the leaky catalytic transcription rate, ki is
the catalytic transcription rate for mi, and u1, u2 are arabinose
and HSL, respectively.

Again, the dynamical structure function for this system is
calculated by linearizing the system about a nominal initial
condition, (x0,m0), taking a Laplace transform and solving
out the hidden variables m1, ...,m4. We present a simplified
case here, assuming algebraic symmetry of the parameters
ki = k, ρi = ρ, kM,i = kM as it does not qualitatively change
the structure of (Q(s), P (s)). We obtain:

Qa(s) =

[
0 Q12(s)

Q21(s) 0

]
P a(s) =

[
P11(s) 0

0 P22(s)

]
where Pii(s) = ρ/(δm + s)(δp + s) for i = 1, 2 and

Q12(s) =
−kρ(kl + u1/kM )

kM (δm + s)(δp + s)(u1/kM + x3/kM + 1)2

Q21(s) =
−kρ(kl + u2/kM )

kM (δm + s)(δp + s)(u2/kM + x2/kM + 1)2

In the absence of protein degradation, Q12(s) and Q21(s)
can be approximated with first-order SISO transfer functions.
These expressions for Q(s) and P (s) are for the idealized
dynamical structure function of the alternative system. Notice
that Q12(s) and Q21(s) are strictly negative transfer functions,
indicating the repression present in an idealized simulation
of the event detector circuit. This is the intended dynamical
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Fig. 7. (A) Left: We design an event detector to determine the identity and
relative ordering of two events E1 and E2 occurring within a finite time
horizon. (B) A schematic showing the logic of the circuit for the event detector.
Arrival of event type A triggers transient reporter for A (top) and latching of
the toggle in a A-dominant state as a memory state. Similarly, arrival of event
type B triggers transient reporter for B (bottom) and latching of the toggle in
a B-dominant state as a memory state. (C) A diagram showing the synthetic
biocircuit parts used to implement the network architecture in (B). D) The
arabinose and HSL inducers independently perturb distinct elements of the
memory module in the event detector; a network model of the dynamic graph
of the event detector can be reconstructed using dynamical structure function
reconstruction experiments.

network structure of the event detector, in the absence of all
genetic crosstalk or context effects.

Depending on the abundance of transcription factors such
as LacI, TetR, and AraC, as well as commonly shared tran-
scriptional and translational proteins, the actual dynamical
structure function Qc(s) may not exhibit monotonic repression
or may even unveil unwanted interactions. We can investigate
these interactions under a range of conditions with dynamical
structure estimation.

We constructed a biological implementation of the event
detector, using the design specified in Figure 7. The logical
components containing the relays and the memory module
were encoded on to a plasmid vector with a kanamycin

resistance marker and a ColE1 (high copy) replication origin.
The fluorescent reporter elements with the relay promoters
and readouts for the toggle switch were encoded on a plasmid
vector with chloramphenicol resistance and the p15 replication
origin.

B. Event Detector Latching Experiments

We evaluated the performance of our transcriptional event
detector circuit using a temporal logic test. A standard tem-
poral logic experiment for any two-input event detector is to
evaluate the effect of varying the order of presentation of two
input signals. In one test, we present the first input, arabinose,
for 7.5 hours, followed by induction of the second input,
a homo-serine lactone (HSL) quorum sensing molecule to
activate the pLas-Tet promoter. In the second test, we swap the
order of the inputs, presenting HSL quorum sensing molecule
to the event detector for 7.5 hours, then present arabinose
inducer as a second input. Both tests evaluate the ability of the
memory module of the event detector to latch in the correct
state in response to the first input, followed by a challenge to
ignore the second input signal while the relays detect and read
out the second input signal. The data for both of these in vivo
tests is plotted in Figure 8B-C.

The event detector showed the correct latching response
in all tests at standard maximum induction concentrations of
arabinose (1 mM) and working induction concentrations of 1
µM HSL. For example, Figure 8C shows that when the event
detector is given arabinose followed by HSL, it generates the
correct fluorescent response of yellow fluorescent protein, with
lower expressions level of RFP. Conversely, when we add HSL
first, followed by arabinose, RFP signal ramps up immediately
beginning as early as 1-2 hours after induction while YFP
expression is abolished to background levels.

We tested a variety of combinations of high and low
concentrations for arabinose and HSL. When the concentration
of HSL was decreased to 1 nM, we observed consistent leaks
in the memory module in either the YFP channel or the RFP
channel. Decreasing arabinose down to 1 µM still allows
for latching of high YFP expression, but in the presence
of 1 µM HSL, any arabinose latching is reversed by HSL
induction (data not plotted). Conversely, when we attenuate
HSL induction to 1 nM , HSL does not prevent arabinose from
reversing a HSL latch on the the memory module, see Figure
8B. This leak is significant enough in the 1 nM HSL induction
level that the difference in signal between the arabinose-
HSL induction scenario versus the HSL-arabinose induction
scenario vanished. This temporal logic response profile is
evident of a glitch in the event detector circuit that occurs
at lower HSL and arabinose concentrations.

C. Network Reconstruction Experiments to Debug Circuit
Failure

We conducted 4 in vivo network reconstruction experiments
(2 inducers versus 2 concentrations), recording time-series data
of the memory module relay elements, YFP and RFP. The
memory module is designed using two hybrid promoters, so
from a design standpoint, verification of the memory module
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Fig. 8. A plot of data from in vivo plate reader experiments, testing the
temporal logic properties of the event detector diagrammed in Figure 8. Notice
that at 1 µM HSL and 1mM arabinose, the event detector functions properly,
expressing different levels of YFP and RFP depending on the the order of
arrival of arabinose and HSL. At 1 nM HSL and 1 µM arabinose induction
concentrations, the temporal logic properties of the event detector completely
are abolished.

was most critical. The arabinose inducer targets the pAra-Lac
promoter, while the HSL inducer targets the pLas-Tet promoter
(see Supplementary Information for sequences).

As shown in the model (14) of the event detector, the actual
event detector we constructed exhibits nonlinear response.
However, for any one parametric concentration regime, e.g.
at a fixed arabinose or HSL concentration, the response of the
system behaves similar to that of a linear system. Thus, we
estimated a dynamical structure function for both conditions
of the reconstruction experiment. The one-step accuracy in
fitting dynamical structure models to the low gain condition
(1 µM arabinose, 1 nM HSL) and high gain condition (1
mM arabinose and 1 µM HSL) were 99.996% and 99.995%
respectively.

As in the case of the genelet repressilator, we can plot a
dynamical network graph for the in vivo event detector to
understand how the memory module components labeled by
YFP and RFP, representing TetR and LacI respectively, interact
with each other. A movie visualizing the dynamics of the edges
of the graph is available for download (see Supplementary
Information). Each edge represents the convolution kernel
response of the edge to an impulse applied to that input.
All responses are superimposed to form a dynamical graph.

Snapshots of the graph are plotted in Figure 10, while time-
lapse responses of the weights of each edge are plotted in
Figure 9. Again as with the repressilator, we can see that
the regulatory nature of edges in the event detector’s memory
module manifests as two edges with negative or positive values
indicating repression or activation, respectively.

The reconstructed network of our transcriptional event de-
tector reveals the functional relationship between states in the
circuit at different concentration regimes. At lower concentra-
tions of arabinose and HSL, the reconstructed transcriptional
event detector network reveals functional cause of failed circuit
latching. Both edges in the memory module did not repress
their target promoters as intended, while the pLas-Tet promoter
appears to enact a much higher gain of activated expression
from HSL induction than does the activated expression of the
pAra-Lac promoter in response to arabinose.

In the high gain setting, where arabinose is induced at 1 mM
and HSL is induced at 1 µM, we see that the memory module
exhibits the proper mutually repressing motif characteristic
of the genetic toggle switch up after the arrival of the HSL
inducer. The repression in both edges steps up their gain as
t approaches 4 hrs, which is roughly the time when we see
a plateauing of production in the RFP signal in Figure 8C.
From our reconstruction model, we can see that the edges are
well balanced at the higher concentration of inducers. At the
low gain of inducers, the network is completely inactive, even
though the genetic sequence of the circuit is the same. This
example shows that our network verification algorithm can be
used to determine the conditions, or the performance envelope,
under which the circuit is functioning properly. Even though
the underlying model of our system is a linear approximation
to a nonlinear system, we can test the system at multiple initial
conditions, operating points, or equilibria, to quantify network
behavior of the system locally. Taken in aggregate, these can
provide a parameterized view of how the network behaves over
a range of experimental conditions.

VI. CONCLUSION

The dynamical structure function models the dependen-
cies among measured states. It is a flexible representation
of network structure that naturally adapts to the constraints
imposed by experimental measurement. Since identifiability
conditions of the dynamical structure function have been well
characterized, appropriate experimental design can ensure that
the process of network reconstruction produces a sensible
answer.

In this work, we introduced a network reconstruction algo-
rithm and a code base for reconstructing the dynamical struc-
ture function from data, to enable discovery and visualization
of graphical relationships in a genetic circuit diagram as time-
dependent functions rather than static, unknown weights. We
proved a theorem, showing that dynamical structure functions
can provide a data-driven estimate of the size of crosstalk
fluctuations from an idealized model. We then illustrated these
findings with numerical examples. Next, we used an in vitro
genetic circuit, deliberately tuned with gain imbalance, to
validate our algorithm on experimental data. Finally, we built
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Fig. 9. Impulse response of the estimated convolution kernel Q(t) matrix
when the event detector biocircuit is induced with (A) 1 nM HSL and 1 µM
arabinose or (B) 1 µM HSL and 1 mM arabinose. Q(s) is estimated directly
from experimental data, transformed into the frequency domain, and simulated
in time as a function of hours from arrival time of an inducer input.

a new E. coli based transcriptional event detector and showed
how estimation of the dynamical structure reveals active and
inactive network states, depending on inducer concentration.
These results show how the dynamical structure function
characterizes the operational or active network. They also
provide a route for future study of relationships between envi-
ronmental parameters, active network dynamics, and biocircuit
performance.

VII. EXPERIMENTAL METHODS

All plasmids were constructed using either Golden Gate
assembly [79] or Gibson isothermal assembly [80] in E. coli.
Plasmids were sequence verified in JM109 cloning strains
and transformed into the strain MG1655∆LacI, provided as
a courtesy by R. J. Krom and J. J. Collins. The event detector
was transformed as a two-plasmid system with kanamycin
and chloramphenicol selection. All in vivo experiments were
carried out with n = 2 replicates using MatriPlates (Brook
Life Science Systems MGB096-1-2-LG-L) 96 square-well
glass bottom plates at 29o C in a H1 Synergy Biotek plate
reader using 505/535 nm and 580/610 nm excitation/emission
wavelengths. Cell density was quantified with optical density
at 600 nm.

For in vitro experiments, all genelet repressilator recon-
struction experiments were carried out at 37o C in a Horiba
Spectrofluoremeter with 1 minute readout times, using Rho-
damine Green, TYE 563 and Texas Red flourophores with 10
nm monochromator excitation and emission bands centered

Fig. 10. A visualization of the impulse response of the estimated convolution
kernel Q(t) matrix when the event detector biocircuit is induced with low
(left) versus high (right) concentrations of arabinose and HSL inducer. The
width of edges in this graph coincide with the magnitude of the impulse
response, while coloring is red if the sign of the impulse response for a
given edge is negative (repression) and green if the given edge is positive
(activation).

at 502/527, 549/563, and 585/615 nm respectively. All event
detector network reconstruction reactions were performed us-
ing 500 µL reaction volumes in transformed E. coli, grown in
square well glass-bottom plates using MatriPlates (Brook Life
Science Systems MGB095-1-2-LG-L) with Luria-Bertain rich
media broth at 29o C.
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[62] J. Gonçalves and S. Warnick, “Necessary and sufficient conditions for
dynamical structure reconstruction of lti networks,” Automatic Control,
IEEE Transactions on, vol. 53, no. 7, pp. 1670–1674, 2008.

[63] V. Chetty and S. Warnick, “Network semantics of dynamical systems,”
in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE,
2015, pp. 1557–1562.
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X. SUPPLEMENTARY INFORMATION

EXPERIMENTAL METHODS FOR CIRCUIT PREPARATION, ASSEMBLY, AND TESTING

A. The Repressilator Genelet Circuit

The DNA sequences for the T31, T12, T23 switch were obtained as a gift from the Winfree lab, mirroring the design
identically of the repressilator genelet circuit used in [72]. Oligonucleotides were ordered with functionalized fluorophores or
quenchers, corresponding to the original design of the genetic repressilator. DNA sequences were suspended in Tris-EDTA
buffer for primary stock storage, while all genelet switches T12, T31, T23 added at concentrations of 75 nM, 75 nM, and 60
nM, respectively to match previous tuning experiments to balance the repressilator, with 7.5 mM working concentration of
mono-NTP solution, 24 mM MgCl2, and 1x T7 expression system buffer.

DNA analogues of RNA inhibitors were added to sequester DNA activator signal from the switches as an effective step input
perturbation to each node. The switches produced a RNA signal that was designed to interfere with formation of a complete
promoter region of the next downstream switch in the repressilator circuit. Adding DNA served as a step perturbation to the
corresponding switch. Each DNA moiety added thus had the effect of an activator. Activator DNA molecules A1, A2, and A3,
each containing Iowa Black quencher were added at 75 nM, 80 nM, and 75 nM working concentration at 20 minutes from the
onset of the reaction, to determine the maximum range of quenching. At 58 minutes, we added 0.7 µL of pyrophosphatase, 3
µL of T7 RNA Polymerase and 2.2 µL of RNase H to achieve identical working concentrations as those described in [72].

B. The Transcriptional Event Detector Circuit

The transcriptional event detector circuit, as illustrated in Figure 7 in the main text, is composed of four distinct gene
expression cassettes that define the regulatory logic of the circuit and four distinct gene expression cassettes that generate the
fluorescent reporter elements of the circuit. Each gene cassette defines a transcriptional unit, with a promoter element, an RBS,
a coding sequence, and a terminator sequence. Each gene cassette was cloned using a 5 part Golden Gate assembly, with a
type II BsaI restriction enzyme and overhang sequences from [81], [82]. Each assembled gene cassette was cloned in JM109
E. coli cloning strains and sequence verified at Eurofins Genomic, by Sanger sequencing. Assembled plasmids were engineered
to enable a second stage Golden Gate assembly, using the BbsI Type II restriction enzyme, and assembled to either 1) form a
master regulatory logic plasmid (pEY15K), comprised of four distinct gene expression cassettes driving transcription factor or
allosteric response or 2) form a master reporter plasmid comprised of four distinct reporter elements (pEY14C). Both Stage
2 assembled regulatory logic and reporter plasmids were sequence verified using Sanger sequencing (Eurofin Genomics) and
transformed into MG1655∆LacI (a gift from the Collins laboratory). The sequences for all individual plasmids and the circuit
plasmids are listed in Table I.

SEQUENCES OF GENETIC CIRCUIT COMPONENTS

The sequences for all genetic components and circuits for the event detector circuit are listed in Table I. All genelet
repressilator sequences are identical to the sequences used and listed in [72]. All ribosome binding site (RBS) sequences were
derived from the bicistronic design (BCD) ribosome binding site library [83], while all terminator sequences were drawn from
the synthetic terminator library characterized in [84].

Sequence ID Sequence Description DNA Sequence
pAra-Lac Hybrid Promoter CATAGCATTTTTATCCATAAGATTAGCGGATCCTAAGCTTTACAA

TTGTGAGCGCTCACAATTATGATAGATTCAATTGTGAGCGGATA
ACAATTTCACACA

BCD2 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATT
TTCGTACTGAAACATCTTAATCATGCAGGGGAGGGTTTCTAATG

TetR Transcription Factor ATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAG
CTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACT
CGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATG

TAAAAAATAAGCGGGCTTTGCTCGACGCCTTAGCCATTGAGATGT
TAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCT

GGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTGCTTTA
CTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTA

CAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGC
CAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGT
GGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAG
TCGCTAAAGAAGAAAGGGAAACACCTACTACTGATAGTATGCCGCCA
TTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCA
GCCTTCTTATTCGGCCTTGAATTGATCATATGCGGATTAGAAAAACAA
CTTAAATGTGAAAGTGGGTCTGCAGCAAACGACGAAAACTACGCTTT

AGCAGCTTAA
ECK120033736 Terminator AACGCATGAGAAAGCCCCCGGAAGATCACCTTCCGGGGGCTTTTTT

ATTGCGC
BCD9 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTC

GTACTGAAACATCTTAATCATGCAGAGGAGTCTTTCT
AraC Transcription Factor ATGCAATATGGACAATTGGTTTCTTCTCTGAATGGCGGGAGTATGAA

AAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCG
TTTAATGCCCATCTGGTGGCGGGTTTAACGCCGATTGAGGCCAACG

GTTATCTCGATTTTTTTATCGACCGACCGCTGGGAATGAAAGGTTATA
TTCTCAATCTCACCATTCGCGGTCAGGGGGTGGTGAAAAATCAGGG
ACGAGAATTTGTTTGCCGACCGGGTGATATTTTGCTGTTCCCGCCAG
GAGAGATTCATCACTACGGTCGTCATCCGGAGGCTCGCGAATGGTAT
CACCAGTGGGTTTACTTTCGTCCGCGCGCCTACTGGCATGAATGGCT
TAACTGGCCGTCAATATTTGCCAATACGGGGTTCTTTCGCCCGGATGA
AGCGCACCAGCCGCATTTCAGCGACCTGTTTGGGCAAATCATTAACG
CCGGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCT
GCTTGAGCAATTGTTACTGCGGCGCATGGAAGCGATTAACGAGTCGC
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TCCATCCACCGATGGATAATCGGGTACGCGAGGCTTGTCAGTACATCA
GCGATCACCTGGCAGACAGCAATTTTGATATCGCCAGCGTCGCACAGC
ATGTTTGCTTGTCGCCGTCGCGTCTGTCACATCTTTTCCGCCAGCAGTT
AGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC
GAAGCTGCTTTTGAGCACCACCCGGATGCCTATCGCCACCGTCGGTCG

CAATGTTGGTTTTGACGATCAACTCTATTTCTCGCGGGTATTTAAAAAATG
CACCGGGGCCAGCCCGAGCGAGTTCCGTGCCGGTTGTGAAGAAAAAGT

GAATGATGTAGCCGTCAAGTTGTCATAA
ECK120029600 Terminator TTCAGCCAAAAAACTTAAGACCGCCGGTCTTGTCCACTACCTTGCAGTA

ATGCGGTGGACAGGATCGGCGGTTTT
CTTTTCTCTTCTCAA

pLas-Tet Hybrid Promoter TTCTTCGAGCCTAGCAAGGGTCCGGGTTCACCGAAATCTA
TCTCATTTGCTAGTTATAAAATTATGAAATTTGCGTAAATTCC

CTATCAGTGATAGAGATTCAGAAGC
BCD10 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCA

ATTTTCGTACTGAAACATCTTAATCATGCGGAGGATCGTTTCTA
LacI Transcription Factor ATGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTG

TCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCC
ACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATG
GCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTG
GCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGT
CTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAA
TCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATG
GTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCAC
AATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCC
GCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACT

AATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATC
AACAGTATTATTTTCTCCCATGAGGACGGTACGCGACTGGGCGT
GGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAG
CGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGC

TGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAAC
GGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATG
CAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGC
CAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGT
CCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGAC

GATACCGAGGACAGCTCATGTTATATCCCGCCGTTAACCACCATCA
AACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTG

CTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTG
CCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGC
AAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGGCAGCAAACGACGA

AAACTACGCTTTAGCAGCTTGA
ECK120015440 Terminator TCCGGCAATTAAAAAAGCGGCTAACCACGCCGCTTTTTTTACGTCTGCA

pLas LasR promoter GCATTGCTGTTCTTGATGGCTAGCTCAGTCCTAGGTACAATGCAAGC
BCD1 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCG

TACTGAAACATCTTAATCATGCACAGGAGACTTTCTAATG
LasR Transcription Factor ATGGCCTTGGTTGACGGTTTTCTTGAGCTGGAACGCTCA

AGTGGAAAATTGGAGTGGAGCGCCATCCTCCAGAAGATG
GCGAGCGACCTTGGATTCTCGAAGATCCTGTTCGGCCTG
TTGCCTAAGGACAGCCAGGACTACGAGAACGCCTTCATC
GTCGGCAACTACCCGGCCGCCTGGCGCGAGCATTACGA
CCGGGCTGGCTACGCGCGGGTCGACCCGACGGTCAGTC

ACTGTACCCAGAGCGTACTGCCGATTTTCTGGGAACCGTC
CATCTACCAGACGCGAAAGCAGCACGAGTTCTTCGAGGAA
GCCTCGGCCGCCGGCCTGGTGTATGGGCTGACCATGCCG
CTGCATGGTGCTCGCGGCGAACTCGGCGCGCTGAGCCTC
AGCGTGGAAGCGGAAAACCGGGCCGAGGCCAACCGTTTC
ATAGAGTCGGTCCTGCCGACCCTGTGGATGCTCAAGGACT
ACGCACTGCAAAGCGGTGCCGGACTGGCCTTCGAACATC
CGGTCAGCAAACCGGTGGTTCTGACCAGCCGGGAGAAGG
AAGTGTTGCAGTGGTGCGCCATCGGCAAGACCAGTTGGGA

GATATCGGTTATCTGCAACTGCTCGGAAGCCAATGTGAACTT
CCATATGGGAAATATTCGGCGGAAGTTCGGTGTGACCTCCC
GCCGCGTAGCGGCCATTATGGCCGTTAATTTGGGTCTTATT

ACTCTCTAATAA
ECK120010799 Terminator GTTATGAGTCAGGAAAAAAGGCGACAGAGTAATCTGTCGCC

TTTTTTCTTTGCTTGCTTT
CFP CDS ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTC

TTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTC
AGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACC
CTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCC
AACACTTGTCACTACTTTGACTTGGGGTGTTCAATGCTTTGCTA
GATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCC
TGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGAT
GACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGT

GATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAA
GAAGATGGAAACATTCTTGGACACAAATTGGAATACAACGCTAT
TTCAGATAATGTATACATCACTGCAGACAAACAAAAGAATGGAAT
CAAAGCTAATTTCAAAATTAGACACAACATTGAAGATGGAAGCGT
TCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGC
CCTGTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCC

TTTCGAAAGATCCCAACGAAAAGAGAGATCACATGGTCCTTCTTGAG
TTTGTAACAGCTGCTGGGATTACACTAGGCATGGATGAACTATACAAA

Citrine CDS ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTT
GAATTAGATGGTGATGTTAATGGTCACAAATTTTCTGTCTCCGGTGAA
GGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGTA
CTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTAG

GTTATGGTTTGATGTGTTTTGCTAGATACCCAGATCATATGAAACAACA
TGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGAAC

TATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAG
TTTGAAGGTGATACCTTAGTTAATAGAATCGAATTAAAAGGTATTGATTTTA
AAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAACTCTC
ACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACT
TCAAAATTAGACACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATT
ATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTTGTTACCAGACAAC

CATTACTTATCCTATCAATCTAGATTATCCAAAGATCCAAACGAAAAGAGAG
ATCACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTAT

GGATGAATTGTACAAA
mRFP CDS ATGGCTTCCTCCGAAGATGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGT

ATGGAAGGTTCCGTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTG
AAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAA
AGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCA
GTACGGTTCCAAAGCTTACGTTAAACACCCGGCTGACATCCCGGACTAC
CTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACT
TCGAGGACGGTGGTGTTGTTACCGTTACCCAGGACTCCTCCCTGCAAG
ACGGTGAGTTCATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTC
CGACGGTCCGGTTATGCAGAAAAAAACCATGGGTTGGGAAGCTTCCAC

CGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAAATCAAAATG
CGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAAACC
ACCTACATGGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAAAACCG
ACATCAAACTGGACATCACCTCCCACAACGAGGACTACACCATCGTTGA

ACAGTACGAACGTGCTGAAGGTCGTCACTCCACCGGTGCTTAA
TABLE I: Table of genetic sequences for all parts used to make the transcriptional event detector circuit
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XI. DATA ACCESSIBILITY

All data files and network reconstruction code can be obtained from the GitHub repository
https://github.com/YeungRepo/NetworkRecon.

XII. QUANTIFYING CROSSTALK IN BIOCHEMICAL REACTION NETWORKS

A common way that crosstalk arises in biochemical reaction networks is when species compete for commonly shared
enzymes. When this occurs, the sequestration of an enzyme by one competing species makes the enzyme less accessible to
other competing species. For example, when two mRNA are competing for a single ribosome, the binding of one mRNA to
the ribosome during translation makes it less accessible to other mRNA. At the core of any such crosstalk is a sudden increase
in the dependency of one biochemical state on another. Though enzyme loading may be a common source of crosstalk, such
interactions can be modeled at a higher level of abstraction, namely how the dynamics of a given state are affected by the
concentration fluctuations of other states.

Nearly every synthetic gene network implements causal dependencies among states. Often, these “designed” interactions
take the form of transcription factor binding, sense-anti-sense mRNA regulation, and sequestration events. In practice, every
physical system exhibits trajectories that are a mixture of the consequences of both interaction types: designed and crosstalk
interactions. Throughout the course of this paper, we will denote the physical system of interest in our models as

ẏ = f cy(y, xh, u), y(0) = y0

ẋh = f cxh
(y, xh, u), xh(0) = xh,0,

y =
[
Ip×p 0

] [ y
xh

] (15)

To quantify crosstalk in such systems, we can compare the dynamics of system (15) against the dynamics of a reference
or alternative system that is free of crosstalk. Such a reference system will still retain the desired interaction dynamics and
reflects the idealized model often used to design a synthetic gene network, e.g. the feed-forward loop model in Example II-A1.
Moreover, it can represent the desired behavior of the system in a regime where the magnitude of crosstalk effects are supposed
to be minimal or engineered in such a way that they are suppressed [7]. We write the reference system as

ẏ = fay (y, xh, u), y(0) = y0

ẋh = faxh
(y, xh, u), xh(0) = xh,0,

y =
[
Ip×p 0

] [ y
xh

] (16)

Remark 1: For the comparison between the alternative and crosstalk system to be fair, it is important that (16) satisfies
internal equivalence [85]. Specifically, we will suppose that any parameters or dynamics unassociated with crosstalk, e.g.
interaction dynamics, catalytic reactions, or anabolic reactions with no loading effects, are held fixed. Thus, as we compare the
behavior of both systems, any differences in the hidden state xh or output y dynamics are purely due to effects of crosstalk.

With the definition of an alternative system in place, it becomes possible to reason about the size of crosstalk, by comparing
the dynamics of both systems. In particular, we can develop a rigorous notion for describing the amount of crosstalk arising
from the difference of trajectories in both systems.

Definition 1 (Crosstalk Trajectory): Consider two systems, a crosstalk system and an alternative or reference system, initialized
from the same initial condition x(0). For each initial condition x(0) = (y(0), xh(0)) ∈ Rn and input trajectory u(t) we define
the crosstalk trajectory ζ(t) as

ζ(t) = xa(t)− xc(t)

The crosstalk trajectory is a time-evolving vector that describes the deviation of the physical system (subject to crosstalk) from
the reference system’s trajectory. With this notion of crosstalk, we can also make precise the concept of crosstalk between states.
We note that in writing the following quantity of interest ∂

∂xj
ζi, it is with a slight abuse of notation, since ζi(xa(t), xc(t)).

Mathematically, we are computing the jth partial derivative of each term in ζi = xai (t) − xci (t). Thus, to be clear, when we
write ∂

∂xj
ζi, it will be implicit that we mean ∂

∂xa
j
xai (t)− ∂

∂xc
j
xci (t).

Definition 2 (Directed Crosstalk): Given an initial condition of (x(0), y(0)) and input trajectory u(t) we say that a chemical
species xj exerts a crosstalk effect on chemical species xi if the ith component of the crosstalk trajectory ζ(t) has nonzero
partial derivative

∂

∂xj
ζi(t) 6= 0.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.03.10.434835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434835
http://creativecommons.org/licenses/by/4.0/


19

Fig. 11. Dynamical structure functions quantify biomolecular crosstalk:(A) A schematic illustrating the design of this simulation example. The crosstalk
and reference model of the incoherent feedforward loop from Examples II-A1 and II-A2 are simulated accordingly to satisfy internal equivalence, for varying
values of k2,d. Standard parameters from the literature [86] were used to generate the simulation. As the size of the load ∆load increases, the ability of
the IFFL to respond with a pulse decreases.(B) The H2 gain of Qc

23(s) is plotted as a function of ζ. Notice that Qc
23(s) is a pure crosstalk term, since

Qa
23(s) ≡ 0. As the effective crosstalk in ζ2 increases, Qc

23(s) mirrors that increase, as shown in Proposition 3. (C-D) Time lapse responses of the incoherent
feedforward loop: for each value of k2,d the value of ζ2 at t = 3 hours is calculated and used to label curves (as percentage of maximum load). Notice the
monotonic relationship between k2,d, ζ and the output responses of Y2 and Y3 (negatively monotonic).

for some initial condition of (x(0), y(0)) and input trajectory u(t). In general, we will refer to ∂
∂xj

ζi(t) as the crosstalk
sensitivity of xi to xj .

Notice that the mathematical definition of crosstalk sensitivity ∂
∂xj

ζi(t) depends on the initial condition x0(t) and the input
u(t). This dependency is consistent with the parametric sensitivity of biological function. Many genetic circuits in bacteria
behave acceptably in one initial condition and for one input condition, e.g., in log-phase with an attenuated amount of a small
molecule or sugar compound, but exhibit significantly different behavior when input concentrations are increased by an order
of magnitude or subject to an alternate preparation method prior to the experiment. The latter imposes a state history that
defines a distinct initial condition, which can drive a biological network to a highly coupled or decoupled state.

Example 1: Consider two mRNA species m1 and m2 competing for the same degradation enzyme D in a physical system.
For simplicity of exposition, suppose their production dynamics do not depend on each other and can be modeled as P1(t)
and P2(t) respectively. The crosstalk system is given as

ṁ1 = P1(t)− D0m1/kM,1

1 +m1/kM,1 +m2/kM,2

ṁ2 = P2(t)− D0m2/kM,2

1 +m1/kM,1 +m2/kM,2
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while the reference system is given as

ṁ1 = P1(t)− D0m1/kM,1

1 +m1/kM,1

ṁ2 = P2(t)− D0m2/kM,2

1 +m2/kM,2
.

In both systems, we have supposed that time has been rescaled so that the customary parameter kcat for degradation is unity.
The crosstalk sensitivity of m1 and m2 (with respect to each other) are given as

∂ζ1
∂m2

=
∂

∂m2

∫ t

0

−D0m1/kM,1 m2/kM,2

(1 +m1/kM,1)(1 +m1/kM,1 +m2/kM,2)

∂ζ2
∂m1

=
∂

∂m1

∫ t

0

−D0m1/kM,1 m2/kM,2

(1 +m2/kM,2)(1 +m1/kM,1 +m2/kM,2)

respectively. The crosstalk sensitivity between m1 and m2 is nonzero whenever m1 or m2 have non-zero initial condition.

Remark 2: In synthetic biocircuit design, two chemical species xi and xj are often declared orthogonal when there is no
designed interaction between them. Mathematically, in the crosstalk free system, this corresponds to

∂

∂xj
xai (t) ≡ 0

for all x(0) and u(t). In such a situation, ζ(xi, xj) 6= 0 if and only if

∂

∂xj
xci (t) =

∫ t

0

f ci (y, xh, u)dτ 6= 0.

This condition is interesting in experimental settings since a computational estimate of ∂
∂xj

∫ t

0
f ci (t) from perturbation

experiments coincides with a direct estimate of the sensitivity of the crosstalk ∂
∂xj

ζi. More specifically, when xi and xj
are measured outputs of the system, we will show in the sequel that quantifying ||Qc

i,j(s)|| is directly related to an estimate
of the crosstalk sensitivity ∂

∂xj
ζi(t) near the equilibrium point xce.

Remark 3: In general, estimating the crosstalk sensitivity for the nonlinear systems (15) and (16) can be challenging if either
xi and xj are not measured directly. Firstly, if experimental data is available, it will often consist of data for the measured
species y in the crosstalk-system, but not the reference system. Second, if only one of the species xi (or none) is available for
measurement, even if perturbation of xj is possible, a nonlinear observer is required to estimate the trajectory of xj(t). Unless
the parameters of fi(x, u) are known a priori (which is generally not the case), this then also requires system identification
of the parameters of fc(x, u) and fa(x, u) which often results in a non-convex optimization problem.

Thus, our goal is to estimate the observed crosstalk between measured species Yi and Yj . This crosstalk estimate will
invariably include the dynamics of unmeasured chemical species (such as ATP, RNAP, untagged mRNA and protein species,
DNA-protein complexes etc.). From a synthetic biology design standpoint, this is not a disadvantage, since the goal is to design
a synthetic gene network with an abstracted circuit architecture operating reliably in the context of many unmeasured species.
In any genetic circuit, there are always additional biochemical compounds that are unmeasured. Our goal is to validate that a
biocircuit (e.g. an IFFL, repressilator, or a novel biocircuit) still manifests the intended network structure even in the presence
of unmeasured dynamics.

Theorem 3: Let L denote the two-sided Laplace operator. Suppose the states xc and xa of the systems (15) are (16) are
shifted, so that the origin is a locally asymptotically stable equilibrium point and Qc and Qa are the respective dynamical
structure functions calculated for each linearized system about the origin. Then

∂L (ζi)

∂Yj
= Qa

ij(s)−Qc
ij(s) +

∂

∂Yj
L
(
O(x2)

)
(17)

and in particular, if
Qa

ij(s) ≡ 0

then
∂L(ζi)

∂Yj
= −Qc

ij(s) +
∂

∂Yj
L
(
O(x2)

)
and can be estimated from input output data (Y (s), U(s)) .

Proof 1: First, notice that the Laplace transform of L (ζ(t)) = L (xa − xc) , Xa(s) −Xc(s), which can be decomposed
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into its measured and unmeasured states[
Y a

Xa
h

]
(s)−

[
Y c

Xc
h

]
(s)

=

[
QaY a(s)−QcY c(s) + (P a − P c)U(s) + L

(
O(x2)

)
Xa

h(s)−Xc
h(s) + L

(
O(x2)

)
.

]
Examining the ith component equation and taking partials along Yj(s) yields equation (17).

This result is important, since it tells us when estimating Qc(s) from experimental data will correspond to estimating
crosstalk between measured states in Y (s). Since necessary and sufficient conditions for identifying Q(s) and P (s) have been
already characterized [62], this provides conditions for inferring crosstalk from input-output data. For example, a sufficient
condition required is that there is an input variable available to excite each measured output of the genetic network attempting
to be reconstructed. This allows for the possibility that some biological states are unmeasured and unexcited, but these will be
viewed as hidden states that play a role in defining the edge dynamics in Qc(s).

More generally, even if parameters for fa(x, u)(t) are unknown, the structure of Qa(s) can be analytically calculated (using
a symbolic algebra package). For every zero entry in Qa(s) (coinciding with designed orthogonality between measured states),
we can then estimate Qc(s) directly.

In practice, estimation of Qc(s) is also confounded by noise. In our analysis in this paper, we suppose that a series of filters
can be applied to eliminate the noise in the data. This may not be the case for biological systems that have been characterized
as inherently stochastic, e.g. single cell gene expression dynamics. In such settings, the estimated dynamical structure Qc(s)
is a mixture of the process noise in the system and the crosstalk. From the standpoint of synthetic biocircuit prototyping, both
are undesirable in the ultimate iteration of the biocircuit and thus need to be quantified. In this paper, we will demonstrate
our theoretical and computational framework with experimental results derived from in vitro systems, where signal-to-noise
ratios are high and the only sources of noise are measurement noise and pipetting error. For a theoretical treatment of how to
reverse engineer Qc(s) in the presence of process noise or system perturbation, see [87].

An advantage of using Qc(s) to estimate the crosstalk is that we can use the H∞ norm of Qc
i,j(s) to calculate the worst-case

crosstalk magnitude and H2 of Qc
i,j(s) to calculate the average crosstalk across all frequencies.

1) Quantifying Crosstalk with Qc(s): Recall the incoherent feedforward loop in subsections II-A1 and II-A2. In particular,
comparing Qa(s) and Qc(s) we see that Qc(s) is a full transfer function matrix

0 1.6·10−3

s+2.1·10−3
0.041

s+2.1·10−3

(1.6·10−3) s+0.048

s2+1.5 s+3.3·10−3 0 0.041
s+2.1·10−3

(3.8·10−4) s+7.4·10−4

s2+1.6 s+0.13

(3.8·10−4) s+4.4·10−4

s2+1.6 s+0.13 0


and Qa(s) is lower-triangular, reflecting the network structure of the intended IFFL. By examining the upper triangular entries
in Qc(s), we can directly examine the effects of degradation crosstalk. In the lower entries of Qc(s), these crosstalk effects are
confounded with the direct interactions modeled in Qa(s). Although the gain of the entries in Qc(s) are small, they nonetheless
can have a significant effect on the dynamics of the IFFL.

In Figure 11 we plot the time-lapse response of y2(t) and y3(t) for varying parameter values of k2,d in equation (7). The k2,d
parameter is a Michaelis constant that determines the effective affinity of substrate x2 in binding with C0. As k2,d increases,
the affinity of substrate x2 is diminished, relative to the affinity of x1 and x3. Attenuating k2,d can be viewed as similar
to swapping out a strong degradation marker for protease degradation with a weaker degradation marker on the species x2.
In the experimental literature, there are multiple degradation markers for proteins that confer varying binding affinities to an
associated protease [88]. In our simulation, we consider five potential values for k2,d : 500, 1625, 2750, 3875, and 5000µM
corresponding to five artificial LVA markers of varying strengths for the protease ClpXP frequently used in E. coli.

Notice that as we decrease the affinity of y2 for ClpXP, this also coincides with an increased ζ2 crosstalk magnitude. Here,
we have computed ζ2 = yc2(t) − ya2 (t). We find that |ζ2| increases as k2,d increases. In Figure 11B-D, ζ2 is plotted as a
percentage of maximum absolute change across all values of k2,d.

We see that the time-lapse response of y2(t) increases monotonically for all t as the crosstalk ζ2(t) increases. This is consistent
with biological intuition, since an increase in competition for resource loading (an increase in k2,d) results in prolonged lifetimes
of each individual y2 (TetR-YFP) protein. This in turn results in higher repression levels of y3 in the incoherent feedforward
loop. Increased competition for ClpXP from substrates y3 and y1 have the effect of damping y3 dynamics and reinforcing
the pulsatile response of the IFFL. The crosstalk in this circuit thus has the effect of effectively strengthening the negative
regulation of y2 on y3, encouraging the downward transient after t u 0.75 hours. Our network analysis shows we can improve
the robustness of an IFFL’s pulse by attenuating the relative binding affinity of the repressor to its protease.

In general, crosstalk effects do not necessarily reinforce the feedback architecture of a biocircuit. This underscores the
importance of having techniques for quantifying crosstalk in a synthetic gene network and validating that designed interactions
are dominant over crosstalk interactions.
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