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Abstract

Since next-generation sequencing (NGS) has become widely available, large gene panels
containing up to several hundred genes can be sequenced cost-efficiently. However, the
interpretation of the often large numbers of sequence variants detected when using NGS
is laborious, prone to errors and often not comparable across laboratories. To overcome
this challenge, the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG/AMP) introduced standards and
guidelines for the interpretation of sequencing variants. Further gene- and
disease-specific refinements regarding hereditary hearing loss have been developed since
then. With more than 200 genes associated with hearing disorders, the manual
inspection of possible causative variants is especially difficult and time consuming. We
developed an open-source bioinformatics tool GenOtoScope, which automates all
ACMG/AMP criteria that can be assessed without further individual patient
information or human curator investigation, including the refined loss of function
criterion (“PVS1”). Two types of interfaces are provided: (i) a command line
application to classify sequence variants in batches for a set of patients and (ii) a
user-friendly website to classify single variants. We compared the performance of our
tool with two other variant classification tools using two hearing loss data sets, which
were manually annotated either by the ClinGen Hearing Loss Gene Curation Expert
Panel or the diagnostics unit of our human genetics department. GenOtoScope achieved
the best average accuracy and precision for both data sets. Compared to the
second-best tool, GenOtoScope improved accuracy metric by 25.75% and 4.57% and
precision metric by 52.11% and 12.13% on the two data sets respectively. The web
interface is freely accessible. The command line application along with all source code,
documentation and example outputs can be found via the project GitHub page.
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Author summary

New high-throughput sequencing technologies can produce massive amounts of
information and are utilized by laboratories to explain the often complex genetic
aetiology of hereditary diseases. The most common sensory disease, hearing loss, is
often hereditary and has a high impact on a patient’s every-day life. To use these
sequencing technologies effectively, software tools were developed that can aid
researchers interpreting genetic data by semi-automatically classifying the biologic (and
thus potentially medical) impact of detected variants (the alterations of the patient’s
genome compared to the human reference genome). The available genetic variant
classification tools are either not designed specifically for the interpretation of variants
detected in subjects with hearing loss or they do not allow researchers to use them for
batch classification of all variants detected, e. g. in a study group. To address this
drawback, we developed GenOtoScope, an open-source tool that automates the
pathogenicity classification of variants potentially associated with congenital hearing
loss. GenOtoScope can be applied for the automatic classification of all variants
detected in a set of probands.

Introduction 1

Due to the establishment of modern high-throughput next generation sequencing (NGS) 2

technologies, an ever-increasing amount of sequencing data can be generated. 3

Nevertheless, a whole exome sequencing (WES) file contains approximately 60,000 4

variants per proband. Consequently, laboratories have to overcome the hurdle of 5

processing this vast amount of data to link the genotype to phenotype [1]. Notably, the 6

manual classification of variants, by expert curators, is not only time-consuming, but 7

even more, prone to inconsistent functional interpretation and pathogenicity 8

classification of a variant between distinct laboratories [2]. 9

To address this challenge, the American College of Medical Genetics and the 10

Association for Molecular Pathology (ACMG/AMP) published a set of evidence-based 11

criteria to classify patients variants in five classes of pathogenicity, “benign” (class 1), 12

“likely benign” (class 2), “variants of uncertain significance” (“VUS”) (class 3), “likely 13

pathogenic” (class 4), and “pathogenic” (class 5) [10]. To specialize for a diverse set of 14

phenotypes with distinct penetrance, allelic and genetic heterogeneity, ACMG updated 15

its classification criteria for specific hereditary diseases, for example hereditary 16

(breast/ovarian) cancer [3] or cardiomyopathy [4], through the ClinGen Variant 17

Curation Expert Panels (VCEP). 18

Hearing loss (HL) is the most common sensory disorder with a high impact on the 19

quality of social and work life of the patient. A genetic aetiology can be linked to 20

approximately 50% of the affected individuals [5]. Besides various forms of 21

nonsyndromic hearing loss (NSHL) affecting only the function of the ear, HL can also 22

be a symptom of a superordinate disorder involving other organ systems (syndromic 23

hearing loss). Thus, HL is very heterogeneous with well over 100 genes known to be 24

associated with monogenetic NSHL and more than 400 distinctive syndromes 25

comprising HL as one of their characteristic symptoms as well [5]. 26

To facilitate the challenging classification of variants for HL, [11] have published 27

disease-specific evidence-based ACMG-criteria. Application of these adjusted criteria 28

has been shown to achieve better classification performance compared to the standard 29

evidence-based criteria for known HL-related variants [6]. A recently published 30

bioinformatics tool, VIP-HL [8], automates 13 out of the 24 evidence-based criteria 31

specified for HL. However, VIP-HL is an online tool that accepts only a single variant 32

per time, thus hindering the automatic and time-efficient interpretation of all variants of 33
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WES files for a set of investigated patients, for a heterogeneous condition as HL. 34

To address this limitation of VIP-HL, we present GenOtoScope, a bioinformatic tool 35

which accepts as input a genomic variant file (VCF) and computes the pathogenicity 36

class and pathogenicity probability for each input variant, based on [11] and [22]. To 37

this end, we designed and implemented algorithms to automate all the evidence-based 38

criteria that need no further individual patient information or human curator 39

investigation. This results to 12 implemented criteria, out of the 24 criteria in total, 40

namely PVS1 (all strengths), PS1, PM1, PM2 (PM2 supporting), PM4, PM5 (PM5 41

strong), PP3, BA1, BS1 (BS1 supporting), BP3, BP4 and BP7. We will provide 42

GenOtoScope as an open-source project, accessible as a command line application to 43

classify the WES patients files and as an online tool to classify a single genomic variant 44

of interest. 45

We benchmarked the performance of GenOtoScope compared to two established 46

classification tools, InterVar [7] and VIP-HL, in two HL data sets. These data sets 47

consist of manually curated HL variants. GenOtoScope outperformed the other two 48

classification algorithms, both, in terms of accuracy and precision. Finally, we 49

investigated the reasons for this best performance of GenOtoScope, by calculating the 50

difference between the activation frequencies of a tool over the manual curation, for 51

each evidence-based criterion. 52

In summary, our contributions are: 53

• Introduce GenOtoScope in two programming interfaces, a command line 54

application for bioinformatics experts to classify WES VCF files of a set of 55

patients and as web-based application for non-bioinformatics experts to classify 56

single variants. 57

• Compare GenOtoScope classification performance to InterVar and VIP-HL for two 58

manual annotated HL data sets. 59

• Make GenOtoScope an open-source bioinformatics tool, therefore enabling the 60

research community to extend the tool for other diseases. 61

Materials and methods 62

Automating the examination of ACMG evidence criteria 63

GenOtoScope currently implements 12 out of 24 ACMG evidence-based criteria 64

specified for hearing loss [11]. More specifically these criteria are PVS1 (all strengths), 65

PS1, PM1, PM2 (PM2 supporting), PM4, PM5 (PM5 strong), PP3, BA1, BS1 (BS1 66

supporting), BP3, BP4 and BP7. Based on class category the implemented criteria are 67

sorted in 7 pathogenic and 5 benign criteria. With respect to the data types needed for 68

ACMG criteria, we categorize our implemented criteria into 3 population data criteria, 8 69

computational and predictive data criteria and 1 functional data criterion. 70

The unimplemented criteria by GenOtoScope are 12. These criteria are: PS2, PS3, 71

PS4, PM3, PM6, PP1, PP4, BS2, BS3, BS4, BP2 and BP5. The main reasons not to 72

implement these criteria are: (i) the lack of established processing algorithm (ii) the 73

lack of data and (ii) further patient information. That is, for the criteria needing 74

functional data, PS3 and BS3, there are no established algorithms that can 75

automatically extract the result of a functional study publication, for a given human 76

variant. As the lack of data is concerned, the examination of the PS4 criterion cannot 77

be automated as there is no database to contain the prevalence of affected and control 78

individuals for all possible variant types. Equally, there is no database with the 79

respective information to automate BS2 and BP2 criteria. Last, the need for genomic 80
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data from the patient’s family disables the examination of the segregation data criteria: 81

PS2, PM3, PM6, PP1, PP4, BS4 and BP5. 82

The number of missing implemented criteria is competitive with the other 83

classifications tools. VIP-HL implements only one extra criterion, BS2. The main 84

reason not to also implement BS2 is that VIP-HL uses particular thresholds, which are 85

not specified by ACMG HL original work, and thus it may not reflect all penetrance 86

and inheritance modes of all HL-related genes. 87

InterVar implements 18 out of the 24 ACMG original criteria [10]. As explained in 88

the introduction, disease-specific ACMG criteria may vary from the original 24. 89

Therefore the PP2, PP5, BP1 and BP6 criteria automated by InterVar are not 90

applicable for HL. The remaining two criteria automated by InterVar and not by 91

GenOtoScope are PS4 and BS2. To automate these criteria, InterVar used the 92

ANNOVAR annotation tool [35]. However, this tool implements PS4 using a general 93

threshold on a phenotype-based GWAS catalog, consequently the called enriched 94

pathogenic variants may not include all HL-relevant variants. Similarly, to automate 95

BS2 criterion, InterVar uses the zygotic information of a healthy individual in the 1000 96

Genomes project [36] based on the inheritance mode of the variant. Nevertheless, 97

specific thresholds of healthy individuals should be used for HL, which are not 98

published by [11]. As a consequence, there may be false negative cases; InterVar should 99

activate PS4 or BS2 for a given HL variant, but it may not. Finally, the remaining 100

criteria need manual curation or additional information not publicly available (e.g. 101

segregation or phenotypic data), therefore they are not implemented by any of the three 102

classification tools. 103

In our thorough evaluation, shown in the results section, we demonstrate that 104

regarding the 12 ACMG criteria processed by either tool, GenOtoScope achieved the 105

best averaged accuracy and precision scores for both tested data sets. This is due to the 106

activation frequency of these criteria being much closer to human curation in 107

GenOtoScope than in VIP-HL and InterVar, which trigger the commonly implemented 108

12 criteria much less frequently. 109

To sum up, our choice to implement these 12 criteria, which are refined for HL, can 110

lead to standardized classification results for all HL-relevant genes. Besides, our 111

implementation of the criteria presents two more advantages: In contrast to the usage of 112

the ANNOVAR annotation tool, licensed for commercial use, we construct all 113

annotation files needed to examine the ACMG criteria, using freely accessible databases 114

and offer GenOtoScope with an open-source software license. Therefore, any interested 115

researcher can update the corresponding code section to produce adjusted annotations 116

to her needs. Equally, the researcher can update the code to change the steps used to 117

examine a given criterion. The second advantage is that GenOtoScope (like VIP-HL) 118

outputs comments for each examined criterion, whereas InterVar does not. This extra 119

information can facilitate the variant curator to justify the activation of a criterion and 120

thus increace the explainability of the classification. 121

GenOtoScope workflow 122

In the following, the methodology to implement the ACMG evidence-based criteria for 123

congenital hearing loss is explained in five key steps. The conceptual workflow of the 124

web and command line interface (CLI) of GenOtoScope is depicted in Fig 1. 125

In the first step, the user inputs a variant file (VCF), which, depending on the used 126

interface, may contain a single variant or a larger set of variants of a patient (e.g. full 127

WES data set). Multiple VCFs can be submitted simultaneously. 128

Next, functional annotation of the VCF takes place using the VeP annotation 129
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Fig 1. Conceptual workflow of GenOtoScope.

tool [33] through the megSAP bioinformatics application1. The resulted intermediate 130

variant file is organized as a standard matrix file (tabular file) where each row is a 131

variant and a column contains variant annotation. These columns contain the basic 132

variant information (for example chromosome position of variant and affected gene 133

name), the transcript and the protein HGVS signature and the unique functional 134

annotation for the variant (e.g. minor allele frequency in gnomAD subpopulations [20], 135

the OMIM variant observed clinical description [34] and the REVEL pathogenicity score 136

for the variant [15]). 137

The third step uses the core sub-algorithms of GenOtoScope to automatically 138

analyze the listed variants according to ACMG criteria. These sub-algorithms access 139

programmatically four databases: the human clinical variants database ClinVar [37], the 140

human exomes database gnomAD [20], the protein knowledge database UniProt [38] 141

and the clinical genome database [39]. Extracted annotations are organized based on 142

the Ensembl features [21] for a variant-affected transcript. Beyond the mere result of 143

checking a criterion (activation or non-activation), the tool stores a descriptive comment 144

on the reason for activation or non-activation, to be used as an explanation for the user. 145

In the following step, the tool combines the activated evidence-based criteria to 146

classify the variant into 5 pathogenicity categories (“benign”, “likely benign”, “VUS”, 147

“likely pathogenic” and “pathogenic”) according to ACMG guidelines. If none of the 148

criteria is activated, the tool classifies the variant as VUS. Subsequently, in the same 149

fourth step, GenOtoScope computes the pathogenicity posterior probability based 150

on [22]. This is intended to allow a better discrimination of VUS and additional 151

re-classification of VUS into benign or pathogenic variants. 152

In the fifth and final step, GenOtoScope extends the intermediate annotation tabular 153

file with the criteria activation results and the comments along with the predicted 154

ACMG class and the computed pathogenicity probability. Finally, the tool will save this 155

file as the produced classification output. 156

A crucial sub-step of this workflow is the construction of annotation files, which is 157

needed for the automatization of the examination of the ACMG evidence-based criteria. 158

We constructed the needed annotation files, clinical-significant exons, HL-relevant 159

transcripts, critical regions for proteins, critical regions for proteins without benign 160

variants and protein repeat regions without domain intersection, using publicly available 161

data sets. 162

GenOtoScope interfaces 163

Having described the general workflow, we continue with the presentation of the two 164

interfaces. 165

1https://github.com/imgag/megSAP
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Web interface 166

The web application is targeted for free online usage. Advanced bioinformatics skills are 167

not required. Screenshots of the home page and of an example output page, of the 168

GenOtoScope website, are shown in Fig 2. At the home page, users can upload a single 169

variant file (VCF). The website will annotate and convert the VCF to GSvar file 170

through the megSAP application. A result page (.html) will be generated to show: (i) 171

the variant’s ACMG classification and computed pathogenicity posterior probability for 172

all known inheritance modes of the affected gene, (ii) the list of all examined ACMG 173

criteria along with comments on their activation or deactivation and (iii) the basic 174

information for variant and affected transcripts. 175

(a)

(b)

Fig 2. Web interface of GenOtoScope. (a): The home page of the
GenOtoScope website. (b): The output page, for an example variant (RS id:
1064797096), which includes its classification based on HL-specified ACMG guidelines.
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Command line interface 176

The command line interface (CLI) is tailored to bioinformatics personnel. The first 177

command of this mode, genotoscope annotate.py, will accept as input a folder of 178

VCF files or a single VCF file. It will annotate the input VCF files and convert them 179

into GSvar files. The second command, genotoscope classify.py, will accept as input 180

a folder of GSvar files or a single GSvar file, the output of the previous command. Then 181

it will automatically examine the ACMG evidence-based criteria to classify and compute 182

the pathogenicity posterior probability for each variant in an input GSvar file. The 183

output will be an extended GSvar file containing information on the examination of the 184

ACMG evidence-based criteria, the ACMG pathogenicity class and the pathogenicity 185

posterior probability. Running examples of these two commands are shown in Fig 3. 186

(a) (b)

Fig 3. Command line examples for the two commands of GenOtoScope. (a)
Annotate all variants presented in VCF files, in input folder, using megSAP application
and save results in GSvar files. (b) Classify all variants presented in GSvar files based
on ACMG guidelines specified for HL.

Automating examination of ACMG evidence-based criteria 187

In the following subsections, we briefly describe our implementation of the 188

aforementioned 12 ACMG criteria: PVS1 is automated based on [13]. Information from 189

ClinVar database is used for the implementation of PS1 and PM5 (including PM5 190

Strong). Automation of PM1 examines critical regions provided by [11] and a 191

purpose-built annotation file containing critical regions without benign mutations. 192

Customized annotation files are also used for (non) repetitive region dependent criteria 193

PM4 and BP3, whereas automation of PP3, BP4 and BP7 employs established 194

prediction algorithms. Population frequency data for implementation of PM2 (PM2 195

Supporting), BA1 and BS1 (BS1 Supporting) is taken from gnomAD database. 196

Refined PVS1 197

PVS1 criterion is assessed for start-loss, nonsense (stop gained), stop-loss, frameshift, 198

in-frame, splice acceptor and donor variants according to [13]. 199

First, the occurrence of nonsense-mediated decay (NMD) is predicted by a 200

subroutine for each affected transcript using the HGVS signature of the variant to 201

create the observed coding sequence per exon. Altered region is defined as 202

variant-affected coding region. The algorithm locates the 5’-closest stop codon and 203

follows the scheme published by [14] to assess impact of this premature termination 204

codon (PTC) on NMD: Observed coding sequence is rated to escape NMD if PTC 205

appears either within the 50 last bases of the penultimate exon or at most 200 bases 206

downstream from the start codon or the transcript contains no introns. Otherwise, 207

NMD is classified to occur. Fig. 4 illustrates this subprocess. 208

If NMD is predicted to occur, the algorithm intersects the stored variant-affected 209

coding region to phenotype-relevant transcripts to decide the PVS1 outcome. If NMD is 210

not predicted to occur, it intersects the variant-affected coding region with protein 211
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Fig 4. Conceptual flowchart to assess NMD for the refined PVS1 rule.

domain regions. If there is an intersection, it examines if the affected region overlaps a 212

critical domain for protein function, to decide the PVS1 outcome. If the affected region 213

is not within a known domain, overlap with clinically significant exons and 214

phenotype-relevant transcripts is examined. If this is confirmed, it is investigated 215

whether the PTC results in the removal of more than 10% of the reference protein 216

product. 217

For start-loss variants, the algorithm first checks if any other transcript contains an 218

alternative start codon. If not, it extracts potential in-frame start codons that are no 219

further than 200 bases downstream of the lost start codon. Next, it queries ClinVar for 220

pathogenic entries with at least one review star between the lost start codon and the 221

detected in-frame start codon. If there is such a ClinVar entry, PVS1 (Moderate) is 222

triggered, otherwise PVS1 (Supporting) is activated. 223

See supplementary for annotation files (clinically significant exons, 224

phenotype-relevant transcripts and clinically significant exons). 225

PS1 and PM5 (PM5 Strong) 226

The workflow of assessing the PS1 and PM5 criteria is shown in Fig. 5. 227

First, genomic positions of the affected codon are computed based on exonic variant 228

location and directionality of the respective gene. Then, all missense variants at 229

corresponding genomic positions are extracted from ClinVar and filtered by strand to 230

match the directionality of the affected gene. Additionally, ClinVar entries can be 231

filtered by review status as the user can define a minimum number of quality stars as a 232

threshold for variants to be considered (default value: 1). 233

The filtered variants and resulting amino acids are used for further assessment of 234

PS1 and PM5 criteria: PS1 is triggered if any filtered-in variant from ClinVar that is 235

rated as pathogenic results in the same amino acid change as the observed variant. PM5 236

is triggered if the filtered-in ClinVar entries do not contain the observed amino acid 237

change but at least one pathogenic variant affecting the same codon. If the entries 238

include two or more such variants, PM5 is applied as strong evidence (PM5 Strong) 239

according to [11]. 240
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Fig 5. Conceptual flowchart for examining PS1 and PM5 (PM5 Strong).

PM1 241

For automation of PM1 a custom-made annotation file is used. It comprises all critical 242

protein regions without benign ClinVar entries and also includes specific domains and 243

motifs of hearing loss related proteins as defined by [11]. Please see supplementary for 244

detailed description of used hotspot reagions related to HL. 245

PM4 246

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and 247

stop-loss variants that do not trigger PVS1 in any strength level. Considering PTC 248

assessed in PVS1 subroutine, length of observed proteins is calculated and compared to 249

reference protein length. For length differences greater than 10%, PM4 is triggered 250

except for variants in known repetitive regions derived from UniProt. 251

BP3 252

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and 253

nonsense (stop gained) variants. Based on an annotation file containing functional 254

domains and repeat regions derived from UniProt, BM3 is triggered if the 255

variant-affected coding region overlaps a repetitive region without known function. 256

PP3, BP4 and BP7 257

GenOtoScope incorporates in silico tools for conservation (PhyloP [17]), splicing 258

(MaxEntScan [18], dbscSNV [19]) and missense-prediction (REVEL [15], CADD [16]). 259

See supplementary for aggregation of scores and thresholds. 260
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For missense variants, activation of PP3 requires positive pathogenicity prediction 261

(REVEL/CADD) and high conservation (PhyloP) scores. In contrast, BP4 is triggered 262

if conservation and predicted probability of pathogenicity are low. 263

Variants with no immediate impact on amino acid sequence (exclusion: canonical 264

splice site variants) are similarly screened for potential effects on splicing. If splicing is 265

predicted to be affected and the nucleotide is highly conserved, PP3 is activated. 266

Conversely, if a potential splice variant is predicted to have no splicing effect and 267

conservation is low, BP7 is triggered for synonymous variants and BP4 for other variant 268

types respectively. 269

BP7 270

The BP7 rule is evaluated for all synonymous variants following the similar procedure as 271

for PP3 and BP4. First, the algorithm examines the splicing effect based on 272

majority-voting of the predictions by the MaxEntScan or the dbscSNV tools. Then, it 273

determines the pathogenicity of the variant based on majority-voting on the Revel or 274

CADD predictions. Finally, it examines the conservation of the variant site by PhyloP 275

score. The BP7 rule is triggered if the variant is predicted to have no splicing effect, to 276

be not pathogenic and is not highly conserved, otherwise BP7 is not triggered. 277

PM2 (PM2 Supporting) BA1 and BS1 (BS1 Supporting) 278

Assessment of population data criteria uses adjustable minor allele frequency (MAF) 279

thresholds, which by default are the ones defined by [11]. Each gene can be assigned a 280

preferred mode of inheritance, which can be customized by providing an input file. 281

Default settings comprise the inheritance modes of 164 hearing loss gene-disease pairs 282

defined by the ClinGen Hearing Loss Gene Curation Expert Panel [24] plus preferred 283

inheritance patterns for additional genes specified by the HG department of MHH. We 284

will refer to ClinGen Hearing Loss Gene Curation Expert Panel commitee as VCEP-HL 285

for convenience. 286

For each variant, allele frequencies (AF) of gnomAD subpopulations are retrieved. 287

Known pathogenic variants with high AF are excluded from further assessment of BA1 288

and BS1 according to [11]. AF of each subpopulation and the median AF of all 289

subpopulations are evaluated with respect to the appropriate inheritance mode 290

threshold. PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting) are triggered, if 291

any subpopulation’s AF or the median AF matches the respective inheritance mode 292

threshold. 293

Hearing-loss specific ACMG classification 294

Having assessed all applicable criteria for a given genomic variant, 295

GenOtoScope combines the activated criteria to compute the respective ACMG class 296

using the five-tier terminology system (“benign”, “likely benign”, “VUS”, “likely 297

pathogenic” and “pathogenic”) defined by [10]. 298

Moreover, GenOtoScope incorporates the extended recommendations of VCEP-HL 299

for the following criteria combinations: (i) Variants triggering PVS1 and PM2 300

(Supporting) will be classified as “likely pathogenic” for genes associated with 301

autosomal recessive inheritance. (ii) Variants activating BS1 without triggering any 302

pathogenic criterion will be classified as “likely benign”. 303

Computation of pathogenicity probability 304

This feature is particularly intended for variants classified as VUS, due to insufficient or 305

conflicting triggered evidence criteria. To help human curators discriminate the 306
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potential pathogenicity of VUS in a quantitative manner, GenOtoScope calculates the 307

pathogenicity probability for each variant following [22]. 308

To do so, the tool applies the naive Bayes model to calculate the posterior probability
of pathogenicity given the triggered ACMG evidence rules using the following equations:

Pathogenicityposterior =
Pathogenicitylikelihood · Pathogenicityprior

(Pathogenicitylikelihood − 1) · Pathogenicityprior + 1
(1)

Pathogenicitylikelihood = OPVST
(
NPSU

8 +
NPM

4 +
NPST

2 +
NPVST

1 −NBSU
8 −NBST

2 ), (2)

where the default parameters are used: Pathogenicityprior = 0.1, OPVST = 350 and 309

X = 2. 310

The calculation of the pathogenicity probability is calculated automatically for all 311

input variants. 312

Results and Discussion 313

Variant classification 314

Data sets 315

GenOtoScope variant classification was compared to similar tools: (1) InterVar, a tool 316

for variant classification tested across a spectrum of phenotypes [7]; (2) VIP-HL, the 317

recently published tool for hearing loss [8]. We benchmarked the accuracy and 318

precision of variant classification on two data sets. The first data set is the publicly 319

available set of manually annotated variants by ClinGen VCEP-HL [6], hereafter 320

referred as VCEP-HL data set. This data set contains manual annotation for 158 321

variants associated with HL. These variants involve in 9 HL-relevant genes (USH2A, 322

COCH, GJB2, KCNQ4, MYO7A, MYO6, TECTA,SLC26A4 and CDH23 ). The second 323

data set is the private set of manually annotated variants by the HG department of 324

MHH, hereafter referred to as MHH data set. The MHH data set consists of 118 325

variants, which involve 36 HL-relevant genes. The included genes are: COL11A1, 326

USH2A, NLRP3, OTOF, ALMS1,PAX3, ILDR1, WFS1, COL11A2, COL9A1, MYO6, 327

SLC26A4, CHD7, GRHL2, TMC1, WHRN, TNC, MYO3A, PCDH15, CDH23, OTOG, 328

MYO7A, TECTA, COL2A1, MYO1A, P2RX2, GJB2, GJB6, ACTG1, MYH14, KCNE1, 329

TMPRSS3, MYH9, SOX10, POU3F4 and PRPS1. 330

Performance metrics 331

To assess the prediction performance, we grouped “benign” and “likely benign” classes 332

to “Benign”, “pathogenic” and “likely pathogenic” classes to “Pathogenic”. Thus, we 333

created a three-class prediction task, containing the “Benign”, “Pathogenic” and “VUS” 334

as possible classes. 335

Following the evaluation of the classification tool TAPES [26], we evaluate the 336

accuracy of each software tool, using the area under the curve (AUC) metric of the 337

Receiver Operating Characteristics (ROC) curve for all possible, one versus rest (of 338

classes), predictions. To compare the precision of each algorithm, we used the AUC 339

metric of the precision-recall curve. To explain the observed differences in prediction 340

performances, we plotted the frequency of triggered rules by each tool and the manual 341

curation. 342

Refined classification of VUS 343

We acknowledge that not all evidence-based criteria for HL need a manual curation, 344

therefore cannot be automated. To evaluate the GenOtoScope classification potential 345
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with the currently implemented half of all evidence-based criteria for HL, we provided a 346

refined classification based on pathogenicity probability. We will refer to this extended 347

version of GenOtoScope as GenOtoScope pathogenicity probability and as 348

GenOtoScope prob for short. In this classifier version, we reclassified the “VUS” 349

variants, classified by the GenOtoScope original version, by their calculated 350

pathogenicity probability. That is, GenOtoScope pathogenicity 351

probability maintains the GenOtoScope classification for “benign”, “likely benign”, 352

“likely pathogenic”, “pathogenic” and refines the variants classified as “VUS” to “likely 353

benign” if Pathogenicityposterior ≤ 0.05072, to “likely pathogenic” if 354

Pathogenicityposterior ≥ 0.49988. For the remaining cases, 355

0.05072 < Pathogenicityposterior < 0.49988, the GenOtoScope pathogenicity 356

probability keeps the “VUS” classification unchanged. 357

We have chosen these threshold values based on relaxing the lowest combination of 358

the triggered criteria for the broader classes of Pathogenic and Benign. We then 359

transformed this relaxed combination of criteria to pathogenicity probability based on 360

Eq. 2. That is, for the Pathogenic broader class, the combination of the criteria, with 361

the least pathogenicity strength resulting in likely pathogenic class, is 1 pathogenic 362

moderate criterion and at least 4 pathogenic supporting criteria. Based on available 363

open data and further patient genetic data we have implemented seven out of the 364

fourteen applicable ACMG criteria. Thus, we lowered the combination to 1 Moderate 365

and 1 Supporting criterion, which translates to the probability of 0.49988. Therefore, 366

the GenOtoScope pathogenicity probability will refine the VUS class, by the 367

original GenOtoScope, to Pathogenic for a variant with pathogenicity probability 368

greater than or equal to 0.49988. 369

Similarly, for the Benign broader class, the combination of criteria with the lowest 370

strength is at least two benign supporting criteria and results in the likely benign class. 371

For the same reasons, the GenOtoScope currently implements five out of the total ten 372

applicable criteria. Therefore, we reduced the requirements of this combination to one 373

benign supporting criteria which translates to the pathogenicity probability of 0.05072. 374

Consequently, GenOtoScope pathogenicity probability will reclassify a variant 375

classified as VUS, by GenOtoScope original version, to Benign broader class if the 376

variant’s probability is lower or equal to 0.05072. 377

Investigation of performance discrepancies 378

We sought out to investigate the reasons for the discrepancy in prediction performance
between the classification tools. To do so, we extended the troubleshooting plots of [27],
by calculating the log ratio of the activation frequency of an evidence-criterion by a
classification tool and the manual curation, as:

re,ck = log10(
αe,c
k

αe,c
manual

), (3)

where αe,c
k is the activation frequency of e, any of the implemented ACMG rules, by a 379

tool k = {InterVar,VIP-HL,GenOtoScope} for a grouped class 380

c = {pathogenic,VUS, benign}. 381

We computed all log ratios for each evidence rule, e, by each classification tool for 382

the three grouped classes, c. Finally, we used heatmap plots to depict these log ratios. 383

VCEP-HL data set 384

The ROC and precision-recall curves are shown in Fig 6. We observe that 385

GenOtoScope and GenOtoScope pathogenicity probability achieved the best AUC 386
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scores for all three classes. In Precision-Recall curves, VIP-HL achieved slightly higher 387

AUC compared to GenOtoScope for the “Benign” broader class. However, for the other 388

two classes again GenOtoScope and GenOtoScope pathogenicity 389

probability achieved the best AUC scores of the Precision-Recall curves. 390

Fig 6. ROC curves and precision-recall curves for the VCEP-HL data set.
a-c) ROC curve and AUC of all classification tools for VCEP-HL data set. (a)
Prediction of the “Benign” broader class versus the “Pathogenic” broader class and the
VUS class (b) Prediction of the “Pathogenic” broader class versus “Benign” broader
class and the VUS class (c) Prediction the “VUS” class versus the “Benign” broader
class and the “Pathogenic” broader class. d-f) Precision-recall curve and AUC of all
classification tools for the VCEP-HL data set. (d) Prediction of “Benign” broader class
versus the “Pathogenic” broader class and the VUS class (e) Prediction of the
“Pathogenic” broader class versus “Benign” broader class and the VUS class (f)
Prediction of the “VUS” class versus the “Benign” broader class and the “Pathogenic”
broader class.

Besides, we calculated the performance scores, AUC of ROC and the average 391

precision of the precision-recall curves for all classification tools. We show the 392

micro-averaged scores, over the three broader classes (“Benign”, “VUS”, “Pathogenic”) 393
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in Table 1. Based on this table, the two versions of GenOtoScope classification achieved 394

the best results for both AUC of ROC and the average precision. 395

Table 1. Micro-averaged performance scores for all classification tools, over
the three broader classes in the VCEP-HL data set.

Performance scores Classification Tools

GenOtoScope GenOtoScope prob VIP-HL InterVar
ROC AUC 0.79114 0.85759 0.68196 0.65823
Average Precision 0.61342 0.71960 0.47307 0.44817

Best values of a performance score, across all classification tools, are shown in bold.

To explain the difference in prediction performance, we plot the heatmaps of the log 396

ratio of activation frequency between a classification tool and the manual curation (3). 397

The results are shown in Fig 7. 398

Fig 7. Activation frequency ratios for VCEP-HL data set. Log ratios
calculated for each of the three classes classified by the VCEP-HL: (a) the “Benign”
broader class, (b) the “VUS” class and (c) the “Pathogenic” broader class.

We observed the following patterns for each grouped class. First, for the “Pathogenic” 399

broader class, VIP-HL activated 8 implemented pathogenic rules (PVS1 (Strong), PVS1 400

(Moderate), PM1, PM5, PVS1 and PM2) from 32 times less (PVS1 (Strong)) to 79 401

times less (PM2) than the manual curation. Nevertheless, GenOtoScope activated 5 out 402

of these 8 rules with the same frequency as the manual curation (PVS1, PM2, PP3, 403

PM2 (Supporting) and PM5). It activated the remaining 3 rules (PVS1 (Moderate), 404

PM1 and PVS1 (Strong)) approximately twice as much as the manual curation. 405

For the “VUS” class, we observed that VIP-HL activated 8 implemented rules (BP4, 406

BA1, PVS1, BS1, PM2 (Supporting), PP3 and PM2) from 25 times less (BP4) to 50 407

times less (PM2) than the manual curation. In contrast, GenOtoScope activated 3 out 408

of the 8 rules (PM2, PP3, PM2 (Supporting)) with the same frequency as the manual 409

curation and it activated the remaining 5 rules (BS1 (Supporting), BS1, BA1, BP4, 410

PVS1) approximately one to two times more frequently than the manual curation. 411

For the “Benign” broader class, VIP-HL activated 6 implemented rules (PP3, BS1 412

(Supporting), BP7, BP4, BS1 and BA1) from 32 times less (BA1, BS1, BP4, BP7, BS1 413

(Supporting)) to 40 times less (PP3) than the manual curation. GenOtoScope activated 414
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4 of these rules (BS1,BP7,BA1,BP4) with approximately the same frequency as the 415

manual curation. The other two rules (PP3 and BS1 (Supporting)) were activated by 416

genotoscope , one time more frequently than the manual annotation. 417

To examine the reasons for the lower precision of GenOtoScope for the “Benign” 418

broader class compared to VIP-HL. We examined GenOtoScope misclassifications for 419

this grouped class. That is, we examined the variants belonging in the VUS class and 420

misclassified in the “Benign” broader class by GenOtoScope. These misclassified 421

variants are seven, a significant amount on the calculation of precision for the total of 44 422

variants in the “Benign” broader class. The main reason for the misclassification was 423

that manual annotation used not implemented rules to classify these variants as VUS. 424

More specifically, for five out of the seven variants the manual curation used rules not 425

implemented by GenOtoScope (for example PP1, PP4 or PM3) to classify the variants 426

as VUS. The last two variants were misclassified by GenOtoScope pathogenicity 427

probability as their calculated probability was lower than the set threshold for 428

refining a variant classified from “VUS” into the “Benign” broader class. For 429

completeness, VIP-HL classified correctly, as “VUS”, four out of these seven variants. 430

MHH data set 431

The ROC curve and AUC scores are shown in Fig 8. In ROC curves, GenOtoScope or 432

GenOtoScope pathogenicity probability scored the highest performance values, 433

compared to VIP-HL and InterVar, for all three classes. In the Precision-Recall curves, 434

GenOtoScope outperformed all classification tools, in terms of AUC score, for benign 435

classification. GenOtoScope and GenOtoScope pathogenicity 436

probability outperformed all classification tools, in AUC score for pathogenic and 437

VUS classes. 438

We calculated the micro-average AUC of ROC curves and average precision of 439

Precision-Recall curves, across the three broader classes for each classification tool. We 440

show the results in Table 2. As in the previous data set, the two versions of the 441

GenOtoScope classification achieved the best scores for both performance metrics. 442

Table 2. Micro-averaged performance scores for all classification tools, over
the three broader classes in the MHH data set.

Performance scores Classification Tools

GenOtoScope GenOtoScope prob VIP-HL InterVar
ROC AUC 0.88701 0.90395 0.86441 0.77966
Average Precision 0.73212 0.76864 0.68544 0.53085

Best values of a performance score, across all classification tools, are shown in bold.

To explain the discrepancy in performance scores, we plotted the heatmap of log 443

ratio of the activation frequency of a given tool compared to the activation frequency of 444

the manual curation in Fig 9. 445

For the “Pathogenic” broader class, VIP-HL activated 5 evidence-based rules (PVS1 446

(Strong), PP3, PM2, PS1 and PVS1) from 8 times less (PVS1 (Strong)) to 16 times less 447

(PVS1). In contrast, for the same class, GenOtoScope activated 3 out of these 8 rules 448

with the same frequency (PVS1, PS1 and PM2) as the manual curation. The remaining 449

two rules were activated approximately one time more (PP3) and twice more often 450

(PVS1 (Strong)) as the manual curation, respectively. 451

VIP-HL activated 8 implemented rules (BP7, BP4, BS1 (Supporting), BS1, PM2 452

(Supporting), PP3, PM5 and PM2) from 20 times less (BP4 and BP7) to 40 times less 453

(PM2) than the manual curation for the “VUS” class. GenOtoScope activated 2 of these 454
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Fig 8. ROC curves and precision-recall curves for the MHH data set: a-c)
ROC curve and AUC of all classification tools for VCEP-HL data set. a) Prediction of
the “Benign” broader class versus the “Pathogenic” broader class and the VUS class b)
Prediction of the “Pathogenic” broader class versus “Benign” broader class and the
VUS class c) Prediction of the “VUS” class versus the “Benign” broader class and the
“Pathogenic” broader class. d-f) Precision-recall curve and AUC of all classification tools
for the MHH data set. d) Prediction of “Benign” broader class versus the “Pathogenic”
broader class and the VUS class e) Prediction of the “Pathogenic” broader class versus
“Benign” broader class and the VUS class f) Prediction of the “VUS” class versus the
“Benign” broader class and the “Pathogenic” broader class.

8 rules (PM5 and PP3) with equal frequency to the manual curation. 455

GenOtoScope activated the remaining six rules (PM2, PM2 (Supporting), BS1, BP4, 456

BS1 (Supporting) and BP7) with approximately one time more (BP7), up to one time 457

less (PM2) as the manual curation. 458

For the “Benign” broader class, VIP-HL activated 6 rules (PP3, BS1 (Supporting), 459

BP7, BS1, BA1 and BP4) from 12 times less (PP3) to 25 times less (BP4) than the 460

manual curation. Contrary to VIP-HL pattern, GenOtoScope activated 2 out of these 6 461

rules (BA1 and BS1) with the same frequency as the manual classification and the 462
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Fig 9. Activation frequency ratios for MHH data set. Log ratios calculated for
each of the three classes classified by the MHH manual curators: (a) the “Benign”
broader class, (b) the “VUS” class and (c) the “Pathogenic” broader class.

remaining 4 rules (BP4, BS1 (Supporting), BP7 and PP3) with approximately two 463

times more (PP3) up to one time less (BP4) as the manual curation. 464

Based on the observed motives on the activation frequency of each tool compared to 465

the manual curation, we conclude that VIP-HL activated the aforementioned 466

evidence-based rules less frequently than the manual curation. However, 467

GenOtoScope was able to trigger the selected rules with similar or at most twice higher 468

frequency compared to the manual curation. Consequently, we justify the best 469

performance achieved in ROC and Precision-Recall scores by GenOtoScope for all three 470

broader classes compared to the other two classification tools. 471

Conclusion 472

In this work, we presented GenOtoScope, an automated classification tool for variants 473

associated with congenital HL. Currently, our tool offers the classification through the 474

automation of 12 out of 24 evidence-based criteria specified for HL [11]. We have shown 475

that GenOtoScope outperformed other variant classification tools in terms of AUC score 476

of ROC curve and of Precision-recall curve for all three broader classes (“Benign”, 477

“VUS” and “Pathogenic”). To explain the difference in performance between the tools, 478

we calculated the ratio of the activation frequency of triggered criteria by each tool and 479

the manual curation. By comparing the ratios for each ACMG criterion, we observed 480

that GenOtoScope achieved the most similar activation frequency to the manual 481

curation, compared to the VIP-HL and InterVar tools. 482

Besides, the scope of this work is to provide an easily accessible tool to use for the 483

classification of variants for HL phenotype. Therefore, we implemented two versions of 484

the tool. The first version is a CLI application to be used by experienced bioinformatics 485

personnel, who aim to classify a set of patients WES VCF files. Complementary, we 486

have implemented a web interface to be used, by life scientists without bioinformatics 487

expertise, to classify a single variant of interest. We hope that this tool will be used in 488

search settings of genetic diagnostics routine diagnostic settings to provide a 489

time-efficient and standardized classification of HL variants. 490

For future extension of GenOtoScope we aim to implement the most frequently 491
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activated evidence-based rules by manual curation to predict the two complementary 492

grouped classes. For “Benign” broader class, the not implemented rules with highest 493

activation frequency, by the manual curation, were the BS2, BP2, BP3, BP5 and BS3 494

(Supporting). For the “Pathogenic” broader class, the most frequently activated rules, 495

only by the manual curation, were PM3, aggregated for all strengths, PP1, aggregated 496

for all strengths, PS3 and PS4. To implement these rules, which need manual curation 497

heavily, we aim to utilize database for genotype to phenotype such as DisGeNET [28] 498

and prediction algorithms to link a mutation of interest to its respective functional 499

study publications, for example AVADA [29]. Also, to facilitate even more no 500

bioinformatics personnel to use the web interface, we would allow the user to input a 501

single variant information on the welcome page without the need of creating a VCF file. 502

Last, by making the GenOtoScope an open source project, we aim to facilitate 503

researchers to use its source code as a base to implement the ACMG evidence-criteria 504

for phenotypes with a similar set of used evidence-based criteria, for example 505

cardiomyopathy [4] or monogenic diabetes2. 506

Supporting information 507

S1 Appendix. 508

PM1 509

The precise regions, used for PM1 criterion, are the pore-forming domain of KCNQ4 510

gene and the three-stranded helices of the collagen genes COL11A2, COL4A3, COL4A4 511

and COL4A5. PM1 is applied to missense variants overlapping any of the annotated 512

genomic regions. If the variant overlaps on the three-stranded motifs of the collagen 513

genes, it accepts only the matches that affect the Glycine residues contained in a 514

Gly-X-Y motif. 515

PP3, BP4 and BP7 516

The used thresholds by prediction follow. To decide upon pathogenicity, we aggregated 517

CADD and REVEL in the following scheme: if CADD score is greater than 20, then we 518

set CADDvote = 1 otherwise CADDvote = 0. For REVEL, if REVEL score is greater or 519

equal to 0.7, then REVELvote = 1, else if REVEL score is lower or equal to 0.15, then 520

REVELvote = 0, otherwise we set REVELvote = 0.5. Finally, if the average voting of 521

CADDvote and REVELvote is greater or equal to 1, GenOtoScope assumes that the 522

variant is pathogenic. For splicing impact, we aggregate the predictors MaxEntScan and 523

dbscSNV in the following scheme: if | observedscore−referencescore
referencescore

| is greater than 0.15, then 524

MaxEntScanvote = 1 otherwise MaxEntScanvote = 0. For dbscSNV, if either ADA score 525

or RF score is greater than 0.6 then dbscSNVvote = 1, otherwise dbscSNVvote = 0. We 526

aggregate the votes similarly to pathogenicity. That is, if the average voting of 527

MaxEntScanvote and dbscSNVvote is greater or equal to 1, GenOtoScope decides that 528

the variant has a splicing impact. Last for conservation prediction, we used PhyloP 529

score, as follows: if PhyloP score is greater of 1.6 then GenOtoScope decides that this is 530

a conserved site, otherwise GenOtoScope decides that the site is not a conserved site. 531

PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting) 532

Regarding different inheritance patterns, the algorithm by default utilizes distinct 533

thresholds for autosomal dominant and autosomal recessive inheritance mode as 534

2https://clinicalgenome.org/site/assets/files/7039/clingen_diabetes_acmg_

specifications_v1.pdf
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specified by [11]. For the X-linked mode of inheritance, autosomal dominant thresholds 535

are adopted. If no mode of inheritance is provided, it is assumed to be unknown. In 536

these cases, the algorithm selects the strictest threshold between autosomal dominant 537

and recessive for each criterion. For mitochondrial genes, the same procedure is used as 538

for unknown mode of inheritance, with an additional warning, since the application of 539

ACMG criteria is validated only for Mendelian disorders. 540

S2 Appendix. 541

Constructing annotations for ACMG criteria 542

In the following, we explain how GenOtoScope utility scripts create the needed 543

annotations for the automatic examination of the ACMG criteria. First, we present our 544

methods to construct the annotations for PVS1 criterion: (i) critical regions for protein 545

function, (ii) clinical significant exons and (iii) HL-relevant transcripts. Finally, we 546

present how the respective GenOtoScope utility script creates the critical regions for 547

protein function with no benign mutation. 548

Critical regions for protein function 549

To automate the assessment of PVS1 rule, the GenOtoScope’s sub-process construct
three annotation files. In the first annotation file we include all critical regions for
protein function. To create this file, the GenOtoScope’s respective sub-process maps all
available ClinVar entries to the genomic positions of each UniProt domain, respecting
the genomic strand of the domain. Then it filters-in all mapped ClinVar entries with at
least 2 quality stars on their review status field. For each domain, it uses the
interpretation field of the filtered-in overlapping ClinVar entries to calculate the
probability that the region is pathogenic (and so critical for protein function) as:

Pd
pathogenic =

Nd
pathogenic + δ∑

c={pathogenic,VUS,benign}(N
d
c + δ)

, (4)

where Nd
c is the number of filtered ClinVar entries, found in the protein domain with 550

UniProt id d, with class equal to c and δ = 10−6 is used as a smoothing parameter for 551

the probability computation. Finally, the sub-process calls domains with 552

Pd
pathogenic ≥ 0.51 as critical for protein function. It saves all these critical domains for 553

protein function in a BED file containing as columns: their genomic position, strand, 554

their protein UniProt id and their corresponding Pd
pathogenic probability. The described 555

procedure is also depicted in the Supplementary Fig 10. 556

Clinically significant exons 557

We also developed a sub-process to create an annotation file for clinically significant 558

exons, which are exons at which loss of function variants are not frequent in the general 559

population [13]. To do so, the sub-process first aggregates putative loss of functions 560

(pLoF) variants of gnomAD [20] per Ensembl exon [21]. Second, for a given exon, it 561

extracts the AF for each subpopulation of a pLoF variant intersecting the exon. Finally, 562

it aggregates the AF of each extracted pLoF variant, for each subpopulation, and if this 563

sum is lower than 0.001 for any subpopulation, the exon is called clinically significant. 564

The output annotation file is in BED format containing the columns: the genomic 565

position, strand, its exon Ensembl id and all containing transcript Ensembl ids, for each 566

called clinical significant exon. The procedure is depicted in Supplementary Fig 11. 567
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Fig 10. Conceptual workflow to call critical regions of proteins for
assessment of PVS1 rule.

Fig 11. Conceptual workflow to call clinical significant exons for PVS1 rule.

Hearing loss-relevant transcripts 568

The last annotation file for PVS1 is the hearing loss relevant transcripts. The respective 569

sub-process utilizes three independent annotation files to create the hearing loss relevant 570

transcripts and exons. The first file contains the phenotype relevant transcripts and 571

their clinically relevant exons from [23], the second file contains disease-gene pairs for 572

hearing loss from ClinGen repository [24] and the last file contains the clinical 573

diagnostics panel for hearing loss created by the HG department of the MHH. 574
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To aggregate these files, we argue that the [23] work contains the most detailed 575

information as it contains not only hearing loss relevant transcripts for a given gene but 576

also the clinically relevant exons of the respective transcripts. In contrast, the two 577

remaining files contain either disease-gene pairs or only relevant transcripts of genes 578

without specifying their clinically relevant exons. Therefore, the sub-process extends the 579

relevant transcripts and clinically relevant exons reported by [23] with the relevant 580

transcripts and all their contained exons from the diagnostic panel of HG department of 581

MHH. Further, it extracts the longest coding transcript or the clinical relevant 582

transcript annotated by Locus Reference Genomic resource (LRG) [25], and their 583

contained transcripts, for all genes annotated by ClinGen but not found in the extended 584

list of annotations of the last intermediate step. As final step, it aggregates the ClinGen 585

unique genes annotations with [23] and the HG department of the MHH annotations to 586

create the final hearing loss relevant transcripts and clinically relevant exons. The 587

output annotation file is in BED format, containing the columns: chromosomal position, 588

strand, transcript and exon ids for each clinically relevant exon. 589

Critical regions for protein function with no benign mutation 590

To automate PM1 evidence-based rule we need an annotation file containing the critical 591

regions for protein function without benign mutations. To construct these annotated 592

regions, we implemented a similar sub-process as for the critical regions used for PVS1 593

rule. The only difference is that this sub-process constraints the candidate domains 594

with Ppathogenic ≤ 0.51 (Eq.4) to contain no benign ClinVar mutations. The resulting 595

file is in BED format, containing the same columns as described above for the critical 596

regions for protein function. 597

Results 598

PVS1 annotations 599

GenOtoScope sub-processes created the three annotation files needed for the refined 600

PVS1 criterion. For the first file, critical regions, we applied our methodology using the 601

25,552 ClinVar entries, version of March 2021 and 12,776 UniProt domains, version of 602

February 2021. The resulting file contains 1,478 UniProt domains annotated as critical 603

for protein function. Using the HL-relevant transcripts and exons curated in [23], [24] 604

(VCEP-HL) and MHH diagnostic panel, we extracted 2,812 unique exons and 215 605

unique transcripts, contained in 154 genes. For the annotation file with the clinical 606

significant exons, the used version of the pLoF variants and the allele frequency of 607

exomes of gnomAD was the version 2.1.1. By this process, we annotated 107,966 exons 608

as clinical significant exons. 609

PM1 annotations 610

The 10 mutational hotspots relevant to HL as published by VCEP-HL committee, at 611

page3, were utilized to create the annotation file to evaluate the PM1 criterion. Using 612

the ClinVar entries and UniProt domains, same versions as described above. Besides 613

750 UniProt domains were called as critical regions for protein function without a 614

benign variant. To evaluate the PM1 evidence-criteria we intersect the chromosomal 615

position of the input variant with both annotation files. 616

3https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_

2018.pdf

December 23, 2021 21/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.23.474074doi: bioRxiv preprint 

https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_2018.pdf
https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_2018.pdf
https://doi.org/10.1101/2021.12.23.474074
http://creativecommons.org/licenses/by/4.0/


S3 Appendix. 617

Implementation note 618

To automate the examination of the ACMG evidence-based criteria we used the Python 619

programming language. First, we used the hgvs library [30] to parse the variant 620

information for each Ensembl transcript. Then, using the HGVS format we constructed 621

the observed coding sequence and we extracted the needed information for the criteria, 622

through the PyEnsembl library4. For example, we extracted the start and stop 623

positions of exons and the positions of the start and stop codons. This library uses the 624

Ensembl version 75 for GRCh37 human genome. We used the PyVCF library5 to parse 625

variants from VCF files, for instance the ClinVar variants. We applied the 626

Pybedtools [31] to find the intersections of annotation files, such as the overlap of 627

UniProt domains with repeat regions. Finally, we utilized the BioPython library [32] for 628

all other tasks for example, to convert cDNA codons to amino acids. 629

GenOtoScope currently works only for grch37 genome assembly coordinates. The 630

performance metrics were calculated using scikit-learn library [40]. 631

The bioinformatics user shall download the whole tool code along with the set of 632

data needed for its execution, e.g. annotation files HL or known variants with high 633

MAF from the github repository. Besides, at this repository, the user can find example 634

configuration files, example input with the corresponding output files and a 635

documentation on how to install and execute GenOtoScope on a linux machine or server. 636

Last, to be able to use the variant annotation script, genotoscope annotate.py, the user 637

needs to install the megSAP application on a docker container, as explained on the 638

respective tool github repository 6. 639

Disclaimer 640

The classification produced by GenOtoScope is intended for an efficient pathogenicity 641

prediction of WES files, thus for research use only. It is not intended for diagnostic or 642

clinical purposes. The classification provided by GenOtoScope does not replace a 643

physician’s medical judgment and usage is entirely at your own risk. The providers of 644

this resource shall in no event be liable for any direct, indirect, incidental, consequential, 645

or exemplary damages. 646
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