
Sorghum Association Panel Whole-Genome Sequencing
Establishes Pivotal Resource for Dissecting Genomic Diversity

J. Lucas Boatwright1,2‡*, Sirjan Sapkota2‡, Hongyu Jin3, James C. Schnable3, Zachary
Brenton4, Richard Boyles1,5, Stephen Kresovich1,2,6,

1 Department of Plant and Environmental Sciences, Clemson University, Clemson, SC
29634, USA
2 Advanced Plant Technology, Clemson University, Clemson, South Carolina 29634,
USA
3 Center for Plant Science Innovation and Department of Agronomy and Horticulture,
University of Nebraska-Lincoln, Lincoln, NE 68588, USA
4 Carolina Seed Systems, Darlington, SC 29532, USA
5 Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
6 Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca,
NY 14850

‡These authors contributed equally to this work.
* jboatw2@clemson.edu

Abstract

Association mapping panels represent foundational resources for understanding the
genetic basis of phenotypic diversity and serve to advance plant breeding by exploring
genetic variation across diverse accessions with distinct histories of evolutionary
divergence and local adaptation. We report the whole-genome sequencing (WGS) of 400
sorghum [Sorghum bicolor (L.) Moench] accessions from the Sorghum Association Panel
(SAP) at an average coverage of 38X (25X-72X), enabling the development of a
high-density genomic-marker set of 43,983,694 variants including SNPs (∼38 million),
indels (∼5 million), and CNVs (∼170,000). We observe slightly more deletions among
indels and a much higher prevalence of deletions among copy number variants compared
to insertions. This new marker set enabled the identification of several putatively novel
genomic associations for plant height and tannin content, which were not identified
when using previous lower-density marker sets. WGS identified and scored variants in 5
kb bins where available genotyping-by-sequencing (GBS) data captured no variants,
with half of all bins in the genome falling into this category. The predictive ability of
genomic best unbiased linear predictor (GBLUP) models was increased by an average of
30% by using WGS markers rather than GBS markers. We identified 18 selection peaks
across subpopulations that formed due to evolutionary divergence during domestication,
and we found six Fst peaks resulting from comparisons between converted lines and
breeding lines within the SAP that were distinct from the peaks associated with historic
selection. This population has been and continues to serve as a significant public
resource for sorghum research and demonstrates the value of improving upon existing
genomic resources.
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Author summary

Introduction 1

Sources of natural genetic variation are foundational to crop improvement as they can 2

be used in the genetic dissection of pivotal traits and the development of breeding 3

populations. Along with advances in modern statistics and technology, maintenance and 4

expansion of genetic diversity within available germplasm is paramount to the 5

advancement of crop improvement. Since the early development of association mapping 6

populations in maize [1], these panels have served to propel plant breeding by exploring 7

genetic variation across diverse accessions with distinct histories of evolutionary 8

divergence and local adaptation. Now, two decades after that initial maize panel, all 9

major cereal grains have association panels including barley [Hordeum vulgare L.] [2], 10

maize [Zea mays, L.] [1], rice [Oryza sativa L.] [3], sorghum [Sorghum bicolor (L.) 11

Moench] [4, 5, 6], and wheat [Triticum aestivum L.] [7, 8]. Association mapping panels 12

leverage the existing natural variation – both genetic and phenotypic – of a population 13

to resolve complex trait variation to the genomic features influencing the phenotypic 14

variance. As such, the diversity of germplasm in an association panel is vital to increase 15

our understanding of causal biological mechanisms and translate to crop improvement 16

[9]. 17

The sorghum association panel (SAP), the first sorghum diversity panel, is composed 18

of temperately adapted breeding lines, as well as converted (photoperiod-insensitive) 19

tropical accessions from the Sorghum Conversion Program (SCP) [10, 11]. The 20

accessions in the SAP were selected to maximize the genetic and phenotypic diversity of 21

the panel as well as capture accessions that are important for understanding the 22

demographic history and historical breeding importance based on known resistances or 23

tolerances to abiotic and biotic stresses [4]. Sorghum’s broad geographic distribution [12, 24

4] and carbon-partitioning regimes [13] have resulted in two classification systems that 25

distinguish accessions based on variation by race and carbon partitioning, with race 26

representing the predominant classification system in the SAP. Sorghum is classified 27

into five botanical races: bicolor, caudatum, durra, guinea, and kafir, which are thought 28

to have formed through multiple domestication and adaptation events across different 29

clines [14, 5]. 30

The SAP was originally genotyped using simple sequence repeat (SSR) markers [4] 31

and later sequenced using restriction-site based genotyping-by-sequencing (GBS) to 32

obtain low-coverage single-nucleotide polymorphism (SNP) data [5, 15]. However, as 33

sequencing costs have continued to decline, large association panels such as the SAP can 34

be sequenced using whole-genome sequencing (WGS) at a lower cost to generate reliable 35

genomic variants at high density for applications in genetics and breeding [16]. These 36

high-throughput sequencing data can enable computational analyses for 37

genomics-assisted breeding with the help of diverse variant types including 38

single-nucleotide polymorphisms (SNPs), insertions, deletions (indels), and larger 39

structural variants (SV). These variant types are also valuable for understanding genetic 40

diversity when combined into variant graphs, also known as pan-genomes [17, 18]. 41

Increased variant density also permits the identification of causal variants as opposed to 42

variants that simply lie in linkage disequilibrium (LD) with causal variants. The 43

application of WGS to the SAP will increase the power and utility of the SAP, just as 44

GBS improved upon SSR markers, and serve to expand upon the identified genetic 45

diversity that facilitates genome-wide association mapping (GWAS) and genomic 46

selection (GS) in sorghum [19]. 47

A variant graph better represents the true diversity of variant information across a 48

population and ameliorates issues associated with mapping bias inherent in traditional 49
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reference-based genomics [18, 20]. When a traditional reference genome is used, variants 50

missing from the reference, such as those arising from recent duplications or deletions, 51

cannot be identified by QTL mapping or GWAS [21]. Such limitations are particularly 52

pervasive when studying diverse accessions, and while using a different reference genome 53

can circumvent this issue, variant graphs are particularly well-suited to capture this 54

information and significantly reduce mapping biases [21]. Additionally, tools such as the 55

GATK [22, 23] permit joint calling of variants across samples in a population to increase 56

the power to detect true variants, and when indels are present, the joint calling methods 57

can assess variants through localized assembly from the read data to reduce the impact 58

of read-mapping biases on variant discovery [23]. Together, these tools permit robust 59

variant discovery along with development of a diverse pan-genomic reference for future 60

studies in sorghum. 61

In this study, we report the development and use of high-density genomic variants 62

including SNPs, indels, and copy number variants (CNVs) for population and 63

translational genomic analysis using whole genome sequencing (WGS). The application 64

of high-throughput genotyping and robust variant discovery for the highly diverse SAP 65

provides the genomic resources necessary for acceleration of gene discovery, 66

genomics-assisted breeding, and genetic engineering toward improved cultivar 67

development and carbon-negative agriculture. We demonstrate the value of the WGS 68

genomic resource over GBS markers through comparative advantages in identification of 69

novel genomic associations and increased accuracy in genomic prediction for various 70

traits. 71

Materials and methods 72

Plant material and datasets 73

A total of 400 accessions in the United States Sorghum Association Panel (SAP) [4] 74

were obtained through the Agricultural Research Service-Germplasm Resources 75

Information Network (ARS-GRIN) (http://www.ars-grin.gov) (S1 File). Seedlings were 76

grown by sowing 3-5 seeds from each accession in a plastic pot in the Biosystems 77

Research Complex greenhouse at Clemson University, Clemson, SC. Tissue was 78

collected from two-week-old seedlings and lyophilized for three days in a LABCONCO 79

FreeZone 4.5L -50 °C benchtop freeze dryer prior to DNA extraction. Phenotypic data 80

for all the traits used in genome-wide association and prediction analyses were derived 81

from previously published datasets [15, 24, 25, 26]. We accessed the publicly available 82

GBS data for the SAP to conduct comparative analyses between our WGS data to GBS 83

marker data [5, 15]. 84

Whole genome sequencing data production and processing 85

Whole-genome sequencing (WGS) data was generated by RAPiD Genomics, Gainesville, 86

FL using DNA extracted from lyophilized leaf tissue. WGS libraries were paired-end 87

sequenced at ∼30x coverage using an Illumina NovaSeq sequencer resulting in 2×150-bp 88

reads. WGS reads were cleaned using fastp [27] before aligning with BWA version 0.7.17 89

[28] to the BTx623 version 3.1.1 annotated reference genome [29] obtained from 90

Phytozome [30]. Both SNP and indel variants were called using the Genome Analysis 91

Toolkit (GATK) pipeline version 4.1.7.0 [22] following GATK best practices [31, 32]. 92

Joint calling in the GATK was used to increase sensitivity for low-frequency variants, 93

better distinguish between homozygous reference sites and sites with missing data, and 94

to maximize SNP fidelity by allowing accurate error modeling [23]. Variants were 95

subsequently quality filtered using QD < 2.0, InbreedingCoeff < 0.0, QUAL < 30.0, 96
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SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5, and ReadPosRankSum < 97

-8.0. Beagle version 5.1 was used to impute missing genotype data for biallelic SNPs in 98

the variant call format (VCF) file resulting from the GATK pipeline. SNP density plots 99

were generated using R-CMplot version 3.6.0 (https://github.com/YinLiLin/R-CMplot) 100

in the R programming language [33]. 101

The inbreeding coefficient and nucleotide diversity were calculated using VCFtools 102

version 0.1.16 [34]. Nucleotide diversity was estimated using a non-overlapping 1 Mb 103

sliding window and plotted using Circos [35]. The effects of SNPs and indels were 104

predicted using snpEff [36] and general variant statistics were collected using BCFtools 105

[37]. The variant metrics and predictions were collected and plotted using MultiQC [38]. 106

GBS and WGS variant effect counts were collected from the snpEff results and plotted 107

using Excel. To compare GBS and WGS coverage, SNPs were counted by 5, 10, 15, 20, 108

and 40 kb bin sizes using a custom Python script and plotted using ggplot2 [39]. The 109

linkage disequilibrium (LD) decay plot was generated using PopLDdecay v3.40 [40] and 110

custom R scripts [33]. HaploBlocker v1.6.06 [41] was used to identify subgroup-specific 111

haplotype blocks where a haploblock is defined as a sequence of genetic markers that 112

occurs at least five times within the population. Each accession is then checked to 113

determine if they contain a similar sequence of markers, which served to screen the 114

population in a group-wise, identity-by-descent manner [41]. The number of ancestral 115

populations represented by the SAP was estimated using the R package adegenet v2.1.3 116

[42] where a Discriminant Analysis of Principal Components (DAPC) was performed for 117

1-12 clusters and Bayesian Information Criteria was used to identify the optimal number 118

of clusters to describe the population. Subsequently, ADMIXTURE v1.3.0 was executed 119

using the number of clusters estimated from DAPC as K to visualize the degree of 120

admixture across the SAP [43, 44]. 121

Numerous tools can detect CNVs from WGS data, but the complexity of plant data 122

can complicate accurate variant calling, especially when many tools were designed with 123

default settings suited for human data [45]. As such, we called CNVs using Hecaton 124

v0.3.0 [45], which uses multiple CNV tools, including DELLY v0.8.5 [46], GRIDSS 125

v2.0.1 [47], LUMPY v0.2.13 [48], and Manta v1.4.0 [49], to detect CNVs before using a 126

random forest model to distinguish probable false-positive from true-positive variant 127

calls based on a pretrained model specific to plants. Hecaton has been shown to 128

outperform current methods when applied to short-read WGS data of Arabidopsis, 129

maize, rice, and tomato [45]. 130

Genome-wide analysis for selection signatures 131

Subpopulations identified using ADMIXTURE analysis (K=6) were used to estimate 132

Fst according to the methods of [50] using the vcftools function --weir-fst-pop on the 133

SNP variants after filtering for minor allele frequency > 5% for each subpopulation [34]. 134

A window size of 1 Mb with a step size of 100 kb was used for calculations. Fst 135

estimates were calculated for each subpopulation against all other subpopulations, and 136

mean Fst for a subpopulation at a genomic window was computed as averaged Fst of a 137

subpopulation against all other subpopulations for that genomic window. Additionally, 138

we computed Fst between accessions derived from the sorghum conversion program 139

(N=240) and temperate breeding lines (N=96) within the panel using the same 140

parameters mentioned above (S1 File). Tajima’s D for the whole panel was calculated 141

for 1 Mb non-overlapping windows using the vcftools function --TajD. 142

Genome-wide association studies 143

The software GEMMA v0.98.1 [51, 52] was used for GWAS. The VCF files containing 144

biallelic SNPs, indels, or CNVs were converted to PLINK format using PLINK [53], and 145
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GEMMA was then used to calculate a standardized relatedness matrix for linear mixed 146

modelling on the filtered data (--miss=0.3 --maf=0.05). All models were run using a 147

MAF filter of 0.05, and LMMs of the following the form, 148

y = Xβ + Zu+ ε;u ∼ N(0, G); ε ∼ N(0, R), (1)

where y is a vector of phenotypic values for a single trait, X is a numeric genotype 149

matrix generated from the variants, β represents an unknown vector of fixed effects and 150

includes the effect size for each variant, Z is the design matrix for random effects, u is 151

an unknown vector of random effects, and ε is the unknown vector of residuals. These 152

models test the alternative hypothesis H1: β ̸= 0 against the null hypothesis H0: β = 0 153

for each variant. Manhattan and Q-Q plots were generated using R-CMplot version 154

3.6.0 and ggplot2 version 3.3.5. GEMMA was also used to run Bayesian Sparse Linear 155

Mixed Models (BSLMM) to better identify causative variants, with a probit model used 156

for binary phenotypic data. The BSLMM model assumes fixed effects are distributed 157

according to the sparse prior, β ∼ πN(0, σ2
aτ

−1) [52]. Linkage disequilibrium (LD) 158

statistics were calculated for significant loci using PLINK v1.9 [53]. 159

A multivariate adaptive shrinkage approach was used to assess the degree of 160

pleiotropic effects across the traits. Using the estimated effect sizes and standard errors 161

for each marker from the GEMMA LMMs, a local false sign rate (lfsr) was calculated on 162

a condition-by-condition basis using ashr in R [54] to filter variants based on a lfsr < 163

0.1. The lfsr represents the probability of incorrectly assigning the sign of an effect. The 164

lfsr has been demonstrated to serve as a superior measure of significance over 165

traditional multiple-testing corrections such as Bonferroni or False Discovery Rate [55] 166

due to its general applicability and robust estimation process [54]. A control set of 167

1,200,000 random markers was also generated from the full set of markers to estimate 168

the covariance between markers for each phenotype. From this control set, a correlation 169

matrix was estimated using mashr [56] to control any confounding effects arising from 170

correlated variation among the traits. Using both canonical and data-driven covariance 171

matrices, we tested for pleiotropy across traits. Posterior probabilities were estimated for 172

each marker using a mash model with all marker tests. The CDBNgenomics R package 173

[57] was then used to extract Bayes factors and generate a Manhattan plot of the mash 174

results where Bayes Factors > 3 were considered significant for pleiotropic effects. 175

Genome-wide prediction 176

Previously published SAP phenotypic data [15, 24, 25, 26] were used to compare 177

genomic prediction results between WGS and GBS marker data using the R package 178

sommer [58]. A genomic best linear unbiased prediction (GBLUP) model of the 179

following form was fit, 180

yi = µ+ gj + ϵij , (2)

where yi is a vector of BLUPs for trait i, µ is the overall mean, gj is a vector of 181

random effect of genotypes with g ∼ N(0, Aσ2
g), where σ2

g is the additive genetic 182

variance and A is the realized additive relationship matrix calculated from a n×m 183

genotype matrix with n genotypes and m markers using the A.mat function from the 184

rrBLUP package [59], and eij is a vector of residuals that are independent and 185

identically distributed with ϵ ∼ N(0, Iσ2
e), where σ2

e is the residual variance and I is an 186

identity matrix. 187

Model performance was assessed using ten-fold cross validation, where individuals in 188

nine of the folds were used for model training and the remaining fold was used as the 189

testing set. Predictive ability was calculated as Pearson’s correlation coefficient between 190
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predicted and observed values for the testing set. A total of 100 iterations were run for 191

each trait using the set.seed function in R for sampling seeds from 123 to 222. The 192

predictive ability between GBS and WGS were compared using the pairwise t-test 193

(pairwise.t.test function in R), and p-values were adjusted using Benjamini-Hochberg 194

correction [55]. 195

Variant graph construction 196

A variant graph was constructed using vg [17], which incorporated the Sorghum BTx623 197

reference genome together with SPA variants (SNP, Indel, and CNV) called using the 198

GATK [22] and Hecaton [45] pipelines. Individual chromosomes were constructed using 199

vg construct with the options --handle-sv and --node-max of 32. After 200

chromosome-level construction, each subgraph was given unique node identifiers using 201

vg ids before building a single joint variant graph in XG format, which permitted 202

querying of the variant graph and alignment of read data. Reads obtained from [60] 203

were then aligned using the joint variant graph and vg map with default parameters. 204

The resulting GAM file was quality filtered and used to calculate read support with vg 205

pack before calling variants on individual samples with vg call. 206

Results 207

SNPs, indels, and copy number variants 208

We sequenced 400 accessions from the sorghum association panel (SAP) at an average of 209

38X coverage, ranging from a minimum of 25X up to 72X (S1 Fig, S2 Fig) and 210

representing a total of approximately 82 billion reads or ∼11 trillion bases after quality 211

control. Reads exhibited highly consistent GC content across all samples (S3 Fig). The 212

SAP genotypic data contained 43,983,694 variants, which includes SNPs (∼38 million) 213

and indels (∼5 million) identified using GATK pipeline, and CNVs (∼170,000) called 214

using Hecaton (S1 Table). A total of 19,708,560 SNPs passed quality filtering based on 215

variant likelihood metrics and 5,420,745 SNPs of these SNPs exhibited minor allele 216

frequencies >5%. Using the ∼19 million quality-filtered SNPs, snpEff estimated the 217

overall transition-transversion ratio at 1.89 (S4 Fig). Approximately 50% of the 218

predicted variant effects fell into intergenic regions, with 20% occurring in upstream 219

regions, 19% in downstream regions, and the remaining genic regions constituting 11%. 220

Since most of the variant effects fell within intergenic regions, the variants that had low 221

(451,663), moderate (439,159), and high impacts (15,019) accounted for a small 222

proportion of the total variants. In total, 7,399 genes contained high-impact variants 223

while low- and moderate-impact variants were observed across many annotated genes 224

and accounted for 31,850 and 32,215 genes, respectively. To compare the coverage 225

quality of our WGS data to existing GBS marker data, we binned variants in 5 kb 226

windows across the genome. In our comparison, we observed that the GBS data did not 227

have any variants for half of the bins across the sorghum genome whereas WGS had at 228

least one variant in those bins (Fig 1A). Consistent with the methylation-sensitive 229

nature of the ApeKI enzyme used to generate the GBS marker data, the GBS markers 230

exhibited a strong bias towards genic regions while the distribution of variants in WGS 231

data largely mirrored the overall proportion of genic and intergenic sequences in the 232

sorghum genome with ∼50% of total markers located in the intergenic regions, which 233

were defined as the regions between annotated gene models or between a gene and the 234

end of a chromosome (Fig 1B). In general, the WGS data showed higher variant density 235

on chromosome arms and telomeric regions than in pericentromeric and centromeric 236

regions (Fig 2A). The genome-wide average nucleotide diversity was 2.4 x 10-3 for the 237
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entire population with variation in SNP density across the genome showing telomeric 238

regions accumulate more mutations than centromeric regions because of higher 239

recombination rates (Fig 2A). 240

A total of 2,652,314 indels were identified after quality filtering with a strong 241

telomeric bias in distribution (Fig 2A). The majority (82.56%) of indels were less than 242

15 bp in length (Fig 2B; S5 Fig), whereas the largest indel was 387 bp. Larger CNVs 243

identified using Hecaton, ranging from 49 bp to 1 Mb, were retained for analyses, 244

whereas all CNVs over 1 Mb in length were deemed false positives due to the limitations 245

of short-read data to capture exceptionally large indels [45]. We identified nearly 7× 246

more CNVs compared to a previous study in sorghum [61] likely due to the variant 247

callers used as [61] only used LUMPY, but we used LUMPY and three other variant 248

callers within Hecaton. The distribution of CNV types showed a preponderance of 249

deletions over insertions (Fig 2C) and higher density around telomeric regions (Fig 2A), 250

which is consistent with previous observation in sorghum [61]. 251

Figure 1. Comparison of Genotyping-by-Sequencing (GBS) and
whole-genome sequencing (WGS) single-nucleotide polymorphism (SNP)
distributions. Total bin count and counts for bins where GBS data lacked a SNP but
WGS had SNPs across different bin sizes are shown in A, and B includes the percentage
of variants across the major genic and intergenic regions for both GBS and WGS data.

Population structure, haplotype blocks, and variant graph 252

construction 253

We estimated the linkage disequilibrium (LD) decay distance for individual 254

chromosomes as well as for the whole genome because LD influences genetic mapping 255

resolution and is essential in haplotype construction. The genome-wide average distance 256

at which LD decayed to r2 < 0.2 was approximately 20 kb, and the LD decay values 257

plateaued around 150 kb (S6 Fig). Chr6 exhibited consistently higher LD compared to 258

the other chromosomes, which is consistent with previous reports of limited 259

recombination in Chr6 [62, 63] and as a result, the average physical size of estimated 260

haplotype blocks was larger for Chr6. 261

Discriminant analysis (DAPC) estimated the optimal number of clusters to be eight, 262

but there was no significant difference in Bayesian information criterion (BIC) for 263

cluster counts between 6-11 (S7 Fig, S8 Fig). For simplicity, we opted to use the lowest 264

number of population clusters (K=6) with lower BIC for subsequent ADMIXTURE 265

analysis. The subpopulation grouping in the population structure analysis led to four 266

clusters that correspond to the four botanical races of sorghum (caudatum, kafir, guinea, 267

and durra) (S9 Fig). The fifth subpopulation cluster consisted of several durra-bicolor 268

accessions that were historically categorized as milo and therefore we referred to that 269

subpopulation/racial type as milo (S9 Fig). The sixth subpopulation consisted of some 270
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Figure 2. Genome-wide variant coverage and diversity. (A) Circos plot
containing the sorghum karyotype, SNP density heatmap, indel histogram, copy number
variant (CNV) histogram, nucleotide diversity, and genes in tracks a-f, respectively. (B)
Line plot demonstrating total number of indels across varying indel lengths. (C)
Histogram and kernel density estimate for CNV counts across varying log2 CNV lengths.

durra accessions but were mostly composed of mixed-race accessions and the accessions 271

classified as bicolor, which is thought to be the early sorghum domesticate and therefore 272

does not form a separate subpopulation cluster [14, 26]. The first 10 components in the 273

principal component (PC) analysis accounted for about 36% of the genomic variation 274

with the first three PCs explaining 9.36%, 7.86%, and 3.78% of the variation, 275

respectively. The first PC separated kafir accessions from caudatum, PC2 separated 276

kafir, caudatum and durra from the milo subgroup, and PC3 distinguished guinea 277

accessions from all other accessions (Fig 3A,B). Ancestral population admixture was 278
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consistent with observed historical patterns among the sorghum races with greater 279

admixture among approximately one fourth of the accessions (Fig 3C). 280

Figure 3. Population structure within the sorghum association panel using
principal component analysis and admixture model (K=6). Subpopulations
were labeled with corresponding botanical races or sorghum types that predominated for
a given subpopulation.

A total of 35,029 haplotype blocks with an average length of 40 Kb were identified 281

using Haploblocker[41]. Over 4,000 blocks were identified in chromosomes 2, 4, and 5, 282

but fewer than 3,000 blocks in chromosomes 6, 7, and 9. Using the variant graph, we 283

were able to successfully examine locus haplotype structure, map WGS reads from [60], 284

and call SNPs, indels, and CNVs from the sample alignments. We obtained ∼3 million 285

variants per sample that subsequently reduced to ∼1 million per sample following 286

quality filtering. Compared to joint calling via the GATK pipeline and CNV calling 287

using Hecaton, vg was able to call all variant types in a single run with a significantly 288

shorter runtime than the alternative approaches employed above. However, the total 289

number of variants obtained was an order of magnitude lower. This is likely due to 290

several factors including increased power to detect variants when sharing haplotype and 291

coverage information in joint calling [23], the use of multiple CNV callers by Hecaton 292

[45], and the state of development for the variant calling methodology in vg [17]. 293

Genomic signatures of selection 294

The development of sorghum racial types is thought to be an outcome of multiple 295

domestication events and subsequent local adaptations leading to the distinct 296

population structure that is evident in our diversity panel as well [14, 64, 5]. Here, we 297

wanted to identify and contrast signatures of historic selections during domestication to 298

those that have occurred recently due to the photoperiod conversion of tropical 299

accessions and/or selections made by breeding programs. We computed genome-wide 300

Fst between racial subgroups arising from evolutionary diversification to identify 301

signatures of historic selection, whereas genome wide Fst peaks between the latter 302

groups (Converted and Bred) were used to identify signatures of artificial selection due 303

to temperate conversion and/or breeding. 304
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Several regions across the genome showed selective sweeps (Fst peaks) for 305

subpopulations identified using population structure analysis (S10 Fig). There were 18 306

genomic regions with strong selection peaks, of which four regions across three 307

chromosomes (Chr2, Chr3, and Chr8) had common Fst peaks in at least three 308

subpopulations (Table 1, S10 Fig). The selected region around 45-54 Mb of Chr2 that 309

had strong peaks for all but the kafir subpopulation have around 279 genes and seven 310

quantitative trait loci (QTL) previously mapped to this region (Table 1). Among the 311

seven QTLs in this region were three mapped for tannin by [65] and one each for 312

amylose [66], panicle length [5], seedling survival [67], and anthracnose resistance [68]. 313

Among the genes within this region, 24 genes had coiled-coil domains and showed 314

significant enrichment based on the gene network analysis site, string-db. Another 315

commonly selected region around 21-29 Mb of Chr3 had 68 genes that included several 316

genes involved in biological regulation and molecular function including photosynthesis, 317

but no QTL was previously mapped in the region (Table 1). 318

In general, the milo subpopulation had the highest number (8) of significant sweeps 319

followed by durra (7) while kafir had the lowest (1) (Table 1). The only strong selection 320

sweep identified in kafir was unique to the subpopulation and ranged from 24 to 55 Mb 321

of Chr5 (Table 1). The caudatum subpopulation had a selection peak at 64-66 Mb of 322

Chr4 near the Tan1b locus (Sobic.004G280800) that is associated with 323

tannin/polyphenolic content [69]. Milo showed strong selection between 70-71 Mb of 324

Chr1 which is near the Y locus (Sobic.001G397900) that encodes for yellow pericarp 325

(seed color) in sorghum [70] and was captured using testa pigmentation (S10 Fig). 326

Durra, the subpopulation that is closely related to most of the accessions within the 327

milo subpopulation, also had a minor peak around this region (S10 Fig). The only 328

unique selection peak for the mixed subpopulation occurred around the non-genic region 329

ranging from 41 to 42 Mb of Chr1. In general, most of these genomic regions with 330

strong selection signatures had many characterized genes and several previously mapped 331

quantitative trait loci (QTL) in and around these regions (Table 1). 332

Based on the Fst estimates, a total of six genomic regions showed strong selective 333

sweeps between the accessions in the converted and bred groups (Fig 4A). The strongest 334

peak was observed around 41 to 47 Mb of Chr6, this region contains major effect 335

maturity (Ma1 : Sobic.006G057866) and height (Dw2 : Sobic.006G067700) genes that 336

were introgressed for early maturity and short stature, respectively, during sorghum 337

conversion (Fig 4A). Another region that showed a strong selective sweep was the region 338

around the Tan1 gene that is associated with tannin content (Fig 4A). Additional peaks 339

were observed in the beginning of Chr1, Chr2, Chr4, and Chr8. The genomic region 340

around the waxy locus (Sobic.010G022600) also showed a minor peak that was one 341

standard deviation above the mean but did not reach two standard deviations above the 342

mean (Fig 4A). We calculated expected heterozygosity (2pq) for converted and bred 343

groups on a per-site basis using the allele frequencies (p and q) of SNPs at a given site. 344

Figure 4B shows expected heterozygosity across each site for accessions in the converted 345

group relative to the accessions in the bred category. The variation in relative 346

heterozygosity for the two groups was consistent with the distribution of Fst peaks 347

between the two groups (Fig 4A,B). 348

The genomic regions around the dwarfing and maturity genes showed strong 349

bottlenecks for nucleotide diversity and Tajima’s D in the SAP (Fig 1A, 4C), and the 350

whole-genome average value for Tajima’s D was 3.45, indicating that there are fewer 351

rare alleles across the genome because of extensive inbreeding across the population. 352

Most of the genomic regions showed Tajima’s D above the mean value indicating 353

balancing selection while some regions, particularly at Chr1, Chr3, and Chr6, showed 354

strong bottlenecks, indicative of purifying selection (Fig 4C). The regions in the middle 355

of Chr6 and Chr7 showed a strong bottleneck in Tajima’s D and expected 356
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Table 1. Regions with strong (mean + 3 × standard deviation) selective
sweeps based on Fst estimates for racial subpopulations identified from
admixture analysis. Chr: Chromosome, QTLs: quantitative trait loci.

Race/subpopulation Chr Start End Genesa QTLsb

durra 1 20.0 22.2 195 16
mixed 1 40.8 41.8 0 0
milo 1 70.3 71.3 193 43
caudatum, durra, guinea, milo, mixed 2 45.2 53.6 279 7
guinea 2 70.9 72.7 335 50
milo 2 76.9 78.7 159 0
caudatum, durra, milo, mixed 3 21.2 29.4 68 0
durra 3 14.1 15.2 74 26
guinea 3 17.1 19.6 93 0
milo, guinea, caudatum 3 40.2 45.7 88 0
durra 3 48.5 50.5 69 35
caudatum 4 64.4 66.0 255 71
milo 5 19.0 20.6 58 0
kafir 5 24.2 55.0 272 16
caudatum, durra, milo 8 7.8 11.4 121 14
durra 8 18.0 23.0 38 0
guinea 10 39.7 40.8 4 0
milo 10 61.1 62.2 19 2

a number of genes based on sorghum BTx623 v3.1.1 annotation (phytozome.org)
b number of QTLs within the genomic region based on Sorghum QTL atlas
(aussorgm.org.au)

heterozygosity for converted lines compared to the breeding lines (Fig 4B, S11 Fig). 357

Genome-wide association for plant height and tannin content 358

In sorghum, plant height (PH) and tannin content have been thoroughly examined due 359

to their significant impacts on both historic selection [71] and modern agriculture [72]. 360

Plant height in sorghum is genetically controlled by multiple genes including three 361

predominant loci (Dw1 : Sobic.009G229800, Dw2 : Sobic.006G067700, and Dw3 : 362

Sobic.007G163800), which explain a large majority of the phenotypic variation in our 363

population. All three major dwarfing loci showed significant association for PH using all 364

three variant types independently (Fig 5A). For both SNP and indel variants, we also 365

identified significant association for the previously reported Dw4 locus, which occurs 366

∼6.6 Mb on Chr6 [5, 73]. Additionally, we identified a significantly associated indel at 367

∼6.5 Mb on Chr4 that overlaps with a previously identified QTL for total PH, flag-leaf 368

height, and flag-leaf-to-apex interval (Fig 5A, Table 2) [74]. This locus contained eight 369

genes; two of which were functionally annotated (Table 2). Among them, one gene was 370

associated with plant viral response, and the other gene encoded an F-box protein, 371

which is known to regulate plant vegetative and reproductive growth. A novel locus 372

that is ∼2 Mb downstream of maturity gene Ma3 (Sobic.001G394400) also showed a 373

significant association for PH for SNP as well as indel variants (Fig 5A, Table 2). This 374

locus is a hotspot for heat shock protein 70 (HSP70) with five HSP70 proteins occurring 375

within 20 Kb and more than 10 HSP70 within 100 Kb of the associated SNP peak. 376

Tannin content is another important domestication trait. While higher tannin 377

content lowers nutrient uptake [75], the presence of such phenolic compounds can 378
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Figure 4. Genome-wide signatures of selection. A shows the mean Fst across the
sorghum genome between tropical converted and temperate breeding acessions. B shows
expected heterozygosity in converted group relative to the bred group. C shows the
genome-wide Tajima’s D estimates. The horizontal lines show mean and standard
deviations of the estimates: solid black lines show genome-wide average Tajima’s D,
dotted lines show mean plus one standard deviation and long dashed lines show mean
plus two standard deviation of the estimates. Vertical dotted lines show genes and loci
related to height, maturity and other domestication related traits.

conversely be important in reducing pest damage [71] as well as providing antimicrobial 379

[76] and antioxidant activities that improve gut health [75]. One of the established 380

primary regulators of tannin content is Tannin1 (Tan1 ), which was identified in our 381

GWAS for tannin content using all variant types (Fig 5B). Another important locus, 382

Tan2 (TT8 : Sobic.002G076600), was not identified in GWAS using tannin content likely 383

due to duplicate recessive epistatic interactions between the Tan1 and Tan2 loci [71]. 384

However, when we conducted GWAS using phenotypic data indicating presence or 385

absence of testa layer in our SAP accessions using a probit Bayesian sparse linear mixed 386

model (BSLMM), the Tan2 locus showed significant association using the SNP markers 387

(S12 Fig). Two novel associations with strong peaks were identified for tannin content 388

with SNPs, indels, and CNVs between 60 and 61 Mb of Chr3 (Fig 5B; S13 Fig). 389

Previously, a significant association had been identified with 3-deoxyanthocyanidins 390

around 59.7 Mb of Chr3 [65]. The novel loci at 60-61 Mb of Chr3 consist of several 391

potential candidate genes that are involved in membrane transport, aromatic amino 392

acid synthesis, and terpenoid pathways (Table 2). The top SNP at ∼60.7 Mb was 393

located within Sobic.003G270500, a gene encoding a farnesyl diphosphate transferase, 394
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which functions in the biosynthesis of terpenes and terpenoids [77]. Similarly, peaks on 395

Chr7 at ∼61.1 Mb and Chr9 at ∼53.8 Mb were previously associated with 396

proanthocyanidins [65], and the peak on Chr8 at ∼61.1 has been identified with both 397

polyphenol content and grain color [65]. 398

Figure 5. Genome-wide associations for plant height (A) and tannin content
(B) using linear mixed models in GEMMA. Horizontal lines with solid, dotted,
and dashed patterns represent Bonferroni-adjusted threshold of 0.05 for SNPs, indels,
and CNVs, respectively. Vertical dotted lines indicate the positions of known genes and
loci for height (Dw), maturity(Ma), and tannin (Tan).

Table 2. Putatively novel associated loci identified using whole-genome
sequencing (WGS) data. Chr: chromosome, SNPs: single nucleotide polymorphisms,
CNV: copy number variants, Chr: chromosome, p: p-values.

Trait Variant Type Chr Peak SNP -log10(p) Gene Counta

Plant height SNP 1 69,987,248 9.93 4
Plant height Indel 4 7,622,167 8.60 8
Plant height CNV 7 9,225,709 7.04 1
Tannin SNP 3 60,368,179 8.27 15
Tannin SNP 3 60,722,769 9.80 6
Tannin SNP 8 45,442,123 11.87 2
Tannin SNP 8 61,186,817 9.92 9

a total genes within 20 kb of the peak SNP for the associated locus.

Pleiotropy analysis for grain yield and quality traits 399

Using the 25 traits collected by [15, 24, 25, 26], we first performed GWAS for all traits 400

using LMMs in GEMMA [51]. From those initial LMM results, 19 traits were 401

subsequently analyzed for pleiotropic effects using MashR [56]. MashR uses empirical 402

Bayes methods to estimate patterns of similarity among conditions, and the resulting 403

patterns are then used to improve the accuracy of effect estimates. Over 10,000 markers 404
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exhibited significant pleiotropic effects – nearly 16x more than was identified for over 405

100 traits using GBS data – across the sorghum genome with many well-known loci such 406

as Dw1, Dw2, Dw3, Ma1, and Ma3 (S14 Fig) exhibiting strong pleiotropic effects across 407

multiple traits [78]. Many markers demonstrated an effect across 10 or more traits, and 408

only Chr10 did not exhibit significant pleiotropic effects across more than five traits. 409

Association results for various traits showed strong correlation between each other in 410

pleiotropic analyses of grain yield and quality traits (S15 Fig, S16 Fig). 411

Genome-wide prediction using WGS and GBS markers 412

Prediction results using WGS SNP data showed a significantly higher predictive ability 413

(p-value < 2e-16) for all traits compared to GBLUP models using GBS SNP data (Fig 414

6). Predictive ability was, on average, 29% higher for WGS data and ranged from 13 to 415

47% across the traits studied. Mean predictive abilities ranged from 0.34 to 0.57 for GBS 416

data and 0.44 to 0.71 for WGS data with thousand-grain weight and protein having the 417

highest and lowest predictive abilities across both sequencing types, respectively. 418

Among the traits, starch showed the largest (47%) increase in mean predictive ability 419

from GBS to WGS, while days to anthesis showed the smallest (13%) increase. 420

Figure 6. Predictive ability for genomic prediction of traits using SNPs from
whole-genome sequencing (WGS) and genotyping-by-sequencing (GBS).
Cal.g: Calories per gram, DTA: days to anthesis, GNP: grain number per primary
panicle, PH: plant height, TGW: thousand grain weight, and YPP: yield per primary
panicle.

Discussion 421

Since its development, the United States Sorghum Association Panel has served as a 422

pivotal resource for genetic dissection and as a source of genetic diversity for breeding [4, 423

79, 80]. To expand the breadth and depth of genomic data available for this crucial 424

diversity panel, we sequenced the accessions in this panel at a higher depth and provide 425

reliable high-density genome-wide markers for elucidating the genetic architecture of 426

traits and propelling genomics-assisted breeding. Previously, this panel was 427

characterized with GBS, which can be biased toward genic sequences, and therefore may 428

misrepresent diversity across the population or in individuals within the population [81]. 429

Here, with corroborating evidence, we demonstrate the inherent value of WGS data as 430

demonstrated by reduced type-I and type-II errors, improved mapping resolution by 431

capturing more recombination events, increased the depth of variants called, and the 432

added benefits of different identifiable variants, which lead to improvements in genetic 433

dissection and genome-wide prediction. 434
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High-density variants for genomic research and breeding 435

Apart from SNP markers, we identified a substantial number of insertions, deletions, 436

and CNVs that contribute to our understanding of the complexity of the sorghum 437

genome and the evolutionary processes that result in or develop from that complexity 438

[82]. To date, there are only a few large-scale studies that have evaluated the utility of 439

high-throughput indel data for GWAS and GP in human cohorts, while no such study 440

was found in plants [83, 84]. Detection of SNPs is significantly easier than indel and 441

CNV identification due to sequencing and reference biases, library preparation 442

requirements, and algorithmic artifacts [85, 84]. Indels represent the 443

second-most-common type of genetic variant. Yet, their value for identifying 444

genome-wide associations has been overlooked due to limitations in both production 445

cost and scalability [83]. Few studies in sorghum have examined indels and CNVs at 446

scale [86, 87, 61, 88, 89], and none of these demonstrated the comparative value of all 447

three variant types for GWAS. In fact, comparisons across all three variant types are 448

limited to human studies where funds and scalability are less limiting, but even human 449

studies lack a comprehensive review of the topic [83, 84]. Identification of indels and 450

CNVs requires unbiased high-throughput sequencing or long-read sequencing to 451

confidently call variants [90], and as the SAP was sequenced at ∼38X, this dataset is 452

uniquely suited to obtain high-quality variants of all three types. The number of SNPs 453

generated in our study is consistent with the sequencing depth and population scale 454

differences as previously reported for WGS in sorghum [60]. 455

Population structure, haplotypes, and variant graphs 456

Population structure analyses conducted using SSR markers were confirmed by the 457

development of restriction-site-associated DNA sequencing, such as GBS [91, 4, 92, 5]. 458

However, the true value of GBS was realized in downstream applications that showed 459

increased mapping resolution for genome-wide association studies due to increases in 460

genome coverage and ease of genotyping compared to SSR markers [92]. Similarly, 461

results for population structure and genetic diversity analysis based on WGS data are 462

similar to results based on GBS based markers despite increased marker density, which 463

is not surprising considering SSR markers accurately captured population structure 464

despite having much lower coverage than GBS markers [93]. Consistent with previous 465

characterizations for the SAP, our population structure analysis subdivided the 466

population into approximately six groups, which is consistent with the four botanical 467

racial types, a milo subpopulation that includes the durra-bicolor of historic importance 468

in breeding, and one admixed group that includes some durra race accessions, 469

mixed-race accessions, and bicolor accessions that are thought to be the early 470

domesticate and do not form a separate cluster [14, 91, 62, 26]. The average LD decay 471

distance was approximately 20 kb (r2 < 0.2) for the whole genome but varied across 472

chromosomes [94]. Notably, Chr6 failed to reach background levels (r2 < 0.2), which is 473

consistent with previous results that found limited recombination on Chr6 [62, 63]. 474

To date, there have been three sorghum pan-genomes published [18, 88, 89]. These 475

pangenome construction efforts in sorghum have either utilized a smaller population size 476

(N=176) and lower coverage (∼10X) [18, 89] or called variants using sequence 477

differences across multiple references [88]. Here, we identified more variants using higher 478

coverage across more individuals, which will act as a pivotal resource for future 479

pan-genomics in sorghum. Pan-genomes have the potential to provide significantly more 480

information concerning potential haplotype structure across diverse panels than 481

traditional reference genomes and can reduce the effects of reference sequence bias on 482

read mapping and subsequent variant calling [20]. 483

While some pan-genomic tools utilize pairwise alignment of multiple reference 484

December 22, 2021 15/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.22.473950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473950
http://creativecommons.org/licenses/by/4.0/


genomes to generate a pan-genome [95], the iterative alignment of reference genomes 485

can result in a biased pan-genome [17]. The broad-scale high-throughput sequencing of 486

diverse accessions can be foundational for development of variant graphs, particularly 487

when the degree of large structural variants in a population is low. While variant graphs 488

and pan-genomics are the future of reference-based genomics, we identified more quality 489

variants using the GATK and Hecaton than from utilizing a variant graph approach 490

with vg. Thus, while construction of a variant graph has the potential to reduce 491

reference bias, the gains in bias reduction should be measured against the potential 492

variant coverage that established variant callers can provide. To fully exploit the 493

benefits of variant graphs, variants should be called using pangenomes constructed from 494

multiple references so that contrasting haplotypes within a population or species can be 495

captured. 496

Distinct signatures for historic selection versus recent selection 497

Since the accessions in the SAP include various botanical races arising from 498

evolutionary divergence and local adaptation, the genetic differentiation between racial 499

types is indicative of differences arising from historic selection during domestication. 500

Additionally, the accessions can also be divided differently into two groups: one group of 501

individuals in the SAP is the converted lines from the SCP that were introgressed with 502

maturity and height loci for photoperiod conversion and short stature [10, 11], whereas 503

the other group of individuals includes the cultivars that were not only temperately 504

adapted but were bred and selected through multiple generations and, as a result, new 505

recombination events have allowed potentially different allelic combinations across the 506

genome [11, 26]. 507

The genome-wide signatures of selection were distinct for historic selection during 508

domestication and local adaptation compared to selection signatures resulting from 509

recent selection activities during photoperiod conversion and/or breeding (Fig 4). Since 510

the converted lines were distributed across all botanical races, there were no distinct Fst 511

peaks around the three genomic regions in Chr6, Chr7, and Chr9 that harbor the 512

introgression for dwarfing and maturity genes into exotic tropical lines by the SCP. 513

Thurber et. al. [96] had previously shown that introgression during the conversion 514

process did not have any bearing on population structure analysis of converted lines. 515

Based on the Fst peaks observed between the converted accessions and temperately 516

adapted breeding lines, the haplotypes for the introgressed region in Chr6 could be 517

distinct to the converted lines, whereas the other two introgressed regions in Chr7 and 518

Chr9 show little differentiation with the breeding lines. This might be due to an 519

abundance of recessive alleles for Dw1 and Dw3, while the dwarfing allele for Dw2 locus 520

is rare among the breeding lines. 521

The genomic region in Chr2 (45-54 Mb) that showed common Fst peaks across all 522

races exhibits a combination of positive selection at the beginning of the region with 523

some bottleneck toward the end. The region at 53-54 Mb shows a strong bottleneck 524

below two standard deviations of the mean Tajima’s D estimate, and an associated peak 525

for anthracnose resistance was previously identified around 53.79 Mb of Chr2. This 526

region contains a large (32 kb) sorghum gene, Sobic.002G169633, that encodes a protein 527

kinase with NB-ARC as well as LRR domains and is located approximately 130 kb 528

upstream of the associated GWAS peak [68]. The presence of 24 candidate genes with 529

coiled-coil domains suggests that this region might have several mutations that have 530

been independently, positively selected for across sorghum races during local adaptation. 531

This region of the genome needs to be studied further because it shows strong selection 532

and may be important for genetic dissection and breeding for biotic resistance. 533

Another region that showed signs of a selective sweep between converted and bred 534

lines as well as within the caudatum subpopulation was the region around the Tan1 535
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locus. The tannin loci have historically been subjected to bidirectional selection because 536

of varied local herbivore threats and human taste sensitivity, resulting in natural 537

variation around these loci across sorghum germplasm [71]. Caudatum accessions make 538

up 45% of the SAP accessions that were reported to have a pigmented testa layer, 539

whereas 32% of the remaining accessions with pigmented testa were from the mixed 540

subpopulation, which also has several accessions closely related to caudatum (S1 File). 541

Also, 73% of accessions with pigmented testa were from the converted group, whereas 542

only 12% of accessions in the bred group were pigmented. This difference could result in 543

large differences in allele frequency between the two groups around this region (S1 File). 544

WGS markers improved genome-wide association and prediction 545

over GBS markers 546

In addition to the common height loci (Dw1 -Dw3 ) and tannin content loci (Tan1 ) 547

identified previously using GBS markers, we identified novel associations across two loci 548

for plant height and four loci for tannin content that were not identified previously 549

using GBS markers. Previous studies have demonstrated that WGS improves both the 550

mapping resolution and ability to identify novel associations over marker data derived 551

from GBS [97]. Apart from the three well-characterized height loci (Dw1, Dw2, and 552

Dw3 ), we also detected significant association for the putative Dw4 locus at ∼6.6 Mb of 553

Chr6 as previously reported [5, 73]. A novel height association detected in Chr1 was 554

located within 1 Mb of a PH QTL previously reported [98]. While associations at major 555

loci for height overlapped for different variant types, the significant associations for 556

plant height on Chr4 and Chr7 that were unique to indel data show that indel variants 557

can overcome limitations of SNP data in detecting potential false negative associations. 558

The tannin loci (Tan1 ) we have identified is consistent with previous association results 559

in the SAP [65]. While the Tan2 locus was undetected in our tannin content association 560

like previous association analysis, we show that probit GWAS using a Bayesian sparse 561

linear model for presence or absence of testa layer can detect both Tan1 and Tan2 loci. 562

As both plant height and tannin content represent important phenotypes in sorghum 563

breeding, the consistency in association results compared to previous studies provides 564

validity of this newly developed genomic resource while novel associations show 565

incremental advantage in genetic dissection. 566

We performed genomic prediction (GBLUP) using a genomic relatedness matrix 567

derived from GBS or WGS SNPs to compare their predictive ability for agronomic, 568

yield, and quality traits. An average of 29% increase in predictive ability was observed 569

across nine traits, which is a substantial increase for most of these traits as they are 570

quantitative and complex traits. This improvement in predictive ability is due to the 571

ability of WGS markers to capture the additive genomic relationship better via increased 572

density and coverage of genetic markers, subsequently improving the total genetic 573

variance explained by the model [99]. And since genetic gain is directly proportional to 574

selection accuracy, such improvements in accuracy of prediction will have a cumulatively 575

positive effect on the long-term genetic gain across sorghum breeding programs [100]. 576

Conclusion 577

Approximately 44 million variants of diverse types were called using WGS of the SAP, 578

and these markers represents a major increase in the density and variant types available 579

for future sorghum studies and open the opportunity for detailed variant graphs, 580

improved genomic prediction, and detection of novel loci facilitating sorghum 581

improvement. These data are provided as a community resource for the continued 582

development of this multi-purpose, climate-resilient crop. 583
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Supporting information 584

Supporting information are available at Figshare at xx. 585

S1 File. Accessions in the sorghum association panel along with metadata 586

for population clusters, origin, racial classification, and testa pigmentation. 587

S1 Table. GATK variants and corresponding types. 588

S1 Fig. Histograms of read coverage per sample. 589

S2 Fig. Cumulative genome coverage across samples. 590

S3 Fig. Guanine-Cytosine content distribution across samples. 591

S4 Fig. Total count of nucleotide substitutions across sorghum 592

chromosomes. 593

S5 Fig. Indel length distribution. 594

S6 Fig. Linkage disequilibrium decay across each sorghum chromosome and 595

across the genome. 596

S7 Fig. Cumulative variance explained across the SAP principal 597

components. 598

S8 Fig. Discriminant analysis of principal components across varying 599

values of k (number of clusters). 600

S9 Fig. Heatmap showing genomic relatedness between individual 601

accessions within the sorghum association panel. 602

S10 Fig. Regions across the sorghum genome demonstrating selective 603

sweeps for various subpopulations based on ADMIXTURE analysis. 604

S11 Fig. Measures of Tajima’s D across the genome within the photoperiod 605

converted lines (Conv), breeding lines (Bred), and the whole population. 606

S12 Fig. Genome-wide association for presence of testa layer using probit 607

Bayesian sparse linear mixed model. 608

S13 Fig. Heatmap for linkage disequilibrium around association peak for 609

tannin content in chromosome 3. 610

S14 Fig. Genome-wide measures for pleiotropic effects of associated 611

regions for 19 traits. 612

S15 Fig. Trait correlation across the sorghum genome for the 19 traits in 613

the pleiotropy analysis. 614
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S16 Fig. Genome-wide associations for grain yield components (A) and 615

grain composition (B) using linear mixed models. 616

S17 Fig. Variant graph of Dw1 locus at different aspects demonstrating 617

macro- and micro-variations in the locus structure. 618
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