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Abstract

Brain pathologies are based on microscopic changes in neurons and synapses that reverberate into large
scale networks altering brain dynamics and functional states. An important yet unresolved issue
concerns the impact of patients excitation/inhibition profiles on neurodegenerative diseases including
Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. In this work we
used a simulation platform, The Virtual Brain, to simulate brain dynamics in healthy controls and in
Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis patients. The brain
connectome and functional connectivity were extracted from 3T-MRI scans and The Virtual Brain
nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of
the excitatory/inhibitory balance. The integration of cerebro-cerebellar loops improved the correlation
between experimental and simulated functional connectivity, and hence The Virtual Brain predictive
power, in all pathological conditions. The Virtual Brain biophysical parameters differed between
clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer’s disease and
stronger NMDA (N-methyl-D-aspartate) receptor-dependent excitation in Amyotrophic Lateral
Sclerosis. These physio-pathological parameters allowed an advanced analysis of patients’ state. In
backward regressions, The Virtual Brain parameters significantly contributed to explain the variation
of neuropsychological scores and, in discriminant analysis, the combination of The Virtual Brain
parameters and neuropsychological scores significantly improved discriminative power between
clinical conditions. Eventually, cluster analysis provided a wunique description of the
excitatory/inhibitory balance in individual patients. In aggregate, The Virtual Brain simulations reveal
differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive

assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.


https://doi.org/10.1101/2021.12.23.473997
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.23.473997; this version posted December 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Author affiliations:

1 Brain Connectivity Center, IRCCS Mondino Foundation, Research Department, 27100 Pavia, Italy
2 Dept of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy

3 Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy

4 Department of Radiology, IRCCS Policlinico San Donato, 20097 Milano, Italy

5 Advanced Imaging and Radiomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy

6 Unit of Neuropsychology, IRCCS Mondino Foundation, 27100 Pavia, Italy

7 Institut de Neurosciences des Systémes, INSERM, INS, Aix Marseille University, 13005 Marseille,
France

8 Department of Neuroinflammation, NMR Research Unit, Queen Square MS Centre, UCL Queen
Square Institute of Neurology, Russell Square House, Russell Square, WC1B 5EH, London, UK

Correspondence to: Monteverdi Anita

anita.monteverdiQ 1 @universitadipavia.it

Running title: E/I profiling in neurodegeneration

Keywords: Brain dynamics; Excitatory/Inhibitory balance; Alzheimer’s disease; Frontotemporal
dementia; Amyotrophic lateral sclerosis.

Abbreviations: expFC = experimental Functional Connectivity; FC = Functional Connectivity; PCC
=Pearson Correlation Coefficient; SC = Structural Connectivity; simFC = simulated Functional
Connectivity; TVB = The Virtual Brain

Introduction

Neuroscience is showing a growing interest in merging results at different scales of complexity in order
to achieve a global and comprehensive knowledge of the brain and its mechanisms. In this context,
brain modeling can be used to bridge the gap between cellular phenomena and whole-brain dynamics,
both in physiological (i.e. healthy) and pathological conditions!. The Virtual Brain (TVB)?? is a
neuroinformatic platform recently developed to simulate brain dynamics starting from individual

structural (SC) and functional connectivity (FC) matrices constructed from MRI data. TVB has been
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used to characterize brain dynamics in healthy subjects* but also to explore pathological mechanisms
in neurological diseases, such as epilepsy?, stroke®, brain tumor’ and Alzheimer’s disease®°.
Neurodegenerative states ranging from Alzheimer’s disease, Frontotemporal Dementia and
Amyotrophic lateral sclerosis are reportedly characterized by a disrupted balance between excitation
and inhibition, but this knowledge is not yet available for single subjects unless using lengthy magnetic
resonance spectroscopy sequences to quantify Glutamate or GABA (gamma-Aminobutyric acid)
concentrations. Hyperexcitation is thought to play a pivotal role in their pathogenesis!®-'2, but
multiform and sometimes contradictory results based on empirical observations make it difficult to
gain an overall agreement on the neural mechanisms and the evolution of hyperexcitation over the
course of the disease. In addition, despite some controversies, increasing findings are supporting
GABAergic remodeling as an important feature of Alzheimer’s disease condition'>. GABAergic
dysfunction is less explored in Frontotemporal Dementia and Amyotrophic lateral sclerosis, but it has
been demonstrated that baseline GABA levels can influence response to therapies in Frontotemporal
Dementia patients'* while impaired cortical inhibition due to GABAergic dysfunction can change over
Amyotrophic lateral sclerosis progression'®. Predicting treatment effectiveness for Alzheimer’s
disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis patients remains problematic, and
the lack of meaningful biomarkers for patients’ classification worsen the situation. Since TVB is
designed to extract information about connectivity and network parameters including those linked to
inhibition/excitation pathways in single human subjects, it has a high potential to foster personalized
and precision medicine.

It is important to point out the need of performing TVB analysis including not only cerebral nodes and
their structural connections to one another but also the cerebellum. Recently, it was shown that
integrating cerebro-cerebellar connections can improve TVB predictive capability in healthy
subjects!®. This is in line with the increasing evidence supporting cerebellar involvement not only in
motor learning and coordination!” but also in cognitive processing'®1%-2021. Cerebellar impairment has
been revealed in Alzheimer’s disease’’?4, Frontotemporal Dementia’> and Amyotrophic lateral
sclerosis?®.

In this work, we exploited TVB capabilities i) to characterize each group of subjects by providing
personalized excitation/inhibition profiles ii) to assess the cerebellar impact on brain dynamics
generation in healthy controls and in Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic
lateral sclerosis. TVB simulations were performed using the Wong-Wang model?’, which allowed us
to derive a set of subject-specific biophysical parameters able to describe global brain dynamics and

the excitatory/inhibitory balance in local networks. We evaluated the potential for clinical translation
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of the biophysical parameters obtained from TVB simulations by exploring their association with
patients’ cognitive performance and testing their discriminative power between clinical conditions and
neuropsychological domains. This work, by providing a unique description of the excitatory/inhibitory
balance at single-subject level, can contribute to the progress of personalized and precision medicine

opening new perspectives for brain modelling in neurodegenerative diseases.

Materials and Methods

In this work individual’s subject analysis was conducted as described in Figure 1 and simulations were
performed in three networks!é: whole-brain network, cortical subnetwork, and embedded cerebro-

cerebellar subnetwork (see section networks, Figure 2).

Subjects

Sixty patients affected by neurodegenerative diseases were recruited at the IRCCS Mondino
Foundation, as part of a study on cognitive impairment published in Palesi et al.?4, Castellazzi et al.?8,
Lorenzi et al.?®, Pizzarotti et al.?>. The study was carried out in accordance with the Declaration of
Helsinki with written informed consent from all subjects. The protocol was approved by the local ethic
committee of the IRCCS Mondino Foundation. Patients underwent a complete diagnostic workup
including neuropsychological assessment, MRI (and electroneuromyography in patients with motor
neuron impairment) in order to obtain an exhaustive phenotypic profiling and a correct etiological
definition. Based on the most recent diagnostic criteria subjects were classified into three groups:
fifteen Alzheimer’s disease patients’® (6 females, 70 + 7 years), fifteen Frontotemporal Dementia
patients (4 females, 69 + 7 years) [including behavioral Frontotemporal Dementia 3! and Primary
Progressive Aphasia®’], fifteen Amyotrophic lateral sclerosis® patients (7 females, 67 + 8 years). In
detail, diagnosis of Alzheimer’s disease was made according to the criteria of the National Institute of
Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) workgroup®’; Frontotemporal Dementia diagnosis was
supported according to Rascovsky diagnostic criteria but not determined by the cognitive profile and
no patient was excluded based on neuropsychological profile if diagnostic criteria were still met;
Amyotrophic lateral sclerosis diagnosis was made in patients fulfilling Awaji criteria® and this group
included patients with Amyotrophic lateral sclerosis and mild cognitive impairment. In addition, fifteen
healthy controls (8 females, 64 + 11 years) were enrolled on a voluntary basis as reference group. All

healthy controls underwent clinical assessment to exclude any cognitive or motoneuron impairment.
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For all subjects, exclusion criteria were: age>80 years, a diagnosis of significant medical, neurological
(other than Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis) and
psychiatric disorder, pharmacologically treated delirium or hallucinations and secondary causes of
cognitive decline (e.g. vascular metabolic, endocrine, toxic and iatrogenic). Table 1 shows

demographic, clinical, and neuropsychological data.

Neuropsychological examination

All subjects underwent a neuropsychological examination based on a standardized battery of tests to
assess their global cognitive status (Mini-Mental State Examination, MMSE?#) and different cognitive
domains: attention (Stroop test®>, Trail Making test *’A and B, Attentive Matrices®’), memory (Digit
and Verbal span, Corsi block-tapping test, Logical Memory test’’, Rey-Osterrieth?® complex figure
delayed recall, Rey’s 15 words test’”), language (phonological’® and semantic**verbal fluency),
logical-executive functions (Raven’s Matrices® 1947, Winconsing Card Sorting*' test, Frontal
Assessment*? Battery) and visuospatial skills (Rey-Osterrieth®® complex figure copy). For each test
age-, gender- and education corrected-scores were computed and then transformed into equivalent
scores ranging from 0 (pathological) to 4 (normal) on the basis of the equivalent score standardization
method*. For each cognitive domain, a weighted score was derived from the average of the equivalent

scores of the tests belonging to that specific cognitive domain.

MRI Acquisitions

All subjects underwent MRI examination using a 3T Siemens Skyra scanner with a 32-channel head
coil. The protocol included resting-state fMRI (T,*-weighted GRE-EPI sequence, TR/TE = 3010/20
ms; 60 slices, acquisition matrix = 90x90, voxel size = 2.5x2.5x2.5 mm? isotropic, 120 volumes) and
diffusion weighted (DW) imaging (SE-EPI sequence, TR/TE = 10000/97 ms, 70 slices with no gap,
acquisition matrix = 120120, voxel size = 2x2x2 mm? isotropic, 64 diffusion-weighted directions, b-
value = 1200 s/mm?, 10 volumes with no diffusion weighting (bo image). For anatomical reference, a
whole brain high-resolution 3D sagittal T1-weighted (3DT1) scan (TR/TE = 2300/2.95 ms, TI = 900
ms, flip angle = 9°, 176 slices, acquisition matrix = 256 % 256, in-plane resolution = 1.05 x 1.05 mm,

slice thickness = 1.2 mm) was also acquired.

Preprocessing and tractography of diffusion data

For each subject, a mean bp image was obtained averaging the 10 volumes acquired with no diffusion

weighting. DW data were denoised and corrected for Gibbs artifact*4, eddy currents distortions and
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aligned to the mean by image using eddy tool*> (FSL). A binary brain mask was obtained from the
mean by image using brain extraction tool*® and DTIFIT was used to generate individual fractional
anisotropy (FA) and mean diffusivity (MD) maps. 3DT1-weighted images were segmented using
MRtrix34748 as white matter (WM), gray matter (GM), subcortical GM and cerebrospinal fluid (CSF).
30 million streamlines whole-brain anatomically constrained tractography*® was performed within
MRtrix3, estimating fibers orientation distribution with multi-shell multi-tissue constrained spherical
deconvolution (CSD) and using probabilistic streamline tractography>’. As in previous works'®>!, a
correction of spurious cerebro-cerebellar tracts was performed excluding the ipsilateral connections

from whole-brain tractograms.

Preprocessing of fMRI data

fMRI preprocessing was carried out combining SPM 1232, FSL and MRtrix3 commands in a custom
MATLABR2019b°3 script. Marchenko-Pastur principal component analysis (MP-PCA) denoising>*
was firstly performed, followed by slice-timing correction, realignment to mean functional image and
affine registration to the 3DT1-weighted image. These steps were followed by polynomial detrend and
24 motion parameters regression®. A subject-specific CSF mask was extracted from the 3DT1
segmentation, eroded using a 99% probability threshold, and constrained to areas within the ALVIN
(Automatic Lateral Ventricle dellneatioN) mask of the ventricles®®. These corrections were performed
to avoid the risk of capturing signals of interest from adjacent GM voxels, and nuisance regressors
identified within the restricted CSF mask were removed using a component-based noise correction

(compCor) approach’’-*8. Temporal band-pass filtering (0.008-0.09 Hz) was finally applied.

Structural and functional connectivity

Connectomes of SC and FC were estimated combining a parcellation atlas with whole-brain
tractography and rs-fMRI signals of each subject, respectively. An ad-hoc GM parcellation atlas was
created combining 93 cerebral (including cortical and deep GM structures) and 31 cerebellar (SUIT, A
spatially unbiased atlas template of the cerebellum and brainstem) labels®® in MNI152 space. Each GM
parcellation was considered as a node for the connectivity analysis. The atlas was transformed to
subject-space inverting the normalization from the 3DT1-weighted image to the MNI152 standard
space. The parcellation atlas applied to the whole-brain tractography led to two types of SC matrices:
a distance matrix containing the length of tracts connecting each pair of nodes, and a weight matrix in

which connections strengths (number of streamlines) were normalized by the maximum value per each
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subject. The time-course of BOLD signals was extracted for each node and the experimental FC matrix
(expFC) was computed as the Pearson’s correlation coefficient (PCC) of the time-courses between
each pair of brain regions. Matrix elements were converted with a Fisher’s z transformation and

thresholded at 0.1206!°,

Brain dynamics simulation with TVB

TVB workflow includes several steps: 1) incorporation of subject SC matrices; 2) selection of a mean
field/neural mass mathematical model; 3) simulation of the rs-fMRI time-courses per node and creation
of the simulated FC matrix (simFC); 4) model parameters tuning to achieve the best matching between
simFC and expFC matrices; 5) final simulation of brain dynamics with the optimal model parameters

as described in detail by Deco et al.?’.

Computational model from neuronal activity to large-scale signals

The Wong-Wang model?’ implemented as highly optimized C code®® was chosen to simulate whole-
brain dynamics. This dynamic mean field model simulates the local regional neuronal activity as the
result of a network composed of interconnected excitatory and inhibitory neurons coupled through
NMDA and GABA receptor types. Details on the Wong-Wang model can be found in Deco et al.?’.

Briefly, brain dynamics are described by the following set of coupled non-linear stochastic differential

equations:
Ii(E) = Wgly + W+]NMDASi(E) + GJ/ympa Z Ciij(E) _]iSi(I) (1)
J
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where ri(BD denotes the firing rate of the excitatory (E) and inhibitory (I) population, SiD identifies
the average excitatory or inhibitory synaptic gating variables at each local area, i, and I;&D is the input

current to the excitatory and inhibitory populations. All parameters described in Supplementary Table
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1 were set as in Deco et al.?’, except those that are tuned during parameters optimization, described
below. Parameter space exploration was performed for global coupling (G), which is a scaling factor
denoting long-range coupling strength, and local parameters defining the strength of inhibitory
(GABA) synapses (Ji), the strength of excitatory (NMDA) synapses (Jnmpa) and the strength of local
excitatory recurrence (w+). Thus, this model retains information both on global brain dynamics and
local excitatory/inhibitory balance and is particularly interesting for the investigation of pathological

conditions.

For each set of parameters combination, resting-state BOLD fMRI time-courses were simulated over
6 min length using a Balloon-Windkessel hemodynamic neurovascular coupling model®! while the
simFC was computed as described below (see section 2.7) for the expFC. Parameters were adjusted
iteratively until the best fit, i.e. the highest correlation, between expFC and simFC was achieved

(Supplementary Figure 1).

Networks
To investigate the impact of the cerebellum on brain dynamics generation, simulations were performed

using three different combinations of connections and nodes (Figure 2):

e Whole-brain network: whole-brain nodes and connections

e Cortical subnetwork: cerebral cortex nodes and connections (excluding cerebro-cerebellar
connections)

e Embedded cerebro-cerebellar subnetwork: cerebral cortex nodes but also considering the

influence of cerebro-cerebellar connections

For each of these three networks predictive power was evaluated as the mean PCC between expFC and
simFC matrices in different clinical conditions (healthy controls, Alzheimer’s disease, Frontotemporal

Dementia, Amyotrophic lateral sclerosis).

Statistic

Statistical tests were performed using SPSS software version 2162,

Excitation/inhibition role in neurodegeneration

To assess whether biophysical parameters derived from TVB differ according to the clinical condition,

optimal model parameters were tested for normality (Shapiro-Wilk test) and differences between
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groups were assessed with non-parametric tests (Kruskal-Wallis across all groups and Mann-Whitney

between each pair of groups) because they did not present a Gaussian distribution.

A multiple regression analysis was performed to investigate the relationship between individual scores
of the 6 cognitive domains (attention, memory, language, logical-executive functions, visuospatial
skills) and the optimal model parameters. Model parameters combined with age, gender and group
category were used in a backward approach to identify which of them significantly (p<0.05) explained

neuropsychological scores variance in all subjects together.

Moreover, to assess the relevance of these parameters in discriminating between physiological and
pathological conditions, a discriminant analysis was performed using the group as the dependent
variable and considering as independent variables: (i) model parameters alone, (ii) neuropsychological
scores alone and (iii) a combination of both. To visualize and assess the sensitivity and specificity of
the best discriminative variables, receiving operating characteristics (ROC) curves and corresponding

areas under the curve (AUC) were calculated.

Finally, a k-mean cluster analysis was performed to reconstruct subjects-specific excitation/inhibition
profiles. The number of clusters was an input parameter arbitrary set equal to 4 as the number of
variables considered (model parameters). A frequency analysis of the clusters obtained in each group

enabled a deeper understanding of excitatory/inhibitory balance disruption.

Cerebellar role in brain dynamics in neurodegeneration

PCC obtained with the three networks were normally distributed (Shapiro-Wilk test), thus parametric
tests were used to compare them between different conditions. First, to assess changes of TVB
predictive power with the clinical condition, a one-way ANOV A was performed between PCC of each
network across groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic
lateral sclerosis). Then, to assess the impact of the specific network on TVB predictive power, a
multivariate general linear model (GLM) with Bonferroni correction was chosen to compare PCC

values of the three networks within each group.

Code and data accessibility

All codes used for this study are freely available. The optimized TVB C code can be found at
https://github.com/BrainModes/fast_tvb. Dataset will be available at 10.5281/zenodo.5796063.
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Results

Excitation/inhibition role in neurodegeneration

Both global (G) and local (Ji, Jnmpa, W+ parameters were adjusted iteratively to optimize the
model fit to empirical data. Optimal model parameters were found across the whole-brain network of

each subject.

Group differences in TVB parameters

The biophysical parameters derived from TVB were compared between groups to assess
whether, at group level, their value could differ according to the clinical condition. Both global and
local biophysical parameters showed significant differences between groups (Table 2, Figure 3A):
Alzheimer’s disease patients showed higher G and Ji compared to healthy controls and Frontotemporal
Dementia (p<0.05); Amyotrophic lateral sclerosis patients showed higher Jnvpa than healthy controls
(p<0.05); no statistically significant differences were found in healthy controls and Frontotemporal

Dementia compared to the other groups.

Relationship between TVB parameters and neuropsychological scores

Parameters used in backward regressions, significantly explained the variation of scores in
different neuropsychological domains. The explained variance of each neuropsychological domain was
progressively reduced by simplifying the regression model through the removal of one or more
predictors and ranged from ~20% to ~8%. For each cognitive domain, a different combination of

features was necessary to significantly (p<0.05) explain a percentage of the variance (Table 3).

Discriminative power of TVB parameters and neuropsychological scores
Discriminative power of TVB parameters and neuropsychological scores is reported for all
comparisons (healthy controls versus Alzheimer’s disease, healthy controls versus Frontotemporal
Dementia, healthy controls versus Amyotrophic lateral sclerosis, Alzheimer’s disease versus
Frontotemporal Dementia, Alzheimer’s disease versus Amyotrophic lateral sclerosis, Frontotemporal
Dementia versus Amyotrophic lateral sclerosis) in Supplementary Table 2. TVB parameters always
yielded a poorer discriminant power (about 70%) than that offered by neuropsychological scores (about
90%). When neuropsychological scores were complemented by TVB values as joint independent
variables, the discriminative power increased in all classifications reaching 100% when distinguishing
between Alzheimer’s disease and healthy controls, and between Frontotemporal Dementia and

Amyotrophic lateral sclerosis. To visualize all these results, ROC curves are reported in Figure 4.
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A personalized description of the excitatory/inhibitory balance

Each of the four clusters identified with the k-means analysis was characterized by a different
combination of values for TVB-derived biophysical parameters, as reported in Figure 5A and
Supplementary Figure 2. Considering the biophysical meaning of each parameter derived from the

simulation, we can describe the k-means clusters as follows:

e cluster | is mainly characterized by medium to strong overexcitation (medium to high values
of JNxmpa)

e cluster 2, in addition to show strong overexcitation (very high values of Jxmpa), is characterized
by a high global coupling strength (medium to high values of G) and medium to strong
overinhibition (medium to high values of J;)

e cluster 3 is the only one characterized by medium or low values of G, J; and Jnmpa and high
values of local excitatory recurrence (w-)

e cluster 4 is mostly characterized by overinhibition (high values of J;) and high global coupling

strength between nodes (higher values of G).

All the groups considered were represented in more than one clusters, as shown in Figure 5B.
The distribution of subjects belonging to different condition across clusters revealed that, cluster 1 was
more frequent in healthy controls (20%) and Amyotrophic lateral sclerosis (26.7%) than in Alzheimer’s
disease and Frontotemporal Dementia (both 6.7%), cluster 2 was less present in healthy controls
(13.3%) than in pathological conditions (Alzheimer’s disease=33.3%, Frontotemporal
Dementia=33.3% and Amyotrophic lateral sclerosis=20%), cluster 3 was the mostly present in healthy
controls subjects (46.7%), medium frequent in Frontotemporal Dementia (33.3%) and tended to
disappear in Amyotrophic lateral sclerosis (6.7%) and Alzheimer’s disease subjects (0%), cluster 4 was
the most frequent in Alzheimer’s disease (60%) and Amyotrophic lateral sclerosis (46.7%) and less

frequent in healthy controls (20%) and Frontotemporal Dementia (26.7%).

Cerebellar role in brain dynamics in neurodegeneration

To understand the role of the cerebellum in neurodegeneration, we performed TVB simulations
using three different networks: (i) Whole-brain network, (ii) Cortical subnetwork, (iii) Embedded
cerebro-cerebellar subnetwork as in Palesi et al.'s. For each of these three networks, the predictive
power was evaluated as the mean PCC between expFC and simFC matrices in healthy controls and in
the pathological groups: Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral

sclerosis.
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Predictive power of TVB simulations

TVB simulation performed both in physiological and pathological conditions led to good fit
values between the expFC and simFC (Table 2). No differences were found between PCC values of
each network across clinical groups, but significant differences were found in each group comparing
PCC of the three networks. For all the pathological groups, PCC values obtained with the embedded
cerebro-cerebellar subnetwork were significantly higher (p<0.01) than those obtained with the whole-
brain network, while PCC of the cortical subnetwork was significantly higher (p<0.003) than that of
the whole-brain network in Alzheimer’s disease and Frontotemporal Dementia (Table 2, Figure 3B).

No differences were found between the three networks in healthy controls.

Discussion

For the first time, in this work we characterized the excitatory/inhibitory profile in
neurodegenerative (Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis)
conditions integrating cerebro-cerebellar connections in TVB. Importantly, by adopting the Wong-
Wang model to model brain dynamics, we gained information on local excitatory/inhibitory balance at

the single subject level.

Excitation/inhibition role in neurodegeneration
Hyper-excitation and over-inhibition underly different neurodegenerative
mechanisms
Parameters derived from TVB simulations using the Wong-Wang model yield information on
global brain dynamics and local excitatory/inhibitory balance. In particular, the global scaling factor G
denotes the strength of long-range connections, and higher global coupling means a greater weighting
of the global over the local connectivity. The remaining three parameters define the balance between
excitation and inhibition in the simulated network: Jnmpa represents the strength of excitatory synapses
in the network, J; denotes the strength of inhibitory synapses and w- the strength of recurrent excitation.
Our results revealed that different clinical groups were characterized by specific TVB parameters
providing new clues for the interpretation of the dysfunctional mechanisms in local
microcircuits.
To date, patterns of altered FC in Alzheimer’s disease from a resting-state networks perspective
have been reported mainly in the default mode network (DMN)®3-64 although a wider involvement has
been suggested by our group in previous works??. Our data demonstrated that G and J; were higher in

Alzheimer’s disease patients compared to healthy controls suggesting that Alzheimer’s disease subjects
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were characterized by increased global coupling and overinhibition. This increased G value in our
Alzheimer’s disease group could be interpreted as a compensatory mechanism counteracting altered
cerebral connectivity, but it might also underly the hypersynchrony typically characterizing disrupted
networks in patients?>%. Furthermore, our data showing an increased inhibition and suggesting that
GABAergic dysfunction plays a role in Alzheimer’s disease pathology are in line with the novel
hypothesis that GABAergic remodeling might be an important feature of neurodegeneration!3.

It is worth noting that Alzheimer’s disease showed higher G and J; also compared to
Frontotemporal Dementia patients, strengthening the tenet that the pathophysiological mechanisms
underlying the two diseases are different. Indeed, Frontotemporal Dementia showed G and J; values
similar to healthy controls, consistent with the similarity of cortical neural synchronization in
Frontotemporal Dementia and healthy controls®.

Finally, Amyotrophic lateral sclerosis patients were characterized by an increased Jxmpa, which

is in line with the cortical hyperexcitability frequently reported in this pathological condition!?.

TVB-derived biophysical parameters help to explain cognitive performance
TVB-derived biophysical parameters combined with age, gender and group category
significantly explained the variance of neuropsychological scores both in physiological and
pathological groups. This suggests that the levels of excitation, inhibition and global coupling are
associated with cognitive performance in the different clinical conditions.
The clinical relevance of TVB parameters is further highlighted by results of discriminant analysis.
The discriminative power of neuropsychological tests alone was always higher than the one obtained
with TVB parameters alone. However, when neuropsychological measures were combined with TVB
parameters, the discriminative power improved, reaching in some cases 100% of accuracy. Importantly
the performance of our classification was satisfactory not only to distinguish healthy controls from
patients, but also to differentiate patients belonging to different neurodegenerative conditions. This
opens an interesting perspective for the development of new diagnostic tools combining TVB

parameters with neuropsychological scores in future machine learning approaches.

The excitatory/inhibitory balance in single-subject

For each subject, TVB predicted the optimal parameters, providing a subject-specific description
of the excitatory/inhibitory balance that could be analyzed at group level (as discussed above) or used
to establish cluster membership in a data-driven approach.
While at group level there were noticeable differences in excitatory/inhibitory parameters, when

considering single-subjects’ profiles, K-means clusters were not group specific; this suggests a
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heterogeneous excitatory and inhibitory balance across subjects that could be exploited for future
personalized interventions. Considering the biophysical meaning of TVB parameters, cluster 1 was
mainly characterized by overexcitation and was more frequent in healthy controls and Amyotrophic
lateral sclerosis. As well as hyperexcitability is a well-known feature of Amyotrophic lateral sclerosis
patients!>%7, the presence of some healthy controls subjects in this cluster is not surprising. Indeed, the
effect of aging on the glutamatergic system is currently under investigation%®, and even if glutamate is
mostly reported to decrease with age increase®, age-related effects on glutamatergic release and uptake
processes and NMDA receptor activation could be differentially modulated in some healthy subjects.
Even in cluster 2 we found some healthy controls, which presented not only high excitation but also
high global coupling strength. This high G value could be due to an increased strength of long-range
connectivity or increased synchrony between nodes. It is worth noting that cluster 2 was more common
in pathological conditions than in healthy controls, and this is in line with the frequent observation of
hyperexcitation and hypersynchrony in Alzheimer’s disease!!-6%7°, Frontotemporal Dementia!®7! and
Amyotrophic lateral sclerosis!>72. Cluster 3 was the most related to healthy controls, while the number
of patients was marginal (0 in Alzheimer’s disease). This cluster is mainly characterized by high
recurrent excitation; interestingly, alterations of this property are less explored as potential mechanisms
in clinical conditions. Only few network models have been developed to account for the influence of
recurrent excitation and to explore its changes in pathologies. Strong self-excitation was shown to be
required in network models to achieve satisfactory simulations of decision making and working
memory tasks’3, in line with our evidence of high recurrent excitation in healthy controls. Moreover,
in a previously proposed computational model applied to Alzheimer’s disease the variation of local
recurrent excitation has been suggested as a brain mechanism employed to compensate for alterations
induced by other types of synapse loss’#. Unfortunately, nothing is known about recurrent excitation
in network models of Frontotemporal Dementia or Amyotrophic lateral sclerosis, but the presence of
Frontotemporal Dementia and Amyotrophic lateral sclerosis patients in cluster 3 prompts to explore
the effect of this parameter in clinical conditions other than Alzheimer’s disease. Finally, cluster 4 was
mostly associated with Alzheimer’s disease patients, followed by Amyotrophic lateral sclerosis,
Frontotemporal Dementia and healthy controls. While convergent findings are increasingly supporting
the role of a GABA function increase in Alzheimer’s disease!*7>76, GABAergic dysfunction is mostly
described as an overall decrease of cortical inhibition in Frontotemporal Dementia and Amyotrophic

lateral sclerosis. Our results suggest the possibility of an increased GABAergic activity not only in
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Alzheimer’s disease patients, as already observed in literature, but also in subsets of subjects affected
by other neurodegenerative conditions.

It is important to point out that Frontotemporal Dementia patients appeared to be the most distributed
between clusters, without a main cluster membership, and this evidence reflects the heterogeneity of
our Frontotemporal Dementia cohort, which is in line with the wide spectrum of neurotransmitters

deficits which has been already observed in Frontotemporal Dementia’’.

Cerebellar role in neurodegeneration

Cerebellar impact in different clinical conditions

Cerebellar impairment has been consistently observed in neurodegenerative diseases, although
for years the cerebellum has been rarely considered in neurodegenerative conditions. Disease-specific
clusters of cerebellar atrophy have been found in Alzheimer’s disease, Frontotemporal Dementia and
Amyotrophic lateral sclerosis’®. Functional connectivity alterations?>2* and white matter disruption”
characterize cerebro-cerebellar loops in Alzheimer’s disease patients. Abnormal network connectivity
between cerebellum and cerebral cortical regions has been confirmed in the main subtypes of
Frontotemporal Dementia®*#! (behavioral-variant, semantic dementia and progressive nonfluent
aphasia). In Amyotrophic lateral sclerosis the functional reorganization following motor neuronal loss
increases cerebellar activation in motor tasks with respect to controls?®, while a widespread pattern of
white matter abnormalities has been reported together with white matter volume reduction®?.

In our work, the integration of cerebro-cerebellar connections improved the predictive power
of TVB simulations in pathological conditions, supporting cerebellar involvement in
neurodegenerative states and confirming the sizeable contribution of cerebro-cerebellar connectivity
to simulated brain dynamics '6. This improvement caused by the connection of cerebellar nodes in
TVB was especially evident in Amyotrophic lateral sclerosis, which is a long-range motor neuron
disease. This calls for future work to establish whether this result reflects a higher cerebellar
recruitment determined by Amyotrophic lateral sclerosis functional reorganization?s. Studies
evaluating the impact of cerebellar integration not only on static FC simulations, as performed in this

work, but also on dynamic resting-state FC simulations®}-%* are warranted.

Conclusion

TVB-derived biophysical parameters provided a unique description of the excitatory/inhibitory

balance both at the group and single subject level. An extremely high performance was achieved in
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patients’ discrimination combining TVB parameters and neuropsychological scores. Moreover, the
integration of cerebro-cerebellar connections in TVB improved the predictive power of the model in
neurodegeneration. Overall, this work opens new perspectives for the use of TVB to explore
neurodegenerative mechanisms, supports the involvement of the cerebellum in determining brain
dynamics in neurodegenerative diseases, and suggests a novel approach to obtain physiological

information relevant to future personalized diagnosis and therapy.
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Supplementary material

Supplementary Figure 1| Parameter space exploration results. 2D parameter space heat maps
show different values of correlation between experimental and simulated FC obtained at different
combinations of the TVB parameters (G, Ji, ] NMDA and w+). Parameter values that yielded the

highest correlation were chosen for the next steps of the analysis.

Supplementary Figure 2| Clustering analysis. (A) Visual representation of the four clusters (in
different colors) identified with k-means analysis using TVB-derived optimal biophysical parameters
as input variables. (B) Each of the four clusters was characterized by a combination of low and high
values of TVB-derived biophysical parameters (Ji, ] NMDA and wp are represented on the axis and

G values are represented with color code).
Supplementary Table 1: Wong-Wang model parameters for TVB simulations.

Supplementary Table 2: Classification results for group comparisons.
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Figures legends

Figure 1| Schematic representation of modelling workflow. MRI is used to obtain the structural
and experimental functional connectivity matrices needed for TVB construction and optimization.
From top left, clockwise: diffusion weighted images are preprocessed and elaborated to yield whole-
brain tractography. An ad-hoc parcellation atlas combining AAL atlas and SUIT is used to map the
structural connectivity (SC) matrices obtained from whole-brain tractography parcellation (top weight
matrix, bottom distance matrix). The Virtual Brain (TVB) is constructed using the structural
connectivity matrix for edges and neural masses for nodes. TVB simulations of neural activity allow
to extract BOLD signals for each node leading to define the simulated functional connectivity (FC)
matrix. TVB optimization is performed through model inversion by comparing the simulated FC with

the experimental FC. Model parameters and the corresponding equations are shown at the bottom.

Figure 2| Networks connectivity matrices. Columns 1 and 2 show the experimental structural (SC)
and functional connectivity (FC) matrices, which were used as input for TVB simulations in four
different groups: healthy (HC), Alzheimer’s disease (AD), Frontotemporal Dementia (FTD) and
Amyotrophic Lateral Sclerosis (ALS). For each group, matrices of a randomly chosen subject are
reported as an example. Columns 3 to 5 show the simulated FC obtained at single-subject level with
three different networks: whole-brain, cortical subnetwork (Cerebral) and embedded cerebro-
cerebellar subnetwork (Cerebro-Crbl). In the whole-brain network simulations were performed using
whole-brain nodes and connections (whole-brain nodes and edges are colored); in the cortical
subnetwork only cerebral cortex nodes and connections were considered (cortical nodes and edges are
colored); in the embedded cerebro-cerebellar subnetwork cerebral cortex nodes were considered taking
into account the influence of cerebro-cerebellar connections (cortical nodes and cerebellar edges are

colored).

Figure 3| Boxplots of optimal biophysical parameters and Pearson correlation coefficients (PCC).
(A) Boxplots of optimal biophysical parameters derived from TVB (global coupling, G, excitatory
synaptic coupling, ] NMDA, local excitatory recurrence, wp, inhibitory synaptic coupling, Ji) across
groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral
sclerosis). The asterisk (*) indicates significant difference (Mann-Whitney, p<0.05) between groups
(see Table 2 for details). (B) Boxplots of Pearson correlation coefficients (PCC) between experimental

and simulated FC for all groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia,
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difference (p<0.05) between networks (see Table 2 for details).

Figure 4| Classification analysis. ROC curves were calculated for each classification (healthy controls
versus Alzheimer’s disease, healthy controls versus Frontotemporal Dementia, healthy controls versus
Amyotrophic lateral sclerosis, Alzheimer’s disease versus Frontotemporal Dementia, Alzheimer’s
disease versus Amyotrophic lateral sclerosis, Frontotemporal Dementia versus Amyotrophic lateral
sclerosis) with their corresponding groups of variables (TVB parameters alone, neuropsychological
scores alone, TVB parameters combined with neuropsychological scores). AUC values confirm that
TVB parameters alone (blu) always yielded a poorer discriminant power than that offered by
neuropsychological scores alone (green). The combination of TVB parameters with
neuropsychological scores improved the discriminative power in all classifications reaching 100%
when distinguishing between Alzheimer’s disease and healthy controls and between Frontotemporal

Dementia and Amyotrophic lateral sclerosis.

Figure 5| Excitation/inhibition profiles. (A) Each cluster was characterized by a typical
excitation/inhibition profile. The color-bar (from blue to red) represents the scale from low to high of
each TVB-derived biophysical parameter. (B) Visual representation of cluster distributions across
groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral
sclerosis). Cluster numbers are reported on the x axis while cluster frequencies in each condition are

reported on the y axis. Each dot represents a single subject.
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Figure 1| Schematic representation of modelling workflow. MRI is used to obtain the structural and
experimental functional connectivity matrices needed for TVB construction and optimization. From top left,
clockwise: diffusion weighted images are preprocessed and elaborated to yield whole-brain tractography. An
ad-hoc parcellation atlas combining AAL atlas and SUIT is used to map the structural connectivity (SC)
matrices obtained from whole-brain tractography parcellation (top weight matrix, bottom distance matrix).
The Virtual Brain (TVB) is constructed using the structural connectivity matrix for edges and neural masses
for nodes. TVB simulations of neural activity allow to extract BOLD signals for each node leading to define
the simulated functional connectivity (FC) matrix. TVB optimization is performed through model inversion by
comparing the simulated FC with the experimental FC. Model parameters and the corresponding equations
are shown at the bottom.
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simulated

Figure 2| Networks connectivity matrices. Columns 1 and 2 show the experimental structural (SC) and
functional connectivity (FC) matrices, which were used as input for TVB simulations in four different groups:
healthy (HC), Alzheimer’s disease (AD), Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis
(ALS). For each group, matrices of a randomly chosen subject are reported as an example. Columns 3 to 5
show the simulated FC obtained at single-subject level with three different networks: whole-brain, cortical
subnetwork (Cerebral) and embedded cerebro-cerebellar subnetwork (Cerebro-Crbl). In the whole-brain
network simulations were performed using whole-brain nodes and connections (whole-brain nodes and
edges are colored); in the cortical subnetwork only cerebral cortex nodes and connections were considered
(cortical nodes and edges are colored); in the embedded cerebro-cerebellar subnetwork cerebral cortex
nodes were considered taking into account the influence of cerebro-cerebellar connections (cortical nodes
and cerebellar edges are colored).
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Figure 3| Boxplots of optimal biophysical parameters and Pearson correlation coefficients
(PCC). (A) Boxplots of optimal biophysical parameters derived from TVB (global coupling, G, excitatory
synaptic coupling, J_NMDA, local excitatory recurrence, wp, inhibitory synaptic coupling, Ji) across groups
(healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis). The
asterisk (*) indicates significant difference (Mann-Whitney, p<0.05) between groups (see Table 2 for
details). (B) Boxplots of Pearson correlation coefficients (PCC) between experimental and simulated FC for
all groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis)
and networks (whole-brain network, Whole_brain, cortical subnetwork, Cerebral; embedded cerebro-
cerebellar subnetwork, Cerebro-Crbl). Asterisks (*) indicate significant difference (p<0.05) between
networks (see Table 2 for details).
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Figure 4| Classification analysis. ROC curves were calculated for each classification (healthy controls
versus Alzheimer’s disease, healthy controls versus Frontotemporal Dementia, healthy controls versus
Amyotrophic lateral sclerosis, Alzheimer’s disease versus Frontotemporal Dementia, Alzheimer’s disease
versus Amyotrophic lateral sclerosis, Frontotemporal Dementia versus Amyotrophic lateral sclerosis) with
their corresponding groups of variables (TVB parameters alone, neuropsychological scores alone, TVB
parameters combined with neuropsychological scores). AUC values confirm that TVB parameters alone (blu)
always yielded a poorer discriminant power than that offered by neuropsychological scores alone (green).
The combination of TVB parameters with neuropsychological scores improved the discriminative power in all
classifications reaching 100% when distinguishing between Alzheimer’s disease and healthy controls and
between Frontotemporal Dementia and Amyotrophic lateral sclerosis.
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Figure 5| Excitation/inhibition profiles. (A) Each cluster was characterized by a typical
excitation/inhibition profile. The color-bar (from blue to red) represents the scale from low to high of each
TVB-derived biophysical parameter. (B) Visual representation of cluster distributions across groups (healthy
controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis). Cluster numbers
are reported on the x axis while cluster frequencies in each condition are reported on the y axis. Each dot
represents a single subject.
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Table 1: Demographics, clinical and neuropsychological data (means, SDs and group differences).

Measures HC AD FTD ALS p-value
Males/females 7/8 9/6 11/4 8/7 0.201
Age (years) 64 (11) 70 (7) 69 (7) 67 (8) 0.494
Education (years) 10 (3) 8 (3) 10 (4) 9 (5) -
Memory 3.0(0.4) 0.7 (0.7) 16 (0.7) 2.6 (0.6) <0.001*
Executive-function 2.9 (0.6) 0.8 (1.1) 1.0 (0.9) 19 (0.9) <0.001 *
Attention 3.4(0.5) 1.1 (1.0) 13(1.2) 2.0(0.8) <0.001*
Language 3.5(0.5) 1.1 (1.3) 1.3 (1.0 29 (1.2) <0.001*
Visuospatial skills 3.7(0.8) 1.2 (1.7) 2.2 (19 2.2 (2.0 0.002 *

Gender, age, education and neuropsychological scores are reported for each group (Healthy controls, HC, Alzheimer's disease,
AD, Frontotemporal dementia, FTD and Amyotrophic lateral sclerosis, ALS) as mean values and standard deviations in brackets.
Significant threshold is set at p<0.05.

* refers to significant group differences assessed with Kruskal-Wallis

Table 2: Optimal model parameters and Pearson Correlation Coefficients per group.

HC AD FTD ALS p-value?
TVB_parameters Mean (SD) Mean (SD) Mean (SD) Mean (SD)
G 0.887 (0.226) 0.137 (0.236) 0.980 (0.248) 0.993 (0.287) 0.047 *
Ji 2.473 (0.268) 2.753 (0.275) 2.520 (0.293) 2.580 (0.377) 0.047 *
Jnmpa 0.137 (0.020) 0.147 (0.024) 0.143 (0.026) 0.152 (0.023) 0.106 ¢
W, 1.587 (0.238) 1.477 (0.280) 1527 (0.312) 1430 (0.247) 0.274
PCC Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Whole-brain 0.342 (0.010) 0.297 (0.076) 0.343 (0.064) 0.312 (0.070) 0.285
Cerebral 0.347 (0.097) 0.342 (0.077) 0.392 (0.080) 0.341(0.056) 0.241
Cerebro-Crbl 0.353 (0.109) 0.337 (0.087) 0.396 (0.084) 0.348 (0.067) 0.283
p-valueb 0.725 <0.001"" <0.001" " 0.022"

Model optimal biophysical parameters (G = global coupling, Juwpa = excitatory synaptic coupling, w.= local excitatory
recurrence, J; = inhibitory synaptic coupling) and Pearson Correlation Coefficients (PCC) between experimental and simulated
FC for all groups (HC = Healthy controls, AD = Alzheimer's disease, FTD = Frontotemporal dementia, ALS = Amyotrophic
lateral sclerosis) and networks (whole-brain, cerebral subnetwork and embedded cerebro-cerebellar subnetwork= Cerebro-
Crbl). Values are expressed as mean values and standard deviation in brackets.

Significant threshold is set at p<0.05.

2group differences assessed with Kruskal-Wallis for optimal model parameters and one-way ANOVA for PCC

®PCC differences between networks assessed with GLM

* refers to significant difference between healthy controls and Alzheimer's disease assessed with Mann-Whitney

° refers to significant difference between Alzheimer’s disease and Frontotemporal Dementia assessed with Mann-Whitney

¢ refers to significant difference between healthy controls and Amyotrophic lateral sclerosis assessed with Mann-Whitney

« refers to p<0.003 between whole-brain and cortical networks

t refers to p<0.01 between whole-brain and embedded networks
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Table 3: Backward regressions results.

PREDICTORS EXPLAINED VARIANCE SIGNIFICANCE

Memory Ji 8.4% 0.028
Executive-function group, gender, age, w+,

G 19.9% 0.037

group, gender, age, G 19.8% 0.018

group, age, G 19.5% 0.008

group, age 18.5% 0.004

Attention group, Ji, gender, age 16.9% 0.040

group, Ji, age 16.7% 0.019

group, Ji 15% 0.0Mm

group 12% 0.008

Language group, G 10.8% 0.044

G 8.7% 0.025

Visuospatial skills group, Ji 10.7% 0.045

The variance explained by the parameters used in backward regressions is calculated with the R?index. Significant threshold is
set at p<0.05. For each cognitive domain a different combination of features significantly explains a percentage of the variance
(ANOVA).
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Supplementary Figure || Parameter space exploration results. 2D parameter space heat maps show different
values of correlation between experimental and simulated FC obtained at different combinations of the TVB parameters
(G, Ji, ]_NMDA and w+). Parameter values that yielded the highest correlation were chosen for the next steps of the

analysis.
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Supplementary Figure 2| Clustering analysis. (A) Visual representation of the four clusters (in different colors)
identified with k-means analysis using TVB-derived optimal biophysical parameters as input variables. (B) Each of the
four clusters was characterized by a combination of low and high values of TVB-derived biophysical parameters (Ji,

J_NMDA and wp are represented on the axis and G values are represented with color code).
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Supplementary Table |: Wong-Wang model parameters for TVB simulations.

PARAMETERS VALUE DESCRIPTION
ag, bg, dg, 6, WE 310 nC!, 125 Hz, 0.16 s, 100 ms, | Excitatory gating variables
ai, by, di, i, Wi 615 nC!, 177 Hz, 0.087 s, 10 ms, 0.7 Inhibitory gating variables
Y 0.641/1000 Kinetic parameter
c 0.01 nA Noise amplitude
lo 0.382 nA Overall effective external input
Cj Obtained from diffusion tractography Structural connectivity (SC) matrix
G Obtained from parameters optimization Global coupling scaling factor
Ji Obtained from parameters optimization Feedback inhibitory synaptic coupling
JNMDA Obtained from parameters optimization Excitatory synaptic coupling

W Obtained from parameters optimization Local excitatory recurrence

Supplementary Table 2: Classification results (AUC, sensitivity and specificity) for group comparisons.

TVB_PARAMS NPS TVB + NPS

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.

HC vs AD 76.7% 0.800 0.733 93.3% 0.867 1.000 100% 1.000 1.000

HC vs FTD 63.3% 0.600 0.667 90% 0.800 1.000 93.3% 0.867 1.000
HC vs ALS 76.7% 0.733 0.800 85.7% 0.769 0.933 89.3% 0.846 0.933
AD vs FTD 73.3% 0.533 0.933 80% 0.800 0.800 80% 0.867 0.733
AD vs ALS 66.7% 0.600 0.733 96.4% 1.000 0.933 96.4% 1.000 0.933
FTD vs ALS 56.7% 0.533 0.600 96.4% 1.000 0.933 100% 1.000 1.000

Areas under the curve (AUC), sensitivity (Sens.) and specificity (Spec.) are reported for all classifications (HC=healthy controls, AD=Alzheimer’s
disease, FTD=Frontotemporal dementia, ALS=Amyotrophic lateral sclerosis) performed with different independent variables: TVB-derived biophysical
parameters alone (TVB_params), neuropsychological scores alone (NPS) and a combination of both (TVB+NPS).
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