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Abstract

Background: Acute respiratory distress syndrome (ARDS) remains a challenge because of its
high morbidity and mortality. Circulation histones levelsin ARDS patients were correlated to
disease severity and mortality. This study examined theimpact of histone neutralizationin arat
model of acute lung injury (ALI) induced by alipopolysaccharide (LPS) double-hit.

Methods: Sixty-eight male Sprague-Dawley rats were randomized to sham (N=8, received
saline only) or LPS (N=60). The LPS double-hit consisted of a 0.8 mg/kg intraperitoneal
injection followed after 16 hours by 5 mg/kg intra-tracheal nebulized LPS. The LPS group was
then randomized into five groups. LPS only (N=12); LPS + 5, 25, or 100 mg/kg intravenous
STC3141 every 8 hours (LPS+L, LPS+M, LPSt+H, respectively, each N=12); or LPS +
intraperitoneal dexamethasone 2.5 mg/kg every 24 hours for 56 hours (LPS+D, N=12) The
animals were observed for 72 hours.

Results: LPS animals developed ALI as suggested by lower oxygenation, lung edema
formation, and histological changes compared to the sham animals. Compared to the LPS
group, LPS+H and +D animals had significantly lower circulating histone levels; only the
LPS+D group had significantly lower bronchoalveolar lavage fluid (BALF) histone
concentrations. The LPS+L, +M, +H and +D groups had improved oxygenation compared to
the LPS group and the LPS+H and +D groups had a lower lung wet-to-dry ratio. All animals
survived.

Conclusion: Neutralization of histone using STC3141, especially at high dose, had similar
therapeutic effects to dexamethasone in this LPS double-hit rat ALl model, with significantly
decreased circulating histone concentration, improved oxygenation, and decreased lung edema
formation.

Keywords: ALI, ARDS, histone, histone neutralization, STC3141, rat LPS model

l. Introduction

Acute respiratory distress syndrome (ARDS), characterized by bilateral chest radiographical
opacities and severe hypoxemia (1), remains a mgjor challenge with its high morbidity and
mortality. In an observational study across 50 countries and involving 459 intensive care units
(ICUs), ARDS was responsible for 10% of ICU admissions and 23% of mechanically
ventilated patients; mortality was 35% and could be as high as 46% in severe ARDS (2).
Currently, only physiological manipulation, such as low tidal volume and prone position
ventilation, has been shown to have a survival benefit in these patients, and there are no
pharmaceutical therapies available (3).

Neutrophils are the first line immune cells against microorganisms, acting by phagocytosis,
release of reactive oxygen species (ROS), degranulation (4) and decondensed chromatin fibers
coated with antimicrobial proteins, such as histones and neutrophil elastase, which form
neutrophil extracellular traps (NETS) to trap and kill bacteria (5). However, NETs may be
double-edged swords (6), with excessive formation playing an important role in the
pathogenesis of ARDS (7): NETs expand into the pulmonary aveoli, causing lung injury, and
induce epithelial and endothelial cell death (7). NETs also provoke the formation of
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immuno-thrombosis (8), which is associated with worse ARDS outcomes. Thereis therefore a
sound rationale for strategies that target histones and decrease NET formation in the treatment
of ARDS.

Recent studies showed that extracellular histones significantly increased the development of
ARDS. In an observational study that included 96 patients with ARDS and 30 healthy
volunteers, extracellular histone levels from plasma and bronchoalveolar fluid (BALF) were
highly correlated to the severity of ARDS and were significantly higher in non-survivors (9). In
52 patients with non-thoracic trauma, high circulating histone levels were associated with an
increased incidence of acute lung injury (ALI) and higher Sequential Organ Failure
Assessment (SOFA) scores (10). Interestingly, anti-histone antibody therapy protected mice
from histone-induced lethality (10). Targeting extracellular histones may thus represent a
promising therapeutic option for ARDS (11).

A polyanion molecule of beta-O-methyl cellobiose sulfate sodium salt (MCBS.Na), STC3141,
has been identified as able to neutralize histones and decrease histone-induced red blood cell
(RBC) and platelet aggregation in vitro (12). Its use was associated with asurvival benefitin a
rat cecal ligation and puncture model (12). This molecule has also been shown to decrease
infarct size in arat cardiac ischemia/reperfusion model (13). Beneficial effects in ARDS are
therefore anticipated.

Our hypothesis was that mCB S.Na (STC3141) administration would improve outcomesin arat
model of ALl induced by a lipopolysaccharide (LPS) double-hit. Dexamethasone
administration has been shown to increase ventilator-free days and decrease 60-day mortality
in patients with ARDS (14), so we decided to use dexamethasone as a positive control in this
study. The reason we chosen this rat model is that it closely reproduces the acute phase of
human ARDS (15-17).

. Materials and methods
2.1 ALI rat model and experimental protocol

All procedures in this study were conducted in accordance with the guidelines of the National
Institute of Health and approved by the Animal Protection and Utilization Committee of the
JOINN laboratory.

Six- to eight-week-old male Sprague-Dawley (SD) rats (195g-270g) (Vital River Laboratory
Animal Technology Co., Ltd. Zhgjiang) were raised in a pathogen-free environment at
temperature 20-26°C under anatural light and dark cycle with free accessto standard chow and
water. A double-hit LPS strategy (LPS, Sigma-Aldrich, St. Louis, MO, USA) was used to
create the model.

A total of 68 adult male SD rats were randomized to a sham group (Sham, N= 8), in which
animals received intraperitoneal injection and intra-tracheal nebulized saline only, or a
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double-hit LPS group (N=60). The double-hit LPS consisted of 0.8 mg/kg intraperitoneal
injection followed after 16 hours by 5 mg/kg intra-tracheal nebulized LPS. For the nebulized
LPS or sdine, animals were anesthetized by inhalation of isoflurane, then fixed on a 45°
inclined rat holder plate. An anesthetic laryngoscope was used to pin the animal’ s tongue and
exposetheglottis. A micro liquid atomizer loaded with LPS solution or salinewasinserted into
the tracheaand the solution injected quickly into the lungs. The rats were then placed vertically
and rotated for 0.5-1 min to insure a uniform distribution of solution in the lung.

The LPS animals were then randomized to an ARDS control group (LPS, n=12), in which
animals received an intravenous injection of saline every 8 hours for 64 hours; a LPS+L group
(n=12), animals received an intravenous injection of 5 mg/kg STC3141 every 8 hours for 64
hours; LPS+M group (n=12), animals received an intravenous injection of 25 mg/kg STC3141
every 8 hoursfor 64 hours, LPS+H group (n=12), animals received an intravenous injection of
100 mg/kg STC3141 every 8 hours for 64 hours; or a positive control group (ARDS+D, n=12)
in which animals received an intra-peritoneal injection of 2.5 mg/kg dexamethasone
(KingYork, Tianjin, China) every 24 hours for atotal of 56 hours (Figurel).

2.2 Euthanasia, autopsy, blood sampling, and BALF collection

In accordance with the American Veterinary Medical Association Guidelines (2013), at 72
hours after intra-tracheal LPS nebulization, rats were anesthetized with chloral hydrate (350
mL/kg, 100 mg/mL), and then euthanized after collection of 0.5 ml arterial blood from the
abdominal aorta, which was exposed by opening the abdomen along a medioventral line.

To collect BALF, atracheal cannulawas slowly inserted into the tracheathrough anincisionin
the left bronchus and fixed in the centripetal direction with threads. A total volume of 3 mL
PBS buffer was slowly injected to fill the lung and thereafter gently withdrawn. This procedure
was repeated 3 times, for 10 s each time, and the BALF was collected into a centrifuge tube. It
was then centrifuged at 4°C with 1200 g for 10 minutes. The supernatant was separated and
stored at -80 °C. The precipitation was resuspended with 1 mL PBS buffer for cell counting.
Cell counting and classification of leukocytesin the BALF was performed using an automatic
blood cell analyzer.

The middle lobe of the right lung was isolated and weighed to calculate the wet-to-dry ratio.
The remaining right lung tissue and bronchi were fixed in 10% neutral buffered formalin
solution, paraffin-embedded, sectioned, and hematoxylin-eosin (HE) stained for
pathomorphological examination of the lung tissue.

2.3 Blood gas and histone measurementsin plasma and BALF
At autopsy, ablood gas analyzer (i-STAT ®1 Handheld Blood Analyzer (300-G. Abbott Point

of Care Inc. USA)) was used to measure PO2 (mmHg), PCO2 (mmHg), pH, and SO2%. Blood
samples were collected and centrifuged at 4°C for about 3000 rpm. The plasma was collected
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and stored at -70°C. Histone concentration was measured using an ELISA kit (Roche,
Sigma-Aldrich, St. Louis, MO, USA) according to the producer’ s instructions.

2.4 Higtology and inflammation

Pathological morphological examination, diagnosis, and classification were conducted
according to afour-grade method (minimal, slight, moderate, severe).

2.5 Lung wet-to-dry weight

The right middle lobe was weighed, then heated to 60°C for 72 h and weighed again. The
wet-to-dry weight ratio was calculated using the formula:lung wet-to-dry ratio = right middle
lobe wet weight/dry weight.

2.6 Datacollection and statistical analysis

We used Prism 9.3.0 (345) statistical software to process the data and draw the figures.
Statistical analysis was performed using a one-way ANOVA with Tukey test. All data are
expressed as “mean + SD”. All statistical tests were conducted as 2-sided tests, and the level of
significance was set at P < 0.05.

I, Results

The animals in the LPS group developed acute lung injury, with arterial blood PO2 (77.5 =

11.4 mmHg versus 103.3 £ 5.9 mmHg) and oxygen saturation (95.3 + 2.5% versus 98.4 + 0.5%)
significantly lower in the LPS group than in the sham group (Table 1). The WBC (9.41 + 2.01

vs 0.32 + 0.22) and neutrophil (5.17 = 1.90 vs 0.04 + 0.02) countsin the BALF, and the BALF

histone concentration (0.835 + 0.380 vs 0.039 + 0.012) were significantly higher in the LPS

group than in the sham group. The lung wet-to-dry ratio was significantly higher in the LPS

group (2.26 + 0.51vs 1.17 £ 0.09).

Comparison between LPS groups

The arterial PO2 was significantly higher in the LPS+L, +M, and +H groups than in the LPS
only group; the oxygen saturation was significantly higher in the LPS+D group than in the LPS
only group. There were no statistical differencesin PCO2 or pH among groups (Table 1).

WBC, lymphocyte, and platelet counts were significantly lower inthe LPS+L, +M, +H and +D
groups than in the LPS only group (Figure 2).

Animalsin the LPS+H and +D groups had significantly lower circulating histone levels than
the other LPS groups, the LPS+D group also had lower BALF histone concentrations (Figure
2).
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Histopathological examination showed lung inflammation, with neutrophil-based
inflammatory cells (alveolar cavity, blood vessel, alveolar wall), aveolar wall thickening,
bleeding in the alveoli (with or without hemoglobin crystals). The degree of inflammation was
significantly less in the LPS+L, +M, +H and +D groups than in the LPS only group.
Inflammation in the LPS+L, +M and +H animals showed a dose-dependent response: as the
dose increased, the degree of severity decreased. Representative histological findings in the
right upper lobe in the different groups are shown in Figure 3.

The LPS+H and +D animals had asignificantly lower lung wet-to-dry ratio than that of the LPS
only group (Figure 2). All the 68 animals survived to 72 hours after the LPS second hit.

V. Discussion

The main findings of the current study are: 1) that a double-hit of LPS induced a model of
ALl inrats as shown by the presence of inflammation, decreased oxygenation, lung edema, and
histological changes, representing clinical ARDS findings; 2) neutralization of extracellular
histone with low, medium and high dose STC3141 significantly decreasing circulating and
BALF WBC and neutrophil counts, improving lung oxygenation and decreasing lung
inflammation; 3) high dose STC3141 seems to have a similarly beneficial effect on
oxygenation and lung edema formation to dexamethasone administration in this ALl model.

LPS exposure may lead to lung inflammation. An LPS stimulated rat model is a standard
experimental ALl and ARDS model and widely used for new drug development for this
condition (18-20). LPS stimulation leads to systemic inflammatory and toxic responses by
activating Toll-like receptors (21), the complement system (22), and inflammasome pathways,
which provoke apoptosis, necrosis, and NET formation (7), and histone release into the
circulation. These extracellular histones play a pathogenic role in the development of ARDS
through promoting alveolar macrophage proptosis (23), direct cytotoxic endothelial damage
(24) and pro-inflammatory effects with cytokine production (25)(26), resulting in
overwhelming cell damage and death (22). Furthermore, these extracellular histones can
induce platelet aggregation (28) and coagulation activation (29), immuno-thrombosis
formation (30) and innate immunity by activating Toll-like receptors and the NLRP3
inflammasome (27). In our study, LPS animals exhibited decreased oxygenation, lung
inflammation (intra-alveolar leukocytes, histological injury), and higher histone concentrations
than sham animals. STC3141 significantly decreased WBC and neutrophil counts not only in
the circulation, but also in the BALF, which suggests it may interrupt NET formation and
subsequent immunothrombosis, thereby ameliorating the impaired microcirculation and
improving lung function.

Targeting extracellular histones using STC3141 improved oxygenation and lung edema
formation in the current ARDS model: low and medium dose STC3141 treatment did not
decrease circulating histone levels, but high dose STC3141 and dexamethasone did.
Interestingly, in BALF, only dexamethasone decreased histone concentration, which raises the
guestion as to whether high dose STC3141 is sufficient? An on time measurement of
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circulating levels of histones may help to answer this question, but this approach is currently
under development. This dose-dependent effect is reflected by the findings of similar lung
dry/wet ratio in the high dose and dexamethasone groups. improved oxygenation and
decreased lung inflammation and edema formation. Meara et a similarly showed that
mCBS.Na administration significantly decreased histone-induced RBC and platelet
aggregation in vitro, and histone-induced tissue injury, thrombocytopenia and anemiain mice
(12). These preclinical findings could help to explain the observationsin ARDS patients, with a
significant increase in plasma histones in mild, moderate, and severe ARDS and significantly
higher plasma histones in non-survivors than in survivors (9) . Furthermore, in ARDS patients
with agood prognosis, plasmahistone levels decreased after admission whereas they increased
in those with a poor prognosis (9). All these findings support the concept of histone
neutralization therapy in ARDS.

The study has several limitations. First, LPSiswell known to induce inflammation rather than
infection, and the model therefore does not fully mimic the disease kinetics in ARDS (31).
Second, the young healthy animals used in the current study are different from the typical
ARDS patient with comorbidities. Third, in the present ARDS model, all the rats survived,
which may suggest it is amild injury model; in addition, no hypoxemiawas observed. Fourth,
no antibiotics, fluid resuscitation, vasopressors, or mechanical ventilation were used, limiting
the clinical relevance of the model. Fifth, we did not perform immunohistochemistry to
determine NET formation in the lung. Sixth, the ambient environment temperature is 28°C for
the rat (32), while our experiments processed in a relative cold environment, this cold stress
response may also bias our results. Seventh, use of specific pathogen-free animals may also
bias the results, because their immune response might different from wild animals(33).
Eighth, the shortage of direct evidence immunohistochemistry results of NETs from lung with
STC3141 dueto limited label technology.

Three clinical trials are currently ongoing to test the effects of STC3141: a phase Il study in
patients with coronavirus disease 2019 (COVID-19), which has currently finished patients
inclusion (ClinicalTrials.gov Identifier: NCT04880694); a phase Ib study in sepsis, which
planstoinclude 25 patients (); and aphase Ib study in ARDS, which plansto include... patients

0.
V. Conclusion

In the current LPS double-hit rat model of ALI, high dose STC3141 showed similar effects to
dexamethasone therapy, including significantly decreased circulating and BALF histone
concentrations, improved oxygenation, and decreased lung edemaformation. Clinical trialsare
necessary to identify the effects of histone neutralization in ARDS patients.
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Figurel. Experimental protocol
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Figure 3: Representative histology of the right upper lobe in the different groups: in sham
group: norma; LPS group, severe inflammation; LPS+L group, severe inflammation;
LPS+M group severe inflammation; LPS+H group: moderate inflammation; LPS+D group:
minimal inflammation. All images are taken after HE staining and amplified 100X.
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Table 1. Hemoglobin (Hb) concentration and red blood cell (RBC), lymphocyte (Lymp) and
monocyte (Mono) counts in the blood, arterial pH, PCO2, PO2 and SO2% in the different
groups. * indicates significant difference compared with LPS group.

Sham LPS LPS+L LPS+M LPS+H LPS+D Pvalue
Blood cell counts
Hb (g/L) 139.2+ 32 1343+ 160 133.2+ 16.0 1332+ 103 126.4+ 8.3 1383+ 8.1 P=0.008
RBC (x10%cells/L) 6.7+03 65+ 08 65+0.6 62104 62+04 6.7+03 P=011
Lymp (x10°celIS/L) 93+ 10 58+17 11.3+2.8 99+27* 95+ 36* 14127 P <0.0001
Mono (x10°celI5/L) 03+02 02+01 02:+01* 0.1+01* 01+0.0* 01+0.1* P<0.0001
Blood gas
pH 7.48+0.05 7.4410.03 7.46+0.05 7451004 744+ 005 7.46% 0.05 P=028
PCO,(mmHg) 34.3+302 371+43 363149 362+ 4.1 37.2+37 368+3.3 P=0.67
PO,(mmHg) 103.3+59 775+ 114 884 +8.6* 903+ 6.4* 923+9.2 87.4+63* P <0.0001
SO,% 984105 953+25 97.2+11* 97.4+0.8* 973+ 1.2* 97.3+ 0.9* P=0.0002
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