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Abstract

Since next-generation sequencing (NGS) has become widely available, large gene panels
containing up to several hundred genes can be sequenced cost-efficiently. However, the
interpretation of the often large numbers of sequence variants detected when using NGS
is laborious, prone to errors and often not comparable across laboratories. To overcome
this challenge, the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG/AMP) introduced standards and
guidelines for the interpretation of sequencing variants. Further gene- and
disease-specific refinements regarding hereditary hearing loss have been developed since
then. With more than 200 genes associated with hearing disorders, the manual
inspection of possible causative variants is especially difficult and time consuming. We
developed an open-source bioinformatics tool GenOtoScope, which automates all
ACMG/AMP criteria that can be assessed without further individual patient
information or human curator investigation, including the refined loss of function
criterion (“PVS1”). Two types of interfaces are provided: (i) a command line
application to classify sequence variants in batches for a set of patients and (ii) a
user-friendly website to classify single variants. We compared the performance of our
tool with two other variant classification tools using two hearing loss data sets, which
were manually annotated either by the ClinGen Hearing Loss Gene Curation Expert
Panel or the diagnostics unit of our human genetics department. GenOtoScope achieved
the best average accuracy and precision for both data sets. Compared to the
second-best tool, GenOtoScope improved accuracy metric by 25.75% and 4.57% and
precision metric by 52.11% and 12.13% on the two data sets respectively. The web
interface is freely accessible. The command line application along with all source code,
documentation and example outputs can be found via the project GitHub page.
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Author summary

New high-throughput sequencing technologies can produce massive amounts of
information and are utilized by laboratories to explain the often complex genetic
aetiology of hereditary diseases. The most common sensory disease, hearing loss, is
often hereditary and has a high impact on a patient’s every-day life. To use these
sequencing technologies effectively, software tools were developed that can aid
researchers interpreting genetic data by semi-automatically classifying the biologic (and
thus potentially medical) impact of detected variants (the alterations of the patient’s
genome compared to the human reference genome). The available genetic variant
classification tools are either not designed specifically for the interpretation of variants
detected in subjects with hearing loss or they do not allow researchers to use them for
batch classification of all variants detected, e. g. in a study group. To address this
drawback, we developed GenOtoScope, an open-source tool that automates the
pathogenicity classification of variants potentially associated with congenital hearing
loss. GenOtoScope can be applied for the automatic classification of all variants
detected in a set of probands.

Introduction

Due to the establishment of modern high-throughput next generation sequencing (NGS)
technologies, an ever-increasing amount of sequencing data can be generated.
Nevertheless, a whole exome sequencing (WES) file contains approximately 60,000
variants per proband. Consequently, laboratories have to overcome the hurdle of
processing this vast amount of data to link the genotype to phenotype [1]. Notably, the
manual classification of variants, by expert curators, is not only time-consuming, but
even more, prone to inconsistent functional interpretation and pathogenicity
classification of a variant between distinct laboratories [2].

To address this challenge, the American College of Medical Genetics and the
Association for Molecular Pathology (ACMG/AMP) published a set of evidence-based
criteria to classify patients variants in five classes of pathogenicity, “benign” (class 1),
“likely benign” (class 2), “variants of uncertain significance” (“VUS”) (class 3), “likely
pathogenic” (class 4), and “pathogenic” (class 5) [10]. To specialize for a diverse set of
phenotypes with distinct penetrance, allelic and genetic heterogeneity, ACMG updated
its classification criteria for specific hereditary diseases, for example hereditary
(breast /ovarian) cancer [3] or cardiomyopathy [4], through the ClinGen Variant
Curation Expert Panels (VCEP).

Hearing loss (HL) is the most common sensory disorder with a high impact on the
quality of social and work life of the patient. A genetic aetiology can be linked to
approximately 50% of the affected individuals [5]. Besides various forms of
nonsyndromic hearing loss (NSHL) affecting only the function of the ear, HL can also
be a symptom of a superordinate disorder involving other organ systems (syndromic
hearing loss). Thus, HL is very heterogeneous with well over 100 genes known to be
associated with monogenetic NSHL and more than 400 distinctive syndromes
comprising HL as one of their characteristic symptoms as well [5].

To facilitate the challenging classification of variants for HL, [11] have published
disease-specific evidence-based ACMG-criteria. Application of these adjusted criteria
has been shown to achieve better classification performance compared to the standard
evidence-based criteria for known HL-related variants [6]. A recently published
bioinformatics tool, VIP-HL [§], automates 13 out of the 24 evidence-based criteria
specified for HL. However, VIP-HL is an online tool that accepts only a single variant
per time, thus hindering the automatic and time-efficient interpretation of all variants of
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WES files for a set of investigated patients, for a heterogeneous condition as HL.

To address this limitation of VIP-HL, we present GenOtoScope, a bioinformatic tool
which accepts as input a genomic variant file (VCF) and computes the pathogenicity
class and pathogenicity probability for each input variant, based on [11] and [22]. To
this end, we designed and implemented algorithms to automate all the evidence-based
criteria that need no further individual patient information or human curator
investigation. This results to 12 implemented criteria, out of the 24 criteria in total,
namely PVS1 (all strengths), PS1, PM1, PM2 (PM2 supporting), PM4, PM5 (PM5
strong), PP3, BA1, BS1 (BS1 supporting), BP3, BP4 and BP7. We will provide
GenOtoScope as an open-source project, accessible as a command line application to
classify the WES patients files and as an online tool to classify a single genomic variant
of interest.

We benchmarked the performance of GenOtoScope compared to two established
classification tools, InterVar |7] and VIP-HL, in two HL data sets. These data sets
consist of manually curated HL variants. GenOtoScope outperformed the other two
classification algorithms, both, in terms of accuracy and precision. Finally, we
investigated the reasons for this best performance of GenOtoScope, by calculating the
difference between the activation frequencies of a tool over the manual curation, for
each evidence-based criterion.

In summary, our contributions are:

e Introduce GenOtoScope in two programming interfaces, a command line
application for bioinformatics experts to classify WES VCEF files of a set of
patients and as web-based application for non-bioinformatics experts to classify
single variants.

e Compare GenOtoScope classification performance to InterVar and VIP-HL for two
manual annotated HL data sets.

e Make GenOtoScope an open-source bioinformatics tool, therefore enabling the
research community to extend the tool for other diseases.

Materials and methods

Automating the examination of ACMG evidence criteria

GenOtoScope currently implements 12 out of 24 ACMG evidence-based criteria
specified for hearing loss [11]. More specifically these criteria are PVS1 (all strengths),
PS1, PM1, PM2 (PM2 supporting), PM4, PM5 (PM5 strong), PP3, BA1, BS1 (BS1
supporting), BP3, BP4 and BP7. Based on class category the implemented criteria are
sorted in 7 pathogenic and 5 benign criteria. With respect to the data types needed for
ACMG criteria, we categorize our implemented criteria into 3 population data criteria, 8
computational and predictive data criteria and 1 functional data criterion.

The unimplemented criteria by GenOtoScope are 12. These criteria are: PS2, PS3,
PS4, PM3, PM6, PP1, PP4, BS2, BS3, BS4, BP2 and BP5. The main reasons not to
implement these criteria are: (i) the lack of established processing algorithm (ii) the
lack of data and (ii) further patient information. That is, for the criteria needing
functional data, PS3 and BS3, there are no established algorithms that can
automatically extract the result of a functional study publication, for a given human
variant. As the lack of data is concerned, the examination of the PS4 criterion cannot
be automated as there is no database to contain the prevalence of affected and control
individuals for all possible variant types. Equally, there is no database with the
respective information to automate BS2 and BP2 criteria. Last, the need for genomic
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data from the patient’s family disables the examination of the segregation data criteria:
PS2, PM3, PM6, PP1, PP4, BS4 and BP5.

The number of missing implemented criteria is competitive with the other
classifications tools. VIP-HL implements only one extra criterion, BS2. The main
reason not to also implement BS2 is that VIP-HL uses particular thresholds, which are
not specified by ACMG HL original work, and thus it may not reflect all penetrance
and inheritance modes of all HL-related genes.

InterVar implements 18 out of the 24 ACMG original criteria |[10]. As explained in
the introduction, disease-specific ACMG criteria may vary from the original 24.
Therefore the PP2, PP5, BP1 and BP6 criteria automated by InterVar are not
applicable for HL. The remaining two criteria automated by InterVar and not by
GenOtoScope are PS4 and BS2. To automate these criteria, InterVar used the
ANNOVAR annotation tool [35]. However, this tool implements PS4 using a general
threshold on a phenotype-based GWAS catalog, consequently the called enriched
pathogenic variants may not include all HL-relevant variants. Similarly, to automate
BS2 criterion, InterVar uses the zygotic information of a healthy individual in the 1000
Genomes project [36] based on the inheritance mode of the variant. Nevertheless,
specific thresholds of healthy individuals should be used for HL, which are not
published by [11]. As a consequence, there may be false negative cases; InterVar should
activate PS4 or BS2 for a given HL variant, but it may not. Finally, the remaining
criteria need manual curation or additional information not publicly available (e.g.
segregation or phenotypic data), therefore they are not implemented by any of the three
classification tools.

In our thorough evaluation, shown in the results section, we demonstrate that
regarding the 12 ACMG criteria processed by either tool, GenOtoScope achieved the
best averaged accuracy and precision scores for both tested data sets. This is due to the
activation frequency of these criteria being much closer to human curation in
GenOtoScope than in VIP-HL and InterVar, which trigger the commonly implemented
12 criteria much less frequently.

To sum up, our choice to implement these 12 criteria, which are refined for HL, can
lead to standardized classification results for all HL-relevant genes. Besides, our
implementation of the criteria presents two more advantages: In contrast to the usage of
the ANNOVAR annotation tool, licensed for commercial use, we construct all
annotation files needed to examine the ACMG criteria, using freely accessible databases
and offer GenOtoScope with an open-source software license. Therefore, any interested
researcher can update the corresponding code section to produce adjusted annotations
to her needs. Equally, the researcher can update the code to change the steps used to
examine a given criterion. The second advantage is that GenOtoScope (like VIP-HL)
outputs comments for each examined criterion, whereas InterVar does not. This extra
information can facilitate the variant curator to justify the activation of a criterion and
thus increace the explainability of the classification.

GenOtoScope workflow

In the following, the methodology to implement the ACMG evidence-based criteria for
congenital hearing loss is explained in five key steps. The conceptual workflow of the
web and command line interface (CLI) of GenOtoScope is depicted in Fig

In the first step, the user inputs a variant file (VCF), which, depending on the used
interface, may contain a single variant or a larger set of variants of a patient (e.g. full
WES data set). Multiple VCF's can be submitted simultaneously.

Next, functional annotation of the VCF takes place using the VeP annotation
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atient 1 WES (.vef

or

[Patient 2 WES (.vef)

§ACMG
.
Benign: BA1 BS1 BPA ...
Pathogenic: PVS1 PS1 PM2 ...
Class: B LB VUS _LP_P
IProbability: 0 0.05 099 1

3. Examine ACMG
evidence-based rules

2. Annotate vcf using
VeP through megSAP

1. Input for CLI
and Web interfaces

4. Classify variants and
calculate the Pathogenicity,serior
probability

Fig 1. Conceptual workflow of GenOtoScope.

CLI

Patient 1 classified variants (.tsv

or

Patient 2 classified variants (.tsv),

atient N classified variants (.tsv)|

‘Web

Classified variant (.html)

5. Report with variant annotation
and classification

tool [33] through the megSAP bioinformatics applicationf’] The resulted intermediate
variant file is organized as a standard matrix file (tabular file) where each row is a
variant and a column contains variant annotation. These columns contain the basic
variant information (for example chromosome position of variant and affected gene
name), the transcript and the protein HGVS signature and the unique functional

annotation for the variant (e.g. minor allele frequency in gnomAD subpopulations [20],
the OMIM variant observed clinical description [34] and the REVEL pathogenicity score

for the variant [15]).

The third step uses the core sub-algorithms of GenOtoScope to automatically
analyze the listed variants according to ACMG criteria. These sub-algorithms access

programmatically four databases: the human clinical variants database ClinVar [37], the

human exomes database gnomAD [20], the protein knowledge database UniProt [38]
and the clinical genome database [39]. Extracted annotations are organized based on
the Ensembl features [21] for a variant-affected transcript. Beyond the mere result of

checking a criterion (activation or non-activation), the tool stores a descriptive comment
on the reason for activation or non-activation, to be used as an explanation for the user.

In the following step, the tool combines the activated evidence-based criteria to

classify the variant into 5 pathogenicity categories (“benign”, “likely benign”, “VUS”,

“likely pathogenic” and “pathogenic”) according to ACMG guidelines. If none of the
criteria is activated, the tool classifies the variant as VUS. Subsequently, in the same
fourth step, GenOtoScope computes the pathogenicity posterior probability based

on [22]. This is intended to allow a better discrimination of VUS and additional
re-classification of VUS into benign or pathogenic variants.

In the fifth and final step, GenOtoScope extends the intermediate annotation tabular

file with the criteria activation results and the comments along with the predicted

ACMG class and the computed pathogenicity probability. Finally, the tool will save this

file as the produced classification output.

A crucial sub-step of this workflow is the construction of annotation files, which is

needed for the automatization of the examination of the ACMG evidence-based criteria.

We constructed the needed annotation files, clinical-significant exons, HL-relevant
transcripts, critical regions for proteins, critical regions for proteins without benign

variants and protein repeat regions without domain intersection, using publicly available

data sets.

GenOtoScope interfaces

Having described the general workflow, we continue with the presentation of the two

interfaces.

Thttps://github.com/imgag/megSAP
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Web interface

The web application is targeted for free online usage. Advanced bioinformatics skills are
not required. Screenshots of the home page and of an example output page, of the
GenOtoScope website, are shown in Fig[2] At the home page, users can upload a single
variant file (VCF). The website will annotate and convert the VCF to GSvar file
through the megSAP application. A result page (.html) will be generated to show: (i)
the variant’s ACMG classification and computed pathogenicity posterior probability for
all known inheritance modes of the affected gene, (ii) the list of all examined ACMG
criteria along with comments on their activation or deactivation and (iii) the basic
information for variant and affected transcripts.

Home Documentation ~About

%\ GenOtoScope

ACMG automated classification of variants associated with congenital hearing loss

Please supply a VC file, containing the single variant of interest:
VCF file:

Browse.

o file selected

Annotate & Classify!

Disclaimer  Data Protection @ . conz [

©2021:2022 Medical School Hannover & L35 Research Center

ated ACMG Evidencebased Criterla

Population, Efoct & Conservation Amnotations.

(b)
Fig 2. Web interface of GenOtoScope. (a): The home page of the

GenOtoScope website. (b): The output page, for an example variant (RS id:
1064797096), which includes its classification based on HL-specified ACMG guidelines.
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Command line interface 176
The command line interface (CLI) is tailored to bioinformatics personnel. The first 177
command of this mode, genotoscope_annotate.py, will accept as input a folder of 178

VCF files or a single VCF file. It will annotate the input VCF files and convert them 1o
into GSvar files. The second command, genotoscope_classify.py, will accept as input s
a folder of GSvar files or a single GSvar file, the output of the previous command. Then 1
it will automatically examine the ACMG evidence-based criteria to classify and compute 1
the pathogenicity posterior probability for each variant in an input GSvar file. The 183
output will be an extended GSvar file containing information on the examination of the 1ss
ACMG evidence-based criteria, the ACMG pathogenicity class and the pathogenicity 185
posterior probability. Running examples of these two commands are shown in Fig 186

python3.7 genotoscope_classify.py

python3.7 genotoscope_annotate.py --analysis_root /home/username/analysis

-input_variants /fhome/username/example_vcfs --input_variants /home/username/example_gsvars
--output_path /home/username/example_vcfs_annotate --output_path /home/username/example_gsvars_classify
- docke,—i,—oot /megSAP --settings_file /home/username/analysis/genotoscope_server.yaml
--docker root host fhome/username/dockerspace --filter_HL_genes ®
- _docker image id XYZ --min_pathogenicity 0.49
er_ ge_ --logging INFO
--logging INFO --threads 1
(a) (b)

Fig 3. Command line examples for the two commands of GenOtoScope. (a)
Annotate all variants presented in VCF files, in input folder, using megSAP application
and save results in GSvar files. (b) Classify all variants presented in GSvar files based
on ACMG guidelines specified for HL.

Automating examination of ACMG evidence-based criteria 167
In the following subsections, we briefly describe our implementation of the 188
aforementioned 12 ACMG criteria: PVS1 is automated based on [13]. Information from  1s
ClinVar database is used for the implementation of PS1 and PM5 (including PM5 190
Strong). Automation of PM1 examines critical regions provided by [11] and a 101
purpose-built annotation file containing critical regions without benign mutations. 192
Customized annotation files are also used for (non) repetitive region dependent criteria 103
PM4 and BP3, whereas automation of PP3, BP4 and BP7 employs established 104
prediction algorithms. Population frequency data for implementation of PM2 (PM2 105
Supporting), BA1 and BS1 (BS1 Supporting) is taken from gnomAD database. 19
Refined PVS1 197
PVS1 criterion is assessed for start-loss, nonsense (stop gained), stop-loss, frameshift, 108
in-frame, splice acceptor and donor variants according to [13]. 199

First, the occurrence of nonsense-mediated decay (NMD) is predicted by a 200
subroutine for each affected transcript using the HGVS signature of the variant to 201
create the observed coding sequence per exon. Altered region is defined as 202
variant-affected coding region. The algorithm locates the 5’-closest stop codon and 203
follows the scheme published by [14] to assess impact of this premature termination 204
codon (PTC) on NMD: Observed coding sequence is rated to escape NMD if PTC 205
appears either within the 50 last bases of the penultimate exon or at most 200 bases 206
downstream from the start codon or the transcript contains no introns. Otherwise, 207
NMD is classified to occur. Fig. [ illustrates this subprocess. 208

If NMD is predicted to occur, the algorithm intersects the stored variant-affected 200
coding region to phenotype-relevant transcripts to decide the PVS1 outcome. If NMD is 210
not predicted to occur, it intersects the variant-affected coding region with protein a1
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[Exows 30 oo v}
Fig 4. Conceptual flowchart to assess NMD for the refined PVS1 rule.

domain regions. If there is an intersection, it examines if the affected region overlaps a
critical domain for protein function, to decide the PVS1 outcome. If the affected region
is not within a known domain, overlap with clinically significant exons and
phenotype-relevant transcripts is examined. If this is confirmed, it is investigated
whether the PTC results in the removal of more than 10% of the reference protein
product.

For start-loss variants, the algorithm first checks if any other transcript contains an
alternative start codon. If not, it extracts potential in-frame start codons that are no
further than 200 bases downstream of the lost start codon. Next, it queries ClinVar for
pathogenic entries with at least one review star between the lost start codon and the
detected in-frame start codon. If there is such a ClinVar entry, PVS1 (Moderate) is
triggered, otherwise PVS1 (Supporting) is activated.

See supplementary for annotation files (clinically significant exons,
phenotype-relevant transcripts and clinically significant exons).

PS1 and PM5 (PMS5 Strong)

The workflow of assessing the PS1 and PMS5 criteria is shown in Fig.

First, genomic positions of the affected codon are computed based on exonic variant
location and directionality of the respective gene. Then, all missense variants at
corresponding genomic positions are extracted from ClinVar and filtered by strand to
match the directionality of the affected gene. Additionally, ClinVar entries can be
filtered by review status as the user can define a minimum number of quality stars as a
threshold for variants to be considered (default value: 1).

The filtered variants and resulting amino acids are used for further assessment of
PS1 and PM5 criteria: PS1 is triggered if any filtered-in variant from ClinVar that is
rated as pathogenic results in the same amino acid change as the observed variant. PM5
is triggered if the filtered-in ClinVar entries do not contain the observed amino acid
change but at least one pathogenic variant affecting the same codon. If the entries
include two or more such variants, PM5 is applied as strong evidence (PM5 Strong)
according to [11].
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variant HGVS signature

c p
fvariant-affected codon

Filter
by review-sta

athogenic ClinVar?,

umber of unique

filtered pathogenic

ClinVars in same

oratein position
as variant

Not Triggered PM5| | Triggered PM5 | [ Triggered PM5 Strong Triggered PS1

Fig 5. Conceptual flowchart for examining PS1 and PM5 (PM5 Strong).

PM1

For automation of PM1 a custom-made annotation file is used. It comprises all critical
protein regions without benign ClinVar entries and also includes specific domains and
motifs of hearing loss related proteins as defined by [11]. Please see supplementary for
detailed description of used hotspot reagions related to HL.

PM4

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and
stop-loss variants that do not trigger PVS1 in any strength level. Considering PTC
assessed in PVS1 subroutine, length of observed proteins is calculated and compared to
reference protein length. For length differences greater than 10%, PM4 is triggered
except for variants in known repetitive regions derived from UniProt.

BP3

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and
nonsense (stop gained) variants. Based on an annotation file containing functional
domains and repeat regions derived from UniProt, BM3 is triggered if the
variant-affected coding region overlaps a repetitive region without known function.

PP3, BP4 and BP7

GenOtoScope incorporates in silico tools for conservation (PhyloP [17]), splicing
(MaxEntScan [18], dbscSNV [19]) and missense-prediction (REVEL [15], CADD |[16]).
See supplementary for aggregation of scores and thresholds.
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For missense variants, activation of PP3 requires positive pathogenicity prediction
(REVEL/CADD) and high conservation (PhyloP) scores. In contrast, BP4 is triggered
if conservation and predicted probability of pathogenicity are low.

Variants with no immediate impact on amino acid sequence (exclusion: canonical
splice site variants) are similarly screened for potential effects on splicing. If splicing is
predicted to be affected and the nucleotide is highly conserved, PP3 is activated.
Conversely, if a potential splice variant is predicted to have no splicing effect and
conservation is low, BP7 is triggered for synonymous variants and BP4 for other variant
types respectively.

BP7

The BP7 rule is evaluated for all synonymous variants following the similar procedure as
for PP3 and BP4. First, the algorithm examines the splicing effect based on
majority-voting of the predictions by the MaxEntScan or the dbscSNV tools. Then, it
determines the pathogenicity of the variant based on majority-voting on the Revel or
CADD predictions. Finally, it examines the conservation of the variant site by PhyloP
score. The BP7 rule is triggered if the variant is predicted to have no splicing effect, to
be not pathogenic and is not highly conserved, otherwise BP7 is not triggered.

PM2 (PM2 Supporting) BA1 and BS1 (BS1 Supporting)

Assessment of population data criteria uses adjustable minor allele frequency (MAF)
thresholds, which by default are the ones defined by |11]. Each gene can be assigned a
preferred mode of inheritance, which can be customized by providing an input file.
Default settings comprise the inheritance modes of 164 hearing loss gene-disease pairs
defined by the ClinGen Hearing Loss Gene Curation Expert Panel [24] plus preferred
inheritance patterns for additional genes specified by the HG department of MHH. We
will refer to ClinGen Hearing Loss Gene Curation Expert Panel commitee as VCEP-HL
for convenience.

For each variant, allele frequencies (AF) of gnomAD subpopulations are retrieved.
Known pathogenic variants with high AF are excluded from further assessment of BA1
and BS1 according to [11]. AF of each subpopulation and the median AF of all
subpopulations are evaluated with respect to the appropriate inheritance mode
threshold. PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting) are triggered, if
any subpopulation’s AF or the median AF matches the respective inheritance mode
threshold.

Hearing-loss specific ACMG classification

Having assessed all applicable criteria for a given genomic variant,

GenOtoScope combines the activated criteria to compute the respective ACMG class
using the five-tier terminology system (“benign”, “likely benign”, “VUS”, “likely
pathogenic” and “pathogenic”) defined by [10].

Moreover, GenOtoScope incorporates the extended recommendations of VCEP-HL
for the following criteria combinations: (i) Variants triggering PVS1 and PM2
(Supporting) will be classified as “likely pathogenic” for genes associated with
autosomal recessive inheritance. (ii) Variants activating BS1 without triggering any
pathogenic criterion will be classified as “likely benign”.

Computation of pathogenicity probability

This feature is particularly intended for variants classified as VUS, due to insufficient or
conflicting triggered evidence criteria. To help human curators discriminate the
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potential pathogenicity of VUS in a quantitative manner, GenOtoScope calculates the
pathogenicity probability for each variant following [22].

To do so, the tool applies the naive Bayes model to calculate the posterior probability
of pathogenicity given the triggered ACMG evidence rules using the following equations:

(1)
(2)

Pathogenicityiikelihood + Pathogenicityprior

Pathogenicit ior =
BEMICIY posterior (Pathogenicityjikelihooa — 1) - Pathogenicityprior + 1

Npsu 4 Npm , NpsT | NpysT _ Nsu _ NsT
(T+T+2+1_3_2)7

Pathogenicityiikelihood = OpvsT

where the default parameters are used: Pathogenicityprior = 0.1, Opygt = 350 and
X =2

The calculation of the pathogenicity probability is calculated automatically for all
input variants.

Results and Discussion

Variant classification
Data sets

GenOtoScope variant classification was compared to similar tools: (1) InterVar, a tool
for variant classification tested across a spectrum of phenotypes [7]; (2) VIP-HL, the
recently published tool for hearing loss [§8]. We benchmarked the accuracy and
precision of variant classification on two data sets. The first data set is the publicly
available set of manually annotated variants by ClinGen VCEP-HL |[6], hereafter
referred as VCEP-HL data set. This data set contains manual annotation for 158
variants associated with HL. These variants involve in 9 HL-relevant genes (USH2A,
COCH, GJB2, KCNQ/4, MYO7A, MYO6, TECTA,SLC26A/ and CDH23). The second
data set is the private set of manually annotated variants by the HG department of
MHH, hereafter referred to as MHH data set. The MHH data set consists of 118
variants, which involve 36 HL-relevant genes. The included genes are: COL11A1,
USH2A, NLRP3, OTOF, ALMS1,PAX3, ILDR1, WES1, COL11A2, COL9A1, MYOG,
SLC26A4, CHD7, GRHL2, TMC1, WHRN, TNC, MYOS3A, PCDH15, CDH23, OTOQG,
MYO7A, TECTA, COL2A1, MYO1A, P2RX2, GJB2, GJB6, ACTG1, MYH1/, KCNEI,
TMPRSS3, MYH9, SOX10, POUSF4 and PRPS1.

Performance metrics

To assess the prediction performance, we grouped “benign” and “likely benign” classes
to “Benign”, “pathogenic” and “likely pathogenic” classes to “Pathogenic”. Thus, we
created a three-class prediction task, containing the “Benign”, “Pathogenic” and “VUS”
as possible classes.

Following the evaluation of the classification tool TAPES [26], we evaluate the
accuracy of each software tool, using the area under the curve (AUC) metric of the
Receiver Operating Characteristics (ROC) curve for all possible, one versus rest (of
classes), predictions. To compare the precision of each algorithm, we used the AUC
metric of the precision-recall curve. To explain the observed differences in prediction
performances, we plotted the frequency of triggered rules by each tool and the manual
curation.

Refined classification of VUS

We acknowledge that not all evidence-based criteria for HL. need a manual curation,
therefore cannot be automated. To evaluate the GenOtoScope classification potential
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with the currently implemented half of all evidence-based criteria for HL, we provided a
refined classification based on pathogenicity probability. We will refer to this extended
version of GenOtoScope as GenOtoScope pathogenicity probability and as
GenOtoScope_prob for short. In this classifier version, we reclassified the “VUS”
variants, classified by the GenOtoScope original version, by their calculated
pathogenicity probability. That is, GenOtoScope pathogenicity

probability maintains the GenOtoScope classification for “benign”, “likely benign”,
“likely pathogenic”, “pathogenic” and refines the variants classified as “VUS” to “likely
benign” if Pathogenicityposterior < 0.06072, to “likely pathogenic” if
Pathogenicityposterior > 0.49988. For the remaining cases,

0.05072 < Pathogenicityposterior < 0.49988, the GenOtoScope pathogenicity
probability keeps the “VUS” classification unchanged.

We have chosen these threshold values based on relaxing the lowest combination of
the triggered criteria for the broader classes of Pathogenic and Benign. We then
transformed this relaxed combination of criteria to pathogenicity probability based on
Eq. |2l That is, for the Pathogenic broader class, the combination of the criteria, with
the least pathogenicity strength resulting in likely pathogenic class, is 1 pathogenic
moderate criterion and at least 4 pathogenic supporting criteria. Based on available
open data and further patient genetic data we have implemented seven out of the
fourteen applicable ACMG criteria. Thus, we lowered the combination to 1 Moderate
and 1 Supporting criterion, which translates to the probability of 0.49988. Therefore,
the GenOtoScope pathogenicity probability will refine the VUS class, by the
original GenOtoScope, to Pathogenic for a variant with pathogenicity probability
greater than or equal to 0.49988.

Similarly, for the Benign broader class, the combination of criteria with the lowest
strength is at least two benign supporting criteria and results in the likely benign class.
For the same reasons, the GenOtoScope currently implements five out of the total ten
applicable criteria. Therefore, we reduced the requirements of this combination to one
benign supporting criteria which translates to the pathogenicity probability of 0.05072.
Consequently, GenOtoScope pathogenicity probability will reclassify a variant
classified as VUS, by GenOtoScope original version, to Benign broader class if the
variant’s probability is lower or equal to 0.05072.

Investigation of performance discrepancies

We sought out to investigate the reasons for the discrepancy in prediction performance
between the classification tools. To do so, we extended the troubleshooting plots of [27],
by calculating the log ratio of the activation frequency of an evidence-criterion by a
classification tool and the manual curation, as:

e,c

1 = logio(—zd—); (3)

manual

where o) is the activation frequency of e, any of the implemented ACMG rules, by a
tool k = {InterVar, VIP-HL, GenOtoScope} for a grouped class
¢ = {pathogenic, VUS, benign}.

We computed all log ratios for each evidence rule, e, by each classification tool for
the three grouped classes, c. Finally, we used heatmap plots to depict these log ratios.

VCEP-HL data set

The ROC and precision-recall curves are shown in Fig[6] We observe that
GenOtoScope and GenOtoScope pathogenicity probability achieved the best AUC
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scores for all three classes. In Precision-Recall curves, VIP-HL achieved slightly higher s
AUC compared to GenOtoScope for the “Benign” broader class. However, for the other s
two classes again GenOtoScope and GenOtoScope pathogenicity 389
probability achieved the best AUC scores of the Precision-Recall curves. 390

Benign vs. Rest Pathogenic vs. Rest Uncertain Significance vs. Rest

precision
Precision
Precision

4~ Genotoscope AUC=0.741 —a— GenOtoscope AUC=0.745 —+— Genotoscope AUC=0.499
03 Genotoscope_prob AUC=0.767 GenOtoscope_prob AUC=0.815 Genotoscope_prob AUC=0.556
~- VIP-HL AUC=0.809 ~8— VIP-HL AUC=0.513 03 ~#— VIP-HL AUC=0.400

—e— Intervar AUC=0.523 —e— Intervar AUC=0.590 —e— Intervar AUC=0.385

06 o4 06 04 o6
Recall Recall Recall

Benign vs. Rest Pathogenic vs. Rest Uncertain Significance vs. Rest

True Positive Rate
True Positive Rate
True Positive Rate

/ —4— GendtoScope AUC=0.850 / —4— GenOtoScope AUC=0.786 / —a— GenOtoScope AUC=0.777
/ GenOtoScope_prob AUC=0.901 4 GenOtoScope_prob AUC=0.891 4 GenOtoScope_prob AUC=0.767
00 —8- VIP-HL AUC=0.889 00 —8- VIPHL AUC=0.584 00 —# VIP-HL AUC=0.680

—e- Intervar AUC=0.733 ~e— Intervar AUC=0.651 ~o— Intervar AUC=0.657

00 02 o8 1o 00 02 o8 10 oo 02 08 10

o o Y
False Positive Rate False Positive Rate False Positive Rate

Fig 6. ROC curves and precision-recall curves for the VCEP-HL data set.
a~c) ROC curve and AUC of all classification tools for VCEP-HL data set. (a)
Prediction of the “Benign” broader class versus the “Pathogenic” broader class and the
VUS class (b) Prediction of the “Pathogenic” broader class versus “Benign” broader
class and the VUS class (c) Prediction the “VUS” class versus the “Benign” broader
class and the “Pathogenic” broader class. d-f) Precision-recall curve and AUC of all
classification tools for the VCEP-HL data set. (d) Prediction of “Benign” broader class
versus the “Pathogenic” broader class and the VUS class (e) Prediction of the
“Pathogenic” broader class versus “Benign” broader class and the VUS class (f)
Prediction of the “VUS” class versus the “Benign” broader class and the “Pathogenic”
broader class.

Besides, we calculated the performance scores, AUC of ROC and the average 301
precision of the precision-recall curves for all classification tools. We show the 302
micro-averaged scores, over the three broader classes (“Benign”, “VUS”, “Pathogenic”) s
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in Table |1} Based on this table, the two versions of GenOtoScope classification achieved

the best results for both AUC of ROC and the average precision.

Table 1. Micro-averaged performance scores for all classification tools, over

the three broader classes in the VCEP-HL data set.

Performance scores | Classification Tools

GenOtoScope | GenOtoScope_prob | VIP-HL | InterVar
ROC AUC 0.79114 0.85759 0.68196 | 0.65823
Average Precision 0.61342 0.71960 0.47307 | 0.44817

Best values of a performance score, across all classification tools, are shown in bold.

To explain the difference in prediction performance, we plot the heatmaps of the log
ratio of activation frequency between a classification tool and the manual curation .

The results are shown in Fig
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Fig 7. Activation frequency ratios for VCEP-HL data set. Log ratios
calculated for each of the three classes classified by the VCEP-HL: (a) the “Benign”

broader class, (b) the “VUS” class and (c) the “Pathogenic” broader class.

We observed the following patterns for each grouped class. First, for the “Pathogenic

79

broader class, VIP-HL activated 8 implemented pathogenic rules (PVS1 (Strong), PVS1
(Moderate), PM1, PM5, PVS1 and PM2) from 32 times less (PVS1 (Strong)) to 79
times less (PM2) than the manual curation. Nevertheless, GenOtoScope activated 5 out
of these 8 rules with the same frequency as the manual curation (PVS1, PM2, PP3,
PM2 (Supporting) and PM5). It activated the remaining 3 rules (PVS1 (Moderate),
PM1 and PVS1 (Strong)) approximately twice as much as the manual curation.

For the “VUS” class, we observed that VIP-HL activated 8 implemented rules (BP4,
BA1, PVS1, BS1, PM2 (Supporting), PP3 and PM2) from 25 times less (BP4) to 50
times less (PM2) than the manual curation. In contrast, GenOtoScope activated 3 out
of the 8 rules (PM2, PP3, PM2 (Supporting)) with the same frequency as the manual
curation and it activated the remaining 5 rules (BS1 (Supporting), BS1, BA1, BP4,
PVS1) approximately one to two times more frequently than the manual curation.

For the “Benign” broader class, VIP-HL activated 6 implemented rules (PP3, BS1
(Supporting), BP7, BP4, BS1 and BA1) from 32 times less (BA1, BS1, BP4, BP7, BS1
(Supporting)) to 40 times less (PP3) than the manual curation. GenOtoScope activated

December 23, 2021

14/26

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

411

412

413

414


https://doi.org/10.1101/2021.12.23.474074
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.23.474074; this version posted December 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

4 of these rules (BS1,BP7,BA1,BP4) with approximately the same frequency as the
manual curation. The other two rules (PP3 and BS1 (Supporting)) were activated by
genotoscope , one time more frequently than the manual annotation.

To examine the reasons for the lower precision of GenOtoScope for the “Benign”
broader class compared to VIP-HL. We examined GenOtoScope misclassifications for
this grouped class. That is, we examined the variants belonging in the VUS class and
misclassified in the “Benign” broader class by GenOtoScope. These misclassified
variants are seven, a significant amount on the calculation of precision for the total of 44
variants in the “Benign” broader class. The main reason for the misclassification was
that manual annotation used not implemented rules to classify these variants as VUS.
More specifically, for five out of the seven variants the manual curation used rules not
implemented by GenOtoScope (for example PP1, PP4 or PM3) to classify the variants
as VUS. The last two variants were misclassified by GenOtoScope pathogenicity
probability as their calculated probability was lower than the set threshold for
refining a variant classified from “VUS” into the “Benign” broader class. For
completeness, VIP-HL classified correctly, as “VUS”, four out of these seven variants.

MHH data set

The ROC curve and AUC scores are shown in Fig[8] In ROC curves, GenOtoScope or
GenOtoScope pathogenicity probability scored the highest performance values,
compared to VIP-HL and InterVar, for all three classes. In the Precision-Recall curves,
GenOtoScope outperformed all classification tools, in terms of AUC score, for benign
classification. GenOtoScope and GenOtoScope pathogenicity

probability outperformed all classification tools, in AUC score for pathogenic and
VUS classes.

We calculated the micro-average AUC of ROC curves and average precision of
Precision-Recall curves, across the three broader classes for each classification tool. We
show the results in Table[2] As in the previous data set, the two versions of the
GenOtoScope classification achieved the best scores for both performance metrics.

Table 2. Micro-averaged performance scores for all classification tools, over
the three broader classes in the MHH data set.

Performance scores | Classification Tools

GenOtoScope | GenOtoScope_prob | VIP-HL | InterVar
ROC AUC 0.88701 0.90395 0.86441 | 0.77966
Average Precision 0.73212 0.76864 0.68544 | 0.53085

Best values of a performance score, across all classification tools, are shown in bold.

To explain the discrepancy in performance scores, we plotted the heatmap of log
ratio of the activation frequency of a given tool compared to the activation frequency of
the manual curation in Fig[J]

For the “Pathogenic” broader class, VIP-HL activated 5 evidence-based rules (PVS1
(Strong), PP3, PM2, PS1 and PVS1) from 8 times less (PVS1 (Strong)) to 16 times less
(PVS1). In contrast, for the same class, GenOtoScope activated 3 out of these 8 rules
with the same frequency (PVS1, PS1 and PM2) as the manual curation. The remaining
two rules were activated approximately one time more (PP3) and twice more often
(PVS1 (Strong)) as the manual curation, respectively.

VIP-HL activated 8 implemented rules (BP7, BP4, BS1 (Supporting), BS1, PM2
(Supporting), PP3, PM5 and PM2) from 20 times less (BP4 and BP7) to 40 times less
(PM2) than the manual curation for the “VUS” class. GenOtoScope activated 2 of these
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Fig 8. ROC curves and precision-recall curves for the MHH data set: a-c)
ROC curve and AUC of all classification tools for VCEP-HL data set. a) Prediction of
the “Benign” broader class versus the “Pathogenic” broader class and the VUS class b)
Prediction of the “Pathogenic” broader class versus “Benign” broader class and the
VUS class ¢) Prediction of the “VUS” class versus the “Benign” broader class and the
“Pathogenic” broader class. d-f) Precision-recall curve and AUC of all classification tools
for the MHH data set. d) Prediction of “Benign” broader class versus the “Pathogenic”
broader class and the VUS class e) Prediction of the “Pathogenic” broader class versus
“Benign” broader class and the VUS class f) Prediction of the “VUS” class versus the
“Benign” broader class and the “Pathogenic” broader class.

8 rules (PM5 and PP3) with equal frequency to the manual curation.

GenOtoScope activated the remaining six rules (PM2, PM2 (Supporting), BS1, BP4,
BS1 (Supporting) and BP7) with approximately one time more (BP7), up to one time
less (PM2) as the manual curation.

For the “Benign” broader class, VIP-HL activated 6 rules (PP3, BS1 (Supporting),
BP7, BS1, BA1 and BP4) from 12 times less (PP3) to 25 times less (BP4) than the
manual curation. Contrary to VIP-HL pattern, GenOtoScope activated 2 out of these 6
rules (BA1 and BS1) with the same frequency as the manual classification and the
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Fig 9. Activation frequency ratios for MHH data set. Log ratios calculated for
each of the three classes classified by the MHH manual curators: (a) the “Benign”
broader class, (b) the “VUS” class and (c) the “Pathogenic” broader class.

remaining 4 rules (BP4, BS1 (Supporting), BP7 and PP3) with approximately two
times more (PP3) up to one time less (BP4) as the manual curation.

Based on the observed motives on the activation frequency of each tool compared to
the manual curation, we conclude that VIP-HL activated the aforementioned
evidence-based rules less frequently than the manual curation. However,

GenOtoScope was able to trigger the selected rules with similar or at most twice higher
frequency compared to the manual curation. Consequently, we justify the best
performance achieved in ROC and Precision-Recall scores by GenOtoScope for all three
broader classes compared to the other two classification tools.

Conclusion

In this work, we presented GenOtoScope, an automated classification tool for variants
associated with congenital HL. Currently, our tool offers the classification through the
automation of 12 out of 24 evidence-based criteria specified for HL [11]. We have shown
that GenOtoScope outperformed other variant classification tools in terms of AUC score
of ROC curve and of Precision-recall curve for all three broader classes (“Benign”,
“VUS” and “Pathogenic”). To explain the difference in performance between the tools,
we calculated the ratio of the activation frequency of triggered criteria by each tool and
the manual curation. By comparing the ratios for each ACMG criterion, we observed
that GenOtoScope achieved the most similar activation frequency to the manual
curation, compared to the VIP-HL and InterVar tools.

Besides, the scope of this work is to provide an easily accessible tool to use for the
classification of variants for HL. phenotype. Therefore, we implemented two versions of
the tool. The first version is a CLI application to be used by experienced bioinformatics
personnel, who aim to classify a set of patients WES VCF files. Complementary, we
have implemented a web interface to be used, by life scientists without bioinformatics
expertise, to classify a single variant of interest. We hope that this tool will be used in
search settings of genetic diagnostics routine diagnostic settings to provide a
time-efficient and standardized classification of HL: variants.

For future extension of GenOtoScope we aim to implement the most frequently
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activated evidence-based rules by manual curation to predict the two complementary
grouped classes. For “Benign” broader class, the not implemented rules with highest
activation frequency, by the manual curation, were the BS2, BP2, BP3, BP5 and BS3
(Supporting). For the “Pathogenic” broader class, the most frequently activated rules,
only by the manual curation, were PM3, aggregated for all strengths, PP1, aggregated
for all strengths, PS3 and PS4. To implement these rules, which need manual curation
heavily, we aim to utilize database for genotype to phenotype such as DisGeNET [28]
and prediction algorithms to link a mutation of interest to its respective functional
study publications, for example AVADA [29]|. Also, to facilitate even more no
bioinformatics personnel to use the web interface, we would allow the user to input a

single variant information on the welcome page without the need of creating a VCF file.

Last, by making the GenOtoScope an open source project, we aim to facilitate
researchers to use its source code as a base to implement the ACMG evidence-criteria
for phenotypes with a similar set of used evidence-based criteria, for example
cardiomyopathy [4] or monogenic diabetes{ﬂ

Supporting information

S1 Appendix.
PM1

The precise regions, used for PM1 criterion, are the pore-forming domain of KCNQ4
gene and the three-stranded helices of the collagen genes COL11A2, COL4A3, COL4A4
and COL4A5. PM1 is applied to missense variants overlapping any of the annotated
genomic regions. If the variant overlaps on the three-stranded motifs of the collagen
genes, it accepts only the matches that affect the Glycine residues contained in a
Gly-X-Y motif.

PP3, BP4 and BP7

The used thresholds by prediction follow. To decide upon pathogenicity, we aggregated
CADD and REVEL in the following scheme: if CADD score is greater than 20, then we
set CADDyote = 1 otherwise CADD,te = 0. For REVEL, if REVEL score is greater or
equal to 0.7, then REVEL,. = 1, else if REVEL score is lower or equal to 0.15, then
REVELyote = 0, otherwise we set REVELyqte = 0.5. Finally, if the average voting of
CADDyte and REVEL,te is greater or equal to 1, GenOtoScope assumes that the
variant is pathogenic. For splicing impact, we aggregate the predictors MaxEntScan and
dbscSNV in the following scheme: if |Obse”ef;gg;g;cﬁfiince“m is greater than 0.15, then
MaxEntScan,ote = 1 otherwise MaxEntScanyete = 0. For dbscSNV, if either ADA score
or RF score is greater than 0.6 then dbscSNV e = 1, otherwise dbscSNVote = 0. We
aggregate the votes similarly to pathogenicity. That is, if the average voting of
MaxFEntScanyote and dbscSNVte is greater or equal to 1, GenOtoScope decides that
the variant has a splicing impact. Last for conservation prediction, we used PhyloP
score, as follows: if PhyloP score is greater of 1.6 then GenOtoScope decides that this is
a conserved site, otherwise GenOtoScope decides that the site is not a conserved site.

PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting)

Regarding different inheritance patterns, the algorithm by default utilizes distinct
thresholds for autosomal dominant and autosomal recessive inheritance mode as

%https://clinicalgenome.org/site/assets/files/7039/clingen_diabetes_acmg_
specifications_v1.pdf
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specified by [11]. For the X-linked mode of inheritance, autosomal dominant thresholds
are adopted. If no mode of inheritance is provided, it is assumed to be unknown. In
these cases, the algorithm selects the strictest threshold between autosomal dominant
and recessive for each criterion. For mitochondrial genes, the same procedure is used as
for unknown mode of inheritance, with an additional warning, since the application of
ACMG criteria is validated only for Mendelian disorders.

S2 Appendix.

Constructing annotations for ACMG criteria

In the following, we explain how GenOtoScope utility scripts create the needed
annotations for the automatic examination of the ACMG criteria. First, we present our
methods to construct the annotations for PVS1 criterion: (i) critical regions for protein
function, (ii) clinical significant exons and (iii) HL-relevant transcripts. Finally, we
present how the respective GenOtoScope utility script creates the critical regions for
protein function with no benign mutation.

Critical regions for protein function

To automate the assessment of PVS1 rule, the GenOtoScope’s sub-process construct
three annotation files. In the first annotation file we include all critical regions for
protein function. To create this file, the GenOtoScope’s respective sub-process maps all
available ClinVar entries to the genomic positions of each UniProt domain, respecting
the genomic strand of the domain. Then it filters-in all mapped ClinVar entries with at
least 2 quality stars on their review status field. For each domain, it uses the
interpretation field of the filtered-in overlapping ClinVar entries to calculate the
probability that the region is pathogenic (and so critical for protein function) as:

Pd o Ngathogenic

pathogenic

+0

(4)

d b
Zc:{pathogenic,VUS,benign} (Nc + 5)

where N¢ is the number of filtered ClinVar entries, found in the protein domain with
UniProt id d, with class equal to ¢ and § = 107% is used as a smoothing parameter for
the probability computation. Finally, the sub-process calls domains with

Pgathogenic > 0.51 as critical for protein function. It saves all these critical domains for
protein function in a BED file containing as columns: their genomic position, strand,
their protein UniProt id and their corresponding P4 ho probability. The described

pathogenic
procedure is also depicted in the Supplementary Fig

Clinically significant exons

We also developed a sub-process to create an annotation file for clinically significant
exons, which are exons at which loss of function variants are not frequent in the general
population [13]. To do so, the sub-process first aggregates putative loss of functions
(pLoF) variants of gnomAD [20] per Ensembl exon [21]. Second, for a given exon, it
extracts the AF for each subpopulation of a pLoF variant intersecting the exon. Finally,
it aggregates the AF of each extracted pLoF variant, for each subpopulation, and if this
sum is lower than 0.001 for any subpopulation, the exon is called clinically significant.
The output annotation file is in BED format containing the columns: the genomic
position, strand, its exon Ensembl id and all containing transcript Ensembl ids, for each
called clinical significant exon. The procedure is depicted in Supplementary Fig
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[Uniprot domains (.bed

)

ClinVar mutations (.vef)

Per domain, fetch overlapping
ClinVar entries (strand-sensitive)

Filter resulted ClinVars
by review-status quality

[Overlapping ClinVars
per domain

Critical regions of
proteins (-bed)

Fig 10. Conceptual workflow to call critical regions of proteins for
assessment of PVS1 rule.

gnomAD exome variants (.vef) gnomAD pLoF variants

Per pLoF, get genomic
positions of containing exon

v

|Aggrcgatc pLoFs per exon

Match exon's pLoFs to
corresponding gnomAD variants

'

Filter matching gnomAD
variants by quality
Sum AF per subpopulation|
for all matching gnomAD

Sum of AF<0.00

clinical significant exons (.bed)

Fig 11. Conceptual workflow to call clinical significant exons for PVS1 rule.

Hearing loss-relevant transcripts

The last annotation file for PVS1 is the hearing loss relevant transcripts. The respective
sub-process utilizes three independent annotation files to create the hearing loss relevant
transcripts and exons. The first file contains the phenotype relevant transcripts and
their clinically relevant exons from [23], the second file contains disease-gene pairs for

hearing loss from ClinGen repository [24] and the last file contains the clinical
diagnostics panel for hearing loss created by the HG department of the MHH.
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To aggregate these files, we argue that the [23] work contains the most detailed
information as it contains not only hearing loss relevant transcripts for a given gene but
also the clinically relevant exons of the respective transcripts. In contrast, the two
remaining files contain either disease-gene pairs or only relevant transcripts of genes
without specifying their clinically relevant exons. Therefore, the sub-process extends the
relevant transcripts and clinically relevant exons reported by [23] with the relevant
transcripts and all their contained exons from the diagnostic panel of HG department of
MHH. Further, it extracts the longest coding transcript or the clinical relevant
transcript annotated by Locus Reference Genomic resource (LRG) [25], and their
contained transcripts, for all genes annotated by ClinGen but not found in the extended
list of annotations of the last intermediate step. As final step, it aggregates the ClinGen
unique genes annotations with [23] and the HG department of the MHH annotations to
create the final hearing loss relevant transcripts and clinically relevant exons. The
output annotation file is in BED format, containing the columns: chromosomal position,
strand, transcript and exon ids for each clinically relevant exon.

Critical regions for protein function with no benign mutation

To automate PM1 evidence-based rule we need an annotation file containing the critical
regions for protein function without benign mutations. To construct these annotated
regions, we implemented a similar sub-process as for the critical regions used for PVS1
rule. The only difference is that this sub-process constraints the candidate domains
with Ppathogenic < 0.51 (Eq to contain no benign ClinVar mutations. The resulting

file is in BED format, containing the same columns as described above for the critical
regions for protein function.

Results
PVS1 annotations

GenOtoScope sub-processes created the three annotation files needed for the refined
PVS1 criterion. For the first file, critical regions, we applied our methodology using the
25,552 ClinVar entries, version of March 2021 and 12,776 UniProt domains, version of
February 2021. The resulting file contains 1,478 UniProt domains annotated as critical
for protein function. Using the HL-relevant transcripts and exons curated in [23], [24]
(VCEP-HL) and MHH diagnostic panel, we extracted 2,812 unique exons and 215
unique transcripts, contained in 154 genes. For the annotation file with the clinical
significant exons, the used version of the pLoF variants and the allele frequency of
exomes of gnomAD was the version 2.1.1. By this process, we annotated 107,966 exons
as clinical significant exons.

PM1 annotations

The 10 mutational hotspots relevant to HL as published by VCEP-HL committee, at
pagd’] were utilized to create the annotation file to evaluate the PM1 criterion. Using
the ClinVar entries and UniProt domains, same versions as described above. Besides
750 UniProt domains were called as critical regions for protein function without a
benign variant. To evaluate the PM1 evidence-criteria we intersect the chromosomal
position of the input variant with both annotation files.

Shttps://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_vi_
2018. pdf
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S3 Appendix.

Implementation note

To automate the examination of the ACMG evidence-based criteria we used the Python
programming language. First, we used the hgvs library [30] to parse the variant
information for each Ensembl transcript. Then, using the HGVS format we constructed
the observed coding sequence and we extracted the needed information for the criteria,
through the PyEnsembl libraryﬂ For example, we extracted the start and stop
positions of exons and the positions of the start and stop codons. This library uses the
Ensembl version 75 for GRCh37 human genome. We used the PyVCF libraryEI to parse
variants from VCF files, for instance the ClinVar variants. We applied the

Pybedtools [31] to find the intersections of annotation files, such as the overlap of
UniProt domains with repeat regions. Finally, we utilized the BioPython library [32] for
all other tasks for example, to convert cDNA codons to amino acids.

GenOtoScope currently works only for grch37 genome assembly coordinates. The
performance metrics were calculated using scikit-learn library [40].

The bioinformatics user shall download the whole tool code along with the set of
data needed for its execution, e.g. annotation files HL or known variants with high
MAF from the github repository. Besides, at this repository, the user can find example
configuration files, example input with the corresponding output files and a

documentation on how to install and execute GenOtoScope on a linux machine or server.

Last, to be able to use the variant annotation script, genotoscope_annotate.py, the user
needs to install the megSAP application on a docker container, as explained on the
respective tool github repository ﬂ

Disclaimer

The classification produced by GenOtoScope is intended for an efficient pathogenicity
prediction of WES files, thus for research use only. It is not intended for diagnostic or
clinical purposes. The classification provided by GenOtoScope does not replace a
physician’s medical judgment and usage is entirely at your own risk. The providers of
this resource shall in no event be liable for any direct, indirect, incidental, consequential,
or exemplary damages.
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