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Abstract

Two genes are synthetic lethal if mutations in both genes result in impaired cell viability, while mutation of either gene does
not affect the cell survival. The potential usage of synthetic lethality (SL) in anticancer therapeutics has attracted many
researchers to identify synthetic lethal gene pairs. To include newly identified SLs and more related knowledge, we present a
new version of the SynLethDB database to facilitate the discovery of clinically relevant SLs. We extended the first version
of SynLethDB database significantly by including new SLs identified through CRISPR screening, a knowledge graph
about human SLs, and new web interface, etc. Over 16,000 new SLs and 26 types of other relationships have been added,
encompassing relationships among 14,100 genes, 53 cancers, and 1,898 drugs, etc. Moreover, a brand-new web interface
has been developed to include modules such as SL query by disease or compound, SL partner gene set enrichment analysis
and knowledge graph browsing through a dynamic graph viewer. The data can be downloaded directly from the website
or through the RESTful APIs. The database is accessible online at http://synlethdb.sist.shanghaitech.edu.cn/v2.
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Introduction The first version of SynLethDB released in 2016 contains
34,089 SL gene pairs and is the first comprehensive database
of SLs [13]. It collects SL pairs for human and 4 model
species, i.e., mouse, fruit fly, worm and yeast, from biochemical

Synthetic lethality (SL), initially described in Drosophila as
recessive lethality [9], is a type of gene-gene interaction such
that the perturbation of both genes causes the loss of cell R i .
L . . . . assays, public databases [38, 32], computational predictions
viability, while the perturbation of either gene alone will not . . K . L
L. [37] and text mining. In addition, it provides a statistical
affect the cell viability [31]. SL offers a strategy for cancer . .
.. . e e . . analysis module to evaluate the druggability and efficacy of
medicine by identifying new antibiotic or therapeutic targets

[15, 3, 36]. By inhibiting the SL partner of a gene with cancer-
specific alteration, we can kill cancer cells and spare normal
cells, thereby reducing the side effect of the treatment [24, 23].

To discover SL gene pairs as a gold mine of cancer drug targets,

SL pairs upon drug treatments by analyzing the large-scale
drug sensitivity data. Recently, SynLethDB has been used as
ground-truth SL data in various studies. For example, Liany
et al. [26], Cai et al. [4] and Das et al. [7] used SynLethDB
to train and test their computational SL prediction methods.
Hu et al. [19] used SynLethDB to evaluate their method for de
novo identification of synergistic optimal control nodes (OCNs)

researchers have applied various techniques, including chemical
screening [16], RNAIi screening [11, 1, 5, 29, 2], CRISPR
screening [14, 39] and bioinformatics methods [22, 25, 41, 49].
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Fig. 1. Architecture of SynLethDB 2.0. The bottom layer shows the data sources of SLs and other biomedical knowledge. The middle layer shows the

data pre-processing steps, database storage, and web server. The top layer shows the main functional modules of the user interface.

as candidate targets for combination therapy. Wang et al. [44]
used the SLs in SynLethDB to investigate the link between SL
interactions and drug sensitivity of cancer cells. Cui et al. used
the SL data from SynLethDB in their web-based tool called
siGCD [6] for analysis and visualization of the interactions
among genes, cells and drugs associated with survival in human
cancers.

Many CRISPR-based screening experiments have been
conducted after 2015 and generated a large amount of data.
Combinatorial CRISPR-based screening has been used to
study genetic interactions, including the identification of SL
interactions [48, 52, 39, 14, 46, 42]. Computational methods
such as GEMINI [50] were proposed to identify SL gene pairs
from these screening data. GEMINI is a variational Bayesian
approach proposed to identify SLs from combinatorial CRISPR
screens. Data driven method ISLE [25] searches in the lab-
identified candidate SLs by tumor molecular profiles, patient
clinical data, and gene phylogeny relations to find out the
clinical SLs. These wet-lab experiments and computational
methods provided further evidence for some existing SLs or
discovered new SLs that had not been included in the first
version of SynLethDB.

To discover SL-based anticancer drug targets and clinical
SLs, it is highly desirable to consider the relationships among
SLs, cancers and drugs. Several studies combined SLs with
the information about cancers and cancer-drug interactions to

discover cancer-specific SLs for new cancer therapies. SL-BioDP
[8] provides an online tool based on a data-driven method
to predict SL interactions by mining cancer’s genomic and
chemical interactions. However, it only supports the prediction
of SL partners of the 623 genes belonging to 10 hallmark cancer
pathways and 18 types of cancers. SLKG [51] is a knowledge
graph that contains 7 kinds of relationships among genes,
cancers and drugs. Unlike SL-BioDP, SLKG collects SL pairs
from literature and existing databases instead of by prediction.
Moreover, SLKG is also used to identify the best repurposable
drug candidates and drug combinations.

In addition to the relationships among SLs, drugs, and
cancers, their various features are also useful for discovering
SLs and anticancer therapy. Taking the features of genes as
an example, the co-expression, gene ontology (GO) semantic
similarity, and shared pathways between genes are commonly
used features for predicting SLs [22, 7, 40, 27, 20]. In addition,
several tools have been developed to curate these features,
such as GO terms and pathways associated with specific genes,
anatomies and symptoms of cancers, and the side effects
and pharmacologic classes of drugs. For example, the Hetio
package from Hetionet [17] provides a way to integrate different
resources into a single data structure. We are motivated to
use these tools to construct an integrative knowledge graph to
better describe SL pairs.
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In this paper, we present SynLethDB 2.0 to include newly
discovered SLs and provide more related knowledge to help
identify clinically relevant SLs (Figure 1). It is a significant
expansion of the first version by adding 16,781 new SL gene
pairs, and integrating a biomedical knowledge graph, including
10 kinds of biomedical entities other than gene and 26 kinds
of relationships for drug discovery other than SL. The 37,341
entities and 1,405,652 relationships were used to create a
knowledge graph and stored in a graph database. A user-
friendly website interface with new functionalities for data
browsing, visualization and analysis has also been developed for
users to browse the data and knowledge graph in SynLethDB.
For example, users can search SLs by a disease or a compound,
perform pathway or GO term enrichment for SL partners of
a gene, and inspect the connections between two genes in a
interactive viewer.

Materials and Methods
Data sources

The new version of SynLethDB contains 50,868 SL pairs which
include 35,943 of Homo sapiens, 381 of Mus musculus, 439
of Drosophila melanogaster, 105 of Caenorhabditis elegans,
and 14,000 of Saccharomyces cerevisiae. The first source of
the new SL pairs is the research papers on identifying SLs
via wet-lab experiments. Using the “synthetic lethal” as a
keyword for searching in PubMed, 293 related papers published
during years from 2015 to 2019 were extracted for further
manual collection of new SL pairs. The second source is public
databases containing SL data such as GenomeRNAi [38] and
BioGRID [32]. The third source is the SL pairs predicted from
wet-lab screen data by computational methods such as GEMINI
[50]. For each SL pair, we annotated its species, references to
PubMed as supporting evidence, data source type, cell lines
and confidence score. Synthetic rescue means mutation in one
gene rescues the cell from lethality or growth defect caused by
a mutation in another gene [18]. It is related to drug resistance
[12] and can be seen as the opposite relationship to SL. We
collected 16,207 synthetic rescue (SR) gene pairs and 5,798
non-synthetic lethal (non-SL) gene pairs from the above three
sources, which can be used as negative samples to train SL
prediction models. Non-synthetic lethal pairs could be SR or
other relationships. Some gene pairs show up in both SL and
non-SL datasets, depending on the different cell lines or cancer
types.

In addition to the above these three kinds of gene pairs, we
added 24 types of relationships between genes and other entities
(e.g., drugs and cancers). These relationships include gene-
compound associations, gene-cancer associations, and other
features about genes, cancers and drugs. We manually obtained
a list of 53 cancers and curated these relationships from public
databases with Python scripts from the open-source project of
Hetionet [17]. First, we used the Python script from Hetionet
to collect the relationships from data sources. Hetionet collects
the relationships between genes, drugs and diseases. We added
the relationships among GO terms, pathways and SL genes
into the dataset. Every type of relationship was processed into
an independent CSV file at first, and then integrated into the
Neo4j database for persistent storage with the package Py2Neo.
Finally, we constructed a knowledge graph to describe human
SL gene pairs and the other 26 types of relationships, named
SynLethKG.
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Data quality improvement

In addition to collecting the data about SLs, we have also
improved the annotation quality of SL gene pairs. First,
we collected the SL entries from different sources into one
TSV format file to facilitate subsequent unified processing.
Second, we completed the missing identifiers of the genes. With
annotation packages from Bioconductor, which provide genome
annotations for different species, we completed the missing
Entrez ID of a gene by its gene symbol or completed the missing
gene symbol by its Entrez ID. Third, we deleted entries that still
lacked gene IDs or gene symbols. These entries lacked gene IDs
or gene symbols because they contained incorrect gene symbols
or IDs, which may be due to recording errors from the original
sources. After that, we downloaded the latest version of the
gene annotations from the Gene Entrez database [30] on the
NCBI FTP site, then deleted the SL entries that contain genes
deprecated by the current NCBI Gene Entrez database. Lastly,
we removed duplicate SL entries that have the same genes and
PubMed IDs. The SL entries that contain the gene SL pair but
were from different sources, are merged into one entry.
Furthermore, unlike in the first version of the database
where SLs were stored in the form of records in a table, in the
new graph database SLs are stored as undirected edges between
two gene nodes. Hence, only one SL entry can be stored between
a pair of genes. The species, references to PubMed, supporting
evidence, cell lines, and other relevant information about an
SL entry are stored as properties of the edge, and the gene
annotation information is stored as the node properties.

Construction of graph database

In the previous version of SynLethDB, we used the relational
database management system, MySQL, to store the data. In
this version, we chose to use a graph database system, Neo4j,
to store SL pairs and related biomedical knowledge. Graph
database is more suitable for many-to-many relationships. The
relational database computes the relationships at query time
through expensive operations such as JOIN. By contrast, the
graph database stores the relationships as edges which processes
and queries the relationships more efficiently. We used the
Java framework of Spring Data Neo4j, as middle-ware for
object-graph mapping and data persistence. All the queries are
accessible to users through the front-end interface in the form of
Representational State Transfer (REST) API using Hypertext
Application Language (HAL) as the media type.

The front end of SynLethDB is a single-page application
built using VueJS and Element UI. When changing the tabs,
only the required content is updated instead of the whole page,
enabling faster responses. It allows us to cache searching queries
from users and create a better user experience until the web
session is updated. Interactive and expandable graph viewers
are developed with the ECharts JavaScript library to visualize
the query results as connections in the graph database.

We used Nginx as a reverse proxy to hide the real
host of SynLethDB for web security. In the deployment of
SynLethDB, we followed the micro-services architecture to get a
higher scalability and reduce downtime through fault isolation.
The database, web-interface, and web server are all hosted
in independent docker containers and arranged by Docker
Compose. These services can be easily migrated, automatically
deployed, and quickly restored, which ensures high accessibility
of SynLethDB.
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Table 1. Quantitative scores assigned to SLs according to
experimental methods.

Method Score

CRISPR interference 0.85

Drug inhibition 0.75

RNA interference 0.75

Low-throughput 0.80

High-throughput 0.50

Confidence scores of SL pairs

The SLs in our database were collected from different sources,
including manually checked publications, existing databases,
computational predictions and text mining. According to the
types of sources, we use a two-step strategy, i.e., quantification
and integration, to calculate the final confidence scores,
following the strategy of SynLethDB 1.0 [13]. The main
differences from the previous version are the individual scores
in the quantification and weight factors in the integration.

In the quantification step, the quantitative score is assigned
based on the experimental methods that were used, and a
individual score is assigned for each kind of evidence. To
incorporate the new source of CRISPR screening, we reset the
individual scores as Table 1 shows.

In the integration step, we integrated the scores of different
types of sources into a normalized confidence score for every
SL pair. Different weights are assigned according to the source
types. The default weights for biochemical experiment, existing
databases, computational prediction and text mining are 0.8,
0.5, 0.3 and 0.2, respectively. The weights are set empirically,
and users can customize these values according to their own
experience or needs when they browse the SLs on the web
interface of our database.

Gene set enrichment analysis

Given a gene g, let G denote the set of all SL partner genes of
g. The enrichment analysis is to find out the pathways and
GO terms from each of the three ontologies (i.e., biological
process, molecular function and cellular component) that occur
significantly more frequently than random in the gene set G.
We implemented two enrichment analysis methods based on
the degree information and p-value respectively.

Degree-based gene set enrichment analysis. An SLPR score
inspired by PageRank [33] was computed for each pathway or
GO term associated with the gene set G. The pathways and
GO terms can be ranked based on their SLPR scores. A larger
SLPR score means that a pathway or GO term is more closely
associated with the gene set. The SLPR score is defined as:

IL|
SLPR = (1—d)+dx Y _[(1—q)+qxSc(g, 1) xdegree(1)")], (1)
leL

where d is a damping factor set to 0.85, ¢ is another damping
factor set to 0.8, and w is set to —1 to reflect a negative
correlation. For a specific pathway or GO term, L represents
the subset of genes in set G that are directly connected with
it. Given a gene | € L, S.(g,!) is the confidence score of the
SL pair (g, 1), and degree(l) is the number of pathways or GO
terms associated with .

P-value-based gene set enrichment analysis. Assume that M
is the number of genes in G and N is the number of genes having
SL partners in the whole database. Given a specific pathway or

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

GO term, n is the total number of genes associated with it and
m is the number of genes in G associated with it. To show the
enrichment of the gene set G with the pathway or GO term, we
calculate a p-value as follows [21].

)
=0

Thus, we attain a list of pathways or GO terms sorted in

(2

order of the p-values. A smaller p-value means that G is more
enriched with the given pathway or GO term.

SynLethDB 2.0 portal

A user-friendly web interface has been developed for

SynLethDB to facilitate data visualization, analysis and
interpretation. Compared with the first version, SynLethDB
2.0 is more user friendly in that it provides more interactive
searching options and network-view of relationships with state-
of-art web design. On the website of SynLethDB, we provide
a general introduction to the database, as well as the search
bar for looking up SLs by gene symbols or gene IDs. Other
functionalities of SynLethDB can be accessed by menu tabs on
the website as follows.

Searching and browsing the SLs. In the first version of
SynLethDB, users could only search for SLs by genes. In this
new version, we collected 14,116 gene-cancer relationships and
56,921 gene-compound relationships for those genes involved
in SLs from DisGeNET [34], Drugbank [47], and BindingDB
[10]. Based on these new data, we offer two new options for
searching, namely, “search SL by disease” and “search SL by
compound”, and provide the auto-complete function to the
list of all available cancers or compounds in SynLethDB. The
searching results are shown in a table viewer.

Customizable confidence scores for SLs. A confidence score
reflects an SL’s credibility based on its sources, which can
be used to rank SLs. As mentioned earlier, we use a two-
step scoring procedure (i.e., quantification and integration) to
assign a confidence score based on the sources of the SL. In
the quantification step, we assigned the quantitative scores to
SL pairs according to their experimental methods as shown in
Table 1. In the integration step, we provide default values for
the weight factors, but allow users to customize these weights
to facilitate them to extract the SLs of a certain type of source
that they are most interested in. When searching and browsing
SLs by genes, users can adjust the weight factors of source types
and rank results by the confidence scores.

Searching and browsing the knowledge graph SynLethKG.
SynLethKG
features for genes, cancers and drugs. With the “Inspect SL”
functionality, all these relationships are categorized by their

contains relationships that describe various

node types and can be browsed through an interactive graph
viewer. Starting with SL genes to be inspected, users only
need to click on the node they are about to inspect, and the
graph viewer can fetch and visualize the results. The type of
relationships and the number of edges to be displayed can be
specified by the users. Properties of the nodes and edges, such
as data sources and entity IDs, can also be viewed through an
infobox in the upper right corner.
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Table 2. Comparison of statistics among existing databases.

SynLethDB 2.0 SynLethDB 1.0 SLKG
# Human SLs 35,943 19,952 19,987
# Mouse SLs 381 366 N/A
# Fly SLs 439 423 N/A
# Worm SLs 105 105 N/A
# Yeast SLs 14,000 13,241 N/A
KG Yes No Yes
Downloadable Yes Yes No
Annotation Yes SLs only No

Gene set enrichment analysis of SL partners. We developed
two methods for gene set enrichment analysis based on p-
values and node degrees respectively. Both methods take a gene
symbol as input, and conduct gene set enrichment analysis for
the SL partners of this gene. The output includes the rank
of the pathways and GO terms separately. A higher ranking
of a pathway or a GO term indicates that the SL partners of
this gene is more enriched with this pathway or GO term. The
p-value-based enrichment analysis tool ranks the results by p-
value calculated in Equation 2, and a lower p-value corresponds
to higher ranking. Meanwhile, the degree-based enrichment
analysis tool ranks the pathways and GO terms based on the
SLPR score as calculated in Equation 1, and a higher SLPR
score corresponds to a higher ranking.

Data access and download. We provide a download page to
make it easy for users to retrieve a large amount of data. All the
SL gene pairs are classified by species and can be downloaded in
either CSV or JSON format. We provide the files of SynLethKG
in the formats of CSV, JSON, and GraphML for users to
download. In particular, the datasets in GraphML format
can be imported to other software tools such as Gephi and
Cytoscape for analysis and visualization. For users who prefer
the triplet format, we also provide a CSV file that contains all
the relationships in the format (source, relationship, target).
All the data can be freely accessed and downloaded without a
login requirement. RESTful APIs are also provided for users
to access and analyze the data by running the scripts in
programming languages such as Python and R.

User manual. To lower the learning curve for new users
of SynLethDB, we offer a web page containing a user
manual, which gives an introduction to every functionality of
SynLethDB, as well as examples of using the web interface and
the RESTful APIs.

Results

Comparison with other databases

In this subsection, we compare SynLethDB 2.0 with
SynLethDB 1.0 [13] and Synthetic Lethality Knowledge
Graph (SLKG) [51]. From the comparison, we observe that
SynLethDB 2.0 excels in the following aspects.

First, SynLethDB 2.0 is the most up-to-date and most
comprehensive database for SLs. SynLethDB 2.0 contains
50,868 SL pairs in total, almost doubling the number of SL
pairs in SynLethDB 1.0. In particular, SynLethDB 2.0 contains
35,943 human SLs, 381 mouse SLs, 439 fly SLs, 14,000 yeast
SLs and 105 worm SLs as shown in Table 2. Regarding human
SLs, SynLethDB 1.0 and SLKG have comparable numbers of
SL pairs, while the number of SynLethDB 2.0 is almost 1.8

SynLethDB 2.0 | 5

times that of each of them. Similar to SynLethDB 1.0, we also
provide the HGNC gene symbols, Entrez gene IDs, PubMed IDs
of its original publications, types of sources and the confidence
score calculated according to the sources for each SL pair in
SynLethDB 2.0. Note that we updated the confidence scores by
considering new sources of SLs such as CRISPR screening and
allowing user-defined weight factors.

Table 3. Statistics about the knowledge graph SynLethKG

# genes 9,856
Human SLs # interactions 35,943

Density 0.07%

7 entity types 11
SynLethKG  # relationship types 27

# nodes 37,341

# edges 1,405,652

Table 4. NUmbers of the relationships in SynLethKG.

Type # Edges
(Anatomy, downregulates, Gene) 31
(Anatomy, expresses, Gene) 358,005
(Anatomy, upregulates, Gene) 26
(Compound, binds, Gene) 11,453
(Compound, causes, Side Effect) 135,063
(Compound, downregulates, Gene) 17,506
(Compound, palliates, Cancer) 42
(Compound, resembles, Compound) 5,500
(Compound, treats, Cancer) 282
(Compound, upregulates, Gene) 13,573
(Cancer, associates, Gene) 7,708
(Cancer, downregulates, Gene) 988
(Cancer, localizes, Anatomy) 1,444
(Cancer, presents, Symptom) 1,048
(Cancer, resembles, Cancer) 106
(Cancer, upregulates, Gene) 1,263
(Gene, covaries, Gene) 16,985
(Gene, interacts, Gene) 87,103
(Gene, non-synthetic lethal, Gene) 2,831
(Gene, participates, Biological Process) 393,049
(Gene, participates, Cellular Component) 59,054
(Gene, participates, Molecular Function) 65,207
(Gene, participates, Pathway) 41,790
(Gene, regulates, Gene) 147,639
(Gene, synthetic lethal, Gene) 35,943

(Gene, synthetic rescue, Gene) 895
(Pharmacologic Class, includes, Compound) 1,118

Second, SynLethDB 2.0 provides more types of biomedical
knowledge. SLKG [51] is a knowledge graph which contains the
relationships among genes, drugs, and cancers. SynLethKG
in SynLethDB 2.0 contains much more types of entities
and relationships, including biological processes, pathways,
molecule functions and cellular components for genes,
pharmacologic classes and side effects for drugs, symptoms and
anatomies for cancers. Overall, there are 37,341 entities/nodes
and 1,405,652 relationships/edges in SynLethKG as shown in
Table 3 clearly, SynLethDB 2.0 provides a more comprehensive
knowledge graph about human SLs than SLKG. The types

of relationships and their numbers are listed in Table 4. In
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Fig. 2. SLs and drugs in SynLethKG for driver genes of 32 cancers and pan-caner. The bar chart shows the numbers of cancer driver genes in SynLethKG.
In the left figure, the line chart represents the numbers of SLs containing the cancer driver genes in SynLethKG, and in the right figure, the line chart

represents the numbers of drugs associated with the driver genes in SynLethKG.

Table 5. Statistics about the entities in SynLethKG.

labels(n) Size Avg_Ann’ Avg_ Rel?
SideEffect 5,664 5.00 23.85
Gene 14,100 8.00 112.99
BiologicalProcess 12,141 5.00 32.37
Compound 1,898 7.00 100.12
MolecularFunction 3,012 5.00 21.65
Anatomy 390 6.64 921.81
CellularComponent 1,619 5.00 36.48
Pathway 2,069 5.00 20.63
Symptom 325 5.00 3.224
PharmacologicClass 357 6.00 3.13
Cancer 53 5.00 245.04

1The average number of annotations of each type of nodes.

2The average number of relationships of each type of nodes.

addition, SynLethDB 2.0 retains and corrects the annotations
of SLs in SynLethDB 1.0, and also adds annotations to nodes
and edges in SynLethKG, such as the name of entity, the
data source, and the link to entity in the original data source,
and other annotations such as the organisms of genes and the
thresholds used when extracting the relationships. Therefore,
SynLethDB 2.0 provides more comprehensive annotations for
the entries and relationships. Table 5 shows the number of
each type of entities in SynLethKG, and the average numbers
of annotations and relationships of each kind of entities. The
average number of relationships for each type of nodes is
counted by adding the number of edges among all the nodes
and dividing the sum by the number of nodes.

Third, the data in SynLethDB 2.0 are freely downloadable.
For users who intend to do in-depth data analysis, a local
copy of data would be necessary. SynLethDB 2.0 allows users
to download the datasets from the website, while SLKG only
allows the query results to be downloaded.

SynLethKG for cancer driver genes

In SynLethKG, we collected various relationships for the genes
involved in the SL pairs, including gene-gene relationships (gene
expression covariation, gene interaction and gene regulation),

Gene Ontology (GO) annotations and pathways as shown in
Table 4. In particular, SynLethKG has 14,100 genes, 12,141
biological processes, 3,012 molecular functions, 1,619 cellular
components and 2,026 pathways etc. as nodes and their
relationships as edges in Table 5.

Moreover, SynLethKG also contains 9,959 relationships
between the genes and 53 cancers from DisGeNET database
[34] and 42,532 relationships between the genes and 1,898
compounds from DrugBank database [47]. For cancers, 325
symptoms and 390 anatomies are included as entities to
describe the cancer features. For drugs, 357 pharmacologic
classes and 5,664 side-effects are included as entities to describe
drug features. Based on the same strategy as in SL-BioDP
[8], we counted the numbers of cancer driver genes and genes
from hallmark cancer pathways in 32 cancer types from TCGA
contained in SynLethKG, as well as the numbers of their SL
partners and related drugs.

Figure 2 shows the numbers of cancer drive genes, their SL
partners and related drugs. We can observe that several cancers
have quite a few SL pairs and drugs related to their driver
genes, including BLCA, BRCA, CESC, COADREAD, HNSC,
LGG, LIHC, SKCM and UCEC. Figure 2 demonstrates that
our database contains useful information about many genes,
SLs and drugs related to cancers, which could be potentially
used as an interpretation tool for data-driven SL-based drug

target discovery.

SynLethKG for predictive modeling

Based on known SL data and related knowledge, new SLs can
be predicted. Compared to the previous version, SynLethDB
2.0 provides more SL data and related knowledge as features
to allow more accurate prediction of SLs. In the work of Wang
et al. [45], it was demonstrated that additional information
from the SynLethKG could guide a model to achieve better
performance. By extracting gene interaction, gene regulation
and gene co-variation relationships from SynLethKG we
constructed a sub-graph of the SynLethKG knowledge graph,
named G2G graph. We compare the SL prediction performances
of models trained against the SL dataset, G2G graph and
SynLethKG to analyze the contributions of different types of
knowledge to SLs prediction.
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We used all 35,943 human SLs as positive samples Table 6. Performance of SL prediction by two models.

and randomly up-sampled the negative samples from 3,726 Model Dataset AUROC AUPR F1
synthetic rescue (SR) and non-synthetic lethal (non-SL) pairs RF G2G 0.873+0.003 0.912£0.002 0.867+0.003
to the same size of the positive samples to avoid the influence RF SL 0.9384+0.002 0.9594+0.002 0.927+£0.002
of data imbalance. The dataset is randomly split into a training RF SL+G2G  0.938£0.002 0.9654+0.001 0.934+0.002
set and test set, comstituting 70% and 30% of the original GCN G2G 0.86240.003 0.891+0.002 0.875+0.003
dataset, respectively. The training set is used to train models, GCN  SynLethKG 0.8704+0.029 0.898+0.016 0.8864+0.021
and the associated test set is used to evaluate the trained model.

In particular, we built the traditional machine learning model

of Random Forest (RF), and a graph neural network, Graph Case study

Convolutional Network (GCN), for SL prediction.

The classical Random Forest model, with 30 estimators and
maximum depth 10, was implemented using Scikit-Learn, a
Python library for machine learning. We extracted 9 features
from the gene graphs for every SL pair, which were calculated
by a graph algorithm library in Neo4j named “Graph Science
Data” from three aspects, i.e. common neighbors, triangles
and clustering coefficients, and community detection. The
features based on common neighbors include the number of
total neighbors, the number of common neighbors and the
preferential attachment value. The features based on triangles
and clustering coefficients include the maximum and minimum
numbers of triangles that a node is part of, and the maximum
and minimum values of clustering coefficients which show if
the neighbors are also connected. Two features extracted from
community detection are the Boolean values (i.e. represented by
0 or 1) about whether a pair of nodes are in the same community
detected by label propagation algorithm [35] and Louvaion
algorithm [28]. We applied RF on three graphs, namely, G2G
graph, SL graph and SL+G2G graph, to test the contribution
of knowledge graph to SL prediction. SL+G2G graph comprises
nodes and edges from either the SL graph or the G2G graph.
We did not run the RF model on SynLethKG because the RF
model requires pre-processing the nine kinds of features for each
type of the relationships in SynLethKG before training. Thus,
the performance on SynLethKG is demonstrated by the GCN
model.

The graph neural network model, GCN, was implemented by
a Python library named Deep Graph Library (DGL) [43], with
two graph convolution layers. To further test the performance
of the model on a dataset with more knowledge, we tested the
performance of the GCN model on the G2G graph and the
SynLethKG graph, with the same pre-processing of training
set and testing set. There are 24 kinds of relationships in the
features of SynLethKG graph instead of 27, because the SLs
used as positive samples and the SRs and non-SLs used as
negative samples and should not be counted as features when
training the model to avoid leaking label information in training
data.

The performances of the models are measured by F1,
AUROC and AUPR scores. As Table 6 shows, the RF
model trained against the SL graph can perform better than
the RF model trained anainst the G2G graph. However,
the combination of SL and G2G can achieve even better
performance. This indicates that the features extracted from
other relationships can contribute to SL prediction. The GCN
also has better performance on the SynLethKG dataset (as
shown in the last row of Table 6) than on the G2G dataset,
which indicates that adding more knowledge from SynLethKG
can further improve the performance of SL prediction.

To demonstrate how to use SynLethDB to discover drug targets,
let us do a case study of searching SL partners of BRCAL1 in
breast cancer through the web interface as shown in Figure 3.
First, with the “Search SL by disease” module in SynLethDB,
we choose “breast cancer” as the disease and select the
relationship “Disease Associates Gene”. Then, the first line of
the results show that breast cancer is associated with BRCA1.
By clicking the “Search SL” button in the function column, we
searched the SL partners of BRCA1l. The result shows that
PARP2 is an SL partner of BRCA1 with a high confidence
score (0.87). Here we choose this SL pair for further inspection.
After clicking the “Inspect” button in the function column,
we can browse more knowledge about this SL pair. Different
types of biomedical relationships can be browsed by clicking
the nodes in the graph. For example, we can see that both
BRCA1 and PARP2 are associated with the “ovarian cancer”
and “breast cancer” diseases, and BRCA1 participates in the
“DNA Damage Response” pathway. As breast cancer down-
regulates BRCA1l and BRCA1 has an SL partner, PARP2, we
check out compounds that down-regulate PARP2 as candidate
drugs for breast cancer. As shown in the graph, Rucaparib,
Talazoparib, Niraparib, and Olaparib all bind with PARP2.
On the other hand, we can also search Rucaparib, Talazoparib,
Niraparib, and Olaparib from the “Search SL by compound”
page. In this way, we can find that PARP2 is a drug target.
Through this case study, we show the basic functionalities of
the database through the web interface, which can be used
to explore potential anti-cancer drug targets based on SL or
analyze the biological mechanisms behind SLs.

Discussion and Conclusion

With the development of RNAi and CRISPR screening
technologies, data about synthetic lethality have increased
rapidly in the past few years. We have been continuously
collecting SL data, integrating them into SynLethDB and
improving the annotation quality. In this version, we have
integrated more biomedical knowledge about human SLs into a
knowledge graph called SynLethKG. The additional knowledge
can provide more features for SL prediction and improve the
performance of the predictive model. A similar procedure can
be applied to predicting drugs based on SLs. We also provided
a new web interface with online services for data browsing,
visualization and analysis. For instance, “Search SL by disease”
can facilitate SL-based cancer drug discovery. The “SL inspect”
functionality displays relationships between a pair of SL genes
from multiple sources in one intuitive graph. Enrichment
analysis tools help analyze the most relevant pathways and GO
of a gene’s SL partners. SynLethDB has been used as a source
of training or testing datasets by many computational methods
for SL prediction, and this new version of SynLethDB provides
a larger and more comprehensive dataset for these methods. In
addition, we realize that the data in SynLethDB are enriched
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Fig. 3. The case study on BRCAL1 in breast cancer. Using “Search SL by disease”, the SL genes associated with the disease will be shown. BRCAL is a
gene that has SL partners and is down-regulated in breast cancer. Click the “Search SL” button, and it shows that PARP2 is an SL partner of BRCA1
with a high confidence score (0.87). Inspecting this pair of SL genes, we notice that BRCA1 and PARP2 are both associated with the “ovarian cancer”
and “breast cancer” diseases, and BRCA1 participates in the “DNA Damage Response” pathway. The result that breast cancer down-regulates BRCA1
and PARP2 is an SL partner of BRCA1 indicates that PARP2 is a drug target for breast cancer. Rucaparib, Talazoparib, Niraparib, and Olaparib all
bind with PARP2. Using “Search SL by compound”, we also identify PARP2 as a target gene of Rucaparib, Talazoparib, Niraparib and Olaparib.

with SLs of some hub genes, such as KRAS, because they are
more experimentally studied. This kind of data skewness may
introduce some bias, which makes a model learn superficial
patterns and achieve inflated performance.

The overall goal of SynLethDB
understanding of SL mechanisms and to facilitate drug
discovery. In the future, we will continue to collect new SLs
and enhance the functionalities of the database. For instance,
we will add genomics data and cell line annotations to make
SLs more context-specific. In addition, we can create more
efficient path queries based on the graph database to find the
pathways shared between SL pairs and interactions between SLs

is to increase the

and drugs.

Key Points

e To provide the scientific community with the latest data
about SL gene pairs, we developed SynLethDB 2.0. The
number of SLs included has increased from 34,089 to 50,868,
including new results from CRISPR screening.

We have integrated 27 relationships of 11 entities and
constructed a knowledge graph about human SL gene pairs,
named SynLethKG, to provide more biomedical knowledge
about SLs.

SynLethKG contains comprehensive knowledge about SLs
and provides useful features for SL prediction. Similarly,
the relationships between SLs, drugs and cancers can also
be used for drug discovery.

SynLethDB 2.0 provides a new website interface to facilitate
the retrieval and visualization of knowledge graph. Online
tools have also been developed, including drug-based and
cancer-based SL searching, p-value-based and degree-based
gene enrichment analysis of SL partners, and the display of
the subgraph between a pair of SL genes.

The data and knowledge graph SynLethKG contained in
SynLethDB 2.0 can be fully accessed and downloaded
through the website or RESTful APIs.
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Data Availability

The datasets of SynLethDB 2.0 are freely available at http:
//synlethdb.sist.shanghaitech.edu.cn/v2.
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