

1 mRNA-1273 vaccination protects against SARS-CoV-2 elicited lung inflammation in non-human
2 primates
3
4
5

6 **One Sentence Summary:** Single cell RNA sequencing analysis demonstrates that mRNA-1273
7 vaccination limits the development of lower respiratory tract inflammation in SARS-CoV-2 challenged
8 rhesus macaques
9
10

11 Adam T. Waickman^{1,2}, Kaitlin Victor³, Krista Newell¹, Tao Li³, Heather Friberg³, Kathy Foulds⁴, Mario
12 Roederer⁴, Diane L. Bolton^{5, 6}, Jeffrey R. Currier³, Robert Seder⁴
13
14

15
16
17 ¹ Department of Microbiology and Immunology, State University of New York Upstate Medical
18 University, Syracuse, New York, United States of America.
19

20 ² Institute for Global Health and Translational Sciences, State University of New York Upstate Medical
21 University, Syracuse, New York, United States of America
22

23 ³ Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United
24 States of America.
25

26 ⁴ Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH,
27 Bethesda, Maryland, United States of America.
28

29 ⁵ US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring,
30 Maryland, United States of America.
31

32 ⁶ Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United
33 States of America.
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48 **ABSTRACT**

49

50 Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral
51 infection in humans and non-human primates. However, it is less clear that vaccine-induced immunity is
52 able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected
53 bronchoalveolar lavage fluid samples post-SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus
54 macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling
55 revealed a broad cellular landscape 48 hours post-challenge with distinct inflammatory signatures that
56 correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included
57 phagocyte-restricted expression of chemokines such as *CXCL10* (IP10) and *CCL3* (MIP-1A) and the
58 broad expression of interferon-induced genes such as *MX1*, *ISG15*, and *IFIT1*. Induction of these
59 inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner,
60 and negatively correlated with pre-challenge serum and lung antibody titers against SARS-CoV-2 spike.
61 These observations were replicated and validated in a second independent macaque challenge study
62 using the B.1.351/beta-variant of SARS-CoV-2. These data support a model wherein vaccine-elicited
63 antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral
64 dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

INTRODUCTION

95

96 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the causative agent of COVID-19 –
97 has infected at least 250 million individuals and resulted in over 5 million deaths as of November, 2021
98 (1). SARS-CoV-2 infection results in a range of clinical outcomes, from asymptomatic clearance to
99 severe lung pathology with concomitant acute respiratory distress. Almost all morbidity and mortality
100 attributable to SARS-CoV-2 is seen in the minority of patients who develop severe pneumonia requiring
101 mechanical ventilation (2, 3). This has led to speculation that SARS-CoV-2 infection may promote a
102 unique pathophysiology in which dysregulated immune responses to infection in the lower respiratory
103 tract augment the severity of COVID-19. Indeed, examinations of the cellular composition of
104 bronchoalveolar lavage fluid (BALF) from acutely ill COVID-19 patients have revealed a cellular
105 landscape containing both resident cells and infiltrating immune cells displaying a unique and
106 dysregulated inflammatory profile (4). Taken together, these data are consistent with a model wherein
107 SARS-CoV-2 infected cells engage in a positive feedback loop with infiltrating immune cells to
108 potentiate persistent alveolar inflammation and pathology (5). An effective vaccine would then be
109 expected to impede the initiation of this, or a similar, pathological feedback loop thereby limiting lower
110 airway disease.

111

112 Single cell RNA sequencing (scRNAseq) is a highly sensitive tool for analyzing the spectrum of SARS-
113 CoV-2 elicited inflammation and the impact of vaccine-mediated immunity. The use of this approach to
114 examine human BALF and PBMC samples has already identified several populations of immune cells
115 likely implicated in inflammation-driven immunopathology and vaccine-mediated protection, as well as
116 those likely to contain SARS-CoV-2 genetic material (5-10). Studies of human PBMC using scRNAseq
117 have demonstrated a dysregulated response in both innate and adaptive immune cells in severe disease
118 (11), evidence of emergency myelopoiesis cell and neutrophil dysregulation in severe disease (6), and an
119 up-regulation of the TNF/IL-1 β -driven inflammatory response as compared to influenza in classical
120 monocytes (12). The unifying theme of these studies is that in severe COVID-19, compared to mild
121 disease or asymptomatic infection, there is a profound and dysregulated type I interferon response across
122 many lymphoid and myeloid origin cells (13). This response is accompanied by hyper-inflammation,
123 evidence of cellular proliferation, and defective antigen-presentation and interferon responsiveness in
124 classical monocytes.

125

126 Animal models have recapitulated many key aspects of the inflammatory response observed in the
127 human lung, such as viral shedding, cellular infiltration profiles and cellular inflammatory profiles at the
128 transcriptional level (14, 15). These models provide the critical ability to control dose and exposure
129 variables that present a fundamental barrier to the accurate interpretation of human studies. Additionally,
130 rhesus macaques (*Macaca mulatta*) represent a clinically relevant model for assessing lung tissue
131 pathology and temporal analysis of SARS-CoV-2 elicited inflammation, and are the preclinical gold
132 standard for assessing SARS-CoV-2 vaccine efficacy (16-22). Treatment of rhesus macaques with a
133 clinically-approved JAK1/JAK2 inhibitor resulted in reduced lung inflammation and pathology,
134 corresponding with attenuated infiltration of inflammatory immune cells and NETosis (15). These
135 outcomes were associated with suppression of neutrophil recruitment and production of cytokines and
136 chemokines by inflammatory macrophages, despite comparable type I IFN responses. Similarly,
137 responses to SARS-CoV-2 in ferrets revealed a shift in BALF macrophage gene expression signatures
138 toward a pro-inflammatory phenotype during early infection (12), underscoring the critical need to
139 understand the cellular complexities of SARS-CoV-2 elicited inflammation.

140
141 mRNA-based vaccine platforms – such as Moderna’s mRNA-1273 and Pfizer/BioNTech’s BNT162b2 –
142 which encode a stabilized version of the SARS-CoV-2 spike glycoprotein (23) show >90% efficacy
143 against symptomatic COVID-19 in initial Phase 3 analyses and in large-scale prospective studies
144 performed after their global rollout (24, 25). However, the efficacy of these vaccines against severe
145 lower airway disease wanes over time after the initial prime and boost (26-28). Pre-clinical and clinical
146 studies have strongly suggested that vaccine-elicited serum levels of SARS-CoV-2 neutralizing antibody
147 titers are a mechanistic immune correlate of vaccine efficacy (29, 30). Despite the abundance of clinical
148 and pre-clinical efficacy data for these mRNA-based vaccine platforms, there is little prospective
149 information currently available on how these vaccines impact SARS-CoV-2-elicited inflammation in the
150 lower respiratory tract with any degree of spatial or temporal resolution.
151

152 In this study we sought to understand the impact of mRNA-1273 vaccination on the cellular
153 inflammatory response to SARS-CoV-2 infection in the lower respiratory tract of nonhuman primates
154 (NHPs,) and whether vaccination is capable of breaking the inflammatory feedback loop that
155 characterizes severe COVID-19. We used scRNAseq to analyze BALF cells from rhesus macaques
156 challenged with SARS-CoV-2 strain USA-WA1/2020 after vaccination with two doses of 30 μ g or 1 μ g
157 of mRNA-1273 or PBS. mRNA-1273 vaccination limited SARS-CoV-2 elicited inflammation in the
158 lower respiratory tract as defined by the expression of pro-inflammatory chemokines and cytokines in
159 multiple cell types, as well as the broad reduction in expression of interferon gene products such as
160 *MX1*, *ISG15*, and *IFIT1*. Additionally, SARS-CoV-2 elicited inflammation was directly associated with
161 post-challenge viral titers and inversely associated with pre-challenge antibody levels in unvaccinated
162 and mRNA-1273 vaccinated animals. The ability of mRNA-1273 to limit SARS-CoV-2 elicited
163 inflammation in the lower respiratory tract was independently verified using the antigenically disparate
164 B.1.351/beta variant. Collectively, these results demonstrate that vaccination with mRNA-1273 not only
165 limits SARS-CoV-2 viral replication, but restricts inflammation in NHPs. Additionally, these data
166 support a model wherein neutralizing antibody at the site of virus inoculation reduces the viral burden,
167 constraining upper respiratory tract viral replication and secondary viral dissemination to the lower
168 respiratory tract and infection-associated inflammation.
169

170 **RESULTS**

171

172 **Frequency of BALF resident cells following SARS-CoV-2 challenge.** It has previously been
173 demonstrated that vaccination of macaques with mRNA-1273 results in robust serum antibody responses
174 and high-level protection from subsequent SARS-CoV-2 challenge in a dose-dependent fashion (19, 29).
175 To extend these observations and to assess the impact of vaccination on SARS-CoV-2 elicited
176 inflammation in the lower respiratory tract, we performed scRNAseq analysis of fresh BALF obtained
177 on days 2 and 7 post SARS-CoV-2 challenge in animals which previously received either 30 μ g (n=4) or
178 1 μ g (n=6) of mRNA-1273 in a prime-boost series administered four weeks apart. Control animals
179 received PBS (n=6). All animals were challenged intranasally/intratracheally (IN/IT) with 8×10^5 PFU of
180 SARS-CoV-2 (strain USA-WA1/2020) four weeks after the last vaccine dose. In addition, BALF cells
181 were analyzed from naïve uninfected animals to serve as controls.
182

183 scRNAseq was used to classify and quantify the cell composition and dynamics within the BALF post-
184 challenge. A total of 65,226 viable and high quality BALF cells from all animals were recovered after
185 filtering and quality control steps (**Fig. 1A, 1B**). Of note, epithelial cells (**Fig. 1C**), lymphocytes (**Fig.**

186 **1D**), dendritic cells (**Fig. 1E**) and macrophages (**Fig. 1F**) were identified in all time points from all
187 animals. Alveolar macrophages were further separated into either MARCO⁻ or MARCO⁺ populations,
188 corresponding to interstitial and tissue-resident alveolar macrophages, respectively (14, 31). Following
189 SARS-CoV-2 challenge, CD4⁺ and CD8⁺ T cells increased in frequency between days 2 and 7 post-
190 challenge in unvaccinated animals. Several DC populations also trended higher among unvaccinated
191 infected animals at one or more time points relative to uninfected controls. No significant changes were
192 observed in the frequency of epithelial cell or macrophage populations.
193

194 **Inflammatory signatures of SARS-CoV-2 infection.** To assess the inflammatory response elicited by
195 SARS-CoV-2 challenge in naïve and mRNA-1273 vaccinated animals, the expression of inflammatory
196 markers, chemokines, and cytokines was assessed in each annotated BALF cell type on days 2 and 7
197 post challenge. An inflammatory response to infection – as indicated by the expression of genes such as
198 *MX1*, *ISG15*, and *IFIT1* – was observed across all cell types in the unvaccinated infected animals on day
199 2 post SARS-CoV-2 challenge. (**Fig. 2A**). Expression of these markers decreased in a dose-dependent
200 fashion in animals vaccinated with 1 µg or 30 µg of mRNA-1273. These transcriptional signatures of
201 acute viral infection resolved in most cell types by day 7 post infection, with the exception of lingering
202 *MX1/MX2* expression in some populations of macrophages and DCs (**Fig. 2B**). Migratory DCs and
203 MARCO⁻ macrophages responded to SARS-CoV-2 challenge in unvaccinated animals by expressing
204 chemokines such as *CXCL10* (IP10) and *CCL3* (MIP-1A), both of which were previously identified in the
205 context of acute SARS-CoV-2 infection in humans (4). In addition, elevated expression of cytotoxic
206 factors *GZMA* and *PRF1* was observed in CD8⁺ T cells following SARS-CoV-2 challenge on day 2 and
207 maintained 7 days post challenge. Notably, the expression of these pro-inflammatory chemokines and
208 chemokines was dramatically suppressed in vaccinated animals in a dose-dependent manner across all
209 time points.
210

211 To reduce the complexity of the data and provide more direct insight into the dynamics of SARS-CoV-2
212 elicited inflammation, we defined a transcriptional “inflammation index” which could be used to
213 quantify the level of enrichment for inflammatory gene products in a given sample and cell type. This
214 index was developed by selecting 8 genes (*MX1*, *MX2*, *IFIT1*, *IFIT2*, *IFIT3*, *IFI6*, *ISG15*, and *ISG20*)
215 that were 1) previously known to be regulated at a transcriptional level by viral infection and/or
216 interferon stimulation, 2) highly induced in our dataset following SARS-CoV-2 challenge, and 3)
217 consistently observed in all cell types captured in our analysis. Using this reductionist approach, we
218 observed a dose-dependent suppression of SARS-CoV-2 elicited inflammation in epithelial cells
219 (pneumocytes, club cells), myeloid cells (MARCO⁺ macrophages, MARCO⁻ macrophages, mast cells),
220 dendritic cells (cDC.1, cDC.2, pDC, Mig DC), and lymphocytes (B cells, CD8⁺ T cells, CD4⁺ T cells)
221 with increasing mRNA vaccination dose (**Fig. 2C-F**). Furthermore, inflammation in animals that
222 received the full dose of vaccine was nearly equivalent to that of the unchallenged control animals in all
223 cell types assessed. Inflammation returned to baseline in all groups by day 7 post vaccination. These
224 results establish a single metric for quantifying the transient inflammatory transcriptional response
225 elicited following SARS-CoV-2 infection across multiple cell populations using scRNAseq, and by
226 extension provide a measurement of the site-specific host-response to the virus.
227

228 **Cell-associated viral RNA burden following SARS-CoV-2 infection.** Having defined the impact of
229 mRNA-1273 vaccination on SARS-CoV-2 associated inflammation in the lower respiratory tract of
230 macaques, we next attempted to quantify the cell-associated SARS-CoV-2 viral RNA burden by
231 aligning scRNAseq reads that failed to align to the macaque genome against the SARS-CoV-2 USA-

232 WA1/2020 reference genome. BALF contained widespread SARS-CoV-2 RNA⁺ cells on day 2 in
233 unvaccinated animals (**Fig. 3A, 3B**). SARS-CoV-2 RNA⁺ positive cells were seen in all annotated cell
234 types with the exception of mast cells in unvaccinated animals, although the greatest number of viral
235 RNA⁺ cells were found in the MARCO⁻ macrophage cluster. Similar to the inflammation index, the
236 frequency of viral RNA⁺ cells was suppressed by vaccination in a dose-dependent fashion and mostly
237 resolved by day 7 post infection. The frequency of viral RNA⁺ cells in the BALF on day 2 correlated
238 well with contemporaneous viral subgenomic RNA (sgRNA) load in the BALF as quantified by PCR of
239 the E and N gene (**Fig. 3C, fig. S1**). Notably, the correlation between the frequency of viral RNA⁺ cells
240 in the BALF was weaker with the upper respiratory tract (nasopharyngeal swab) sgRNA loads (**Fig. 3D,**
241 **fig. S1**). These results show that SARS-CoV-2 viral burden in lung cells is abrogated by mRNA
242 vaccination and is consistent with reduced soluble viral RNA measures in BALF.
243

244 **Relationship between SARS-CoV-2 RNA load and cell type-specific inflammation.** To examine the
245 relationship between the observed dose-dependent reduction in SARS-CoV-2 viral burden and
246 inflammation in the BALF of mRNA-1273 vaccinated animals after SARS-CoV-2 challenge, we
247 compared viral RNA measures to cellular inflammatory responses. Strikingly, cell-free SARS-CoV-2
248 RNA load positively correlated with the previously defined inflammation index score of both BALF
249 dendritic and myeloid cell compartment on day 2 post infection across all study groups (**Fig. 4A, Fig.**
250 **4D, fig. S2**). However, nasal swab viral RNA load poorly correlated with dendritic cell inflammation,
251 and correlated only weakly with myeloid inflammation (**Fig. 4B, Fig. 4E, fig. S2**). Cell-associated viral
252 RNA loads in the BALF also correlated with the inflammation score for both dendritic and myeloid
253 compartments (**Fig. 4C, Fig. 4F**). These results demonstrate that viral burden in the BALF, but not nasal
254 environment, correlates with the amount of lower respiratory tract inflammation following SARS-CoV-2
255 challenge.
256

257 **Pre-challenge immune profiles predict lung inflammation following SARS-CoV-2 challenge.**
258 SARS-CoV-2-specific antibody titers have been implicated in mRNA vaccination-mediated protection
259 from SARS-CoV-2 infection in both humans and NHPs (29, 30, 32), but the relationship between
260 specific antibody titers and lower respiratory tract inflammation is not clear. To this end, we
261 incorporated previously published data (29) on serum levels of full-length spike protein and receptor-
262 binding domain (RBD)-specific titers IgG present immediately before SARS-CoV-2 challenge in these
263 animals into our analysis. Pre-challenge (8 week post initial vaccine dose) serum titers of both spike-
264 and RBD-specific IgG were negatively correlated with dendritic cell inflammation scores in the lower
265 respiratory tract 2 days post SARS-CoV-2 challenge across all study groups (**Fig. 5A to B**). This
266 relationship was also observed with pre-challenge spike-specific IgG titers in the BALF (**Fig. 5C**).
267 Furthermore, serum neutralizing antibody responses assessed by both pseudovirus and live-virus
268 neutralization assays were also associated with reduced DC inflammatory responses (**Fig. 5D to E**).
269 These data suggest that SARS-CoV-2 specific antibody titers in mRNA-1273 vaccinated macaques
270 function as a powerful predictor of SARS-CoV-2 elicited inflammation in the lower respiratory tract.
271

272 **Impact of mRNA-1273 vaccination on inflammation elicited by SARS-CoV-2 B.1.351/beta variant.**
273 Having established the lower respiratory tract profile associated with SARS-CoV-2 USA-WA1/2020
274 infection – and how prior mRNA-1273 immunization blunts infection-attendant inflammation in this
275 macaque model – we sought to expand and validate our observations in an independent experiment
276 using a SARS-CoV-2 variant challenge. We again utilized scRNASeq to analyze BALF resident cells
277 isolated on day 2 post challenge with the SARS-CoV-2 B.1.351/beta variant in naïve animals, or animals

278 vaccinated twice with 30 μ g of mRNA-1273. The same populations of BALF resident cells identified
279 following WA-1 challenge were observed following B.1.351/beta challenge (**Fig. 6A, fig. S3**). However,
280 unlike USA-WA1/2020 challenge, infection with B.1.351/beta resulted in a significant perturbation in
281 the abundance of multiple cell types including pDCs and migratory DCs (**fig. S4**). These changes in
282 cellularity were not observed in mRNA-1273 vaccinated animals, and the production of chemokines,
283 cytokines, and cytolytic factors were again suppressed in vaccinated animals relative to their
284 unvaccinated counterparts (**Fig. 6B**). Vaccination with mRNA-1273 also suppressed SARS-CoV-2
285 associated inflammation observed in epithelial cells (**Fig. 6C**), dendritic cells (**Fig. 6D**), myeloid cells
286 (**Fig. 6E**), and lymphocytes (**Fig. 6F**). The frequency of SARS-CoV-2 RNA positive cells in BALF was
287 also reduced by mRNA-1273 vaccination, with the greatest number of viral RNA⁺ cells again found in
288 the MARCO⁻ macrophage cluster (**fig. S5**). In their totality, these results indicate that vaccination with
289 mRNA-1273 is capable of limiting lower airway inflammation in macaques following challenge with
290 multiple antigenically and evolutionarily divergent strains of SARS-CoV-2.
291

292 **DISCUSSION**

293

294 In this study we sought to provide functional and mechanistic insight into the properties of mRNA-1273
295 elicited protection from SARS-CoV-2 challenge in a widely used nonhuman primate model of mild to
296 moderate COVID-19 disease. While immune correlates of protection from symptomatic SARS-CoV-2
297 infection are currently being assessed and defined in both clinical and pre-clinical studies, there is a
298 more limited information on the impact of vaccine-elicited immunity on SARS-CoV-2 induced
299 inflammation in the lungs at the single cell level. Here, we utilized scRNAseq technology to analyze
300 BALF cells from mRNA-1273 vaccinated animals that were subsequently challenged with SARS-CoV-
301 2 to define the transcriptional signatures of infection and to ascertain how this inflammatory response is
302 modulated by vaccine-elicited adaptive immune responses in a dose-dependent fashion. SARS-CoV-2
303 infection induced a robust inflammatory response in all unvaccinated animals that was suppressed in a
304 dose-dependent fashion by mRNA-1273 vaccination. Notably, migratory DCs and MARCO⁻
305 macrophages appeared to be the most responsive cell types in the lower respiratory tract to SARS-CoV-
306 2 infection, as indicated by chemokine and cytokine production. Cell-associated SARS-CoV-2 viral
307 RNA was readily detected in the BALF of unvaccinated animals, restricted by mRNA-1273 vaccination,
308 and correlated with dendritic and myeloid cell inflammation.
309

310 It was previously established that S-specific antibody responses elicited by mRNA-1273 vaccination
311 correlates with upper and lower airway control of SARS-CoV-2 replication in macaques after challenge
312 (29). Here we further demonstrate, in these same animals, that the pre-challenge antibody profile,
313 including titers of binding and neutralizing antibody, predicted and inversely correlated with the
314 inflammatory profile within the lung across multiple cell types. The high degree of correlation between
315 pre-challenge antibody titers, post-challenge viral loads, and post-challenge inflammation suggests a
316 model of mRNA-1273-mediated protection from SARS-CoV-2 challenge in nonhuman primates.
317 Namely, neutralizing antibody levels determine the burden of viral replication, and the amount of virus
318 persisting in the upper respiratory tract drives secondary viral dissemination to the lower respiratory
319 tract and infection-attendant inflammation. The absence of inflammation and viral RNA in the lower
320 respiratory tract of SARS-CoV-2 challenged animals just 2 days post infection supports the high level of
321 efficacy of mRNA vaccination against lower respiratory infection and pathology.
322

323 Examination of human BALF from mild and severe COVID-19 patients has been used to distinguish an
324 inflammatory signature associated with severity. This signature includes expression of genes for
325 chemokine production, proinflammatory cytokines, and activated phenotypic markers within resident
326 and infiltrating cells (5-10). Several studies have described the potential role of neutrophils and NETosis
327 in local lung pathology, as well as shifts in monocyte and macrophage populations toward an
328 inflammatory phenotype (5-7, 9, 10). Reinforcing the critical role of type I interferon in the antiviral
329 response, many studies have also identified strong type I IFN signatures in single immune cells from
330 COVID-19 patients, although the relationship of this cytokine profile and disease severity is still
331 uncertain (12, 33). Accordingly, our observation of stronger correlation between BALF inflammatory
332 immune cell gene signatures and BALF viral burden than that of nasopharyngeal swabs suggests that
333 inflammation-driven lung pathology is directly influenced by local viral replication. However, given the
334 migratory nature of these cell populations and the relatively low abundance of viral RNA in the lower
335 respiratory tract, the possibility that these cells were stimulated by viral ligands at other anatomical sites
336 cannot be discounted. Furthermore, the cells that were found to be positive for SARS-CoV-2 RNA
337 represented a range of cell types. Although the range of cell types expressing ACE2 and therefore
338 permissive to viral entry is wide (34), these populations may not represent bona fide productively-
339 infected cells. Rather, cells may acquire viral RNA through phagocytic mechanisms, for example.
340 Despite these potential caveats, our findings were validated by challenge of animals with the SARS-
341 CoV-2 B.1.351/beta variant, wherein mRNA-1273 vaccination also prevented infection-induced lung
342 inflammation.
343

344 There are some limitations of this study to consider. First, the relatively transient and self-limiting nature
345 of SARS-CoV-2 infection and infection-elicited inflammation in macaques makes it difficult to place
346 these observations into context of human disease. Many of the pathways, cell types, transcriptional
347 signatures, and correlates of protection identified in our analysis have also been defined in humans with
348 acute COVID-19, but the magnitude and timing of the events may not be homologous. Second, the route
349 of virus administration has been shown to influence infection and inflammation in other models of
350 SARS-CoV-2 challenge (35), so that the IN/IT route of infection used in this study may result in subtly
351 different features of infection and inflammation than aerosol-mediated infection.
352

353 In conclusion, this study defines the lower respiratory tract cellular and transcriptional signature
354 associated with SARS-CoV-2 infection in macaques using two distinct viral variants, and identifies
355 conserved signatures of vaccine-elicited protection from infection-attendant inflammation. These data
356 emphasize the contribution of inflammatory/migratory DCs and macrophages to lower respiratory tract
357 inflammation following SARS-CoV-2 infection, and define a critical relationship between antibody
358 titers, post-challenge viral burden, and broad infection-elicited inflammation.
359

360 **MATERIALS AND METHODS**

361 **Vaccine formulation:** mRNA encoding a sequence-optimized and prefusion-stabilized SARS-CoV-2 S-
362 2P protein (36, 37) was synthesized in vitro and formulated as previously reported (19, 38, 39).
363

364 **Rhesus macaque vaccination model:** 3- to 8-year-old rhesus macaques of Indian origin were sorted by
365 sex, age and weight and then stratified into groups as previously described (29, 30). Animals were
366 immunized intramuscularly at week 0 and at week 4 with 1 µg or 30 µg of mRNA-1273 in 1 mL of PBS
367 into the right hindleg. Placebo-control animals were administered an equal volume of PBS. Animal
368

369 experiments were performed in compliance with all pertinent National Institutes of Health regulations
370 and approval from the Animal Care and Use Committees of the Vaccine Research Center and Bioqual
371 Inc. (Rockville, MD). Research was conducted under an approved animal use protocol in an AAALAC
372 accredited facility in compliance with the Animal Welfare Act and other federal statutes and regulations
373 relating to animals and experiments involving animals and adheres to principles stated in the Guide for
374 the Care and Use of Laboratory Animals, NRC Publication, 2011 edition. Studies were conducted at
375 Bioqual Inc. Post-vaccination antibody titers generated as previously described (29, 38, 40-43), and
376 previously reported by Corbett *et al.* (29).
377

378 **USA-WA1/2020 challenge:** At week 8 post initial vaccination (4 weeks after boost), all animals were
379 challenged with a total dose of 8×10^5 PFUs of SARS-CoV-2 as previously described (29). The stock of
380 1.99×10^6 TCID₅₀ or 3×10^6 PFU/mL SARS-CoV-2 USA-WA1/2020 strain (BEI: NR-70038893) was
381 diluted and administered in 3-mL doses by the intratracheal route and in 1-mL doses by the intranasal
382 route (0.5 mL per nostril). Post-challenge SARS-CoV-2 sgRNA burden in nasal swabs and BAL were
383 determined as previously described (19, 29), and previously reported by Corbett *et al.* (29).
384

385 **B.1.351 challenge:** At week 8 post initial vaccination (4 weeks after boost) NHPs were challenged with
386 a total dose of 5×10^5 PFU of SARS-CoV-2 B.1.351 strain as previously described (30). The viral
387 inoculum was administered as 3.75×10^5 PFU in 3 mL intratracheally (IT) and 1.25×10^5 PFU in 1 mL
388 intranasally (IN) in a volume of 0.5 mL into each nostril.
389

390 **scRNAseq library generation:** Freshly isolated BALF suspensions were prepared for single-cell RNA
391 sequencing using the Chromium Single-Cell 5' Reagent v2 kit or NextGEM v1.0 kit and the Chromium
392 Single-Cell Controller (10x Genomics, CA) (44). 2000–8000 cells per reaction suspended at a density of
393 50–500 cells/ μ L in PBS plus 0.5% FBS were loaded for gel bead-in-emulsion (GEM) generation and
394 barcoding. Reverse transcription, RT-cleanup, and cDNA amplification were performed to isolate and
395 amplify cDNA for downstream library construction according to the manufacturer's protocol. Libraries
396 were constructed using the Chromium Single-Cell 5' reagent kit and i7 Multiplex Kit (10x Genomics,
397 CA) according to the manufacturer's protocol.
398

399 **Sequencing:** scRNAseq 5' gene expression libraries were sequenced on an Illumina NovaSeq 6000
400 instrument using the S1, S2, or S4 reagent kits (300 cycles). Libraries were balanced to allow for
401 ~150,000 reads/cell for 5' gene expression libraries. Sequencing parameters were set for 150 cycles for
402 Read1, 8 cycles for Index1, and 150 cycles for Read2. Prior to sequencing, library quality and
403 concentration were assessed using an Agilent 4200 TapeStation with High Sensitivity D5000
404 ScreenTape Assay and Qubit Fluorometer (Thermo Fisher Scientific) with dsDNA BR assay kit
405 according to the manufacturer's recommendations.
406

407 **scRNAseq gene expression analysis/visualization:** 5' gene expression alignment from all BALF
408 samples was performed using the 10x Genomics Cell Ranger pipeline (44). Sample demultiplexing,
409 alignment, barcode/UMI filtering, and duplicate compression was performed using the Cell Ranger
410 software package (10x Genomics, CA, v2.1.0) and bcl2fastq2 (Illumina, CA, v2.20) according to the
411 manufacturer's recommendations, using the default settings and mkfastq/count commands, respectively.
412 All reads were trimmed to 26bp x 98bp for gene expression analysis. Transcript alignment was
413 performed against a *Macaca mulataa* reference library generated using the Cell Ranger mkref command,
414 the Ensembl Mmul_10 top-level genome FASTA, and the corresponding Ensembl v100 gene GTF.

415
416 Multi-sample integration, data normalization, dimensional reduction, visualization, and differential gene
417 expression were performed using the R package Seurat (v4.0.0) (45, 46). All datasets were filtered to
418 only contain cells with between 200–5,000 unique features and <12.5% mitochondrial RNA gene
419 content (defined as expression of the following mitochondrial gene products: *ND1*, *ND2*, *COX1*, *COX2*,
420 *ATP8*, *ATP6*, *COX3*, *ND3*, *ND4L*, *ND4*, *ND5*, and *CYTB*). To eliminate erythrocyte contamination,
421 datasets were additionally filtered to contain cells with less than a 10% erythrocytic gene signature
422 (defined as HBA and HBB). Data were scaled, normalized, and transformed prior to multi-sample
423 integration using the negative binomial regression model of the Seurat *SCTransform()* function,
424 additionally regressing-out the contribution of imputed cell cycle to the normalized dataset (47).
425 *SelectIntegrationFeatures()* and *PrepSCTIntegration()* functions were used to identify conserved features
426 for dataset integration, and final dataset anchoring/integration were performed using
427 *FindIntegrationAnchors()* and *IntegrateData()* functions, with the day 2, 30 μ g vaccine samples used as
428 reference datasets. PCA was performed using variable genes defined by *SCTransform()*.
429
430 For the USA-WA1/2020 dataset, the first 40 resultant PCs were initially used to perform a UMAP
431 dimensional reduction of the dataset (*RunUMAP()*) and to construct a shared nearest neighbor graph
432 (SNN; *FindNeighbors()*). This SNN was used to cluster the dataset (*FindClusters()*) with default
433 parameters and resolution set to 0.7. From this initial clustering a population of low-viability cells was
434 identified and removed from the analysis, after which the dataset PCA was re-run and the first 35
435 resultant PCs were used to perform a UMAP dimensional reduction of the dataset (*RunUMAP()*) and to
436 construct a shared nearest neighbor graph (SNN; *FindNeighbors()*). This SNN was used to cluster the
437 dataset (*FindClusters()*) with default parameters and resolution set to 1.5. The resultant clusters were
438 assigned to following cell types based on the expression of the indicated gene products: club cell
439 (*SCGB1A1*, *SCGB3A1*), pneumocyte (*PIFO*, *SNTN*, *FOXJ1*), MARCO⁻ mac (*MRC1*, *APOE*), MARCO⁺
440 mac (*MRC1*, *APOE*, *MARCO*), cDC.1 (*CLEC9A*, *XR1*), cDC.2 (*CD1C*, *CLEC10A*), pDC (*GZMB*,
441 *IRF7*), MigDC (*CCR7*, *BIRC3*), Mast cell (*CPA3*, *GATA2*), CD4⁺ T cell (*CD3E*, *CD40LG*), CD8⁺ T cell
442 (*CD3E*, *CD8A*), and B cells (*CD19*, *MS4A1*).
443
444 For the B.1.351/beta dataset, the first 31 resultant PCs were initially used to perform a UMAP
445 dimensional reduction of the dataset (*RunUMAP()*) and to construct a shared nearest neighbor graph
446 (SNN; *FindNeighbors()*). This SNN was used to cluster the dataset (*FindClusters()*) with default
447 parameters and resolution set to 1.7. From this initial clustering a population of low-viability cells was
448 identified and removed from the analysis, after which the dataset PCA was re-run and the first 31
449 resultant PCs were used to perform a UMAP dimensional reduction of the dataset (*RunUMAP()*) and to
450 construct a shared nearest neighbor graph (SNN; *FindNeighbors()*). This SNN was used to cluster the
451 dataset (*FindClusters()*) with default parameters and resolution set to 1.7. The resultant clusters were
452 assigned to following cell types based on the expression of the indicated gene products: club cell
453 (*SCGB1A1*, *SCGB3A1*), pneumocyte (*PIFO*, *SNTN*, *FOXJ1*), MARCO⁻ mac (*MRC1*, *APOE*), MARCO⁺
454 mac (*MRC1*, *APOE*, *MARCO*), cDC.1 (*CLEC9A*, *XR1*), cDC.2 (*CD1C*, *CLEC10A*), pDC (*GZMB*,
455 *IRF7*), MigDC (*CCR7*, *BIRC3*), Mast cell (*CPA3*, *GATA2*), CD4⁺ T cell (*CD3E*, *CD40LG*), CD8⁺ T cell
456 (*CD3E*, *CD8A*), and B cells (*CD19*, *MS4A1*).
457
458 Following dataset integration and dimensional reduction/clustering, gene expression data was log
459 transformed and scaled by a factor of 10,000 using the *NormalizeData()* function. This normalized gene
460 expression data was used to determine cellular cluster identity by utilizing the Seurat application of a

461 Wilcoxon rank-sum test (FindAllMarkers()), and comparing the resulting differential expression data to
462 known cell-lineage specific gene sets. Differential gene expression analysis between study time points
463 was performed using normalized gene expression data and the Wilcoxon rank-sum test with
464 implementation in the FindMarkers() function, with a \log_2 fold change threshold of 0.5 and min.pct of
465 0.25. Bonferroni correction was used to control for False Discovery Rate (FDR), with a corrected p
466 value of < 0.05 considered significant.
467

468 **Identification of SARS-CoV-2 RNA⁺ cells:** Quantification and alignment of cell-associated SARS-
469 CoV-2 RNA from was performed using the 10x Genomics Cell Ranger pipeline(44). Sample
470 demultiplexing, alignment, barcode/UMI filtering, and duplicate compression was performed using the
471 Cell Ranger software package (10 \times Genomics, CA, v2.1.0) and bcl2fastq2 (Illumina, CA, v2.20)
472 according to the manufacturer's recommendations, using the default settings and mkfastq/count
473 commands, respectively. The resulting untrimmed (150bp x 150bp) FASTQs were filtered to only
474 contain reads that did not align to the *Macaca mulataa* genome using seqfilter and the read annotation
475 from the Cellranger alignment performed on the trimmed FASTQs performed against the Ensembl
476 Mmul_10 genome described above. Transcript alignment was performed against a SARS-CoV-2
477 reference generated using the Cell Ranger mkref command and the SARS-CoV-2 reference genome
478 (strain USA-WA1/2020) FASTA and the corresponding gene GTF.
479

480 **Statistical analysis:** Differential gene expression analysis of scRNAseq data was performed using
481 normalized gene expression counts and the Wilcoxon rank-sum test in the Seurat FindMarkers()
482 function. A \log_2 fold change threshold for gene expression changes of 0.5 and min.pct of 0.25 was used
483 for all comparisons, and a Bonferroni correction was used to control for False Discovery Rate (FDR). A
484 corrected p value of < 0.05 considered significant in conjunction with the additional filters above. All
485 other statistical analysis was performed using GraphPad Prism 8 Software (GraphPad Software, La
486 Jolla, CA). A P-value < 0.05 was considered significant.
487

488 LIST OF SUPPLEMENTARY MATERIAL

489
490 **fig. S1.** Relationship between PCR and scRNAseq viral loads, day 2 post challenge
491 **fig. S2.** Viral load vs inflammation day 2 post infection
492 **fig. S3:** Identification and quantification of BALF cells by scRNAseq
493 **fig. S4:** Identification and quantification of BALF cells by scRNAseq following B.1.3.5.1/beta infection
494 **fig. S5:** Identification and quantification of SARS-CoV-2 B.1.351/beta variant RNA⁺ cells
495

496 REFERENCES

- 497
498 1. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. *Lancet Infect Dis* **20**, 533-534 (2020).
499
500 2. S. Richardson *et al.*, Presenting Characteristics, Comorbidities, and Outcomes Among 5700
501 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA* **323**, 2052-2059 (2020).
502
503 3. S. Gupta *et al.*, Factors Associated With Death in Critically Ill Patients With Coronavirus Disease
504 2019 in the US. *JAMA Intern Med* **180**, 1436-1447 (2020).
505 4. R. L. Chua *et al.*, COVID-19 severity correlates with airway epithelium-immune cell interactions
identified by single-cell analysis. *Nat Biotechnol* **38**, 970-979 (2020).

- 506 5. R. A. Grant *et al.*, Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. *Nature* **590**, 635-641 (2021).
- 507 6. J. Schulte-Schrepping *et al.*, Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell
509 Compartment. *Cell* **182**, 1419-1440 e1423 (2020).
- 510 7. A. J. Wilk *et al.*, A single-cell atlas of the peripheral immune response in patients with severe
511 COVID-19. *Nat Med* **26**, 1070-1076 (2020).
- 512 8. W. Wen *et al.*, Immune cell profiling of COVID-19 patients in the recovery stage by single-cell
513 sequencing. *Cell Discov* **6**, 31 (2020).
- 514 9. A. Silvin *et al.*, Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe
515 from Mild COVID-19. *Cell* **182**, 1401-1418 e1418 (2020).
- 516 10. H. Chen *et al.*, SARS-CoV-2 activates lung epithelial cell proinflammatory signaling and leads to
517 immune dysregulation in COVID-19 patients. *EBioMedicine* **70**, 103500 (2021).
- 518 11. C. Yao *et al.*, Cell-Type-Specific Immune Dysregulation in Severely Ill COVID-19 Patients. *Cell Rep*
519 **34**, 108590 (2021).
- 520 12. J. S. Lee *et al.*, Immunophenotyping of COVID-19 and influenza highlights the role of type I
521 interferons in development of severe COVID-19. *Sci Immunol* **5**, (2020).
- 522 13. L. R. Wong, S. Perlman, Immune dysregulation and immunopathology induced by SARS-CoV-2
523 and related coronaviruses - are we our own worst enemy? *Nat Rev Immunol*, (2021).
- 524 14. E. Speranza *et al.*, Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of
525 African green monkeys. *Sci Transl Med* **13**, (2021).
- 526 15. T. N. Hoang *et al.*, Baricitinib treatment resolves lower-airway macrophage inflammation and
527 neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. *Cell* **184**, 460-475 e421
528 (2021).
- 529 16. P. J. Klasse, D. F. Nixon, J. P. Moore, Immunogenicity of clinically relevant SARS-CoV-2 vaccines
530 in nonhuman primates and humans. *Sci Adv* **7**, (2021).
- 531 17. J. Yu *et al.*, DNA vaccine protection against SARS-CoV-2 in rhesus macaques. *Science* **369**, 806-
532 811 (2020).
- 533 18. N. B. Mercado *et al.*, Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.
534 *Nature* **586**, 583-588 (2020).
- 535 19. K. S. Corbett *et al.*, Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman
536 Primates. *N Engl J Med* **383**, 1544-1555 (2020).
- 537 20. V. J. Munster *et al.*, Respiratory disease in rhesus macaques inoculated with SARS-CoV-2.
538 *Nature* **585**, 268-272 (2020).
- 539 21. H. A. D. King *et al.*, Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain
540 nanoparticle vaccine in macaques. *Proc Natl Acad Sci U S A* **118**, (2021).
- 541 22. M. G. Joyce *et al.*, A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune
542 responses in nonhuman primates. *Sci Transl Med*, eabi5735 (2021).
- 543 23. J. S. Tregoning, K. E. Flight, S. L. Higham, Z. Wang, B. F. Pierce, Progress of the COVID-19 vaccine
544 effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. *Nat Rev
545 Immunol* **21**, 626-636 (2021).
- 546 24. F. P. Polack *et al.*, Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med*
547 **383**, 2603-2615 (2020).
- 548 25. L. R. Baden *et al.*, Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *N Engl J Med* **384**,
549 403-416 (2021).

- 550 26. Y. Goldberg *et al.*, Waning Immunity after the BNT162b2 Vaccine in Israel. *N Engl J Med* **385**,
551 e85 (2021).
- 552 27. E. G. Levin *et al.*, Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6
553 Months. *N Engl J Med* **385**, e84 (2021).
- 554 28. A. Choi *et al.*, Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in
555 healthy adults: an interim analysis. *Nat Med* **27**, 2025-2031 (2021).
- 556 29. K. S. Corbett *et al.*, Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2
557 in nonhuman primates. *Science* **373**, eabj0299 (2021).
- 558 30. K. S. Corbett *et al.*, Evaluation of mRNA-1273 against SARS-CoV-2 B.1.351 Infection in
559 Nonhuman Primates. *bioRxiv*, (2021).
- 560 31. E. Madissoon *et al.*, scRNA-seq assessment of the human lung, spleen, and esophagus tissue
561 stability after cold preservation. *Genome Biol* **21**, 1 (2019).
- 562 32. S. Feng *et al.*, Correlates of protection against symptomatic and asymptomatic SARS-CoV-2
563 infection. *Nat Med* **27**, 2032-2040 (2021).
- 564 33. P. Bost *et al.*, Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. *Cell* **181**,
565 1475-1488 e1412 (2020).
- 566 34. S. Lukassen *et al.*, SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial
567 transient secretory cells. *EMBO J* **39**, e105114 (2020).
- 568 35. S. L. Bixler *et al.*, Aerosol Exposure of Cynomolgus Macaques to SARS-CoV-2 Results in More
569 Severe Pathology than Existing Models. *bioRxiv*, 2021.2004.2027.441510 (2021).
- 570 36. J. Pallesen *et al.*, Immunogenicity and structures of a rationally designed prefusion MERS-CoV
571 spike antigen. *Proc Natl Acad Sci U S A* **114**, E7348-E7357 (2017).
- 572 37. D. Wrapp *et al.*, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
573 *Science* **367**, 1260-1263 (2020).
- 574 38. K. S. Corbett *et al.*, SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen
575 preparedness. *Nature* **586**, 567-571 (2020).
- 576 39. K. J. Hassett *et al.*, Optimization of Lipid Nanoparticles for Intramuscular Administration of
577 mRNA Vaccines. *Mol Ther Nucleic Acids* **15**, 1-11 (2019).
- 578 40. J. R. Francica *et al.*, Vaccination with SARS-CoV-2 Spike Protein and AS03 Adjuvant Induces
579 Rapid Anamnestic Antibodies in the Lung and Protects Against Virus Challenge in Nonhuman
580 Primates. *bioRxiv*, (2021).
- 581 41. L. A. Jackson *et al.*, An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. *N Engl J Med*
582 **383**, 1920-1931 (2020).
- 583 42. A. Vanderheiden *et al.*, Development of a Rapid Focus Reduction Neutralization Test Assay for
584 Measuring SARS-CoV-2 Neutralizing Antibodies. *Curr Protoc Immunol* **131**, e116 (2020).
- 585 43. L. C. Katzelnick *et al.*, Viridot: An automated virus plaque (immunofocus) counter for the
586 measurement of serological neutralizing responses with application to dengue virus. *PLoS Negl
587 Trop Dis* **12**, e0006862 (2018).
- 588 44. G. X. Zheng *et al.*, Massively parallel digital transcriptional profiling of single cells. *Nat Commun*
589 **8**, 14049 (2017).
- 590 45. T. Stuart *et al.*, Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902 e1821
591 (2019).
- 592 46. A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic
593 data across different conditions, technologies, and species. *Nat Biotechnol* **36**, 411-420 (2018).

- 594 47. C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq data
595 using regularized negative binomial regression. *Genome Biol* **20**, 296 (2019).

596
597 **ACKNOWLEDGMENTS**
598

599 This work was partially supported by a cooperative agreement (W81XWH-18-2-0040) between the
600 Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department
601 of Defense (DOD). The views expressed are those of the authors and should not be construed to
602 represent the positions of the U.S. Army, the Department of Defense, or HJF.

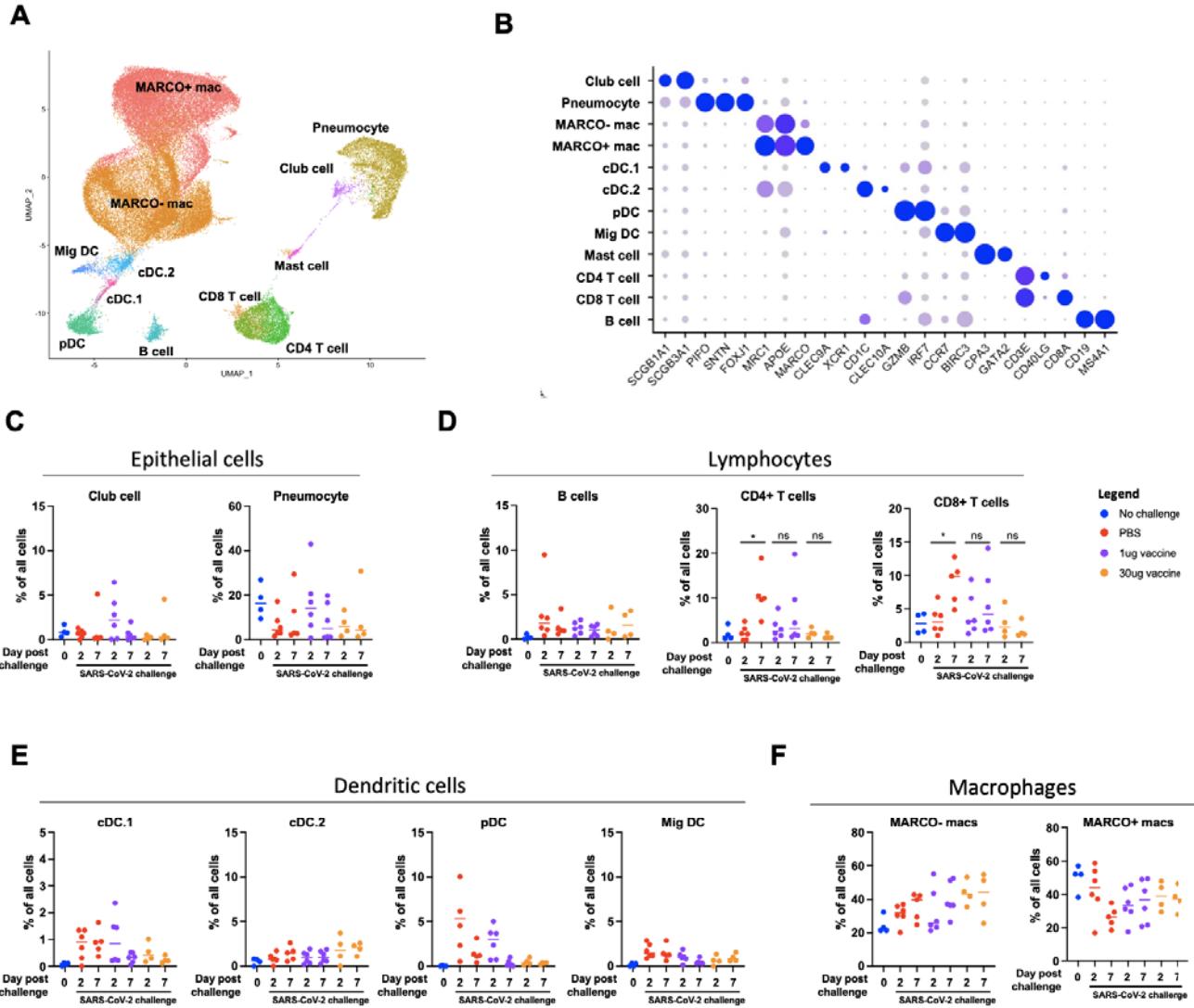
603
604 **Author contributions:** R.S., M.R., and K.F. designed the study. K.V. and T.L. generated data. A.T.W.,
605 K.N., H.F., K.F., M.R. D.L.B., J.R.C., and R.S. analyzed and interpreted the data. A.T.W., K.N., and
606 J.R.C wrote the paper with assistance from all coauthors.
607

608 **Data and material availability:** All data supporting the findings of this study are available within the
609 manuscript or from the corresponding author upon request. Data tables for expression counts and
610 unprocessed raw data from the scRNAseq analysis are deposited in NCBI's Gene Expression Omnibus
611 and are accessible through GEO accession GSE190913 (USA-WA1/2020 challenge) and GSE190165
612 (B.1.351/beta challenge).
613

614 **FIGURE LEGENDS**
615

616 **Fig 1. Identification and quantification of BALF cells by scRNAseq.** **A)** UMAP projection of BALF
617 cells captured by scRNAseq analysis. **B)** Expression of key lineage specific genes in all annotated cell
618 types. **C)** Frequency of epithelial cell populations. **D)** Frequency of lymphocyte cell populations. **E)**
619 Frequency of dendritic cell populations. **F)** Frequency of macrophage populations
620

621 **Fig 2. Transcriptional signatures of SARS-CoV-2 WA-1 elicited inflammation.** **A)** Expression of
622 inflammatory markers and cytokines/chemokines in all annotated cells day 2 post infection. **B)**
623 Expression of inflammatory markers and cytokines/chemokines in all annotated cells day 7 post
624 infection. **C)** Inflammatory index scores in epithelial cells. **D)** Inflammatory index scores in dendritic
625 cells. **E)** Inflammatory index scores in myeloid cells. **F)** Inflammatory index scores in lymphocytes
626


627 **Fig 3. Identification and quantification of SARS-CoV-2 RNA positive cells.** **A)** Location of SARS-
628 CoV-2 RNA positive cells. **B)** Frequency of SARS-CoV-2 RNA positive cell. **C)** Relationship between
629 BALF RNA load and frequency of SARS-CoV-2 RNA⁺ cells. **D)** Relationship between NS RNA load
630 and frequency of SARS-CoV-2 RNA⁺ cells. Spearman correlation.
631

632 **Fig 4. Viral load vs inflammation day 2 post infection.** **A)** DC Inflammation index score vs BALF
633 sgRNA (E gene). **B)** DC Inflammation index score vs Nasal swab sgRNA (E gene). **C)** DC
634 Inflammation index score vs SARS-CoV-2 RNA⁺ cell fraction. **D)** Macrophage Inflammation index
635 score vs BALF sgRNA (E gene). **E)** Macrophage Inflammation index score vs Nasal swab sgRNA (E
636 gene). **F)** Macrophage Inflammation index score vs SARS-CoV-2 RNA⁺ cell fraction. Spearman
637 correlation.
638

639 **Fig 5. Relationship between antibody titers and SARS-CoV-2 elicited inflammation. A)**
640 Relationship between pre-challenge serum S-specific IgG titers (wk 8 post vaccination) and DC
641 inflammation on day 2 post challenge. **B)** Relationship between pre-challenge serum RBD-specific IgG
642 titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. **C)** Relationship between
643 pre-challenge BALF S-specific IgG titers (wk 6 post vaccination) and DC inflammation on day 2 post
644 challenge. **D)** Relationship between pre-challenge serum pseudovirus neut titers titers (wk 8 post
645 vaccination) and DC inflammation on day 2 post challenge. **E)** Relationship between pre-challenge
646 serum live virus FRNT (wk 8 post vaccination) and DC inflammation on day 2 post challenge.
647 Spearman correlation
648

649 **Fig 6. Transcriptional signatures of SARS-CoV-2 beta VBM elicited inflammation. A)** UMAP
650 projection of BALF cells from beta VBM challenge. **B)** Expression of inflammatory markers and
651 cytokines/chemokines in all annotated cells day 2 post beta infection. **C)** Inflammatory index scores in
652 epithelial cells. **D)** Inflammatory index scores in dendritic cells. **E)** Inflammatory index scores in
653 myeloid cells. **F)** Inflammatory index scores in lymphocytes
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

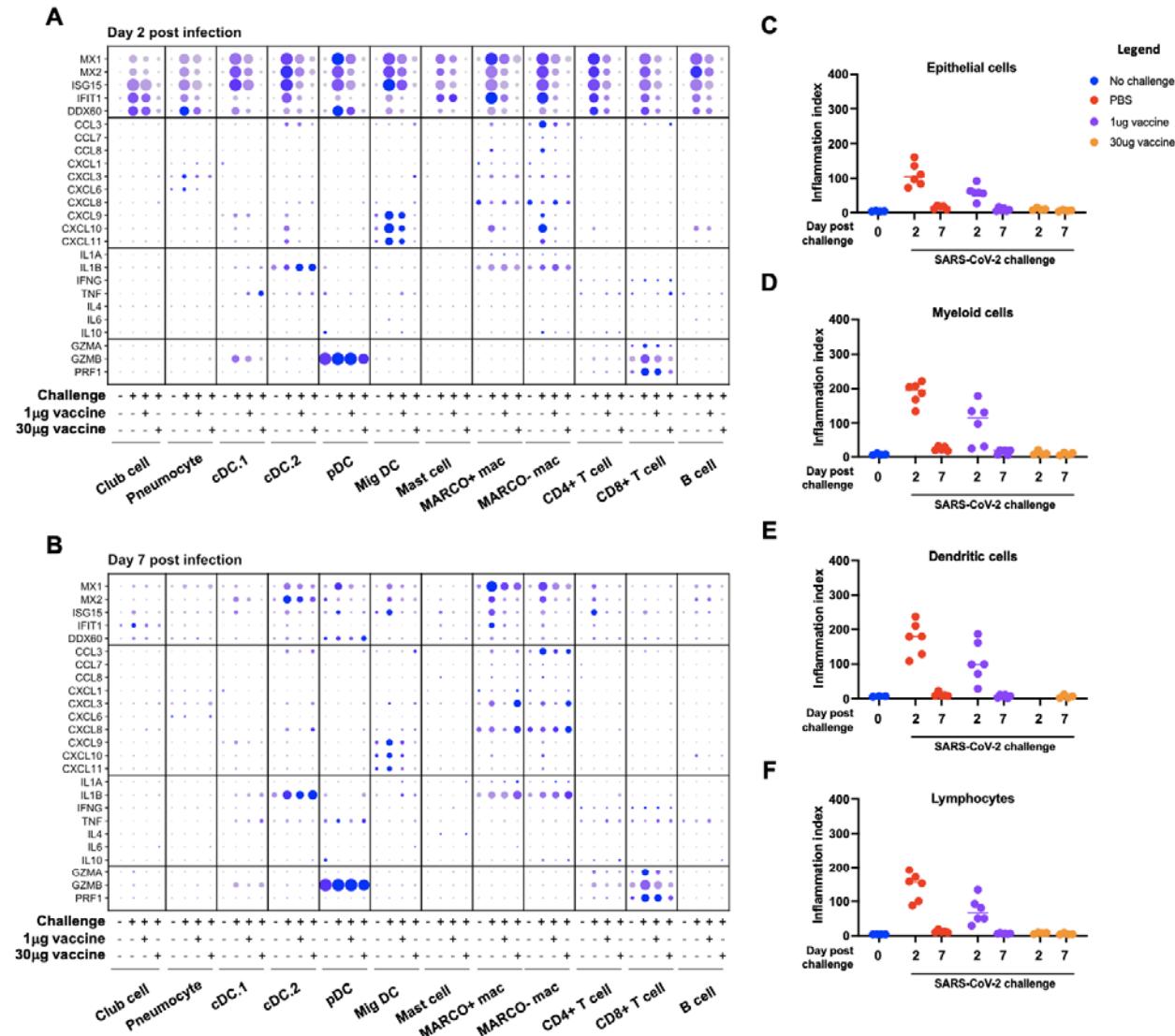

685
686
687

Fig 1. Identification and quantification of BALF cells by scRNAseq. A) UMAP projection of BALF cells captured by scRNAseq analysis. **B)** Expression of key lineage specific genes in all annotated cell types. **C)** Frequency of epithelial cell populations. **D)** Frequency of lymphocyte cell populations. **E)** Frequency of dendritic cell populations. **F)** Frequency of macrophage populations

688
689
690
691
692
693
694
695

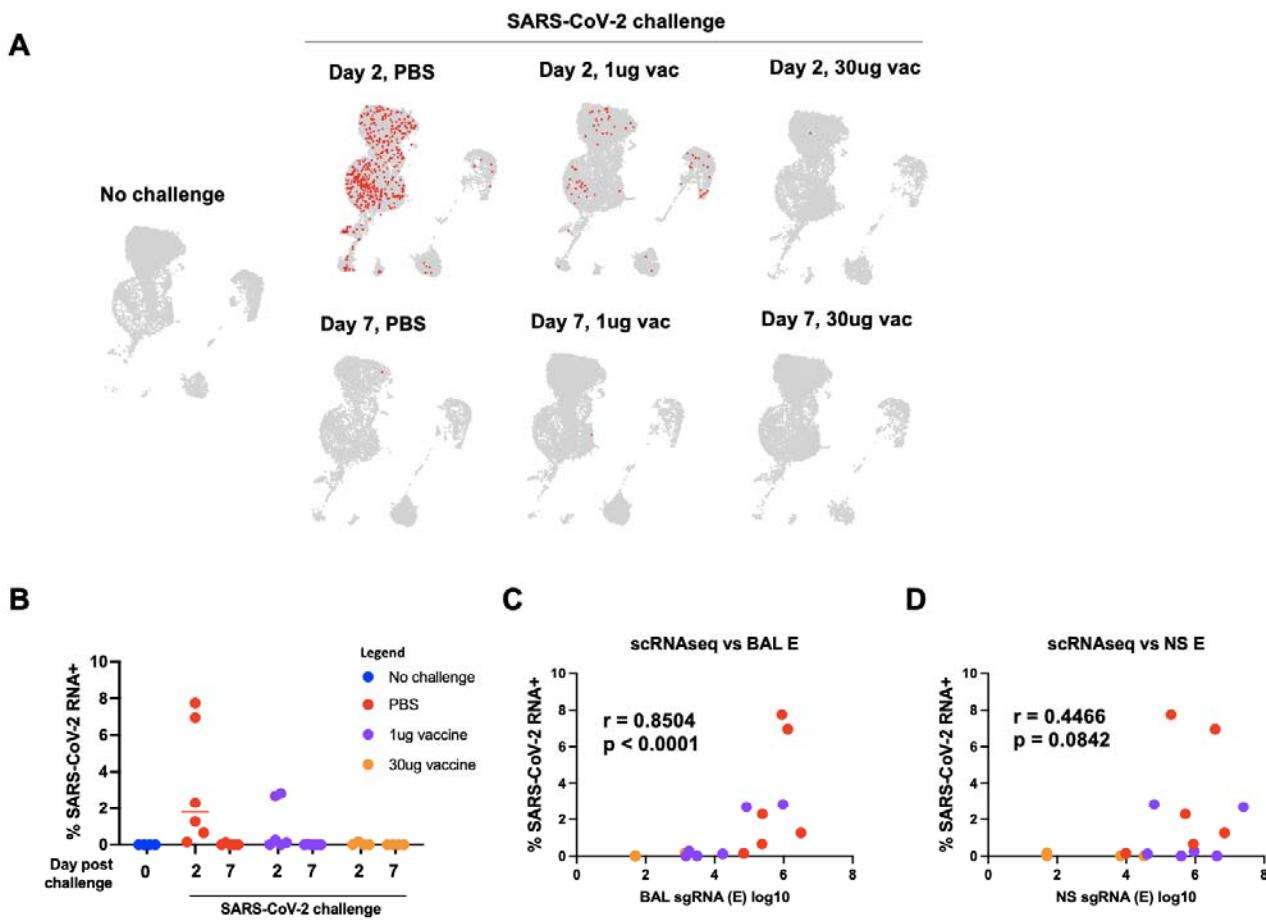

696
697
698
699

Fig 2. Transcriptional signatures of SARS-CoV-2 WA-1 elicited inflammation. A) Expression of inflammatory markers and cytokines/chemokines in all annotated cells day 2 post infection. **B)** Expression of inflammatory markers and cytokines/chemokines in all annotated cells day 7 post infection. **C)** Inflammatory index scores in epithelial cells. **D)** Inflammatory index scores in dendritic cells. **E)** Inflammatory index scores in myeloid cells. **F)** Inflammatory index scores in lymphocytes

700
701
702
703
704
705

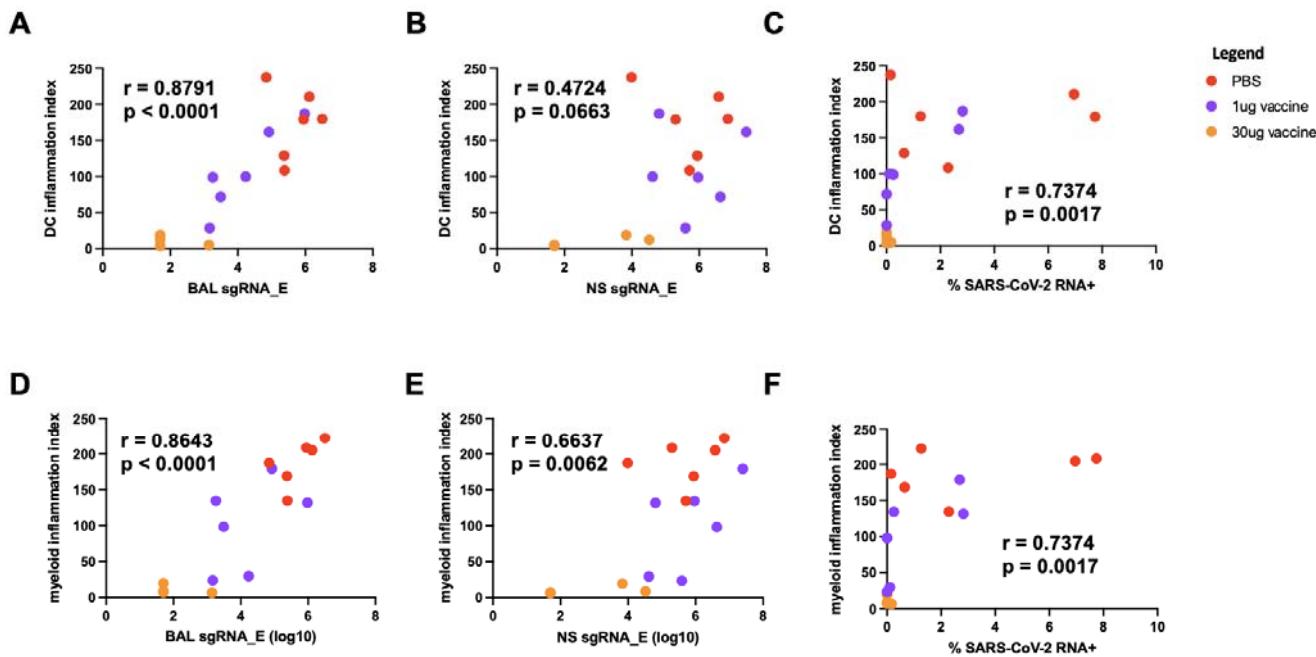

706

Fig 3. Identification and quantification of SARS-CoV-2 RNA positive cells. A) Location of SARS-CoV-2 RNA positive cells. **B)** Frequency of SARS-CoV-2 RNA positive cell. **C)** Relationship between BALF RNA load and frequency of SARS-CoV-2 RNA⁺ cells. **D)** Relationship between NS RNA load and frequency of SARS-CoV-2 RNA⁺ cells. Spearman correlation.

707
708
709
710
711
712
713
714
715
716
717
718
719

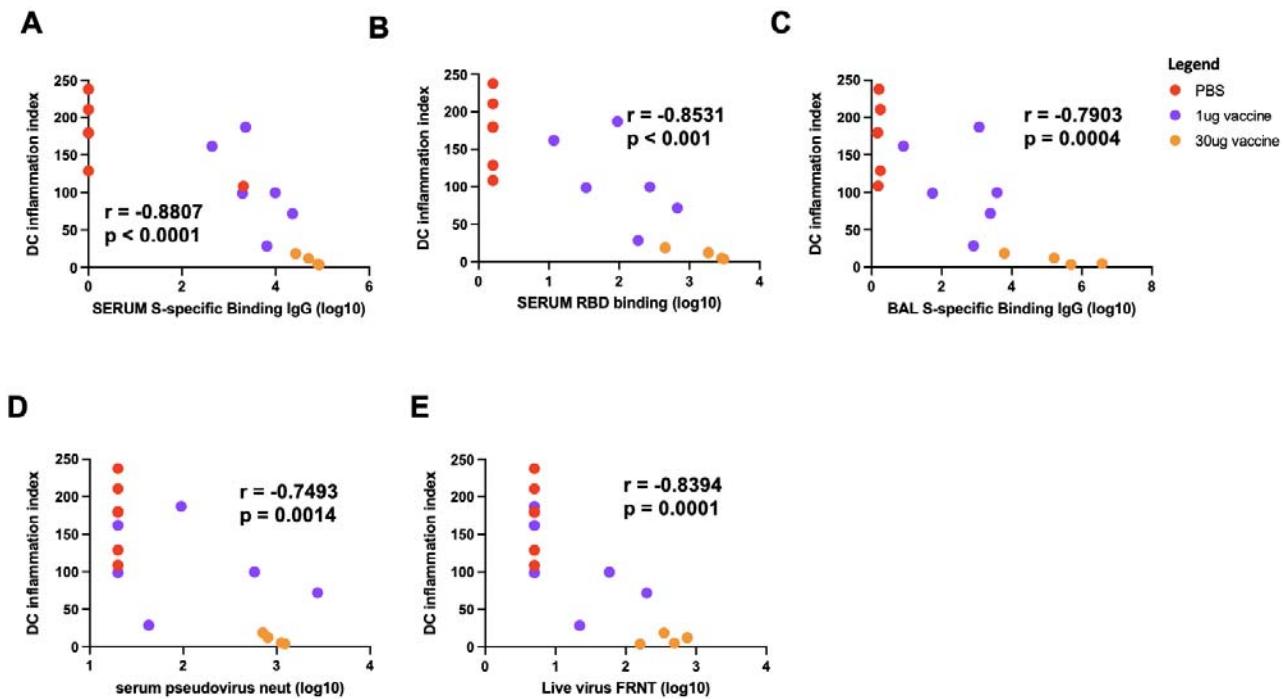

720

Fig 4. Viral load vs inflammation day 2 post infection. **A)** DC Inflammation index score vs BALF sgRNA (E gene). **B)** DC Inflammation index score vs Nasal swab sgRNA (E gene). **C)** DC Inflammation index score vs SARS-CoV-2 RNA⁺ cell fraction. **D)** Macrophage Inflammation index score vs BALF sgRNA (E gene). **E)** Macrophage Inflammation index score vs Nasal swab sgRNA (E gene). **F)** Macrophage Inflammation index score vs SARS-CoV-2 RNA⁺ cell fraction. Spearman correlation.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

741

Fig 5. Relationship between antibody titers and SARS-CoV-2 elicited inflammation. A)

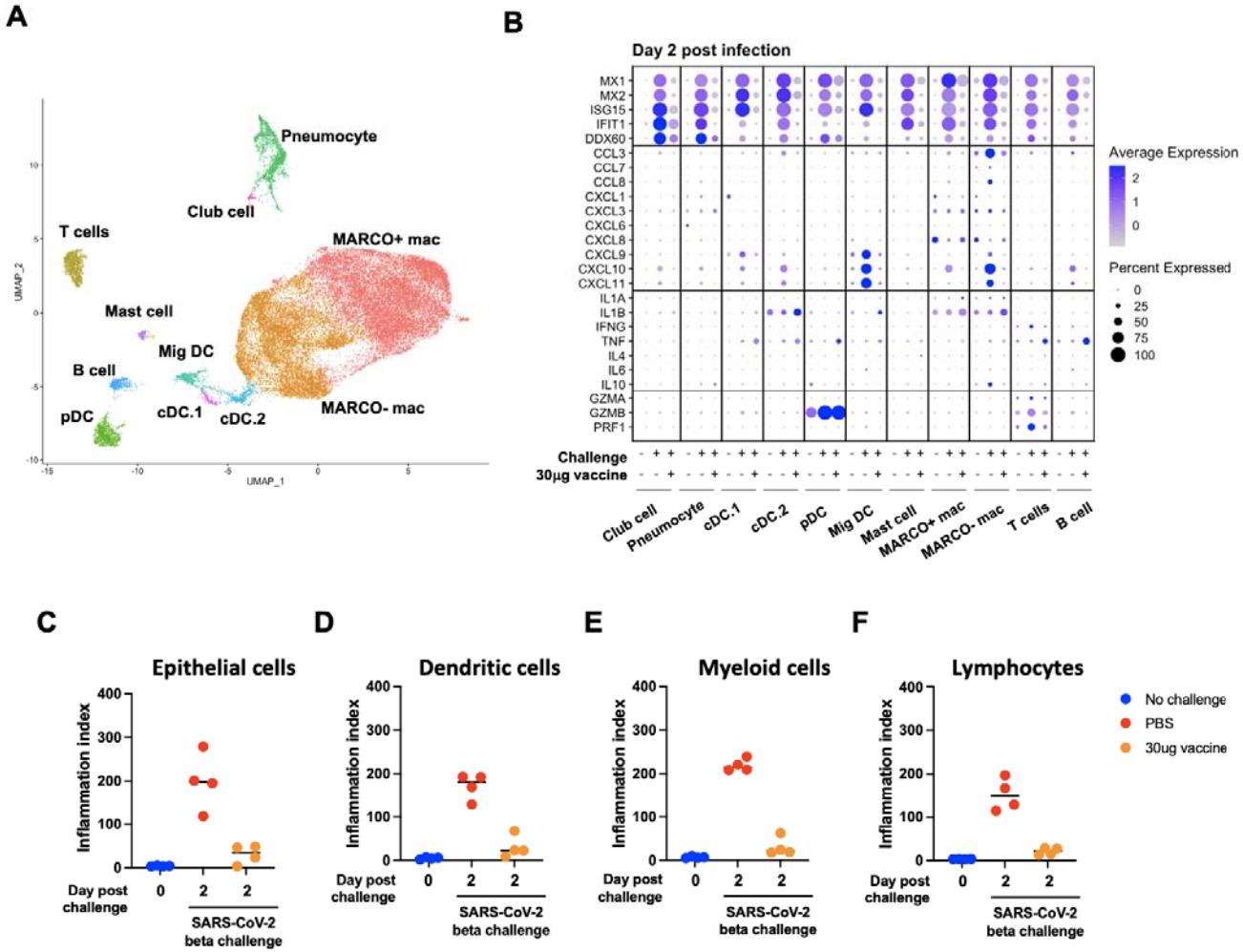
Relationship between pre-challenge serum S-specific IgG titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. **B)** Relationship between pre-challenge serum RBD-specific IgG titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. **C)** Relationship between pre-challenge BALF S-specific IgG titers (wk 6 post vaccination) and DC inflammation on day 2 post challenge. **D)** Relationship between pre-challenge serum pseudovirus neut titers titers (wk 8 post vaccination) and DC inflammation on day 2 post challenge. **E)** Relationship between pre-challenge serum live virus FRNT (wk 8 post vaccination) and DC inflammation on day 2 post challenge. Spearman correlation

742

743

744

745


746

747

748

749

750

Fig 6. Transcriptional signatures of SARS-CoV-2 beta VBM elicited inflammation. A) UMAP projection of BALF cells from beta VBM challenge. **B)** Expression of inflammatory markers and cytokines/chemokines in all annotated cells day 2 post beta infection. **C)** Inflammatory index scores in epithelial cells. **D)** Inflammatory index scores in dendritic cells. **E)** Inflammatory index scores in myeloid cells. **F)** Inflammatory index scores in lymphocytes

751
752
753
754
755
756
757
758
759
760
761