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Abstract

Alternative splicing is a tightly regulated co- and post-transcriptional process contributing to the transcriptome diversity
observed in eukaryotes. Several methods for detecting differential junction usage (DJU) from RNA sequencing (RNA-seq)
datasets exist. Yet, efforts to integrate the results from DJU methods are lacking. Here, we present Baltica, a framework
that provides workflows for quality control, de novo transcriptome assembly with StringTie2, and currently 4 DJU
methods: rMATS, JunctionSeq, Majiq, and LeafCutter. Baltica puts the results from different DJU methods into context
by integrating the results at the junction level. We present Baltica using 2 datasets, one containing known artificial
transcripts (SIRVs) and the second dataset of paired Illumina and Oxford Nanopore Technologies RNA-seq. The data
integration allows the user to compare the performance of the tools and reveals that JunctionSeq outperforms the other
methods, in terms of F1 score, for both datasets. Finally, we demonstrate for the first time that meta-classifiers trained
on scores of multiple methods outperform classifiers trained on scores of a single method, emphasizing the application of
our data integration approach for differential splicing identification. Baltica is available at https://github.com/dieterich-
lab/Baltica under MIT license.
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genomes. AS regulation is central to physiological processes,
such as tissue remodeling[1], and defective splicing has been
linked to human disease[2]. However, most of the cataloged

Th diff t h, to identifyi lici
AS events are yet to be associated with their functional ere are diletent approaches to ldentilylng splcing

. . . events from RNA-seq. Methods that model intron usage are
consequence[3]. Furthermore, there are increasing numbers . .

popular methods, as shown in Supplementary Figure S1. In
addition, these methods have been applied to a broad range

of studies, for example, the effects of genetic variation in
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Fig. 1. Baltica framework overview. Baltica is a framework to execute and integrate differential junction usage (DJU) analysis. 1 — Input: Baltica

takes as input RNA-seq alignments, reference annotation, and a configuration file. 2 — Quality control: First, Baltica performs quality control of
alignments with RSeQC and FastQC, which is reported by MultiQC. 3 — DJU and StringTie: Next, Baltica computes DJU with rMATS, JunctionSeq, Majiq, and

LeafCutter, and uses StringTie to detected transcripts and exons, which deviate from the reference annotation. 4 — Downstream analysis: Finally, we

integrate the results from the DJU method. Optionally, Baltica can include an extra piece of evidence for DJU (hereafter the orthogonal dataset), such

as DJU obtained from Oxford Nanopore Technologies (ONT) RNA-seq. The set of introns is re-annotated using information from de novo transcriptome

annotation, and splice types between SJ and exons are assigned. Finally, Baltica compiles a report with the most relevant information.

splicing[5], identification of splicing factor-mediated AS events
[6], associate AS to nonsense-mediated decay[7] and testing
for splicing therapeutical intervention in animal models[8]. We
here name these methods as different junction usage (DJU)
methods. As suggested by Mehmood and collaborators[9],
comparing results from multiple methods could improve
AS event prioritization. Despite the popularity and critical
application to human health, individual DJU methods have
limitations.

While
some methods implement multiple functionality steps, from

DJU methods differ in software granularity.

sequencing read filtering to results reporting, others focus
solely on statistical modeling of RNA-seq split reads. These
differences in implementation and poorly defined concepts
are barriers to data integration from DJU method results.
Specifically, DJU methods results are not comparable, as not all
methods output standard file formats. Second, differences in AS
event definition limits the comparison of event-specific metrics.
The PSI (percent spliced in; W) represents the proportion of
splice site usage within an AS event per experimental group
and indicates effect size[10]. In general, methods do not adopt
a standardized definition for AS event or ¥, thus complicating
the comparison of effect sizes. Third, methods do not share
common steps to facilitate result integration and benchmark.
For example, it is not trivial to input the same matrix of splice
junctions (SJ) read counts to all DJU methods. Collectively,
these points are obstacles to data integration.

In this paper, we present Baltica, a framework that
facilitates the execution and enables the integration of DJU
methods results. Baltica comprises of a command-line interface,
snakemake[l1] workflows, containers[12], and scripts that
provided reports on the integrated results. We propose a
protocol to integrate results from DJU methods and further
prioritize introns that undergo AS based on the decision of
such methods. Optionally, Baltica integrates of results obtained
with orthogonal experiments, such as AS evidence from Oxford
Nanopore Technologies (ONT) RNA-seq. To our knowledge,
there are no others solutions for integrating DJU results. We
apply Baltica to 2 datasets. The first uses spike-ins with known
experimental group concentration and transcriptome structure,
the so-called Spike-in RNA Variant Control Mixes (SIRVs). The
second ones uses paired Illumina and ONT RNA-seq datasets.
In addition, Baltica integration allows us to compare the
performance of different DJU methods and test the usability
of a meta-classifier trained on the decision of the methods.

Material and Methods

Baltica method overview

Figure 1 shows an overview of the features included in
the Baltica framework. Baltica comprises a command-
line interface, workflow implementations, and scripts that
handle DJU methods’ result parsing, integration, annotation,

and reporting. The framework requires snakemake[l1], and
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singularity[12]. Singularity containers and Bioconda[l3]
handle the dependencies for workflows and scripts. The
containers allow the execution of software dependencies in
isolation and provide reproducible workflows that don’t require
direct user instalation.

Baltica works as a standard Python package, and
its command-line interface facilitates the execution of the
workflows by, for example, automatically handling singularity
arguments. The configuration file centralizes the required
information for workflows. Specifically, it contains file paths,
file to group assignments, method parameters, and pairwise
comparisons between experimental groups to be tested. The
required inputs are RNA-seq alignment files in BAM format,
a reference transcriptome annotation (GTF/GFF format), and
its sequence (FASTA format). Users can also input results from
other evidence sources prepared in BED or GFF formats if
available.

Baltica implements workflows for quality control methods,
DJU methods, de
downstream analysis. The included methods for quality control
are RSeQC[14] and FastQC[15]. We use MultiQC|
the output from both tools. In addition to the quality control

novo transcriptome assembly, and

] to summarize

of reads and alignments, this step helps to identify systematic
differences among the analyzed samples or conditions. RSeQC
implements an SJ saturation diagnostic, which quantifies the
abundance of known and novel SJ. The tool also provides the
proportion of reads per feature in the input annotation, which
may indicate splicing changes due to, for example, an increase
of reads mapping to introns.

Currently, the frameworks supports 4 DJU methods:
rMATS[17], Majiq[19], and LeafCutter[20].
We detail the method inclusion criteria and workflows
at Section 2.2.
with DJU integration, annotation, and reporting. Scripts
] and
based on Bioconductor’s infrastructure to handle genomic

JunctionSeq[183],

Finally, the analysis workflow proceeds

for the analysis workflow were developed with R][

coordinates[22, 23] as well as tools from the Tidyverse[24].

Differential junction usage algorithms

Due to the high number of DJU methods available in the
literature, we have established a set of rules for method
inclusion into Baltica. We may include a method if it fits the
following criteria:

e supports as input RNA-seq read alignment in the BAM
format and transcriptome annotation in the GTF/GFF
format

e provides test statistics, such as p-value, at the event or SJ
level for pairwise comparisons
outputs effect size estimates, such as the ¥

e detects SJ independent of the reference annotation

We present an initial set of 4 DJU methods. These
methods fulfill the criteria and are among the most popular
methods for differential splicing identification, as shown in
Supplementary Figure S1. But are we are aware that other
DJU software packages exist, such as SUPPA2[25] and PSI-
Sigma[26]. Therefore, we hope to include more of these packages
into Baltica, especially with the help of the user community.

rMATS-turbo

TMATS-turbo (v4.1.1), or simply, rMATS, estimates the splicing-
type specific isoform proportion from RNA-seq reads. First,
rMATS uses the reference annotation to determine the splicing

ica:r infegrated DJU analysis
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events grouped by splicing types: skipped exon, mutually
exclusive exons, alternative 3’ splice site, alternative 5’ splice
site, retained intron. More recently, rMATS’ developers released
experimental support for unannotated introns with the ‘-
novelSS‘ argument. rMATS uses the effective length-scaled
junction read counts and, optionally, exon read counts to
estimate W. Then, it applies the likelihood-ratio to test whether
AV (AU = W,y — ¥;,, for the intron ¢, and groups 1 and 2)

surpasses the 0.05 threshold.

JunctionSeq

JunctionSeq (v1.16) takes as input a read count matrix obtained
with QoRTs[27] (v1.1.8),
exons, so in fact, JunctionSeq falls into the differential exon

for annotated SJ, novel SJ, and

usage and DJU classes. Based on DEXSeq, JunctionSeq uses
disjoint genomic bins as features, and applies a generalized
linear model[28] to model the feature expression. Beyond
modeling the modeling aspect, JunctionSeq also invests in the
visualization of the exon and intron usage and builds tracks for
genome browsers. JunctionSeq does not identify splicing events,

so the results are associated with intron coordinates.

Majiq

Majiq (v2.2-e25cdac) generates splice graphs for genes present
on the RNA-seq dataset and the reference annotation. Next,
it detects splicing events, quantifies the SJ usage from
normalized SJ read counts, and computes the PSI value for
the sample groups. Majiq uses a Bayesian framework to assess
which AW changes threshold among groups are significant
by a user-defined probability. The local splicing variations
implementation includes more than 2 SJ per event. So it
supports complex AS event types, which is more realistic than
modeling splicing events by SJ pairs.

LeafCutter
LeafCutter (v0.2.7) uses regtools|
reads SJ from RNA-seq alignments. Next, it uses an iterative

] to extract and select

clustering procedure to eliminate SJ with low usage. Finally,
the LeafCutter fits a Dirichlet-multinomial generalized linear
model on SJ usage proportion within intron-clusters.

A more detailed description of the workflow implementation
is available at Baltica manual online[30].

Baltica integration and reporting

To parse, integrate and annotate the results from the DJU
While
parsing the results files from the methods, Baltica pivots the

methods, we use the Bioconductor infrastructure.
results tables, so each row in the data table corresponds to a
single SJ. Because rMATS outputs one result file for each AS
event type, Baltica selects the SJ representing feature inclusion
and exclusion events from each file. Because LeafCutter and
rMATS assign the test statistics to the event instead of the SJ,
we assign the same test statistics to multiple SJs contained in
the AS event.

One challenge to integrating results from DJU methods
is correcting for different coordinate systems. For example,
methods can use 0-indexed (BED format) or l-indexed (GTF
format) files and use exon or intron splice site coordinates to
represent the SJ genomic position. We make no assumptions
regarding the method choice for the coordinate system, and this
flexibility allows us to support many methods. To overcome the
issue without fixing the coordinates adjusted for each method,
we first compute the genomic overlap between introns in the
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reference annotation (subject) and a set of SJ output from
a method (query). Then, we compute coordinate offsets (in
nucleotides) between subject and query, determine the most
frequent difference in start and end coordinates between the
2 sets, and finally, apply corrections to the coordinates in a
strand-specific manner for each method. This procedure allows
Baltica to report groups of SJ that represent splicing events in
different genomic coordinate systems.

Next, Baltica uses a de novo and guided transcriptome
annotation as a reference for annotation and assigning
alternative splicing types. The de mowvo workflow comprises
merging the alignment files for experimental groups; next,
(v2.1.5)[31] to
transcriptome annotations,

we use StringTie obtain group-specific
which are then subsequently
combined with gffcompare[32] in the guided mode. We use
this novel annotation for downstream analysis, including
naming genes and transcripts and assigning AS types when
possible. Novel SJ, not included in the reference transcript
annotation, are also annotated. Currently, Baltica determines
the following types: exon skipping (ES), alternative 3’ splice-
site (A3SS), alternative 5’ splice-site (A5SS). The AS type
assignment procedure occurs by comparing SJ to overlapping
exons features, detected in the de novo annotation. We can
determine the AS type using distance rules between the start
and end coordinates of the SJ and its overlapping exons.
Associating the SJ to transcripts enables the study of the
splicing event in the context of the transcript sequence and
structure. Finally, the framework produces a report that
summarizes integration results. It provides an overview of the
integration results and an HTML table with one SJ per row, the
methods score, SJ annotation, and link to the UCSC Genome

Browser[33].

Benchmark

Methods to detect DJU from RNA-seq are valuable tools
for prioritizing mechanisms driving splicing changes. From a
classification perspective, differential splicing methods aim to
classify introns that are truly differently used from the other
introns. We approach the differential splicing identification as
a binary classification problem. Thus, the positive instance,
the differently spliced intron, is more relevant than the
negative instance. For the SIRV dataset, introns in the SIRV
transcriptome that have fold-change # 1 were considered
positive, while others introns that were not changing (fold-
change of 1) were negative instances. For the paired Illumina-
ONT RNA-seq dataset, introns with p-value <0.05 were
considered positive instances. This value was obtained with
the edgeR::diffSpliceDGE function. The set of introns from the
SIRV or ONT RNA-seq dataset were used as a reference, so
the results among methods are comparable. A true-positive
instance (TP) was defined as truly changing and correctly
classified, while false-positive (FP) was a negative instance
classified as positive. Accordingly, true negatives (TN) and
false-negatives (FN) were true negative instances that were
correctly or incorrectly called, respectively. The following
metrics are defined:

TP +TN
Accuracy =
TP+ TN+ FP+ FN
. TP
Precision = ————
TP+ FP

a[perpetuity. It is made available under aCC-BY-ND 4.0 International license.

. TP
Recall (or sensitivity) = —————
TP+ FN
TN
Speci ficity —
peci ficity FPTTN

2 % Precision x Recall
F1=

Precision + Recall

True positive rate (TPR) and false positive rate (FPR) are
synonymous to recall and 1— specificity, respectively. Receiver
Operating Characteristic (ROC) curve, Precision-Recall (PR)
curve, and area under curve (AUC) were computed with
ROCR][34]. Confusion matrix and associated statistics report
were computed with caret[35], and for that, method scores
were made binary using the 0.95 threshold. Heatmap and UpSet
plots were created with ComplexHeatmap package[30].

Meta-classifier to identify differential splicing

We propose a machine learning approach for a meta-classifier
that combines the score of the DJU methods workflows
implemented in Baltica. To do so, we train the models with
the matrix of DJU scores from the second dataset, with
matched third-generation sequencing. The dataset was split
into training and testing data (80% vs 20%). DJU scores
from the Illumina and ONT RNA-seq were used as input and
target values, respectively. Feature selection proceeded with the
mlxtend package[37] using either a method score column or a
combination of the 4 score columns. Next, a grid search was
performed with parameters for the Gradient Boosting Classifier
(GBC) and Logistic Regression Classifier (LRC) algorithms
implemented in scikit-learn (v0.24.2)[38], for features listed in
Table 2, and the combination of columns. The grid search aimed
to maximize the area under the ROC curve. This experiment
allows us to compare the classification performance from the
meta-classifier and classifiers trained from a single method

score.

RNA libraries preparation, sequencing, and alignment for the
SIRV dataset

Figure 2 schematizes the application of Baltica to the SIRV
dataset. Figure 2b compares DJU calls by the 4 methods
and the ground-truth. Cell lines, RNA extraction, and RNA-
seq were described in Gerbracht and collaborators[39]. In
short, we obtained 15 libraries from Flp-In T-REx 293 cells,
extracted the RNA fraction with TrueSeq Stranded Total RNA
kit (Illumina), followed by ribosomal RNA depletion, with
RiboGold Plus kit and Spike-In RNA Variants (Lexogen SIRV,
Set-1, Iso Mix EO0, E1 and E2, cat 025.031) input. Libraries
were sequenced with an Illumina HiSeq4000 sequencer using
PE 100bp protocol, which yielded around 50 million reads
per sample. Data were deposited in ArrayExpress (E-MTAB-
8461). Sequenced reads’ adapters and low-quality bases were
trimmed, and reads mapping to human precursor ribosomal
RNA were discarded. The remaining reads aligned with the
human genome (version 38, EnsEMBL 90) extended with the
SIRV annotation. In the DJU method benchmarking context,
we are not interested in the actual biological condition but the
SIRV transcriptome changes. Our experimental design does not
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Fig. 2. Integrated DJU results for the SIRV dataset. (a) The experimental design from Gerbracht et al.[39] has five biological groups in replicates,

and Table S1 matches the biological samples groups to SIRV mixes and samples identifiers. SIRV mixes were included in a design not confounded to the
biological groups. As detailed in Section 2.6, after RNA extraction, library preparation, and sequencing, the sequencing reads were aligned to the human
genome extended with the SIRV genome. We apply Baltica workflows, as described in Section 2.1. To integrate the results, we first split AS events into
individual SJ that are contained in each event. Next, we correct the start and end coordinates from SJ of multiple methods. Once SJ were integrated,
we observed that the statistically significant SJ for JunctionSeq (padjust < 0.05), LeafCutter (p.adjust < 0.05), Majiq (probability_non_changing < 0.05)
and rMATS (FDR < 0.05) have limited overlap with SJ that are known to change in the SIRV transcriptome. The score is defined as 1 — padjust, where
padjust is the metric for the statistical test from each metric. In the figure, My, M5, ..., M, represent the multiple DJU methods. The UpSet plot in
(b) shows distinct sets of introns called significant by combinations of methods and the SIRV annotation (294 true positive SJ). The intersection and
set sizes show hits to annotated SIRV introns, while the total column shows the size of hits to the combined human transcriptome and SIRV annotation.

The SIRV transcriptome has 98 distinct introns that change in fold change among the mixes. We omit the complement set for the combinations.
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confound a SIRV mix with the biological conditions, as detailed
in Supplementary Table S1, so any AS events identified within
human chromosomes are false calls. The SIRV transcriptome
comprises seven genes, 101 transcripts, 138 unique introns, of
which 98 change among the 3 mixes, leading to 294 changing
introns. In conclusion, the 3 SIRV mixtures in the context
of the complex human transcriptome allow us to compare the
performance of the DJU methods.

RNA libraries preparation, sequencing, and alignment for the
matched ONT RNA-seq and Illumina RNA-seq datasets

The cell lines, RNA extraction, library preparation, and
RNA-seq have been described in Boehm et al. (2021)[7]. In
detail, wild type (WT) or SMGT7 knockout (KO) Flp-In-
T-REx-293 cells were seeded on 2x 10 cm plates in high-
glucose, GlutaMAX DMEM (Gibco) supplemented with 9%
fetal bovine serum (Gibco) and 1x Penicillin Streptomycin
(Gibco) at a density of 2.5x106 cells per plate and reverse
transfected using 6.25 pl Lipofectamine RNAIMAX and 150
pmol of the respective siRNA (Luciferase as control for WT,
SMG6 for SMG7 KO cells) according to the manufacturer’s
instructions. Cells were harvested after 72 h with 2 ml of
peqGOLD TriFast (VWR Peqlab) per plate and total RNA
was isolated following the manufacturer’s instructions. The
following changes were made: Instead of 200 ul chloroform,
150 pl 1-Bromo-3-chloropropane (Molecular Research Center,
Inc.) was used. RNA was resuspended in 40 ul RNase-free
water. 100 pg of total RNA was subjected to 2 rounds of
consecutive poly(A)-enrichment by using 200 pl Dynabeads
Oligo (dT)25 and following the manufacturer’s instructions.
Poly(A)-enriched RNA was eluted with 22 ul RNase-free water
and subsequently used for library preparation and ONT direct
RNA sequencing. A total of 4 replicates per condition were
]. We
assembled the Nanopore reads and estimated junction read

sequenced. Reads were aligned with minimap2 (v2.17)[

counts based on this new assembly with Stringtie2 (v2.1.1)
and Ballgown (v2.14.0)[
EdgeR (v3.24.0)(
1— p-value as the DJU score.

]. DJU calls were computed with with
] using the diffSpliceDGE function. We use

Results

DJU method performance comparison

We present benchmark experiments comprising the 4 DJU
methods and 2 datasets, the SIRV dataset, schematized in
Figure 2, and the paired Illumina-ONT-seq dataset.

Benchmarking the SIRV dataset

The SIRV dataset comprises 414 SJ from the 3 comparisons
with the 3 SIRV mixes. The benchmark shows that JunctionSeq
outperforms all of the other methods (Figure 3). JunctionSeq
ranks top with an AUC of 0.87, followed by LeafCutter
(AUC 0.60), Majiq (AUC 0.59), and rMATS (AUC 0.53). While
JunctionSeq performs best, rMATS performs close to a random
classifier. Supplementary Figure S3 shows the PR curve, which
shows the trade-off between precision and recall independent of
method score. Of note, Majiq presents a low score variability.

All methods have a specificity > 0.68, which represents a fair
predictive performance for negative instances (Supplementary
Figure S2 and confusion matrices in Supplementary Section S-
X.6). Methods’ scores show only a limited agreement across
each other (Supplementary Figure S4).

a[perpetuity. It is made available under aCC-BY-ND 4.0 International license.
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Fig. 3. Baltica benchmark for DJU methods with the SIRV
dataset. The introns matching the SIRV transcriptome validated on
whether these introns change or not in a given comparison. The
performance rank for both curves is consistent between the ROC and PR
curves (Supplementary Figure 3): JunctionSeq is the top ranking method,
followed by LeafCutter, Majig, and rMATS. AUC: area under the curve;
PR: precion-recall; ROC: Receiver Operating Characteristic; TPR: True
Positive Rate; FPR: False Positive Rate.

Benchmarking ONT direct RNA-seq dataset as validation

To complement the size limitation of the SIRV dataset, we
also benchmark an alternative dataset. Different to the SIRV
dataset, this is not a bona fide ground-truth dataset. However,
we observe similar pattern for the ROC curves of both
benchmarks (Figure 3 and Figure 4). Interestingly, we note a
reduction of the differences in AUCROC among methods in
the second dataset (Figure 4). Most notably, rtMATS AUCROC
increased from 0.53 to 0.65. In terms of AUCPR metric,
JunctionSeq ranks first with AUCPR of 0.72, followed by Majiq
(0.61), LeafCutter (0.57) and rMATS (0.48) (Supplementary
Figure S6). Out of 20,744 introns labeled as positive, 21% were
called by all 4 methods, and 3 out 4 methods already call 43%
(Figure S5).

Table 1 compares the recall, specificity, and F1 metrics for
the 2 benchmarks. There are multiple factors to explain the
differences between the 2 benchmarks. Of note, the ratio of
positive and negative instances change from 2/3 to 1/4 between
the SIRV and paired Illumina-ONT RNA-seq datasets. This
change can partially explain the overall gain in F1 for all
methods, but JunctionSeq.

Methods reach a consensus in terms of classification of
negative instances. In contrast, for positive instances, the
consensus is not as clear (Supplementary Figure S7), and
methods scores complement each other. The correlation among
scores was low, with a maximum of 0.55 for the LeafCutter
and rMATS pair (Supplementary Figure S8). The relatively low
correlation and complementary nature of method scores for
positive instances have motivated us to test the performance
of a meta-classifier for differential splicing identification.

Meta-classifier with combined DJU scores

Meta-classifiers may improve classification performance by
combining the decision of multiple classifiers. To test the
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Fig. 4. Baltica benchmark with a paired Illumina-ONT RNA-
seq datasets. Performance for DJU methods executed with Illumina
RNA-seq and validated with Nanopore RNA-seq show similarities with
the benchmark with the SIRV dataset. The classification performance
ranks are the same as the benchmark with the previous dataset, in
Figure 3. JunctionSeq outperforms the other methods in both AUCROC
and AUCPR (Supplementary Figure S6).
performance difference among methods is smaller than the benchmark
with the SIRV dataset.

However, in this case, the

penalty 11, 12
C 1.0 x 1072,5.6 x 10%,3.1,1.7 x
10%,1.0 x 10*

Table 2. Parameter space for the grid search procedure with
Gradient Boosting Classifier (GBC) and Logistic Regression
Classifier (LRC). The procedure aims to maximize the ROC AUC
(Area under the Receiver Operating Characteristic Curve) metric
of scikit-learn’s implementation of the machine learning algorithms.
In addition to these parameters, we compare classifiers trained in a
single method versus a classifier trained on the 4 methods to test
whether the differential splicing identification task benefits from a
meta classifier.

GBC LRC

Mean (SD) AUCROC | Mean (SD) AUCROC

Combined 0.92 (0.003) 0.91 (0.002)
JunctionSeq 0.88 (0.004) 0.88 (0.004)
LeafCutter 0.82 (0.003) 0.83 (0.003)
£MATS 0.69 (0.005) 0.70 (0.006)
Majiq 0.68 (0.006) 0.68 (0.005)

SIRV Tllumina-ONT RNA-seq

Recall Spec. F1 | Recall Spec. F1

rMATS 0.26  0.77 0.39 0.51 0.76 0.61
JunctionSeq 0.91 0.74 0.82 0.65 0.90 0.75
Majiq 0.24 0.94 0.39 0.35 0.96 0.51
LeafCutter 0.54 0.68 0.60 0.70  0.70 0.70

Table 1. Prediction metrics for the benchmark in the SIRV
and ONT RNA-seq datasets. See the complete report at the
Supplementary Section S-X.6 (SIRV) and S-X.11 (Illumina-ONT
RNA-seq). Spec: Specificity.

application of meta-classifiers to the differential splicing
identification task, we have trained 2 models, the LRC and
GBC, by fitting them with either a single feature (one method
score) or 4 features, one for each method score.

Because models trained in a different set of features may
require different sets of parameters, we apply a grid search over
the parameters listed in Table 2. We observe the predictors with
the combined scores outperform models fitted with scores from
a single method score, independent of other parameters and the
machine learning algorithm. Table 3 compares these results.
To our surprise, the LRC algorithm performs competitively
with the GBC algorithm. The GBC algorithm scores an
AUCROC of 0.92 in the training set and 0.91 in the testing
set, confirming the model’s ability to generalize to unseen data.
This result demonstrates that combining scores from multiple
DJU methods is favorable for differential splicing identification.
It improves the predictive performance of the classifier targeting
class determined by an orthogonal set, the ONT RNA-seq.

Table 3. Comparison of the top-scoring meta-classifiers
performance. Mean (standard deviation) AUCROC for the 10-
fold cross-validation. Each row represents the top-scoring model for
models trained on the combined features of a single feature. SD:
Standard deviation.

Discussion

Baltica aims to enable the study of integrated results from
DJU methods. To achieve that goal, the framework provides
workflows[11] and containers[12] to execute the said methods.
Next, it combines and re-annotates the results and reports them
as an interactive table, as illustrated in Figure 5.

The main challenge for data integration with DJU method
results is the difference in individual method implementation.
For example, JunctionSeq does not produce splicing events. It
computes the fold-change of introns, and because it adopts
a distinct metric, it handles the effect size comparison with
other tools inviable. DJU methods also use different definitions
to define the coordinate of the AS events. Due to that, we
have decided not to integrate effect-size, the PSI, from various
methods, despite understanding this attribute is critical for
alternative splicing identification.

This manuscript applies a benchmark to 2 independent
datasets, the SIRV and the paired Illumina-ONT RNA-seq
datasets. Other DJU method performance comparisons have
used simulated datasets or datasets with a small subset of PCR-
validated AS events[413, 9]. These 2 approaches do not fully
appreciate the complexity of the RNA-seq experiment. Other
benchmarks integrate splicing events on the gene level. Baltica
can systematically resolve the different coordinate systems and
compare multiple methods without these limitations.

The benchmark with the SIRV transcriptome is a special
case that embeds a small complex transcriptome into a human
transcriptome. The SIRV transcriptome has 138 introns, of
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Fig. 5. Interative Baltica table. The image shows a static view of the Baltica report, focusing on the table component. The table is pre-sorted by sums

of the scores columns, and it can be sorted by the scores or filtered by gene name. In addition, annotation is provided for introns that match the de novo

transcriptome annotation. Introns that are annotated are flagged in the Novel column. J, L, M, R and O stand for JunctionSeq, LeafCutter, Majiq,

rMATSs and orthogonal scores, respectively. The gene_name, class_code, transcript_name and exon_number come from StringTie integration. The

class_code matches how novel transcripts compare to annotated ones. The rMATS score column is missing from the image.

which 2/3 change between the 3 contrasts. All SIRV introns are
annotated, benefiting methods that rely on the transcriptome
annotation, such as JunctionSeq. In addition, it contains almost
2:1 number positive to negative instances ratio, donor and
acceptor splice with non-canonical sequence, and transcripts
in opposite strands that share the identical introns. These
attributes make the SIRV an important dataset for the
benchmark of differential splicing identification methods.

In addition, we also benchmark the methods with the paired
Illumina and ONT RNA-seq. Second-generation sequencing,
primarily Illumina RNA-seq, has promoted many discoveries
in differential AS. However, Illumina RNA-seq is limited by
its relatively short read length, leading to a limited resolution
of one single intron at a time. Third-generation RNA-seq
technology, represented by Iso-seq from Pacific Biosciences
(PacBio) and ONT RNA-seq, overcome this issue by offering
longer sequencing reads than second-generation RNA-seq. The
longer reads enable unambiguous matching to multiple introns
in transcript isoforms and thus allow a better resolution of the
transcriptome structure[44, 45]. Hybrid sequencing approaches
pairing third-generation sequencing, and second-generation
sequencing can benefit from both the deep coverage and the
long-reads to improve AS identification task[46, 45, 47, 48].
This dataset allows us to compare the methods scores on 65,408
introns that have been tested for DJU with EdgeR in the ONT
RNA-seq dataset.

‘We understand the Nanopore DJU scores are not a bona fide
ground-truth, but only an orthogonal approach to the splicing
identification problem. Although the apparent differences
between the SIRV and the ONT RNA-seq datasets, the
benchmark results were remarkably similar. Specifically, the

ranks of DJU methods were the same in both datasets. On the
other hand, the difference in F1 metric among methods was less
pronounced in the second dataset.

In addition to the considerations detailed above, readers
should interpret the benchmark results in the context of the
2 datasets. For example, the 2 benchmark use cases use
transcriptomes with known introns, and they should benefit
from methods that rely on a complete annotation. However,
to a certain extent, current methods like LeafCutter and Majiq
don’t rely on the annotation for the intron count modeling.
Also, while Majiq, LeafCutter, and rMATS output events that
comprise multiple SJ, JunctionSeq output a single p-value per
intron. Moreover, for the second benchmark, one must keep in
mind that EdgeR, which was used to analyze the Nanopore data,
and JunctionSeq use a similar statistical model.

‘We demonstrate that the integration of DJU methods results
can be helpful for intron prioritization. To do so, we have
trained multiple machine learning models using 2 algorithms
and five feature sets, one for each method score or the
combination of the 4. We observed that models trained in the
combined feature set performed better than methods trained
in a single feature independent of machine algorithms. The
LRC method has fewer parameters, requires fewer input data,
and is faster to train but has lower predictive performance
than GBC[19]. We used the LRC algorithm as a base model,
intending to build upon it with the GCB. However, the 2
models presented a comparable performance. We provide the
source code for model training and validation so that users can
apply the method in their datasets. To our knowledge, this
approach is the first method to take advantage of DJU scores
to train a meta-classifier. However, this practice is common for
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bioinformatics practices and has been used to train predictors
for protein secundary structure [50]. The integration helps
prioritize introns for further experimental validation and may
expand our knowledge on functional consequences of AS events.

We plan to extend Baltica in the future with additional
DJU methods workflows and will include unit tests for
tracking output differences due to changes in software
versions. We invite the user community to follow the Baltica
repository https://github.com/dieterich-lab/baltica for the
code and update documentation and to participate in Baltica
development.

Key Points

e Methods to identify differential splicing changes are critical
to detect the association of introns to genomic features such
as genetic variants or splicing factor binding sites.

e However, these methods differ in many aspects, and the lack
of standardization hampers the comparison of their results

e Baltica enables reproducible execution and integration of
DJU methods. The integrated results allow benchmarking
the different methods, and it reveals JunctionSeq ranks first
in F1 metric across 2 independent benchmarks.

e Meta-classifiers trained on methods scores outperform all
models trained in single method scores, demonstrating the
data integration advantage.
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Supplementary Materials for Baltica: integrated splice junction usage analysis

Here we provide the supplementary information to the manuscript Baltica: integrated splice junction usage analysis, by Thiago
Britto-Borges, Volker Boehm, Niels H. Gehring and Christoph Dieterich.

Experimental design for the SIRV dataset.

Biological sample | Spike-in mix | Sample id
WT_1 Mix1_1 106030
WT_2 Mix2_1 106032
WT_3 Mix3_1 106034
H1 clone_1 Mix1_2 106036
H1 clone_2 Mix2_2 106038
H1 clone_3 Mix3_2 106040
HC clone_1 Mix1_3 106042
HC clone_2 Mix2_3 106044
HC clone_3 Mix3_-3 106046
T clone_1 Mix1_4 106048
T clone_2 Mix2_4 106050
T clone_3 Mix3_4 106052
TC clone_1 Mix1_5 106054
TC clone_2 Mix2_5 106056
TC clone_3 Mix3_5 106058

Table S1. The biological sample, spike-in mix, and sample identifier associations for samples in dataset E-MTAB-8461.
Related to Figure 2. Note that the biological samples and the spike-in mixes are not confounded.

Popularity of DJU methods.
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Fig. S1. The popularity of selected methods for differential splicing identification. The citation over time for selected DJU methods. The
y-axis is logjo transformed. Data sourced from https://scholar.google.com/ using the scholar R package.
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Heatmap for the SIRV benchmark
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Fig. S2. Four hundred fourteen introns were randomly sampled from the human transcriptome (top) and the same amount in the SIRV transcriptome
(bottom). Introns in the SIRV transcriptome are annotated, as shown in the leftmost annotation. Colorbar shows method score as divergent color from
red (1) to blue (0), and the highest score better the performance classification. The methods score for negative instances, in the top panel, agreement
while for positive, for instance, the 2/3 in the bottom panel, are not.

SIRV benchmark precision-recall curve
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Fig. S3. SIRV benchmark precision-recall curve. Overall, changes in recall have only a slight effect on precision for all the methods. JunctionSeq
ranks first (AUCPR=0.98), followed by Majiq (AUCPR=0.82), LeafCutter (AUCPR=0.8), and rMATS (AUCPR=0.73). PR: precion-recall; AUCPR: area
under the precision-recall curve. Relates to Figure 3.
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Spearman correlation for the SIRV benchmark
Spearman
Correlation
o - -
-1.0 -05 00 05 1.0
leafcutter
majiq
junctionseq
rmats
Fig. S4. Spearman correlation among methods and the SIRV ground-truth. Scores were log transformed with the function f(z) = —logio(z +

1e1%) and only introns from the SIRV transcriptome were tested. Overall, pairs of methods have a low correlation with an mean of 0.25.The maximum

value is of 0.68 for 1 and ground-truth. .

Perfomance metrics and confusion matrix for the SIRV benchmark

Metrics were obtained with caret::confusionMatrix function. True and false instances were separate with the 0.95 threshold.

JunctionSeq

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 89 26
TRUE 31 268

Accuracy : 0.8623
95% CI : (0.8253, 0.894)
No Information Rate : 0.7101
P-Value [Acc > NIR] : 1.957e-13

Kappa : 0.6614

Mcnemar’s Test P-Value : 0.5962

Sensitivity : 0.9116
Specificity : 0.7417

Pos Pred Value : 0.8963

Neg Pred Value : 0.7739
Prevalence : 0.7101
Detection Rate : 0.6473
Detection Prevalence : 0.7222
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Balanced Accuracy : 0.8266

’Positive’ Class : TRUE

rMATS

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 92 213
TRUE 28 81

Accuracy : 0.4179
95% CI : (0.3699, 0.467)
No Information Rate : 0.7101
P-Value [Acc > NIR] : 1

Kappa : 0.029

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.2755
Specificity : 0.7667

Pos Pred Value : 0.7431

Neg Pred Value : 0.3016
Prevalence : 0.7101
Detection Rate : 0.1957
Detection Prevalence : 0.2633
Balanced Accuracy : 0.5211

’Positive’ Class : TRUE

Majiq
Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 113 224
TRUE 7 70

Accuracy : 0.442
95% CI : (0.3935, 0.4913)
No Information Rate : 0.7101
P-Value [Acc > NIR] : 1

Kappa : 0.1171

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.2381
Specificity : 0.9417

Pos Pred Value : 0.9091

Neg Pred Value : 0.3353
Prevalence : 0.7101
Detection Rate : 0.1691
Detection Prevalence : 0.1860
Balanced Accuracy : 0.5899

’Positive’ Class : TRUE
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LeafCutter

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 82 136
TRUE 38 158

Accuracy : 0.5797
95% CI : (0.5305, 0.6277)
No Information Rate : 0.7101
P-Value [Acc > NIR] : 1

Kappa : 0.1778

Mcnemar’s Test P-Value : 1.93e-13

Sensitivity : 0.5374
Specificity : 0.6833

Pos Pred Value : 0.8061

Neg Pred Value : 0.3761
Prevalence : 0.7101
Detection Rate : 0.3816
Detection Prevalence : 0.4734
Balanced Accuracy : 0.6104

’Positive’ Class : TRUE

Baltica integration for the ONT RNA-seq dataset
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Fig. S5. Baltica integrated SJ for the ONT dataset. The plot shows distinct sets of introns with score > 0.95 by combinations of methods and
the DJU for the ONT RNA-seq. The complement sets, combinations with a degree of 1, were omitted. The intersection and set sizes refer to the number

of the sets not omitted, while the total shows the total number of calls.
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ONT RNA-seq benchmark precision-recall curve
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Fig. S6. ONT RNA-seq benchmark precision-recall curve. Different from the SIRV benchmark, the precision-recall curve for the ONT RNA-seq
benchmark shows negative correlation between precision and recall. However, the method rank is consistent with the SIRV benchmark with JunctionSeq
first (AUCPR=0.72), and then Majiq (AUCPR=0.61), LeafCutter (AUCPR=0.57), and rMATS (AUCPR=0.48). PR: precion-recall; AUCPR: area under

the precision-recall curve. Relates to Figure 4

Heatmap for benchmark with the ONT RN A-seq dataset

rmats
junctionseq
[ majiq
leafcutter
nanopore

Fig. S7. The 0.95 thresholds separate five hundred negative (top) and positive instances (bottom) detected by the ONT RNA-seq. Colorbar shows
method score as divergent color from red (1) to blue (0), higher is better. Related with Supplementary Figure S2
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Spearman correlation among methods scores and ONT RNA-seq DJU method for the ONT RN A-seq dataset

nanopore

leafcutter

junctionseq

majiq

rmats

Spearman
Correlation
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Fig. S8. Spearman correlation among scores from DJU methods and ONT RNA-seq dataset DJU. Overall, methods scores show higher

correlation than in the SIRV benchmark (Supplementary Figure S4), however the agreement between to methods is still limited, whith the maximum

value of 0.55 for rMATS versus LeafCutter. Scores were transformed with f(z) = —logio(z + 1e™'°) and only introns presented in the ONT RNA-seq

dataset were tested.

Confusion matrix for the benchmark with the ONT dataset

JunctionSeq

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 40027 7192
TRUE 4637 13552

Accuracy :
95% CI :
No Information Rate :

P-Value [Acc > NIR]

Kappa :

Mcnemar’s Test P-Value :

Sensitivity :
Specificity :

Pos Pred Value :

Neg Pred Value :
Prevalence :
Detection Rate :
Detection Prevalence :

0.
(0.8162, 0.8221)
0.
0 <

O O O O O O O

8192

6829
2.2e-16

.5682

2.2e-16

.6533

8962

.7451

8477

.3171
.2072
.2781
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Balanced Accuracy : 0.7747

’Positive’ Class : TRUE

rMATS

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 33844 10116
TRUE 10820 10628

Accuracy : 0.6799

95% CI : (0.6763, 0.6835)
No Information Rate : 0.6829
P-Value [Acc > NIR] : 0.947

Kappa : 0.2677

Mcnemar’s Test P-Value : 1.182e-06

Sensitivity : 0.5123
Specificity : 0.7577

Pos Pred Value : 0.4955

Neg Pred Value : 0.7699
Prevalence : 0.3171
Detection Rate : 0.1625
Detection Prevalence : 0.3279
Balanced Accuracy : 0.6350

’Positive’ Class : TRUE

Majiq
Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 42912 13374
TRUE 17562 7370

Accuracy : 0.7687
95% CI : (0.7655, 0.772)
No Information Rate : 0.6829
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.3718

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.3553
Specificity : 0.9608

Pos Pred Value : 0.8079

Neg Pred Value : 0.7624
Prevalence : 0.3171
Detection Rate : 0.1127
Detection Prevalence : 0.1395
Balanced Accuracy : 0.6580

’Positive’ Class : TRUE
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LeafCutter

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 31194 6267
TRUE 13470 14477

Accuracy : 0.6982
95% CI : (0.6947, 0.7018)
No Information Rate : 0.6829
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.3626

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.6979
Specificity : 0.6984

Pos Pred Value : 0.5180

Neg Pred Value : 0.8327
Prevalence : 0.3171
Detection Rate : 0.2213
Detection Prevalence : 0.4273
Balanced Accuracy : 0.6982

’Positive’ Class : TRUE
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