

1 **Comparative analysis of two NGS platforms and different databases**
2 **for analysis of AMR genes**

3 Twinkle Soni¹, Ramesh Pandit¹, Damer Blake², Chaitanya Joshi¹, Madhvi Joshi¹

4 ¹ Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology,
5 Government of Gujarat, Gandhinagar, India

6 ² The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9
7 7TA, United Kingdom

8 ***Correspondence:**

9 Dr. Madhvi Joshi

10 madhvimicrobio@gmail.com

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Abstract:**

27 The use of antibiotics in human medicine and livestock production has contributed to the
28 widespread occurrence of antimicrobial resistance (AMR). Recognizing the relevance of AMR to
29 human and livestock health, it is important to assess the occurrence of genetic determinants of
30 resistance in medical, veterinary, and public health settings in order to understand risks of
31 transmission and treatment failure. Advances in Next Generation Sequencing (NGS)
32 technologies have had a significant impact on research in microbial genetics and microbiome
33 analyses. Now, strategies for high throughput sequencing from panels of PCR amplicons
34 representing known AMR genes offer opportunities for targeted characterization of complex
35 microbial populations. Aim of the present study was to compare the Illumina MiSeq and Ion
36 Torrent S5 Plus sequencing platforms for use with the Ion AmpliSeqTM AMR Research Panel in
37 a veterinary/public health setting. All samples were processed in parallel for the two sequencing
38 technologies, subsequently following a common bioinformatics workflow to define the
39 occurrence and abundance of AMR gene sequences. Regardless of sequencing platform, the
40 results were closely comparable with minor differences. The Comprehensive Antibiotic
41 Resistance Database (CARD), QIAGEN Microbial Insight - Antimicrobial Resistance (QMI-
42 AR), Antimicrobial resistance database (AR), and CARD-CLC databases were compared for
43 analysis, with the most genes identified using CARD. Drawing on these results we describe an
44 end-to-end workflow for AMR gene analysis using NGS.

45 **Keywords:** Antimicrobial Resistance₁, Next Generation Sequencing₂, Illumina₃, Ion
46 Torrent₄, Bioinformatics pipeline₅.

48 1. INTRODUCTION:

49 Antimicrobial resistance (AMR) is a growing challenge to the efficient control of diseases
50 caused by bacteria, parasites, viruses, and fungi, prompting the World Health Organization
51 (WHO) to rank it in the top ten public health hazards worldwide¹. The consequences of AMR
52 include reduced treatment efficacy and increased pathogen persistence, enhancing the likelihood
53 of disease and transmission to others. Multiple-drug-resistant bacteria may already be
54 responsible for 700,000 or more human deaths each year². A report from the UK Antimicrobial
55 resistance review stated that "Advances in genetics, genomics and computer science will likely
56 change the way that infections and new types of resistance are diagnosed, detected and reported
57 worldwide, so that we can fight back faster when bacteria evolve to resist drugs"³. One key
58 advance is the use of next generation sequencing (NGS) to detect and analyze the presence of
59 genes and organisms responsible for AMR⁴.

60 As sequencing platforms and data analysis pipelines evolve it is important to regularly review
61 their performance in specific applications. An increasingly wide range of NGS platforms are now
62 available, including pyrosequencing, semiconductor based, sequencing by synthesis, and
63 sequencing by ligation⁵, each based upon a distinct sequencing chemistry. For example, the Ion
64 Torrent technique detects hydrogen ions released during the integration of additional nucleotides
65 into the expanding DNA template⁶⁷, while Illumina works on sequencing by synthesis
66 chemistry⁸. Platforms such as Ion Torrent and Illumina also have their own specifications for
67 data quality, read length, total data output per run and library preparation method.
68 Consequentially, it can be challenging for researchers to select the optimal sequencing platform
69 and specifications. The choice of analytical pipeline to process output data adds additional
70 variables, influenced by the nature of the data and the purpose of the study. Several tools are

71 available to detect AMR genes in NGS data, including multiple pipelines, thresholds and
72 databases, hindering comparison between studies. The core objectives of the work presented in
73 this paper were to understand how the use of Illumina or Ion Torrent sequencing platforms
74 impact on data generation, analysis, and final outcome for AMR gene detection in biological
75 samples with relevance to public health.

76

77 2. MATERIALS AND METHODS

78 2.1 Ethical approval

79 The work described here was carried out using welfare standards consistent with those
80 established under the Animals (Scientific Procedures) Act 1986, an Act of Parliament of the
81 United Kingdom. All protocols were approved by the Anand Agricultural University (AAU,
82 Gujarat, India) Animal Ethics Committee and the Animal Welfare and Ethical Review Body
83 (AWERB) of the Royal Veterinary College.

84

85 2.2 Sample Collection and Processing

86 Twelve apparently healthy broiler chickens (Cobb 400) were collected from the Central Poultry
87 Research Station of Anand Agricultural University, Anand, Gujarat for sampling. All 12
88 chickens were euthanized by cervical dislocation at 37 days of age. The chickens were reared in
89 a deep litter system using rice husk as substrate, in common with local practices. All chickens
90 were fed a standard maize and soybean-based commercial diet which included bacitracin
91 methylene disalicylate (BMD) and maduramycin (10%) for routine prophylaxis. Samples were
92 collected in RNApotect Bacteria Reagent (QIAGEN, Germany) as described previously⁹ and

93 transported to the laboratory at 4°C. Upon receipt, total genomic DNA was extracted from each
94 sample immediately using a QIAamp® DNA Stool Mini Kit (QIAGEN, Germany) as described
95 previously⁹. Extracted DNA was stored at -20°C prior to further processing.

96

97 2.3 AMR Gene Sequencing

98 While comparing two different sequencing platforms, there should be no difference in the
99 workflow including library preparation. Therefore, we used an Ion AmpliSeq™ Antimicrobial
100 resistance (AMR) Research Panel (Thermo Fisher Scientific, MA, USA) for library preparation.
101 This AMR panel consisted of two primer pools targeting 408 and 407 amplicons in each pool.
102 The library preparation flow was also standardized for both the platforms with the exception that
103 Ion-specific adapters and barcodes were ligated for the Ion Torrent platform, while Illumina-
104 specific adapters and indices were used for the Illumina library.

105 2.3.1 Ion Torrent Platform

106 Amplicon libraries were prepared using an Ion AmpliSeq™ Library Kit Plus (Cat. No. A35907;
107 Thermo Fisher Scientific, MA, USA). Library quality was assessed using a 2100 Bioanalyzer
108 with a DNA high sensitivity assay kit (Agilent CA, USA). Libraries were quantified using the
109 Ion Library TaqMan™ Quantitation kit (Cat. No. 4468802; Thermo Fisher Scientific, MA,
110 USA). Sequencing was performed on an Ion S5 Plus system using 530 chip and 400bp
111 chemistry.

112 2.3.2 Illumina Platform

113 Amplicon libraries for the Illumina platform were prepared and checked for quality using the
114 same kit and protocol as described above. Sequencing was carried out using an Illumina MiSeq
115 system with a MiSeq reagent kit v2 and 500 cycles (250 x 2 paired end chemistry).

116

117 2.4 Data Analysis

118 Data obtained from Ion torrent and Illumina MiSeq was analyzed using the same bioinformatics
119 pipeline. The initial difference in the paired end read from Illumina and single end reads from
120 Ion torrent was nullified by merging the paired end reads of Illumina using PandaSeq v 2.8.1¹⁰.
121 Here also, different overlapping parameters were first assessed for the best results such as 5bp,
122 10bp, 15bp and default overlapping.

123 The quality of raw data was assessed using FastQC v. 0.11.5¹¹. The average quality score
124 threshold to retain a read was set 30 for Illumina and 20 for Ion Torrent data because of the
125 inherent differences in the base calling accuracy due to differences in the sequencing chemistry
126 of these two platforms^{12,13}. Read trimming for length was not performed as the smallest amplicon
127 targeted in the panel was 72bp. CARD database version 3.0.7¹⁴ was used for analysis. Local
128 BLASTn or BLASTx was performed with the following parameters: no. of alignments retrieved
129 1, minimum percent identity 95% and E-value 10e⁻⁵. The downstream statistical analysis was
130 done using Excel and STAMP v2.1.3¹⁵.

131

132 2.5 Comparison of Different Databases

133 Four different databases namely, Comprehensive Antibiotic Resistance Database (CARD)¹⁴,
134 QIAGEN microbial Insight – Antimicrobial Resistance (QMI-AR)¹⁶, Antimicrobial Resistance
135 (AR), and CARD-CLC¹⁷ were used for comparison. These databases were compared using
136 stringent parameters including number of alignments per read as 1, minimum alignment length as
137 95%, E-value as 10 e-5 and percent identity for BLAST as 95%. The downstream analysis was
138 performed using STAMP and Venny 2.1.0¹⁸.

139

140 2.6 Microbiome Analysis

141 The Online web-based tool Microbiome Analyst^{19,20} was used to perform LEfSe (Linear
142 discriminant analysis Effect Size), PCoA (Principle coordinate analysis) with PERMANOVA
143 statistics, and Random forest analyses in order to support statistical comparison. In LEfSe, Log
144 LDA cutoff was set as 3.0 with p-value ≤ 0.05 .

145

146 3. RESULTS

147 To support national and global priority setting, public health initiatives, and treatment decisions,
148 a credible base of knowledge that appropriately captures and characterizes the worldwide burden
149 and transmission of AMR is required. In this study, efforts were made to compare different
150 sequencing technologies and data bases to provide a comprehensive analysis pipeline for data
151 defining AMR gene occurrence. All experimental variables were fixed with the exception of
152 sequencing platform. Library preparation kit, data analysis pipeline, and database stringency
153 were all kept the same to maintain uniformity.

154

155 3.1 Sequencing results

156 In total ~15M reads were obtained using the Ion Torrent S5 Plus platform in a single FastQ file,
157 representing approximately 1M reads per sample with an average read length of 200bp. In
158 parallel, 4.18M reads were produced for the same samples using Illumina MiSeq, representing
159 0.2M reads per sample with an average read length of 185 bp.

160

161 3.2 Optimization of overlapping parameter for Illumina

162 Based on our previous experience with PandaSeq in merging 16S Illumina amplicon data and the
163 toll's citations (>1600), we selected this toll for this study. Classification of Illumina forward and
164 reverse reads required attention because of issues when merging paired end reads²¹. Initially, we
165 merged reads using PandaSeq's default parameters; later, the merge length was optimized.
166 Forward-reverse read overlap of 5, 10, and 15bp was analyzed in addition to the default
167 parameters. The 10 base pair overlap was found to be optimal due to its appropriate
168 representation of merged reads (Fig: S1). These results showed that overlapping parameters for
169 merging forward-reverse amplicon reads may incur important differences in apparent gene
170 abundance as an appropriate overlapping parameter leads to false positive and negative results in
171 Illumina sequencing platforms while analyzing AMR data.

172

173 3.3 Optimization of BLAST parameters

174 The BLAST (Basic Local Alignment Search Tool) algorithm is used widely, but output is
175 influenced by the parameters applied. Therefore, in this study, various BLAST parameters were
176 optimized along with the overlapping length used in PandaSeq. Three conditions were set, being
177 default BLAST and default overlap, 10bp overlap and default BLAST and 10bp overlap and
178 BLAST query hsp percentage 90 (Fig:S2). The default overlap with default BLAST could not be
179 used for analysis due to nonspecific reads merges. Specifically, the PandaSeq default merge
180 length is 1bp, indicating that any two reads possessing a common base at the 5' will be merged.
181 The 10bp overlap and BLAST qcov hsp percentage 90 was also not efficient as it hampered
182 estimation of occurrence for genes such as *ErmB*. The 10bp overlap with default BLAST was
183 found to be most accurate as it avoided these issues and was applied for all subsequent analyses.

184

185 3.4 Comparison of Ion Torrent and Illumina MiSeq for AMR gene detection

186 More AMR genes were detected using the Ion Torrent Platform compared to Illumina MiSeq
187 (average number of genes detected 369 ± 58 compared to 206 ± 38 , respectively from all 12
188 samples). In total, the Ion Torrent platform detected the presence of 31.9% more AMR relevant
189 genes compared to Illumina MiSeq, although the percentage abundance of these genes was very
190 low (i.e. less than 0.004%). Additionally, 6% of genes detected using Illumina MiSeq were
191 missing from the Ion Torrent results, but again the percentage abundance of each gene found
192 only by Illumina was very low (i.e. less than 0.004%). There were many genes that were only
193 discovered in one or two samples, and those with a small number of hits. Overall, 62.1% genes
194 detected were common across both platforms. But, when genes with abundance $\geq 1\%$ sequencing
195 reads were considered, the results from both sequencing platforms were similar (Table:1, Fig:1).
196 The APH (3')-IIIa gene was found to be most abundant in both the platforms followed by *tetW*

197 and *tetQ*. The occurrence of only nine genes was found to be significantly different between the
198 sequencing platforms (Fig: S3). Out of these nine genes, *tet(40)* was found to be most variable
199 (4%). Sample-specific comparison highlighted similar platform-associated variation for the
200 occurrence of *tetO* and Aminoglycoside phosphotransferase genes (Fig: S4, Fig: S5). Direct
201 sample-specific comparison revealed comparable gene detection profiles using Illumina MiSeq
202 and Ion Torrent S5 Plus for genes with greater than 1% read abundance (Fig:2).

203

204 3.5 *Tet(40)* and *Lnu C* Comparison

205 The abundance of *tet(40)* was found to be higher using the Illumina MiSeq platform (6.21 ± 1.26
206 %) when compared to Ion Torrent (2.5 ± 1.0 %). Annotation using the CARD database indicated
207 *tet(40)* carriage by a group of uncultured bacteria. Thus, a comparable trend was observed when
208 samples were compared by predicted contributing organism (Illumina 6.2 ± 1.6 %; Ion Torrent
209 2.5 ± 1.0 %). In contrast, *lnuC* was more highly abundant in the Ion Torrent dataset (9.79 ± 5.15 %)
210 compared to Illumina (7.9 ± 4.1 %) (Table:1). The *lnuC* gene was predicted to be carried by
211 *Streptococcus agalactiae* and hence, the same trend in the percentage of *S. agalactiae* could be
212 observed (Fig:1, Fig:3).

213

214 3.6 Microbial diversity comparison on the basis of AMR detected

215 Prediction of bacterial identity associated with AMR gene carriage was found to be comparable
216 in both the platforms (Table:2, Fig:3). *Campylobacter coli* CVM N29710 was the most abundant
217 organism identified, followed by *Bacteroides fragillis*. Only *Staphylococcus epidermidis* was
218 found to be significantly differently represented between the platforms (*q*-value (corrected) =

219 0.001) (Abundance <0.0014) (Fig: S6). Comparison of bacterial representation in individual
220 samples as also undertaken, illustrating the stability of taxonomic classification between
221 sequencing platforms (Fig 4, Fig: S7, Fig: S8).

222

223 3.7 Database comparison

224 Several databases are available for analysis of AMR genes. Comparison of the CARD, QMI-DB,
225 AR and CARD_CLC databases with stringent parameters produced varied results with limited
226 correlation or similarity (Fig:5). In the absence of clear complementarity, the CARD database
227 was chosen for downstream analysis because it is easily available and hosts the largest number of
228 genes and organisms among the four databases. As CARD is used primarily with genome
229 sequence data, a 'model' of detection for each sequence means that the criteria that determine the
230 corresponding sequence for each sequence of the CARD reference are determined. The
231 microbiological analysis module in CLC genomic workbench (version 21.1) was utilized to
232 compare results. The investigation also made use of the CARD database in CLC genomic
233 workbench

234

235 3.8 Statistical comparison of AMR gene occurrence detected by Illumina MiSeq and Ion
236 Torrent sequencing

237 The random forest method generates decision trees from data samples, generation multiple
238 predictions before identifying the best solution. Random forest is an ensemble method that is
239 superior to a single decision tree because it averages results to reduce over-fitting (Pedregosa et
240 al., 2011). Here, random forest analysis was performed in order to identify any outliers in each

241 dataset. Comparison of Illumina MiSeq and Ion Torrent datasets revealed the absence of outliers,
242 supporting the accuracy of each (Fig: S9). Similarly, PCoA analysis was used to confirm that all
243 Illumina MiSeq and Ion Torrent sample sequences were located in the same cluster (Fig. 6). For
244 AMR gene and organism comparisons there were no significant differences (PERMANOVA; F-
245 value 1.3421, R2 value 0.057498, p-value <0.219; and F-value 0.82178, R2 value 0.036009, p-
246 value <0.514; respectively).

247

248 3.9 LEfSe analysis

249

250 LEfSe was performed for both gene and organism at Log LDA 3.0 and P-value ≤ 0.05 . Only four
251 of 300 organisms were found to be significantly different between sequencing platforms.
252 *Enterococcus faecalis*, Plasmid_pGT633 and *Bacteroides coprosuis* was more abundant in the
253 Ion Torrent dataset while, Uncultured bacteria were more common using the Illumina platform.
254 However, the abundance of all four organisms was low, less than 0.07% and 0.02% in the Ion
255 Torrent and Illumina datasets, respectively, both below the 1% threshold set earlier (Fig: S10).
256 LEfSe analysis of the AMR genes detected indicated that five genes were significantly different
257 between the platforms (Fig: S11). The genes *tet32*, *ErmT*, *tetS* and *Erm35* was found to be more
258 abundant in Ion Torrent sequencing, while *tet(40)* was more common in the Illumina data.
259 Again, the percent abundance of these gene-specific reads was less than 0.04% in the Ion Torrent
260 sequencing. Only detection of the gene *tet(40)* was found to be significantly different with more
261 than 1% read abundance, presenting with a two-fold higher abundance in the Illumina MiSeq
262 data.

263

264 **4. DISCUSSION**

265 The study was planned to answer the very basic question associated with the use of NGS
266 sequencing platform for AMR analysis. Therefore, in this study we compared the two
267 sequencing platforms, Ion Torrent and Illumina MiSeq for the analysis of AMR and set
268 bioinformatics data analysis pipeline after consideration of all the difference between two
269 platforms. The study was performed with 12 chicken cecum samples to estimate the abundance
270 of AMR genes and corresponding organisms.

271 The bioinformatics pipeline generated for the data analysis was tried to keep constant for both
272 platforms. Although the initial parameters like quality score threshold and overlapping parameter
273 vary a bit in both the platforms. Due to higher confidence at quality score greater than 30 in
274 Illumina and greater than 20 at Ion torrent we had set different initial quality cutoffs for the data.
275 In addition to this, Ion torrent results in single-end sequencing while paired-end sequencing was
276 used in case of Illumina. In order to merge the forward and reverse reads of illumina an extra
277 step of reads merge was performed. These two changes bring data from both the platform on
278 same page. Later, the local blast parameters and data analysis parameters were kept stringent and
279 constant for both the data sets.

280 Upon the completion of analysis, it was found that Ion Torrent resulted in higher numbers of hits
281 (31.9%) in case of AMR detection as compare to Illumina MiSeq platform. However, those hits
282 were found to be insignificant as their percent abundance was less than 0.004%. The qualitative
283 and quantitative similarity was found among the significant AMR genes. The similar results were
284 obtained by Lahens et al., upon the comparative analysis of differential expression of gene

285 among ion torrent and illumina²². The difference in other insignificant hit may arise from the
286 sequencing errors and poor quality. The *tet(40)* gene was found to be significantly different
287 among both the platforms. Upon detailed analysis of *tet-(40)* abundance, it was found that the
288 amplicon length of *tetracycline 40* gene is 80bp only. It is among the shortest amplicon present
289 in the AMR panel. This short amplicon length may result in the phenomenon of competitive
290 binding on Illumina flow cell while cluster generation. Competitive binding means shorter
291 amplicon tends to bind to flow cells more as compared to the larger one. The bacterium which
292 corresponds to this *tet(40)* is uncultured bacteria. Hence, the same trend was observed in the
293 uncultured bacteria. Inverse to this, during emulsion PCR of Ion Torrent, the shorter fragments
294 tend to form polyclonal and therefore, the reads tends to be discarded. Therefore, we expected
295 that, this could be one of the possible reasons for *tet(40)* gene's lesser abundance in Ion Torrent
296 and higher in Illumina dataset. Similarly, Lincosamide resistance gene is one of the largest
297 amplicons in AMR panel (224bp). The phenomenon opposite to that of *Tet-40* may work here
298 i.e. lower abundance of *LnuC* in Illumina data as compared to Ion torrent. The *LunC* gene is
299 mostly contributed from the *S. agalactiae* so a similar trend is observed there as well. The only
300 statistically significant difference of only one organism was found i.e. *Staphylococcus*
301 *epidermidis*. The variation in the abundance of *S. epidermidis* is almost negligible as its
302 abundance is very less.

303 Two different platforms were used to identify any database correlation if any. One of these
304 platform was CARD local database and another was CLC workbench with QIAGEN microbial
305 insight module providing different database for the AMR search (QMI-AR, AR, CARD). CARD
306 local database was preferred due to its capacity to target higher number of gene as compare to
307 another. Moreover, the main disadvantage of CLC workbench is that it is not freely available.

308 Both the CLC workbench license and the microbiological insight module have separate costs to
309 pay.

310 The present study has effectively demonstrated that, the analysis platform used to detect AMR in
311 samples does not significantly influence the results. On analyzing the sample costs and
312 availability of the instrument, the selection of platform is advised. The only limitation of the
313 present study is; we do not perform the same exercise on the mock community as, such mock
314 community was not available.

315

316 **5. CONCLUSION**

317 Irrespective of sequencing chemistry and platform used, comparative analysis among AMR
318 genes and candidate host organism suggest that the Illumina MiSeq and Ion Torrent platforms
319 performed equally. According to the findings, authors suggest that using any platform or
320 sequencing chemistry has little effect on the outcome. In both the platforms APH-IIIa was the
321 most abundant AMR gene. Comparative analysis of the organisms identified in each sample
322 rarely varied significantly. In both the platforms, *C. coli* CVM N29710 was the most abundant
323 bacterium. The statistical significance difference among the *tet(40)* gene was observed which
324 may arise with the short length amplicons. Furthermore, in order to correctly assess AMR in
325 biological samples, standard methods and pipeline for sample analysis must be established.
326 Database selection and parameter for analysis can change the outcome considerably.

327

328 **AUTHOR CONTRIBUTIONS**

329 Twinkle Soni: Data curation, Writing - Original draft preparation; Response, Analyses and
330 Illustrations.

331 Ramesh Pandit: Review & Editing manuscript.

332 Damer Blake: Review & Editing manuscript.

333 Madhvi Joshi: Review & Editing, Validation.

334 Chaitanya Joshi: Supervision and Validation.

335

336 **FUNDING**

337 Department of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat,
338 India.

339

340 **CONFLICT OF INTEREST**

341 The authors declare that they have no known competing financial interests or personal
342 relationships that could have appeared to influence the work reported in this paper.

343

344 **ACKNOWLEDGEMENTS**

345 The authors like to acknowledge One Health Poultry Hub for the support.

346

347

348

349

350

351

352

353

354

355

356 **REFERENCE**

357 1. No Title, n.d. <https://www.who.int/news-room/fact-sheets/detail/cancer>

358 2. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. *Nat Microbiol*, 2019,

359 4:565–77

360 3. O' Neil J. Review on Antibiotic resistance. *Antimicrobial Resistance*: Tackling a crisis for the

361 health and wealth of nations. *Heal Wealth Nations*, 2014:1–16

362 4. Angers A, Petrillo M, Patak A, Querci M, Van den Eede G. The Role and Implementation of

363 Next-Generation Sequencing Technologies in the Coordinated Action Plan against Antimicrobial

364 Resistance, 2017:1–22

365 5. Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M. Microbial genomics in sustainable

366 agroecosystems: Volume 2. vol. 2. 2019

367 6. Rusk N. Torrents of sequence. *Nat Methods*, 2011, 8:44

368 7. Gupta AK, Gupta UD. *Next Generation Sequencing and Its Applications*. Elsevier, 2013.

369 <https://doi.org/10.1016/B978-0-12-416002-6.00019-5>

370 8. David P. Clark, Nanette J. Pazdernik MRM. *Molecular Biology*. 2019

371 9. Pandit RJ, Hinsu AT, Patel N V., Koringa PG, Jakhesara SJ, Thakkar JR, Shah TM, Limon G,

372 Psifidi A, Guitian J, Hume DA, Tomley FM, Rank DN, Raman M, Tirumurugaan KG, Blake DP,

373 Joshi CG. Microbial diversity and community composition of caecal microbiota in commercial

374 and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. *Microbiome*,

375 2018, 6

376 10. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq:

377 Paired-end assembler for illumina sequences. *BMC Bioinformatics*, 2012, 13:1–7

378 11. Andrews S. FastQC Version 0.11. 5. A Qual Control Tool High Throughput Seq Data,

379 2016

380 12. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow

381 HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent,

382 Pacific Biosciences and Illumina MiSeq sequencers. *BMC Genomics*, 2012, 13

383 13. Osborne CA. Terminal restriction fragment length polymorphism (T-RFLP) Profiling of

384 bacterial 16s rRNA Genes. vol. 1096. 2014

385 14. Wein T, Wang Y, Hütter NF, Hammerschmidt K, Dagan T. Antibiotics Interfere with the

386 Evolution of Plasmid Stability. *Curr Biol*, 2020, 30:3841-3847.e4

387 15. Liu X, Cheng YW, Shao L, Sun SH, Wu J, Song QH, Zou HS, Ling ZX. Gut microbiota

388 dysbiosis in Chinese children with type 1 diabetes mellitus: An observational study. *World J*
389 *Gastroenterol*, 2021, 27:2394–414

390 16. Roachford OSE, Alleyne AT, Kuelbs C, Torralba MG, Nelson KE. The cervicovaginal
391 microbiome and its resistome in a random selection of Afro-Caribbean women. *Hum*
392 *Microbiome J*, 2021, 20:100079

393 17. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann
394 E, Huttenhower C, Pamer EG, Wolchok JD. Intestinal microbiome analyses identify melanoma
395 patients at risk for checkpoint-blockade-induced colitis. *Nat Commun*, 2016, 7:1–8

396 18. Song D, Tian J, Hu Y, Wei Y, Lu H, Wang Y, Guan Q, Zhou Y. Identification of
397 biomarkers associated with diagnosis and prognosis of gastroesophageal junction
398 adenocarcinoma-a study based on integrated bioinformatics analysis in GEO and TCGA
399 database. *Medicine (Baltimore)*, 2020, 99:e23605

400 19. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: A web-
401 based tool for comprehensive statistical, visual and meta-analysis of microbiome data. *Nucleic*
402 *Acids Res*, 2017, 45:W180–8

403 20. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical,
404 functional, and meta-analysis of microbiome data. *Nat Protoc*, 2020, 15:799–821

405 21. Liu T, Chen CY, Chen-Deng A, Chen YL, Wang JY, Hou YI, Lin MC. Joining Illumina
406 paired-end reads for classifying phylogenetic marker sequences. *BMC Bioinformatics*, 2020,
407 21:1–13

408 22. Lahens NF, Ricciotti E, Smirnova O, Toorens E, Kim EJ, Baruzzo G, Hayer KE,

409 Ganguly T, Schug J, Grant GR. A comparison of Illumina and Ion Torrent sequencing platforms
410 in the context of differential gene expression. *BMC Genomics*, 2017, 18:602

411

412

413

414 **Figure legends:**

415

416 **Figure:1** The relative sequencing read abundance of genes with $\geq 1\%$ abundance within the
417 Illumina and Ion Torrent platform datasets.

418

419

420 **Figure:2** Heatmap demonstrating the abundance of top 25 AMR gene in all 12 samples from
421 Illumina and Ion Torrent, plotted using STEM. Abundance of AMR gene in all samples are
422 graphical represented where individual values in a sample are marked by color gradient. The
423 color coding represents the abundances are indicated by the color scale.

424

425 **Figure:3** The relative sequence abundance with $\geq 1\%$ organism corresponding to the AMR (on
426 the basis of CARD database) among the Illumina and Ion Torrent platform.

427

428 **Figure:4** Heatmap demonstrating the abundance of top 25 organism as per CARD database in all
429 12 samples from Illumina and Ion Torrent, plotted using STEMP. Abundance of organism in all
430 samples are graphical represented where individual values in a sample are marked by color
431 gradient. The color coding represents the abundances are indicated by the color scale.

432

433 **Figure:5** Database comparison for same sample in Illumina and Ion torrent (CARD-CLC-
434 CARD database present in CLC genomic workbench microbial genomic module, AR –
435 Antibiotic resistance database, QMI-DB- QIAGEN microbial Insight – AR, CARD-IN – CARD
436 database downloaded from CARD site and run locally).

437

438 **Figure: 6** The PERMANOVA analysis of AMR gene and Organism. (A) AMR gene
439 PERMANOVA with F-value 1.3421, R^2 value 0.057498 and *p-value <0.219 (B) Organism
440 PERMANOVA analysis with F-value 0.82178, R^2 value 0.036009 and *p-value <0.514.

441

442 **Table Legends**

443

444 **Table:1** A comparative analysis of presence or absence of AMR genes represented by $\geq 1\%$
445 sequence abundance within the Illumina and Ion Torrent platform datasets.

446

447 **Table:2** A comparative analysis of presence or absence of top 1% organism on the basis of
448 sequence contributing to AMR in different platform.

449

450 **Table:3** The variation in the relative abundance of tet(40) and lnuC gene among different
451 platforms corresponding to their amplicon length. The shorter amplicon of tet-40 contributed by
452 uncultured bacteria is detected more in Illumina while less in Ion Torrent. The larger amplicon of
453 lnuC contributed by *S. agalactiae* is detected more in Ion Torrent while less in Illumina platform
454 strengthen the phenomenon of competitive binding and polyclonal nature of sequence in
455 emulsion PCR

456

457 **Supplementary figure:**

458 **Figure: S1** Optimization of overlapping parameters in PandaSeq while keeping rest parameter
459 same (R1- Forward sequence, R2- Reverse sequence, Default merge- without adding any
460 overlapping criteria manually, 5 base OL- minimum overlap of 5 base pair, 10 base OL-
461 minimum overlap of 10 base pair, 15 bases OL- minimum overlap of 15 base pair).

462

463 **Figure: S2** Optimization of blast parameters while keeping rest parameter same (Default
464 overlap; Default blast- No manual parameters added, 10bp overlap; qcov_hsp_perc 90 blast- 10
465 base pair overlap in PandaSeq with query hsp percentage set 90 for blast result, 10bp overlap;
466 Default blast- 10 base pair overlap in PandaSeq and default blast parameters).

467

468 **Figure: S3** STEMp analysis of total gene found in Illumina and Ion Torrent for estimation of
469 statically significant difference among the abundance of gene in both the platform.

470

471 **Figure: S4** Sample vise comparison in abundance of *Tetracycline-O* gene among all the samples
472 on different platforms. (p=0.775).

473

474 **Figure: S5** Sample vise comparison in abundance of Aminoglycoside phosphotransferase,
475 gentamicin resistance protein gene among all the samples on different platforms. (p = 0.901).

476

477 **Figure: S6** STEMP analysis of total organism found in Illumina and Ion Torrent for estimation
478 of statically significant difference among the abundance of organism in both the platform.

479

480 **Figure: S7** Sample vise comparison in abundance of *Campylobacter jejuni* among all the
481 samples on different platforms. (p = 0.799).

482

483 **Figure: S8** Sample vise comparison in abundance of *Campylobacter fetus subsp. fetus* among all
484 the samples on different platforms. (p = 0.876).

485

486 **Figure: S9** Random forest classification of Illumina vs Ion Torrent samples depicting the
487 confidence in data analysis.

488

489 **Figure: S10** The LEfSe analysis of the organism keeping log LDA cut off as 3.0 and p-value as
490 0.05.

491 **Figure: S11** The LEfSe analysis of the AMR genes keeping log LDA cut off as 3.0 and p-value
492 as 0.05.

493

494

495

496

497

498

499

500

501

TABLES

502 Table:1 Comparative analysis of the presence or absence of AMR genes represented by $\geq 1\%$
503 sequence abundance within Illumina MiSeq or Ion Torrent amplicon sequencing datasets.

504

Sample	Number of AMR genes detected			
	Total	Illumina AND Ion Torrent	Illumina	Ion Torrent
S1	19	18	1	0
S2	16	15	1	0
S3	13	13	0	0
S4	14	14	0	0
S5	13	13	0	0
S6	12	12	0	0

S7	13	13	0	0
S8	16	15	1	0
S9	18	14	1	3
S10	16	11	0	5
S11	16	12	3	1
S12	16	14	2	0

505

506

507 Table:2 Comparative analysis of the presence or absence of organisms predicted to host AMR
508 genes detected within Illumina MiSeq or Ion Torrent amplicon sequencing datasets. Organisms
509 representing AMR genes with $\geq 1\%$ abundance are shown.

510

Sample	Number organisms identified by CARD			
	Total	Illumina AND Ion Torrent	Illumina	Ion Torrent
S1	15	14	0	1
S2	13	13	0	0
S3	12	12	0	0
S4	13	13	0	0
S5	12	12	0	0
S6	13	12	1	0

S7	13	13	0	0
S8	14	14	0	0
S9	15	14	0	1
S10	14	10	0	4
S11	14	13	1	0
S12	14	14	0	0

511

512

513 Table:3 Variation in the relative abundance of *tet(40)* and *lnuC* gene amplicons detected in
514 chicken caecal bacterial populations using Illumina MiSeq or Ion Torrent amplicon sequencing.
515 Likely host organism (as predicted by CARD) and amplicon length is shown.

GENE	ILLUMINA	ION TORRENT	ORGANISM	AMPLICON LENGTH
<i>tet(40)</i>	High (6.2%±1.3 %)	Low (2.5%±1.0%)	Uncultured bacteria	80
<i>lnuC</i>	Low (7.9%±4.1%)	High (9.8%±5.1%)	<i>S. agalactiae</i>	224

516

517

518

519

FIGURE LEGENDS:

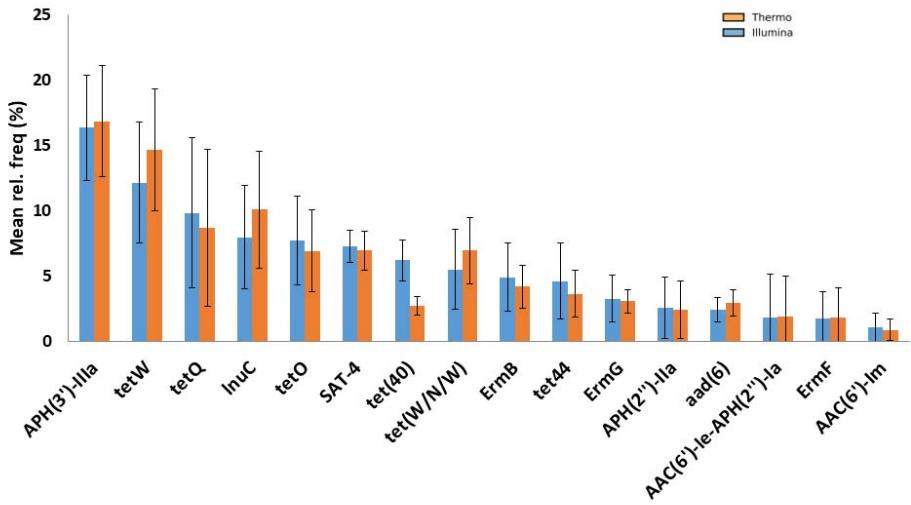


Figure:1 The relative sequencing read abundance of AMR genes amplified from chicken caecal microbial populations with $\geq 1\%$ abundance within equivalent Illumina MiSeq and Thermo Fischer Scientific

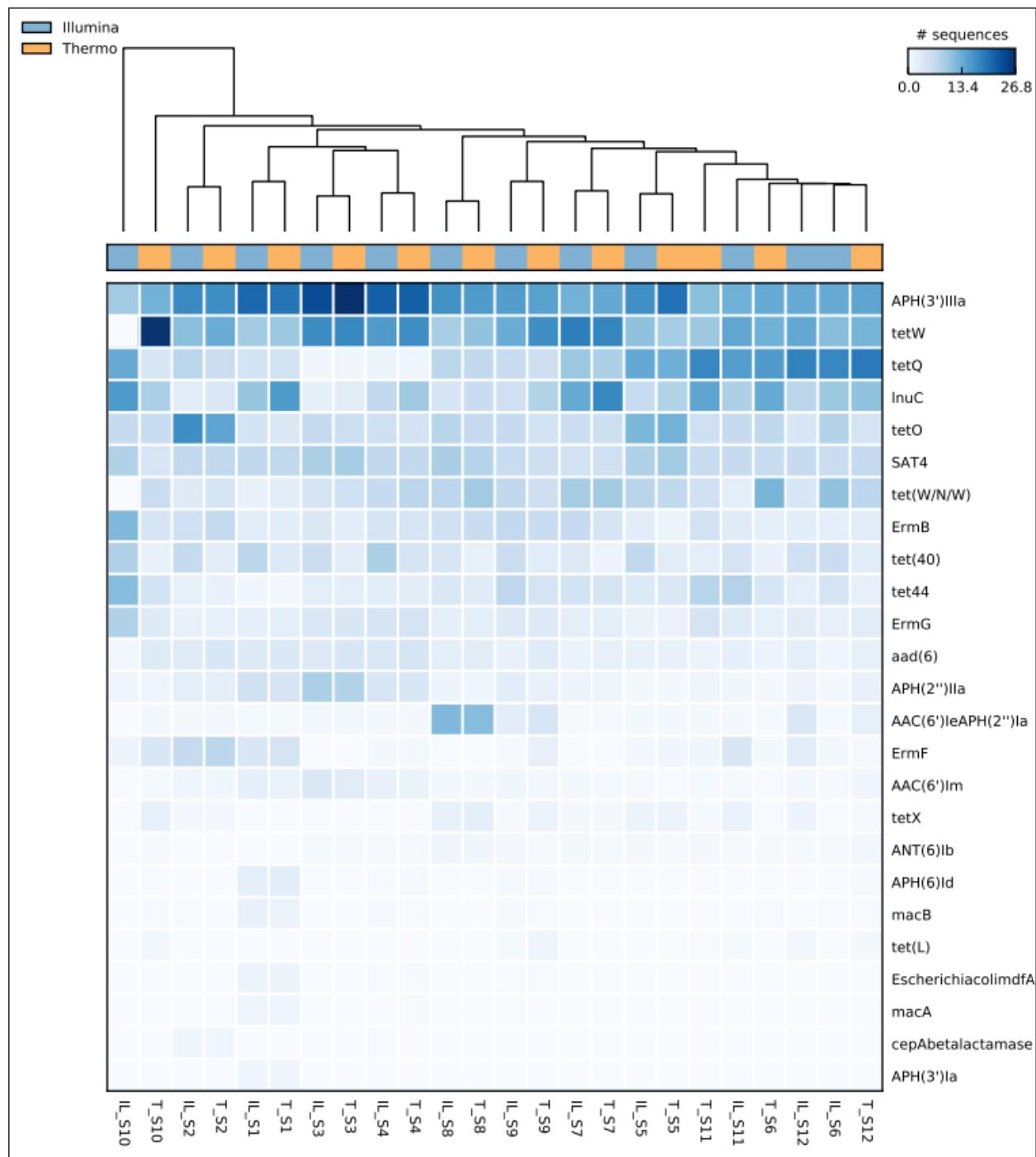


Figure:2 Heatmap demonstrating the abundance of the top 25 AMR genes in 12 chicken caecal samples detected using Illumina MiSeq (IL) or Ion Torrent (T), plotted using STEMP. AMR gene abundance illustrated by a color gradient as indicated by the color scale.

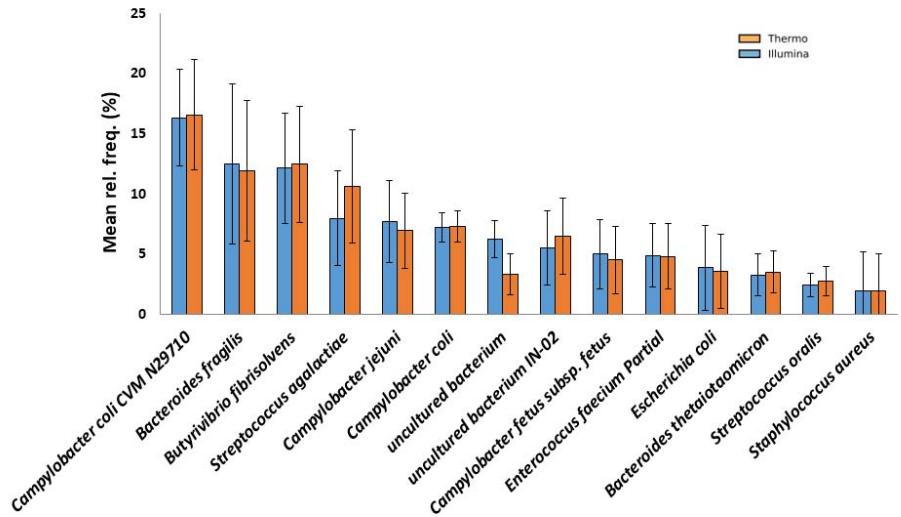


Figure:3 The relative abundance of organisms hosting AMR genes in chicken caecal microbial populations predicted using the CARD database. Organisms represented by $\geq 1\%$ of the sequence reads generated using Illumina MiSeq or Thermo Fischer Scientific are shown.

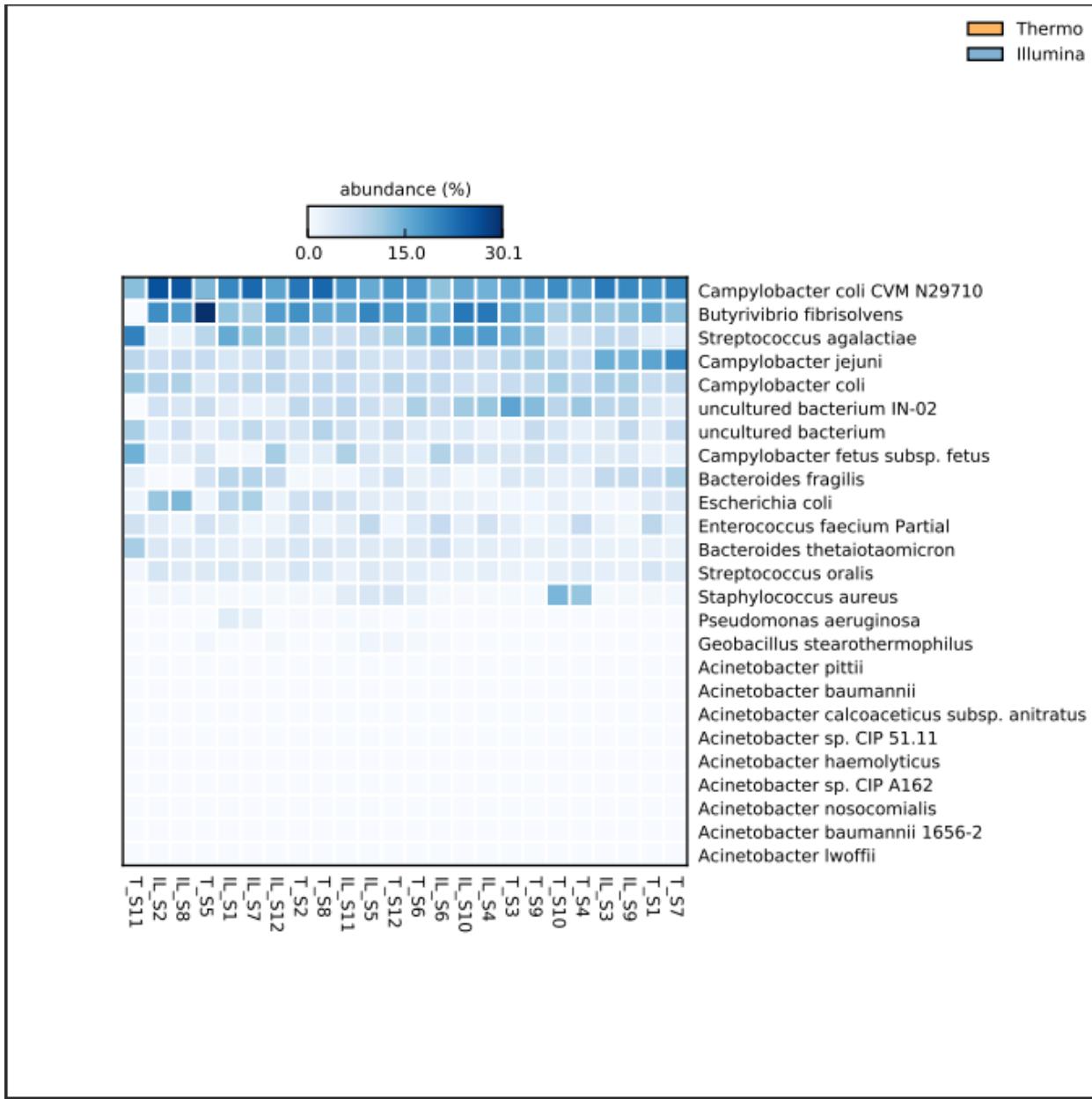


Figure 4 Heatmap demonstrating occurrence of the top 25 most abundant organisms predicted in chicken caecal microbial populations using the CARD database. Data generated from equivalent Illumina MiSeq (IL) and Ion Torrent (T) AMR amplicon sequencing datasets and plotted using STEMP. Organism abundance illustrated by a color gradient as indicated by the color scale.

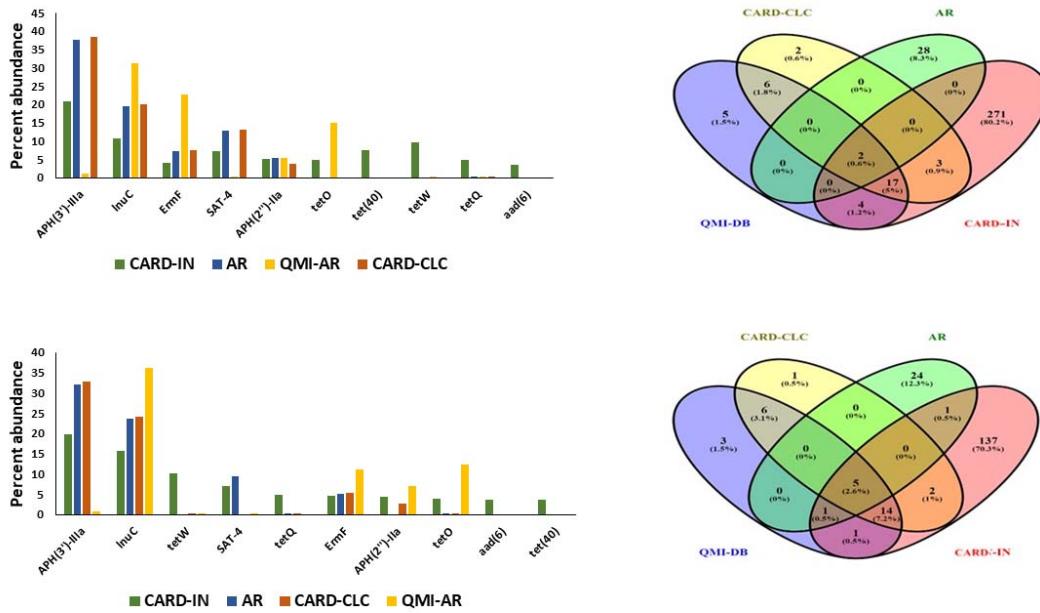


Figure:5 Comparison of sequence analysis databases for assessment of AMR gene amplicon sequencing generated using Illumina MiSeq and Ion torrent. The figures on the top row represents the data from Illumina platform while data of down row represents the Ion Torrent platform. Databases included were (CARD-CLC- CARD database present in CLC genomic workbench microbial genomic module, AR – Antibiotic resistance database, QMI-DB- QIAGEN microbial Insight – AR, CARD-IN – CARD database downloaded from CARD site and run locally)

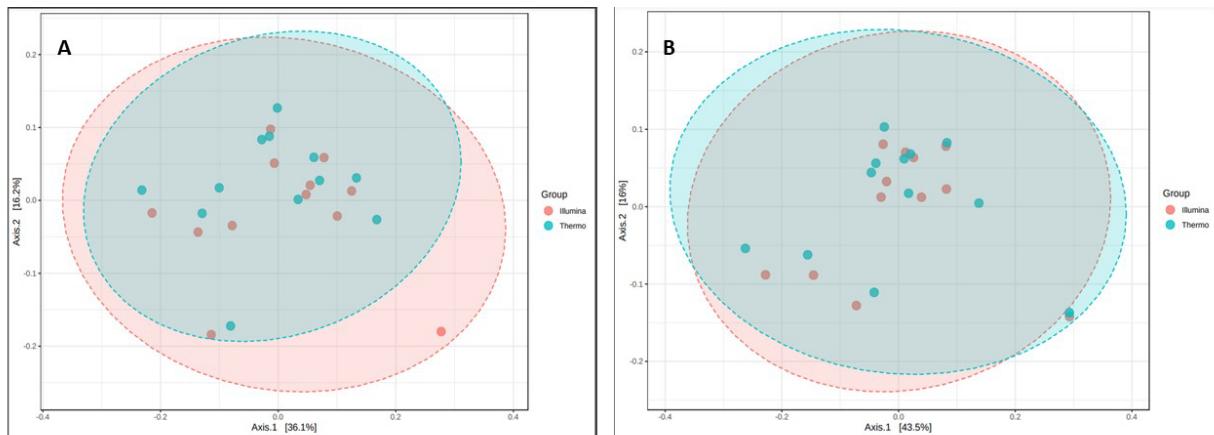


Figure: 6 PERMANOVA analysis of AMR gene and organism occurrence predicted based upon Illumina MiSeq or Ion Torrent sequencing of AMR amplicons from chicken caecal contents. (A) AMR gene PERMANOVA with F-value 1.3421, R^2 value 0.057498 and *p-value <0.219 (B) Organism PERMANOVA analysis with F-value 0.82178, R^2 value 0.036009 and *p-value <0.514.