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ABSTRACT  

Knowledge of human fetal blood development and how it differs from adult is highly 

relevant for our understanding of congenital blood and immune disorders as well as 

childhood leukemia, the latter known to originate in utero.  Blood production during 

development occurs in waves that overlap in time and space adding to heterogeneity, which 

necessitates single cell approaches. Here, a combined single cell immunophenotypic and 

transcriptional map of first trimester primitive blood development is presented. Using CITE-

seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) the molecular profile 

of established immunophenotypic gated progenitors was analyzed in the fetal liver (FL). 

Classical markers for hematopoietic stem cells (HSCs) such as CD90 and CD49F were 

largely preserved, whereas CD135 (FLT3) and CD123 (IL3R) had a ubiquitous expression 

pattern capturing heterogenous populations. Direct molecular comparison with an adult bone 

marrow (BM) data set revealed that HSC-like cells were less frequent in FL, whereas cells 

with a lympho-myeloid signature were more abundant. Furthermore, an erythro-myeloid 

primed multipotent progenitor cluster was identified, potentially representing a transient, FL-

specific progenitor. Based on the projection performed, up- and downregulated genes 

between fetal and adult cells were analyzed. In general, cell cycle pathways, including MYC 

targets were shown to be upregulated in fetal cells, whereas gene sets involved in 

inflammation and human leukocyte antigen (HLA) complex were downregulated. 

Importantly, a fetal core molecular signature was identified that could discriminate certain 

types of infant and childhood leukemia from adult counterparts.  
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Our detailed single cell map presented herein emphasizes molecular as well as 

immunophenotypic differences between fetal and adult primitive blood cells, of significance 

for future studies of pediatric leukemia and blood development in general. 

INTRODUCTION 

Knowledge of our fetal blood system can facilitate generation of transplantable hematopoietic 

stem cells (HSCs) derived from pluripotent stem cells (PSCs) for future regenerative 

medicine  (Wahlster and Daley, 2016), but also increase our understanding of congenital 

blood disorder and pediatric leukemia (Greaves, 2018).  

Fetal and adult blood cells differ in cell cycle status, molecular profile as well as in 

composition of progenitor cells, and take place in different niches depending on the stage of 

embryonic development (Ivanovs et al., 2017; Kim et al., 2007; Roy et al., 2021; Yuan et al., 

2012). Moreover, some innate immune cells are formed almost exclusively during fetal life 

(Ghosn et al., 2019). Much of our knowledge regarding embryonic and fetal hematopoiesis 

has been translated from studies of the murine system, but accumulating reports of the human 

counterpart complements the current model (Elsaid et al., 2020; Ivanovs et al., 2017). The 

blood system emerges in waves and is initiated by HSC independent hematopoiesis, first in 

the yolk sac and later also in the Aorta-Gonad-Mesonephros region (AGM) region, where 

immature erythroid and myeloid cells, critical for the growing embryo, emerge followed by 

erythro-myeloid and lympho-myeloid progenitors (Böiers et al., 2013; Ghosn et al., 2019; 

Ivanovs et al., 2017; Palis, 2016). At around day 27 (Carnegie stage (CS) 13) hematopoietic 

stem and progenitor cells (HSPCs) emerge in the AGM, and later migrate to the fetal liver 

(FL), where they mature and expand. The bone marrow (BM), the site of blood production in 

adults, starts to be colonized at the end of the first trimester, but the FL remains an active 

niche for hematopoiesis up until birth (Ivanovs et al., 2017).  

Direct comparisons between human fetal and adult hematopoiesis have been challenging. The 

different waves and niches during development add to heterogeneity, and the sparsity of fetal 

samples makes studies in early development demanding, and differences are just beginning to 

be explored (Boiers et al., 2018; Notta et al., 2015; Roy et al., 2021). Recent studies from 

human FL hematopoiesis have shown that HSPCs become less proliferative with increased 

gestational stage, an observation that has been linked to HSPCs entering the fetal BM niche 

(Popescu et al., 2019; Ranzoni et al., 2020; Roy et al., 2021). Furthermore, HSPCs have been 

suggested to go through a change in lineage output during development, from oligopotency 

during fetal life to being dominated by mainly multi- or unipotent progenitors in adult (Notta 
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et al., 2015) These temporal and spatial differences result in unknown heterogeneity calling 

for single cell analysis at different time-points of ontogeny.  

Here, the transcriptome and immunophenotype of single first trimester FL cells were 

analyzed using CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) 

(Stoeckius et al., 2017). In addition to demonstrating molecular changes of HSPCs related to 

developmental stage, immunophenotypic markers like CD123 (IL3R), CD135 (FLT3) and 

CD7 were observed to be more generally expressed, adding to heterogeneity when 

performing conventional direct comparisons based on immunophenotype. Using a nearest 

neighbor approach, FL HSPCs were directly compared to adult BM (Dhapola et al., 2021). 

This approach allowed for a comparison of progenitor composition within the fetal and adult 

HSPC compartment. In this analysis, molecular lympho-myeloid progenitors were found to 

be decreased from embryo to adult, whereas molecularly defined fetal HSCs were shown to 

increase with age. Importantly, by comparing common molecular signatures across cell types 

we could define a universal fetal core signature, with genes specifically up- or downregulated 

in fetal cells compared to adult.  By using a publicly available RNA-seq data set from Acute 

Lymphoblastic Leukemia (ALL) patients (Gu et al., 2019), this fetal specific core signature 

was found to be enriched in some cases of pediatric leukemias, thus enabling separation of 

certain types of ALL based on the age of the patient.  

Taken together, our combined single cell map highlights important molecular and 

immunophenotypic differences in human fetal and adult primitive blood cell development. 

 

RESULTS 

A transcriptional map of primitive cells from first trimester fetal liver  

The emerging blood system is a complex mixture of cells from different niches and waves 

acting simultaneously, generating a heterogeneity that necessitates the use of single cell 

assays. In addition, immunophenotypic markers classically used to purify progenitors in cord 

blood (CB) and adult BM may not be equally expressed during development. To address 

these issues we analyzed FL HSPCs using CITE-seq, an unbiased, high-throughput single 

cell RNA-seq method, wherein information of immunophenotype is estimated simultaneously 

with the transcriptome, through oligo-barcoded tagged antibodies (antibody derived tags 

(ADTs))(Stoeckius et al., 2017). Early FL samples were obtained from aborted fetuses at first 

trimester, ranging in age from CS16 to 9 post-conceptional-weeks (pcw). HSPCs were 

selected based on expression of CD45 and CD34, and for lack of mature lineage markers 

(CD2, CD3, CD14, CD16, CD19, and CD235a) (Figure 1a and Sup. Figure 1a). The analysis 
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focused on CS22, where 6732 cells from two embryos were captured for further analysis after 

quality control (see method section). Based on differentially expressed genes and molecular 

profile, 11 distinct cell states were identified (Figure 1b-c).  The UMAP built showed a HSC 

cluster at the top, expressing genes like MLLT3 (protein AF9) and BST2, the latter shown to 

be an activation-marker of HSCs in the murine system (Bujanover et al., 2018). Directly, 

subsequent to HSCs, cells with a Multipotent Progenitor (MPP)-like signature were located, 

followed by a distinct separation into a Megakaryocyte-Erythroid Progenitor axis (MEP, with 

genes like GATA1 and KLF1), a Granulocyte-Monocyte Progenitor axis (GMP; with MPO 

and CEBPD) and a Lymphoid Progenitor axis (Ly-I/Ly-II). The lymphoid axis showed a 

gradual maturation from Ly-I to Ly-II with an increase in expression of IL7R and LTB among 

others. The Ly-II cluster was molecularly more primed towards the B lineage, expressing 

genes like JCHAIN and VPREB1 (Figure 1c). The lymphoid clusters were located closest to a 

cluster with a DC-Mono (Dendritic Cell-Monocyte) progenitor signature and furthest away 

from the MEP axis. The Ly-III (Lymphoid Progenitor) was primed towards the T lineage 

with expression of GATA3 and CD3D among others, but contained less than 60 cells, as did 

the DC-I (Dendritic cell precursor) cluster. 

To further investigate relatedness between the clusters, samples were pseudo-bulked and 

Principal Component Analysis (PCA) performed (see method section). The MPP-I and MPP-

II were clustered together in the vicinity of HSCs as expected, whereas the Ly-II was 

positioned further away from the multipotent and myeloid clusters than Ly-I (Figure 1d). 

Thus, CITE-seq captured the molecular heterogeneity in early blood development and 

different progenitor populations could be defined based on expression of lineage-associated 

genes. 

 

Expression of immunophenotypic markers diverge through development 

Next, the oligo-tagged antibodies (ADTs) were used to interrogate the conventional 

immunophenotypic populations within the HSPC compartment (Figure 2a). The HSC cluster 

expressed CD90 and CD49F, and lacked expression of CD38, all in agreement with markers 

used in conventional purifications of the HSC population (Figure 2b) (Majeti et al., 2007; 

Notta et al., 2011). Furthermore, CD201 (EPCR), a marker shown to define fetal HSCs, was 

also distinctly expressed in the molecular HSC cluster (Subramaniam et al., 2019). The 

comparatively immature lymphoid cluster (Ly-I) expressed CD10 and CD45RA, but was low 

in CD38 expression, indicative of Lympho-Myeloid Primed Progenitors (LMPPs) (Doulatov 

et al., 2010), whereas the relatively more mature lymphoid cluster (Ly-II) in addition to 
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CD10 and CD45RA, expressed CD38, corresponding to a Common Lymphoid Progenitor  

(CLP) phenotype (Doulatov et al., 2010). This cluster also had distinct expression of 

interleukin 7 receptor (Il7R), known to mark CLP in the murine system (Kondo et al., 1997). 

The MEP cluster was positive for CD71 as expected (Figure 2b) (Mori et al., 2015; Notta et 

al., 2015). However, CD7, CD123 (IL3R) and CD135 (FLT3), the latter two markers 

traditionally used to define GMPs and Common Myeloid Progenitors (CMPs) (Doulatov et 

al., 2010; Manz et al., 2002), showed a broader expression pattern. The CD135 had a general 

surface abundance seen in all cell clusters, while CD123 was seen in myeloid as well as 

lymphoid clusters. CD7, on the other hand, was generally seen in the progenitor clusters, but 

low in the HSC cluster (Figure 2b).  

To define progenitor populations multiple surface markers are commonly used in 

combination. Thus, the ADT information was utilized to perform conventional 

immunophenotypic gating (Sup. Figure 1b). Molecular HSCs, MPPs, LMPPs and MEPs were 

well captured by the conventional adult immunophenotype, whereas CMPs and GMPs 

showed high heterogeneity as measured by the number of molecular clusters and their 

relative proportions captured within each immunophenotype (Figure 2c and Sup. Figure 1c). 

HSC gating (combining both CD90 and CD49F) resulted in over 50% purity of the molecular 

HSC cell state, and LMPPs defined as CD34+CD38-CD45RA+ yielded more than 60% of 

cells belonging to the Ly-I molecular state (Doulatov et al., 2010; Notta et al., 2011). On the 

other hand, immunophenotypic GMPs were heterogenous and 16% to 21% (using CD123 or 

CD135 gating respectively) of the cells molecularly belonged to the Ly-II lymphoid cell state 

(Figure 2c and Sup. Figure 1c)(Doulatov et al., 2010; Manz et al., 2002).  

Conventional CLPs are typically defined based on expression of CD10, a marker also 

associated with priming towards the B cell lineage (Doulatov et al., 2010; Galy et al., 1995). 

Using this gating strategy, most of the captured cells were indeed part of a lymphoid 

transcriptional cluster, however almost 60% of the cells belonged to the lympho-myeloid Ly-

I cell state, likely due to issues discriminating the cells based on CD38 expression. Therefore, 

we investigated whether other gating strategies could identify a transcriptionally more pure 

lymphoid cell state. In CB, CD7 has been shown to enrich for lymphoid progenitors, in 

combination with CD38 negativity (Hoebeke et al., 2007). However, CD7 surface expression 

measured with the ADT antibody was virtually absent in the CD38 negative fraction (Figure 

2b). We therefore investigated if CD7 could capture a lymphoid cell state in the CD38 

positive fraction.  In the analysis, utilizing CD7 in combination with CD38 and CD45RA, 

22% of the Ly-II cluster cells were captured, but more than 20% cells belonged to the GMP 
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or DC-Mono cluster. Thus, this CD7+ ‘CLP-like’ population was heterogenous and mainly 

lympho-myeloid, in agreement with earlier study (Hoebeke et al., 2007). Next, IL7R, a 

marker that defines CLP in the murine system (Kondo et al., 1997), was utilized to 

investigate if it could define a more molecularly pure lymphoid cell state during fetal life. 

Importantly, when combining IL7R with CD45RA and CD38 almost 80% of the cells 

captured belonged to the Ly-II cell state, and the remaining cells were defined as Ly-I. Thus, 

IL7R was by far the best surface marker to capture the Ly-II cell state during early 

development (Figure 2c). 

To further investigate the heterogeneity between the immunophenotypic defined populations, 

a PCA plot of pseudo-bulked samples was made (Figure 2d and Sup Figure 1d).  The CD10+ 

CLP population laid between the LMPP and the IL7R+ CLP, as our previous analysis 

indicated, whereas the ‘CLP’ gated on CD7 was located between GMP and CD10+ CLP. The 

myeloid CMP and MEP progenitors clustered differently depending on if CD123 or CD135 

was utilized to define the population (Figure 2c and Sup Figure 1c). Next, the 

immunophenotypic populations were plotted together with the molecularly defined clusters 

from Figure 1d. Here, the immunophenotypic gated HSCs, MPPs, LMPPs and IL7R+CLP 

mapped to corresponding molecularly defined clusters, as well as MEP defined with CD123. 

The myeloid GMP and CMP populations were heterogeneous as expected from previous 

analysis, and the MEP and CMP molecular signatures differed depending on the gating 

strategy used (Figure 2d-e and Sup Figure 1d-e). 

Thus, conventional immunophenotypic markers characterizing HSCs and LMPPs are largely 

conserved in the embryo, whereas immunophenotypic myeloid progenitors were molecularly 

heterogenous, but also markedly different depending on gating strategy used. 

 

Projection analysis defines a fetal-specific multipotent cluster with erythro-myeloid 

signature 

Next, the fetal cells were directly compared with our adult BM data set of HSPCs, analyzed 

with CITE-seq in a similar way and using the same platform as the fetal cells (Sommarin et 

al., 2021) (Figure 3a and Sup Figure 2a). First, the pseudo-bulked immunophenotypic gated 

populations from fetal and adult were compared using PCA. PC1 separated the samples on 

developmental stage, which accounted for 53% of the variance (Sup Figure 2b). PC2 vs PC3 

showed high heterogeneity between different progenitor types, developmental stage as well 

as the immunophenotypic markers used to define the progenitors, which makes 

immunophenotypic comparisons over ontogeny difficult. To preserve heterogeneity within 
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the sample, but at the same time compare cells from different developmental stage and niche, 

a recently published nearest neighbor projection approach was used (Dhapola et al., 2021). A 

reference map was built, and the investigated cells mapped onto the reference, thus only 

molecular differences within the reference sample were considered. Cell composition can be 

determined and compared between samples based on the mapping and importantly, cell cycle 

effects were removed before the reference map was constructed. First using FL CS22 HSPCs 

as reference, 36% of the cells in adult BM mapped to the fetal HSC cluster, whereas only 7% 

belonged to this cluster in the FL CS22 sample. On the other hand, only 6% of the adult cells 

mapped to the lympho-myeloid Ly-I cluster, compared to 15% belonging to the Ly-I cluster 

in CS22 (Figure 3b-c). Thus, molecularly defined HSCs were enriched in adult BM 

compared to CS22 FL, whereas the Ly-I transcriptional cell state was reduced. Furthermore, 

MPP-I, which represents about 17% of the CS22 FL cells, were hardly detectable in the BM 

sample (2% of total cells). To narrow down the time window in development when these 

changes in cell states occurred, CB from the same data set as the adult BM, was analyzed, 

generating similar results as adult BM (Figure 3b-c) ((Sommarin et al., 2021). Next, two 

more embryonic time-points were analyzed from first trimester; CS16, and 9pcw (143 and 

1139 cells analyzed respectively, each stage two donors). Here, 6 and 13% respectively of the 

fetal cells mapped to MPP-I, identifying MPP-I as a fetal specific cell state. These new 

analyses also confirmed that molecularly defined fetal HSCs increased with age from 1% at 

CS16 to 36% in adult BM, whereas Ly-I decreased from 27% in CS16 to about 6% in adult 

BM. At CS16, most cells mapped to lineage committed cell states in agreement with an 

active production of progenitors at this stage (Figure 3b-d).   

Next adult BM was used as a reference, and FL cells from CS16 to 9 pcw were investigated. 

Intriguingly, almost no FL cells mapped to the adult HSC clusters and few to the more 

primitive MPP clusters, whereas the more mature MPP-III was enriched in the CS22 and 

9pcw developmental stages. Furthermore, MEP-I was enriched in all stages of the FL, and at 

CS16 there was an increase of DC-I, corresponding to the DC-Mono cluster in the FL CS22 

map (Sup. Figure 2b-d). The fetal specific MPP-I mainly mapped to MPP-III on the adult 

BM map (Sup. Figure 2e). Thus, transcriptionally defined adult HSCs were virtually absent 

in first trimester FLs. 

To further narrow down the fetal specificity of the MPP-I cell state, we used a recently 

published data set that included samples from first and second trimester FL, as well as fetal, 

pediatric and adult BM (Roy et al., 2021). Mapping these data onto our CS22 UMAP showed 

enrichment of MPP-I in the early FL sample, while the fetal, pediatric and adult BM were 
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almost completely depleted of the MPP-I cell state. Furthermore, there was a decrease in the 

proportion of MPP-I cell state from 8% to 3% from first to second trimester FL (Sup Figure 

2f).  

Next, differentially expressed genes among primitive clusters (HSC, MPP-I and MPP-II) 

were identified within CS22. In general, the MPP-I cell state appeared to be closely related to 

the HSC and MPP-II clusters, but with an upregulation of histone and heat shock related 

genes, amongst others (Figure 3e, Sup. table 1). Unfortunately, none of the ADT-antibodies 

were specific for the MPP-I, thus no surface marker in the panel could be used to purify the 

population (data not shown). The gene clusters identified were also investigated for lineage 

affiliation using CellRadar, a method where a gene set can be compared to public data of 

sorted hematopoietic populations (see method section). The clusters mainly associated with 

MPP-I (C4 and C6) showed an enrichment of an erythro-myeloid signature (Figure 3e-f). To 

further characterize MPP-I, Gene Set Enrichment Analysis (GSEA) was used, focusing on 

hallmark gene sets, where MPP-I differs from both HSCs and MPP-II (Liberzon et al., 2015; 

Subramanian et al., 2005).  The significant gene sets of MPP-I were MYC targets, MTORC1 

signaling as well as unfolded protein response and oxidative phosphorylation compared to 

both fetal HSCs and MPP-II, respectively, indicative of a more active metabolic state (False 

Discovery Rate (FDR) < 0.05 for all) (Figure 3g). Taken together, these data indicate that the 

MPP-I cluster harbors transient, FL specific erythro-myeloid primed multipotent progenitors. 

 

Cluster specific differential gene expression analysis defines a fetal-specific gene 

signature 

The projection analysis performed identified clear differences in the composition of cell 

states and how it changes with developmental age. Furthermore, this analysis offers a unique 

possibility to directly compare gene expression differences between fetal and adult 

counterparts of the same cell types. Thus, to further understand how fetal and adult cell-types 

differ, the projected adult cells were compared to their fetal counterparts using DEseq2 

(Figure 4a). Here, the differential gene expression analysis is performed on the whole set of 

genes, enabling identifications of differences in proliferation states. This is in contrast to the 

projection analysis, where cell cycle effects are removed to avoid interference in cell 

classification. Additionally, the clusters were pseudo-bulked, as with the immunophenotypic 

samples, and PCA performed (Sup. Figure 3a-b). Like the immunophenotypic samples, PC1 

separated the clusters based on developmental stage. PC2 and PC3 separated samples 

depending on progenitor type and stage, where adult GMP, DC-Mono and Ly-II clustered 
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further away from MPPs than fetal corresponding clusters, maybe indicative of these adult 

progenitors being more differentiated than their fetal counterparts (Sup. Figure 3b). In 

general, adult populations had more genes upregulated compared to fetal cells, and most 

differentially expressed genes were observed in HSCs (Figure 4b and Sup. Figure 3c). To 

investigate whether the transcriptional changes related to specific groups of genes, GSEA 

using hallmark gene sets was performed (Subramanian et al., 2005) focusing on gene sets 

involved in proliferation, apoptosis and immune system processes (Liberzon et al., 2015). 

Overall, pathways involved in proliferation were enriched in fetal progenitors, whereas gene 

sets involved in inflammation and immune system processes were downregulated, in 

agreement with an earlier study (Roy et al., 2021). The fetal specific MPP-I cells had only 

about 130 adult counterparts making the analysis less robust but showed upregulation of 

MYC targets in the fetal MPP-I, as was also detected when comparing it with the fetal HSC 

and MPP-II clusters (Figure 3g and Figure 4c).  

Next, a Venn diagram was used to identify universal fetal specific up- and downregulated 

genes. A core set of 25 up- and 100 downregulated genes were identified (fold change ≥|2| 

and an adjusted p-value of <0.05, gender related genes were excluded in the subsequent 

analysis) (Figure 4d and Sup. Figure 3d). Among the top 25 upregulated genes LIN28B, 

HMGA2, IGF2BP1 and IGF2BP3 were found, all part of the LIN28B-let7 axis known to be 

involved in self renewal of fetal HSCs in the murine system (Copley et al., 2013) (Figure 4d). 

Delta like gene 1 (DLK1) was also increased in all fetal populations, a gene shown to be a 

negative regulator of HSC formation in the mouse embryo (Mirshekar-Syahkal et al., 2013). 

CHD7, an epigenetic remodeler known to interact with RUNX1 and inhibit differentiation, 

was increased in all populations compared to adult (Hsu et al., 2020). Furthermore CD7, was 

more generally expressed among fetal progenitors, as was also seen at the protein level with 

the ADT marker (Figure 2b). Among downregulated genes human leukocyte antigen (HLA) 

complex of both class I and class II dominated, demonstrating a reduced antigen presenting 

capacity of the fetal immune system. DNTT (DNA nucleotidylexotransferase), known to 

induce diversity in the immunoglobulin chain in lymphoid progenitors, was also 

downregulated as expected in the fetal cells (Li et al., 1993). We also noticed that Homeobox 

(HOX) gene clusters were differently expressed in fetal and adult HSPCs, where HOXB 

genes were in general higher expressed in fetal and HOXA higher expressed in adult primitive 

clusters (Figure 4e). 
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Thus, by directly comparing fetal and adult counterparts from our projection analysis a fetal 

specific core signature was identified with genes specifically up- or downregulated in first 

trimester FL compared to adult counterparts (Figure 4f). 

 

The fetal gene signature differentiates between pediatric and adult ALL 

By investigating neonatal blood spots and through twin studies, translocations giving rise to 

ALL in children could be backtracked to birth and an in-utero origin (Greaves, 2018). One 

question is if a remnant of the fetal signature can be detected in the pediatric leukemic cells. 

To investigate this, we first analyzed expression of the upregulated fetal core genes in a 

publicly available RNA-seq data set of an induced (I) PSC model of ETV6-RUNX1 (TEL-

AML1) (Boiers et al., 2018). Differentiation of IPSCs to the B cell lineage recapitulates fetal 

lymphopoiesis and indeed many of the universal upregulated fetal genes were expressed in 

the IPS derived hematopoietic progenitors, as well as in the primary fetal progenitors 

investigated, but not in adult BM progenitors. The fetal genes were also to a large extent 

detected in the hematopoietic progenitors analyzed from the ETV6-RUNX1 expressing IPS 

cells (Figure 5a). 

Next, using a publicly available RNA-seq data set with almost 2000 B-ALL patient samples, 

we aimed to investigate if the fetal core signature could be identified in B-ALLs of known in 

utero origin (Gu et al., 2019).  As different RNA-seq methods were used in the study, B-ALL 

with different driver mutations of interest were selected, pooled and batch corrected (Sup 

Figure 4a). First, Mixed Lineage Leukemia gene (MLL1/KMT2A) fused with AF4 (AFF1) 

t(4;11) was investigated. MLL-AF4 is an initiating mutation that almost exclusively gives 

rise to B-ALL and is found in many different age groups, including infants, for whom a clear 

in utero origin has been demonstrated (Gale et al., 1997). A PCA plot was generated using 

the fetal core signature (all fetal up- and downregulated genes identified in primitive, 

lymphoid and myeloid progenitors; a total of 257 up and 526 down, gender associated genes 

were removed in the analysis) (Figure 4d and Sup Figure 3d). Intriguingly, the PC1 showed 

distinct separation based on age, discriminating between pediatric and adult samples (Figure 

5b and Sup Figure 4b). A heatmap of the top 50 differentially expressed genes on PC1 

identified a difference in expression of HOXA9 and HOXA10 between infants and adult, 

where most infants had lower expression of these HOX genes. HOXA3, HOXA5 and HOXA7 

were also expressed at low levels in infants, as well as in some adult MLL-AF4 fusion ALL 

(Figure 5c and Sup Figure 4c). Indeed, a correlation has been observed between HOXA 
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expression, prognosis and age in an earlier study, investigating HOX gene expression in ALL 

compared to normal progenitors (Starkova et al., 2010).  

Next, more subtypes of ALL were investigated using the same fetal core signature. The PC1 

again correlated with age, where a clear association was seen with ETV6-RUNX1 and 

hyperdiploid ALL, the two most frequent cytogenetic abnormality in children (Greaves, 

2018), though for some of these leukemia types there were almost no adult patients 

represented in the material.  In contrast, the adult associated translocation BCR-ABL, showed 

almost no spread along PC1 (Bernt and Hunger, 2014)(Figure 5d and Sup Figure 4d-e). 

Thus, in some subtypes of leukemia associated with children and in utero origin, part of a 

fetal core signature remains in the leukemic cells. The data have the potential to explain 

differences in pediatric and adult leukemia carrying similar driver mutation, potentially 

important for prognosis and therapy response. 

 

DISCUSSION 

The hematopoietic system is a paradigm hierarchical organization of tissues. The structure 

has been built on careful immunophenotypic isolation and characterization of progenitors, 

which has formed the foundation of the hematopoietic hierarchy of today in both mouse and 

human (Jacobsen and Nerlov, 2019; Seita and Weissman, 2010). Recent developments in 

single cell omics have allowed for further purification and analysis of molecular 

heterogeneity, and with these findings the hematopoietic hierarchy can be regarded as a 

continuum rather than a step wise hierarchical organization (Laurenti and Göttgens, 2018; 

Velten et al., 2017). Until recently these studies have mainly investigated adult 

hematopoiesis, but more reports looking into human blood development are rapidly emerging 

(Jardine et al., 2021; Popescu et al., 2019; Ranzoni et al., 2020; Roy et al., 2021). So far these 

studies mainly focused on molecular heterogeneity, and it has until now been unclear to what 

degree the immunophenotype of CB and adult BM progenitors translate to early FL. Within 

this study we interrogated FL HSPCs using single cell RNA-seq, relying on CITE-seq to also 

capture immunophenotype together with the transcriptome. By focusing on early primitive 

hematopoiesis and by using CITE-seq the whole HSPC population could be interrogated and 

the relative proportions of all CD34 positive populations compared across developmental 

time-points, hereby also capturing the immunophenotype, enabling a unique view of the 

classically defined progenitors.   

While most of the conventional markers of HSPCs (CD90, CD45RA, CD71 and IL7R) 

showed good correlation to the transcriptionally defined clusters, markers of GMPs and 
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CMPs i.e., CD123 and CD135 (FLT3) were more generally expressed. This was even more 

apparent when utilizing the ADTs to perform immunophenotypic gating, which showed 

substantial molecular heterogeneity within GMPs and CMPs. The discrepancy in expression 

of surface markers during development thus may add to molecular heterogeneity in 

comparisons based on immunophenotype. Our data also shows that gating with CD123 or 

CD135 respectively for myeloid progenitors (CMP and MEP) captures molecularly 

heterogenous cell types (Figure 2c and Sup Figure 1c) (Doulatov et al., 2010; Manz et al., 

2002). This also applies for the lymphoid surface markers, where CD10, mainly captured the 

lympho-myeloid cluster Ly-I, whereas our data revealed that IL7R in combination with CD38 

and CD45RA could capture the Ly-II cell state with high purity in the embryo. This was 

opposite as to what was seen in adult where the population captured by CD10 comprised 70% 

Ly-II cells vs 43% when using IL7R (data not shown and (Sommarin et al., 2021)). Thus, 

CITE-seq detects molecular heterogeneity within immunophenotypic progenitors, but also 

identifies surface markers that are preserved throughout development.   

An advantage with high-throughput single cell RNA-seq methods is that there is no need to 

pre-select populations based on immunophenotype. Instead, a broad selection of cells can be 

investigated, like in our case HSPCs. However, difficulties remain when cells from different 

stages and niches are compared. Earlier studies have merged different stages onto the same 

analysis, relying on batch correction to enable sample integration (Jardine et al., 2021; 

Popescu et al., 2019; Roy et al., 2021). However, when merging cell populations from 

different stages onto the same analysis, the developmental differences may take over and 

heterogeneity within the sample itself may be lost. The projection approach used herein 

allows for signals responsible for lineage determination to be kept, and additionally, by 

removing cell cycle effects through regression, avoiding differences in cell cycle status from 

disrupting the cluster definitions (Dhapola et al., 2021). By mapping the test cells onto the 

reference map, only molecular differences that separate the reference cells will be 

investigated. From this analysis, cell state differences over development could also be 

captured. As expected, major changes in cell states during development could be observed, 

with HSCs being increased with age, while the relative fraction of lymphoid progenitors (Ly-

I and Ly-II) were decreased, in agreement with an earlier study (Roy et al., 2021). 

Furthermore MPP-I was found to be almost exclusively a fetal cell state, suggesting that this 

population could constitute a fetal specific progenitor population, arising from a HSC 

independent wave. The MPP-I cells displayed an erythro-myeloid gene signature, while 

maintaining a primitive gene program. Future studies are likely to investigate whether this 
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population represent the erythro-myeloid progenitor described in mouse developmental 

hematopoiesis, originating in the yolk sac prior to definitive HSC formation (Ghosn et al., 

2019; Palis, 2016).   

Further analysis of the molecular differences between the FL and adult BM using differential 

gene expression analysis showed substantial ontogeny-dependent transcriptional differences. 

By utilizing the projection analysis to define molecularly similar cells, comparisons without 

interfering signals caused by differences in heterogeneity could be performed. This analysis 

showed that the HSCs experienced most transcriptional differences related to age. GSEA 

analysis grouped these differences into increased proliferation and reduction in inflammation 

compared to adult, in agreement with a recent study (Roy et al., 2021). Also, expression of 

HLA complex of both class I and class II are reduced in the fetus. HLA-B was found reduced 

in HSCs/MPPs in an earlier study, but we demonstrate a reduction of several different HLA 

classes in fetal HSPCs, all indicative of a reduced antigen presenting ability of fetal cells in 

general (Popescu et al., 2019).  

The projection analysis of FL CS22 onto adult BM reference also revealed substantial 

molecular differences between molecular HSCs in FL and adult BM. The molecular FL 

HSCs mainly projected to adult BM MPP-I and MPP-III, but not to the adult HSC molecular 

clusters, even though cycling factors had been removed in this analysis. Thus, our data shows 

that multiple factors differ fetal and adult HSCs from each other, of general interest to be able 

to generate transplantable HSCs from differentiated PSCs in the future (Wahlster and Daley, 

2016).   

Childhood B-ALL has in many cases been shown to have a fetal origin (Greaves, 2018), and 

the leukemic cells could potentially retain expression of fetal specific genes or lack 

expression of adult specific genes (Symeonidou et al., 2021). By comparing the up- and 

downregulated genes in fetal and adult cells in each cluster, a core set of genes linked to fetal 

or adult identity were identified. These genes, together with genes linked to fetal and adult 

primitive, lymphoid and myeloid identity, were used to investigate childhood leukemia from 

publicly available data of almost 2000 B-ALL samples with different cytogenetic 

abnormalities (Gu et al., 2019). The fetal core signature correlated in same cases with age of 

the patient, and for MLL-AF4 it was clear that HOXA genes were downregulated in many 

infants compared to adult, in agreement with an earlier study, where a correlation was 

observed between lower expression of HOXA genes, poor prognosis and young age (Starkova 

et al., 2010). Of note in our fetal-adult data set HOXA genes were specifically lower 

expressed in fetal HSCs compared to adult (Figure 4e).  
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Our study links immunophenotype with transcriptome at the single cell level, providing a 

unique map of human fetal blood development. Comparison to adult hematopoiesis gives 

insight into how the hematopoietic progenitor compartment changes with development. A 

fetal core signature with universal up- or downregulated genes depending on developmental 

stage could be identified, a gene set that could be used to separate certain types of B-ALL 

samples based on age. The importance of the fetal core genes in the formation of the pre-

leukemic clone in utero and in leukemia progression and development in general remains to 

be explored. 
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FIGURE LEGENDS 
 
Figure 1  

A transcriptional map of primitive cells from first trimester fetal liver  

a) Schematic presentation of data in the figure. b) UMAP of cellular states within LIN-

CD45+CD34+ FL cells at CS22 (2 donors analyzed) c) Bead plot of differentially expressed 

genes between clusters, where the size of the circle is the fraction of cells with expression and 

the color represents the z-scored mean expression. d) Cells from the different cell states in b) 

were pseudo-bulked and PCA performed showing top 500 variably expressed genes. PC1 vs 

PC2 is shown to the left and PC2 vs PC3 to the right. Cluster name and color code label to 

the right.  

 

Figure 2 

Expression of immunophenotypic markers diverge through development 

a) Schematic presentation of data in the figure.  b) FL CS22 UMAPs of ADT expression of 

single surface markers used for gating conventional cell populations in HSCPs, red represents 

high expression and blue low. c) Conventional immunophenotypic populations were gated 

using multiple ADT markers. Transcriptional cell states captured for each population are 

shown within the contours on the FL CS22 UMAP. Pie charts show percentage of the 

different molecular clusters within each immunophenotypic gated progenitor. Colors 

represent the cluster colors, defined in Figure 1b. d) PCA of ADT gated cell population of 

top 500 variably expressed genes. Cells were pseudo-bulked for the analysis (see method 

section). e) Combined PCA of ADT gated cell populations and the clusters defined in Figure 

1d, showing top 500 variably expressed genes. 

(HSCCD49F: CD34+CD38lowCD45RA-CD90+CD49F+; MPP: CD34+CD38lowCD45RA-CD90-; LMPP: 

CD34+CD38lowCD45RA+CD90-; CMP: CD34+CD38+CD10-CD45RA-CD123+, GMP:  CD34+CD38+CD10-

CD45RA+CD123+; MEP: CD34+CD38+CD10-CD45RA-CD123-; CLPCD10: CD34+CD38+CD45RA+CD10+, 

CLPCD7: CD34+CD38+CD45RA+CD7+, CLPIL7R: CD34+CD38+CD45RA+IL7R+) 

 

Figure 3 

Projection analysis defines a fetal specific multipotent cluster with erythro-myeloid 

signature 

a) Schematic presentation of data in the figure. b) Projection of FL CS16, FL 9pcw, CB and 

adult BM on the FL CS22 UMAP, size of dots represents mapping-score and color of dots 

represents FL derived clusters as in Figure 1b. c) Quantification of classified cells in all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.29.474425doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474425
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

mapped developmental stages (FL CS16 143 cells, FL 9pcw 1139 cells, CB 6984 cells, adult 

BM 4905 cells). d) Classification of adult BM derived clusters on FL CS22. Colors represent 

FL CS22 derived clusters, and the x-axis represents BM derived clusters (see also Sup Figure 

2a). e) Hierarchical clustering of primitive cell populations in FL CS22 (HSC, MPP-I and 

MPP-II) with genes defining the primitive populations.  The genes were divided into 9 

clusters (color coded). f) Cellradar plots of gene clusters in e (cluster names and color coded 

according to Figure 3e). g) GSEA using selected hallmark gene sets. MPP-I compared to 

HSC and MPP-II respectively. Color code according to NES (Normalized Enrichment Score) 

value; red; enriched in MPP-I, blue; downregulated in MPP-I. Selected gene sets with FDR 

q-value of <0.05 are shown. 

 

Figure 4 

Cluster specific differential gene expression analysis defines a fetal specific gene 

signature 

a) Schematic presentation of data in the figure. b) Number of up- and downregulated genes 

comparing adult BM cells mapping to the different FL clusters. Red bars; upregulated genes, 

blue bars; downregulated genes, adjusted p-value of <0.05. c) GSEA using hallmark gene 

sets involved in proliferation, selected pathways and immune processes, red; upregulated, 

blue; downregulated gene sets according to NES value. Selected gene sets with FDR q-value 

of <0.05 are shown. d) Venn diagrams of upregulated genes in FL compared to adult BM 

defined by fold change ≥2 and an adjusted p-value of <0.05 for each population. e) Heatmap 

of HOX gene expression per cluster in FL and adult BM. f) Heatmap of LIN-CD45+CD34+ 

adult BM (red) and FL (blue) cells, with cells displayed on the x-axis and fetal core genes on 

the y-axis.  

 

Figure 5 

Fetal gene signature differentiates between pediatric and adult ALL 

a) Heatmap based on FPKM values, displaying some of the universal fetal specific 

upregulated genes in a public available data set from an IPS model expressing ETV6-

RUNX1. FL (CS17-22) and adult BM are shown as controls. Top rows describe the different 

sample types and cell types (‘HSC-like’, IL7R+ progenitor and proB). b) PCA of MLL-AF4 

(KMT2A-AFF1) using the fetal gene signature, colors represent age groups. (red; 0-2 years, 

green; 2-16 years, turquoise; 16-40 years and purple; >40 years. PC1 vs age (years). c) 

Heatmap of the top 50 genes marking the highest and lowest values of PC1. Samples were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.29.474425doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474425
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

hierarchically clustered into 3 groups, based on their gene expression. Top rows describe 

gender and age and to the right gene names are shown (Red label; upregulated in fetal cells, 

Blue label: upregulated in adult cells) d) PCA of B-ALL patient samples using the fetal gene 

signature, colour coded based on cytogenetic abnormality. PC1 vs age of patients. Colors 

describe translocation status with; red; BCR-ABL1, orange; ETV6-RUNX1, dark green; 

high hyperdiploid, turquoise; KMT2A-AFF1 (MLL-AF4), blue; KMT2A-MLLT1 (MLL-

ENL), purple; KMT2A-MLLT3 (MLL-AF9) and pink; low hyperdiploid.  
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SUPPLEMENTAL FIGURES 
 
Sup. Figure 1 

Purification of primitive FL cells and immunophenotypic gating using ADTs  

a) Sorting strategy of CS22 LIN-CD45+CD34+ FL cells. Viable cells (7-AAD-) were selected 

based on size (scatter) and gated negative for mature lineage markers (CD3, CD235a). 

Further gating is indicated in the figure. b) Gating of conventional immunophenotypic 

populations using ADT signals. Top row CLP gating, middle row myeloid progenitors (CMP, 

GMP, MEP) and bottom row primitive populations (HSC, MPP, LMPP). c) Conventional 

immunophenotypic populations were gated using multiple ADT markers. Cell states captured 

for each population are shown within the contours on the FL CS22 UMAP. Pie charts show 

percentage of the different molecular clusters within each immunophenotypic gated 

progenitor (colors represent the cluster colors, as in Figure 1b).  d) PC2 vs PC3 of ADT gated 

cell populations of top 500 variably expressed genes. Cells were pseudo-bulked for the 

analysis. e) Combined PCA of ADT gated cell populations and the cell states defined in 

Figure 1d, of top 500 variably expressed genes. PC2 vs PC3 are shown. 

(HSCCD90: CD34+CD38lowCD45RA-CD90+; CMPCD135: CD34+CD38+CD10-CD45RA-CD135+, GMPCD135 

CD34+CD38+CD10-CD45RA+CD135+; MEPCD135: CD34+CD38+CD10-CD45RA-CD135-) 

 

Sup. Figure 2 

Projection of primitive FL and CB cells on adult BM reference 

a) UMAP of LIN-CD45+CD34+ adult BM cells with cluster annotations from (Sommarin et 

al., 2021) b) PCA of pseudo-bulked immunophenotypic populations from FL CS22 and adult 

BM of 500 top variably expressed genes. PC1 vs PC2 left and PC2 vs PC3 right plot. c) 

Projection of FL CS16, FL CS22, FL 9pcw and CB on the adult BM UMAP. Size of dots 

represents mapping-score and color of dots represents BM clusters. d) Quantification of 

classified cells in all mapped developmental stages. e) Classification of FL CS22 derived 

clusters on adult BM, colors represent BM derived clusters according to Sup. Figure 2a, and 

the x-axis represents FL CS22 derived clusters. f) Quantification of classified cells in all 

mapped developmental stages from (Roy et al., 2021). In total 90-95% of the cell from the 

different stages mapped. (Early FL; first trimester, FL and fetal BM; second trimester.) 

 

Sup. Figure 3 

Differential gene expression of CS22 FL and adult BM cells 
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a-b) PCA of pseudo-bulked clusters from FL CS22 and adult BM, of 500 top variably 

expressed genes. Colors represent clusters and shapes represents sample type (circle: FL 

CS22 and triangle: adult BM). a) PC1 vs PC2; b) PC2 vs PC3. c) Volcano plots of differently 

expressed genes for pseudo-bulked clusters, x-axis display log2 fold change (FC) and y-axis 

display -log10 adjusted p-values.  Positive FC: enriched in FL, Negative FC: enriched in 

adult BM. d) Venn diagrams of downregulated genes in FL CS22 compared to adult BM 

defined by fold change ≤ -2 and an adjusted p-value of <0.05 for each population.  

 

Sup. Figure 4 

Fetal core signature in B-ALL patient samples 

a) B-ALL samples (Gu et al., 2019) before batch correction (left) and after batch correction 

(right), showing top 500 variably expressed genes. Color coded according to sequencing 

method. b) PC1 vs PC2 of MLL-AF4 B-ALL using the fetal core signature. Age group color 

code is shown to the right.  c) Heatmap of HOX gene expression in MLL-AF4 ALL. Top 

rows show gender and age group respectively, color code is shown to the right. d) Each 

leukemia type from the PCA plot in Figure 5d is shown separately. PC1 vs age. e) Heatmap 

of 60 differentially expressed genes (up or down) separating PC1 for all leukemia types 

investigated. 
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METHOD 

Sample preparation 

Human FLs were donated from elective terminations of pregnancy after informed consent 

and with the approval of the Ethics Review Authority and the Swedish National Board of 

Health and Welfare. Fetuses were staged according to Carnegie Staging (CS) and were all 

from first trimester of pregnancy (developmental stages CS16-9pcw). Single cell suspension 

of the FL was obtained through mechanical disruption and dissociated through a 40µm filter. 

The cells were frozen in StemCellBanker (Amsbio) or in Fetal Bovine Serum (FBS) with 

10% Dimethyl Sulfoxide (DMSO). Samples were stored at -150°C until day of experiment. 

CB and adult BM (20-30 years old) data set were from (Sommarin et al., 2021).  

 

Sample preparation and cell sorting 

FL samples were thawed on the day of experiment, washed with Phosphate-Buffered Saline 

(PBS) with FBS and stained with a panel of CITE-seq antibodies (Sup. table 2). In addition 

each sample was stained with a Hashtag antibody to facilitate sample multiplexing, Fc 

Receptor blocking reagent (Miltenyibiotec), CD45-Alexa700 (HI30, Biolegend), CD34-FITC 

(581, Biolegend) and lineage markers (LIN: CD19-BV605 (SJ25C1, BD Bioscience), CD3-

PE-Cyanine5 (UCHT1, Biolegend), CD2-PE (RPA-2.10, Biolegend), CD16-BV421 (3G8, 

Biolegend), CD14-PE-Cyanine7 (M5E2, Biolegend), CD235a-PE-Cyanine5 (GA-R2, BD 

Bioscience)).These were incubated at 4°C for 30 min, washed and dissolved in PBS+2%FBS 

(GE lifesciences) with 1/200 7-AAD (BD Bioscience). Up to 20 000 LIN-CD45+CD34+ cells 

were sorted from each sample using a BD FACSAriaIIu and loaded into the 10x genomics 3’ 

version 2 platform. The CB and adult BM data sets from (Sommarin et al., 2021) were 

generated in a similar way from LIN-CD45+CD34+ cells. 

 

Single-cell CITE-seq library generation and sequencing 

After sorting, the samples were loaded on to 10x genomics 3’ version 2 platform (10x 

Genomics) and single-cell RNA-seq was performed according to the manufacturers 

instruction with minor changes according to (Stoeckius et al., 2017)  to allow for CITE-seq. 

After revers transcription and cDNA amplification the resulting libraries were sequenced on a 

NOVAseq (Illumina). Post sequencing the BCL files were processed using cellranger 

mkfastq to produce FASTQ files, which were then processed using cellranger count to 

perform alignment to Hg38, filtering, barcode counting and UMI counting. This resulted in 
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the matrix files which were further analyzed in sequential steps using Seurat (Hao et al., 

2021) and Scarf (Dhapola et al., 2021).  

 

Cell filtering and UMAP creation 

The out-put from cellranger was loaded into Seurat (Hao et al., 2021) (V4), where the 

samples were de-multiplexed using the HASH-tag antibody, and cell duplicates were 

removed. Cells were then filtered based on UMI- and gene counts, to remove low quality 

cells (Sup. Table3). Additionally, UMI counts, cell cycle scores, ribosomal- and 

mitochondrial contamination were regressed out, using Seurat’s ScaleData function. Each 

sample was treated separately, RNA reads were LogNormalized and ADT information was 

CLR (centred-log ratio) normalized using the Seurat NormalizeData function. FL samples 

from CS22 were integrated into a single data object by Seurat’s IntegrateData function. The 

output data was then used to make a unified UMAP of the samples. The cells were clustered 

using the FindClusters function with a resolution of 0.7, which resulted in 11 clusters.  

 

ADT gating analysis 

The CLR normalized ADT count data from Seurat was loaded into Python, were the CLR 

normalized values were transformed by their antilog (base e) and then multiplied by 1000. 

The values were then exported to fcs files using the write_FCS function of fcswrite. The FCS 

files were loaded into FlowJo V10 (BD), where conventional gating was performed, using 

internal negative controls to set the gates. The gated cells were exported as csv using the 

export gate option in FlowJo, where upon the gated populations were loaded into Python 

again. Here the ADT values from cells in the exported gates were matched to the original 

data to identify the cell identities.  

Populations (FL and adult BM) were defined according to the following immunophenotype: 

HSCCD49F: CD34+CD38lowCD45RA-CD90+CD49F+; HSCCD90: CD34+CD38lowCD45RA-

CD90+; MPP: CD34+CD38lowCD45RA-CD90-; LMPP: CD34+CD38low CD45RA+CD90-;  

CMPCD123: CD34+CD38+CD10-CD45RA-CD123+, CMPCD135: CD34+CD38+CD10-CD45RA-

CD135+;   GMP CD123:  CD34+CD38+CD10-CD45RA+CD123+; GMPCD135 

CD34+CD38+CD10-CD45RA+CD135+; MEP CD123: CD34+CD38+CD10-CD45RA-CD123-; 

MEPCD135: CD34+CD38+CD10-CD45RA-CD135-; CLPCD10: CD34+CD38+CD45RA+CD10+, 

CLPIL7R: CD34+CD38+CD45RA+IL7R+; CLPCD7: CD34+CD38+CD45RA+CD7+. 

 

Projection of samples onto reference UMAP 
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Projection of cells onto the FL CS22 reference UMAP was done by using Scarf (Dhapola et 

al., 2021). In brief the UMAP coordinates, HVGs and cluster information of the FL CS22 

analysis in Seurat was loaded into Scraf, and by using the run_mapping function (with k=11) 

the nearest neighbors of each cell projected was calculated. This was performed for FL CS16, 

FL 9 pcw, CB and adult BM, the latter two from  (Sommarin et al., 2021). The same analysis 

was performed using the adult BM as a reference, with the same settings as for the FL CS22 

and then projecting FL CS16, FL CS22, FL 9pcw and CB cells. To classify each projected 

cell to a cluster the get_target_classes function (threshold = 0.4) was used. The mapping 

score was calculated using get_mapping_score, and the size of each cell in the reference map 

was set proportional to the mapping score. The same analysis was performed using data from 

(Roy et al., 2021). 

 

Investigation of molecular differences in primitive FL sub-clusters 

To define the molecular differences between the HSC, MPP-I and MPP-II within FL CS22 

the FindMarkers function of Seurat was used for each individual cluster (adjusted P value 

<0.001, log2 fold change (FC) >|0.5|). These marker genes together with the cells from the 

HSC, MPP-I and MPP-II clusters were then used to make a subsetted cell-gene-matrix of the 

scarf normalized values. Next, hierarchical clustering was performed using the clustermap 

function from the seaborn package. The resulting dendrogram of genes were cut into nine 

clusters.  

 

CellRadar 

To define the lineage affiliation of each gene cluster, the BloodSpot dataset ‘normal human 

hematopoiesis’ was used (Bagger et al., 2016). A radar plot was generated using min-max 

scaled median value of marker genes in each cluster. CellRadar (Dhapola et al. manuscript in 

preparation, available here: https://github.com/KarlssonG/cellradar)  

 

Differential gene expression testing 

To perform differential gene expression analysis, each cluster of the FL CS22 and the adult 

BM cells predicted to a FL cluster were pseudo-bulked into three replicates for each sample 

and cluster, using the make_bulk function of Scarf (Dhapola et al., 2021), this was 

additionally performed on the ADT gated immunophenotypic populations. These pseudo-

bulk populations were then exported as csv and loaded into DEseq2 (Love et al., 2014). 

DEseq2 then performed differential gene expression comparing each cluster of FL CS22 to 
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its corresponding predicted cluster in adult BM. Here, clusters DC-I and Ly-III were 

excluded in the analysis due to their low cell count (<60 cells). The following result file were 

then analyzed for up- (FL signal) and down- (adult BM signal) regulated genes using the 

adjusted p-value <0.05 and FC ≥|2| to make gene lists for each cluster, visualized in 

volcanoplots by matplotlib.pyplot. Additionally, the DEseq2 normalized values were 

exported for each cluster and loaded into GSEA (Subramanian et al., 2005) to analyze 

hallmark gene sets (Liberzon et al., 2015). Gene sets with an FDR q-value of <0.05 were 

considered significantly enriched/depleted (nr of permutations:1000, permutation type: gene-

set).  

 

Principal component analysis 

To perform PCA on the clusters and the ADT-defined immunophenotypic populations the 

pseudo-bulked data was loaded into DEseq2. Again, the DC-I and Ly-III clusters were 

excluded due to their low cell count. Here, the data was transformed using the VST function 

of DEseq2, after which the top 500 most variable genes were used in the prcomp function of 

R to perform PCA. Finally, the data was visualized using ggplots2.  

 

Definition of fetal derived gene signature 

The significant genes (FC ≥|2| and adjusted p-value of <0.05) for each cluster of the DEseq2 

differential testing were analyzed using the Venn tool of 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). The clusters HSC, MPP-I, MPP-II and 

Cyc were first compared to find which genes were in common. Next the clusters MEP, GMP 

and DC-Mono were compared, and finally the Ly-I and Ly-II clusters. Clusters DC-I and Ly-

III were excluded in differential gene expression analysis due to their low cell count (<60 

cells). Finally, the genes in common between the three comparisons were linked to find a 

strict list of genes in common for all clusters. The gene names of these were exported as csv, 

for further analysis.  

 

Analysis of fetal derived gene signature in FL and adult BM  

To investigate the molecular differences between FL and adult BM within the single cell 

data, the BM and FL datasets were combined by using the ZarrMerge function of Scarf. To 

analyze the differences in HOX usage in the clusters, all HOX genes expressed in >10 cells 

were used to create a heatmap using the plot_marker_heatmap function of scarf. To 

investigate the expression of the fetal derived gene signature, the genes specific for FL was 
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used to subset the combined FL-BM dataset. Next, using the clustermap function of seaborn 

the cells of the FL-BM dataset were clustered using hierarchical clustering (Euclidean 

distances and Ward linkage).  

 

Investigation of the fetal derived gene signature in pediatric ALL 

To investigate the fetal gene signature in the ETV6-RUNX1 IPSC model publicly available 

data from (Boiers et al., 2018) were downloaded. FPKM values were log-transformed using 

log2 (FPKM +1) and then scaled and centered using the scale function.  

To investigate the fetal gene signature in childhood ALL, a publicly available data set of 

approximately 2000 patients was used (Gu et al., 2019). From this data set we focused on 

patients with the following cytogenetic abnormality: KMT2A-AFF1, KMT2A-MLLT1, 

KMT2A-MLLT3, BCR-ABL1, ETV6-RUNX1 and high or low hyperdiploidy. The HTSeq 

files of these were loaded into DEseq2 using the DESeqDataSetFromHTSeqCount function. 

Next the counts function were used to get a DEseq2 dataframe. The counts were transformed 

using variance stabilizing transformation by the VST function, and batch effects removed 

with  LIMMA::removeBatchEffect. Thereafter the gene lists from DE-analysis of FL and 

adult BM were loaded in and using the getBM function of Biomart was used to translate the 

gene names into hg37 ensembl IDs. The FL and adult BM specific ensembl IDs were used to 

subset the transformed data, selecting only our genes of interest, excluding gender associated 

genes. PCA was performed on the KMT2A-AFF1 translocation using the prcomp function, 

calculating all principal components. PC1 was shown to capture the age differences in the 

samples, and thus the top 25 genes and the lowest 25 genes from PC1 were used generate a 

heatmap of the samples. To analyze all samples of interest PCA was again used, following 

the same procedure as previously described. This resulted in another set of PCs, where again 

PC1 described the age-related changes. Here the top 30 and the lowest 30 genes were used to 

make the heatmap.  
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Sup. Table 1. Gene list shown per cluster from heatmap in Figure 3e. 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 

CD74 HOPX TOP2A HIST1H1C HBG2 HSPA5 IL7R 

HLA-DRA CD52 UBE2C HIST1H1D HBA2 HSP90B1 JCHAIN 

HLA-DRB1 PRDX1 HMGB2 HIST1H4C HBG1 CALR TMSB4X 

HLA-DPA1 SPINK2 CENPF HMGN2 HBA1 FABP5 CD99 

HLA-DPB1 HLA-DRB5 PTTG1 STMN1 RANBP1 GYPC 

HLA-DMA HLA-B KPNA2 HMGB1 YBX1 ITM2A 

MDK TUBB4B PCLAF LDHA ACTG1 

CTHRC1 SMC4 H2AFZ RAN TPM4 

MLLT3 TUBA1B SRSF7 LAT2 

ALDH1A1 TYMS CYCS TMSB10 

KRT18 PCNA HSPA8 LSP1 

BST2 MCM7 HSP90AA1 LGALS1 

CST3 

  
HSPE1 CDK6 

CFH 

  
PSMA7 IL2RG 

SELENOP 

  
ACTB VPREB1 

EMCN 

  
PTMA HEMGN 

IFITM3 

  
PGAM1 H3F3B 

HLF 

  
UHRF1 SOX4 

SUCLG2 

  
IDH2 CXORF21 

VIM 

   
LTB 

NRIP1 

   
ZCCHC7 

LIMS1 

   
ADA 

NPR3 

   
ACY3 

MECOM 

   
CXCR4 

LEPROT 

   
PRTN3 

TNFSF10 

   
IRF8 

NCOA7 

   
VPREB1 

GIMAP7 

   
Cluster8 

HMGA2 

   
MPO 

GNAI1 

   
IGLL1 

HSPB1 

   
CLEC11A 

GBP4 

   
DLK1 

     
IGFBP7 

     
HSH2D 

     
CD7 

     
HPGDS 

     
MYC 

     
PRSS57 

     
MEG3 

     
DLK1 

     
Cluster9 
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JPT1 

     
H2AFV 

     
DDX39A 

     
HBD 

     
GATA2 

     
CNRIP1 

     
CITED2 

     
MS4A3 

 
Sup. Table2: CITE-seq antibodies used.  

Reactivity Surfacemarker Product Clone Isotype 
Cat 
number Lot Company 

Anti 
human CD38 

Totalseq-
A0059 HIT2 

mIgG1 
k 94672 B254149 Biolegend 

Anti 
human CD90 

Totalseq-
A0060 5E10 

mIgG1 
k 94673 B254151 Biolegend 

Anti 
human 

CD117 
(cKIT) 

Totalseq-
A0061 104D2 

mIgG1 
k 94674 B254153 Biolegend 

Anti 
human CD10 

Totalseq-
A0062 HI10a 

mIgG1 
k 94675 B254154 Biolegend 

Anti 
human CD45RA 

Totalseq-
A0063 HI100 

mIgG2b 
k 94676 B254155 Biolegend 

Anti 
human CD123 

Totalseq-
A0064 6H6 

mIgG1 
k 94677 B254157 Biolegend 

Anti 
human 

CD127 
(IL7RA) 

Totalseq-
A0065 A019D5 

mIgG1 
k 94678 B254159 Biolegend 

Anti 
human CD7 

Totalseq-
A0066 CD7-6B7 

mIgG2a 
k 94679 B254161 Biolegend 

Anti 
human CD71 

Totalseq-
A0067 CY1G4 

mIgG2a 
k 94680 B254162 Biolegend 

Anti 
human CD105 

Totalseq-
A0068 43A3 

mIgG1 
k 94681 B254163 Biolegend 

Anti 
human 

CD201 
(EPCR) 

Totalseq-
A0069 RCR-401 

mIgG1 
k 94682 B254164 Biolegend 

Anti 
human CD49f 

Totalseq-
A0070 GoH3 

rIgG2a 
k 94683 B254165 Biolegend 

Anti 
human 

BAH1 
(cMLP) 

Totalseq-
A0071 BAH1 

mIgG1 
k 94684 B254166 Biolegend 

Anti 
human CD34 

Totalseq-
A0054 581 

mIgG2a 
k 94671 B254146 Biolegend 

Anti 
human CD18 

Totalseq-
A0385 TSI/18 

mIgG1 
k 302121 B270525 Biolegend 

Anti 
human CD25 

Totalseq-
A0085 BC96 

mIgG1 
k 302643 B271394 Biolegend 

Anti 
human CD196 

Totalseq-
A0143 Go34E3 

mIgG2b 
k 353437 B270546 Biolegend 

Anti 
human CD62L 

Totalseq-
A0147 DREG-56 

mIgG1 
k 304847 B272608 Biolegend 

Anti CD4 Totalseq- RPA-T4 mIgG1 300563 B268766 Biolegend 
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human A0072 k 
Anti 
human CD26 

Totalseq-
A0396 BA5b 

mIgG2a 
k 302720 B261042 Biolegend 

Anti 
human CD32 

Totalseq-
A0142 FUN-2 

mIgG2b 
k 303223 B263613 Biolegend 

Anti 
human CD42b 

Totalseq-
A0216 HIP1 

mIgG1 
k 303937 B271616 Biolegend 

Anti 
human CD45RO 

Totalseq-
A0087 UCHL1 

mIgG1 
k 304255 B269954 Biolegend 

Anti 
human CD9 

Totalseq-
A0579 H19a 

mIgG1 
k 312119 B271599 Biolegend 

Anti 
human Integrin B7 

Totalseq-
A0214 FIB504 

rIgG2a 
k 321227 B269330 Biolegend 

Anti 
human CD93 

Totalseq-
A0446 VIMD2 

mIgG1 
k 336121 B270926 Biolegend 

Anti 
human CD61 

Totalseq-
A0372 VI-PL2 

mIgG1 
k 336423 B271605 Biolegend 

Anti 
human CD95 

Totalseq-
A0156 DX2 

mIgG1 
k 305649 B269386 Biolegend 

Anti 
human CD135 

Totalseq-
A0351 BV10A4H2 

mIgG1 
k 313317 B272437 Biolegend 

Anti 
human CD11c 

Totalseq-
A0053 S-HCL-3 

mIgG2b 
k 371519 B270802 Biolegend 

Anti 
human CD52 

Totalseq-
A0033 HI186 

mIgG2b 
k 316017 B260031 Biolegend 

Anti 
human CD36 

Totalseq-
A0407 5-271 

mIgG2a 
k 96419 B267789 Biolegend 

Anti 
human CD41 

Totalseq-
A0353 HIP8 

mIgG1 
k 303737 B271597 Biolegend 

Anti 
human CD48 

Totalseq-
A0029 BJ40 

mIgG1 
k 336709 B260028 Biolegend 

Anti 
human CD107A 

Totalseq-
A0155 H4A3 

mIgG1 
k 328647 B273007 Biolegend 

Anti 
human CD35 

Totalseq-
A0167 E11 

mIgG1 
k 333407 B269337 Biolegend 

Anti 
human CD155 

Totalseq-
A0023 SKIL4 

mIgG1 
k 337623 B269344 Biolegend 

Anti 
human CD79b 

Totalseq-
A0187 CB3-1 

mIgG1 
k 341415 B270535 Biolegend 

Anti 
human CD33 

Totalseq-
A0052 P97.6 

mIgG1 
k 366629 B259970 Biolegend 

Anti 
human CD56 

Totalseq-
A0084 QA17A16 

mIgG1 
k 392421 B273249 Biolegend 

Anti 
human CD44 

Totalseq-
A0125 BJ18 

mIgG1 
k 338825 B270931 Biolegend 

Anti 
human CD11a 

Totalseq-
A0185 TS2/4 

mIgG1 
k 350615 B260299 Biolegend 

Anti 
human CD54 

Totalseq-
A0217 HA58 

mIgG1 
k 353123 B269343 Biolegend 
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Anti 
human CD70 

Totalseq-
A0027 113-16 

mIgG1 
k 355117 B263558 Biolegend 

Anti 
human Hashtag 1 

Totalseq-
A0251 

LNH-
94/2M2 

mIgG1 
k 394601 B264730 Biolegend 

Anti 
human Hashtag 2 

Totalseq-
A0252 

LNH-
94/2M2 

mIgG1 
k 394603 B264729 Biolegend 

Anti 
human Hashtag 3 

Totalseq-
A0253 

LNH-
94/2M2 

mIgG1 
k 394605 B264728 Biolegend 

Anti 
human Hashtag 4 

Totalseq-
A0254 

LNH-
94/2M2 

mIgG1 
k 394607 B264726 Biolegend 

Anti 
human Hashtag 5 

Totalseq-
A0255 

LNH-
94/2M2 

mIgG1 
k 394609 B264725 Biolegend 

Anti 
human Hashtag 6 

Totalseq-
A0256 

LNH-
94/2M2 

mIgG1 
k 394611 B264724 Biolegend 

Anti 
human Hashtag 7 

Totalseq-
A0257 

LNH-
94/2M2 

mIgG1 
k 394613 B264723 Biolegend 

Anti 
human Hashtag 8 

Totalseq-
A0258 

LNH-
94/2M2 

mIgG1 
k 394615 B264722 Biolegend 

 

Sup. Table3: Samples included in the study 

Sample # Sorted cells # Cells used in analysis 

FL CS22 sample1 10 000 3040 

FL CS22 sample2 10 000 3692 

FL CS16 sample1 906 109 

FL CS16 sample2 244 34 

FL 9pcw sample1 2 213 297 

FL 9pcw sample2 4 946 842 
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