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Abstract 
Brain pathologies are based on microscopic changes in neurons and synapses that reverberate into large 

scale networks altering brain dynamics and functional states. An important yet unresolved issue 

concerns the impact of patients excitation/inhibition profiles on neurodegenerative diseases including 

Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. In this work we 

used a simulation platform, The Virtual Brain, to simulate brain dynamics in healthy controls and in 

Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis patients. The brain 

connectome and functional connectivity were extracted from 3T-MRI scans and The Virtual Brain 

nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of 

the excitatory/inhibitory balance. The integration of cerebro-cerebellar loops improved the correlation 

between experimental and simulated functional connectivity, and hence The Virtual Brain predictive 

power, in all pathological conditions. The Virtual Brain biophysical parameters differed between 

clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer’s disease and 

stronger NMDA (N-methyl-D-aspartate) receptor-dependent excitation in Amyotrophic Lateral 

Sclerosis. These physio-pathological parameters allowed an advanced analysis of patients’ state. In 

backward regressions, The Virtual Brain parameters significantly contributed to explain the variation 

of neuropsychological scores and, in discriminant analysis, the combination of The Virtual Brain 

parameters and neuropsychological scores significantly improved discriminative power between 

clinical conditions. Eventually, cluster analysis provided a unique description of the 

excitatory/inhibitory balance in individual patients. In aggregate, The Virtual Brain simulations reveal 

differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive 

assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473997
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 
 
 

Author affiliations: 

1 Brain Connectivity Center, IRCCS Mondino Foundation, Research Department, 27100 Pavia, Italy 

2 Dept of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy 

3 Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy 

4 Department of Radiology, IRCCS Policlinico San Donato, 20097 Milano, Italy 

5 Advanced Imaging and Radiomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy 

6 Unit of Neuropsychology, IRCCS Mondino Foundation, 27100 Pavia, Italy 

7 Institut de Neurosciences des Systèmes, INSERM, INS, Aix Marseille University, 13005 Marseille, 

France 

8 Department of Neuroinflammation, NMR Research Unit, Queen Square MS Centre, UCL Queen 

Square Institute of Neurology, Russell Square House, Russell Square, WC1B 5EH, London, UK 

 
 
 

Correspondence to: Monteverdi Anita 

anita.monteverdi01@universitadipavia.it 
 

Running title: E/I profiling in neurodegeneration 
 

Keywords: Brain dynamics; Excitatory/Inhibitory balance; Alzheimer’s disease; Frontotemporal 
dementia; Amyotrophic lateral sclerosis. 

 
Abbreviations: expFC = experimental Functional Connectivity; FC = Functional Connectivity; PCC 
=Pearson Correlation Coefficient; SC = Structural Connectivity; simFC = simulated Functional 
Connectivity; TVB = The Virtual Brain 

 
 
 

Introduction 
Neuroscience is showing a growing interest in merging results at different scales of complexity in order 

to achieve a global and comprehensive knowledge of the brain and its mechanisms. In this context, 

brain modeling can be used to bridge the gap between cellular phenomena and whole-brain dynamics, 

both in physiological (i.e. healthy) and pathological conditions1. The Virtual Brain (TVB)2,3 is a 

neuroinformatic platform recently developed to simulate brain dynamics starting from individual 

structural (SC) and functional connectivity (FC) matrices constructed from MRI data. TVB has been 
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used to characterize brain dynamics in healthy subjects4 but also to explore pathological mechanisms 

in neurological diseases, such as epilepsy5, stroke6, brain tumor7 and Alzheimer’s disease8,9. 

Neurodegenerative states ranging from Alzheimer’s disease, Frontotemporal Dementia and 

Amyotrophic lateral sclerosis are reportedly characterized by a disrupted balance between excitation 

and inhibition, but this knowledge is not yet available for single subjects unless using lengthy magnetic 

resonance spectroscopy sequences to quantify Glutamate or GABA (gamma-Aminobutyric acid) 

concentrations. Hyperexcitation is thought to play a pivotal role in their pathogenesis10–12, but 

multiform and sometimes contradictory results based on empirical observations make it difficult to 

gain an overall agreement on the neural mechanisms and the evolution of hyperexcitation over the 

course of the disease. In addition, despite some controversies, increasing findings are supporting 

GABAergic remodeling as an important feature of Alzheimer’s disease condition13. GABAergic 

dysfunction is less explored in Frontotemporal Dementia and Amyotrophic lateral sclerosis, but it has 

been demonstrated that baseline GABA levels can influence response to therapies in Frontotemporal 

Dementia patients14 while impaired cortical inhibition due to GABAergic dysfunction can change over 

Amyotrophic lateral sclerosis progression15. Predicting treatment effectiveness for Alzheimer’s 

disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis patients remains problematic, and 

the lack of meaningful biomarkers for patients’ classification worsen the situation. Since TVB is 

designed to extract information about connectivity and network parameters including those linked to 

inhibition/excitation pathways in single human subjects, it has a high potential to foster personalized 

and precision medicine. 

It is important to point out the need of performing TVB analysis including not only cerebral nodes and 

their structural connections to one another but also the cerebellum. Recently, it was shown that 

integrating cerebro-cerebellar connections can improve TVB predictive capability in healthy 

subjects16. This is in line with the increasing evidence supporting cerebellar involvement not only in 

motor learning and coordination17 but also in cognitive processing18,19,20,21. Cerebellar impairment has 

been revealed in Alzheimer’s disease22–24, Frontotemporal Dementia25 and Amyotrophic lateral 

sclerosis26. 

In this work, we exploited TVB capabilities i) to characterize each group of subjects by providing 

personalized excitation/inhibition profiles ii) to assess the cerebellar impact on brain dynamics 

generation in healthy controls and in Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic 

lateral sclerosis. TVB simulations were performed using the Wong-Wang model27, which allowed us 

to derive a set of subject-specific biophysical parameters able to describe global brain dynamics and 

the excitatory/inhibitory balance in local networks. We evaluated the potential for clinical translation 
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of the biophysical parameters obtained from TVB simulations by exploring their association with 

patients’ cognitive performance and testing their discriminative power between clinical conditions and 

neuropsychological domains. This work, by providing a unique description of the excitatory/inhibitory 

balance at single-subject level, can contribute to the progress of personalized and precision medicine 

opening new perspectives for brain modelling in neurodegenerative diseases. 
 

Materials and Methods 
In this work individual’s subject analysis was conducted as described in Figure 1 and simulations were 

performed in three networks16: whole-brain network, cortical subnetwork, and embedded cerebro- 

cerebellar subnetwork (see section networks, Figure 2). 

 
Subjects 
Sixty patients affected by neurodegenerative diseases were recruited at the IRCCS Mondino 

Foundation, as part of a study on cognitive impairment published in Palesi et al.24, Castellazzi et al.28, 

Lorenzi et al.29, Pizzarotti et al.25. The study was carried out in accordance with the Declaration of 

Helsinki with written informed consent from all subjects. The protocol was approved by the local ethic 

committee of the IRCCS Mondino Foundation. Patients underwent a complete diagnostic workup 

including neuropsychological assessment, MRI (and electroneuromyography in patients with motor 

neuron impairment) in order to obtain an exhaustive phenotypic profiling and a correct etiological 

definition. Based on the most recent diagnostic criteria subjects were classified into three groups: 

fifteen Alzheimer’s disease patients30 (6 females, 70 ± 7 years), fifteen Frontotemporal Dementia 

patients (4 females, 69 ± 7 years) [including behavioral Frontotemporal Dementia 31 and Primary 

Progressive Aphasia32], fifteen Amyotrophic lateral sclerosis33 patients (7 females, 67 ± 8 years). In 

detail, diagnosis of Alzheimer’s disease was made according to the criteria of the National Institute of 

Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) workgroup30; Frontotemporal Dementia diagnosis was 

supported according to Rascovsky diagnostic criteria but not determined by the cognitive profile and 

no patient was excluded based on neuropsychological profile if diagnostic criteria were still met; 

Amyotrophic lateral sclerosis diagnosis was made in patients fulfilling Awaji criteria33 and this group 

included patients with Amyotrophic lateral sclerosis and mild cognitive impairment. In addition, fifteen 

healthy controls (8 females, 64 ± 11 years) were enrolled on a voluntary basis as reference group. All 

healthy controls underwent clinical assessment to exclude any cognitive or motoneuron impairment. 
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For all subjects, exclusion criteria were: age>80 years, a diagnosis of significant medical, neurological 

(other than Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis) and 

psychiatric disorder, pharmacologically treated delirium or hallucinations and secondary causes of 

cognitive decline (e.g. vascular metabolic, endocrine, toxic and iatrogenic). Table 1 shows 

demographic, clinical, and neuropsychological data. 
 

Neuropsychological examination 
All subjects underwent a neuropsychological examination based on a standardized battery of tests to 

assess their global cognitive status (Mini-Mental State Examination, MMSE34) and different cognitive 

domains: attention (Stroop test35, Trail Making test 36A and B, Attentive Matrices37), memory (Digit 

and Verbal span, Corsi block-tapping test, Logical Memory test37, Rey-Osterrieth38 complex figure 

delayed recall, Rey’s 15 words test39), language (phonological39 and semantic40verbal fluency), 

logical-executive functions (Raven’s Matrices39 1947, Winconsing Card Sorting41 test, Frontal 

Assessment42 Battery) and visuospatial skills (Rey-Osterrieth38 complex figure copy). For each test 

age-, gender- and education corrected-scores were computed and then transformed into equivalent 

scores ranging from 0 (pathological) to 4 (normal) on the basis of the equivalent score standardization 

method43. For each cognitive domain, a weighted score was derived from the average of the equivalent 

scores of the tests belonging to that specific cognitive domain. 
 

MRI Acquisitions 
All subjects underwent MRI examination using a 3T Siemens Skyra scanner with a 32-channel head 

coil. The protocol included resting-state fMRI (T ∗-weighted GRE-EPI sequence, TR/TE = 3010/20 

ms; 60 slices, acquisition matrix = 90x90, voxel size = 2.5x2.5x2.5 mm3 isotropic, 120 volumes) and 

diffusion weighted (DW) imaging (SE-EPI sequence, TR/TE = 10000/97 ms, 70 slices with no gap, 

acquisition matrix = 120×120, voxel size = 2x2x2 mm3 isotropic, 64 diffusion-weighted directions, b- 

value = 1200 s/mm2, 10 volumes with no diffusion weighting (b0 image). For anatomical reference, a 

whole brain high-resolution 3D sagittal T1-weighted (3DT1) scan (TR/TE = 2300/2.95 ms, TI = 900 

ms, flip angle = 9°, 176 slices, acquisition matrix = 256 × 256, in-plane resolution = 1.05 × 1.05 mm, 

slice thickness = 1.2 mm) was also acquired. 
 

Preprocessing and tractography of diffusion data 
For each subject, a mean b0 image was obtained averaging the 10 volumes acquired with no diffusion 

weighting. DW data were denoised and corrected for Gibbs artifact44, eddy currents distortions and 
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aligned to the mean b0 image using eddy tool45 (FSL). A binary brain mask was obtained from the 

mean b0 image using brain extraction tool46 and DTIFIT was used to generate individual fractional 

anisotropy (FA) and mean diffusivity (MD) maps. 3DT1-weighted images were segmented using 

MRtrix347,48 as white matter (WM), gray matter (GM), subcortical GM and cerebrospinal fluid (CSF). 

30 million streamlines whole-brain anatomically constrained tractography49 was performed within 

MRtrix3, estimating fibers orientation distribution with multi-shell multi-tissue constrained spherical 

deconvolution (CSD) and using probabilistic streamline tractography50. As in previous works16,51, a 

correction of spurious cerebro-cerebellar tracts was performed excluding the ipsilateral connections 

from whole-brain tractograms. 
 

Preprocessing of fMRI data 
fMRI preprocessing was carried out combining SPM1252, FSL and MRtrix3 commands in a custom 

MATLABR2019b53 script. Marchenko-Pastur principal component analysis (MP-PCA) denoising54 

was firstly performed, followed by slice-timing correction, realignment to mean functional image and 

affine registration to the 3DT1-weighted image. These steps were followed by polynomial detrend and 

24 motion parameters regression55. A subject-specific CSF mask was extracted from the 3DT1 

segmentation, eroded using a 99% probability threshold, and constrained to areas within the ALVIN 

(Automatic Lateral Ventricle delIneatioN) mask of the ventricles56. These corrections were performed 

to avoid the risk of capturing signals of interest from adjacent GM voxels, and nuisance regressors 

identified within the restricted CSF mask were removed using a component-based noise correction 

(compCor) approach57,58. Temporal band-pass filtering (0.008-0.09 Hz) was finally applied. 
 

Structural and functional connectivity 
Connectomes of SC and FC were estimated combining a parcellation atlas with whole-brain 

tractography and rs-fMRI signals of each subject, respectively. An ad-hoc GM parcellation atlas was 

created combining 93 cerebral (including cortical and deep GM structures) and 31 cerebellar (SUIT, A 

spatially unbiased atlas template of the cerebellum and brainstem) labels59 in MNI152 space. Each GM 

parcellation was considered as a node for the connectivity analysis. The atlas was transformed to 

subject-space inverting the normalization from the 3DT1-weighted image to the MNI152 standard 

space. The parcellation atlas applied to the whole-brain tractography led to two types of SC matrices: 

a distance matrix containing the length of tracts connecting each pair of nodes, and a weight matrix in 

which connections strengths (number of streamlines) were normalized by the maximum value per each 
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subject. The time-course of BOLD signals was extracted for each node and the experimental FC matrix 

(expFC) was computed as the Pearson’s correlation coefficient (PCC) of the time-courses between 

each pair of brain regions. Matrix elements were converted with a Fisher’s z transformation and 

thresholded at 0.120616. 
 

Brain dynamics simulation with TVB 
TVB workflow includes several steps: 1) incorporation of subject SC matrices; 2) selection of a mean 

field/neural mass mathematical model; 3) simulation of the rs-fMRI time-courses per node and creation 

of the simulated FC matrix (simFC); 4) model parameters tuning to achieve the best matching between 

simFC and expFC matrices; 5) final simulation of brain dynamics with the optimal model parameters 

as described in detail by Deco et al.27. 

Computational model from neuronal activity to large-scale signals 
The Wong-Wang model27 implemented as highly optimized C code60 was chosen to simulate whole- 

brain dynamics. This dynamic mean field model simulates the local regional neuronal activity as the 

result of a network composed of interconnected excitatory and inhibitory neurons coupled through 

NMDA and GABA receptor types. Details on the Wong-Wang model can be found in Deco et al.27. 

Briefly, brain dynamics are described by the following set of coupled non-linear stochastic differential 

equations: 
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where ri(E,I) denotes the firing rate of the excitatory (E) and inhibitory (I) population, Si(E,I) identifies 

the average excitatory or inhibitory synaptic gating variables at each local area, i, and Ii(E,I) is the input 

current to the excitatory and inhibitory populations. All parameters described in Supplementary Table 
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1 were set as in Deco et al.27, except those that are tuned during parameters optimization, described 

below. Parameter space exploration was performed for global coupling (G), which is a scaling factor 

denoting long-range coupling strength, and local parameters defining the strength of inhibitory 

(GABA) synapses (Ji), the strength of excitatory (NMDA) synapses (JNMDA) and the strength of local 

excitatory recurrence (w+). Thus, this model retains information both on global brain dynamics and 

local excitatory/inhibitory balance and is particularly interesting for the investigation of pathological 

conditions. 

For each set of parameters combination, resting-state BOLD fMRI time-courses were simulated over 

6 min length using a Balloon-Windkessel hemodynamic neurovascular coupling model61 while the 

simFC was computed as described below (see section 2.7) for the expFC. Parameters were adjusted 

iteratively until the best fit, i.e. the highest correlation, between expFC and simFC was achieved 

(Supplementary Figure 1). 

Networks 
To investigate the impact of the cerebellum on brain dynamics generation, simulations were performed 

using three different combinations of connections and nodes (Figure 2): 

● Whole-brain network: whole-brain nodes and connections 

● Cortical subnetwork: cerebral cortex nodes and connections (excluding cerebro-cerebellar 
connections) 

● Embedded cerebro-cerebellar subnetwork: cerebral cortex nodes but also considering the 
influence of cerebro-cerebellar connections 

 
For each of these three networks predictive power was evaluated as the mean PCC between expFC and 

simFC matrices in different clinical conditions (healthy controls, Alzheimer’s disease, Frontotemporal 

Dementia, Amyotrophic lateral sclerosis). 
 

Statistic 

Statistical tests were performed using SPSS software version 2162. 
 

Excitation/inhibition role in neurodegeneration 
 

To assess whether biophysical parameters derived from TVB differ according to the clinical condition, 

optimal model parameters were tested for normality (Shapiro-Wilk test) and differences between 
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groups were assessed with non-parametric tests (Kruskal-Wallis across all groups and Mann-Whitney 

between each pair of groups) because they did not present a Gaussian distribution. 

 
A multiple regression analysis was performed to investigate the relationship between individual scores 

of the 6 cognitive domains (attention, memory, language, logical-executive functions, visuospatial 

skills) and the optimal model parameters. Model parameters combined with age, gender and group 

category were used in a backward approach to identify which of them significantly (p<0.05) explained 

neuropsychological scores variance in all subjects together. 

 
Moreover, to assess the relevance of these parameters in discriminating between physiological and 

pathological conditions, a discriminant analysis was performed using the group as the dependent 

variable and considering as independent variables: (i) model parameters alone, (ii) neuropsychological 

scores alone and (iii) a combination of both. To visualize and assess the sensitivity and specificity of 

the best discriminative variables, receiving operating characteristics (ROC) curves and corresponding 

areas under the curve (AUC) were calculated. 

 
Finally, a k-mean cluster analysis was performed to reconstruct subjects-specific excitation/inhibition 

profiles. The number of clusters was an input parameter arbitrary set equal to 4 as the number of 

variables considered (model parameters). A frequency analysis of the clusters obtained in each group 

enabled a deeper understanding of excitatory/inhibitory balance disruption. 

 
Cerebellar role in brain dynamics in neurodegeneration 

 
PCC obtained with the three networks were normally distributed (Shapiro-Wilk test), thus parametric 

tests were used to compare them between different conditions. First, to assess changes of TVB 

predictive power with the clinical condition, a one-way ANOVA was performed between PCC of each 

network across groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic 

lateral sclerosis). Then, to assess the impact of the specific network on TVB predictive power, a 

multivariate general linear model (GLM) with Bonferroni correction was chosen to compare PCC 

values of the three networks within each group. 

 
Code and data accessibility 
All codes used for this study are freely available. The optimized TVB C code can be found at 

https://github.com/BrainModes/fast_tvb. Dataset will be available at 10.5281/zenodo.5796063. 
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Results 
Excitation/inhibition role in neurodegeneration 

Both global (G) and local (Ji, JNMDA, w+) parameters were adjusted iteratively to optimize the 

model fit to empirical data. Optimal model parameters were found across the whole-brain network of 

each subject. 

Group differences in TVB parameters 
The biophysical parameters derived from TVB were compared between groups to assess 

whether, at group level, their value could differ according to the clinical condition. Both global and 

local biophysical parameters showed significant differences between groups (Table 2, Figure 3A): 

Alzheimer’s disease patients showed higher G and Ji compared to healthy controls and Frontotemporal 

Dementia (p<0.05); Amyotrophic lateral sclerosis patients showed higher JNMDA than healthy controls 

(p<0.05); no statistically significant differences were found in healthy controls and Frontotemporal 

Dementia compared to the other groups. 

Relationship between TVB parameters and neuropsychological scores 
Parameters used in backward regressions, significantly explained the variation of scores in 

different neuropsychological domains. The explained variance of each neuropsychological domain was 

progressively reduced by simplifying the regression model through the removal of one or more 

predictors and ranged from ~20% to ~8%. For each cognitive domain, a different combination of 

features was necessary to significantly (p<0.05) explain a percentage of the variance (Table 3). 

Discriminative power of TVB parameters and neuropsychological scores 
Discriminative power of TVB parameters and neuropsychological scores is reported for all 

comparisons (healthy controls versus Alzheimer’s disease, healthy controls versus Frontotemporal 

Dementia, healthy controls versus Amyotrophic lateral sclerosis, Alzheimer’s disease versus 

Frontotemporal Dementia, Alzheimer’s disease versus Amyotrophic lateral sclerosis, Frontotemporal 

Dementia versus Amyotrophic lateral sclerosis) in Supplementary Table 2. TVB parameters always 

yielded a poorer discriminant power (about 70%) than that offered by neuropsychological scores (about 

90%). When neuropsychological scores were complemented by TVB values as joint independent 

variables, the discriminative power increased in all classifications reaching 100% when distinguishing 

between Alzheimer’s disease and healthy controls, and between Frontotemporal Dementia and 

Amyotrophic lateral sclerosis. To visualize all these results, ROC curves are reported in Figure 4. 
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A personalized description of the excitatory/inhibitory balance 
Each of the four clusters identified with the k-means analysis was characterized by a different 

combination of values for TVB-derived biophysical parameters, as reported in Figure 5A and 

Supplementary Figure 2. Considering the biophysical meaning of each parameter derived from the 

simulation, we can describe the k-means clusters as follows: 

● cluster 1 is mainly characterized by medium to strong overexcitation (medium to high values 
of JNMDA) 

● cluster 2, in addition to show strong overexcitation (very high values of JNMDA), is characterized 
by a high global coupling strength (medium to high values of G) and medium to strong 
overinhibition (medium to high values of Ji) 

● cluster 3 is the only one characterized by medium or low values of G, Ji and JNMDA and high 
values of local excitatory recurrence (w+) 

● cluster 4 is mostly characterized by overinhibition (high values of Ji) and high global coupling 
strength between nodes (higher values of G). 

All the groups considered were represented in more than one clusters, as shown in Figure 5B. 

The distribution of subjects belonging to different condition across clusters revealed that, cluster 1 was 

more frequent in healthy controls (20%) and Amyotrophic lateral sclerosis (26.7%) than in Alzheimer’s 

disease and Frontotemporal Dementia (both 6.7%), cluster 2 was less present in healthy controls 

(13.3%) than in pathological conditions (Alzheimer’s disease=33.3%, Frontotemporal 

Dementia=33.3% and Amyotrophic lateral sclerosis=20%), cluster 3 was the mostly present in healthy 

controls subjects (46.7%), medium frequent in Frontotemporal Dementia (33.3%) and tended to 

disappear in Amyotrophic lateral sclerosis (6.7%) and Alzheimer’s disease subjects (0%), cluster 4 was 

the most frequent in Alzheimer’s disease (60%) and Amyotrophic lateral sclerosis (46.7%) and less 

frequent in healthy controls (20%) and Frontotemporal Dementia (26.7%). 
 

Cerebellar role in brain dynamics in neurodegeneration 
To understand the role of the cerebellum in neurodegeneration, we performed TVB simulations 

using three different networks: (i) Whole-brain network, (ii) Cortical subnetwork, (iii) Embedded 

cerebro-cerebellar subnetwork as in Palesi et al.16. For each of these three networks, the predictive 

power was evaluated as the mean PCC between expFC and simFC matrices in healthy controls and in 

the pathological groups: Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral 

sclerosis. 
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Predictive power of TVB simulations 
TVB simulation performed both in physiological and pathological conditions led to good fit 

values between the expFC and simFC (Table 2). No differences were found between PCC values of 

each network across clinical groups, but significant differences were found in each group comparing 

PCC of the three networks. For all the pathological groups, PCC values obtained with the embedded 

cerebro-cerebellar subnetwork were significantly higher (p<0.01) than those obtained with the whole- 

brain network, while PCC of the cortical subnetwork was significantly higher (p<0.003) than that of 

the whole-brain network in Alzheimer’s disease and Frontotemporal Dementia (Table 2, Figure 3B). 

No differences were found between the three networks in healthy controls. 

Discussion 
For the first time, in this work we characterized the excitatory/inhibitory profile in 

neurodegenerative (Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis) 

conditions integrating cerebro-cerebellar connections in TVB. Importantly, by adopting the Wong- 

Wang model to model brain dynamics, we gained information on local excitatory/inhibitory balance at 

the single subject level. 
 

Excitation/inhibition role in neurodegeneration 
Hyper-excitation and over-inhibition underly different neurodegenerative 
mechanisms 

Parameters derived from TVB simulations using the Wong-Wang model yield information on 

global brain dynamics and local excitatory/inhibitory balance. In particular, the global scaling factor G 

denotes the strength of long-range connections, and higher global coupling means a greater weighting 

of the global over the local connectivity. The remaining three parameters define the balance between 

excitation and inhibition in the simulated network: JNMDA represents the strength of excitatory synapses 

in the network, Ji denotes the strength of inhibitory synapses and w+ the strength of recurrent excitation. 

Our results revealed that different clinical groups were characterized by specific TVB parameters 

providing new clues for the interpretation of the dysfunctional mechanisms in local 

microcircuits. 

To date, patterns of altered FC in Alzheimer’s disease from a resting-state networks perspective 

have been reported mainly in the default mode network (DMN)63,64, although a wider involvement has 

been suggested by our group in previous works22. Our data demonstrated that G and Ji were higher in 

Alzheimer’s disease patients compared to healthy controls suggesting that Alzheimer’s disease subjects 
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were characterized by increased global coupling and overinhibition. This increased G value in our 

Alzheimer’s disease group could be interpreted as a compensatory mechanism counteracting altered 

cerebral connectivity, but it might also underly the hypersynchrony typically characterizing disrupted 

networks in patients22,65. Furthermore, our data showing an increased inhibition and suggesting that 

GABAergic dysfunction plays a role in Alzheimer’s disease pathology are in line with the novel 

hypothesis that GABAergic remodeling might be an important feature of neurodegeneration13. 

It is worth noting that Alzheimer’s disease showed higher G and Ji also compared to 

Frontotemporal Dementia patients, strengthening the tenet that the pathophysiological mechanisms 

underlying the two diseases are different. Indeed, Frontotemporal Dementia showed G and Ji values 

similar to healthy controls, consistent with the similarity of cortical neural synchronization in 

Frontotemporal Dementia and healthy controls66. 

Finally, Amyotrophic lateral sclerosis patients were characterized by an increased JNMDA, which 

is in line with the cortical hyperexcitability frequently reported in this pathological condition12. 

TVB-derived biophysical parameters help to explain cognitive performance 
TVB-derived biophysical parameters combined with age, gender and group category 

significantly explained the variance of neuropsychological scores both in physiological and 

pathological groups. This suggests that the levels of excitation, inhibition and global coupling are 

associated with cognitive performance in the different clinical conditions. 

The clinical relevance of TVB parameters is further highlighted by results of discriminant analysis. 

The discriminative power of neuropsychological tests alone was always higher than the one obtained 

with TVB parameters alone. However, when neuropsychological measures were combined with TVB 

parameters, the discriminative power improved, reaching in some cases 100% of accuracy. Importantly 

the performance of our classification was satisfactory not only to distinguish healthy controls from 

patients, but also to differentiate patients belonging to different neurodegenerative conditions. This 

opens an interesting perspective for the development of new diagnostic tools combining TVB 

parameters with neuropsychological scores in future machine learning approaches. 

The excitatory/inhibitory balance in single-subject 
For each subject, TVB predicted the optimal parameters, providing a subject-specific description 

of the excitatory/inhibitory balance that could be analyzed at group level (as discussed above) or used 

to establish cluster membership in a data-driven approach. 

While at group level there were noticeable differences in excitatory/inhibitory parameters, when 

considering single-subjects’ profiles, K-means clusters were not group specific; this suggests a 
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heterogeneous excitatory and inhibitory balance across subjects that could be exploited for future 

personalized interventions. Considering the biophysical meaning of TVB parameters, cluster 1 was 

mainly characterized by overexcitation and was more frequent in healthy controls and Amyotrophic 

lateral sclerosis. As well as hyperexcitability is a well-known feature of Amyotrophic lateral sclerosis 

patients12,67, the presence of some healthy controls subjects in this cluster is not surprising. Indeed, the 

effect of aging on the glutamatergic system is currently under investigation68, and even if glutamate is 

mostly reported to decrease with age increase69, age-related effects on glutamatergic release and uptake 

processes and NMDA receptor activation could be differentially modulated in some healthy subjects. 

Even in cluster 2 we found some healthy controls, which presented not only high excitation but also 

high global coupling strength. This high G value could be due to an increased strength of long-range 

connectivity or increased synchrony between nodes. It is worth noting that cluster 2 was more common 

in pathological conditions than in healthy controls, and this is in line with the frequent observation of 

hyperexcitation and hypersynchrony in Alzheimer’s disease11,65,70, Frontotemporal Dementia10,71 and 

Amyotrophic lateral sclerosis12,72. Cluster 3 was the most related to healthy controls, while the number 

of patients was marginal (0 in Alzheimer’s disease). This cluster is mainly characterized by high 

recurrent excitation; interestingly, alterations of this property are less explored as potential mechanisms 

in clinical conditions. Only few network models have been developed to account for the influence of 

recurrent excitation and to explore its changes in pathologies. Strong self-excitation was shown to be 

required in network models to achieve satisfactory simulations of decision making and working 

memory tasks73, in line with our evidence of high recurrent excitation in healthy controls. Moreover, 

in a previously proposed computational model applied to Alzheimer’s disease the variation of local 

recurrent excitation has been suggested as a brain mechanism employed to compensate for alterations 

induced by other types of synapse loss74. Unfortunately, nothing is known about recurrent excitation 

in network models of Frontotemporal Dementia or Amyotrophic lateral sclerosis, but the presence of 

Frontotemporal Dementia and Amyotrophic lateral sclerosis patients in cluster 3 prompts to explore 

the effect of this parameter in clinical conditions other than Alzheimer’s disease. Finally, cluster 4 was 

mostly associated with Alzheimer’s disease patients, followed by Amyotrophic lateral sclerosis, 

Frontotemporal Dementia and healthy controls. While convergent findings are increasingly supporting 

the role of a GABA function increase in Alzheimer’s disease13,75,76, GABAergic dysfunction is mostly 

described as an overall decrease of cortical inhibition in Frontotemporal Dementia and Amyotrophic 

lateral sclerosis. Our results suggest the possibility of an increased GABAergic activity not only in 
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Alzheimer’s disease patients, as already observed in literature, but also in subsets of subjects affected 

by other neurodegenerative conditions. 

It is important to point out that Frontotemporal Dementia patients appeared to be the most distributed 

between clusters, without a main cluster membership, and this evidence reflects the heterogeneity of 

our Frontotemporal Dementia cohort, which is in line with the wide spectrum of neurotransmitters 

deficits which has been already observed in Frontotemporal Dementia77. 
 

Cerebellar role in neurodegeneration 
Cerebellar impact in different clinical conditions 

Cerebellar impairment has been consistently observed in neurodegenerative diseases, although 

for years the cerebellum has been rarely considered in neurodegenerative conditions. Disease-specific 

clusters of cerebellar atrophy have been found in Alzheimer’s disease, Frontotemporal Dementia and 

Amyotrophic lateral sclerosis78. Functional connectivity alterations22,23 and white matter disruption79 

characterize cerebro-cerebellar loops in Alzheimer’s disease patients. Abnormal network connectivity 

between cerebellum and cerebral cortical regions has been confirmed in the main subtypes of 

Frontotemporal Dementia80,81 (behavioral-variant, semantic dementia and progressive nonfluent 

aphasia). In Amyotrophic lateral sclerosis the functional reorganization following motor neuronal loss 

increases cerebellar activation in motor tasks with respect to controls26, while a widespread pattern of 

white matter abnormalities has been reported together with white matter volume reduction82. 

In our work, the integration of cerebro-cerebellar connections improved the predictive power 

of TVB simulations in pathological conditions, supporting cerebellar involvement in 

neurodegenerative states and confirming the sizeable contribution of cerebro-cerebellar connectivity 

to simulated brain dynamics 16. This improvement caused by the connection of cerebellar nodes in 

TVB was especially evident in Amyotrophic lateral sclerosis, which is a long-range motor neuron 

disease. This calls for future work to establish whether this result reflects a higher cerebellar 

recruitment determined by Amyotrophic lateral sclerosis functional reorganization26. Studies 

evaluating the impact of cerebellar integration not only on static FC simulations, as performed in this 

work, but also on dynamic resting-state FC simulations83,84 are warranted. 
 

Conclusion 
TVB-derived biophysical parameters provided a unique description of the excitatory/inhibitory 

balance both at the group and single subject level. An extremely high performance was achieved in 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473997
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 
 
 

patients’ discrimination combining TVB parameters and neuropsychological scores. Moreover, the 

integration of cerebro-cerebellar connections in TVB improved the predictive power of the model in 

neurodegeneration. Overall, this work opens new perspectives for the use of TVB to explore 

neurodegenerative mechanisms, supports the involvement of the cerebellum in determining brain 

dynamics in neurodegenerative diseases, and suggests a novel approach to obtain physiological 

information relevant to future personalized diagnosis and therapy. 
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Supplementary material 

Supplementary Figure 1| Parameter space exploration results. 2D parameter space heat maps 

show different values of correlation between experimental and simulated FC obtained at different 

combinations of the TVB parameters (G, Ji, J_NMDA and w+). Parameter values that yielded the 

highest correlation were chosen for the next steps of the analysis. 

Supplementary Figure 2| Clustering analysis. (A) Visual representation of the four clusters (in 

different colors) identified with k-means analysis using TVB-derived optimal biophysical parameters 

as input variables. (B) Each of the four clusters was characterized by a combination of low and high 

values of TVB-derived biophysical parameters (Ji, J_NMDA and wp are represented on the axis and 

G values are represented with color code). 

Supplementary Table 1: Wong-Wang model parameters for TVB simulations. 

Supplementary Table 2: Classification results for group comparisons. 
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Figures legends 

 
Figure 1| Schematic representation of modelling workflow. MRI is used to obtain the structural 

and experimental functional connectivity matrices needed for TVB construction and optimization. 

From top left, clockwise: diffusion weighted images are preprocessed and elaborated to yield whole- 

brain tractography. An ad-hoc parcellation atlas combining AAL atlas and SUIT is used to map the 

structural connectivity (SC) matrices obtained from whole-brain tractography parcellation (top weight 

matrix, bottom distance matrix). The Virtual Brain (TVB) is constructed using the structural 

connectivity matrix for edges and neural masses for nodes. TVB simulations of neural activity allow 

to extract BOLD signals for each node leading to define the simulated functional connectivity (FC) 

matrix. TVB optimization is performed through model inversion by comparing the simulated FC with 

the experimental FC. Model parameters and the corresponding equations are shown at the bottom. 

 

Figure 2| Networks connectivity matrices. Columns 1 and 2 show the experimental structural (SC) 

and functional connectivity (FC) matrices, which were used as input for TVB simulations in four 

different groups: healthy (HC), Alzheimer’s disease (AD), Frontotemporal Dementia (FTD) and 

Amyotrophic Lateral Sclerosis (ALS). For each group, matrices of a randomly chosen subject are 

reported as an example. Columns 3 to 5 show the simulated FC obtained at single-subject level with 

three different networks: whole-brain, cortical subnetwork (Cerebral) and embedded cerebro- 

cerebellar subnetwork (Cerebro-Crbl). In the whole-brain network simulations were performed using 

whole-brain nodes and connections (whole-brain nodes and edges are colored); in the cortical 

subnetwork only cerebral cortex nodes and connections were considered (cortical nodes and edges are 

colored); in the embedded cerebro-cerebellar subnetwork cerebral cortex nodes were considered taking 

into account the influence of cerebro-cerebellar connections (cortical nodes and cerebellar edges are 

colored). 

 
Figure 3| Boxplots of optimal biophysical parameters and Pearson correlation coefficients (PCC). 

(A) Boxplots of optimal biophysical parameters derived from TVB (global coupling, G, excitatory 

synaptic coupling, J_NMDA, local excitatory recurrence, wp, inhibitory synaptic coupling, Ji) across 

groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral 

sclerosis). The asterisk (*) indicates significant difference (Mann-Whitney, p<0.05) between groups 

(see Table 2 for details). (B) Boxplots of Pearson correlation coefficients (PCC) between experimental 

and simulated FC for all groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia, 
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Amyotrophic lateral sclerosis) and networks (whole-brain network, Whole_brain, cortical subnetwork, 

Cerebral; embedded cerebro-cerebellar subnetwork, Cerebro-Crbl). Asterisks (*) indicate significant 

difference (p<0.05) between networks (see Table 2 for details). 

 
Figure 4| Classification analysis. ROC curves were calculated for each classification (healthy controls 

versus Alzheimer’s disease, healthy controls versus Frontotemporal Dementia, healthy controls versus 

Amyotrophic lateral sclerosis, Alzheimer’s disease versus Frontotemporal Dementia, Alzheimer’s 

disease versus Amyotrophic lateral sclerosis, Frontotemporal Dementia versus Amyotrophic lateral 

sclerosis) with their corresponding groups of variables (TVB parameters alone, neuropsychological 

scores alone, TVB parameters combined with neuropsychological scores). AUC values confirm that 

TVB parameters alone (blu) always yielded a poorer discriminant power than that offered by 

neuropsychological scores alone (green). The combination of TVB parameters with 

neuropsychological scores improved the discriminative power in all classifications reaching 100% 

when distinguishing between Alzheimer’s disease and healthy controls and between Frontotemporal 

Dementia and Amyotrophic lateral sclerosis. 

 
Figure 5| Excitation/inhibition profiles. (A) Each cluster was characterized by a typical 

excitation/inhibition profile. The color-bar (from blue to red) represents the scale from low to high of 

each TVB-derived biophysical parameter. (B) Visual representation of cluster distributions across 

groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral 

sclerosis). Cluster numbers are reported on the x axis while cluster frequencies in each condition are 

reported on the y axis. Each dot represents a single subject. 
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Figure 1| Schematic representation of modelling workflow. MRI is used to obtain the structural and 
experimental functional connectivity matrices needed for TVB construction and optimization. From top left, 

clockwise: diffusion weighted images are preprocessed and elaborated to yield whole-brain tractography. An 
ad-hoc parcellation atlas combining AAL atlas and SUIT is used to map the structural connectivity (SC) 

matrices obtained from whole-brain tractography parcellation (top weight matrix, bottom distance matrix). 
The Virtual Brain (TVB) is constructed using the structural connectivity matrix for edges and neural masses 
for nodes. TVB simulations of neural activity allow to extract BOLD signals for each node leading to define 

the simulated functional connectivity (FC) matrix. TVB optimization is performed through model inversion by 
comparing the simulated FC with the experimental FC. Model parameters and the corresponding equations 

are shown at the bottom. 
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Figure 2| Networks connectivity matrices. Columns 1 and 2 show the experimental structural (SC) and 
functional connectivity (FC) matrices, which were used as input for TVB simulations in four different groups: 
healthy (HC), Alzheimer’s disease (AD), Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis 
(ALS). For each group, matrices of a randomly chosen subject are reported as an example. Columns 3 to 5 
show the simulated FC obtained at single-subject level with three different networks: whole-brain, cortical 
subnetwork (Cerebral) and embedded cerebro-cerebellar subnetwork (Cerebro-Crbl). In the whole-brain 
network simulations were performed using whole-brain nodes and connections (whole-brain nodes and 

edges are colored); in the cortical subnetwork only cerebral cortex nodes and connections were considered 
(cortical nodes and edges are colored); in the embedded cerebro-cerebellar subnetwork cerebral cortex 

nodes were considered taking into account the influence of cerebro-cerebellar connections (cortical nodes 
and cerebellar edges are colored). 
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Figure 3| Boxplots of optimal biophysical parameters and Pearson correlation coefficients 
(PCC). (A) Boxplots of optimal biophysical parameters derived from TVB (global coupling, G, excitatory 

synaptic coupling, J_NMDA, local excitatory recurrence, wp, inhibitory synaptic coupling, Ji) across groups 
(healthy controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis). The 

asterisk (*) indicates significant difference (Mann-Whitney, p<0.05) between groups (see Table 2 for 
details). (B) Boxplots of Pearson correlation coefficients (PCC) between experimental and simulated FC for 
all groups (healthy controls, Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic lateral sclerosis) 

and networks (whole-brain network, Whole_brain, cortical subnetwork, Cerebral; embedded cerebro-
cerebellar subnetwork, Cerebro-Crbl). Asterisks (*) indicate significant difference (p<0.05) between 

networks (see Table 2 for details). 
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Figure 4| Classification analysis. ROC curves were calculated for each classification (healthy controls 
versus Alzheimer’s disease, healthy controls versus Frontotemporal Dementia, healthy controls versus 

Amyotrophic lateral sclerosis, Alzheimer’s disease versus Frontotemporal Dementia, Alzheimer’s disease 
versus Amyotrophic lateral sclerosis, Frontotemporal Dementia versus Amyotrophic lateral sclerosis) with 

their corresponding groups of variables (TVB parameters alone, neuropsychological scores alone, TVB 
parameters combined with neuropsychological scores). AUC values confirm that TVB parameters alone (blu) 
always yielded a poorer discriminant power than that offered by neuropsychological scores alone (green). 

The combination of TVB parameters with neuropsychological scores improved the discriminative power in all 
classifications reaching 100% when distinguishing between Alzheimer’s disease and healthy controls and 

between Frontotemporal Dementia and Amyotrophic lateral sclerosis. 
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Figure 5| Excitation/inhibition profiles. (A) Each cluster was characterized by a typical 
excitation/inhibition profile. The color-bar (from blue to red) represents the scale from low to high of each 

TVB-derived biophysical parameter. (B) Visual representation of cluster distributions across groups (healthy 
controls, Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic lateral sclerosis). Cluster numbers 
are reported on the x axis while cluster frequencies in each condition are reported on the y axis. Each dot 

represents a single subject. 
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Table 1: Demographics, clinical and neuropsychological data (means, SDs and group differences). 
 

Measures HC AD FTD ALS p-value 
Males/females 7/8 9/6 11/4 8/7 0.201 

Age (years) 64 (11) 70 (7) 69 (7) 67 (8) 0.494 
Education (years) 10 (3) 8 (3) 10 (4) 9 (5) - 

Memory 3.0 (0.4) 0.7 (0.7) 1.6 (0.7) 2.6 (0.6) <0.001 * 
Executive-function 2.9 (0.6) 0.8 (1.1) 1.0 (0.9) 1.9 (0.9) <0.001 * 

Attention 3.4 (0.5) 1.1 (1.0) 1.3 (1.2) 2.0 (0.8) <0.001 * 
Language 3.5 (0.5) 1.1 (1.3) 1.3 (1.0) 2.9 (1.2) <0.001 * 

Visuospatial skills 3.7 (0.8) 1.2 (1.7) 2.2 (1.9) 2.2 (2.0) 0.002 * 

 
Gender, age, education and neuropsychological scores are reported for each group (Healthy controls, HC, Alzheimer’s disease, 
AD, Frontotemporal dementia, FTD and Amyotrophic lateral sclerosis, ALS) as mean values and standard deviations in brackets. 
Significant threshold is set at p<0.05. 
* refers to significant group differences assessed with Kruskal-Wallis 

 
 
 
 
 
 
 

Table 2: Optimal model parameters and Pearson Correlation Coefficients per group. 
 

 HC AD FTD ALS p-valuea 

TVB_parameters Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

G 0.887 (0.226) 0.137 (0.236) 0.980 (0.248) 0.993 (0.281) 0.047 * ° 
Ji 2.473 (0.268) 2.753 (0.275) 2.520 (0.293) 2.580 (0.371) 0.047 * ° 

JNMDA 0.137 (0.020) 0.147 (0.024) 0.143 (0.026) 0.152 (0.023) 0.106 ◊ 
w+ 1.587 (0.238) 1.477 (0.280) 1.527 (0.312) 1.430 (0.247) 0.274 

PCC Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

Whole-brain 0.342 (0.010) 0.297 (0.076) 0.343 (0.064) 0.312 (0.070) 0.285 
Cerebral 0.347 (0.097) 0.342 (0.077) 0.392 (0.080) 0.341 (0.056) 0.241 

Cerebro-Crbl 0.353 (0.109) 0.337 (0.087) 0.396 (0.084) 0.348 (0.061) 0.283 
p-valueb 0.725 <0.001 • † <0.001 • † 0.022 †  

 
 
 

Model optimal biophysical parameters (G = global coupling, JNMDA = excitatory synaptic coupling, w+= local excitatory 
recurrence, Ji = inhibitory synaptic coupling) and Pearson Correlation Coefficients (PCC) between experimental and simulated 
FC for all groups (HC = Healthy controls, AD = Alzheimer’s disease, FTD = Frontotemporal dementia, ALS = Amyotrophic 
lateral sclerosis) and networks (whole-brain, cerebral subnetwork and embedded cerebro-cerebellar subnetwork= Cerebro- 
Crbl). Values are expressed as mean values and standard deviation in brackets. 
Significant threshold is set at p<0.05. 
a group differences assessed with Kruskal-Wallis for optimal model parameters and one-way ANOVA for PCC 
b PCC differences between networks assessed with GLM 
* refers to significant difference between healthy controls and Alzheimer’s disease assessed with Mann-Whitney 
° refers to significant difference between Alzheimer’s disease and Frontotemporal Dementia assessed with Mann-Whitney 
◊ refers to significant difference between healthy controls and Amyotrophic lateral sclerosis assessed with Mann-Whitney 
• refers to p<0.003 between whole-brain and cortical networks 
† refers to p<0.01 between whole-brain and embedded networks 
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Table 3: Backward regressions results.  

  
PREDICTORS 

 
EXPLAINED VARIANCE 

 
SIGNIFICANCE 

Memory Ji 8.4% 0.028 
Executive-function group, gender, age, w+, 

G 
 

19.9% 
 

0.037 
 group, gender, age, G 19.8% 0.018 
 group, age, G 19.5% 0.008 
 group, age 18.5% 0.004 

Attention group, Ji, gender, age 16.9% 0.040 
 group, Ji, age 16.7% 0.019 
 group, Ji 15% 0.011 
 group 12% 0.008 

Language group, G 10.8% 0.044 
 G 8.7% 0.025 

Visuospatial skills group, Ji 10.7% 0.045 

 
 

The variance explained by the parameters used in backward regressions is calculated with the R2 index. Significant threshold is 
set at p<0.05. For each cognitive domain a different combination of features significantly explains a percentage of the variance 
(ANOVA). 
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Supplementary Figure 1| Parameter space exploration results. 2D parameter space heat maps show different 

values of correlation between experimental and simulated FC obtained at different combinations of the TVB parameters 

(G, Ji, J_NMDA and w+). Parameter values that yielded the highest correlation were chosen for the next steps of the 

analysis. 

 
 
 
 
 

Supplementary Figure 2| Clustering analysis. (A) Visual representation of the four clusters (in different colors) 

identified with k-means analysis using TVB-derived optimal biophysical parameters as input variables. (B) Each of the 

four clusters was characterized by a combination of low and high values of TVB-derived biophysical parameters (Ji, 

J_NMDA and wp are represented on the axis and G values are represented with color code). 
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Supplementary Table 1: Wong-Wang model parameters for TVB simulations. 
 
 

PARAMETERS VALUE DESCRIPTION 

aE, bE, dE, τE, WE 310 nC-1, 125 Hz, 0.16 s, 100 ms, 1 Excitatory gating variables 

aI, bI, dI, τI, WI 615 nC-1, 177 Hz, 0.087 s, 10 ms, 0.7 Inhibitory gating variables 

γ 0.641/1000 Kinetic parameter 

σ 0.01 nA Noise amplitude 

I0 0.382 nA Overall effective external input 

Cij Obtained from diffusion tractography Structural connectivity (SC) matrix 

G Obtained from parameters optimization Global coupling scaling factor 

Ji Obtained from parameters optimization Feedback inhibitory synaptic coupling 

JNMDA Obtained from parameters optimization Excitatory synaptic coupling 

w+ Obtained from parameters optimization Local excitatory recurrence 

 
 
 
 
 
 
 
 

Supplementary Table 2: Classification results (AUC, sensitivity and specificity) for group comparisons. 
 
 

 TVB_PARAMS   NPS   TVB + NPS  

 AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. 

HC vs AD 76.7% 0.800 0.733 93.3% 0.867 1.000 100% 1.000 1.000 

HC vs FTD 63.3% 0.600 0.667 90% 0.800 1.000 93.3% 0.867 1.000 

HC vs ALS 76.7% 0.733 0.800 85.7% 0.769 0.933 89.3% 0.846 0.933 

AD vs FTD 73.3% 0.533 0.933 80% 0.800 0.800 80% 0.867 0.733 

AD vs ALS 66.7% 0.600 0.733 96.4% 1.000 0.933 96.4% 1.000 0.933 

FTD vs ALS 56.7% 0.533 0.600 96.4% 1.000 0.933 100% 1.000 1.000 

 
 

Areas under the curve (AUC), sensitivity (Sens.) and specificity (Spec.) are reported for all classifications (HC=healthy controls, AD=Alzheimer’s 
disease, FTD=Frontotemporal dementia, ALS=Amyotrophic lateral sclerosis) performed with different independent variables: TVB-derived biophysical 
parameters alone (TVB_params), neuropsychological scores alone (NPS) and a combination of both (TVB+NPS). 
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