

1 Thermal sensitivity and seasonal change in the gut microbiome of a desert ant, *Cephalotes*
2 *rohweri*

3

4 Marshall S. McMunn^{1, 2, 3}, Asher I. Hudson³, Ash T. Zemenick^{2,4}, Monika Egerer^{1,5}, Stacy M.
5 Philpott¹, Rachel L. Vannette²

6

7 ¹Department of Environmental Studies, University of California, Santa Cruz, 1156 High Street,
8 Santa Cruz, California, 95064, USA

9 ²Department of Entomology and Nematology, University of California, Davis, One Shields
10 Avenue, Davis, California 95616, USA

11 ³Center for Population Biology, Department of Evolution and Ecology, University of California,
12 Davis, One Shields Avenue, Davis, California 95616, USA

13 ⁴Sagehen Creek Field Station, University of California Berkeley, 11616 Sage Hen Rd, Truckee,
14 California, 96161

15 ⁵Technical University of Munich, TUM School of Life Sciences, Hans Carl-von-Carlowitz-Platz
16 2, 85354 Freising, Germany

17

18

19

20

21 Abstract

22 Microorganisms within ectotherms must withstand the variable body temperatures of their
23 hosts. Shifts in host body temperature resulting from climate change have the potential to shape
24 ectotherm microbiome composition. Microbiome compositional changes occurring in response to
25 temperature in nature have not been frequently examined, restricting our ability to predict
26 microbe-mediated ectotherm responses to climate change. In a set of field-based observations, we
27 characterized gut bacterial communities and thermal exposure across a population of desert
28 arboreal ants (*Cephalotes rohweri*). In a paired growth chamber experiment, we exposed ant
29 colonies to variable temperature regimes differing by 5 °C for three months. We found that the
30 abundance and composition of ant-associated bacteria were sensitive to elevated temperatures in
31 both field and laboratory experiments. We observed a subset of taxa that responded similarly to
32 temperature in the experimental and observational study, suggesting a role of seasonal
33 temperature and local temperature differences amongst nests in shaping microbiomes within the
34 ant population. Bacterial mutualists in the genus *Cephalotococcus* (Opitutales: Opitutaceae) were
35 especially sensitive to change in temperature—decreasing in abundance in naturally warm
36 summer nests and warm growth chambers. We also report the discovery of a member of the
37 Candidate Phyla Radiation (Phylum: Gracilibacteria), a suspected epibiont, found in low
38 abundance within the guts of this ant species.

39

40

41

42

43

44 1. Introduction

45 Temperature change is a ubiquitous challenge faced by living organisms. Warming
46 produces conformational changes in proteins, alters enzyme efficiencies, and can eventually lead
47 to protein denaturation (Vogt, Woell and Argos 1997). A large majority of multicellular life on
48 earth, by total biomass and diversity, is ectothermic (Bar-On, Phillips and Milo 2018), relying on
49 external heat to regulate body temperature. As ectotherm body temperature fluctuates, so does the
50 temperature experienced by associated microbiomes. Across diverse animal taxa, microbiome
51 composition and abundance is sensitive to thermal change, however, examples linking natural
52 variation in temperature to changes in microbiome composition remain rare (Moeller 2004;
53 Dunbar *et al.* 2007; Lemoine, Engl and Kaltenpoth 2020; Onyango *et al.* 2020). The thermal
54 biology of microbiomes may be an important mechanism affecting ectotherm response to climate
55 change because of the many host traits that are linked to microbiome composition and abundance,
56 including pathogen resistance, nutrient acquisition, and reproduction (Sepulveda and Moeller
57 2020).

58 Temperature variation across seasons, days, and habitat plays a large role in determining
59 terrestrial ectotherm species distributions and strongly shapes the evolution of thermal tolerance
60 of organisms (Huey, Berrigan and Miles 2001). Many observations of ectotherm thermal
61 tolerance across geographic gradients and life histories have accumulated to shape the field of
62 thermal biology. As an example, optimal temperatures of ectotherms tend to be higher at low
63 latitudes where temperatures are warmer, while thermal tolerance breadth (range of suitable
64 temperatures) is narrower in these same areas due to more stable temperatures across seasons
65 (Stevens 1989; Addo-Bediako, Chown and Gaston 2000). Worldwide, there is a pattern among
66 terrestrial ectotherms of thermal maximums being constrained and varying less over geographic

67 gradients than species thermal minimums (Snyder and Weathers 1975). The degree to which
68 these and other global patterns of adaptation in response to variation in temperature are also
69 reflected in thermal responses of microbiomes within ectotherms is largely unknown. Additional
70 examples of ectotherm microbiome response in nature may aid in testing this generalization.

71 Ectotherm responses to temperatures of different extremes or duration may also guide
72 expectations of microbiome thermal sensitivity (Iltis *et al.* 2021). Acclimation, a gradual
73 improvement in ability to tolerate temperature deviations from optimum following exposure, is
74 very common among ectotherms (Gaston *et al.* 2009). Extreme temperatures (e.g. heat shock) can
75 be harmful even if the exposure is brief, while smaller deviations from optimum temperature may
76 be tolerated for long periods of time without severe consequence (Heath 1963; Kingsolver and
77 Gomulkiewicz 2003). Studies that examine microbiome response to warming suggest that
78 adaptive acclimation can occur with gradual exposure (Moghadam *et al.* 2018), irreversible
79 damage can occur from extreme exposure (Kikuchi *et al.* 2016), and gradual recovery can follow
80 moderate exposure (Heyworth, Smee and Ferrari 2020). We do not have a clear picture of how
81 these responses may align or interact with host biology at present moment, and thus more
82 examples of natural responses are needed.

83 Changes in the abundance of microbial strains can be driven directly by microbial
84 temperature sensitivities or through a wide array of indirect mechanisms that can be difficult to
85 experimentally separate (Corbin *et al.* 2016). Indirect mechanisms may include temperature
86 dependent changes in host physiology that alter the microbial environment (e.g. gut pH), complex
87 interactions amongst microbes due to asymmetric temperature responses, or microbial evolution
88 and co-evolution within novel environmental contexts (Sepulveda and Moeller 2020).

89 Much of the knowledge of microbiome response to temperature has come from growth
90 chamber experiments, which offer precise control over thermal exposure (Russell and Moran
91 2006; Dunbar *et al.* 2007; Fan and Wernegreen 2013) or lab-based microbial growth and
92 colonization assays (Hammer, Le and Moran 2021). However, relatively few studies have
93 investigated whether temperature alters microbiome composition in nature or if changes in nature
94 are temporary. The difficulty in characterizing *in situ* microbiome temperature sensitivities is due
95 to both the challenge of characterizing thermal exposure in free-living animals and the number of
96 correlated biotic factors that change along with temperature (e.g. seasonal diet shifts) (Maurice *et*
97 *al.* 2015).

98 To further improve predictions of the fate of ectotherms in a changing climate, it will be
99 critical to examine microbiome response to thermal stress and also validate it in a natural setting.
100 With this aim we characterized microbiome composition and abundance of a desert ant,
101 *Cephalotes rohweri* (Hymenoptera: Formicidae) by pairing a growth chamber experiment with an
102 observational study of seasonal and microclimate nest temperatures. We aimed to answer the
103 following questions: 1) Do nest microclimate and seasonal temperature correlate with
104 microbiome composition and abundance in the field? 2) Are correlations between temperature
105 and composition in the field replicated in growth chambers? and 3) What microbial taxa are
106 sensitive to environmental temperature, and can we explain any of the variation in responses
107 across the natural population?

108 **2 Methods**

109 ***2.1 Summary***

110 We studied the effects of temperature on the gut bacteria of *Cephalotes rohweri* by comparing the
111 composition and abundance of gut bacteria across a population of ant colonies in two seasons

112 (summer – late September and winter – late February). We then exposed collected whole ant
113 colonies to daily temperature patterns differing by 5°C in a growth chamber experiment (Figure
114 1). Our study utilized 16S amplicon sequencing and 16S quantitative PCR from ant midguts and
115 ilea to characterize gut microbiome composition. All analyses were performed in R (R version
116 4.1.1) (R Core Team 2020).

117 *2.2 Study species*

118 *Cephalotes rohweri* live in the dead branches of several tree and shrub species in the Sonoran
119 Desert. Nests are occupied up to several years at a time, with a small proportion of workers
120 leaving the nest at any time for foraging. Colonies of *C. rohweri* form a reproductive unit and
121 consist of 3 castes, including a single queen, a minor caste (workers), and a major caste (soldiers)
122 (Powell and Peretz 2021). These individuals are spread between one to several nests in a single
123 tree, with minor workers being the most abundant caste and responsible for most of the resource
124 acquisition. As arboreal ants living in a desert, *C. rohweri* are exposed to extreme summer
125 temperatures and moderate winter temperatures inside their poorly insulated nests (Figure 2).

126 Abundant bacterial mutualists within the midgut and ileum of *C. rohweri* upgrade
127 otherwise inaccessible nitrogen compounds (urea, uric acid, and xanthine) to produce amino
128 acids (Hu *et al.* 2018). Through metagenomic sequencing, metabolic pathway reconstruction, and
129 controlled experiments, Hu *et al.* (2018) demonstrated that *C. rohweri* realize a very efficient
130 nitrogen economy, with bacteria enabling ant survival on an otherwise poor diet largely
131 consisting of plant exudations, bird excrement, pollen, and likely fungal spores. Ants of the entire
132 genus *Cephalotes* have low trophic positions compared to other ants, rarely if ever taking animal
133 prey (Russel *et al.* 2009). All *Cephalotes* species investigated thus far, including 17 of 119 total
134 species in the genus (Powell, Price and Kronauer 2020), possess microbiomes with broadly

135 similar composition and functional capabilities in terms of core bacterial taxa (Hu *et al.* 2018)
136 suggesting a long co-evolutionary history between ants and at least some bacterial lineages.
137 *Cephalotes rohweri* is the most northerly distributed species of this diverse neotropical ant genus.

138 *2.2 Study site*

139 We collected *C. rohweri* nests and individuals from branches of foothills palo verde trees
140 (*Parkinsonia microphylla*) within the Tucson Mountain Range (32.242°N, 111.093°W) in the
141 Arizona Upland region of the Sonoran Desert (southeastern Arizona, USA). The habitat is typical
142 of a Sonoran thornscrub with abundant Saguaro cacti (*Carnegiea gigantea*), foothills palo verde,
143 and a diversity of other native Cactaceae, small shrubs, and flowering annual plants. The area
144 experiences frequent hard frosts in the winter, summer daytime temperatures regularly reaching
145 45°C, and annual monsoon rains.

146 *2.4 Minor worker collections – microclimate and season*

147 In the summer (early September 2018) and the following winter (late February 2019), we
148 collected minor workers using aspirators foraging within 0.5 m from 19 identified nest entrances.
149 Ants were kept in a cooler in the shade for a maximum of 6 hours until they were frozen each
150 afternoon upon return from the field.

151 Interior nest temperature measurements corresponding to September 2018 (summer
152 observations) and February 2019 (winter observations) were taken using a J-type thermocouple
153 and a HOBO UX100 thermocouple datalogger. The thermocouple wire was inserted 0.5-2 cm
154 past the nest entrance and recorded interior nest temperature every minute for between 36 and 96
155 h. Summary statistics from nest temperature data independently used in analysis include mean,
156 median, maximum, minimum, 95% quantile, and 80% quantile temperatures. Our choice of these
157 variables was based on the desire to quantify the temperatures that microbes were exposed to for

158 the longest duration, but also investigate the effects of short-lasting regular exposure to more
159 extreme high temperatures. We used a linear regression to test for an effect of nest branch
160 exterior diameter on the daily range of temperatures within the nest.

161 *2.5 Growth chamber experiment*

162 To test the effects of temperature on ant gut bacterial composition and abundance we
163 performed a 3-month growth chamber experiment, comparing a warm and cool treatment. The
164 two temperature treatments were based on field measurements of daily temperature trajectories
165 observed within nests but differed by 5°C from each other (Figure 2). Hourly temperatures were
166 calculated from 7 months (March 2017 - September 2017) of temperature readings within dead
167 tree branches at the collection site using iButtons (DS1922L, Maxim Integrated Products, San
168 Jose, CA, USA) (Figure 2). When we examined summer nest interior measurements of greater
169 accuracy (September 2018), we found our treatments were well within the bounds of natural
170 variation observed in nests, approximately 1°C above average hourly summer temperatures
171 (warm) and 4°C below average hourly summer temperatures (cool) (Figure 2).

172 We collected 11 colonies in September 2017 by removing all potential nest-containing
173 branches (those with dead wood) from trees in which we observed foraging *C. rohweri*. Nest
174 entrances were blocked with Play-Doh (Hasbro, Inc. Pawtucket, RI) for up to 72 h prior to
175 manual nest dissection. All individual ants from a single tree regardless of caste or developmental
176 stage were placed into an artificial nest made from a 12.7 cm x 17.8 cm picture frame with a
177 5mm entrance hole drilled into the side. The clear plexiglass was covered with red-tinted tape.
178 Colonies were ordered by total number of workers and alternately assigned to cool (5 colonies)
179 and warm (6 colonies) temperature treatments and placed in their respective growth chambers
180 with a 12-h light, 12-h dark regime setting.

181 Ants were fed ad libitum outside the artificial nest with wicking feeders replaced twice
182 each week with DI water, NaCl solution, and urea solution. The foraging area for each nest
183 consisted of a 32 cm x 20 cm x 14 cm plastic container with its walls coated with fluon (Insect-a-
184 slip, Bioquip, Rancho Dominguez, CA). Outside of feedings, the top was covered with plastic
185 wrap and rubber banded in place to prevent escape. Small dishes were used for 50% honey
186 solution (absorbed onto a folded and mounted KimWipe), bee pollen, and 1 frozen cockroach
187 nymph. Between 2-5 live ants were dissected and sequenced from each colony three times: at
188 setup, after 6 weeks of exposure, and after 3 months of exposure.

189 *2.6 Ant gut dissections, DNA extractions, and sequencing*

190 We dissected minor workers from growth chamber experiments and field collections
191 under sterile conditions in Dubesco's phosphate buffered solution, removing the midgut and
192 ileum from each ant. Samples were bulked to obtain adequate concentrations of DNA (1-5 minor
193 workers in 2017 and 2 minor workers in 2018/2019). Forceps were flame-sterilized with ethanol
194 between ant digestive tract dissections, and sterile buffer and petri dishes were used for each
195 dissection. Control samples consisted of extracted DNA from forceps that were dipped into the
196 dissection liquid following an ant dissection and were sequenced for each round of dissections.

197 DNA was extracted from the bulked midguts and ilea using a modified Powersoil
198 (Qiagen, Hilden, Germany) extraction protocol, including an additional tissue disruption step
199 followed by an overnight Proteinase K soak (Rubin *et al.* 2014). To increase DNA concentration,
200 the final elution step was performed with half the recommended volume of the final elution
201 buffer (50uL solution C6). DNA concentration was measured using a Nanodrop 1000
202 spectrophotometer prior to sample submission to confirm successful DNA extraction
203 (ThermoScientific, Waltham, MA, USA).

204 Extracted DNA from samples and controls for each round of dissections were sequenced
205 by the Centre for Comparative Genomics and Evolutionary Bioinformatics Integrated
206 Microbiome Resource at Dalhousie University. Primers were selected to align with the Earth
207 Microbiome project, specifically the V4 subregion of 16S SSU rRNA - 515fB
208 (GTGYCAGCMGCCGCGTAA) and 806rB (GGACTACNVGGTWTCTAAT). DNA was
209 amplified using High fidelity Phusion polymerase. Amplified DNA was sequenced using an
210 Illumina MiSeq, producing 291 bp paired end reads.

211 We also performed quantitative PCR (qPCR) in triplicate for each sample to estimate the
212 per ant 16S copy number. We used the same primers above (V4 subregion of 16S SSU rRNA),
213 SSOAdvanced Universal SYBR Green Supermix kits (BioRad Laboratories, Inc., Hercules, CA,
214 USA), and a QFX96 thermocycler (BioRad) to quantify DNA concentration over 35 PCR cycles
215 (94°C for 45s, 50C for 60s, 72C for 90s) with a 10-minute extension at 72°C. We averaged the 3
216 Ct values for each sample, and calculated estimated copy number based on the difference
217 between Ct values of the sample and a calibrated between plate standard. Samples were
218 distributed across 3 plates randomly with respect to treatment groups and collection times. Our
219 between plate standard consisted of 5uL aliquots from 15 DNA extractions bulked across
220 treatment groups, sampling times, and extractions. Read count was estimated using this standard
221 of known 16S copy number (Tkacz, Hortala and Poole 2018). The qPCR standard was produced
222 by isolating the 291 bp 16S band from a post-PCR gel, performing a DNA extraction using the
223 procedure above, calculating 16S double-stranded DNA concentration using a Qubit DNA assay
224 (Invitrogen, Waltham, MA), and then converting DNA concentration (ng/uL) to copy number
225 using the molecular mass of the 291 bp fragment.

226 2.7 *Amplicon sequence variant, taxonomic, and phylogenetic assignments*

227 Illumina 16S reads were processed using the DADA2 workflow to obtain amplicon
228 sequence variants (ASV) including filtering, dereplication, inference of sequence variants, merger
229 of paired-end reads, and chimera removal (Callahan *et al.* 2016). The DADA2 pipeline was
230 applied independently to each Illumina run (growth chamber experiment, summer observations,
231 winter observations). These 3 runs were separated to accommodate possible variation in error
232 rates and to allow likely contaminants to be identified within each dataset prior to merging.
233 Likely contaminant ASV's were identified using the package *decontam*, applying a 50%
234 prevalence threshold, removing ASV's more prevalent in controls than true samples, and ASVs
235 occurring in less than 3 samples. Taxonomy was assigned to ASVs using DADA2
236 assignTaxonomy function, in combination with the ribosomal database project naïve Bayesian
237 classifier algorithm and using the Silva training dataset (v138) (Wang *et al.* 2007). We used the
238 phanghorn R package to build a de novo phylogenetic tree of the 3 merged datasets using the
239 neighbor-joining method (Schliep 2011).

240 *2.8 Statistical analyses of response to temperature*

241 We assessed the response of ant gut bacterial communities to temperature between warm
242 and cool growth chamber treatments, across natural microclimatic gradients within summer and
243 winter samples, and seasonally between summer and winter samples (Figure 1).

244 We multiplied our estimated qPCR per-ant 16S read abundance (from here on qPCR
245 weighted abundance) for each sample by relative abundance of each ASV. This approach
246 provided a quantitative estimate of ASV abundance within each sample (Jian *et al.* 2020). We
247 tested for compositional dissimilarity in abundance of ASVs across samples and homogeneity in
248 beta dispersion across treatment groups and seasons using betadisper and adonis (package *vegan*

249 2.5) (Oksanen *et al.* 2020). These analyses were performed for all sampling dates in the
250 experiment separately (0 months, 1.5 months, and 3 months in growth chamber) and between
251 summer and winter observations.

252 We investigated differences in qPCR-weighted abundance using DESeq2 (Love, Huber
253 and Anders 2014) at the ASV, genus, family, and order level using a single response of growth
254 chamber treatment, season, or a single selected observed temperature summary statistic (for the
255 two microclimate analyses). Each set of microclimate comparisons (summer and winter) was
256 investigated by performing single predictor variable PERMANOVA's with each contending
257 temperature summary statistic (mean, median, 80th quantile, and 95th quantile, minimum, and
258 maximum temperature) and comparing output. The two seasons are dramatically different in
259 temperature regimes and following model comparison, the two summary statistics explaining the
260 greatest variation (95th percentile for summer microclimate, and 80th percentile temperature for
261 winter microclimate) were used in all subsequent analyses (DESeq2, UNIFRAC) for these
262 respective datasets. For summer temperature, 95th quantile temperature may be capturing the
263 negative effects of sustained elevated daytime temperature. For winter, the opposite may be
264 occurring, with microbial growth being slowed during the cooler hours of the day.

265 To test for phylogenetic signal in thermal response of bacterial clades, we analyzed both
266 weighted and unweighted UNIFRAC distances comparing warm and cool growth chamber ants
267 after 3 months of exposure, ants collected in winter versus summer, and according to
268 microclimatic variation within both summer and winter. Both unweighted and weighted
269 UNIFRAC distances were used to determine if our predictor variables (season, treatment, or
270 microclimate) change the presence and absence of closely related bacterial taxa in synchrony
271 (unweighted), but also whether they shift the abundance of closely related bacterial taxa in

272 synchrony (weighted). As above, we used the 95th percentile nest temperature as a predictor
273 variable in the summer and the 80th percentile nest temperature for the winter.

274 To estimate temperature effect on the overall bacterial abundance in ant guts, we used
275 linear models along microclimate gradients (predictor variables – 95th percentile and 80th
276 percentile temperature for summer and winter respectively), ANOVA (between final timepoint
277 lab-based warm and cool treatments), and paired t-tests (seasonal observations) to test for the
278 difference in estimated qPCR 16S log read count per ant. We averaged all 3 qPCR technical
279 replicates before converting to an estimate of per ant log 16S read abundance. For growth
280 chamber experiments, we report change in per-ant 16S read abundance from initial measurements
281 for each colony after 3 months of exposure.

282 Pearson correlations of the log-fold change in response to temperature for all ASVs were
283 used to determine if taxa responded similarly across growth chamber experiments, between
284 seasons, and along microclimatic gradients. For microclimate, per-degree log-fold change was
285 used from the output of DESeq2.

286 3. Results

287 *3.1 Summary*

288 We identified 173 unique ASVs from 3,035,597 reads, representing 7 orders of bacteria,
289 including Betaproteobacterales (64 ASVs), Opitutales (29), Xanthomonadales (29), Rhizobiales
290 (22), Pseudomonadales (18), Flavobacterales (9), and JGI_0000069P22 (phylum Gracilibacteria)
291 (2). This closely resembles previous studies of microbiome composition in this species.

292 We found that bacterial symbionts in the guts of *C. rohweri* are sensitive to temperature
293 changes in growth chambers, across seasons, and across summer and winter microclimatic

294 gradients. In particular, ASVs in the family Optitaceae were reduced in abundance in the nests
295 that experienced the highest temperatures during the summer (95th percentile temperature).

296 Arboreal ants are more vulnerable with regards to temperature fluctuations compared to
297 ground-nesting ants. We found that nest temperature range depended on branch size with larger
298 branches being less susceptible to daily temperature changes in both the summer ($F_{1,19} = 6.93$, R^2
299 = 0.22, $p = 0.016$) and winter ($F_{1,15} = 6.37$, $R^2 = 0.25$, $p = 0.023$) (Figure 2).

300 *3.2 Field sampling: seasonal change*

301 There were strong seasonal differences in bacterial species composition within the ant
302 population ($F_{1,34} = 13.77$, $R^2 = 0.28$, $p < 0.001$) (Figure 3, Figure 4). Seasonal changes in bacterial
303 abundance were detected in 6 orders, 5 families, 2 genera, and 42 ASVs significantly differed
304 between summer and winter samples (Supplemental Table 1 FDR < 0.05, Figure 5)

305 Weighted UNIFRAC phylogenetic distance between samples differed significantly
306 between seasons ($F_{1,35} = 94.09$, $R^2 = 0.729$, $p < 0.0001$), suggesting that more related bacteria
307 respond similarly in terms of seasonal change in abundance. Neither unweighted UNIFRAC
308 distance nor alpha diversity differed by season, suggesting that within host ASV gains or losses
309 between seasons are not phylogenetically clustered. Samples in the winter were more
310 homogenous than the same colonies measured in the summer (betadisper, $F_{1,34} = 73.64$, $p < 0.001$).
311 We observed 35% more total 16S read copies per ant in winter colonies compared to summer
312 colonies (paired t-test, $t = 2.19$, $df = 15$, $p = 0.045$).

313 *3.3 Variation with microclimate*

314 Exposure of individual ant nests to extreme summer temperatures, as measured by 95th percentile
315 nest temperature, was correlated with variation in bacterial composition and diversity among
316 nests. The 95th percentile temperature predicted variation in ant gut bacterial composition (16S

317 qPCR weighted) (PERMANOVA, $F_{1,18}=2.73$, $R^2 = 0.13$, $p=0.015$) (Fig. 3b). No other
318 temperature explanatory variables (mean, median, 80th percentile temperature) explained a
319 significant amount of variation in summer community composition. Change in qPCR-weighted
320 abundance in response to 95th percentile nest temperature in the summer was significant (via
321 DESeq2 analyses) in one aggregated family (*Opitutaceae*), one genus (*Cephaloticoccus*), and 4
322 ASVs (all ASVs *Cephaloticoccus*, *Opitutaceae*) (Figure 5, Supplemental Table 1). Both
323 Weighted (presence/absence) and unweighted (abundance) UNIFRAC phylogenetic distance
324 varied with 95th percentile nest temperature in the summer (weighted, $F_{1,18} = 3.51$, $R^2 = 0.16$, $p =$
325 0.016) (unweighted, $F_{1,18} = 4.03$, $R^2 = 0.18$, $p = 0.034$). This suggests that the impact of high
326 summer temperatures depended on phylogeny, both in terms of their presence and absence
327 (unweighted) and abundance (weighted). As nest temperature decreased in summer nests we
328 observed higher bacterial alpha diversity ($t=-2.82$, $R^2 = 0.26$, $p = 0.011$).

329 Winter microclimate also influenced community composition, but only when using 80th
330 percentile temperature as the predictor variable ($F_{1,14} = 3.32$, $R^2 = 0.19$, $p = 0.011$). No other
331 temperature explanatory variables (mean, median, 95th percentile temperature) explained a
332 significant amount of variation in winter community composition (Fig. 3c). Change in bacterial
333 relative abundance in response to 80th percentile nest temperature in the winter was significant in
334 one family and one order (Xanthomonadales, Xanthomonadaceae) and 23 ASVs – Supplemental
335 table 1) (Figure 5). Neither alpha diversity nor weighted and unweighted UNIFRAC phylogenetic
336 distance between samples varied with winter nest temperature.

337 There were no significant differences in total 16S read copy number qPCR measurements
338 along microclimatic gradients within the summer ($t=-0.01$, $p=0.99$) or winter ($t=1.42$, $p=0.17$)
339 nests according to temperature predictors.

340 3.4 Growth chamber experiment

341 We found that bacterial community composition was sensitive to temperature treatments
342 after 3 months of exposure (adonis, $R^2 = 0.27$, $F_{1,10} = 3.43$, $p=0.036$), but no difference was
343 detected 6 weeks after exposure (adonis, $R^2 = 0.15$, $F_{1,9}=1.47$, $p=0.24$), suggesting gradual change
344 resulting from temperature exposure in growth chambers (Fig. 3a). Warm nests had lower
345 among-nest variance in species composition than did the control nests after 6 weeks of
346 temperature treatments (betadisper, $F_{1,8}=7.79$, $p<0.025$), while we found no difference in between
347 treatments after 3 months.

348 A total of 36 ASVs significantly responded to growth chamber treatments—including
349 ASVs in the genus *Cephaloticoccus* which decreased in abundance at warm temperatures
350 (Supplemental Table 1, Figure 5). At higher taxonomic levels, no aggregated orders or families
351 responded significantly to growth chamber treatments, but the aggregated genus *Cephaloticoccus*
352 decreased in relative abundance in the warm temperature treatment.

353 We observed a large decrease over the course of the experiment (initial – 3 month) in per-
354 ant log 16S read abundance in warm temperature treatments relative to the reduced temperature
355 treatment ($F_{1,8} = 9.94$, $p<0.013$), suggesting that bacterial abundance in ant guts was lower
356 following 3 months at warmer temperatures.

357 Weighted UNIFRAC phylogenetic distance between samples differed significantly
358 between growth chamber treatments ($F_{1,9}=4.38$, $R^2 = 0.33$, $p = 0.024$). Unweighted UNIFRAC
359 distance between samples ($p>0.05$), as well as bacterial alpha diversity, did not differ between
360 warm and cool treatments, suggesting that we did not see within host gain or loss of related ASVs
361 as was the case across seasons.

362 3.5 Growth chamber vs. naturally observed thermal responses

363 Bacterial ASVs that were rare or abundant in hot summer nests showed similar changes in
364 abundance between cool and warm growth chambers through a positive correlation between log-
365 fold change across growth chambers treatments and per degree log fold change across the
366 population of nests in the summer ($R = 0.30$, $t = 2.84$, $p = 0.005$) (Figure 5). We saw a similar
367 pattern when comparing summer microclimate response with growth chamber treatments, finding
368 a positive correlation between log-fold change across growth chambers treatments and seasonal
369 shifts in the ant's naturally occurring microbiome ($R = 0.19$, $t = 2.53$, $p = 0.012$). We found no
370 correlation between winter temperature responses and growth chamber treatments.

371 *3.6 Presence of members of the phyla Gracilibacteria*

372 Two ASVs were annotated as phylum Gracilibacteria (order JGI_0000069-P22). These
373 ASVs were detected in multiple colonies and at least one occurred in each of the 3 years of
374 sampling. While this ASV was detected in low abundance (maximum of 214 reads in a sample),
375 we detected presence of the order-level taxon JGI_0000069-P22 in 46 of 69 16S sequencing
376 samples and none of the 6 control samples sequenced.

377 4. Discussion

378 *Cephalotes rohweri* gut bacterial composition and abundance are sensitive to naturally
379 occurring variation in temperature due to seasonal change and nest microclimate. Our major
380 results indicate that 1) mutualists decrease in abundance in summer nests, but seasonally recover
381 by late winter within colonies and 2) winter bacterial composition shows less variance than
382 summer composition, which when considered alongside decreased summer 16S read abundance,
383 suggests that summer ant colonies may be experiencing dysbiosis.

384 Our results demonstrated that bacteria in the genus *Cephaloticoccus* (Opitutales:
385 Opitutaceae), which enhance nitrogen metabolism in this species of ant (Hu *et al.* 2018), were

386 particularly sensitive to changes in temperature in growth chambers between seasons, and in
387 warmer nests within the natural population during the summer. We found members of
388 *Cephaloticoccus* at reduced abundance in warm naturally occurring summer nests and cold
389 naturally occurring winter nests, suggesting a narrow thermal range (sensitive to both hot and
390 cold extremes) compared to other bacteria within these ants. Differences observed between ant
391 nests in the summer did not persist through the following winter, suggesting seasonal recovery
392 from temperature exposure within colonies in nature. Seasonal changes in microbiome
393 composition have been noted in several other ectotherm taxa, with varying effects on host
394 phenotype (Ferguson *et al.* 2018; Liu, Lei and Chen 2019; Zhao *et al.* 2021).

395 In our growth chamber experiment, we found reduced overall bacterial abundance in the
396 warm treatment compared to the cool treatment. While we demonstrate here that the bacterial
397 abundance and composition of this ant is sensitive to temperature, we caution that functional
398 assays are required to assess if such losses affect host fitness. Direct assays of microbiome
399 efficiency are necessary to confirm shifts in microbiome-based nutrient acquisition in the summer
400 as either bacterial efficiency or host ability to utilize nutrients could change in tandem with
401 abundance and composition of the ant microbiome (Hu *et al.* 2018).

402 Thermal sensitivity occurs not only across seasons but according to microhabitat, with
403 warm and cool nests collected from within a very small area (800 m x 500 m) varying
404 significantly in microbiome composition. These findings indicate that change in temperature
405 across very fine scales of time and space could play an important role in shaping host
406 microbiome composition, and warrant study in additional systems of animals. Colony
407 temperature measurements in the field explain variation in microbiome composition, even given
408 potential sources of error in temperature measurements over a short period of time (1-3 days), the

409 potential for between nest worker movement within colonies, and the many other factors that
410 vary between ant colonies (e.g. food access or age/size). Given the small spatial scale at which
411 we detected differences between ant colonies in the summer and then convergence toward a more
412 similar winter microbiome composition across the population, we suggest that the microbiome of
413 *C. rohweri* may shift in composition regularly and reversibly in response to natural temperature
414 fluctuations.

415 *Cephalotes rohweri* may be able to buffer against permanent loss of microbial strains at
416 the colony level due to social sharing of microbiota – one of several potential mechanisms
417 through which microbial associations may be recovered following thermal stress. New workers,
418 present to some extent in nests across seasons, are inoculated by nestmates through oral-anal
419 trophallaxis (Lanan *et al.* 2017). Assuming microbes were not lost by every colony member
420 simultaneously and entirely, this mechanism of transmission could reestablish heat sensitive taxa
421 despite loss in individual colony members. This could be resolved in future studies that did not
422 pool individuals within colonies.

423 Two of the main bacterial groups that were demonstrated to respond to thermal change
424 include *Opitutales* and *Xanthomonadales*. These groups have been previously characterized in
425 other *Cephalotes* species using metagenome assembled genomes. Both are notable for their
426 abundance, strain diversity, and roles in nitrogen metabolism, as both encode urease accessory
427 proteins in *C. rohweri* (Hu *et al.* 2018). Interestingly, only in the species *C. rohweri* do
428 *Cephaloticoccus* genomes lack a full complement of urease accessory proteins. These proteins
429 are instead found only within a member of the *Xanthomonadales*, a clade that in all other
430 *Cephalotes* microbiomes lacks this urease functionality all together (Hu *et al.* 2018). We do not
431 currently understand the detailed co-evolutionary history of the *C. rohweri* bacterial symbionts,

432 but this combined gain and loss of functionality in these two temperature sensitive microbial
433 clades only within *C. rohweri*, suggest the possibility of recent co-evolution – potentially
434 including horizontal gene transfer from *Cephaloticoccus* to Xanthomonadales.

435 While the results presented here suggest that key members of the microbiome are
436 sensitive to thermal stress, we cannot address the functional consequences for ant hosts.

437 Transplanting microbiomes between individuals exposed to novel conditions into unexposed
438 individuals would represent a more direct test of the effects of abiotically-induced compositional
439 shifts in the microbiome. Such experiments have been conducted in *Drosophila melanogaster*
440 and aphids and have demonstrated that the effects of past exposure to temperature on the
441 microbiome can be inherited and have consequences for the host phenotype (Moghadam *et al.*
442 2018; Heyworth, Smeel and Ferrari 2020). Transplant experiments have linked temperature-
443 driven microbiome changes to improved temperature tolerance, but beneficial or detrimental
444 microbiome compositional shifts may occur in a much wider array of animals (Sepulveda and
445 Moeller 2020; Iltis *et al.* 2021). This type of experiment may be difficult to conduct in
446 *Cephalotes* spp., as microbiomes are believed to be largely isolated from external contamination
447 after formation of the proventriculus in newly enclosed adults, leaving only a short window in
448 which to perform experimental microbiome transplants (Lanan *et al.* 2017).

449 Microbe-based acclimation and microbe-based susceptibility surely both occur in nature,
450 and host physiology, diet, and habitat likely matter a great deal in determining the direction of
451 this outcome (Sepulveda and Moeller 2020). Identifying general characteristics that allow for
452 predictions of host microbiome responses to changes in abiotic conditions, and in particular
453 temperature, will be key in understanding how a host will fare under climate change. We suggest
454 that *C. rohweri* in particular has several life history characteristics that may result in acclimation

455 rather than susceptibility. These traits include functional redundancy across closely related
456 bacterial ASVs (Figure 5, this paper (Hu *et al.* 2018) within individual microbiomes and
457 additional redundancy of microbial taxa across the super organism. Reproduction within ants
458 occurs at the colony level, and in this species by a single queen within that colony, and social
459 sharing of microbes is common in this species (Lanan *et al.* 2017). In addition to redundancy of
460 individuals, colonies frequently consist of multiple sizes of branches, each containing a nest with
461 slightly different temperature exposure, allowing ants to move between nests and behaviorally
462 thermoregulate to some extent. Finally, as a desert arboreal ant, *C. rohweri* lives in an
463 exceptionally variable thermal environment and microbes found within this species of ant guts
464 might be expected to withstand change in temperature better than many insects due to a long
465 history of natural selection on both the host and its microbes.

466 Beyond temperature, other factors almost certainly influence change in the *C. rohweri*
467 microbiome across time and space. In particular, a portion of the effect of season could be due to
468 a likely seasonal change in diet. As *Cephalotes* are largely herbivorous and potential scavengers
469 of microscopic foods, the diet of *C. rohweri* is likely altered by seasonal changes in availability
470 of pollen, nectar, and small windblown food items (spores, bacteria) (De Andrade and Urbani
471 1999). This shift in diet may have contributed to the dramatic increase in similarity within winter
472 colonies, as foraging intensity, and potentially abundance and diversity of plant-based resources,
473 decreases in the winter. More information on seasonal variation in *C. rohweri* diet is needed to
474 evaluate whether this is the case.

475 As we show here, temperature should be considered among the multiple factors that
476 influence ectotherm microbiome composition in nature. Ectotherm microbe-based thermal
477 sensitivity—in both composition and abundance-- may be an important, but poorly characterized,

478 determinant of organismal response to climate change and fitness in the face of changing thermal
479 regimes. A set of general predictions regarding ectotherm traits, emerging from a synthesis of
480 studies such as this one, would enable researchers to predict whether microbe-based phenotypic
481 plasticity will help or hinder animals in a changing climate.

482

483 Acknowledgements

484 This project based upon work supported by the National Science Foundation Postdoctoral
485 Research Fellowship in Biology under Grant No. 1811641. We would like to acknowledge the
486 Center for Population Biology Seed Grant program, for funding the initial graduate student
487 collaboration among MM, AZ, and AH. We would also like to acknowledge Pima County, AZ
488 for permission to conduct the study.

489

490

491

492

493

494

495

496 References

497 Addo-Bediako A, Chown SL, Gaston KJ. Thermal tolerance, climatic variability and latitude.
498 *Proc R Soc Lond B* 2000;267:739–45.

499 Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. *Proceedings of the National
500 Academy of Sciences* 2018;115:6506–11.

501 Callahan BJ, McMurdie PJ, Rosen MJ *et al.* DADA2: High-resolution sample inference from
502 Illumina amplicon data. *Nat Methods* 2016;13:581–3.

503 Corbin C, Heyworth ER, Ferrari J *et al.* Heritable symbionts in a world of varying temperature.
504 2016;118:10–20.

505 De Andrade ML, Urbani CB. *Diversity and Adaptation in the Ant Genus Cephalotes, Past and*
506 *Present.* Staatliches Museum für Naturkunde, 1999.

507 Dunbar HE, Wilson ACC, Ferguson NR *et al.* Aphid Thermal Tolerance Is Governed by a Point
508 Mutation in Bacterial Symbionts. Godfray C (ed.). *PLoS Biol* 2007;5:e96.

509 Fan Y, Wernegreen JJ. Can't Take the Heat: High Temperature Depletes Bacterial
510 Endosymbionts of Ants. *Microbial Ecology* 2013;66:727–33.

511 Ferguson LV, Dhakal P, Lebennzon JE *et al.* Seasonal shifts in the insect gut microbiome are
512 concurrent with changes in cold tolerance and immunity. *Functional Ecology*
513 2018;32:2357–68.

514 Gaston KJ, Chown SL, Calosi P *et al.* Macrophysiology: A Conceptual Reunification. *The*
515 *American Naturalist* 2009;174:595–612.

516 Hammer TJ, Le E, Moran NA. Thermal niches of specialized gut symbionts: the case of social
517 bees. *Proceedings of the Royal Society B: Biological Sciences* 2021;288:20201480.

518 Heath WG. Thermoperiodism in Sea-run Cutthroat Trout (*Salmo clarki clarki*). *Science*
519 1963;142:486–8.

520 Heyworth ER, Smee MR, Ferrari J. Aphid Facultative Symbionts Aid Recovery of Their Obligate
521 Symbiont and Their Host After Heat Stress. *Frontiers in Ecology and Evolution*
522 2020;8:56.

523 Hu Y, Sanders JG, Łukasik P *et al.* Herbivorous turtle ants obtain essential nutrients from a
524 conserved nitrogen-recycling gut microbiome. *Nature Communications* 2018:1–14.

525 Huey RB, Berrigan D, Miles AEDB. Temperature, Demography, and Ectotherm Fitness. *The*
526 *American Naturalist* 2001;158:204–10.

527 Iltis C, Tougeron K, Hance T *et al.* A perspective on insect-microbe holobionts facing thermal
528 fluctuations in a climate-change context. *Environ Microbiol* 2021, DOI: 10.1111/1462-
529 2920.15826.

530 Jian C, Luukkonen P, Yki-Järvinen H *et al.* Quantitative PCR provides a simple and accessible
531 method for quantitative microbiota profiling. *PLOS ONE* 2020;15:e0227285.

532 Kikuchi Y, Tada A, Musolin DL *et al.* Collapse of Insect Gut Symbiosis under Simulated
533 Climate Change. *mBio* 2016;7:e01578-16.

534 Kingsolver JG, Gomulkiewicz R. Environmental variation and selection on performance curves.
535 *American Zoologist* 2003;43:470–7.

536 Lanan MC, Rodrigues PAP, Al Agellon *et al.* A bacterial filter protects and structures the gut
537 microbiome of an insect. *Nature Publishing Group* 2017:1–11.

538 Lemoine MM, Engl T, Kaltenpoth M. Microbial symbionts expanding or constraining abiotic
539 niche space in insects. *Current Opinion in Insect Science* 2020;39:14–20.

540 Liu X-D, Lei H-X, Chen F-F. Infection pattern and negative effects of a facultative endosymbiont
541 on its insect host are environment-dependent. *Sci Rep* 2019;9:4013.

542 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
543 data with DESeq2. *Genome Biology* 2014;15:550.

544 Maurice CF, CL Knowles S, Ladau J *et al.* Marked seasonal variation in the wild mouse gut
545 microbiota. *ISME J* 2015;9:2423–34.

546 Moeller DA. Facilitative interactions among plants via shared pollinators. *Ecology*
547 2004;85:3289–301.

548 Moghadam NN, Thorshauge PM, Kristensen TN *et al.* Strong responses of *Drosophila*
549 *melanogaster* microbiota to developmental temperature. *Fly* 2018;12:1–12.

550 Oksanen J, Blanchet FG, Friendly M *et al.* *Vegan: Community Ecology Package.*, 2020.

551 Onyango GM, Bialosuknia MS, Payne FA *et al.* Increase in temperature enriches heat tolerant
552 taxa in *Aedes aegypti* midguts. *Sci Rep* 2020;10:19135.

553 Powell S, Peretz C. Reexamining how ecology shapes the ontogeny of colony size and caste
554 composition in social insects: insights from turtle ants in the arboreal realm. *Insect Soc*
555 2021;68:229–43.

556 Powell S, Price SL, Kronauer DJC. Trait evolution is reversible, repeatable, and decoupled in the
557 soldier caste of turtle ants. *Proc Natl Acad Sci USA* 2020;117:6608–15.

558 R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R
559 Foundation for Statistical Computing, 2020.

560 Rubin BER, Sanders JG, Hampton-Marcell J *et al.* DNA extraction protocols cause differences in
561 16S rRNA amplicon sequencing efficiency but not in community profile composition or
562 structure. *MicrobiologyOpen* 2014;3:910–21.

563 Russel JA, Moreau CS, Goldman-Huertas B *et al.* Bacterial gut symbionts are tightly linked with
564 the evolution of herbivory in ants. *Proceedings of the National Academy of Sciences*
565 2009;106:21236–41.

566 Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among
567 symbionts and across temperatures. *Proceedings of the Royal Society B: Biological*
568 *Sciences* 2006;273:603–10.

569 Schliep KP. phangorn: phylogenetic analysis in R. *Bioinformatics* 2011;27:592–3.

570 Sepulveda J, Moeller AH. The Effects of Temperature on Animal Gut Microbiomes. *Frontiers in*
571 *Microbiology* 2020;11:384.

572 Snyder GK, Weathers WW. Temperature Adaptations in Amphibians. *The American Naturalist*
573 1975;109:93–101.

574 Stevens GC. The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in
575 the Tropics. *The American Naturalist* 1989;133:240–56.

576 Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance in environmental
577 samples. *Microbiome* 2018;6:110.

578 Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs¹¹Edited by F.
579 E. Cohen. *Journal of Molecular Biology* 1997;269:631–43.

580 Wang Q, Garrity GM, Tiedje JM *et al.* Naive Bayesian Classifier for Rapid Assignment of rRNA
581 Sequences into the New Bacterial Taxonomy. *Applied and Environmental Microbiology*
582 2007;73:5261–7.

583 Zhao D, Zhang Z, Niu H *et al.* Win by Quantity: a Striking Rickettsia-Bias Symbiont Community
584 Revealed by Seasonal Tracking in the Whitefly *Bemisia tabaci*. *Microb Ecol*
585 2021;81:523–34.

586

587

588

589 Author Contributions

590 MM wrote the manuscript, performed the lab work, and performed the data analysis. MM, RV,
591 and SP designed the study, interpreted results, and contributed to revisions. MM, AH, ME, and

592 AZ conducted fieldwork and designed the growth chamber study. MM, AH, ME, and AZ
593 designed field sampling protocols.

594

595

596

597

598

599

600

601

602

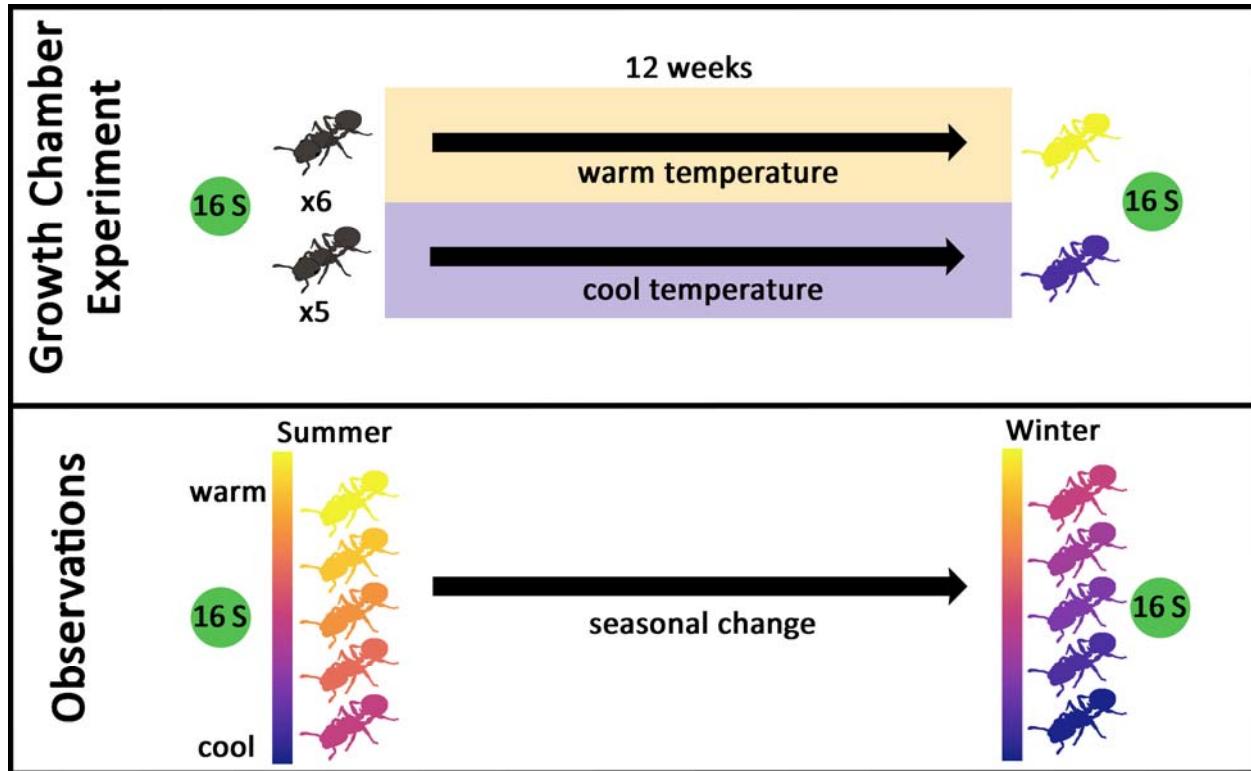
603

604

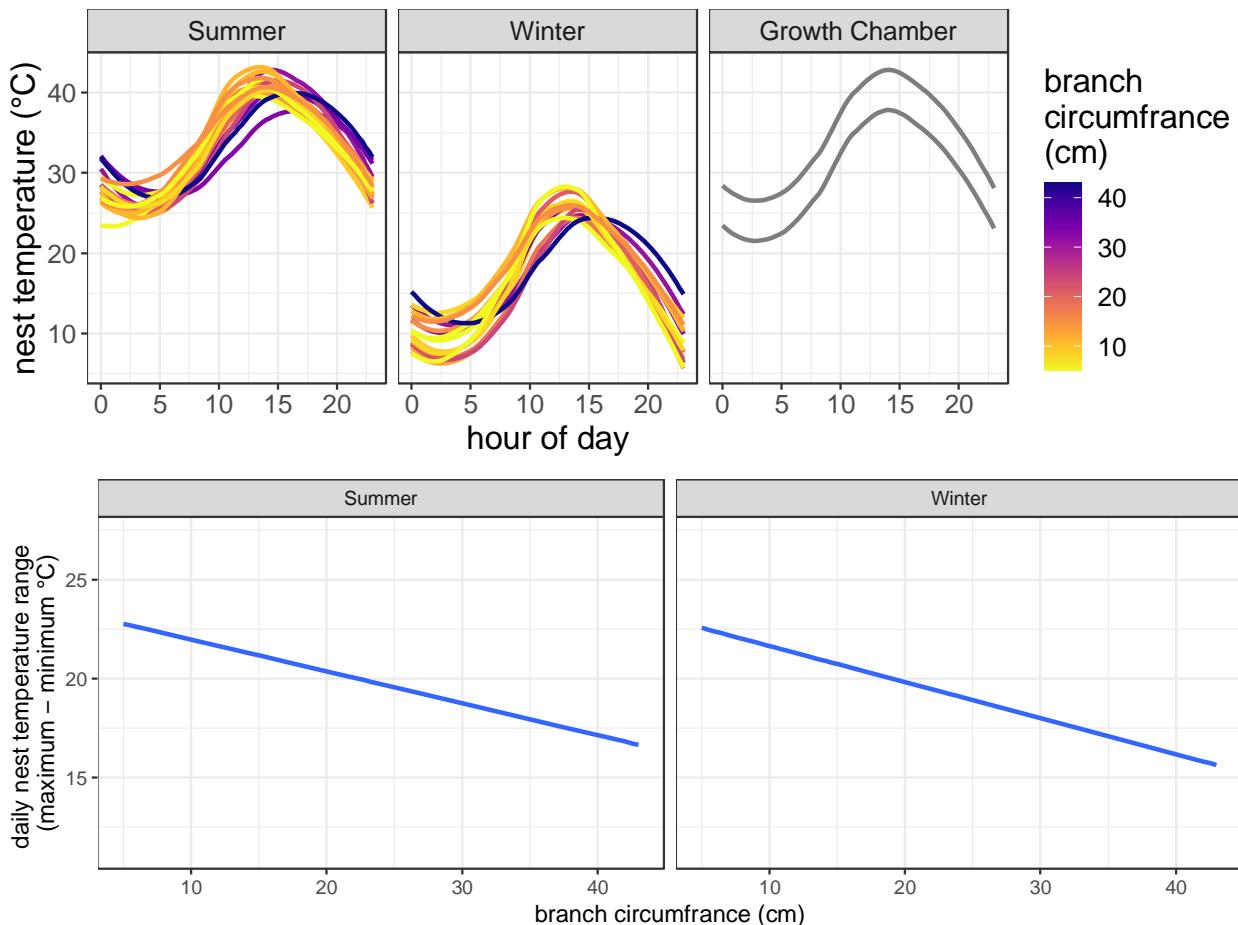
605

606

607

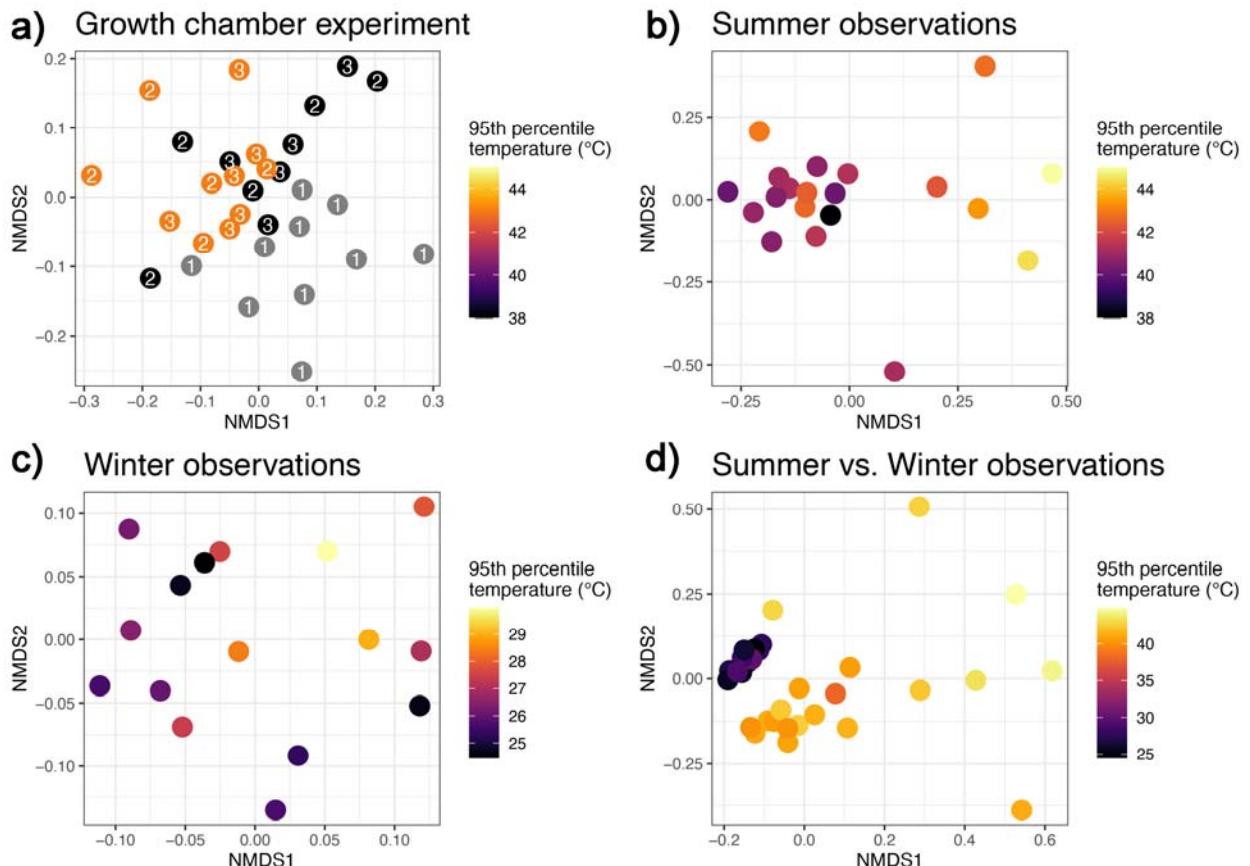

608

609


610

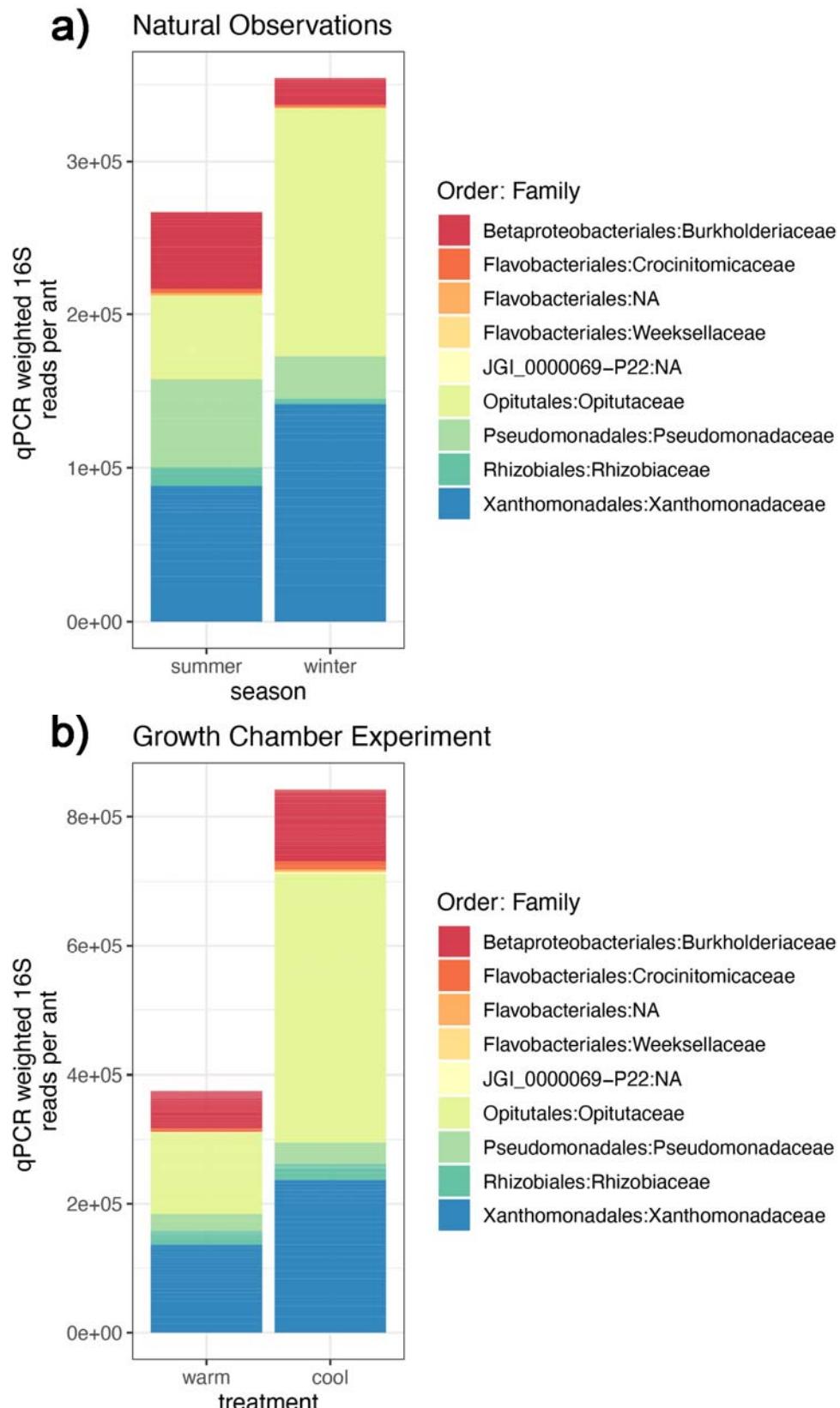
611

612 Figures



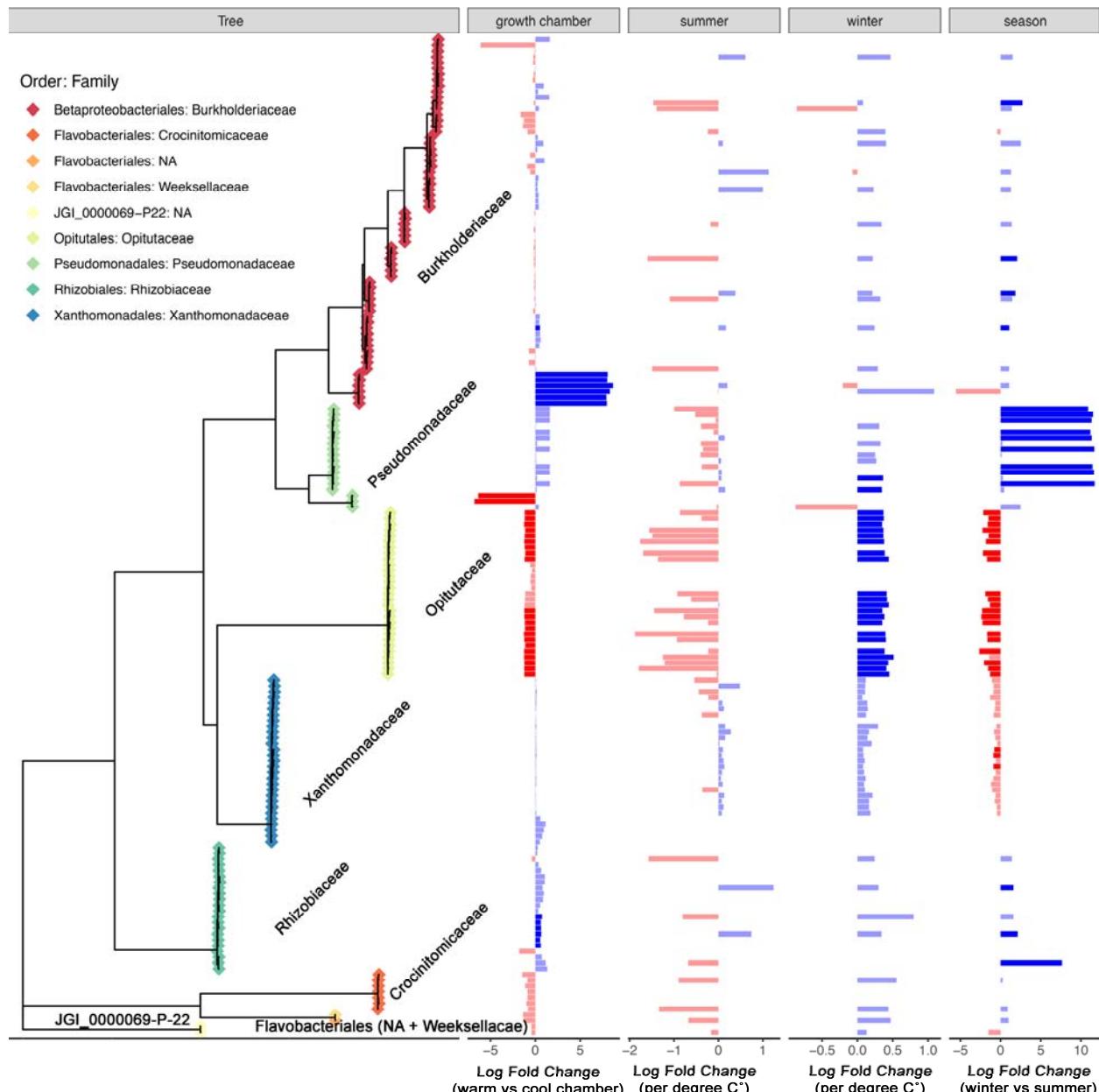
614 Figure 1: Outline of experimental and observational approaches. Top panel - *Cephalotes rohweri*
615 ant colonies were moved into growth chambers programmed to warm (+1°C) and cool (-4°C)
616 temperatures relative to observed hourly average nest temperatures in the field in the summer.
617 Microbiome composition and abundance was assessed with 16S amplicon sequencing and qPCR.
618 Bottom panel - In a complementary set of observations, we characterized naturally occurring nest
619 temperatures within both the summer (September 2018) and winter (February 2019) and naturally
620 occurring bacterial composition. We also characterized seasonal bacterial compositional change
621 as we resampled the same colonies the following winter.

622


623 Figure 2 – Top panels: smoothing splines of median hourly temperature colored by nesting
624 branch diameter across growth chamber experiments, summer nest temperatures collections, and
625 winter collections. Growth chamber treatments fall within natural summer ranges but represent
626 approximately -4°C and +1°C each hour for “cool” and “warm” respectively. Bottom panels:
627 summer and winter nest temperature range in °C. Both summer ($R^2 = 0.22, p = 0.016$) and winter
628 ($R^2 = 0.25, p = 0.023$) with larger branch circumferences have smaller temperature ranges.

629

630 Figure 3 – NMDS of qPCR weighted bacterial community composition collected from *C.*
631 *rohweri* ant guts with each point representing a separate sample of bulked ants from a separate
632 nest. a) growth chamber experiment. Color corresponds to treatment, with initial conditions
633 (grey) and warm (orange) and cool (black) treatments. Labels of points correspond to initial (1),
634 6-week (2), and 3-month (3) sampling periods. b) summer 2018 field collections colored by nest
635 temperature and c) 2019 winter field collections with each point representing bulked ants within
636 distinct colonies. Color scales are the same for panel a and b – with 95th percentile temperature in
637 degrees C for the growth chamber treatments and nest temperature measurements.


638

640 Figure 4 – Stacked barplots of qPCR weighted abundance of all ASVs color coded by family and
641 order a) 2017 temperature treatments and b) summer and winter field collections. There are more
642 bacteria in both the cooler temperature treatment and the winter nests in nature and broadly (total
643 height), and compositional shifts were similar between the paired treatments and observations
644 (correlated log-fold changes of ASVs in Figure 5).

645

646

647
648 Figure 5 – log-fold change in qPCR weighted relative abundance of all ASVs across temperature.
649 ASVs demonstrating significant response to temperature or treatment (resulting from DEseq2
650 analyses) are shaded with 100% opacity. ASV's unchanged in 16S qPCR weighted abundance
651 are shaded with 70% opacity. Red bars represent a negative response to increased temperature,
652 while blue bars represent a positive response to increased temperature. 1) phylogenetic tree of all

653 ASV's colored by taxonomic family. 2) log-fold change number of 16S copies in response to
654 growth chamber treatments. 3) per degree log-fold change number of 16S copies in response to
655 summer microclimate. 4) per degree log-fold change number of 16S copies in response to winter
656 microclimate. 5) log-fold change number of 16S copies between winter and summer (blue means
657 greater in summer, red means greater in winter). Members of the Opitutaceae were particularly
658 sensitive to temperature change and were lower in abundance in the warm growth chamber, lower
659 in the summer, when aggregated lower in warm summer nests compared to cool summer nests,
660 and higher in abundance in warm winter nests than cool winter nests.