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Abstract

Two genes are synthetic lethal if mutations in both genes result in impaired cell viability, while mutation of either gene does
not affect the cell survival. The potential usage of synthetic lethality (SL) in anticancer therapeutics has attracted many
researchers to identify synthetic lethal gene pairs. To include newly identified SLs and more related knowledge, we present a
new version of the SynLethDB database to facilitate the discovery of clinically relevant SLs. We extended the first version
of SynLethDB database significantly by including new SLs identified through CRISPR screening, a knowledge graph
about human SLs, and new web interface, etc. Over 16,000 new SLs and 26 types of other relationships have been added,
encompassing relationships among 14,100 genes, 53 cancers, and 1,898 drugs, etc. Moreover, a brand-new web interface
has been developed to include modules such as SL query by disease or compound, SL partner gene set enrichment analysis
and knowledge graph browsing through a dynamic graph viewer. The data can be downloaded directly from the website
or through the RESTful APIs. The database is accessible online at http://synlethdb.sist.shanghaitech.edu.cn/v2.
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Introduction

Synthetic lethality (SL), initially described in Drosophila as

recessive lethality [9], is a type of gene-gene interaction such

that the perturbation of both genes causes the loss of cell

viability, while the perturbation of either gene alone will not

affect the cell viability [31]. SL offers a strategy for cancer

medicine by identifying new antibiotic or therapeutic targets

[15, 3, 36]. By inhibiting the SL partner of a gene with cancer-

specific alteration, we can kill cancer cells and spare normal

cells, thereby reducing the side effect of the treatment [24, 23].

To discover SL gene pairs as a gold mine of cancer drug targets,

researchers have applied various techniques, including chemical

screening [16], RNAi screening [11, 1, 5, 29, 2], CRISPR

screening [14, 39] and bioinformatics methods [22, 25, 41, 49].

The first version of SynLethDB released in 2016 contains

34,089 SL gene pairs and is the first comprehensive database

of SLs [13]. It collects SL pairs for human and 4 model

species, i.e., mouse, fruit fly, worm and yeast, from biochemical

assays, public databases [38, 32], computational predictions

[37] and text mining. In addition, it provides a statistical

analysis module to evaluate the druggability and efficacy of

SL pairs upon drug treatments by analyzing the large-scale

drug sensitivity data. Recently, SynLethDB has been used as

ground-truth SL data in various studies. For example, Liany

et al. [26], Cai et al. [4] and Das et al. [7] used SynLethDB

to train and test their computational SL prediction methods.

Hu et al. [19] used SynLethDB to evaluate their method for de

novo identification of synergistic optimal control nodes (OCNs)
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Fig. 1. Architecture of SynLethDB 2.0. The bottom layer shows the data sources of SLs and other biomedical knowledge. The middle layer shows the

data pre-processing steps, database storage, and web server. The top layer shows the main functional modules of the user interface.

as candidate targets for combination therapy. Wang et al. [44]

used the SLs in SynLethDB to investigate the link between SL

interactions and drug sensitivity of cancer cells. Cui et al. used

the SL data from SynLethDB in their web-based tool called

siGCD [6] for analysis and visualization of the interactions

among genes, cells and drugs associated with survival in human

cancers.

Many CRISPR-based screening experiments have been

conducted after 2015 and generated a large amount of data.

Combinatorial CRISPR-based screening has been used to

study genetic interactions, including the identification of SL

interactions [48, 52, 39, 14, 46, 42]. Computational methods

such as GEMINI [50] were proposed to identify SL gene pairs

from these screening data. GEMINI is a variational Bayesian

approach proposed to identify SLs from combinatorial CRISPR

screens. Data driven method ISLE [25] searches in the lab-

identified candidate SLs by tumor molecular profiles, patient

clinical data, and gene phylogeny relations to find out the

clinical SLs. These wet-lab experiments and computational

methods provided further evidence for some existing SLs or

discovered new SLs that had not been included in the first

version of SynLethDB.

To discover SL-based anticancer drug targets and clinical

SLs, it is highly desirable to consider the relationships among

SLs, cancers and drugs. Several studies combined SLs with

the information about cancers and cancer-drug interactions to

discover cancer-specific SLs for new cancer therapies. SL-BioDP

[8] provides an online tool based on a data-driven method

to predict SL interactions by mining cancer’s genomic and

chemical interactions. However, it only supports the prediction

of SL partners of the 623 genes belonging to 10 hallmark cancer

pathways and 18 types of cancers. SLKG [51] is a knowledge

graph that contains 7 kinds of relationships among genes,

cancers and drugs. Unlike SL-BioDP, SLKG collects SL pairs

from literature and existing databases instead of by prediction.

Moreover, SLKG is also used to identify the best repurposable

drug candidates and drug combinations.

In addition to the relationships among SLs, drugs, and

cancers, their various features are also useful for discovering

SLs and anticancer therapy. Taking the features of genes as

an example, the co-expression, gene ontology (GO) semantic

similarity, and shared pathways between genes are commonly

used features for predicting SLs [22, 7, 40, 27, 20]. In addition,

several tools have been developed to curate these features,

such as GO terms and pathways associated with specific genes,

anatomies and symptoms of cancers, and the side effects

and pharmacologic classes of drugs. For example, the Hetio

package from Hetionet [17] provides a way to integrate different

resources into a single data structure. We are motivated to

use these tools to construct an integrative knowledge graph to

better describe SL pairs.
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In this paper, we present SynLethDB 2.0 to include newly

discovered SLs and provide more related knowledge to help

identify clinically relevant SLs (Figure 1). It is a significant

expansion of the first version by adding 16,781 new SL gene

pairs, and integrating a biomedical knowledge graph, including

10 kinds of biomedical entities other than gene and 26 kinds

of relationships for drug discovery other than SL. The 37,341

entities and 1,405,652 relationships were used to create a

knowledge graph and stored in a graph database. A user-

friendly website interface with new functionalities for data

browsing, visualization and analysis has also been developed for

users to browse the data and knowledge graph in SynLethDB.

For example, users can search SLs by a disease or a compound,

perform pathway or GO term enrichment for SL partners of

a gene, and inspect the connections between two genes in a

interactive viewer.

Materials and Methods

Data sources

The new version of SynLethDB contains 50,868 SL pairs which

include 35,943 of Homo sapiens, 381 of Mus musculus, 439

of Drosophila melanogaster, 105 of Caenorhabditis elegans,

and 14,000 of Saccharomyces cerevisiae. The first source of

the new SL pairs is the research papers on identifying SLs

via wet-lab experiments. Using the “synthetic lethal” as a

keyword for searching in PubMed, 293 related papers published

during years from 2015 to 2019 were extracted for further

manual collection of new SL pairs. The second source is public

databases containing SL data such as GenomeRNAi [38] and

BioGRID [32]. The third source is the SL pairs predicted from

wet-lab screen data by computational methods such as GEMINI

[50]. For each SL pair, we annotated its species, references to

PubMed as supporting evidence, data source type, cell lines

and confidence score. Synthetic rescue means mutation in one

gene rescues the cell from lethality or growth defect caused by

a mutation in another gene [18]. It is related to drug resistance

[12] and can be seen as the opposite relationship to SL. We

collected 16,207 synthetic rescue (SR) gene pairs and 5,798

non-synthetic lethal (non-SL) gene pairs from the above three

sources, which can be used as negative samples to train SL

prediction models. Non-synthetic lethal pairs could be SR or

other relationships. Some gene pairs show up in both SL and

non-SL datasets, depending on the different cell lines or cancer

types.

In addition to the above these three kinds of gene pairs, we

added 24 types of relationships between genes and other entities

(e.g., drugs and cancers). These relationships include gene-

compound associations, gene-cancer associations, and other

features about genes, cancers and drugs. We manually obtained

a list of 53 cancers and curated these relationships from public

databases with Python scripts from the open-source project of

Hetionet [17]. First, we used the Python script from Hetionet

to collect the relationships from data sources. Hetionet collects

the relationships between genes, drugs and diseases. We added

the relationships among GO terms, pathways and SL genes

into the dataset. Every type of relationship was processed into

an independent CSV file at first, and then integrated into the

Neo4j database for persistent storage with the package Py2Neo.

Finally, we constructed a knowledge graph to describe human

SL gene pairs and the other 26 types of relationships, named

SynLethKG.

Data quality improvement

In addition to collecting the data about SLs, we have also

improved the annotation quality of SL gene pairs. First,

we collected the SL entries from different sources into one

TSV format file to facilitate subsequent unified processing.

Second, we completed the missing identifiers of the genes. With

annotation packages from Bioconductor, which provide genome

annotations for different species, we completed the missing

Entrez ID of a gene by its gene symbol or completed the missing

gene symbol by its Entrez ID. Third, we deleted entries that still

lacked gene IDs or gene symbols. These entries lacked gene IDs

or gene symbols because they contained incorrect gene symbols

or IDs, which may be due to recording errors from the original

sources. After that, we downloaded the latest version of the

gene annotations from the Gene Entrez database [30] on the

NCBI FTP site, then deleted the SL entries that contain genes

deprecated by the current NCBI Gene Entrez database. Lastly,

we removed duplicate SL entries that have the same genes and

PubMed IDs. The SL entries that contain the gene SL pair but

were from different sources, are merged into one entry.

Furthermore, unlike in the first version of the database

where SLs were stored in the form of records in a table, in the

new graph database SLs are stored as undirected edges between

two gene nodes. Hence, only one SL entry can be stored between

a pair of genes. The species, references to PubMed, supporting

evidence, cell lines, and other relevant information about an

SL entry are stored as properties of the edge, and the gene

annotation information is stored as the node properties.

Construction of graph database

In the previous version of SynLethDB, we used the relational

database management system, MySQL, to store the data. In

this version, we chose to use a graph database system, Neo4j,

to store SL pairs and related biomedical knowledge. Graph

database is more suitable for many-to-many relationships. The

relational database computes the relationships at query time

through expensive operations such as JOIN. By contrast, the

graph database stores the relationships as edges which processes

and queries the relationships more efficiently. We used the

Java framework of Spring Data Neo4j, as middle-ware for

object-graph mapping and data persistence. All the queries are

accessible to users through the front-end interface in the form of

Representational State Transfer (REST) API using Hypertext

Application Language (HAL) as the media type.

The front end of SynLethDB is a single-page application

built using VueJS and Element UI. When changing the tabs,

only the required content is updated instead of the whole page,

enabling faster responses. It allows us to cache searching queries

from users and create a better user experience until the web

session is updated. Interactive and expandable graph viewers

are developed with the ECharts JavaScript library to visualize

the query results as connections in the graph database.

We used Nginx as a reverse proxy to hide the real

host of SynLethDB for web security. In the deployment of

SynLethDB, we followed the micro-services architecture to get a

higher scalability and reduce downtime through fault isolation.

The database, web-interface, and web server are all hosted

in independent docker containers and arranged by Docker

Compose. These services can be easily migrated, automatically

deployed, and quickly restored, which ensures high accessibility

of SynLethDB.
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Table 1. Quantitative scores assigned to SLs according to

experimental methods.

Method Score

CRISPR interference 0.85

Drug inhibition 0.75

RNA interference 0.75

Low-throughput 0.80

High-throughput 0.50

Confidence scores of SL pairs

The SLs in our database were collected from different sources,

including manually checked publications, existing databases,

computational predictions and text mining. According to the

types of sources, we use a two-step strategy, i.e., quantification

and integration, to calculate the final confidence scores,

following the strategy of SynLethDB 1.0 [13]. The main

differences from the previous version are the individual scores

in the quantification and weight factors in the integration.

In the quantification step, the quantitative score is assigned

based on the experimental methods that were used, and a

individual score is assigned for each kind of evidence. To

incorporate the new source of CRISPR screening, we reset the

individual scores as Table 1 shows.

In the integration step, we integrated the scores of different

types of sources into a normalized confidence score for every

SL pair. Different weights are assigned according to the source

types. The default weights for biochemical experiment, existing

databases, computational prediction and text mining are 0.8,

0.5, 0.3 and 0.2, respectively. The weights are set empirically,

and users can customize these values according to their own

experience or needs when they browse the SLs on the web

interface of our database.

Gene set enrichment analysis

Given a gene g, let G denote the set of all SL partner genes of

g. The enrichment analysis is to find out the pathways and

GO terms from each of the three ontologies (i.e., biological

process, molecular function and cellular component) that occur

significantly more frequently than random in the gene set G.

We implemented two enrichment analysis methods based on

the degree information and p-value respectively.

Degree-based gene set enrichment analysis. An SLPR score

inspired by PageRank [33] was computed for each pathway or

GO term associated with the gene set G. The pathways and

GO terms can be ranked based on their SLPR scores. A larger

SLPR score means that a pathway or GO term is more closely

associated with the gene set. The SLPR score is defined as:

SLPR = (1−d)+d×
|L|∑
l∈L

[(1−q)+q×Sc(g, l)×degree(l)
w

)], (1)

where d is a damping factor set to 0.85, q is another damping

factor set to 0.8, and w is set to −1 to reflect a negative

correlation. For a specific pathway or GO term, L represents

the subset of genes in set G that are directly connected with

it. Given a gene l ∈ L, Sc(g, l) is the confidence score of the

SL pair (g, l), and degree(l) is the number of pathways or GO

terms associated with l.

P-value-based gene set enrichment analysis. Assume that M

is the number of genes in G and N is the number of genes having

SL partners in the whole database. Given a specific pathway or

GO term, n is the total number of genes associated with it and

m is the number of genes in G associated with it. To show the

enrichment of the gene set G with the pathway or GO term, we

calculate a p-value as follows [21].

P = 1−
m−1∑
i=0

(
M

i

)(
N −M

n− i

)
(

N

n

) (2)

Thus, we attain a list of pathways or GO terms sorted in

order of the p-values. A smaller p-value means that G is more

enriched with the given pathway or GO term.

SynLethDB 2.0 portal

A user-friendly web interface has been developed for

SynLethDB to facilitate data visualization, analysis and

interpretation. Compared with the first version, SynLethDB

2.0 is more user friendly in that it provides more interactive

searching options and network-view of relationships with state-

of-art web design. On the website of SynLethDB, we provide

a general introduction to the database, as well as the search

bar for looking up SLs by gene symbols or gene IDs. Other

functionalities of SynLethDB can be accessed by menu tabs on

the website as follows.

Searching and browsing the SLs. In the first version of

SynLethDB, users could only search for SLs by genes. In this

new version, we collected 14,116 gene-cancer relationships and

56,921 gene-compound relationships for those genes involved

in SLs from DisGeNET [34], Drugbank [47], and BindingDB

[10]. Based on these new data, we offer two new options for

searching, namely, “search SL by disease” and “search SL by

compound”, and provide the auto-complete function to the

list of all available cancers or compounds in SynLethDB. The

searching results are shown in a table viewer.

Customizable confidence scores for SLs. A confidence score

reflects an SL’s credibility based on its sources, which can

be used to rank SLs. As mentioned earlier, we use a two-

step scoring procedure (i.e., quantification and integration) to

assign a confidence score based on the sources of the SL. In

the quantification step, we assigned the quantitative scores to

SL pairs according to their experimental methods as shown in

Table 1. In the integration step, we provide default values for

the weight factors, but allow users to customize these weights

to facilitate them to extract the SLs of a certain type of source

that they are most interested in. When searching and browsing

SLs by genes, users can adjust the weight factors of source types

and rank results by the confidence scores.

Searching and browsing the knowledge graph SynLethKG.

SynLethKG contains relationships that describe various

features for genes, cancers and drugs. With the “Inspect SL”

functionality, all these relationships are categorized by their

node types and can be browsed through an interactive graph

viewer. Starting with SL genes to be inspected, users only

need to click on the node they are about to inspect, and the

graph viewer can fetch and visualize the results. The type of

relationships and the number of edges to be displayed can be

specified by the users. Properties of the nodes and edges, such

as data sources and entity IDs, can also be viewed through an

infobox in the upper right corner.
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Table 2. Comparison of statistics among existing databases.

SynLethDB 2.0 SynLethDB 1.0 SLKG

# Human SLs 35,943 19,952 19,987

# Mouse SLs 381 366 N/A

# Fly SLs 439 423 N/A

# Worm SLs 105 105 N/A

# Yeast SLs 14,000 13,241 N/A

KG Yes No Yes

Downloadable Yes Yes No

Annotation Yes SLs only No

Gene set enrichment analysis of SL partners. We developed

two methods for gene set enrichment analysis based on p-

values and node degrees respectively. Both methods take a gene

symbol as input, and conduct gene set enrichment analysis for

the SL partners of this gene. The output includes the rank

of the pathways and GO terms separately. A higher ranking

of a pathway or a GO term indicates that the SL partners of

this gene is more enriched with this pathway or GO term. The

p-value-based enrichment analysis tool ranks the results by p-

value calculated in Equation 2, and a lower p-value corresponds

to higher ranking. Meanwhile, the degree-based enrichment

analysis tool ranks the pathways and GO terms based on the

SLPR score as calculated in Equation 1, and a higher SLPR

score corresponds to a higher ranking.

Data access and download. We provide a download page to

make it easy for users to retrieve a large amount of data. All the

SL gene pairs are classified by species and can be downloaded in

either CSV or JSON format. We provide the files of SynLethKG

in the formats of CSV, JSON, and GraphML for users to

download. In particular, the datasets in GraphML format

can be imported to other software tools such as Gephi and

Cytoscape for analysis and visualization. For users who prefer

the triplet format, we also provide a CSV file that contains all

the relationships in the format (source, relationship, target).

All the data can be freely accessed and downloaded without a

login requirement. RESTful APIs are also provided for users

to access and analyze the data by running the scripts in

programming languages such as Python and R.

User manual. To lower the learning curve for new users

of SynLethDB, we offer a web page containing a user

manual, which gives an introduction to every functionality of

SynLethDB, as well as examples of using the web interface and

the RESTful APIs.

Results

Comparison with other databases

In this subsection, we compare SynLethDB 2.0 with

SynLethDB 1.0 [13] and Synthetic Lethality Knowledge

Graph (SLKG) [51]. From the comparison, we observe that

SynLethDB 2.0 excels in the following aspects.

First, SynLethDB 2.0 is the most up-to-date and most

comprehensive database for SLs. SynLethDB 2.0 contains

50,868 SL pairs in total, almost doubling the number of SL

pairs in SynLethDB 1.0. In particular, SynLethDB 2.0 contains

35,943 human SLs, 381 mouse SLs, 439 fly SLs, 14,000 yeast

SLs and 105 worm SLs as shown in Table 2. Regarding human

SLs, SynLethDB 1.0 and SLKG have comparable numbers of

SL pairs, while the number of SynLethDB 2.0 is almost 1.8

times that of each of them. Similar to SynLethDB 1.0, we also

provide the HGNC gene symbols, Entrez gene IDs, PubMed IDs

of its original publications, types of sources and the confidence

score calculated according to the sources for each SL pair in

SynLethDB 2.0. Note that we updated the confidence scores by

considering new sources of SLs such as CRISPR screening and

allowing user-defined weight factors.

Table 3. Statistics about the knowledge graph SynLethKG

Human SLs

# genes 9,856

# interactions 35,943

Density 0.07%

SynLethKG

# entity types 11

# relationship types 27

# nodes 37,341

# edges 1,405,652

Table 4. NUmbers of the relationships in SynLethKG.

Type # Edges

(Anatomy, downregulates, Gene) 31

(Anatomy, expresses, Gene) 358,005

(Anatomy, upregulates, Gene) 26

(Compound, binds, Gene) 11,453

(Compound, causes, Side Effect) 135,063

(Compound, downregulates, Gene) 17,506

(Compound, palliates, Cancer) 42

(Compound, resembles, Compound) 5,500

(Compound, treats, Cancer) 282

(Compound, upregulates, Gene) 13,573

(Cancer, associates, Gene) 7,708

(Cancer, downregulates, Gene) 988

(Cancer, localizes, Anatomy) 1,444

(Cancer, presents, Symptom) 1,048

(Cancer, resembles, Cancer) 106

(Cancer, upregulates, Gene) 1,263

(Gene, covaries, Gene) 16,985

(Gene, interacts, Gene) 87,103

(Gene, non-synthetic lethal, Gene) 2,831

(Gene, participates, Biological Process) 393,049

(Gene, participates, Cellular Component) 59,054

(Gene, participates, Molecular Function) 65,207

(Gene, participates, Pathway) 41,790

(Gene, regulates, Gene) 147,639

(Gene, synthetic lethal, Gene) 35,943

(Gene, synthetic rescue, Gene) 895

(Pharmacologic Class, includes, Compound) 1,118

Second, SynLethDB 2.0 provides more types of biomedical

knowledge. SLKG [51] is a knowledge graph which contains the

relationships among genes, drugs, and cancers. SynLethKG

in SynLethDB 2.0 contains much more types of entities

and relationships, including biological processes, pathways,

molecule functions and cellular components for genes,

pharmacologic classes and side effects for drugs, symptoms and

anatomies for cancers. Overall, there are 37,341 entities/nodes

and 1,405,652 relationships/edges in SynLethKG as shown in

Table 3 clearly, SynLethDB 2.0 provides a more comprehensive

knowledge graph about human SLs than SLKG. The types

of relationships and their numbers are listed in Table 4. In
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Fig. 2. SLs and drugs in SynLethKG for driver genes of 32 cancers and pan-caner. The bar chart shows the numbers of cancer driver genes in SynLethKG.

In the left figure, the line chart represents the numbers of SLs containing the cancer driver genes in SynLethKG, and in the right figure, the line chart

represents the numbers of drugs associated with the driver genes in SynLethKG.

Table 5. Statistics about the entities in SynLethKG.

labels(n) Size Avg Ann1 Avg Rel2

SideEffect 5,664 5.00 23.85

Gene 14,100 8.00 112.99

BiologicalProcess 12,141 5.00 32.37

Compound 1,898 7.00 100.12

MolecularFunction 3,012 5.00 21.65

Anatomy 390 6.64 921.81

CellularComponent 1,619 5.00 36.48

Pathway 2,069 5.00 20.63

Symptom 325 5.00 3.224

PharmacologicClass 357 6.00 3.13

Cancer 53 5.00 245.04

1The average number of annotations of each type of nodes.

2The average number of relationships of each type of nodes.

addition, SynLethDB 2.0 retains and corrects the annotations

of SLs in SynLethDB 1.0, and also adds annotations to nodes

and edges in SynLethKG, such as the name of entity, the

data source, and the link to entity in the original data source,

and other annotations such as the organisms of genes and the

thresholds used when extracting the relationships. Therefore,

SynLethDB 2.0 provides more comprehensive annotations for

the entries and relationships. Table 5 shows the number of

each type of entities in SynLethKG, and the average numbers

of annotations and relationships of each kind of entities. The

average number of relationships for each type of nodes is

counted by adding the number of edges among all the nodes

and dividing the sum by the number of nodes.

Third, the data in SynLethDB 2.0 are freely downloadable.

For users who intend to do in-depth data analysis, a local

copy of data would be necessary. SynLethDB 2.0 allows users

to download the datasets from the website, while SLKG only

allows the query results to be downloaded.

SynLethKG for cancer driver genes

In SynLethKG, we collected various relationships for the genes

involved in the SL pairs, including gene-gene relationships (gene

expression covariation, gene interaction and gene regulation),

Gene Ontology (GO) annotations and pathways as shown in

Table 4. In particular, SynLethKG has 14,100 genes, 12,141

biological processes, 3,012 molecular functions, 1,619 cellular

components and 2,026 pathways etc. as nodes and their

relationships as edges in Table 5.

Moreover, SynLethKG also contains 9,959 relationships

between the genes and 53 cancers from DisGeNET database

[34] and 42,532 relationships between the genes and 1,898

compounds from DrugBank database [47]. For cancers, 325

symptoms and 390 anatomies are included as entities to

describe the cancer features. For drugs, 357 pharmacologic

classes and 5,664 side-effects are included as entities to describe

drug features. Based on the same strategy as in SL-BioDP

[8], we counted the numbers of cancer driver genes and genes

from hallmark cancer pathways in 32 cancer types from TCGA

contained in SynLethKG, as well as the numbers of their SL

partners and related drugs.

Figure 2 shows the numbers of cancer drive genes, their SL

partners and related drugs. We can observe that several cancers

have quite a few SL pairs and drugs related to their driver

genes, including BLCA, BRCA, CESC, COADREAD, HNSC,

LGG, LIHC, SKCM and UCEC. Figure 2 demonstrates that

our database contains useful information about many genes,

SLs and drugs related to cancers, which could be potentially

used as an interpretation tool for data-driven SL-based drug

target discovery.

SynLethKG for predictive modeling

Based on known SL data and related knowledge, new SLs can

be predicted. Compared to the previous version, SynLethDB

2.0 provides more SL data and related knowledge as features

to allow more accurate prediction of SLs. In the work of Wang

et al. [45], it was demonstrated that additional information

from the SynLethKG could guide a model to achieve better

performance. By extracting gene interaction, gene regulation

and gene co-variation relationships from SynLethKG we

constructed a sub-graph of the SynLethKG knowledge graph,

named G2G graph. We compare the SL prediction performances

of models trained against the SL dataset, G2G graph and

SynLethKG to analyze the contributions of different types of

knowledge to SLs prediction.
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We used all 35,943 human SLs as positive samples

and randomly up-sampled the negative samples from 3,726

synthetic rescue (SR) and non-synthetic lethal (non-SL) pairs

to the same size of the positive samples to avoid the influence

of data imbalance. The dataset is randomly split into a training

set and test set, constituting 70% and 30% of the original

dataset, respectively. The training set is used to train models,

and the associated test set is used to evaluate the trained model.

In particular, we built the traditional machine learning model

of Random Forest (RF), and a graph neural network, Graph

Convolutional Network (GCN), for SL prediction.

The classical Random Forest model, with 30 estimators and

maximum depth 10, was implemented using Scikit-Learn, a

Python library for machine learning. We extracted 9 features

from the gene graphs for every SL pair, which were calculated

by a graph algorithm library in Neo4j named “Graph Science

Data” from three aspects, i.e. common neighbors, triangles

and clustering coefficients, and community detection. The

features based on common neighbors include the number of

total neighbors, the number of common neighbors and the

preferential attachment value. The features based on triangles

and clustering coefficients include the maximum and minimum

numbers of triangles that a node is part of, and the maximum

and minimum values of clustering coefficients which show if

the neighbors are also connected. Two features extracted from

community detection are the Boolean values (i.e. represented by

0 or 1) about whether a pair of nodes are in the same community

detected by label propagation algorithm [35] and Louvaion

algorithm [28]. We applied RF on three graphs, namely, G2G

graph, SL graph and SL+G2G graph, to test the contribution

of knowledge graph to SL prediction. SL+G2G graph comprises

nodes and edges from either the SL graph or the G2G graph.

We did not run the RF model on SynLethKG because the RF

model requires pre-processing the nine kinds of features for each

type of the relationships in SynLethKG before training. Thus,

the performance on SynLethKG is demonstrated by the GCN

model.

The graph neural network model, GCN, was implemented by

a Python library named Deep Graph Library (DGL) [43], with

two graph convolution layers. To further test the performance

of the model on a dataset with more knowledge, we tested the

performance of the GCN model on the G2G graph and the

SynLethKG graph, with the same pre-processing of training

set and testing set. There are 24 kinds of relationships in the

features of SynLethKG graph instead of 27, because the SLs

used as positive samples and the SRs and non-SLs used as

negative samples and should not be counted as features when

training the model to avoid leaking label information in training

data.

The performances of the models are measured by F1,

AUROC and AUPR scores. As Table 6 shows, the RF

model trained against the SL graph can perform better than

the RF model trained anainst the G2G graph. However,

the combination of SL and G2G can achieve even better

performance. This indicates that the features extracted from

other relationships can contribute to SL prediction. The GCN

also has better performance on the SynLethKG dataset (as

shown in the last row of Table 6) than on the G2G dataset,

which indicates that adding more knowledge from SynLethKG

can further improve the performance of SL prediction.

Table 6. Performance of SL prediction by two models.

Model Dataset AUROC AUPR F1

RF G2G 0.873±0.003 0.912±0.002 0.867±0.003

RF SL 0.938±0.002 0.959±0.002 0.927±0.002

RF SL+G2G 0.938±0.002 0.965±0.001 0.934±0.002

GCN G2G 0.862±0.003 0.891±0.002 0.875±0.003

GCN SynLethKG 0.870±0.029 0.898±0.016 0.886±0.021

Case study

To demonstrate how to use SynLethDB to discover drug targets,

let us do a case study of searching SL partners of BRCA1 in

breast cancer through the web interface as shown in Figure 3.

First, with the “Search SL by disease” module in SynLethDB,

we choose “breast cancer” as the disease and select the

relationship “Disease Associates Gene”. Then, the first line of

the results show that breast cancer is associated with BRCA1.

By clicking the “Search SL” button in the function column, we

searched the SL partners of BRCA1. The result shows that

PARP2 is an SL partner of BRCA1 with a high confidence

score (0.87). Here we choose this SL pair for further inspection.

After clicking the “Inspect” button in the function column,

we can browse more knowledge about this SL pair. Different

types of biomedical relationships can be browsed by clicking

the nodes in the graph. For example, we can see that both

BRCA1 and PARP2 are associated with the “ovarian cancer”

and “breast cancer” diseases, and BRCA1 participates in the

“DNA Damage Response” pathway. As breast cancer down-

regulates BRCA1 and BRCA1 has an SL partner, PARP2, we

check out compounds that down-regulate PARP2 as candidate

drugs for breast cancer. As shown in the graph, Rucaparib,

Talazoparib, Niraparib, and Olaparib all bind with PARP2.

On the other hand, we can also search Rucaparib, Talazoparib,

Niraparib, and Olaparib from the “Search SL by compound”

page. In this way, we can find that PARP2 is a drug target.

Through this case study, we show the basic functionalities of

the database through the web interface, which can be used

to explore potential anti-cancer drug targets based on SL or

analyze the biological mechanisms behind SLs.

Discussion and Conclusion

With the development of RNAi and CRISPR screening

technologies, data about synthetic lethality have increased

rapidly in the past few years. We have been continuously

collecting SL data, integrating them into SynLethDB and

improving the annotation quality. In this version, we have

integrated more biomedical knowledge about human SLs into a

knowledge graph called SynLethKG. The additional knowledge

can provide more features for SL prediction and improve the

performance of the predictive model. A similar procedure can

be applied to predicting drugs based on SLs. We also provided

a new web interface with online services for data browsing,

visualization and analysis. For instance, “Search SL by disease”

can facilitate SL-based cancer drug discovery. The “SL inspect”

functionality displays relationships between a pair of SL genes

from multiple sources in one intuitive graph. Enrichment

analysis tools help analyze the most relevant pathways and GO

of a gene’s SL partners. SynLethDB has been used as a source

of training or testing datasets by many computational methods

for SL prediction, and this new version of SynLethDB provides

a larger and more comprehensive dataset for these methods. In

addition, we realize that the data in SynLethDB are enriched
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Search by disease: breast cancer

Choose BRCA1

Choose PARP2

Search by compound: Niraparib, 

Talazoparid, Olaparib, Rucaparid  

Inspect synthetic lethality 

gene pair: BRCA1-PARP2

Check more information 

about any node or link by 

the info box  in the right 

coner

Browse the biomedical 

connections about BRCA1 

and PARP2 by a interactive 

graph viewer

Fig. 3. The case study on BRCA1 in breast cancer. Using “Search SL by disease”, the SL genes associated with the disease will be shown. BRCA1 is a

gene that has SL partners and is down-regulated in breast cancer. Click the “Search SL” button, and it shows that PARP2 is an SL partner of BRCA1

with a high confidence score (0.87). Inspecting this pair of SL genes, we notice that BRCA1 and PARP2 are both associated with the “ovarian cancer”

and “breast cancer” diseases, and BRCA1 participates in the “DNA Damage Response” pathway. The result that breast cancer down-regulates BRCA1

and PARP2 is an SL partner of BRCA1 indicates that PARP2 is a drug target for breast cancer. Rucaparib, Talazoparib, Niraparib, and Olaparib all

bind with PARP2. Using “Search SL by compound”, we also identify PARP2 as a target gene of Rucaparib, Talazoparib, Niraparib and Olaparib.

with SLs of some hub genes, such as KRAS, because they are

more experimentally studied. This kind of data skewness may

introduce some bias, which makes a model learn superficial

patterns and achieve inflated performance.

The overall goal of SynLethDB is to increase the

understanding of SL mechanisms and to facilitate drug

discovery. In the future, we will continue to collect new SLs

and enhance the functionalities of the database. For instance,

we will add genomics data and cell line annotations to make

SLs more context-specific. In addition, we can create more

efficient path queries based on the graph database to find the

pathways shared between SL pairs and interactions between SLs

and drugs.

Key Points

• To provide the scientific community with the latest data

about SL gene pairs, we developed SynLethDB 2.0. The

number of SLs included has increased from 34,089 to 50,868,

including new results from CRISPR screening.

• We have integrated 27 relationships of 11 entities and

constructed a knowledge graph about human SL gene pairs,

named SynLethKG, to provide more biomedical knowledge

about SLs.

• SynLethKG contains comprehensive knowledge about SLs

and provides useful features for SL prediction. Similarly,

the relationships between SLs, drugs and cancers can also

be used for drug discovery.

• SynLethDB 2.0 provides a new website interface to facilitate

the retrieval and visualization of knowledge graph. Online

tools have also been developed, including drug-based and

cancer-based SL searching, p-value-based and degree-based

gene enrichment analysis of SL partners, and the display of

the subgraph between a pair of SL genes.

• The data and knowledge graph SynLethKG contained in

SynLethDB 2.0 can be fully accessed and downloaded

through the website or RESTful APIs.
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Data Availability

The datasets of SynLethDB 2.0 are freely available at http:

//synlethdb.sist.shanghaitech.edu.cn/v2.

Author contributions statement

JZ, MW and HL conceived the study. JW and SZ collected the

data and performed the analysis. JW, XH, and LW developed

the SynLethKG knowledge graph and the SynLethDB database.

JW drafted the manuscript with critical input from JZ and

MW. All authors reviewed the manuscript.

References

1. Steven R Bartz, Zhan Zhang, Julja Burchard, Maki

Imakura, Melissa Martin, Anthony Palmieri, Rachel

Needham, Jie Guo, Marcia Gordon, Namjin Chung, et al.

Small interfering RNA screens reveal enhanced cisplatin

cytotoxicity in tumor cells having both BRCA network

and TP53 disruptions. Molecular and Cellular Biology,

26(24):9377–9386, 2006.

2. Jonathan L Blank, Xiaozhen J Liu, Katherine

Cosmopoulos, David C Bouck, Khristofer Garcia,

Hugues Bernard, Olga Tayber, Greg Hather, Ray

Liu, Usha Narayanan, et al. Novel DNA damage

checkpoints mediating cell death induced by the NEDD8-

activating enzyme inhibitor MLN4924. Cancer Research,

73(1):225–234, 2013.

3. Helen E Bryant, Niklas Schultz, Huw D Thomas, Kayan M

Parker, Dan Flower, Elena Lopez, Suzanne Kyle, Mark

Meuth, Nicola J Curtin, and Thomas Helleday. Specific

killing of BRCA2-deficient tumours with inhibitors of poly

(ADP-ribose) polymerase. Nature, 434(7035):913–917,

2005.

4. Ruichu Cai, Xuexin Chen, Yuan Fang, Min Wu, and

Yuexing Hao. Dual-dropout graph convolutional network

for predicting synthetic lethality in human cancers.

Bioinformatics, 36(16):4458–4465, 2020.

5. Jan-Gowth Chang, Chia-Cheng Chen, Yi-Ying Wu, Ting-

Fang Che, Yi-Syuan Huang, Kun-Tu Yeh, Grace S

Shieh, and Pan-Chyr Yang. Uncovering synthetic lethal

interactions for therapeutic targets and predictive markers

in lung adenocarcinoma. Oncotarget, 7(45):73664, 2016.

6. XiuLiang Cui, Lu Han, Yang Liu, Ying Li, Wen Sun,

Bin Song, Wenxia Zhou, Yongxiang Zhang, and Hongyang

Wang. siGCD: a web server to explore survival interaction

of genes, cells and drugs in human cancers. Briefings in

Bioinformatics, 2021.

7. Shaoli Das, Xiang Deng, Kevin Camphausen, and Uma

Shankavaram. DiscoverSL: an R package for multi-omic

data driven prediction of synthetic lethality in cancers.

Bioinformatics, 35(4):701–702, 2019.

8. Xiang Deng, Shaoli Das, Kristin Valdez, Kevin

Camphausen, and Uma Shankavaram. Sl-biodp: Multi-

cancer interactive tool for prediction of synthetic lethality

and response to cancer treatment. Cancers, 11(11):1682,

2019.

9. Th Dobzhansky. Genetics of natural populations. XIII.

Recombination and variability in populations of Drosophila

pseudoobscura. Genetics, 31(3):269, 1946.

10. Michael K Gilson, Tiqing Liu, Michael Baitaluk, George

Nicola, Linda Hwang, and Jenny Chong. BindingDB

in 2015: a public database for medicinal chemistry,

computational chemistry and systems pharmacology.

Nucleic Acids Research, 44(D1):D1045–D1053, 2016.

11. Mark A Gregory, Tzu L Phang, Paolo Neviani, Francesca

Alvarez-Calderon, Christopher A Eide, Thomas O’Hare,

Vadym Zaberezhnyy, Richard T Williams, Brian J Druker,

Danilo Perrotti, et al. Wnt/Ca2+/NFAT signaling

maintains survival of Ph+ leukemia cells upon inhibition

of Bcr-Abl. Cancer Cell, 18(1):74–87, 2010.

12. Yunyan Gu, Ruiping Wang, Yue Han, Wenbin Zhou,

Zhangxiang Zhao, Tingting Chen, Yuanyuan Zhang,

Fuduan Peng, Haihai Liang, Lishuang Qi, et al. A landscape

of synthetic viable interactions in cancer. Briefings in

Bioinformatics, 19(4):644–655, 2018.

13. Jing Guo, Hui Liu, and Jie Zheng. SynLethDB:

synthetic lethality database toward discovery of selective

and sensitive anticancer drug targets. Nucleic Acids

Research, 44(D1):D1011–D1017, 2016.

14. Kyuho Han, Edwin E Jeng, Gaelen T Hess, David W

Morgens, Amy Li, and Michael C Bassik. Synergistic

drug combinations for cancer identified in a CRISPR screen

for pairwise genetic interactions. Nature Biotechnology,

35(5):463–474, 2017.

15. Leland H Hartwell, Philippe Szankasi, Christopher J

Roberts, Andrew W Murray, and Stephen H Friend.

Integrating genetic approaches into the discovery of

anticancer drugs. Science, 278(5340):1064–1068, 1997.

16. Andreas Heinzel, Maximilian Marhold, Paul Mayer,

Michael Schwarz, Erwin Tomasich, Arno Lukas, Michael

Krainer, and Paul Perco. Synthetic lethality guiding

selection of drug combinations in ovarian cancer. PLoS

ONE, 14(1):e0210859, 2019.

17. Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler,

Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari

Green, Pouya Khankhanian, and Sergio E Baranzini.

Systematic integration of biomedical knowledge prioritizes

drugs for repurposing. Elife, 6:e26726, 2017.
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