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MRNA-1273 vaccination protects against SARS-CoV-2 elicited lung inflammation in non-human
primates

One Sentence Summary: Single cell RNA sequencing analysis demonstrates that mRNA-1273
vaccination limits the development of lower respiratory tract inflammation in SARS-CoV-2 challenged
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ABSTRACT

Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection againgt viral
infection in humans and non-human primates. However, it isless clear that vaccine-induced immunity is
ableto limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected
bronchoalveolar lavage fluid samples post-SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus
macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling
revealed a broad cellular landscape 48 hours post-challenge with distinct inflammatory signatures that
correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included
phagocyte-restricted expression of chemokines such as CXCL10 (IP10) and CCL3 (MIP-1A) and the
broad expression of interferon-induced genes such as MX1, 1SG15, and IFIT1. Induction of these
inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner,
and negatively correlated with pre-challenge serum and lung antibody titers against SARS-CoV-2 spike.
These observations were replicated and validated in a second independent macaque challenge study
using the B.1.351/beta-variant of SARS-CoV-2. These data support a model wherein vaccine-elicited
antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral
dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the causative agent of COVID-19 —
has infected at least 250 million individuals and resulted in over 5 million desths as of November, 2021
(1). SARS-CoV-2 infection resultsin arange of clinical outcomes, from asymptomatic clearanceto
severe lung pathology with concomitant acute respiratory distress. Almost all morbidity and mortality
attributable to SARS-CoV-2 is seen in the minority of patients who develop severe pneumonia requiring
mechanical ventilation (2, 3). This has led to speculation that SARS-CoV-2 infection may promote a
unique pathophysiology in which dysregulated immune responses to infection in the lower respiratory
tract augment the severity of COVID-19. Indeed, examinations of the cellular composition of
bronchoalveolar lavage fluid (BALF) from acutely ill COVID-19 patients have revealed a cellular
landscape containing both resident cells and infiltrating immune cells displaying a unique and
dysregulated inflammatory profile (4). Taken together, these data are cons stent with a model wherein
SARS-CoV-2 infected cells engage in a positive feedback loop with infiltrating immune cells to
potentiate persistent alveolar inflammation and pathology (5). An effective vaccine would then be
expected to impede theinitiation of this, or asimilar, pathological feedback loop thereby limiting lower
airway disease.

Single cell RNA sequencing (scRNAseq) isahighly sensitive tool for analyzing the spectrum of SARS-
CoV-2 dlicited inflammation and the impact of vaccine-mediated immunity. The use of this approach to
examine human BALF and PBM C samples has already identified several populations of immune cells
likely implicated in inflammation-driven immunopathology and vaccine-mediated protection, as well as
those likely to contain SARS-CoV-2 genetic material (5-10). Studies of human PBM C using sScRNAseq
have demonstrated a dysregulated response in both innate and adaptive immune cells in severe disease
(11), evidence of emergency myelopoiesis cell and neutrophil dysregulation in severe disease (6), and an
up-regulation of the TNF/IL-1B-driven inflammatory response as compared to influenzain classical
monocytes (12). The unifying theme of these studiesisthat in severe COVID-19, compared to mild
disease or asymptomatic infection, there is a profound and dysregulated type | interferon response across
many lymphoid and myeloid origin cells (13). Thisresponse is accompanied by hyper-inflammation,
evidence of celular proliferation, and defective antigen-presentation and interferon responsivenessin
classical monocytes.

Animal models have recapitulated many key aspects of the inflammatory response observed in the
human lung, such as viral shedding, cellular infiltration profiles and cellular inflammatory profiles at the
transcriptional level (14, 15). These models provide the critical ability to control dose and exposure
variables that present afundamental barrier to the accurate interpretation of human studies. Additionally,
rhesus macaques (Macaca mulatta) represent a clinically relevant model for assessing lung tissue
pathology and temporal analysis of SARS-CoV-2 dlicited inflammation, and are the preclinical gold
standard for assessing SARS-CoV -2 vaccine efficacy (16-22). Treatment of rhesus macagques with a
clinically-approved JAK1/JAK2 inhibitor resulted in reduced lung inflammation and pathology,
corresponding with attenuated infiltration of inflammatory immune cells and NETosis (15). These
outcomes were associated with suppression of neutrophil recruitment and production of cytokines and
chemokines by inflammatory macrophages, despite comparable type | IFN responses. Similarly,
responses to SARS-CoV-2 in ferrets revealed a shift in BALF macrophage gene expression signatures
toward a pro-inflammatory phenotype during early infection (12), underscoring the critical need to
understand the cellular complexities of SARS-CoV-2 dicited inflammation.
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MRNA-based vaccine platforms — such as Moderna s mMRNA-1273 and Pfizer/BioNTech’s BNT162b2 —
which encode a stabilized version of the SARS-CoV-2 spike glycoprotein (23) show >90% efficacy
against symptomatic COVID-19 ininitial Phase 3 analyses and in large-scale prospective studies
performed after their global rollout (24, 25). However, the efficacy of these vaccines against severe
lower airway disease wanes over time after the initial prime and boost (26-28). Pre-clinical and clinical
studies have strongly suggested that vaccine-dlicited serum levels of SARS-CoV-2 neutralizing antibody
titers are a mechanistic immune correl ate of vaccine efficacy (29, 30). Despite the abundance of clinical
and pre-clinical efficacy data for these mMRNA-based vaccine platforms, thereis little prospective
information currently available on how these vaccines impact SARS-CoV-2-dlicited inflammation in the
lower respiratory tract with any degree of spatial or temporal resolution.

In this study we sought to understand the impact of mMRNA-1273 vaccination on the cellular
inflammatory response to SARS-CoV -2 infection in the lower respiratory tract of nonhuman primates
(NHPs,) and whether vaccination is capable of breaking the inflammatory feedback loop that
characterizes severe COVID-19. We used scRNAseq to analyze BALF cells from rhesus macagues
challenged with SARS-CoV-2 strain USA-WA1/2020 after vaccination with two doses of 30ug or 1ug
of MRNA-1273 or PBS. mRNA-1273 vaccination limited SARS-CoV-2 dlicited inflammation in the
lower respiratory tract as defined by the expression of pro-inflammatory chemokines and cytokinesin
multiple cell types, as well as the broad reduction in expression of interferon gene products such as
MX1, ISG15, and IFIT1. Additionally, SARS-CoV-2 dlicited inflammation was directly associated with
post-challenge viral titers and inversely associated with pre-challenge antibody levelsin unvaccinated
and mRNA-1273 vaccinated animals. The ability of mMRNA-1273 to limit SARS-CoV-2 dlicited
inflammation in the lower reparatory tract was independently verified using the antigenically disparate
B.1.351/betavariant. Collectively, these results demonstrate that vaccination with mRNA-1273 not only
limits SARS-CoV-2 viral replication, but restricts inflammation in NHPs. Additionally, these data
support a model wherein neutralizing antibody at the site of virus inoculation reduces the viral burden,
constraining upper respiratory tract viral replication and secondary viral dissemination to the lower
respiratory tract and infection-associated inflammation.

RESULTS

Frequency of BALF resident cellsfollowing SARS-CoV-2 challenge. It has previously been
demonstrated that vaccination of macaques with mRNA-1273 results in robust serum antibody responses
and high-level protection from subsequent SARS-CoV-2 challenge in a dose-dependent fashion (19, 29).
To extend these observations and to assess the impact of vaccination on SARS-CoV-2 dlicited
inflammation in the lower respiratory tract, we performed scRNAseq analysis of fresh BALF obtained
on days 2 and 7 post SARS-CoV-2 challenge in animals which previously received either 30 ug (n=4) or
1 pg (n=6) of MRNA-1273 in a prime-boost series administered four weeks apart. Control animals
received PBS (n=6). All animals were challenged intranasally/intratracheally (IN/IT) with 8x10° PFU of
SARS-CoV-2 (strain USA-WA1/2020) four weeks after the last vaccine dose. In addition, BALF cells
were analyzed from naive uninfected animals to serve as controls.

scRNAseq was used to classify and quantify the cell composition and dynamics within the BALF post-
challenge. A total of 65,226 viable and high quality BALF cells from all animals were recovered after
filtering and quality control steps (Fig. 1A, 1B). Of note, epithelial cells (Fig. 1C), lymphocytes (Fig.
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1D), dendritic cells (Fig. 1E) and macrophages (Fig. 1F) wereidentified in all time points from all
animals. Alveolar macrophages were further separated into either MARCO™ or MARCO" populations,
corresponding to interstitial and tissue-resident alveolar macrophages, respectively (14, 31). Following
SARS-CoV-2 challenge, CD4" and CD8" T cellsincreased in frequency between days 2 and 7 post-
challenge in unvaccinated animals. Several DC populations also trended higher among unvaccinated
infected animals at one or more time points relative to uninfected controls. No significant changes were
observed in the frequency of epithelial cell or macrophage populations.

Inflammatory signatures of SARS-CoV-2 infection. To assess the inflammatory response elicited by
SARS-CoV-2 challenge in naive and mRNA-1273 vaccinated animals, the expression of inflammatory
markers, chemokines, and cytokines was assessed in each annotated BALF cell type on days 2 and 7
post challenge. An inflammatory response to infection — as indicated by the expression of genes such as
MX1, 1SG15, and IFIT1 — was observed across all cell typesin the unvaccinated infected animals on day
2 post SARS-CoV-2 challenge. (Fig. 2A). Expression of these markers decreased in a dose-dependent
fashion in animals vaccinated with 1 pg or 30 ug of mMRNA-1273. These transcriptional signatures of
acute viral infection resolved in most cell types by day 7 post infection, with the exception of lingering
MX1/MX2 expression in some populations of macrophages and DCs (Fig. 2B). Migratory DCs and
MARCO" macrophages responded to SARS-CoV-2 challenge in unvaccinated animals by expressing
chemokines such as CXCL10 (1P10) an CCL3 (MIP-1A), both of which were previousdly identified in the
context of acute SARS-CoV-2 infection in humans (4). In addition, elevated expression of cytotoxic
factors GZMA and PRF1 was observed in CD8" T cells following SARS-CoV-2 challenge on day 2 and
maintained 7 days post challenge. Notably, the expression of these pro-inflammatory chemokines and
chemokines was dramatically suppressed in vaccinated animalsin a dose-dependent manner across all
time points.

To reduce the complexity of the data and provide more direct insight into the dynamics of SARS-CoV-2
eicited inflammation, we defined a transcriptional “inflammation index” which could be used to
guantify the level of enrichment for inflammatory gene productsin a given sample and cell type. This
index was developed by selecting 8 genes (MX1, MX2, IFITL, IFIT2, IFIT3, IFI6, ISG15, and 1SG20)
that were 1) previously known to be regulated at a transcriptional level by viral infection and/or
interferon stimulation, 2) highly induced in our dataset following SARS-CoV-2 challenge, and 3)
consistently observed in all cell types captured in our analysis. Using this reductionist approach, we
observed a dose-dependent suppression of SARS-CoV-2 dicited inflammation in epithelial cells
(pneumocytes, club cells), myeloid cells (MARCO™ macrophages, MARCO™ macrophages, mast cells),
dendritic cells (cDC.1, cDC.2, pDC, Mig DC), and lymphocytes (B cells, CD8" T cells, CD4" T cells)
with increasing MRNA vaccination dose (Fig. 2C-F). Furthermore, inflammation in animals that
received the full dose of vaccine was nearly equivalent to that of the unchallenged control animalsin all
cell types assessed. Inflammation returned to baselinein all groups by day 7 post vaccination. These
results establish a single metric for quantifying the transient inflammatory transcriptional response
eicited following SARS-CoV-2 infection across multiple cell populations using sScCRNAseq, and by
extension provide a measurement of the site-specific host-response to the virus.

Cell-associated viral RNA burden following SARS-CoV-2 infection. Having defined the impact of
MRNA-1273 vaccination on SARS-CoV-2 associated inflammation in the lower respiratory tract of
macagques, we next attempted to quantify the cell-associated SARS-CoV-2 viral RNA burden by
aligning scRNAseq reads that failed to align to the macague genome against the SARS-CoV-2 USA-
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WA1/2020 reference genome. BALF contained widespread SARS-CoV-2 RNA™ cellson day 2 in
unvaccinated animals (Fig. 3A, 3B). SARS-CoV-2 RNA™ positive cells were seen in all annotated cell
types with the exception of mast cells in unvaccinated animals, although the greatest number of viral
RNA" cells were found in the MARCO™ macrophage cluster. Similar to the inflammation index, the
frequency of viral RNA™ cells was suppressed by vaccination in a dose-dependent fashion and mostly
resolved by day 7 post infection. The frequency of viral RNA™ cellsin the BALF on day 2 correlated
well with contemporaneous viral subgenomic RNA (sgRNA) load in the BALF as quantified by PCR of
the E and N gene (Fig. 3C, fig. S1). Notably, the correlation between the frequency of viral RNA™ cells
in the BALF was weaker with the upper respiratory tract (nasopharyngeal swab) sgRNA loads (Fig. 3D,
fig. S1). These results show that SARS-CoV-2 vira burden in lung cellsis abrogated by mRNA
vaccination and is consistent with reduced soluble viral RNA measuresin BALF.

Relationship between SARS-CoV-2 RNA load and cell type-specific inflammation. To examine the
relationship between the observed dose-dependent reduction in SARS-CoV-2 viral burden and
inflammation in the BALF of mMRNA-1273 vaccinated animals after SARS-CoV-2 challenge, we
compared viral RNA measures to cellular inflammatory responses. Strikingly, cell-free SARS-CoV-2
RNA load positively correlated with the previously defined inflammation index score of both BALF
dendritic and myeloid cell compartment on day 2 post infection across all study groups (Fig. 4A, Fig.
4D, fig. S2). However, nasal swab viral RNA load poorly correlated with dendritic cell inflammation,
and correlated only weakly with myeloid inflammation (Fig. 4B, Fig. 4E, fig. S2). Cell-associated viral
RNA loadsin the BALF also correlated with the inflammation score for both dendritic and myeloid
compartments (Fig. 4C, Fig. 4F). These results demonstrate that viral burden in the BALF, but not nasal
environment, correlates with the amount of lower respiratory tract inflammation following SARS-CoV-2
challenge.

Pre-challenge immune profiles predict lung inflammation following SARS-CoV-2 challenge.
SARS-CoV-2-specific antibody titers have been implicated in mMRNA vaccination-mediated protection
from SARs-CoV-2 infection in both humans and NHPs (29, 30, 32), but the relationship between
specific antibody titers and lower respiratory tract inflammation is not clear. To thisend, we
incorporated previously published data (29) on serum levels of full-length spike protein and receptor-
binding domain (RBD)-specific titers IgG present immediately before SARS-CoV-2 challenge in these
animalsinto our analysis. Pre-challenge (8 week post initial vaccine dose) serum titers of both spike-
and RBD-specific IgG were negatively correlated with dendritic cell inflammation scores in the lower
respiratory tract 2 days post SARS-CoV-2 challenge across all study groups (Fig. 5A to B). This
relationship was also observed with pre-challenge spike-specific 1gG titersin the BALF (Fig. 5C).
Furthermore, serum neutralizing antibody responses assessed by both pseudovirus and live-virus
neutralization assays were also associated with reduced DC inflammatory responses (Fig. 5D to E).
These data suggest that SARS-CoV -2 specific antibody titers in mRNA-1273 vaccinated macagues
function as a powerful predictor of SARS-CoV-2 dicited inflammation in the lower respiratory tract.

Impact of mMRNA-1273 vaccination on inflammation elicited by SARS-CoV-2 B.1.351/beta variant.
Having established the lower respiratory tract profile associated with SARS-CoV-2 USA-WA1/2020
infection —and how prior mMRNA-1273 immunization blunts infection-attendant inflammation in this
macagque model —we sought to expand and validate our observationsin an independent experiment
using a SARS-CoV-2 variant challenge. We again utilized sScRNAseq to analyze BALF resident cells
isolated on day 2 post challenge with the SARS-CoV-2 B.1.351/beta variant in naive animals, or animals
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vaccinated twice with 30pg of mMRNA-1273. The same populations of BALF resident cellsidentified
following WA-1 challenge were observed following B.1.351/beta challenge (Fig. 6A, fig. S3). However,
unlike USA-WA1/2020 challenge, infection with B.1.351/beta resulted in asignificant perturbation in
the abundance of multiple cell typesincluding pDCs and migratory DCs (fig. $4). These changesin
cellularity were not observed in mRNA-1273 vaccinated animals, and the production of chemokines,
cytokines, and cytolytic factors were again suppressed in vaccinated animals relative to their
unvaccinated counterparts (Fig. 6B). Vaccination with mRNA-1273 also suppressed SARS-CoV-2
associated inflammation observed in epithelial cells (Fig. 6C), dendritic cells (Fig. 6D), myeloid cells
(Fig. 6E), and lymphocytes (Fig. 6F). The frequency of SARS-CoV-2 RNA positive cellsin BALF was
also reduced by mRNA-1273 vaccination, with the greatest number of viral RNA™ cells again found in
the MARCO™ macrophage cluster (fig. S5). In their totality, these results indicate that vaccination with
MRNA-1273 is capable of limiting lower airway inflammation in macaques following challenge with
multiple antigenically and evolutionally divergent strains of SARS-CoV-2.

DISCUSSION

In this study we sought to provide functional and mechanistic insight into the properties of mMRNA-1273
elicited protection from SARS-CoV-2 challenge in awidely used nonhuman primate model of mild to
moderate COVID-19 disease. While immune correlates of protection from symptomatic SARS-CoV-2
infection are currently being assessed and defined in both clinical and pre-clinical studies, thereisa
more limited information on the impact of vaccine-elicited immunity on SARS-CoV-2 induced
inflammation in the lungs at the single cell level. Here, we utilized scRNAseq technology to analyze
BALF cells from mRNA-1273 vaccinated animals that were subsequently challenged with SARS-CoV -
2 to define the transcriptional signatures of infection and to ascertain how this inflammatory response is
modulated by vaccine-elicited adaptive immune responses in a dose-dependent fashion. SARS-CoV-2
infection induced arobust inflammatory response in all unvaccinated animals that was suppressed in a
dose-dependent fashion by mRNA-1273 vaccination. Notably, migratory DCs and MARCO
macrophages appeared to be the most responsive cell types in the lower respiratory tract to SARS-CoV-
2 infection, asindicated by chemokine and cytokine production. Cell-associated SARS-CoV-2 viral
RNA was readily detected in the BALF of unvaccinated animals, restricted by mRNA-1273 vaccination,
and correlated with dendritic and myeloid cell inflammation.

It was previoudly established that S-specific antibody responses elicited by mRNA-1273 vaccination
correlates with upper and lower airway control of SARS-CoV-2 replication in macaques after challenge
(29). Here we further demonstrate, in these same animals, that the pre-challenge antibody profile,
including titers of binding and neutralizing antibody, predicted and inversely correlated with the
inflammatory profile within the lung across multiple cell types. The high degree of correlation between
pre-challenge antibody titers, post-challenge viral loads, and post-challenge inflammation suggests a
model of MRNA-1273-mediated protection from SARS-CoV-2 challenge in nonhuman primates.
Namely, neutralizing antibody levels determine the burden of viral replication, and the amount of virus
persisting in the upper respiratory tract drives secondary viral dissemination to the lower respiratory
tract and infection-attendant inflammation. The absence of inflammation and viral RNA in the lower
respiratory tract of SARS-CoV-2 challenged animals just 2 days post infection supports the high level of
efficacy of mMRNA vaccination against lower respiratory infection and pathology.
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Examination of human BALF from mild and severe COVID-19 patients has been used to distinguish an
inflammatory signature associated with severity. This signature includes expression of genes for
chemokine production, proinflammatory cytokines, and activated phenotypic markers within resident
and infiltrating cells (5-10). Several studies have described the potential role of neutrophils and NETosis
in local lung pathology, as well as shiftsin monocyte and macrophage populations toward an
inflammatory phenotype (5-7, 9, 10). Reinforcing the critical role of type | interferon in the antiviral
response, many studies have also identified strong type | IFN signaturesin single immune cells from
COVID-19 patients, although the relationship of this cytokine profile and disease severity is still
uncertain (12, 33). Accordingly, our observation of stronger correlation between BALF inflammatory
immune cell gene signatures and BALF viral burden than that of nasopharyngeal swabs suggests that
inflammation-driven lung pathology is directly influenced by local viral replication. However, given the
migratory nature of these cell populations and the relatively low abundance of viral RNA in the lower
respiratory tract, the possibility that these cells were stimulated by viral ligands at other anatomical sites
cannot be discounted. Furthermore, the cells that were found to be positive for SARS-CoV-2 RNA
represented arange of cell types. Although the range of cell types expressing ACE2 and therefore
permissiveto viral entry iswide (34), these populations may not represent bona fide productively-
infected cells. Rather, cells may acquire viral RNA through phagocytic mechanisms, for example.
Despite these potential caveats, our findings were validated by challenge of animals with the SARS-
CoV-2 B.1.351/beta variant, wherein mRNA-1273 vaccination also prevented infection-induced lung
inflammation.

There are some limitations of this study to consider. First, the relatively transient and self-limiting nature
of SARS-CoV-2 infection and infection-elicited inflammation in macagues makes it difficult to place
these observations into context of human disease. Many of the pathways, cell types, transcriptional
signatures, and correlates of protection identified in our analysis have also been defined in humans with
acute COVID-19, but the magnitude and timing of the events may not be homologous. Second, the route
of virus administration has been shown to influence infection and inflammation in other models of
SARS-CoV-2 challenge (35), so that the IN/IT route of infection used in this study may result in subtly
different features of infection and inflammation than aerosol-mediated infection.

In conclusion, this study defines the lower respiratory tract cellular and transcriptional signature
associated with SARS-CoV -2 infection in macagues using two distinct viral variants, and identifies
conserved signatures of vaccine-elicited protection from infection-attendant inflammation. These data
emphasi ze the contribution of inflammatory/migratory DCs and macrophages to lower respiratory tract
inflammation following SARS-CoV-2 infection, and define a critical relationship between antibody
titers, post-challenge viral burden, and broad infection-elicited inflammation.

MATERIALSAND METHODS

Vaccine formulation: mRNA encoding a sequence-optimized and prefusion-stabilized SARS-CoV-2 S
2P protein (36, 37) was synthesized in vitro and formulated as previously reported (19, 38, 39).

Rhesus macaque vaccination model: 3- to 8-year-old rhesus macaques of Indian origin were sorted by
sex, age and weight and then stratified into groups as previously described (29, 30). Animals were
immunized intramuscularly at week 0 and at week 4 with 1 pg or 30 ug of mMRNA-1273 in 1 mL of PBS
into the right hindleg. Placebo-control animals were administered an equal volume of PBS. Animal
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experiments were performed in compliance with all pertinent National Institutes of Health regulations
and approval from the Animal Care and Use Committees of the Vaccine Research Center and Bioqual
Inc. (Rockville, MD). Research was conducted under an approved animal use protocol inan AAALAC
accredited facility in compliance with the Animal Welfare Act and other federal statutes and regulations
relating to animals and experiments involving animals and adheres to principles stated in the Guide for
the Care and Use of Laboratory Animals, NRC Publication, 2011 edition. Studies were conducted at
Bioqual Inc. Post-vaccination antibody titers generated as previously described (29, 38, 40-43), and
previously reported by Corbett et al. (29).

USA-WA1/2020 challenge: At week 8 post initial vaccination (4 weeks after boost), all animals were
challenged with atotal dose of 8 x 10° PFUs of SARS-CoV-2 as previously described (29). The stock of
1.99 x 10° TCIDs, or 3x10° PFU/mL SARS-CoV-2 USA-WA1/2020 strain (BEI: NR-70038893) was
diluted and administered in 3-mL doses by the intratracheal route and in 1-mL doses by the intranasal
route (0.5 mL per nostril). Post-challenge SARS-CoV-2 sgRNA burden in nasal swabs and BAL were
determined as previously described (19, 29), and previously reported by Corbett et al. (29).

B.1.351 challenge: At week 8 post initial vaccination (4 weeks after boost) NHPs were challenged with
atotal dose of 5x10° PFU of SARS-CoV-2 B.1.351 strain as previously described (30). Theviral
inoculum was administered as 3.75x10° PFU in 3 mL intratracheally (IT) and 1.25x10° PFU in 1 mL
intranasally (IN) in avolume of 0.5 mL into each nostril.

scRNAseq library generation: Freshly isolated BALF suspensions were prepared for single-cell RNA
sequencing using the Chromium Single-Cell 5" Reagent v2 kit or NextGEM v1.0 kit and the Chromium
Single-Cell Controller (10x Genomics, CA) (44). 2000—-8000 cells per reaction suspended at a density of
50-500 cellsg/pL in PBS plus 0.5% FBS were loaded for gel bead-in-emulsion (GEM) generation and
barcoding. Reverse transcription, RT-cleanup, and cDNA amplification were performed to isolate and
amplify cDNA for downstream library construction according to the manufacturer’s protocol. Libraries
were constructed using the Chromium Single-Cell 5' reagent kit and i7 Multiplex Kit (10x Genomics,
CA) according to the manufacturer’ s protocol.

Sequencing: scRNAseq 5' gene expression libraries were sequenced on an Illumina NovaSeq 6000
instrument using the S1, S2, or $4 reagent kits (300 cycles). Libraries were balanced to allow for
~150,000 reads/cell for 5’ gene expression libraries. Sequencing parameters were set for 150 cycles for
Readl, 8 cyclesfor Index1, and 150 cycles for Read2. Prior to sequencing, library quality and
concentration were assessed using an Agilent 4200 TapeStation with High Sensitivity D5000
ScreenTape Assay and Qubit Fluorometer (Thermo Fisher Scientific) with dSDNA BR assay kit
according to the manufacturer’ s recommendations.

scRNAseq gene expression analysis/visualization: 5" gene expression alignment from all BALF
samples was performed using the 10x Genomics Cell Ranger pipeline (44). Sample demultiplexing,
alignment, barcode/UM I filtering, and duplicate compression was performed using the Cell Ranger
software package (10x Genomics, CA, v2.1.0) and bcl2fastq2 (Illumina, CA, v2.20) according to the
manufacturer’ s recommendations, using the default settings and mkfastg/count commands, respectively.
All reads were trimmed to 26bp x 98bp for gene expression analysis. Transcript alignment was
performed against a Macaca mulataa reference library generated using the Cell Ranger mkref command,
the Ensembl Mmul_10 top-level genome FASTA, and the corresponding Ensembl v100 gene GTF.
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Multi-sample integration, data normalization, dimensional reduction, visualization, and differential gene
expression were performed using the R package Seurat (v4.0.0) (45, 46). All datasets were filtered to
only contain cells with between 200-5,000 unique features and <12.5% mitochondrial RNA gene
content (defined as expression of the following mitochondrial gene products. ND1, ND2, COX1, COX2,
ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, and CYTB). To eiminate erythrocyte contamination,
datasets were additionally filtered to contain cells with less than a 10% erythrocytic gene signature
(defined as HBA and HBB). Data were scaled, normalized, and transformed prior to multi-sample
integration using the negative binomial regression model of the Seurat SCTransform() function,
additionally regressing-out the contribution of imputed cell cycle to the normalized dataset (47).
SelectintegrationFeatures() and PrepSCT Integration() functions were used to identify conserved features
for dataset integration, and final dataset anchoring/integration were performed using
FindintegrationAnchors() and IntegrateData() functions, with the day 2, 30pg vaccine samples used as
reference datasets. PCA was performed using variable genes defined by SCTransform().

For the USA-WA1/2020 dataset, the first 40 resultant PCs were initially used to perform aUMAP
dimensional reduction of the dataset (RunUMARP()) and to construct a shared nearest neighbor graph
(SNN; FindNeighbors()). This SNN was used to cluster the dataset (FindClusters()) with default
parameters and resolution set to 0.7. From this initial clustering a population of low-viability cells was
identified and removed from the anaylsis, after which the dataset PCA was re-run and the first 35
resultant PCs were used to perform a UM AP dimensional reduction of the dataset (RunUMAP()) and to
construct a shared nearest neighbor graph (SNN; FindNeighbors()). This SNN was used to cluster the
dataset (FindClusters()) with default parameters and resolution set to 1.5. The resultant clusters were
assigned to following cell types based on the expression of the indicated gene products: club cell
(SCGB1A1, SCGB3A1), pneumocyte (PIFO, SNTN, FOXJ1), MARCO mac (MRC1, APOE), MARCO"
mac (MRC1, APOE, MARCO), cDC.1 (CLEC9A, XCR1), cDC.2 (CD1C, CLEC10A), pDC (GZMB,
IRF7), MigDC (CCRY?, BIRC3), Mast cell (CPA3, GATA2), CD4" T cell (CD3E, CD40LG), CD8" T cll
(CD3E, CD8A), and B cells (CD19, MHAAL).

For the B.1.351/beta dataset, the first 31 resultant PCs were initially used to perform a UMAP
dimensional reduction of the dataset (RunUMARP()) and to construct a shared nearest neighbor graph
(SNN; FindNeighbors()). This SNN was used to cluster the dataset (FindClusters()) with default
parameters and resolution set to 1.7. From thisinitial clustering a population of low-viability cells was
identified and removed from the anaylsis, after which the dataset PCA was re-run and the first 31
resultant PCs were used to perform a UMAP dimensional reduction of the dataset (RunUMAP()) and to
construct a shared nearest neighbor graph (SNN; FindNeighbors()). This SNN was used to cluster the
dataset (FindClusters()) with default parameters and resolution set to 1.7. The resultant clusters were
assigned to following cell types based on the expression of the indicated gene products: club cell
(SCGB1A1, SCGB3A1), pneumocyte (PIFO, SNTN, FOXJ1), MARCO mac (MRC1, APOE), MARCO"
mac (MRC1, APOE, MARCO), cDC.1 (CLEC9A, XCR1), cDC.2 (CD1C, CLEC10A), pDC (GZMB,
IRF7), MigDC (CCRY?, BIRC3), Mast cell (CPA3, GATA2), CD4" T cedll (CD3E, CD40LG), CD8" T cell
(CD3E, CD8A), and B cdlls (CD19, MHAAL).

Following dataset integration and dimensional reduction/clustering, gene expression datawas log

transformed and scaled by a factor of 10,000 using the NormalizeData() function. This normalized gene
expression data was used to determine cellular cluster identity by utilizing the Seurat application of a
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Wilcoxon rank-sum test (FindAlIMarkers()), and comparing the resulting differential expression datato
known cell-linage specific gene sets. Differential gene expression analysis between study time points
was performed using normalized gene expression data and the Wilcoxon rank-sum test with
implementation in the FindMarkers() function, with alog, fold change threshold of 0.5 and min.pct of
0.25. Bonferroni correction was used to control for False Discovery Rate (FDR), with a corrected p
value of < 0.05 considered significant.

| dentification of SARS-CoV-2 RNA" cells: Quantification and alignment of cell-associated SARS-
CoV-2 RNA from was performed using the 10x Genomics Cell Ranger pipeling(44). Sample
demultiplexing, alignment, barcode/UMI filtering, and duplicate compression was performed using the
Cell Ranger software package (10x Genomics, CA, v2.1.0) and bcl2fastq2 (Illumina, CA, v2.20)
according to the manufacturer’ s recommendations, using the default settings and mkfastg/count
commands, respectively. The resulting untrimmed (150bp x 150bp) FASTQs were filtered to only
contain reads that did not align to the Macaca mulataa genome using seqfilter and the read annotation
from the Cellranger alignment performed on the trimmed FASTQs performed against the Ensembl
Mmul_10 genome described above. Transcript alignment was performed against a SARS-CoV-2
reference generated using the Cell Ranger mkref command and the SARS-CoV -2 reference genome
(strain USA-WA1/2020) FASTA and the corresponding gene GTF.

Statistical analysis. Differential gene expression analysis of sScRNAseq data was performed using
normalized gene expression counts and the Wilcoxon rank-sum test in the Seurat FindMarkers()
function. A log, fold change threshold for gene expression changes of 0.5 and min.pct of 0.25 was used
for all comparisons, and a Bonferroni correction was used to control for False Discovery Rate (FDR). A
corrected p value of < 0.05 considered significant in conjunction with the additional filters above. All
other statistical analysis was performed using GraphPad Prism 8 Software (GraphPad Software, La
Jolla, CA). A P-value1<J0.05 was considered significant.

LIST OF SUPPLEMENTARY MATERIAL

fig. S1. Relationship between PCR and scRNAseq viral loads, day 2 post challenge

fig. S2. Vira load vsinflammation day 2 post infection

fig. S3: Identification and quantification of BALF cells by sScRNAseq

fig. $4: Identification and quantification of BALF cells by scRNAseq following B.1.3.5.1/beta infection
fig. S5: Identification and quantification of SARS-CoV-2 B.1.351/beta variant RNA" cells
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FIGURE LEGENDS

Fig 1. Identification and quantification of BALF cellsby scRNAseq. A) UMAP projection of BALF
cells captured by scRNAseq analysis. B) Expression of key linage specific genesin al annotated cell
types. C) Frequency of epithelial cell populations. D) Frequency of lymphocyte cell populations. E)
Frequency of dendritic cell populations. F) Frequency of macrophage populations

Fig 2. Transcriptional signaturesof SARS-CoV-2 WA-1 dlicited inflammation. A) Expression of
inflammatory markers and cytokines/chemokines in all annotated cells day 2 post infection. B)
Expression of inflammatory markers and cytokines/chemokinesin all annotated cells day 7 post
infection. C) Inflammatory index scoresin epithelial cells. D) Inflammatory index scores in dendritic
cells. E) Inflammatory index scoresin myeloid cells. F) Inflammatory index scores in lymphocytes

Fig 3. Identification and quantification of SARS-CoV-2 RNA positive cells. A) Location of SARS
CoV-2 RNA positive cells. B) Frequency of SARS-CoV-2 RNA positive cdl. C) Relationship between
BALF RNA load and frequency of SARS-CoV-2 RNA" cells. D) Relationship between NS RNA load
and frequency of SARS-CoV-2 RNA" cells. Spearman correlation.

Fig 4. Viral load vsinflammation day 2 post infection. A) DC Inflammation index score vs BALF
sgRNA (E gene). B) DC Inflammation index score vs Nasal swab sgRNA (E gene). C) DC
Inflammation index score vs SARS-CoV-2 RNA™ cdll fraction. D) Macrophage Inflammation index
score vs BALF sgRNA (E gene). E) Macrophage Inflammation index score vs Nasal swab sgRNA (E
gene). F) Macrophage Inflammation index score vs SARS-CoV-2 RNA™ cell fraction. Spearman
correlation.
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Fig 5. Relationship between antibody titersand SARS-CoV-2 dicited inflammation. A)
Relationship between pre-challenge serum S-specific IgG titers (wk 8 post vaccination) and DC
inflammation on day 2 post challenge. B) Relationship between pre-challenge serum RBD-specific 1gG
titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. C) Relationship between
pre-challenge BALF S-specific IgG titers (wk 6 post vaccination) and DC inflammation on day 2 post
challenge. D) Relationship between pre-challenge serum pseudovirus neut titers titers (wk 8 post
vaccination) and DC inflammation on day 2 post challenge. E) Relationship between pre-challenge
serum live virus FRNT (wk 8 post vaccination) and DC inflammation on day 2 post challenge.
Spearman correlation

Fig 6. Transcriptional signatures of SARS-CoV-2 beta VBM elicited inflammation. A) UMAP
projection of BALF cellsfrom beta VBM challenge. B) Expression of inflammatory markers and
cytokines/chemokinesin all annotated cells day 2 post beta infection. C) Inflammatory index scoresin
epithelial cells. D) Inflammatory index scores in dendritic cells. E) Inflammatory index scoresin
myeloid cells. F) Inflammatory index scores in lymphocytes
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Fig 1. Identification and quantification of BALF cells by scRNAseq. A) UMAP projection of
BALF cells captured by scRNAseq analysis. B) Expression of key linage specific genes in all
annotated cell types. C) Frequency of epithelial cell populations. D) Frequency of lymphocyte cell
populations. E) Frequency of dendritic cell populations. F) Frequency of macrophage populations
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Fig 2. Transcriptional signatures of SARS-CoV-2 WA-1 elicited inflammation. A) Expression
of inflammatory markers and cytokines/chemokines in all annotated cells day 2 post infection. B)
Expression of inflammatory markers and cytokines/chemokines in all annotated cells day 7 post
infection. C) Inflammatory index scores in epithelial cells. D) Inflammatory index scores in
dendritic cells. E) Inflammatory index scores in myeloid cells. F) Inflammatory index scores in
lymphocytes
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Fig 3. Identification and quantification of SARS-CoV-2 RNA positive cells. A) Location of
SARS-CoV-2 RNA positive cells. B) Frequency of SARS-CoV-2 RNA positive cell. C) Relationship
between BALF RNA load and frequency of SARS-CoV-2 RNA* cells. D) Relationship between NS
RNA load and frequency of SARS-CoV-2 RNA™ cells. Spearman correlation.
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Fig 4. Viral load vs inflammation day 2 post infection. A) DC Inflammation index score vs BALF

sgRNA (E gene). B) DC Inflammation index score vs Nasal swab sgRNA (E gene). C) DC

Inflammation index score vs SARS-CoV-2 RNA* cell fraction. D) Macrophage Inflammation index
score vs BALF sgRNA (E gene). E) Macrophage Inflammation index score vs Nasal swab sgRNA (E
gene). F) Macrophage Inflammation index score vs SARS-CoV-2 RNA* cell fraction. Spearman
correlation.
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Fig 5. Relationship between antibody titers and SARS-CoV-2 elicited inflammation. A)
Relationship between pre-challenge serum S-specific IgG titers (wk 8 post vaccination) and DC
inflammation on day 2 post challenge. B) Relationship between pre-challenge serum RBD-specific
IgG titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. C) Relationship
between pre-challenge BALF S-specific IgG titers (wk 6 post vaccination) and DC inflammation on
day 2 post challenge. D) Relationship between pre-challenge serum pseudovirus neut titers titers (wk
8 post vaccination) and DC inflammation on day 2 post challenge. E) Relationship between pre-
challenge serum live virus FRNT (wk 8 post vaccination) and DC inflammation on day 2 post
challenge. Spearman correlation
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Fig 6. Transcriptional signatures of SARS-CoV-2 beta VBM elicited inflammation. A) UMAP
projection of BALF cells from beta VBM challenge. B) Expression of inflammatory markers and
cytokines/chemokines in all annotated cells day 2 post beta infection. C) Inflammatory index scores in
epithelial cells. D) Inflammatory index scores in dendritic cells. E) Inflammatory index scores in
myeloid cells. F) Inflammatory index scores in lymphocytes
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