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Abstract

Alternative splicing is a tightly regulated co- and post-transcriptional process contributing to the transcriptome diversity
observed in eukaryotes. Several methods for detecting differential junction usage (DJU) from RNA sequencing (RNA-seq)
datasets exist. Yet, efforts to integrate the results from DJU methods are lacking. Here, we present Baltica, a framework
that provides workflows for quality control, de novo transcriptome assembly with StringTie2, and currently 4 DJU
methods: rMATS, JunctionSeq, Majiq, and LeafCutter. Baltica puts the results from different DJU methods into context
by integrating the results at the junction level. We present Baltica using 2 datasets, one containing known artificial
transcripts (SIRVs) and the second dataset of paired Illumina and Oxford Nanopore Technologies RNA-seq. The data
integration allows the user to compare the performance of the tools and reveals that JunctionSeq outperforms the other
methods, in terms of F1 score, for both datasets. Finally, we demonstrate for the first time that meta-classifiers trained
on scores of multiple methods outperform classifiers trained on scores of a single method, emphasizing the application of
our data integration approach for differential splicing identification. Baltica is available at https://github.com/dieterich-
lab/Baltica under MIT license.
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Introduction

Alternative promoters, splice sites, and polyadenylation sites

define the transcriptome complexity by producing different

transcript isoforms. Alternative splicing (AS), defined as the

differential removal of introns by alternative splice site usage

instead of canonical splice sites, is widespread in eukaryotic

genomes. AS regulation is central to physiological processes,

such as tissue remodeling[1], and defective splicing has been

linked to human disease[2]. However, most of the cataloged

AS events are yet to be associated with their functional

consequence[3]. Furthermore, there are increasing numbers

of genomic single nucleotide variants associated with mis-

splicing events[4], pointing to a latent link between multi-

factorial diseases and mis-splicing due to genetic variation.

AS is regulated by context-dependent proteins named splicing

regulatory factors, which define splice sites and lead transcript

isoforms changes. Altogether, AS and its regulation are crucial

to studying human health and disease. Computational methods

for AS identification from RNA sequencing (RNA-seq) have

helped to scale up these discoveries.

There are different approaches to identifying splicing

events from RNA-seq. Methods that model intron usage are

popular methods, as shown in Supplementary Figure S1. In

addition, these methods have been applied to a broad range

of studies, for example, the effects of genetic variation in
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Fig. 1. Baltica framework overview. Baltica is a framework to execute and integrate differential junction usage (DJU) analysis. 1 – Input: Baltica

takes as input RNA-seq alignments, reference annotation, and a configuration file. 2 – Quality control: First, Baltica performs quality control of

alignments with RSeQC and FastQC, which is reported by MultiQC. 3 – DJU and StringTie: Next, Baltica computes DJU with rMATS, JunctionSeq, Majiq, and

LeafCutter, and uses StringTie to detected transcripts and exons, which deviate from the reference annotation. 4 – Downstream analysis: Finally, we

integrate the results from the DJU method. Optionally, Baltica can include an extra piece of evidence for DJU (hereafter the orthogonal dataset), such

as DJU obtained from Oxford Nanopore Technologies (ONT) RNA-seq. The set of introns is re-annotated using information from de novo transcriptome

annotation, and splice types between SJ and exons are assigned. Finally, Baltica compiles a report with the most relevant information.

splicing[5], identification of splicing factor-mediated AS events

[6], associate AS to nonsense-mediated decay[7] and testing

for splicing therapeutical intervention in animal models[8]. We

here name these methods as different junction usage (DJU)

methods. As suggested by Mehmood and collaborators[9],

comparing results from multiple methods could improve

AS event prioritization. Despite the popularity and critical

application to human health, individual DJU methods have

limitations.

DJU methods differ in software granularity. While

some methods implement multiple functionality steps, from

sequencing read filtering to results reporting, others focus

solely on statistical modeling of RNA-seq split reads. These

differences in implementation and poorly defined concepts

are barriers to data integration from DJU method results.

Specifically, DJU methods results are not comparable, as not all

methods output standard file formats. Second, differences in AS

event definition limits the comparison of event-specific metrics.

The PSI (percent spliced in; Ψ) represents the proportion of

splice site usage within an AS event per experimental group

and indicates effect size[10]. In general, methods do not adopt

a standardized definition for AS event or Ψ, thus complicating

the comparison of effect sizes. Third, methods do not share

common steps to facilitate result integration and benchmark.

For example, it is not trivial to input the same matrix of splice

junctions (SJ) read counts to all DJU methods. Collectively,

these points are obstacles to data integration.

In this paper, we present Baltica, a framework that

facilitates the execution and enables the integration of DJU

methods results. Baltica comprises of a command-line interface,

snakemake[11] workflows, containers[12], and scripts that

provided reports on the integrated results. We propose a

protocol to integrate results from DJU methods and further

prioritize introns that undergo AS based on the decision of

such methods. Optionally, Baltica integrates of results obtained

with orthogonal experiments, such as AS evidence from Oxford

Nanopore Technologies (ONT) RNA-seq. To our knowledge,

there are no others solutions for integrating DJU results. We

apply Baltica to 2 datasets. The first uses spike-ins with known

experimental group concentration and transcriptome structure,

the so-called Spike-in RNA Variant Control Mixes (SIRVs). The

second ones uses paired Illumina and ONT RNA-seq datasets.

In addition, Baltica integration allows us to compare the

performance of different DJU methods and test the usability

of a meta-classifier trained on the decision of the methods.

Material and Methods

Baltica method overview

Figure 1 shows an overview of the features included in

the Baltica framework. Baltica comprises a command-

line interface, workflow implementations, and scripts that

handle DJU methods’ result parsing, integration, annotation,

and reporting. The framework requires snakemake[11], and
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singularity[12]. Singularity containers and Bioconda[13]

handle the dependencies for workflows and scripts. The

containers allow the execution of software dependencies in

isolation and provide reproducible workflows that don’t require

direct user instalation.

Baltica works as a standard Python package, and

its command-line interface facilitates the execution of the

workflows by, for example, automatically handling singularity

arguments. The configuration file centralizes the required

information for workflows. Specifically, it contains file paths,

file to group assignments, method parameters, and pairwise

comparisons between experimental groups to be tested. The

required inputs are RNA-seq alignment files in BAM format,

a reference transcriptome annotation (GTF/GFF format), and

its sequence (FASTA format). Users can also input results from

other evidence sources prepared in BED or GFF formats if

available.

Baltica implements workflows for quality control methods,

DJU methods, de novo transcriptome assembly, and

downstream analysis. The included methods for quality control

are RSeQC[14] and FastQC[15]. We use MultiQC[16] to summarize

the output from both tools. In addition to the quality control

of reads and alignments, this step helps to identify systematic

differences among the analyzed samples or conditions. RSeQC

implements an SJ saturation diagnostic, which quantifies the

abundance of known and novel SJ. The tool also provides the

proportion of reads per feature in the input annotation, which

may indicate splicing changes due to, for example, an increase

of reads mapping to introns.

Currently, the frameworks supports 4 DJU methods:

rMATS[17], JunctionSeq[18], Majiq[19], and LeafCutter[20].

We detail the method inclusion criteria and workflows

at Section 2.2. Finally, the analysis workflow proceeds

with DJU integration, annotation, and reporting. Scripts

for the analysis workflow were developed with R[21] and

based on Bioconductor’s infrastructure to handle genomic

coordinates[22, 23] as well as tools from the Tidyverse[24].

Differential junction usage algorithms

Due to the high number of DJU methods available in the

literature, we have established a set of rules for method

inclusion into Baltica. We may include a method if it fits the

following criteria:

• supports as input RNA-seq read alignment in the BAM

format and transcriptome annotation in the GTF/GFF

format

• provides test statistics, such as p-value, at the event or SJ

level for pairwise comparisons

• outputs effect size estimates, such as the Ψ

• detects SJ independent of the reference annotation

We present an initial set of 4 DJU methods. These

methods fulfill the criteria and are among the most popular

methods for differential splicing identification, as shown in

Supplementary Figure S1. But are we are aware that other

DJU software packages exist, such as SUPPA2[25] and PSI-

Sigma[26]. Therefore, we hope to include more of these packages

into Baltica, especially with the help of the user community.

rMATS-turbo

rMATS-turbo (v4.1.1), or simply, rMATS, estimates the splicing-

type specific isoform proportion from RNA-seq reads. First,

rMATS uses the reference annotation to determine the splicing

events grouped by splicing types: skipped exon, mutually

exclusive exons, alternative 3’ splice site, alternative 5’ splice

site, retained intron. More recently, rMATS’ developers released

experimental support for unannotated introns with the ‘–

novelSS‘ argument. rMATS uses the effective length-scaled

junction read counts and, optionally, exon read counts to

estimate Ψ. Then, it applies the likelihood-ratio to test whether

∆Ψ (∆Ψ = Ψi1 − Ψi2, for the intron i, and groups 1 and 2)

surpasses the 0.05 threshold.

JunctionSeq

JunctionSeq (v1.16) takes as input a read count matrix obtained

with QoRTs[27] (v1.1.8), for annotated SJ, novel SJ, and

exons, so in fact, JunctionSeq falls into the differential exon

usage and DJU classes. Based on DEXSeq, JunctionSeq uses

disjoint genomic bins as features, and applies a generalized

linear model[28] to model the feature expression. Beyond

modeling the modeling aspect, JunctionSeq also invests in the

visualization of the exon and intron usage and builds tracks for

genome browsers. JunctionSeq does not identify splicing events,

so the results are associated with intron coordinates.

Majiq

Majiq (v2.2-e25c4ac) generates splice graphs for genes present

on the RNA-seq dataset and the reference annotation. Next,

it detects splicing events, quantifies the SJ usage from

normalized SJ read counts, and computes the PSI value for

the sample groups. Majiq uses a Bayesian framework to assess

which ∆Ψ changes threshold among groups are significant

by a user-defined probability. The local splicing variations

implementation includes more than 2 SJ per event. So it

supports complex AS event types, which is more realistic than

modeling splicing events by SJ pairs.

LeafCutter

LeafCutter (v0.2.7) uses regtools[29] to extract and select

reads SJ from RNA-seq alignments. Next, it uses an iterative

clustering procedure to eliminate SJ with low usage. Finally,

the LeafCutter fits a Dirichlet-multinomial generalized linear

model on SJ usage proportion within intron-clusters.

A more detailed description of the workflow implementation

is available at Baltica manual online[30].

Baltica integration and reporting

To parse, integrate and annotate the results from the DJU

methods, we use the Bioconductor infrastructure. While

parsing the results files from the methods, Baltica pivots the

results tables, so each row in the data table corresponds to a

single SJ. Because rMATS outputs one result file for each AS

event type, Baltica selects the SJ representing feature inclusion

and exclusion events from each file. Because LeafCutter and

rMATS assign the test statistics to the event instead of the SJ,

we assign the same test statistics to multiple SJs contained in

the AS event.

One challenge to integrating results from DJU methods

is correcting for different coordinate systems. For example,

methods can use 0-indexed (BED format) or 1-indexed (GTF

format) files and use exon or intron splice site coordinates to

represent the SJ genomic position. We make no assumptions

regarding the method choice for the coordinate system, and this

flexibility allows us to support many methods. To overcome the

issue without fixing the coordinates adjusted for each method,

we first compute the genomic overlap between introns in the
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reference annotation (subject) and a set of SJ output from

a method (query). Then, we compute coordinate offsets (in

nucleotides) between subject and query, determine the most

frequent difference in start and end coordinates between the

2 sets, and finally, apply corrections to the coordinates in a

strand-specific manner for each method. This procedure allows

Baltica to report groups of SJ that represent splicing events in

different genomic coordinate systems.

Next, Baltica uses a de novo and guided transcriptome

annotation as a reference for annotation and assigning

alternative splicing types. The de novo workflow comprises

merging the alignment files for experimental groups; next,

we use StringTie (v2.1.5)[31] to obtain group-specific

transcriptome annotations, which are then subsequently

combined with gffcompare[32] in the guided mode. We use

this novel annotation for downstream analysis, including

naming genes and transcripts and assigning AS types when

possible. Novel SJ, not included in the reference transcript

annotation, are also annotated. Currently, Baltica determines

the following types: exon skipping (ES), alternative 3’ splice-

site (A3SS), alternative 5’ splice-site (A5SS). The AS type

assignment procedure occurs by comparing SJ to overlapping

exons features, detected in the de novo annotation. We can

determine the AS type using distance rules between the start

and end coordinates of the SJ and its overlapping exons.

Associating the SJ to transcripts enables the study of the

splicing event in the context of the transcript sequence and

structure. Finally, the framework produces a report that

summarizes integration results. It provides an overview of the

integration results and an HTML table with one SJ per row, the

methods score, SJ annotation, and link to the UCSC Genome

Browser[33].

Benchmark

Methods to detect DJU from RNA-seq are valuable tools

for prioritizing mechanisms driving splicing changes. From a

classification perspective, differential splicing methods aim to

classify introns that are truly differently used from the other

introns. We approach the differential splicing identification as

a binary classification problem. Thus, the positive instance,

the differently spliced intron, is more relevant than the

negative instance. For the SIRV dataset, introns in the SIRV

transcriptome that have fold-change 6= 1 were considered

positive, while others introns that were not changing (fold-

change of 1) were negative instances. For the paired Illumina-

ONT RNA-seq dataset, introns with p-value <0.05 were

considered positive instances. This value was obtained with

the edgeR::diffSpliceDGE function. The set of introns from the

SIRV or ONT RNA-seq dataset were used as a reference, so

the results among methods are comparable. A true-positive

instance (TP) was defined as truly changing and correctly

classified, while false-positive (FP) was a negative instance

classified as positive. Accordingly, true negatives (TN) and

false-negatives (FN) were true negative instances that were

correctly or incorrectly called, respectively. The following

metrics are defined:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall (or sensitivity) =
TP

TP + FN

Specificity =
TN

FP + TN

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

True positive rate (TPR) and false positive rate (FPR) are

synonymous to recall and 1− specificity, respectively. Receiver

Operating Characteristic (ROC) curve, Precision-Recall (PR)

curve, and area under curve (AUC) were computed with

ROCR[34]. Confusion matrix and associated statistics report

were computed with caret[35], and for that, method scores

were made binary using the 0.95 threshold. Heatmap and UpSet

plots were created with ComplexHeatmap package[36].

Meta-classifier to identify differential splicing

We propose a machine learning approach for a meta-classifier

that combines the score of the DJU methods workflows

implemented in Baltica. To do so, we train the models with

the matrix of DJU scores from the second dataset, with

matched third-generation sequencing. The dataset was split

into training and testing data (80% vs 20%). DJU scores

from the Illumina and ONT RNA-seq were used as input and

target values, respectively. Feature selection proceeded with the

mlxtend package[37] using either a method score column or a

combination of the 4 score columns. Next, a grid search was

performed with parameters for the Gradient Boosting Classifier

(GBC) and Logistic Regression Classifier (LRC) algorithms

implemented in scikit-learn (v0.24.2)[38], for features listed in

Table 2, and the combination of columns. The grid search aimed

to maximize the area under the ROC curve. This experiment

allows us to compare the classification performance from the

meta-classifier and classifiers trained from a single method

score.

RNA libraries preparation, sequencing, and alignment for the

SIRV dataset

Figure 2 schematizes the application of Baltica to the SIRV

dataset. Figure 2b compares DJU calls by the 4 methods

and the ground-truth. Cell lines, RNA extraction, and RNA-

seq were described in Gerbracht and collaborators[39]. In

short, we obtained 15 libraries from Flp-In T-REx 293 cells,

extracted the RNA fraction with TrueSeq Stranded Total RNA

kit (Illumina), followed by ribosomal RNA depletion, with

RiboGold Plus kit and Spike-In RNA Variants (Lexogen SIRV,

Set-1, Iso Mix E0, E1 and E2, cat 025.031) input. Libraries

were sequenced with an Illumina HiSeq4000 sequencer using

PE 100bp protocol, which yielded around 50 million reads

per sample. Data were deposited in ArrayExpress (E-MTAB-

8461). Sequenced reads’ adapters and low-quality bases were

trimmed, and reads mapping to human precursor ribosomal

RNA were discarded. The remaining reads aligned with the

human genome (version 38, EnsEMBL 90) extended with the

SIRV annotation. In the DJU method benchmarking context,

we are not interested in the actual biological condition but the

SIRV transcriptome changes. Our experimental design does not
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(a) Schematic view for benchmark with the SIRV dataset.
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Fig. 2. Integrated DJU results for the SIRV dataset. (a) The experimental design from Gerbracht et al.[39] has five biological groups in replicates,

and Table S1 matches the biological samples groups to SIRV mixes and samples identifiers. SIRV mixes were included in a design not confounded to the

biological groups. As detailed in Section 2.6, after RNA extraction, library preparation, and sequencing, the sequencing reads were aligned to the human

genome extended with the SIRV genome. We apply Baltica workflows, as described in Section 2.1. To integrate the results, we first split AS events into

individual SJ that are contained in each event. Next, we correct the start and end coordinates from SJ of multiple methods. Once SJ were integrated,

we observed that the statistically significant SJ for JunctionSeq (padjust < 0.05), LeafCutter (p.adjust < 0.05), Majiq (probability non changing < 0.05)

and rMATS (FDR < 0.05) have limited overlap with SJ that are known to change in the SIRV transcriptome. The score is defined as 1 − padjust, where

padjust is the metric for the statistical test from each metric. In the figure, M1,M2, . . . ,Mn represent the multiple DJU methods. The UpSet plot in

(b) shows distinct sets of introns called significant by combinations of methods and the SIRV annotation (294 true positive SJ). The intersection and

set sizes show hits to annotated SIRV introns, while the total column shows the size of hits to the combined human transcriptome and SIRV annotation.

The SIRV transcriptome has 98 distinct introns that change in fold change among the mixes. We omit the complement set for the combinations.
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confound a SIRV mix with the biological conditions, as detailed

in Supplementary Table S1, so any AS events identified within

human chromosomes are false calls. The SIRV transcriptome

comprises seven genes, 101 transcripts, 138 unique introns, of

which 98 change among the 3 mixes, leading to 294 changing

introns. In conclusion, the 3 SIRV mixtures in the context

of the complex human transcriptome allow us to compare the

performance of the DJU methods.

RNA libraries preparation, sequencing, and alignment for the

matched ONT RNA-seq and Illumina RNA-seq datasets

The cell lines, RNA extraction, library preparation, and

RNA-seq have been described in Boehm et al. (2021)[7]. In

detail, wild type (WT) or SMG7 knockout (KO) Flp-In-

T-REx-293 cells were seeded on 2x 10 cm plates in high-

glucose, GlutaMAX DMEM (Gibco) supplemented with 9%

fetal bovine serum (Gibco) and 1x Penicillin Streptomycin

(Gibco) at a density of 2.5x106 cells per plate and reverse

transfected using 6.25 µl Lipofectamine RNAiMAX and 150

pmol of the respective siRNA (Luciferase as control for WT,

SMG6 for SMG7 KO cells) according to the manufacturer’s

instructions. Cells were harvested after 72 h with 2 ml of

peqGOLD TriFast (VWR Peqlab) per plate and total RNA

was isolated following the manufacturer’s instructions. The

following changes were made: Instead of 200 µl chloroform,

150 µl 1-Bromo-3-chloropropane (Molecular Research Center,

Inc.) was used. RNA was resuspended in 40 µl RNase-free

water. 100 µg of total RNA was subjected to 2 rounds of

consecutive poly(A)-enrichment by using 200 µl Dynabeads

Oligo (dT)25 and following the manufacturer’s instructions.

Poly(A)-enriched RNA was eluted with 22 µl RNase-free water

and subsequently used for library preparation and ONT direct

RNA sequencing. A total of 4 replicates per condition were

sequenced. Reads were aligned with minimap2 (v2.17)[40]. We

assembled the Nanopore reads and estimated junction read

counts based on this new assembly with Stringtie2 (v2.1.1)

and Ballgown (v2.14.0)[41]. DJU calls were computed with with

EdgeR (v3.24.0)[42] using the diffSpliceDGE function. We use

1− p-value as the DJU score.

Results

DJU method performance comparison

We present benchmark experiments comprising the 4 DJU

methods and 2 datasets, the SIRV dataset, schematized in

Figure 2, and the paired Illumina-ONT-seq dataset.

Benchmarking the SIRV dataset

The SIRV dataset comprises 414 SJ from the 3 comparisons

with the 3 SIRV mixes. The benchmark shows that JunctionSeq

outperforms all of the other methods (Figure 3). JunctionSeq

ranks top with an AUC of 0.87, followed by LeafCutter

(AUC 0.60), Majiq (AUC 0.59), and rMATS (AUC 0.53). While

JunctionSeq performs best, rMATS performs close to a random

classifier. Supplementary Figure S3 shows the PR curve, which

shows the trade-off between precision and recall independent of

method score. Of note, Majiq presents a low score variability.

All methods have a specificity ≥ 0.68, which represents a fair

predictive performance for negative instances (Supplementary

Figure S2 and confusion matrices in Supplementary Section S-

X.6). Methods’ scores show only a limited agreement across

each other (Supplementary Figure S4).
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Fig. 3. Baltica benchmark for DJU methods with the SIRV

dataset. The introns matching the SIRV transcriptome validated on

whether these introns change or not in a given comparison. The

performance rank for both curves is consistent between the ROC and PR

curves (Supplementary Figure 3): JunctionSeq is the top ranking method,

followed by LeafCutter, Majiq, and rMATS. AUC: area under the curve;

PR: precion-recall; ROC: Receiver Operating Characteristic; TPR: True

Positive Rate; FPR: False Positive Rate.

Benchmarking ONT direct RNA-seq dataset as validation

To complement the size limitation of the SIRV dataset, we

also benchmark an alternative dataset. Different to the SIRV

dataset, this is not a bona fide ground-truth dataset. However,

we observe similar pattern for the ROC curves of both

benchmarks (Figure 3 and Figure 4). Interestingly, we note a

reduction of the differences in AUCROC among methods in

the second dataset (Figure 4). Most notably, rMATS AUCROC

increased from 0.53 to 0.65. In terms of AUCPR metric,

JunctionSeq ranks first with AUCPR of 0.72, followed by Majiq

(0.61), LeafCutter (0.57) and rMATS (0.48) (Supplementary

Figure S6). Out of 20,744 introns labeled as positive, 21% were

called by all 4 methods, and 3 out 4 methods already call 43%

(Figure S5).

Table 1 compares the recall, specificity, and F1 metrics for

the 2 benchmarks. There are multiple factors to explain the

differences between the 2 benchmarks. Of note, the ratio of

positive and negative instances change from 2/3 to 1/4 between

the SIRV and paired Illumina-ONT RNA-seq datasets. This

change can partially explain the overall gain in F1 for all

methods, but JunctionSeq.

Methods reach a consensus in terms of classification of

negative instances. In contrast, for positive instances, the

consensus is not as clear (Supplementary Figure S7), and

methods scores complement each other. The correlation among

scores was low, with a maximum of 0.55 for the LeafCutter

and rMATS pair (Supplementary Figure S8). The relatively low

correlation and complementary nature of method scores for

positive instances have motivated us to test the performance

of a meta-classifier for differential splicing identification.

Meta-classifier with combined DJU scores

Meta-classifiers may improve classification performance by

combining the decision of multiple classifiers. To test the
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Fig. 4. Baltica benchmark with a paired Illumina-ONT RNA-

seq datasets. Performance for DJU methods executed with Illumina

RNA-seq and validated with Nanopore RNA-seq show similarities with

the benchmark with the SIRV dataset. The classification performance

ranks are the same as the benchmark with the previous dataset, in

Figure 3. JunctionSeq outperforms the other methods in both AUCROC

and AUCPR (Supplementary Figure S6). However, in this case, the

performance difference among methods is smaller than the benchmark

with the SIRV dataset.

SIRV Illumina-ONT RNA-seq

Recall Spec. F1 Recall Spec. F1

rMATS 0.26 0.77 0.39 0.51 0.76 0.61

JunctionSeq 0.91 0.74 0.82 0.65 0.90 0.75

Majiq 0.24 0.94 0.39 0.35 0.96 0.51

LeafCutter 0.54 0.68 0.60 0.70 0.70 0.70

Table 1. Prediction metrics for the benchmark in the SIRV

and ONT RNA-seq datasets. See the complete report at the

Supplementary Section S-X.6 (SIRV) and S-X.11 (Illumina-ONT

RNA-seq). Spec: Specificity.

application of meta-classifiers to the differential splicing

identification task, we have trained 2 models, the LRC and

GBC, by fitting them with either a single feature (one method

score) or 4 features, one for each method score.

Because models trained in a different set of features may

require different sets of parameters, we apply a grid search over

the parameters listed in Table 2. We observe the predictors with

the combined scores outperform models fitted with scores from

a single method score, independent of other parameters and the

machine learning algorithm. Table 3 compares these results.

To our surprise, the LRC algorithm performs competitively

with the GBC algorithm. The GBC algorithm scores an

AUCROC of 0.92 in the training set and 0.91 in the testing

set, confirming the model’s ability to generalize to unseen data.

This result demonstrates that combining scores from multiple

DJU methods is favorable for differential splicing identification.

It improves the predictive performance of the classifier targeting

class determined by an orthogonal set, the ONT RNA-seq.

GBC Parameter Parameter space

learning rate 1, 0.5, 0.25, 0.1, 0.05, 0.01

max depth 1, 2, 4, 8

subsample 0.5, 0.8, 1.0

min samples split 0.2, 0.4, 0.8

n estimators 1, 2, 4, 8, 16, 32, 64, 100, 200

LRC Parameter Parameter space

penalty l1, l2

C 1.0 × 10−3, 5.6 × 102, 3.1, 1.7 ×
102, 1.0× 104

Table 2. Parameter space for the grid search procedure with

Gradient Boosting Classifier (GBC) and Logistic Regression

Classifier (LRC). The procedure aims to maximize the ROC AUC

(Area under the Receiver Operating Characteristic Curve) metric

of scikit-learn’s implementation of the machine learning algorithms.

In addition to these parameters, we compare classifiers trained in a

single method versus a classifier trained on the 4 methods to test

whether the differential splicing identification task benefits from a

meta classifier.

GBC LRC

Mean (SD) AUCROC Mean (SD) AUCROC

Combined 0.92 (0.003) 0.91 (0.002)

JunctionSeq 0.88 (0.004) 0.88 (0.004)

LeafCutter 0.82 (0.003) 0.83 (0.003)

rMATS 0.69 (0.005) 0.70 (0.006)

Majiq 0.68 (0.006) 0.68 (0.005)

Table 3. Comparison of the top-scoring meta-classifiers

performance. Mean (standard deviation) AUCROC for the 10-

fold cross-validation. Each row represents the top-scoring model for

models trained on the combined features of a single feature. SD:

Standard deviation.

Discussion

Baltica aims to enable the study of integrated results from

DJU methods. To achieve that goal, the framework provides

workflows[11] and containers[12] to execute the said methods.

Next, it combines and re-annotates the results and reports them

as an interactive table, as illustrated in Figure 5.

The main challenge for data integration with DJU method

results is the difference in individual method implementation.

For example, JunctionSeq does not produce splicing events. It

computes the fold-change of introns, and because it adopts

a distinct metric, it handles the effect size comparison with

other tools inviable. DJU methods also use different definitions

to define the coordinate of the AS events. Due to that, we

have decided not to integrate effect-size, the PSI, from various

methods, despite understanding this attribute is critical for

alternative splicing identification.

This manuscript applies a benchmark to 2 independent

datasets, the SIRV and the paired Illumina-ONT RNA-seq

datasets. Other DJU method performance comparisons have

used simulated datasets or datasets with a small subset of PCR-

validated AS events[43, 9]. These 2 approaches do not fully

appreciate the complexity of the RNA-seq experiment. Other

benchmarks integrate splicing events on the gene level. Baltica

can systematically resolve the different coordinate systems and

compare multiple methods without these limitations.

The benchmark with the SIRV transcriptome is a special

case that embeds a small complex transcriptome into a human

transcriptome. The SIRV transcriptome has 138 introns, of

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473966
http://creativecommons.org/licenses/by-nd/4.0/


8 Britto-Borges et al.

Fig. 5. Interative Baltica table. The image shows a static view of the Baltica report, focusing on the table component. The table is pre-sorted by sums

of the scores columns, and it can be sorted by the scores or filtered by gene name. In addition, annotation is provided for introns that match the de novo

transcriptome annotation. Introns that are annotated are flagged in the Novel column. J, L, M, R and O stand for JunctionSeq, LeafCutter, Majiq,

rMATs and orthogonal scores, respectively. The gene name, class code, transcript name and exon number come from StringTie integration. The

class code matches how novel transcripts compare to annotated ones. The rMATS score column is missing from the image.

which 2/3 change between the 3 contrasts. All SIRV introns are

annotated, benefiting methods that rely on the transcriptome

annotation, such as JunctionSeq. In addition, it contains almost

2:1 number positive to negative instances ratio, donor and

acceptor splice with non-canonical sequence, and transcripts

in opposite strands that share the identical introns. These

attributes make the SIRV an important dataset for the

benchmark of differential splicing identification methods.

In addition, we also benchmark the methods with the paired

Illumina and ONT RNA-seq. Second-generation sequencing,

primarily Illumina RNA-seq, has promoted many discoveries

in differential AS. However, Illumina RNA-seq is limited by

its relatively short read length, leading to a limited resolution

of one single intron at a time. Third-generation RNA-seq

technology, represented by Iso-seq from Pacific Biosciences

(PacBio) and ONT RNA-seq, overcome this issue by offering

longer sequencing reads than second-generation RNA-seq. The

longer reads enable unambiguous matching to multiple introns

in transcript isoforms and thus allow a better resolution of the

transcriptome structure[44, 45]. Hybrid sequencing approaches

pairing third-generation sequencing, and second-generation

sequencing can benefit from both the deep coverage and the

long-reads to improve AS identification task[46, 45, 47, 48].

This dataset allows us to compare the methods scores on 65,408

introns that have been tested for DJU with EdgeR in the ONT

RNA-seq dataset.

We understand the Nanopore DJU scores are not a bona fide

ground-truth, but only an orthogonal approach to the splicing

identification problem. Although the apparent differences

between the SIRV and the ONT RNA-seq datasets, the

benchmark results were remarkably similar. Specifically, the

ranks of DJU methods were the same in both datasets. On the

other hand, the difference in F1 metric among methods was less

pronounced in the second dataset.

In addition to the considerations detailed above, readers

should interpret the benchmark results in the context of the

2 datasets. For example, the 2 benchmark use cases use

transcriptomes with known introns, and they should benefit

from methods that rely on a complete annotation. However,

to a certain extent, current methods like LeafCutter and Majiq

don’t rely on the annotation for the intron count modeling.

Also, while Majiq, LeafCutter, and rMATS output events that

comprise multiple SJ, JunctionSeq output a single p-value per

intron. Moreover, for the second benchmark, one must keep in

mind that EdgeR, which was used to analyze the Nanopore data,

and JunctionSeq use a similar statistical model.

We demonstrate that the integration of DJU methods results

can be helpful for intron prioritization. To do so, we have

trained multiple machine learning models using 2 algorithms

and five feature sets, one for each method score or the

combination of the 4. We observed that models trained in the

combined feature set performed better than methods trained

in a single feature independent of machine algorithms. The

LRC method has fewer parameters, requires fewer input data,

and is faster to train but has lower predictive performance

than GBC[49]. We used the LRC algorithm as a base model,

intending to build upon it with the GCB. However, the 2

models presented a comparable performance. We provide the

source code for model training and validation so that users can

apply the method in their datasets. To our knowledge, this

approach is the first method to take advantage of DJU scores

to train a meta-classifier. However, this practice is common for
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bioinformatics practices and has been used to train predictors

for protein secundary structure [50]. The integration helps

prioritize introns for further experimental validation and may

expand our knowledge on functional consequences of AS events.

We plan to extend Baltica in the future with additional

DJU methods workflows and will include unit tests for

tracking output differences due to changes in software

versions. We invite the user community to follow the Baltica

repository https://github.com/dieterich-lab/baltica for the

code and update documentation and to participate in Baltica

development.

Key Points

• Methods to identify differential splicing changes are critical

to detect the association of introns to genomic features such

as genetic variants or splicing factor binding sites.

• However, these methods differ in many aspects, and the lack

of standardization hampers the comparison of their results

• Baltica enables reproducible execution and integration of

DJU methods. The integrated results allow benchmarking

the different methods, and it reveals JunctionSeq ranks first

in F1 metric across 2 independent benchmarks.

• Meta-classifiers trained on methods scores outperform all

models trained in single method scores, demonstrating the

data integration advantage.
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Aboyoun, Marc Carlson, Robert Gentleman, Martin T.

Morgan, and Vincent J. Carey. Software for computing and

annotating genomic ranges. PLoS Computational Biology,

9(8):e1003118, Aug 2013.

24. Hadley Wickham, Mara Averick, Jennifer Bryan, Winston

Chang, Lucy McGowan, Romain François, Garrett

Grolemund, Alex Hayes, Lionel Henry, Jim Hester, and

et al. Welcome to the tidyverse. Journal of Open Source

Software, 4(43):1686, Nov 2019.

25. Juan L. Trincado, Juan C. Entizne, Gerald Hysenaj, Babita

Singh, Miha Skalic, David J. Elliott, and Eduardo Eyras.

SUPPA2: fast, accurate, and uncertainty-aware differential

splicing analysis across multiple conditions. Genome

Biology, 19(1), Mar 2018.

26. Kuan-Ting Lin and Adrian R Krainer. PSI-Sigma:

a comprehensive splicing-detection method for short-

read and long-read RNA-seq analysis. Bioinformatics,

35(23):5048–5054, May 2019.

27. Stephen W. Hartley and James C. Mullikin. QoRTs:

a comprehensive toolset for quality control and data

processing of RNA-seq experiments. BMC Bioinformatics,

16(1), Jul 2015.

28. S. Anders, A. Reyes, and W. Huber. Detecting differential

usage of exons from RNA-seq data. Genome Research,

22(10):2008–2017, June 2012.

29. Kelsy C. Cotto, Yang-Yang Feng, Avinash Ramu,

Zachary L. Skidmore, Jason Kunisaki, Megan Richters,

Sharon Freshour, Yiing Lin, William C. Chapman,

Ravindra Uppaluri, and et al. RegTools: Integrated analysis

of genomic and transcriptomic data for the discovery of

splicing variants in cancer. pre-print, Oct 2018.

30. Thiago Britto Borges, Tobias Jakobi, and Volker Böhm.

dieterich-lab/baltica: v1.1, September 2021.

31. Sam Kovaka, Aleksey V. Zimin, Geo M. Pertea,

Roham Razaghi, Steven L. Salzberg, and Mihaela

Pertea. Transcriptome assembly from long-read RNA-seq

alignments with StringTie2. Genome Biology, 20(1), Dec

2019.

32. Geo Pertea and Mihaela Pertea. GFF utilities: GffRead and

GffCompare. F1000Research, 9:304, Sep 2020.

33. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin,

T. H. Pringle, A. M. Zahler, and a. D. Haussler. The

human genome browser at UCSC. Genome Research,

12(6):996–1006, May 2002.

34. T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer.

ROCR: visualizing classifier performance in R.

Bioinformatics, 21(20):3940–3941, Aug 2005.

35. Max Kuhn. Building predictive models in R using the caret

package. Journal of statistical software, 28(1):1–26, 2008.

36. Zuguang Gu, Roland Eils, and Matthias Schlesner.

Complex heatmaps reveal patterns and correlations

in multidimensional genomic data. Bioinformatics,

32(18):2847–2849, May 2016.

37. Sebastian Raschka. Mlxtend: Providing machine learning

and data science utilities and extensions to Python’s

scientific computing stack. Journal of Open Source

Software, 3(24):638, 2018.

38. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

39. Jennifer V Gerbracht, Volker Boehm, Thiago Britto-Borges,

Sebastian Kallabis, Janica L Wiederstein, Simona Ciriello,

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473966
http://creativecommons.org/licenses/by-nd/4.0/


Baltica: integrated DJU analysis 11

Dominik U Aschemeier, Marcus Krüger, Christian K
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Supplementary Materials for Baltica: integrated splice junction usage analysis

Here we provide the supplementary information to the manuscript Baltica: integrated splice junction usage analysis, by Thiago

Britto-Borges, Volker Boehm, Niels H. Gehring and Christoph Dieterich.

Experimental design for the SIRV dataset.

Biological sample Spike-in mix Sample id

WT 1 Mix1 1 106030

WT 2 Mix2 1 106032

WT 3 Mix3 1 106034

H1 clone 1 Mix1 2 106036

H1 clone 2 Mix2 2 106038

H1 clone 3 Mix3 2 106040

HC clone 1 Mix1 3 106042

HC clone 2 Mix2 3 106044

HC clone 3 Mix3 3 106046

T clone 1 Mix1 4 106048

T clone 2 Mix2 4 106050

T clone 3 Mix3 4 106052

TC clone 1 Mix1 5 106054

TC clone 2 Mix2 5 106056

TC clone 3 Mix3 5 106058

Table S1. The biological sample, spike-in mix, and sample identifier associations for samples in dataset E-MTAB-8461.

Related to Figure 2. Note that the biological samples and the spike-in mixes are not confounded.

Popularity of DJU methods.
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Fig. S1. The popularity of selected methods for differential splicing identification. The citation over time for selected DJU methods. The

y-axis is log10 transformed. Data sourced from https://scholar.google.com/ using the scholar R package.
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2 Britto-Borges et al.

Heatmap for the SIRV benchmark

Fig. S2. Four hundred fourteen introns were randomly sampled from the human transcriptome (top) and the same amount in the SIRV transcriptome

(bottom). Introns in the SIRV transcriptome are annotated, as shown in the leftmost annotation. Colorbar shows method score as divergent color from

red (1) to blue (0), and the highest score better the performance classification. The methods score for negative instances, in the top panel, agreement

while for positive, for instance, the 2/3 in the bottom panel, are not.

SIRV benchmark precision-recall curve
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Fig. S3. SIRV benchmark precision-recall curve. Overall, changes in recall have only a slight effect on precision for all the methods. JunctionSeq

ranks first (AUCPR=0.98), followed by Majiq (AUCPR=0.82), LeafCutter (AUCPR=0.8), and rMATS (AUCPR=0.73). PR: precion-recall; AUCPR: area

under the precision-recall curve. Relates to Figure 3.
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Spearman correlation for the SIRV benchmark
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Fig. S4. Spearman correlation among methods and the SIRV ground-truth. Scores were log transformed with the function f(x) = −log10(x +

1e−10) and only introns from the SIRV transcriptome were tested. Overall, pairs of methods have a low correlation with an mean of 0.25.The maximum

value is of 0.68 for l and ground-truth. .

Perfomance metrics and confusion matrix for the SIRV benchmark

Metrics were obtained with caret::confusionMatrix function. True and false instances were separate with the 0.95 threshold.

JunctionSeq

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 89 26

TRUE 31 268

Accuracy : 0.8623

95% CI : (0.8253, 0.894)

No Information Rate : 0.7101

P-Value [Acc > NIR] : 1.957e-13

Kappa : 0.6614

Mcnemar’s Test P-Value : 0.5962

Sensitivity : 0.9116

Specificity : 0.7417

Pos Pred Value : 0.8963

Neg Pred Value : 0.7739

Prevalence : 0.7101

Detection Rate : 0.6473

Detection Prevalence : 0.7222
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4 Britto-Borges et al.

Balanced Accuracy : 0.8266

’Positive’ Class : TRUE

rMATS

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 92 213

TRUE 28 81

Accuracy : 0.4179

95% CI : (0.3699, 0.467)

No Information Rate : 0.7101

P-Value [Acc > NIR] : 1

Kappa : 0.029

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.2755

Specificity : 0.7667

Pos Pred Value : 0.7431

Neg Pred Value : 0.3016

Prevalence : 0.7101

Detection Rate : 0.1957

Detection Prevalence : 0.2633

Balanced Accuracy : 0.5211

’Positive’ Class : TRUE

Majiq

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 113 224

TRUE 7 70

Accuracy : 0.442

95% CI : (0.3935, 0.4913)

No Information Rate : 0.7101

P-Value [Acc > NIR] : 1

Kappa : 0.1171

Mcnemar’s Test P-Value : <2e-16

Sensitivity : 0.2381

Specificity : 0.9417

Pos Pred Value : 0.9091

Neg Pred Value : 0.3353

Prevalence : 0.7101

Detection Rate : 0.1691

Detection Prevalence : 0.1860

Balanced Accuracy : 0.5899

’Positive’ Class : TRUE
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i

LeafCutter

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 82 136

TRUE 38 158

Accuracy : 0.5797

95% CI : (0.5305, 0.6277)

No Information Rate : 0.7101

P-Value [Acc > NIR] : 1

Kappa : 0.1778

Mcnemar’s Test P-Value : 1.93e-13

Sensitivity : 0.5374

Specificity : 0.6833

Pos Pred Value : 0.8061

Neg Pred Value : 0.3761

Prevalence : 0.7101

Detection Rate : 0.3816

Detection Prevalence : 0.4734

Balanced Accuracy : 0.6104

’Positive’ Class : TRUE

Baltica integration for the ONT RNA-seq dataset
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Fig. S5. Baltica integrated SJ for the ONT dataset. The plot shows distinct sets of introns with score > 0.95 by combinations of methods and

the DJU for the ONT RNA-seq. The complement sets, combinations with a degree of 1, were omitted. The intersection and set sizes refer to the number

of the sets not omitted, while the total shows the total number of calls.
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ONT RNA-seq benchmark precision-recall curve
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Fig. S6. ONT RNA-seq benchmark precision-recall curve. Different from the SIRV benchmark, the precision-recall curve for the ONT RNA-seq

benchmark shows negative correlation between precision and recall. However, the method rank is consistent with the SIRV benchmark with JunctionSeq

first (AUCPR=0.72), and then Majiq (AUCPR=0.61), LeafCutter (AUCPR=0.57), and rMATS (AUCPR=0.48). PR: precion-recall; AUCPR: area under

the precision-recall curve. Relates to Figure 4

Heatmap for benchmark with the ONT RNA-seq dataset

Fig. S7. The 0.95 thresholds separate five hundred negative (top) and positive instances (bottom) detected by the ONT RNA-seq. Colorbar shows

method score as divergent color from red (1) to blue (0), higher is better. Related with Supplementary Figure S2
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Spearman correlation among methods scores and ONT RNA-seq DJU method for the ONT RNA-seq dataset
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Fig. S8. Spearman correlation among scores from DJU methods and ONT RNA-seq dataset DJU. Overall, methods scores show higher

correlation than in the SIRV benchmark (Supplementary Figure S4), however the agreement between to methods is still limited, whith the maximum

value of 0.55 for rMATS versus LeafCutter. Scores were transformed with f(x) = −log10(x + 1e−10) and only introns presented in the ONT RNA-seq

dataset were tested.

Confusion matrix for the benchmark with the ONT dataset

JunctionSeq

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 40027 7192

TRUE 4637 13552

Accuracy : 0.8192

95% CI : (0.8162, 0.8221)

No Information Rate : 0.6829

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5682

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.6533

Specificity : 0.8962

Pos Pred Value : 0.7451

Neg Pred Value : 0.8477

Prevalence : 0.3171

Detection Rate : 0.2072

Detection Prevalence : 0.2781
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Balanced Accuracy : 0.7747

’Positive’ Class : TRUE

rMATS

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 33844 10116

TRUE 10820 10628

Accuracy : 0.6799

95% CI : (0.6763, 0.6835)

No Information Rate : 0.6829

P-Value [Acc > NIR] : 0.947

Kappa : 0.2677

Mcnemar’s Test P-Value : 1.182e-06

Sensitivity : 0.5123

Specificity : 0.7577

Pos Pred Value : 0.4955

Neg Pred Value : 0.7699

Prevalence : 0.3171

Detection Rate : 0.1625

Detection Prevalence : 0.3279

Balanced Accuracy : 0.6350

’Positive’ Class : TRUE

Majiq

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 42912 13374

TRUE 1752 7370

Accuracy : 0.7687

95% CI : (0.7655, 0.772)

No Information Rate : 0.6829

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.3718

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.3553

Specificity : 0.9608

Pos Pred Value : 0.8079

Neg Pred Value : 0.7624

Prevalence : 0.3171

Detection Rate : 0.1127

Detection Prevalence : 0.1395

Balanced Accuracy : 0.6580

’Positive’ Class : TRUE
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LeafCutter

Confusion Matrix and Statistics

Reference

Prediction FALSE TRUE

FALSE 31194 6267

TRUE 13470 14477

Accuracy : 0.6982

95% CI : (0.6947, 0.7018)

No Information Rate : 0.6829

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.3626

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.6979

Specificity : 0.6984

Pos Pred Value : 0.5180

Neg Pred Value : 0.8327

Prevalence : 0.3171

Detection Rate : 0.2213

Detection Prevalence : 0.4273

Balanced Accuracy : 0.6982

’Positive’ Class : TRUE
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