

1 **Deciphering sex-specific miRNAs as heat-recorders in zebrafish**

2

3 T.A. van Gelderen¹, J. Montfort¹, J.A. Álvarez-Dios², V. Thermes³, F. Piferrer¹, J. Bobe³
4 and L. Ribas^{1*}

5

6 ¹ Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003,
7 Barcelona.

8 ² Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de
9 Compostela, 15781, Santiago de Compostela, Spain.

10 ³ INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France

11

12

13 *Corresponding author

14 lribas@icm.csic.es

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 **Abstract**

37 MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression
38 in a wide variety of physiological processes, including those related to the reproductive
39 system. Although in the last decade a plethora of miRNAs has been reported, the miRNA
40 alterations occurred by environmental cues and their biological functions have not yet
41 been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in
42 the gonads in a climate change scenario, zebrafish (*Danio rerio*) were subjected to high
43 temperatures during sex differentiation (18-32 days post fertilization, dpf), a treatment
44 that results in male-skewed sex ratios. Once the fish reached adulthood (90 dpf), ovaries
45 and testes were sequenced by high-throughput technologies. About 101 million high-
46 quality reads were obtained from gonadal samples. Analyses of the expression levels of
47 the miRNAs identified a total of 23 and 1 differentially expressed (DE) miRNAs in
48 ovaries and testes, respectively, two months after the heat treatment. Most of the
49 identified miRNAs were involved in human sex-related cancer. After retrieving 3' UTR
50 regions, ~400 predicted targets of the 24 DE miRNAs were obtained, some with
51 reproduction-related functions. Their synteny in the zebrafish genome was, for more than
52 half of them, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being
53 the place where the predicted sex-associated-region (*sar*) is localized in wild zebrafish.
54 Further, spatial localization in the gonads of two selected miRNAs (miR-122-5p and miR-
55 146-5p) showed exclusive expression in the ovarian germ cells. The present study
56 expands the catalog of sex-specific miRNAs and deciphers, for the first time,
57 thermosensitive miRNAs in the zebrafish gonads that might be used as potential
58 epimarkers to predict environmental past events.

59

60

61

62

63

64

65

66

67

68

69 **Introduction**

70 Water sea temperature levels have been rising in the last 60 years [1], with critical
71 consequences for marine and aquatic life. Fish, thanks to their thermal plasticity, are able
72 to survive the variations of water temperatures [2]. Nevertheless, sex determination in
73 fish, unlike in mammals, is regulated by genetic and environmental factors [3,4], and
74 consequently, higher temperatures during sex differentiation skew the sex ratio towards
75 males in many fish species [5]. Since the first study showing the crosslink between
76 masculinization occurred by heat treatments and DNA methylation in the European sea
77 bass (*Dicentrarchus labrax*) gonads [6], in the last decade, studies describing the role of
78 epigenetics in sexual development have emerged. In pufferfish (*Takifugu rubripes*), DNA
79 methylation alterations were able to faithfully describe dimorphic differences in the
80 gonadal epigenomes of fish subjected to different thermal regimes, identifying two genes
81 (*amhr2* gene and *pfcyp19*) as main actors of sex determination in this species [7].
82 Similarly, in half-smooth tongue sole (*Cynoglossus semilaevis*) differentially methylated
83 regions (DMR) were observed in the gonads of sex-reversed fish indicating that high-
84 temperature treatments override sexual fate determined by genetic factors through
85 epigenetic pathways [8]. Recent transgenerational studies in zebrafish (*Danio rerio*)
86 showed that temperature affected the testicular epigenome in the first generation but these
87 effects were washed out in the second generation [9].

88

89 miRNAs are small, non-coding RNAs, consisting of approximately 22 nucleotides, and
90 are considered as epigenetic mechanisms responsible to regulate the post-transcriptional
91 cellular machinery. These molecules regulate gene expression by preventing protein
92 translation through binding to their target messenger RNAs (mRNA), serving as recruiters
93 in the mRNA degradation pathways [10]. Over the past two decades, miRNA-related
94 research has expanded considerably, as in only two years the miRNA submissions in
95 public databases increased by fifty percent [11]. Over 3,500 mature miRNAs have been
96 identified in 16 teleostei species (www.mirbase.org), zebrafish being the first fish species
97 with more miRNAs described in detail [12]. In fish, miRNAs play pleiotropic functions,
98 for example, in the reproduction system, immune system, metabolism, and skeletal
99 formation, among others (reviewed in [13]). In the last few years, studies in adult fish
100 have revealed the presence of sexual dimorphism in the miRNA expression between
101 ovary and testis in some species such as [14], yellow catfish (*Pelteobagrus fulvidraco*)

102 [15], rainbow trout (*Oncorhynchus mykiss*) [16], tilapia (*Oreochromis niloticus*) and
103 zebrafish [17,18].

104

105 Since miRNA alterations can respond to environmental influences, they are foreseen as
106 potential targets for improving productivity in aquaculture. Some studies have addressed
107 the temperature effects on different target tissues. miRNA expression changed in response
108 to increasing natural temperatures in zebrafish embryonic fibroblast cells [19] and in
109 rainbow trout liver [20] and head kidney [21]. Cold tolerance has been tested by detailing
110 miRNA expression in Emerald rockcod (*Trematomus bernacchii*) gills [22], in turbot
111 (*Scophthalmus maximus*) brain, head kidney and liver [23], and in sole (*Solea*
112 *senegalensis*) embryos [24]. To date, only few studies have addressed the miRNA
113 alterations due to temperature increases in the gonads. Juvenile Atlantic cod showed
114 some, but few, DE miRNAs after heat during early development, although no differences
115 between ovaries and testes were addressed [25]. Further, adult zebrafish gonads subjected
116 to high temperature in combination with antidepressant compounds showed a variation
117 of the miRNA abundance by a target miRNA approach [26]. Thus, to our knowledge, no
118 data regarding the long-term effects of the high temperatures in the miRNome of the
119 ovaries and testes in fish have ever been reported. Therefore, the goal of this study was
120 to characterize a set of miRNAs that could be used as epimarkers of the effects of heat-
121 stress on fish gonads in a context of global warming.

122

123 **Materials and methods**

124 *Experimental design*

125 The AB zebrafish were reared at the experimental aquarium facilities of the Institute of
126 Marine Sciences (ICM-CSIC) in Barcelona. Fish husbandry and thermal treatments were
127 done as previously described in Ribas *et al.* [27]. For this experiment, ~175 spawned eggs
128 by a single pair mating were used. At 6 days post fertilization (dpf), 35 larvae were equally
129 distributed into four tanks (two technical replicates for each group) of 2.8 liters
130 (Aquaneering, mod. ZT280) to avoid high-density masculinization effects [28]. Fish were
131 exposed to high temperature (HT) at $34 \pm 0.5^\circ\text{C}$ or to control temperatures (CT) at $28 \pm$
132 0.5°C between 18-32 dpf. The temperature was changed at a rate of $1.5^\circ\text{C}/\text{day}$ to reach
133 the desired temperatures. After the heat treatment, animals were grown until gonadal
134 maturation, i.e., 90 dpf. The Chi-squared test with arcsine transformation was used to
135 study differences in sex ratios. Biometry differences between CT and HT were

136 determined by Student *t*-tests. Previously, for each group, homoscedasticity of variances
137 and normality were checked by Levene's test and Shapiro-Wilk test, respectively.

138

139 *Sampling, sample selection and RNA extractions*

140 Adult fish were sacrificed by cold thermal shock and the sex of the fish was visually
141 assessed under the microscope. Gonads were isolated and flash-frozen into liquid nitrogen
142 and kept at -80°C for further analyses. To unify the gonadal maturation, samples were
143 selected based on two criteria. First, based on macroscopical examination following Ribas
144 *et al.* [27], and second, based on the highest gene expression levels of gonadal aromatase
145 (*cyp19a1a*) and anti-Müllerian hormone (*amh*) in ovaries and testes, respectively, that
146 worked as sex-markers (data not shown) [29,30]. miRNA of sixteen gonads (four samples
147 each sex and treatment) was isolated by miRNAs isolation commercial kit (Qiagen®
148 miRNA, 217004) and quality was assessed by BioAnalyzer (2100 Bioanalyzer, Agilent
149 Technologies). On average, RNA Integrative Number (RIN) values for all the samples
150 were ≥ 9 , indicating high score RNA qualities.

151

152 *Small RNA library and sequencing*

153 In total, 16 libraries were constructed individually from zebrafish gonads. Library
154 preparation was performed by NEBNext® Small RNA Library Prep Set for Illumina®
155 (Multiplex Compatible) kit following manufacturer's instructions. Sequencing (1x50, v4,
156 HiSeq) was performed at single-end mode with a read length of 50 bp at the Genomics
157 Unit of the Centre for Genomic Regulation (CRG) in Barcelona.

158

159 *miRNA validation and gene expression analyses*

160 Validation of the miRNA sequencing data was done by RT-qPCR of those selected
161 sequenced miRNAs. cDNA was generated using the miRNA 1st-Strand cDNA Synthesis
162 Kit (Agilent Technologies) following manufacturer's instructions. Firstly, the
163 polyadenylation reaction was performed after cDNA synthesis. qPCR was performed
164 using the qPCR Bio SyGreen blue mix low ROX (PCR Biosystems). A mix of 5 μ L 2x
165 qPCR Bio SyGreen Blue mix, 0.4 μ L forward primer, 0.4 μ L universal reverse primer
166 (Agilent Technologies), 100 ng cDNA and H₂O up to 10 μ L was made for each sample.
167 The sequences of the forward primers for the six selected miRNAs were as follows: dre-
168 miR-202-5p: TTCCTATGCATATACCTCTTT, dre-miR-92a-3p:
169 TATTGCACTTGTCCCGGCCTGT, dre-miR-21-5p:

170 TAGCTTATCAGACTGGTGTTGGC, dre-miR-146b-5p:
171 TGAGAACTGAATTCCAAGGGTG, dre-miR122-5p:
172 TGGAGTGTGACAATGGTGTTC, dre-miR-2189-3p:
173 TGATTGTTGTATCAGCTGTGT. The dre-U6
174 (ACTAAAATTGGAACGATACAGAGA) was used as the reference gene. The
175 comparisons for validations were performed as follows: ovary high temperature (OHT)
176 vs. ovary control temperature (OCT) for dre-miR-202-5p, dre-miR-92a-3p, dre-miR-21
177 and dre-miR-146b-5p; testis high temperature (THT) vs. testis control temperature (TCT)
178 for dre-miR-122-5p; OCT vs. TCT for dre-miR-146b-5p and dre-miR-2189-3p.
179

180 *Bioinformatics: miRNA mapping and annotations*

181 Sequenced libraries were analyzed by Prost! as described by Desvignes *et al.* [18].
182 Briefly, sequencing data were trimmed and reads were mapped on the reference genome
183 version 11 of zebrafish (GRCz11) for annotations and to distinguish novel and known
184 miRNAs. Expression of these miRNAs was determined by the raw count matrix used as
185 input into DESeq2. Read data were normalized by DESeq functions and relative
186 expression between groups was generated by base mean, log2 fold change and adjusted
187 p-value ($P < 0.05$). To visualize the level of similarity of individual samples a Multi-
188 Dimensional Scaling (MDS) plot was created with the package EdgeR [31,32] from
189 Bioconductor [33] Heatmaps of DE miRNAs (HT vs. CT and O vs. T) were constructed
190 using the R package pheatmap (<https://CRAN.R-project.org/package=pheatmap>).
191

192 *Consistent gonadal miRNAs in zebrafish*

193 To identify miRNAs in the zebrafish gonads, miRNA data from two available
194 publications in zebrafish was used [17,18], additionally to the data currently presented.
195 The normalized read lists were used to identify significantly expressed miRNAs in testes
196 or ovaries with an expression of 100 normalized reads or higher. Next, DE miRNAs
197 between ovaries and testes in the three miRNA datasets were identified (expression of
198 100 normalized reads or higher and adjusted $P \leq 0.05$). Venn Diagrams were created
199 using the software from the Bioinformatics & Evolutionary Genomics group from Ghent
200 University (<http://bioinformatics.psb.ugent.be/webtools/Venn/>).
201

202 *Functional annotation of miRNA targets*

203 To identify miRNA targets, 3'UTR regions and genome annotation for zebrafish were
204 extracted from Ensembl (<https://www.ensembl.org/>) using the Biomart data mining tool.
205 Putative miRNA targets were identified with MiRanda [34] with energy threshold -25 and
206 other parameters left to their default value. Subsequent MiRanda output was pruned and
207 processed to extract relevant information with a custom Perl script. The portal
208 (<https://david.ncifcrf.gov/>) was used to perform enrichment analyses and search for GO
209 terms and KEGG pathways. Graphs of a representative summary of each GO term
210 category for each gonad class were produced with Revigo [35] using term frequency as
211 the guiding parameter. A circular zebrafish genome graph was produced with Circos [36].
212 MDS samples graph was created with package edgeR [31] from Bioconductor [33]. When
213 necessary, custom Perl scripts were created to extract information and combine data
214 throughout the bioinformatic analyses.

215

216 *Fluorescent in situ hybridization*

217 For fluorescent *in situ* hybridization (FISH), ovaries dissected from a total of 12 zebrafish
218 adult females were fixed overnight in 4% paraformaldehyde (PFA) at 4°C, dehydrated in
219 100% methanol and stored at -20°C. Fixed ovaries from the control group (OCT) were
220 paraffin-embedded and sections (9 µm thickness) were obtained with a microtome
221 (HM355, microm). The anti-sense miRCURY LNA miRNA detection probe dre-miR-
222 146b-5p (YD00613622, QIAGEN) was used. The mmu-miR-122-5p miRCURY LNA
223 probe (YD00615338, QIAGEN) was used to detect the dre-miR-122-5p mature form,
224 since zebrafish and mouse miR-122-5p sequences are identical. Probe sequences were 5'-
225 CAAACACCATTGTCACACTCC-3' and 5'- CACCCTTGGATTAGTTCTC-3' to
226 detect dre-miR-122-5p and dre-miR-146b-5p, respectively. The scramble-miR
227 miRCURY LNA Detection probe (5'-GTGTAACACGTCTATACGCCCA-3',
228 YD00699004, QIAGEN) was used as a negative control. All LNA probes were double-
229 DIG labeled at both 5' and 3' ends. FISH was performed using the miRCURY LNA
230 miRNA ISH kit (FFPE, 339450, QIAGEN) following the manufacturer's instructions,
231 Permeabilization was performed for 7 min at room temperature using Proteinase-K (10
232 µg/ml, P2308 Sigma). LNA probes were used at 40 nM at 53°C (30°C below the RNA
233 Tm) for 2 h. Samples were then incubated overnight at 4°C with a rabbit anti-DIG HRP-
234 conjugate antibody (1:500, Roche). Then, the anti-DIG-HRP antibody was detected with
235 the TSA-Cy3 substrate (1:50, TSATM PLUS Cy3 kit, NEL 745001KT, Perkin Elmer) for
236 10 min at room temperature. Nuclei were stained with 4% Methyl Green (MG, 323829-

237 5G, Sigma-Aldrich) in PBS/0.1% triton for 15 min at room temperature All pictures were
238 taken with a Leica TCS SP8 laser scanning confocal microscope using 552 nm and 638
239 lasers for TSA-cy3 and MG detection, respectively.

240

241 **Results**

242 *Sex ratio and biometry*

243 After heat treatment during sex differentiation, a 17% masculinization was observed in
244 the high temperature (HT) group (S1 Fig), although differences were not significant. The
245 accumulated degrees during the treatment were 419.84 and 511.25 for control temperature
246 (CT) and HT, respectively. The mean weight of the animals was as follows: female CT
247 0.38 ± 0.09 g, male CT 0.27 ± 0.08 g, female HT 0.26 ± 0.10 g and male HT 0.24 ± 0.09 g.
248 The mean size of the animals was as follows: female CT 2.48 ± 0.26 cm, male CT
249 2.48 ± 0.05 cm, female HT 2.53 ± 0.15 cm, male HT 2.35 ± 0.10 cm. No significance was
250 found in either female or male CT vs. HT in weight or size. The weights, lengths and K-
251 factor and statistical results of all 16 fish can be found in S1 Table.

252

253 *miRNA sequencing overview and validation*

254 On average, we obtained 25.3 million sequences per library and the total number of
255 sequences exceeded 101 million, 71 and 30 million for testes and ovaries, respectively.
256 The length distribution showed that over 99% of the obtained sequences were ~30
257 nucleotides (nts), with a range between 36–37 nts in length. A total of 359 mature
258 miRNAs were identified after alignments against the zebrafish genome (Dataset 1).
259 Eleven miRNAs were not fully annotated against the zebrafish genome, of which four
260 were aligned to other fish species (miR-122-3p in 20 species, one miRNA annotated as
261 let-7a/c/e/f/k-3p in 18 species, one miRNA annotated as let-7e/f/g-2-3p in 10 species and
262 another one as miR-139-5p in 16 species). Only seven miRNAs were not annotated and
263 were defined as novel. Thus, 98.1% of the miRNA sequenced was annotated. The raw
264 sequencing data were made publicly available in NCBI SRA with the accession number:
265 PRJNA755482.

266

267 The MDS analyses clustered the samples based on their corresponding group by sex and
268 treatment (S2 Fig). The two MDS components explained 57% of the variance among the
269 samples. There was one testicular control sample (i.e., TCT3) that was clustered with the
270 heat treated samples, but was not discarded from further analyses. Similarly, one ovarian

271 control sample (OCT5) was grouped among treated ovarian samples and also kept for
272 analysis.

273

274 miRNA-seq data was validated by testing the expression of six miRNAs (dre-miR-202-
275 5p, dre-miR-92a-3p, dre-miR-21-5p, dre-miR-146b-5p, dre-miR-122-5p, dre-miR-2189-
276 3p) by qPCR analyses in the ovary and testis in three different comparisons based on their
277 expression in sequencing data. Results showed a linear regression with $R^2 = 0.9522$ and
278 $P = 0.00087$, thus validating miRNA sequencing results (S3 Fig).

279

280 *miRNAs in the zebrafish gonads*

281 Data from two similar studies from the same zebrafish strain [18] and from a different
282 zebrafish line (crossing nacre transparent, $-/-$, with zf45Tg [17] were used in order to
283 identify miRNAs that were consistently expressed in the zebrafish gonads within one
284 given sex.

285

286 Comparing our miRNA data with the two available libraries, we found 32 and 50 miRNAs
287 in ovary and testis, respectively, specific for our data. A total of 131 and 137 miRNAs in
288 the ovary and the testis, respectively, were found between the results reported by
289 Desvignes *et al* 2019 and our present data while only 37 and 34 were common between
290 our data and the results of Presslauer *et al* 2017 (Fig 1A, B). Between all three libraries,
291 35 and 32 common miRNAs in ovaries and testes were found, respectively (Fig 1A, B
292 and S2 Table). A total of 25, 14 and 20 DE miRNAs in ovary and 16, 3 and 26 in testis
293 for Presslauer *et al.*, Desvignes *et al.* and our data, respectively, were identified as unique
294 for each of the three publications (S4 A, B Fig). Comparing DE miRNAs between ovary
295 and testis in the three studied data, identified 1 common miRNA for each studied tissue
296 (S4A, B Fig), dre-miR-200b-3p in ovary and dre-miR-212-5p in testis. Since our and
297 Desvignes *et al.* 2019 data used the same zebrafish AB strain, we selected those common
298 DE miRNAs between ovary and testis (8 and 11, respectively) to plot a heatmap (Fig 1C)
299 that showed those miRNAs that were constitutively differentially expressed between both
300 sexes.

301

302 *miRNAs sensitive to temperature in the gonads*

303 One miRNA was found to be significantly upregulated (adjusted P-value ≤ 0.05) in testis
304 between CT and HT groups, i.e., dre-miR-122-5p, and 23 miRNAs were differentially

305 regulated in the ovary (adjusted P -value ≤ 0.05 , Fig 2) (S3 Table), giving a total of 24 DE
306 miRNAs. The five top upregulated miRNAs in the ovary were dre-miR-499-5p, dre-miR-
307 202-5p, dre-miR-92b-3p, dre-miR-454b-3p, and dre-miR-725b-5p. The most
308 downregulated were dre-miR-726-5p, dre-miR-184-3p, dre-miR-146b-5p, dre-miR-34a-
309 5p and dre-miR-132-3p (S5 Fig). The temperature-induced higher fold changes in those
310 downregulated miRNAs compared to those upregulated, show a difference in expression
311 over six-fold.

312

313 *miRNA target predictions and functional annotation*

314 To inspect the biological roles of the identified 24 DE miRNAs after high-temperature
315 treatments in the zebrafish gonads, target genes of the 24 miRNAs were predicted upon
316 the zebrafish genome by 3'-UTRs. Most of the DE miRNAs had multiple target genes
317 and many of them were regulated by more than one miRNA. We predicted 1,205 and 101
318 target genes for ovary and testis, respectively, in the control groups. In ovary, 407 unique
319 targets were found for the 23 DE miRNAs whereas in testis, 85 unique targets were found
320 for dre-miR-122-5p. The full list of the predicted targets is shown in S4 Table.

321

322 To better understand the relationship between DE miRNAs and their function in the
323 gonads after heat exposure, GO enrichment analyses of the putative target genes were
324 performed (S5 Table). In ovary, 54 GO terms for Biological process (BP), 27 for Cellular
325 component (CC), and 42 for Molecular function (MF) were predicted and 3 GO terms for
326 BP, 4 for CC, and 3 for MF in testis. In ovary, some of the most enriched GO terms for
327 BP were: regulation of transcription, signal transduction and transport (Fig 3A); for CC
328 were: membrane, nucleus and integral component of membrane (Fig 3B), and for MF
329 were: metal ion binding, zinc-binding, and transferase activity (Fig 3C).

330

331 *Synteny of the target genes*

332 A synteny map indicated the widespread distribution of the 24 DE miRNAs (23 in ovaries,
333 1 in testis) in the zebrafish genome (Fig 4). In the ovary, the spatial distribution of the
334 407 target genes in which DE miRNAs interacted was mostly localized in chromosomes
335 7, 2, 4, 3 and 11 (Fig 5A). These five chromosomes contained 54.5% of the predicted
336 target genes. 16 DE miRNAs are targeting genes in chromosome 4 (S6 Table), some of
337 which were related to the reproductive system (e.g. SRY-box transcription factor 5, *sox5*,
338 RAS like estrogen-regulated growth inhibitor, *rerg*) or the immune system (interleukin

339 15 receptor subunit alpha, *ilr15β*, B-cell translocation gene 1, *btg1*). In testis, Fig 5B
340 shows the top 15 chromosomes in which the 85 predicted genes were localized. The
341 chromosomes 14, 2, 7, 15, 1 contained 35.3% of the predicted genes.

342

343 *Spatial expression of selected miRNAs in the gonads*

344 To better understand the functionality of the DE miRNAs in the gonads, the cellular
345 localization of two DE miRNAs was performed by FISH. dre-miR-146b-5p was selected
346 since it was DE in both OHT vs. OCT and OCT vs. TCT in the present data, as well as
347 DE in ovary vs. testis in the data from Presslauer et al. [17]. dre-miR-122-5p was selected
348 for being the only DE miRNA in testes after high temperature. In ovaries, dre-miR-146b-
349 5p and dre-miR-122-5p were detected in the germ cells with an expression that was
350 inversely proportional to oocyte maturation (Fig 6 and 7), detecting expression in small
351 oocytes likely corresponding to pre-vitellogenic and early-vitellogenic oocytes, whereas
352 no expression was detected in large oocytes, including late and post-vitellogenic oocytes.
353 No signal was detected in any of the follicular cells of the ovary. In testis, the signal was
354 not detected for any of the probes used, neither in germ nor follicular cells (data not
355 shown). No signal was detected in negative controls, where scramble miRNA probes were
356 used.

357

358 **Discussion**

359 Temperature increase influences sexual development by skewing sex ratios towards
360 males in fish [5]. The study of the underlying epigenetic mechanisms of this
361 masculinization have relied on DNA methylation analyses in the gonads of some fish
362 species, like European sea bass [6,37], half-smooth tongue sole [8], tilapia [38], fugu [7]
363 and zebrafish [9]. However, other epigenetic mechanisms, and specifically translation
364 interference by miRNAs, have not yet been elucidated. Here, gonadal data is described
365 on miRNAs affected by changes in temperature during early development that likely play
366 a role in the final sexual phenotype in zebrafish.

367

368 To date, available reports in zebrafish show high variability on the sex ratio changes in
369 zebrafish subjected to high temperatures (from 22 to 60% masculinization) [27,39,40], as
370 zebrafish present interfamily variation due to the genetic and environmental influences
371 on the final sexual phenotype [41,42]. In the current study, a 17% sex-reversal was
372 observed (from 70% at low temperature to 87% at high temperature), although not

373 significant. Non-significance might be explained by a low number of biological replicates
374 or/and by the genetic factor of the skewed sex ratios towards males of the family used
375 (i.e. 70%) [43]. To induce a significant masculinization, higher temperatures (i.e. 36°C)
376 can be performed but in contrast, few or no female samples would have been obtained
377 [9,27]. Thus, the experimental approach confirmed the successful implementation of heat
378 treatment as well as validating previously reported results.

379

380 Here, we reported a total of 24 DE miRNAs in the zebrafish gonads two months after heat
381 exposure during fifteen days of early development when gonads are differentiating. In a
382 similar study in Atlantic cod, embryos were incubated at high temperatures resulting in
383 alterations of some, but few, miRNAs in juvenile animals in different tissues, including
384 gonads, although the sexual dimorphic difference was not studied [25]. Thus, the
385 alteration of the miRNA expression due to environmental cues indicates that they can be
386 considered as heat recorders as their expression depends on past events. Only one out of
387 the 24 miRNAs altered by elevated temperatures is testis specific. By using the same
388 experimental approach in zebrafish in Ribas *et al.* 2017, testicular transcriptome presented
389 no DE genes after the heat exposition during sex differentiation when compared to the
390 control, revealing that in testes, of some certain neomales, no relevant transcriptomic
391 differences after the heat treatment was presented [27]. Nevertheless, in the same study,
392 another neomale population in the heated group showed a larger amount of DE genes
393 (~700) when compared to the control. In the ovarian transcriptomes, only 20 DE genes
394 were found when compared to the control but a larger number of DE genes were found
395 (~9,650) when compared to so-called *pseudofemales* (females with phenotypic ovaries
396 and with a male-transcriptomic profile). Overall, when comparing the overviewed
397 number of DE miRNAs and the DE genes obtained from both studies in the zebrafish
398 gonads treated with high temperature during sex differentiation, the alterations in the
399 miRNome and the transcriptomes were more severe in the ovaries, probably due to the
400 fact that in the adult female fish, ovaries needed to resist the sex-reversal process while
401 some adult males were already sex-reversed females.

402

403 Here, twelve of the miRNAs were upregulated in the adult ovaries of the heat-treated fish,
404 among them, dre-miR-202-5p. Emerging evidence suggests that this miRNA is highly
405 expressed in female gonads of many animals, e.g., fish [25,44], frogs [45] and goats [46].
406 Although it was proposed as a regulator of fish fecundity and fertility [47], in mammals,

407 miRNA-202 was found in testes in both Sertoli cells and spermatogonia stem cells [48,49]
408 and in rainbow trout more abundantly in testes than ovaries (20 and 10%, respectively)
409 [16] as well as in medaka [47]. Another miRNA that was upregulated was dre-miR-92a,
410 and has been found to be the most abundant miRNA in zebrafish gonads [17]. It was
411 responsible for cell cycle progression during the early stage of embryo development and
412 metamorphosis in Japanese flounder (*Paralichthys olivaceus*) [50] and in zebrafish [51].
413

414 The expression of eleven miRNAs was downregulated due to the temperature increase,
415 for example, dre-miRNA-21-5p. This miRNA is highly conserved throughout evolution
416 and abundantly distributed in many tissues in fish. This is the case of the heart [52], kidney
417 [53], and ovary [54]. It was also linked to the fish immune response through the TLR28
418 signaling pathway [55]. Many functions have been related to miRNA-21 in humans as
419 being found in different cancers, although in fish, fewer data of its biological role are
420 available. Strikingly, most of the miRNAs here identified as heat recorders, are related to
421 ovarian and prostate cancer in humans, either promoting or suppressing cancer
422 progression and thus much literature related to these diseases is available. This is the case
423 of, for example, miR-19b [56], miR-15b [57], and miR-454 [58,59] three upregulated
424 miRNAs in the fish ovaries after the heat and; miR-27b [60,61], miR-212 [62], miR-146b
425 [63], and miR-34a [64], which were downregulated. The emerging research on miRNAs
426 has flourished the utility of miRNAs as bioclinical markers in human cancers during the
427 last decade [65,66] but also as attractive drug targets for human diseases with no current
428 effective treatments [67,68]. This has attracted the attention of many pharmaceutical
429 companies which are developing clinical trials, such as, miRNA-21 and mRNA-92 which
430 are in phase 2 and 1, respectively [68,69] and were found down- and upregulated,
431 respectively, in the ovaries after the heat in the present study. Thus, the exploration of the
432 usefulness of miRNAs as heat markers becomes attractive as a potential method to predict
433 animals with different susceptibilities to environmental cues.
434

435 Predicted target genes from the DE miRNAs due to exposure to elevated temperatures,
436 showed functions related to reproduction and sex. This is the case of Polycomb Group
437 RING Finger (*pcgf6*) gene-targeted by dre-miR-458-3p [70]; *pcgf5a* gene targeted by dre-
438 miR-184-3p [71], and Dickkopf-related protein (*dkk1b*) targeted by dre-miR-212-5p [72].
439 Similarly, those miRNAs downregulated in the ovaries after the heat targeted to
440 reproduction-related genes such as *sox5* targeted by dre-miR-15b-1-5p [73], and Nuclear

441 Receptor Subfamily 5 Group A Member 2 (*nr5a2*) targeted by dre-miR-19b-3p [74]. In
442 the testes, only one miRNA was identified as heat recorder, miR-146b and targeted, for
443 example, to *bbc3* gene which is related to prostate cancer [75], and *tet2*, a demethylator
444 of many genes, included the SRY, a key gene in the regulation of male sex determination
445 in mammals [76]. Overall results confirmed that the miRNA machinery was active and
446 essential to regulate the environmental cues that occur in the adult fish gonads.

447

448 The synteny of the predicted target genes of the heat recorders miRNAs on the zebrafish
449 genome showed multiple regions in all the 25 chromosome pairs, but more abundantly in
450 chromosomes 7, 2, 4, 3 and 11 in the ovary, accounting for 54.5% of the predicted target
451 genes in the present data. To foster the identification of sex-determining gene(s) in this
452 popular animal model, many sex genetic studies in the last decade have been performed
453 by crossing natural and domesticated zebrafish strains. By single nucleotide
454 polymorphisms (SNPs) and sequence-based polymorphic restriction site associated
455 (RAD-tag) strategies, several sex-linked loci in the chromosomes 4 and 3 have been
456 identified [77,78] and in the chromosomes 5 and 16 [78,79]. Strikingly, in chromosome
457 4, the sex-association region (*sar*) was localized in wild zebrafish strains [80], a
458 chromosome that from our data supported more than 10,5% of the predicted target genes
459 of the miRNAs sensitive to heat. Furthermore, chromosome 16 accounted ~7,5% of our
460 predicted target genes. Thus, although more research is required to understand the
461 biological functions of the present data, we can ascertain some of the chromosomes that
462 host genes regulated by miRNAs sensitive to heat.

463

464 Further, we identified sexual dimorphism in the expression of miRNAs in the fish gonads
465 with a total of 45 and 54 up- and downregulated, respectively, in the ovary when
466 compared to testis. To increase consistency, our data were compared with two available
467 data of the same species resulting in common miRNAs. We found that miRNA-200b-3p
468 was upregulated in the ovary in the three zebrafish comparisons. The role of this miRNA
469 is not fully understood but it is known to be involved in many human cancers: kidney
470 [81], prostate [82], and breast [83]. It is highly released in the serum of the anovulatory
471 women diagnosed with polycystic ovary syndrome and suggested as a clinical marker
472 [84]. miR-212-5p was DE in the testes *vs* ovaries in the three zebrafish gonadal miRNA
473 datasets and inhibited after the heat treatment in the ovaries. This can indicate its role by
474 dysregulation of ovarian functions during the masculinization event occurred by heat. The

475 miRNA-212 function is not stated but in humans, it is related to cell proliferation and
476 angiogenesis and is present in the brain and gonads [62,85]. In addition, miRNA-212 was
477 found in tilapia gonads [86], which, together with the current results, show its relevance
478 presence in the reproduction system in fish.

479

480 The gonadal localization of two miRNAs, dre-miR-122-5p and dre-miR-146b-5p,
481 showed similar results. In ovary, their expressions were found in the germ cells but not in
482 the granulosa or theca cells while fluorescent intensity was stronger in less mature
483 oogonial cells, suggesting a potential role of these miRNAs in germ cell development. In
484 testis, although miR-122 is involved in zebrafish sperm quality [87,88] and male fertility
485 in mammals [89], its localization, together with that for miR-146b, was not possible in
486 the zebrafish testicular cells, so more sensitive methods need to be readied. miR-122 is
487 involved in humans in many cancer and has reached phase II in clinical trials for treating
488 hepatitis [67,90]. In fish, much literature related to miR-122 is available certifying the
489 role in the immune [91,92] and in the metabolic systems being highly abundant in the
490 zebrafish liver [93]. The presence of miR-122 was detailed in many fish species such as
491 tilapia, medaka, carp, and in many fish tissues such as the spleen, head kidney [94–97].
492 In the gonads, it was detected in mature sharpsnout seabream (*Diplodus puntazzo*) but not
493 in the marine medaka [95,98]. Strikingly, miRNA122 was reported to be sensitive to cold
494 temperatures in the Senegalese sole (*Solea senegalensis*) [24,99], thus the role of this
495 miRNA as a thermal recorder is worth further exploring. Regarding miR-146b in humans,
496 it plays a role in the innate immune response [100] and is involved in gliomas and ovarian
497 cancers [101,102]. In fish, very little data is available but it was upregulated in response
498 to infection in zebrafish embryos [103] and spleen [104] and the sperm of growth
499 hormone (GH)-transgenic zebrafish [87]. Overall, to our knowledge, this is the first time
500 that the cellular localization of these two miRNAs are described in the gonads.

501

502 **Conclusions**

503 Present data evidence that high temperature alters the miRNome in the fish gonads. The
504 influence of heat treatment during gonadal development altered the expression of 23
505 miRNAs in the ovaries, by enhancing, for example, miR-92b-3p and miR-202-5p, or
506 repressing, for example, miR-212-5p and miR-146b-3p expressions. In testes, miR-122-
507 5p was the only miRNA sensitive to heat. These miRNAs act as heat recorders and might
508 be potential targets for developing predictive tools of heat response, essential in a climate

509 change scenario or to increase productivity from sustainability. In addition, as most of the
510 24 DE miRNA have been found to be involved in different diseases, but mostly related
511 to cancer, the data here might be helpful to enhance our knowledge on the functional roles
512 of the miRNAs identified in the present study.

513

514 **Acknowledgments**

515 This study was supported by the Spanish Ministry of Science grant AGL2015-73864-JIN
516 “Ambisex” and 2PID2020-113781RB-I00 “MicroMet” and by the Consejo Superior de
517 Investigaciones Científicas (CSIC) grant 02030E004 “Interomics” to LR, by grant
518 AGL2016-78710-R to FP and with funding from the Spanish government through the
519 ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). We thank the
520 lab technician Sílvia Joly for her essential assistance in our team, Alejandro Valdivieso
521 for the treatments of the zebrafish, the master student Irene Santisteban for helping with
522 some miRNA analyses and Gemma Fusté for her assistance in fish facilities.

523

524 **Ethics**

525 Experimental procedures agreed with the European regulations of animal welfare (ETS
526 N8 123,01/01/91) and obtained approval with project number 9977 by the Catalan
527 government regulations (34, 53/2013).

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543 **Figure legends**

544

545 **Fig 1. The number of miRNAs that were differentially expressed (DE) of two AB**
546 **strains (current data and Desvignes *et al* 2019) and zf45Tg hybrid zebrafish**
547 **(Presslauer *et al* 2019). A) In ovaries, and B) testes. C) Heatmap of DE miRNAs between**
548 **ovary and testis commonly found in Desvignes *et al* 2019 and present data.**

549

550 **Fig 2. Heatmap of 23 differentially expressed (DE) miRNAs in mature ovaries after**
551 **exposing zebrafish to high temperature during sex differentiation.** The color scale
552 ranges from blue to red, where blue shows relative overexpression and red is relative
553 underexpression. Both miRNAs and samples were grouped by hierarchical clustering.

554

555 **Fig 3. Visual representation of Gene Ontology (GO) terms obtained from predicted**
556 **target genes of differentially expressed miRNAs in ovary.** Color intensity represents
557 the frequency of the GO term as linked to the target genes. LogSize shows the frequency
558 of the GO term in the UniProt database. The top 10 most frequent GO terms are annotated
559 in the plot. **A)** GO terms related to Biological processes. The most frequent terms were
560 regulation of transcription, signal transduction and transport. **B)** GO terms related to
561 Cellular components. The most frequent terms were membrane, nucleus and integral
562 component of membrane. **C)** GO terms related to Molecular function. The most frequent
563 terms were metal ion binding, zinc-binding, and transferase activity.

564

565 **Fig 4. Circular localization of predicted target genes from differentially expressed**
566 **(DE) miRNAs in the zebrafish genome.** 407 predicted target genes of DE miRNAs in
567 the ovary (purple) and 85 predicted target genes in the testis (green) were distributed
568 throughout the zebrafish genome, with the highest percentage present in chromosomes 7
569 and 14 for ovary and testis, respectively.

570

571 **Fig 5. Chromosomal distribution in the zebrafish genome of the number of predicted**
572 **target genes obtained from differentially expressed miRNAs after high temperature**
573 **in the ovary (A) and testis (B) in adult zebrafish.**

574

575 **Fig 6. Fluorescent *in situ* hybridization (FISH) of dre-miR-146b-5p in the ovary of**
576 **adult zebrafish.** A total of 6 female fish were used to obtain the results. **A)** Sections A

577 and **A'** showed scramble probe. Section **B**, **B'** and **B''** showed the localization of miR-
578 146b in germ cells. size bar = 100 μ m.

579

580 **Fig 7. Fluorescent *in situ* hybridization (FISH) of dre-miR-122-5p in the ovary of**
581 **adult zebrafish.** A total of 6 female fish were used to obtain the results. Sections **A** and
582 **A'** showed scramble probe. Section **B**, **B'** and **B''** showed the localization of dre-miR-
583 122-5p in germ cells. (V) Vitellogenic oocyte, (LV) late vitellogenic oocyte. A and B scale
584 bar = 500 μ m and **A'**, **B'**, **B''** size bar = 100 μ m.

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611 **Supplementary tables**

612 **S1 Table. Weight, length and K-factor of all zebrafish used for the experiment.**

613 **S2 Table. Common miRNAs in ovaries and testes between present data and**
614 **Presslauer *et al* 2017 and Desvignes *et al* 2019.**

615 **S3 Table. Statistical data of 24 differentially expressed miRNAs in the zebrafish**
616 **mature gonads after high-temperature treatment during sex differentiation.**

617 **S4 Table. Predicted target genes of the 24 differentially expressed miRNAs**

618 **S5 Table. Gene Ontology (GO) terms obtained from the predicted target genes.**

619 **S6 Table. Differentially expressed miRNA in the ovaries after high temperatures**
620 **found in chromosome 4.**

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645 **Supplementary figures**

646 **S1 Fig. Sex ratio in adult zebrafish after high temperature (34°C) treatment during**
647 **sex differentiation.** Results show the mean \pm SD of two technical replicates of one family
648 pair for control (CT, 28°C; n = 27) and treated (HT, 34°C; n = 52) groups. No significant
649 differences were found between the two groups by Chi-squared test.

650

651 **S2 Fig. Multidimensional scaling of ovary and testis RNA sequencing data from 16**
652 **samples.** Four in each group, ovary and testis, control and high temperature.

653

654 **S3 Fig. Validation of RNA sequencing data by qPCR.** The comparison is based on the
655 log2 fold. The miRNAs compared were for OHT vs. OCT: dre-miR-202-5p, dre-miR-
656 92a-3p, dre-miR-21-5p and dre-miR-146b-3p; for THT vs. TCT: dre-miR-122-5p and for
657 OCT vs. TCT: dre-miR-146b-3p and dre-miR-2189-3p.

658

659 **S4 Fig. Venn diagrams of differentially expressed (DE) miRNAs in ovary vs. testis.**
660 **A)** Common DE expressed miRNAs in ovaries between Presslauer *et al* 2019, Desvignes
661 *et al* 2017, and present data. One miRNA was DE in all datasets: dre-miR-200b-30. **B)**
662 Common DE expressed miRNAs in testes between Presslauer *et al* 2019, Desvignes *et al*
663 2017, and present data. One miRNA was DE in all datasets: dre-miR-212-5p.

664

665 **S5. Fig Top five up- and downregulated miRNAs in adult ovaries heated with high**
666 **temperature in zebrafish.**

667

668 **Datasets**

669 **Dataset 1.** Reads of aligned sequences obtained in the ovaries and testes in adult zebrafish
670 control group and treated with high temperature.

671

672

673

674

675

676

677

678

679 **References**

- 680 1. Dangendorf S, Hay C, Calafat FM, Marcos M, Piecuch CG, Berk K, et al.
681 Persistent acceleration in global sea-level rise since the 1960s. *Nat Clim Chang.*
682 2019;9: 705–710. doi:10.1038/s41558-019-0531-8
- 683 2. Liu H, Todd E V., Lokman PM, Lamm MS, Godwin JR, Gemmell NJ. Sexual
684 plasticity: A fishy tale. *Molecular Reproduction and Development*. John Wiley
685 and Sons Inc.; 2017. pp. 171–194. doi:10.1002/mrd.22691
- 686 3. Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: An
687 overview of genetic, physiological, and environmental influences. *Aquaculture.*
688 2002;208: 191–364. doi:10.1016/S0044-8486(02)00057-1
- 689 4. Wang H-P, Shen Z-G. Sex Control in Aquaculture. *Sex Control in Aquaculture*.
690 Chichester, UK: John Wiley & Sons, Ltd; 2018. pp. 1–34.
691 doi:10.1002/9781119127291.ch1
- 692 5. Ospina-Alvarez N, Piferrer F. Temperature-Dependent Sex Determination in Fish
693 Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects
694 of Climate Change. *PLoS One*. 2008;3. doi:10.1371/journal.pone.0002837
- 695 6. Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, et al. DNA
696 methylation of the gonadal aromatase (cyp19a) promoter is involved in
697 temperature-dependent sex ratio shifts in the European sea bass. *PLoS Genet.*
698 2011;7. doi:10.1371/journal.pgen.1002447
- 699 7. Zhou H, Zhuang ZX, Sun YQ, Chen Q, Zheng XY, Liang YT, et al. Changes in
700 DNA methylation during epigenetic-associated sex reversal under low
701 temperature in Takifugu rubripes. *PLoS One*. 2019;14.
702 doi:10.1371/journal.pone.0221641
- 703 8. Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, et al. Epigenetic modification and
704 inheritance in sexual reversal of fish. *GENOME Res*. 2014;24: 604–615.
705 doi:10.1101/gr.162172.113
- 706 9. Valdivieso A, Ribas L, Monleón-Getino A, Orbán L, Piferrer F. Exposure of
707 zebrafish to elevated temperature induces sex ratio shifts and alterations in the
708 testicular epigenome of unexposed offspring. *Environ Res*. 2020;186: 109601.
709 doi:10.1016/j.envres.2020.109601
- 710 10. Iwakawa H, oki, Tomari Y. The Functions of MicroRNAs: mRNA Decay and
711 Translational Repression. *Trends in Cell Biology*. Elsevier Ltd; 2015. pp. 651–
712 665. doi:10.1016/j.tcb.2015.07.011

713 11. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA
714 sequences to function. *Nucleic Acids Res.* 2019;47: D155–D162.
715 doi:10.1093/nar/gky1141

716 12. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA
717 genes. *Science*. 2003. p. 1540. doi:10.1126/science.1080372

718 13. Herkenhoff ME, Oliveira AC, Nachtigall PG, Costa JM, Campos VF, Hilsdorf
719 AWS, et al. Fishing into the MicroRNA transcriptome. *Frontiers in Genetics*.
720 Frontiers Media S.A.; 2018. doi:10.3389/fgene.2018.00088

721 14. Biziayehu TT, Babiak J, Norberg B, Fernandes JMO, Johansen SD, Babiak I.
722 Sex-Biased miRNA Expression in Atlantic Halibut (*Hippoglossus hippoglossus*)
723 Brain and Gonads. *Sex Dev.* 2012;6: 257–266. doi:10.1159/000341378

724 15. Jing J, Wu J, Liu W, Xiong S, Ma W, Zhang J, et al. Sex-biased miRNAs in
725 gonad and their potential roles for testis development in yellow catfish. *PLoS*
726 *One*. 2014;9. doi:10.1371/journal.pone.0107946

727 16. Juanchich A, Bardou P, Rué O, Gabillard J-C, Gaspin C, Bobe J, et al.
728 Characterization of an extensive rainbow trout miRNA transcriptome by next
729 generation sequencing. *BMC Genomics*. 2016;17: 164. doi:10.1186/s12864-016-
730 2505-9

731 17. Presslauer C, Biziayehu TT, Kopp M, Fernandes JMO, Babiak I. Dynamics of
732 miRNA transcriptome during gonadal development of zebrafish. *Sci Rep.* 2017;7.
733 doi:10.1038/SREP43850

734 18. Desvignes T, Batzel P, Sydes J, Eames BF, Postlethwait JH. miRNA analysis
735 with Prost! reveals evolutionary conservation of organ-enriched expression and
736 post-transcriptional modifications in three-spined stickleback and zebrafish. *Sci*
737 *Rep.* 2019;9: 3913. doi:10.1038/s41598-019-40361-8

738 19. Ji X, Jiang P, Luo J, Li M, Bai Y, Zhang J, et al. Identification and
739 characterization of miRNAs involved in cold acclimation of zebrafish ZF4 cells.
740 *PLoS One*. 2020;15. doi:10.1371/journal.pone.0226905

741 20. Huang J, Li Y, Ma F, Kang Y, Liu Z, Wang J. Identification and characterization
742 of microRNAs in the liver of rainbow trout in response to heat stress by high-
743 throughput sequencing. *Gene*. 2018;679: 274–281.
744 doi:10.1016/j.gene.2018.09.012

745 21. Zhou CQ, Zhou P, Ren YL, Cao LH, Wang JL. Physiological response and
746 miRNA-mRNA interaction analysis in the head kidney of rainbow trout exposed

747 to acute heat stress. *J Therm Biol.* 2019;83: 134–141.
748 doi:10.1016/j.jtherbio.2019.05.014

749 22. Vasadia DJ, Zippay ML, Place SP. Characterization of thermally sensitive
750 miRNAs reveals a central role of the FoxO signaling pathway in regulating the
751 cellular stress response of an extreme stenotherm, *Trematomus bernacchii*. *Mar*
752 *Genomics.* 2019;48: 100698. doi:10.1016/j.margen.2019.100698

753 23. Nie MM, Tan XG, Lu YL, Wu ZH, Li J, Xu DD, et al. Network of microRNA-
754 transcriptional factor-mRNA in cold response of turbot *Scophthalmus maximus*.
755 *FISH Physiol Biochem.* 2019;45: 583–597. doi:10.1007/s10695-019-00611-y

756 24. Campos C, Sundaram AYM, Valente LMP, Conceicao LEC, Engrola S,
757 Fernandes JMO. Thermal plasticity of the miRNA transcriptome during
758 Senegalese sole development. *BMC Genomics.* 2014;15. doi:10.1186/1471-2164-
759 15-525

760 25. Bizuayehu TT, Johansen SD, Puvanendran V, Toftsen H, Babiak I. Temperature
761 during early development has long-term effects on microRNA expression in
762 Atlantic cod. *BMC Genomics.* 2015;16: 1–12. doi:10.1186/s12864-015-1503-7

763 26. Ikert H, Craig PM. Chronic exposure to venlafaxine and increased water
764 temperature reversibly alters microRNA in zebrafish gonads (*Danio rerio*). *Comp*
765 *Biochem Physiol - Part D Genomics Proteomics.* 2020;33: 100634.
766 doi:10.1016/j.cbd.2019.100634

767 27. Ribas L, Liew WC, Díaz N, Sreenivasan R, Orbán L, Piferrer F. Heat-induced
768 masculinization in domesticated zebrafish is family-specific & yields a set of
769 different gonadal transcriptomes. *Proc Natl Acad Sci U S A.* 2017;114: E941–
770 E950. doi:10.1073/pnas.1609411114

771 28. Ribas L, Valdivieso A, Díaz N, Piferrer F. Appropriate rearing density in
772 domesticated zebrafish to avoid masculinization: Links with the stress response. *J*
773 *Exp Biol.* 2017;220: 1056–1064. doi:10.1242/jeb.144980

774 29. Ribas L, Robledo D, Gómez-Tato A, Viñas A, Martínez P, Piferrer F.
775 Comprehensive transcriptomic analysis of the process of gonadal sex
776 differentiation in the turbot (*Scophthalmus maximus*). *Mol Cell Endocrinol.*
777 2016;422: 132–149. doi:10.1016/j.mce.2015.11.006

778 30. Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, et al.
779 Characterization of the European Sea Bass (*Dicentrarchus labrax*) Gonadal
780 Transcriptome During Sexual Development. *Mar Biotechnol.* 2019;21: 359–373.

781 doi:10.1007/s10126-019-09886-x

782 31. Robinson MD, McCarthy DJ, Smyth GK. *edgeR: A Bioconductor package for*
783 *differential expression analysis of digital gene expression data.* *Bioinformatics.*
784 *2009;26: 139–140.* doi:10.1093/bioinformatics/btp616

785 32. Bronstein AM, Bronstein MM, Kimmel R. *Generalized multidimensional*
786 *scaling: A framework for isometry-invariant partial surface matching.* *Proc Natl*
787 *Acad Sci.* *2006;103: 1168–1172.* doi:10.1073/pnas.0508601103

788 33. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
789 *Bioconductor: open software development for computational biology and*
790 *bioinformatics.* *Genome Biol.* *2004;5: 1–16.* doi:10.1186/GB-2004-5-10-
791 R80/FIGURES/3

792 34. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. *MicroRNA targets*
793 *in Drosophila.* *Genome Biol.* *2003;5: 1–14.* doi:10.1186/gb-2003-5-1-r1

794 35. Supek F, Bošnjak M, Škunca N, Šmuc T. *Revigo summarizes and visualizes long*
795 *lists of gene ontology terms.* *PLoS One.* *2011;6.*
796 doi:10.1371/journal.pone.0021800

797 36. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.
798 *Circos: An information aesthetic for comparative genomics.* *Genome Res.*
799 *2009;19: 1639–1645.* doi:10.1101/gr.092759.109

800 37. Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, et al.
801 *Unraveling the genotype by environment interaction in a thermosensitive fish*
802 *with a polygenic sex determination system.* *Proc Natl Acad Sci.* *2021;118:*
803 e2112660118. doi:10.1073/PNAS.2112660118

804 38. Wang J, Liu Y, Jiang S, Li W, Gui L, Zhou T, et al. *Transcriptomic and*
805 *epigenomic alterations of Nile tilapia gonads sexually reversed by high*
806 *temperature.* *AQUACULTURE.* *2019;508: 167–177.*
807 doi:10.1016/j.aquaculture.2019.04.073

808 39. Hosseini S, Ha N-T, Simianer H, Falker-Gieske C, Brenig B, Franke A, et al.
809 *Genetic mechanism underlying sexual plasticity and its association with colour*
810 *patterning in zebrafish (*Danio rerio*).* *BMC Genomics.* *2019;20: 341.*
811 doi:10.1186/s12864-019-5722-1

812 40. Abozaid H, Wessels S, Hörstgen-Schwark G. *Effect of Rearing Temperatures*
813 *during Embryonic Development on the Phenotypic Sex in Zebrafish (*Danio**

814 *rerio*). *Sex Dev.* *2011;5: 259–265.* doi:10.1159/000330120

815 41. Liew WC, Orbán L. Zebrafish sex: a complicated affair. *Brief Funct Genomics.*
816 2014;13: 172–187. doi:10.1093/BFGP/ELT041

817 42. Ribas L, Valdivieso A, Diaz N, Piferrer F. Response to “the importance of
818 controlling genetic variation - Remarks on ‘Appropriate rearing density in
819 domesticated zebrafish to avoid masculinization: Links with the stress
820 response.’” *J Exp Biol.* 2017;220: 4079–4080. doi:10.1242/jeb.167437

821 43. Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L. Polygenic
822 Sex Determination System in Zebrafish. *PLoS One.* 2012;7: e34397.
823 doi:10.1371/JOURNAL.PONE.0034397

824 44. Jin Y, Liu W, Xiang Y, Zhang W, Zhang H, Jia K, et al. Maternal miR-202-5p is
825 required for zebrafish primordial germ cell migration by protecting small GTPase
826 Cdc42. *J Mol Cell Biol.* 2020;12: 530–542. doi:10.1093/jmcb/mjz103

827 45. Michalak P, Malone JH. Testis-derived microRNA profiles of African clawed
828 frogs (*Xenopus*) and their sterile hybrids. *Genomics.* 2008;91: 158–164.
829 doi:<https://doi.org/10.1016/j.ygeno.2007.10.013>

830 46. Ding Q, Jin M, Wang Y, Liu J, Kalds P, Wang Y, et al. Transactivation of miR-
831 202-5p by Steroidogenic Factor 1 (SF1) Induces Apoptosis in Goat Granulosa
832 Cells by Targeting TGF beta R2. *CELLS.* 2020;9. doi:10.3390/cells9020445

833 47. Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, et al. MiR-202
834 controls female fecundity by regulating medaka oogenesis. Schartl M, editor.
835 *PLOS Genet.* 2018;14: e1007593. doi:10.1371/journal.pgen.1007593

836 48. Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, et al. MicroRNA-202 maintains
837 spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding
838 proteins. *Nucleic Acids Res.* 2017;45: 4142–4157. doi:10.1093/nar/gkw1287

839 49. Wainwright EN, Jorgensen JS, Kim Y, Truong V, Bagheri-Fam S, Davidson T, et
840 al. SOX9 Regulates MicroRNA miR-202-5p/3p Expression During Mouse Testis
841 Differentiation1. *Biol Reprod.* 2013;89. doi:10.1095/biolreprod.113.110155

842 50. Li XM, Hu HS, Li R, Wang ZW, Qi J, Wang ZG. The role of miR-92 in
843 regulating early development and metamorphosis of Japanese flounder
844 *Paralichthys olivaceus.* *GENES Genet Syst.* 2020;95: 1–10. doi:10.1266/ggs.18-
845 00047

846 51. Presslauer C, Bazuayehu T, Fernandes J, Babiak I. miR-92a-3p controls cell cycle
847 progression in zebrafish. miR-92a-3p Control cell cycle Progress zebrafish. 2019;
848 680991. doi:10.1101/680991

849 52. Kolpa HJ, Peal DS, Lynch SN, Giokas AC, Ghatak S, Misra S, et al. miR-21
850 represses Pcd4 during cardiac valvulogenesis. *DEVELOPMENT*. 2013;140:
851 2172–2180. doi:10.1242/dev.084475

852 53. Hoppe B, Pietsch S, Franke M, Engel S, Groth M, Platzer M, et al. MiR-21 is
853 required for efficient kidney regeneration in fish. *BMC Dev Biol*. 2015;15:
854 doi:10.1186/s12861-015-0089-2

855 54. Wong QWL, Sun MA, Lau SW, Parsania C, Zhou S, Zhong S, et al.
856 Identification and characterization of a specific 13-miRNA expression signature
857 during follicle activation in the zebrafish ovary. *Biol Reprod*. 2018;98: 42–53.
858 doi:10.1093/biolre/iox160

859 55. Bi D, Cui J, Chu Q, Xu T. MicroRNA-21 contributes to suppress cytokines
860 production by targeting TLR28 in teleost fish. *Mol Immunol*. 2017;83: 107–114.
861 doi:10.1016/j.molimm.2017.01.016

862 56. Zhong Z, Li F, Li Y, Qin S, Wen C, Fu Y, et al. Inhibition of microRNA-19b
863 promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic
864 ovary syndrome. *Mol Med Rep*. 2018;17: 4889–4898.
865 doi:10.3892/mmr.2018.8463

866 57. MacLean JA, King ML, Okuda H, Hayashi K. WNT7A Regulation by miR-15b
867 in Ovarian Cancer. Wong K-K, editor. *PLoS One*. 2016;11: e0156109.
868 doi:10.1371/journal.pone.0156109

869 58. An Y, Zhang J, Cheng X, Li B, Tian Y, Zhang X, et al. MiR-454 suppresses the
870 proliferation and invasion of ovarian cancer by targeting E2F6. *Cancer Cell Int*.
871 2020;20: 237. doi:10.1186/s12935-020-01300-0

872 59. Fu Q, Gao Y, Yang F, Mao T, Sun Z, Wang H, et al. Suppression of microRNA-
873 454 impedes the proliferation and invasion of prostate cancer cells by promoting
874 N-myc downstream-regulated gene 2 and inhibiting WNT/β-catenin signaling.
875 *Biomed Pharmacother*. 2018;97: 120–127. doi:10.1016/j.biopha.2017.10.115

876 60. Liu CH, Jing XN, Liu XL, Qin SY, Liu MW, Hou CH. Tumor-suppressor
877 miRNA-27b-5p regulates the growth and metastatic behaviors of ovarian
878 carcinoma cells by targeting CXCL1. *J Ovarian Res*. 2020;13: 92.
879 doi:10.1186/s13048-020-00697-6

880 61. Liu W, Lv C, Zhang B, Zhou Q, Cao Z. MicroRNA-27b functions as a new
881 inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression
882 of VE-cadherin expression. *RNA*. 2017;23: 1019–1027.

883 doi:10.1261/rna.059592.116

884 62. Zhang L, Zhang Y, Wang S, Tao L, Pang L, Fu R, et al. MiR-212-3p suppresses
885 high-grade serous ovarian cancer progression by directly targeting MAP3K3. Am
886 J Transl Res. 2020;12: 875–888. Available:
887 <http://www.ncbi.nlm.nih.gov/pubmed/32269720>

888 63. Yan M, Yang X, Shen R, Wu C, Wang H, Ye Q, et al. miR-146b promotes cell
889 proliferation and increases chemosensitivity, but attenuates cell migration and
890 invasion via FBXL10 in ovarian cancer. Cell Death Dis. 2018;9:
891 doi:10.1038/s41419-018-1093-9

892 64. Schmid G, Notaro S, Reimer D, Abdel-Azim S, Duggan-Peer M, Holly J, et al.
893 Expression and promotor hypermethylation of miR-34a in the various
894 histological subtypes of ovarian cancer. BMC Cancer. 2016;16: 102.
895 doi:10.1186/s12885-016-2135-2

896 65. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal
897 MicroRNA: A Diagnostic Marker for Lung Cancer. Clin Lung Cancer. 2009;10:
898 42–46. doi:10.3816/CLC.2009.n.006

899 66. Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in
900 breast cancer. Clin Chim ACTA. 2021;523: 120–130.
901 doi:10.1016/j.cca.2021.09.013

902 67. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the
903 management of cancer and other diseases. Nat Rev Drug Discov. 2017;16: 203–
904 222. doi:10.1038/nrd.2016.246

905 68. Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and
906 Clinical Research . Frontiers in Genetics . 2019. p. 478.

907 69. Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and androgen
908 deprivation therapy for prostate cancer. Biochim Biophys ACTA-REVIEWS
909 CANCER. 2021;1876. doi:10.1016/j.bbcan.2021.188625

910 70. Endoh M, Endo TA, Shinga J, Hayashi K, Farcas A, Ma K-W, et al. PCGF6-
911 PRC1 suppresses premature differentiation of mouse embryonic stem cells by
912 regulating germ cell-related genes. Elife. 2017;6. doi:10.7554/eLife.21064

913 71. Le Faou P, Völkel P, Angrand P-O. The zebrafish genes encoding the Polycomb
914 repressive complex (PRC) 1. Gene. 2011;475: 10–21.
915 doi:10.1016/j.gene.2010.12.012

916 72. Sreenivasan R, Jiang J, Wang X, Bártfai R, Kwan HY, Christoffels A, et al.

917 Gonad Differentiation in Zebrafish Is Regulated by the Canonical Wnt Signaling
918 Pathway. *Biol Reprod.* 2014;90: 45–46. doi:10.1095/BIOLREPROD.113.110874

919 73. Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, et al.
920 Sox5 is involved in germ-cell regulation and sex determination in medaka
921 following co-option of nested transposable elements. *BMC Biol.* 2018;16.
922 doi:10.1186/s12915-018-0485-8

923 74. Wang L, You F, Weng S, Wen A, Wu Z, Zou Y, et al. Molecular cloning and
924 sexually dimorphic expression patterns of nr0b1 and nr5a2 in olive flounder,
925 *Paralichthys olivaceus*. *Dev Genes Evol* 2015 2252. 2015;225: 95–104.
926 doi:10.1007/S00427-015-0495-2

927 75. Dey P, Ström A, Gustafsson JA. Estrogen receptor β upregulates FOXO3a and
928 causes induction of apoptosis through PUMA in prostate cancer. *Oncogene*.
929 2014;33: 4213–4225. doi:10.1038/ONC.2013.384

930 76. Okashita N, Kuroki S, Maeda R, Tachibana M. TET2 catalyzes active DNA
931 demethylation of the Sry promoter and enhances its expression. *Sci Rep.* 2019;9.
932 doi:10.1038/S41598-019-50058-7

933 77. Anderson JL, Marí AR, Braasch I, Amores A, Hohenlohe P, Batzel P, et al.
934 Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish
935 Revealed by RAD Mapping and Population Genomics. *PLoS One.* 2012;7:
936 40701. doi:10.1371/JOURNAL.PONE.0040701

937 78. Bradley KM, Breyer JP, Melville DB, Broman KW, Knapik EW, Smith JR. An
938 SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci. *G3*
939 *Genes|Genomes|Genetics.* 2011;1: 3. doi:10.1534/G3.111.000190

940 79. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The
941 zebrafish reference genome sequence and its relationship to the human genome.
942 *Nat* 2013 4967446. 2013;496: 498–503. doi:10.1038/nature12111

943 80. Wilson CA, High SK, McCluskey BM, Amores A, Yan Y, Titus TA, et al. Wild
944 Sex in Zebrafish: Loss of the Natural Sex Determinant in Domesticated Strains.
945 *Genetics.* 2014;198: 1291. doi:10.1534/GENETICS.114.169284

946 81. Tang O, Chen X-M, Shen S, Hahn M, Pollock CA. MiRNA-200b represses
947 transforming growth factor-beta 1-induced EMT and fibronectin expression in
948 kidney proximal tubular cells. *Am J Physiol Physiol.* 2013;304: F1266–F1273.
949 doi:10.1152/ajprenal.00302.2012

950 82. Bräse JC, Johannes M, Schlomm T, Faelth M, Haese A, Steuber T, et al.

951 Circulating miRNAs are correlated with tumor progression in prostate cancer. *Int*
952 *J CANCER*. 2011;128: 608–616. doi:10.1002/ijc.25376

953 83. Wang Z, Humphries B, Li Y, Yang C. Abstract P6-01-09: MiRNA-200b
954 suppresses triple negative breast cancer metastasis by targeting ARHGAP18 and
955 causing sustained Rho A activation. *Poster Session Abstracts. American*
956 *Association for Cancer Research*; 2017. pp. P6-01-09-P6-01-09.
957 doi:10.1158/1538-7445.SABCS16-P6-01-09

958 84. Eisenberg I, Nahmias N, Persky MN, Greenfield C, Goldman-Wohl D, Hurwitz
959 A, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-
960 429 levels in anovulatory women. *Fertil Steril*. 2017;107: 269–275.
961 doi:10.1016/j.fertnstert.2016.10.003

962 85. Lei Z, Klasson TD, Brandt MM, van de Hoek G, Logister I, Cheng C, et al.
963 Control of Angiogenesis via a VHL/miR-212/132 Axis. *CELLS*. 2020;9.
964 doi:10.3390/cells9041017

965 86. Tao W, Sun L, Shi H, Cheng Y, Jiang D, Fu B, et al. Integrated analysis of
966 miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex
967 differentiation. *BMC Genomics*. 2016;17: 328. doi:10.1186/s12864-016-2636-z

968 87. Domingues WB, Silveira TLR, Nunes LS, Blodorn EB, Schneider A, Corcine
969 CD, et al. GH Overexpression Alters Spermatic Cells MicroRNAome Profile in
970 Transgenic Zebrafish. *Front Genet*. 2021;12: 704778.
971 doi:10.3389/fgene.2021.704778

972 88. Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm
973 quality on progeny: a study on zebrafish as model species. *Sci Rep*. 2019;9:
974 11192. doi:10.1038/s41598-019-47702-7

975 89. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the
976 posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger
977 RNA (mRNA) by mRNA cleavage. *Biol Reprod*. 2005;73: 427–433.
978 doi:10.1095/biolreprod.105.040998

979 90. Chung HH. The Noticeable Crosslink between miR-122 and Metabolic
980 Dysfunction. *Gastroenterology*. 2021;160: 1881–1882.
981 doi:10.1053/j.gastro.2020.12.054

982 91. Tang XL, Fu JH, Shi YF, Guan WT, Xu MJ. MicroRNAs and Related Cytokine
983 Factors Quickly Respond in the Immune Response of Channel Catfish to
984 Lipopolysaccharides and beta-Glucan Stimulation. *J Aquat Anim Health*.

985 doi:10.1002/aaah.10137

986 92. Cui JX, Chu Q, Xu TJ. miR-122 involved in the regulation of toll-like receptor
987 signaling pathway after *Vibrio anguillarum* infection by targeting TLR14 in
988 miiuy croaker. *FISH Shellfish Immunol.* 2016;58: 67–72.
989 doi:10.1016/j.fsi.2016.09.027

990 93. Cohen A, Smith Y. Estrogen Regulation of microRNAs, Target Genes, and
991 microRNA Expression Associated with Vitellogenesis in the Zebrafish.
992 *Zebrafish.* 2014;11: 462–478. doi:10.1089/zeb.2013.0873

993 94. Her GM, Hsu CC, Hong JR, Lai CY, Hsu MC, Pang HW, et al. Overexpression
994 of gankyrin induces liver steatosis in zebrafish (*Danio rerio*). *Biochim Biophys
995 ACTA-MOLECULAR CELL Biol LIPIDS.* 2011;1811: 536–548.
996 doi:10.1016/j.bbalip.2011.06.011

997 95. Lau K, Lai KP, Bao JYJ, Zhang N, Tse A, Tong A, et al. Identification and
998 Expression Profiling of MicroRNAs in the Brain, Liver and Gonads of Marine
999 Medaka (*Oryzias melastigma*) and in Response to Hypoxia. *PLoS One.* 2014;9.
1000 doi:10.1371/journal.pone.0110698

1001 96. Chen JQ, Zhang S, Tong JY, Teng XJ, Zhang ZY, Li S, et al. Whole
1002 transcriptome-based miRNA-mRNA network analysis revealed the mechanism of
1003 inflammation-immunosuppressive damage caused by cadmium in common carp
1004 spleens. *Sci Total Environ.* 2020;717. doi:10.1016/j.scitotenv.2020.137081

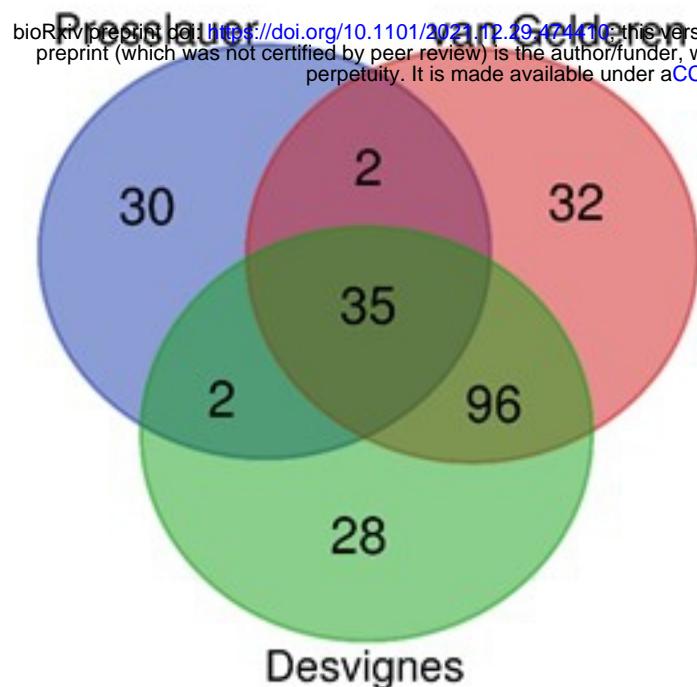
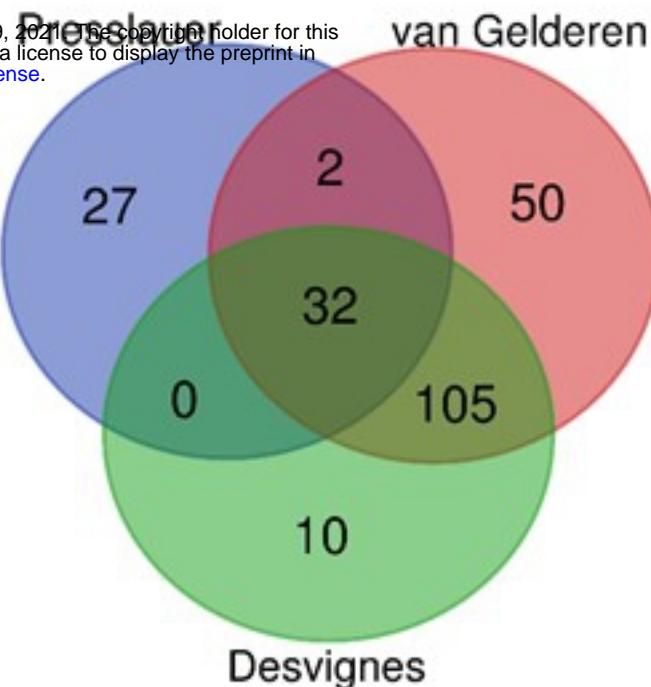
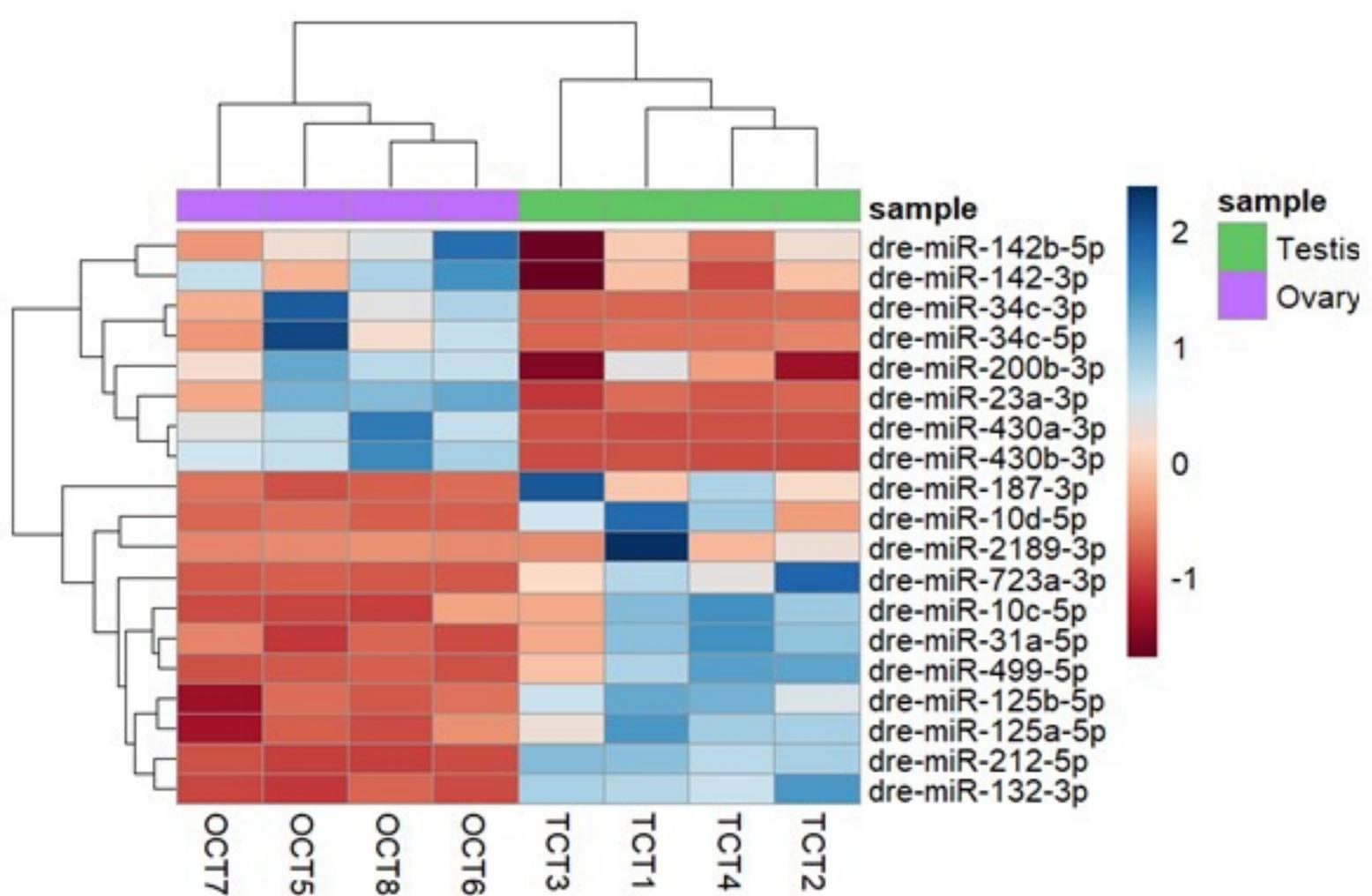
1005 97. Qiang J, Tao YF, Bao JW, Chen DJ, Li HX, He J, et al. High Fat Diet-Induced
1006 miR-122 Regulates Lipid Metabolism and Fat Deposition in Genetically
1007 Improved Farmed Tilapia (GIFT, *Oreochromis niloticus*) Liver. *Front Physiol.*
1008 2018;9. doi:10.3389/fphys.2018.01422

1009 98. Papadaki M, Kaitetzidou E, Mylonas CC, Sarropoulou E. Non-coding RNA
1010 Expression Patterns of Two Different Teleost Gonad Maturation Stages. *Mar
1011 Biotechnol.* 2020;22: 683–695. doi:10.1007/s10126-020-09991-2

1012 99. Blodorn EB, Domingues WB, Nunes LS, Komninou ER, Pinhal D, Campos VF.
1013 MicroRNA roles and their potential use as selection tool to cold tolerance of
1014 domesticated teleostean species: A systematic review. *AQUACULTURE.*
1015 2021;540. doi:10.1016/j.aquaculture.2021.736747

1016 100. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappa B-dependent
1017 induction of microRNA miR-146, an inhibitor targeted to signaling proteins of
1018 innate immune responses. *Proc Natl Acad Sci U S A.* 2006;103: 12481–12486.

1019 doi:10.1073/pnas.0605298103




1020 101. Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast
1021 Cancer Metastasis Suppressor 1 Up-regulates miR-146, Which Suppresses Breast
1022 Cancer Metastasis. CANCER Res. 2009;69: 1279–1283. doi:10.1158/0008-
1023 5472.CAN-08-3559

1024 102. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al.
1025 Exosomes from marrow stromal cells expressing miR-146b inhibit glioma
1026 growth. CANCER Lett. 2013;335: 201–204. doi:10.1016/j.canlet.2013.02.019

1027 103. Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M, Spaink HP, et al.
1028 MicroRNA-146 function in the innate immune transcriptome response of
1029 zebrafish embryos to *Salmonella typhimurium* infection. BMC Genomics.
1030 2013;14: 696. doi:10.1186/1471-2164-14-696

1031 104. Liyanage TD, Nikapitiya C, Lee J, De Zoysa M. Molecular insight into regulation
1032 of miRNAs in the spleen of zebrafish (*Danio rerio*) upon pathogenic
1033 *Streptococcus parauberis* infection. FISH Shellfish Immunol. 2020;106: 898–909.
1034 doi:10.1016/j.fsi.2020.08.045

1035

A**B****C****Figure 1**

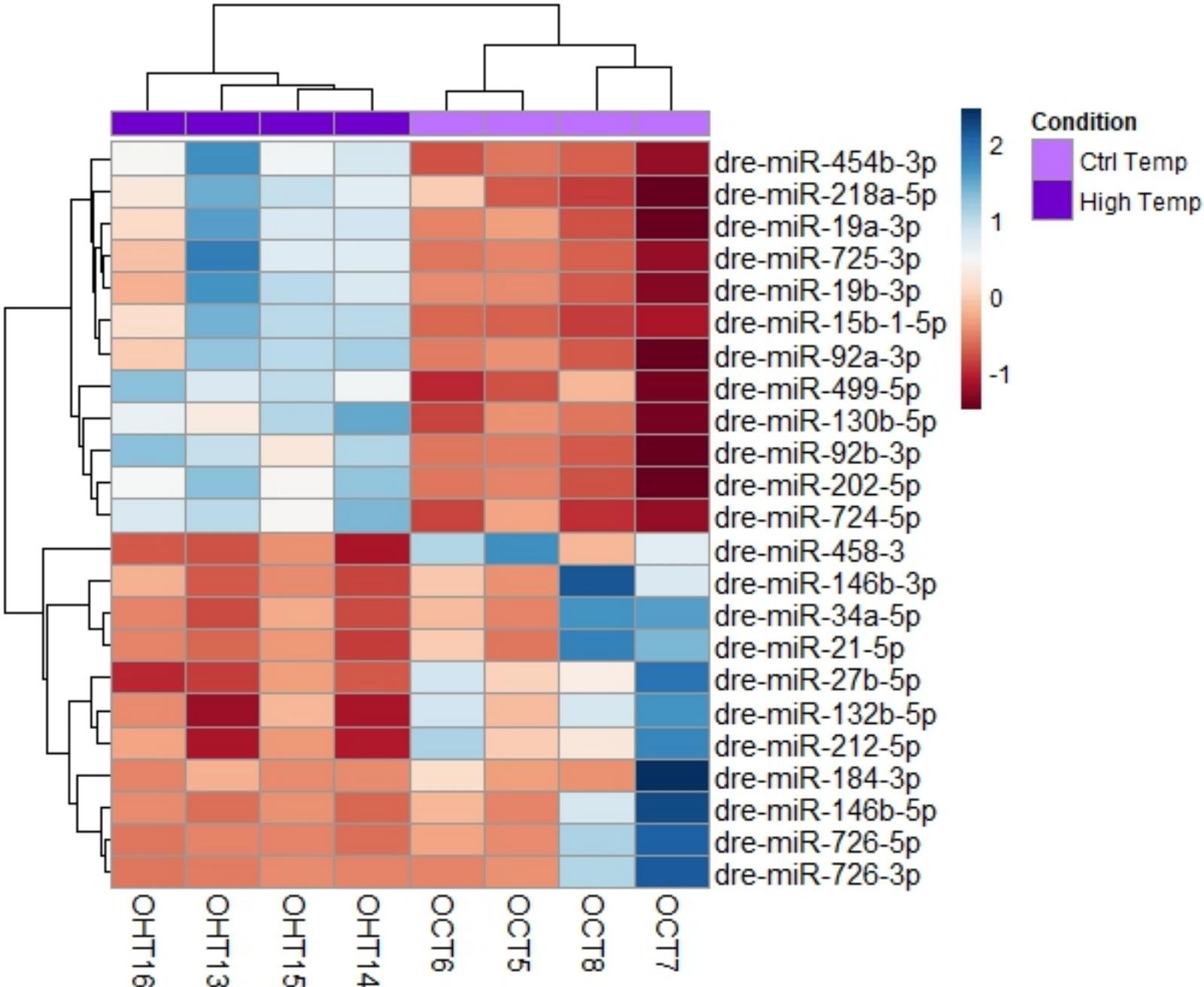
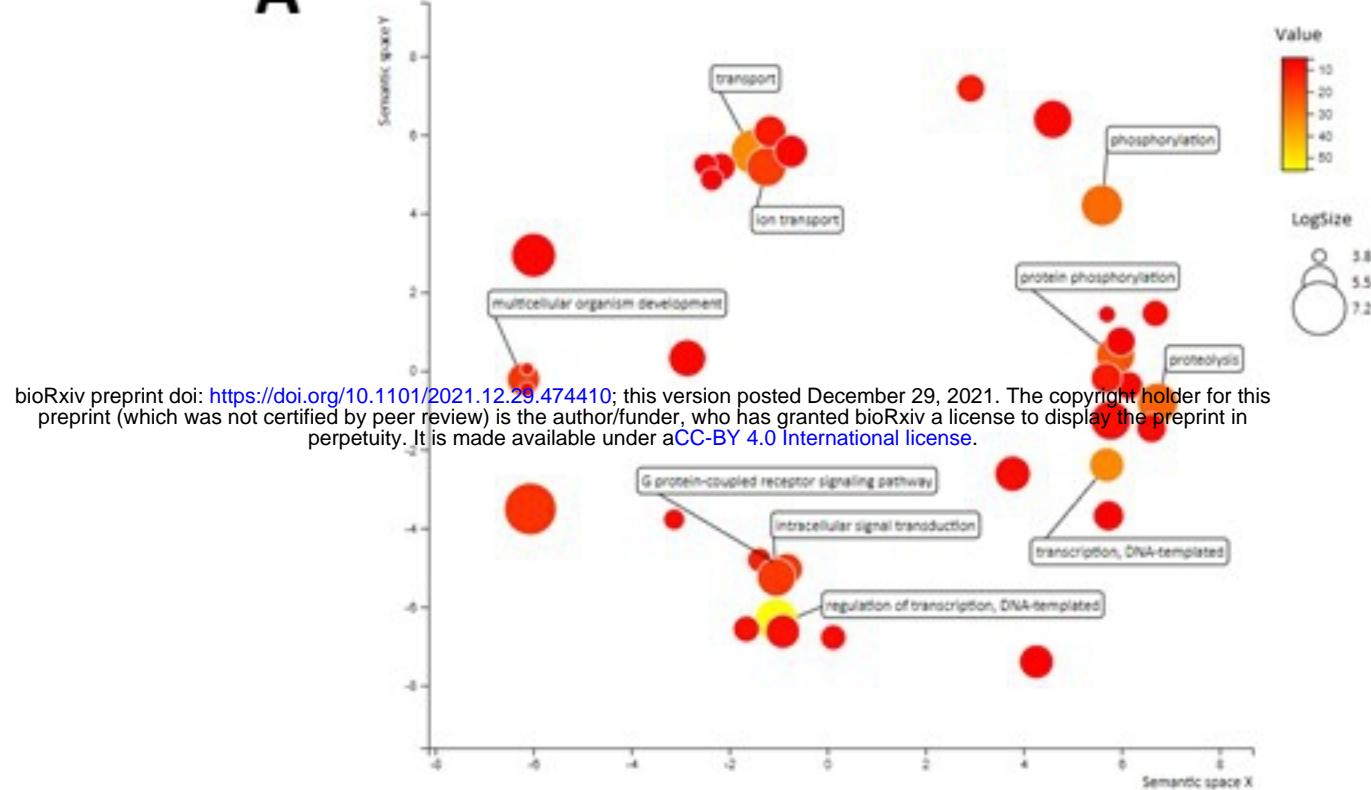
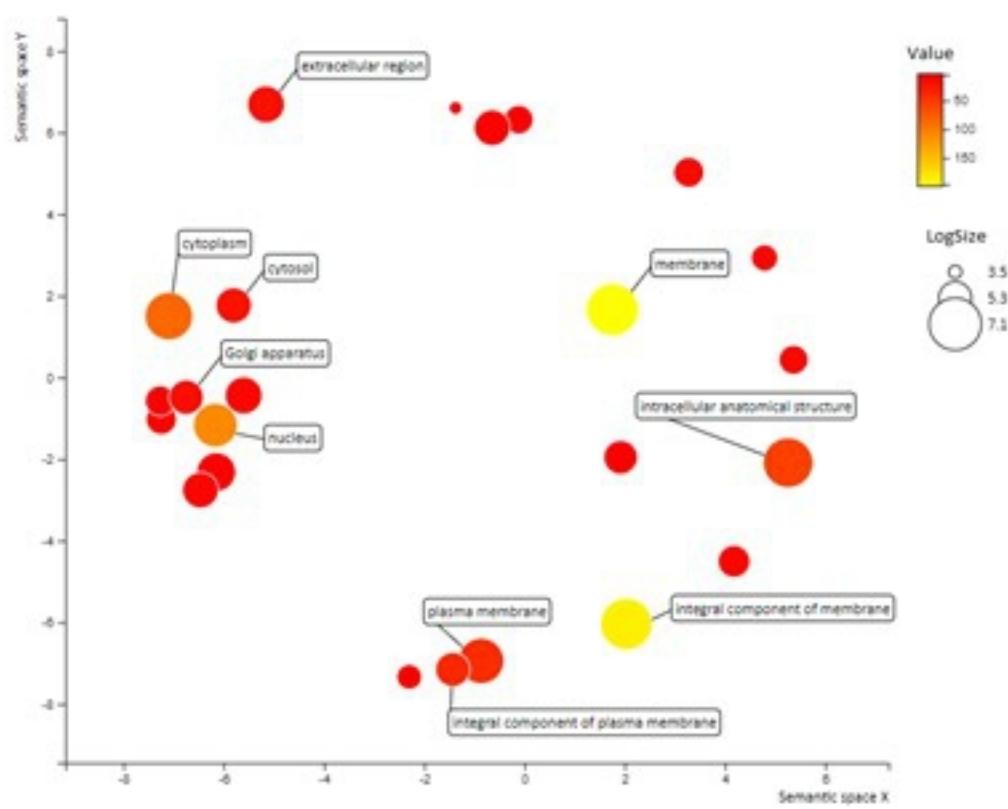
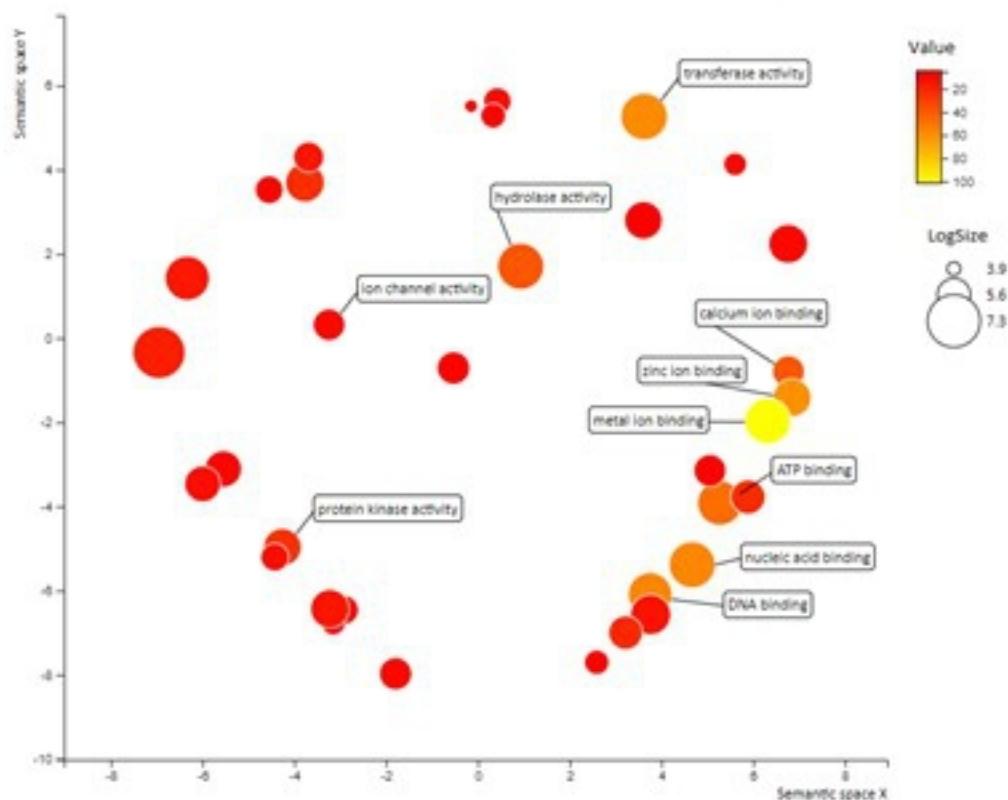





Figure 2

A**B****C****Figure 3**

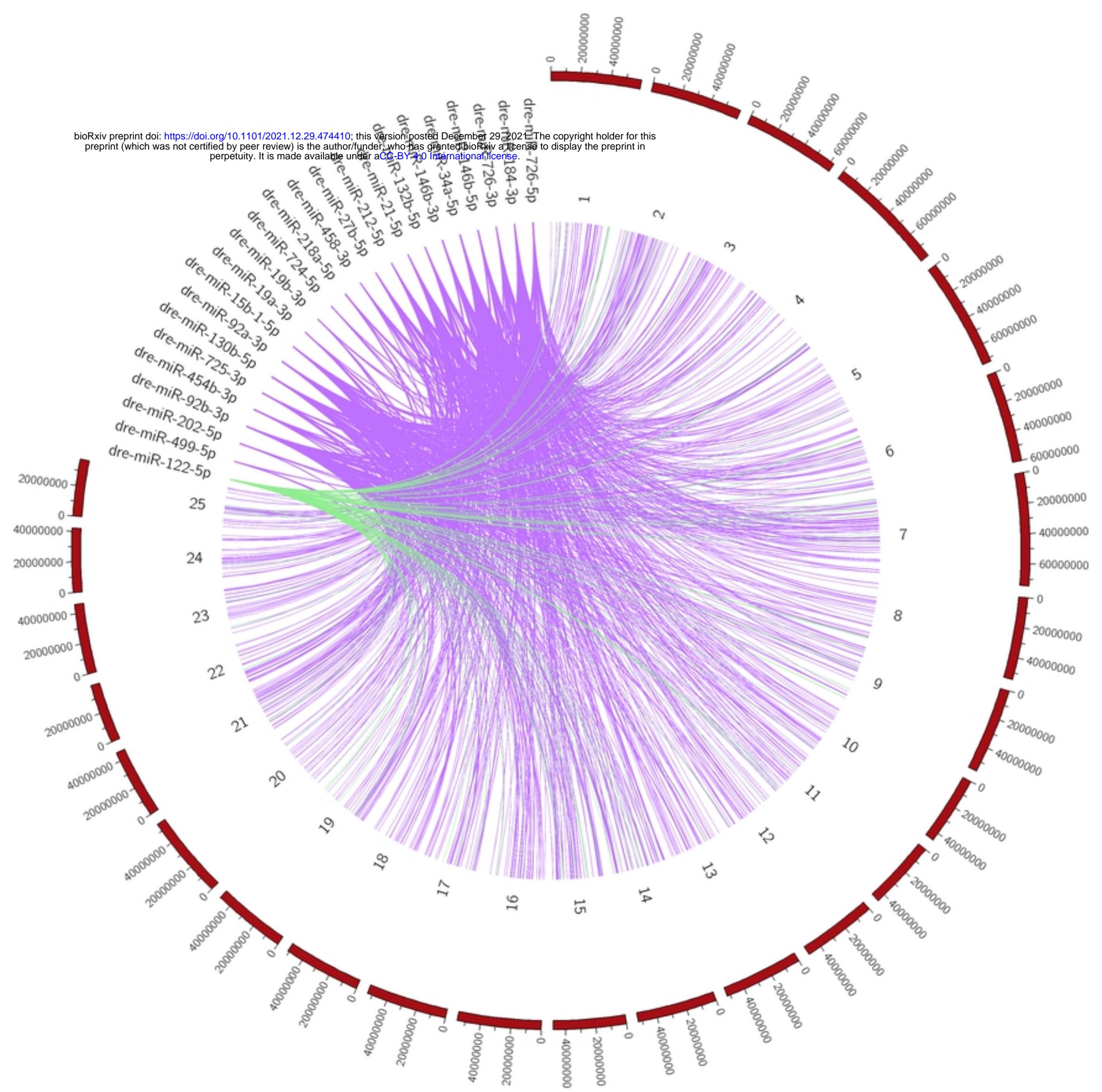
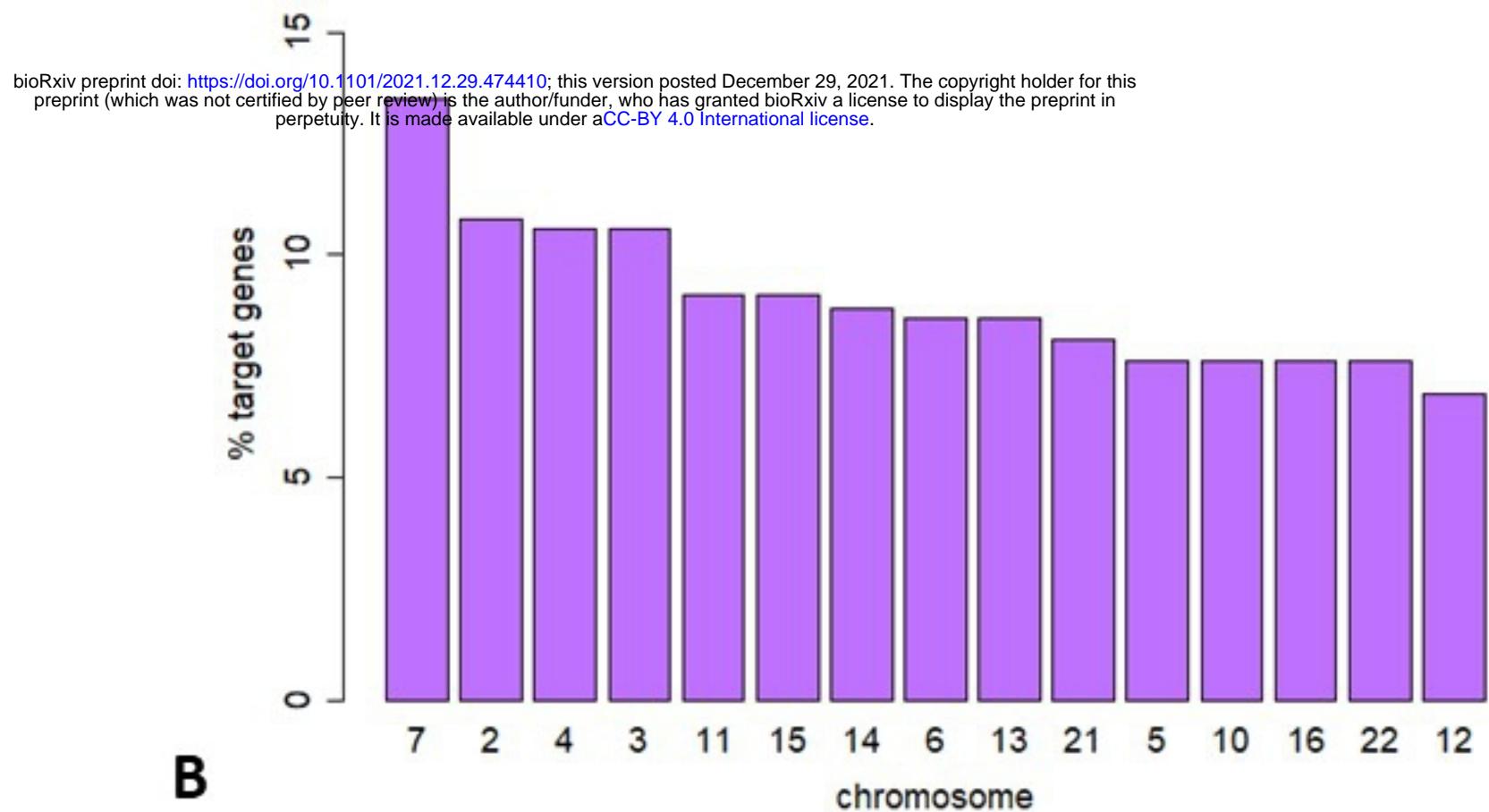
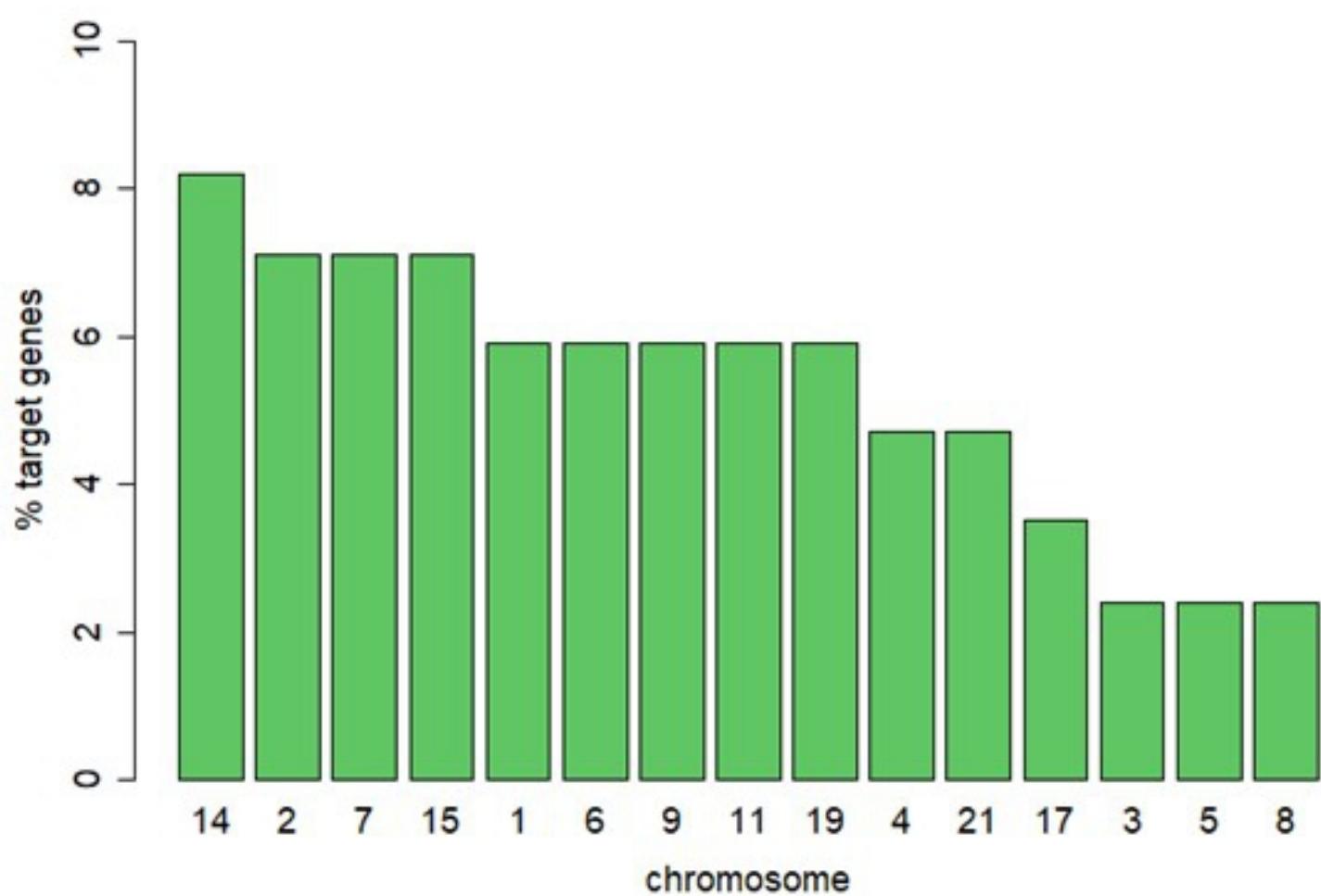




Figure 4

A**B****Figure 5**

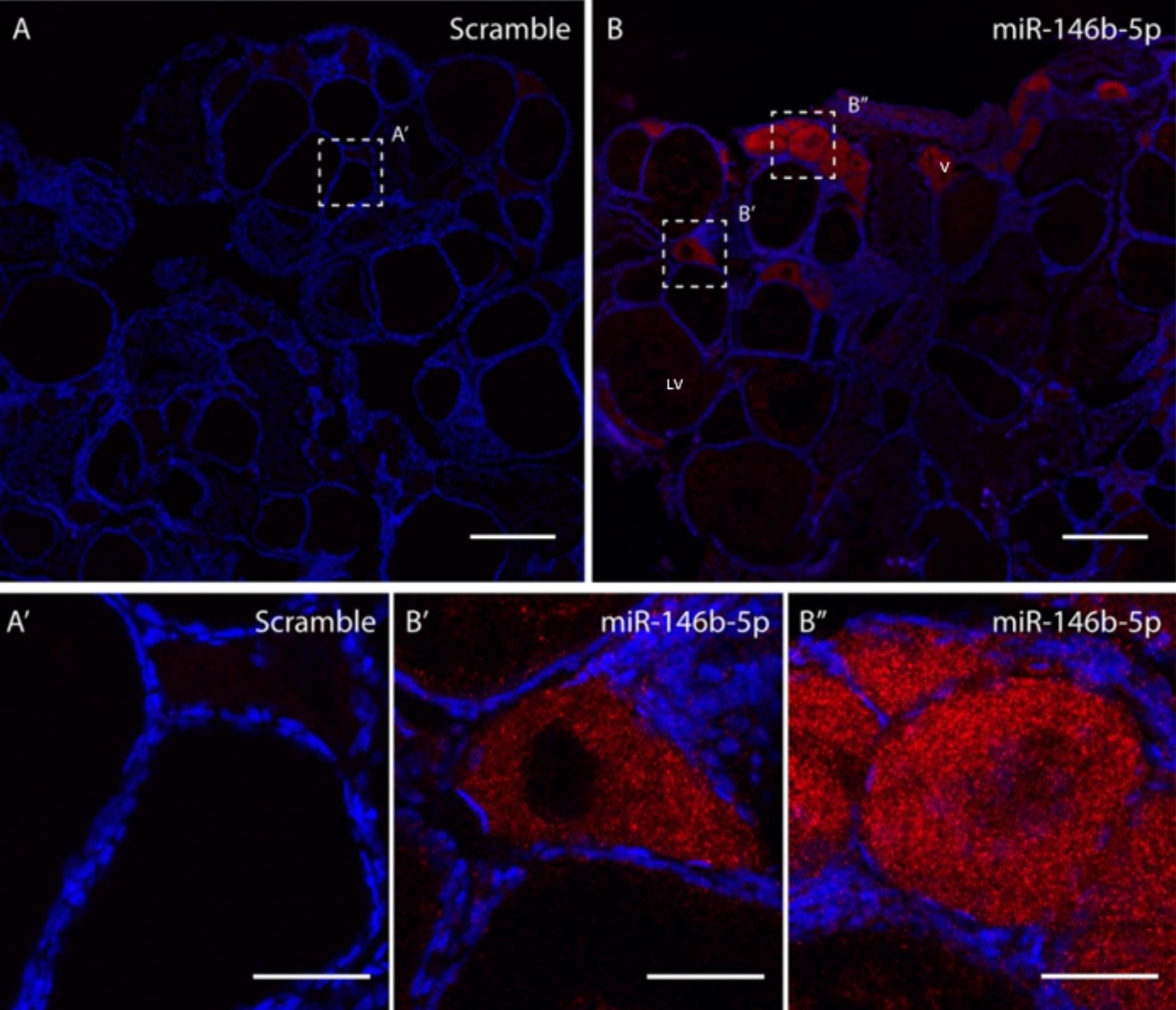


Figure 6

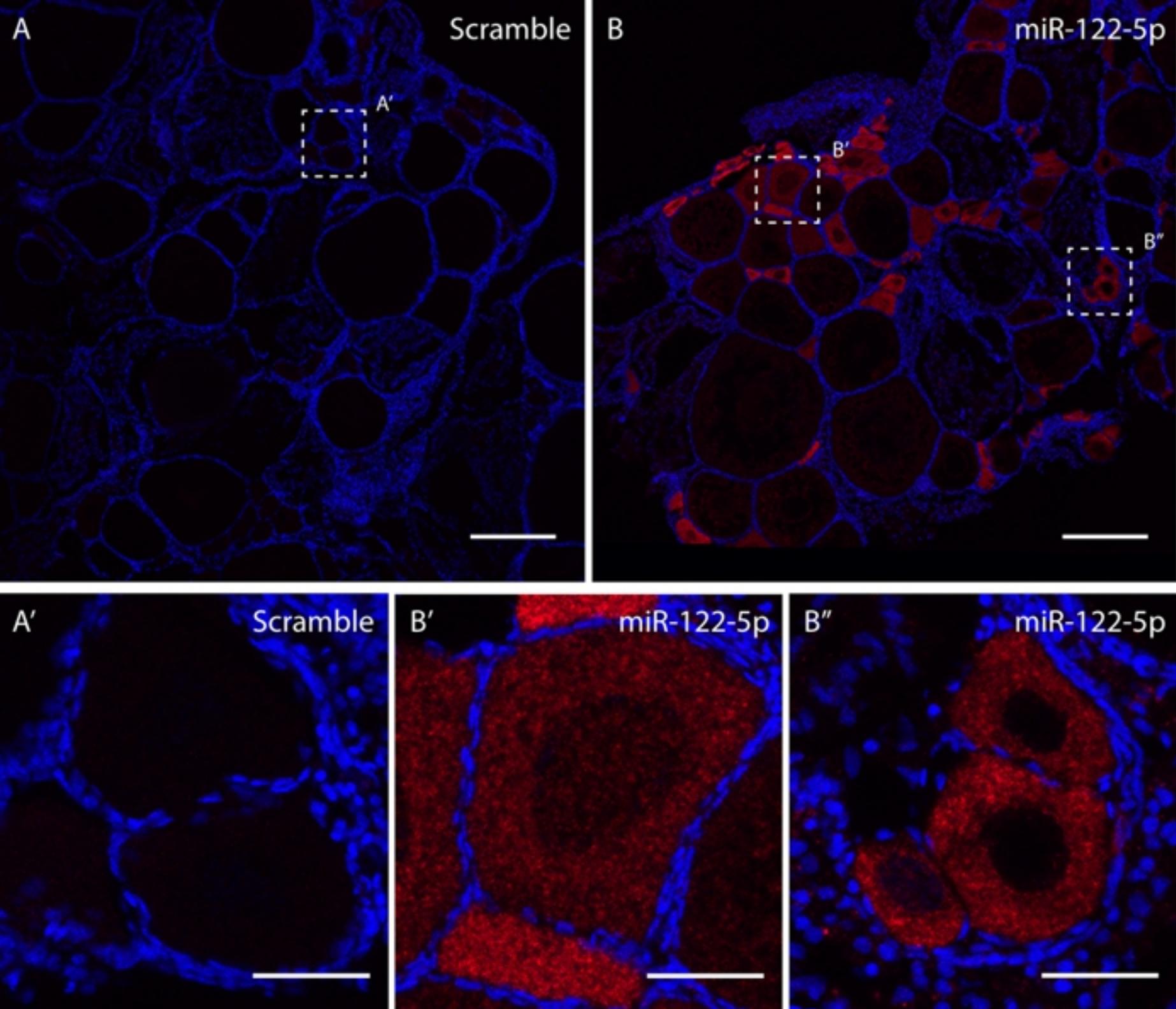


Figure 7