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Abstract:

Animals have been proposed to abstract compact representations of a task’s structure that
could, in principle, support accelerated learning and flexible behavior. Whether and how such
abstracted representations may be used to assign credit for inferred, but unobserved, relationships
in structured environments are unknown. Here, we develop a novel hierarchical reversal-learning
task and Bayesian learning model to assess the computational and neural mechanisms underlying
how humans infer specific choice-outcome associations via structured knowledge. We find that
the medial prefrontal cortex (mPFC) efficiently represents hierarchically related choice-outcome
associations governed by the same latent cause, using a generalized code to assign credit for both
experienced and inferred outcomes. Furthermore, mPFC and lateral orbital frontal cortex track
the inferred current “position” within a latent association space that generalizes over stimuli.
Collectively, these findings demonstrate the importance both of tracking the current position in
an abstracted task space and efficient, generalizable representations in prefrontal cortex for
supporting flexible learning and inference in structured environments.

Introduction:

Much of human and animal behavior relies on the ability to effectively represent the
environment and infer the true state of the world, which in turn supports effective decision
making. For example, the value of taking a vacation depends not only on the weather in your
current location but the weather in other locales, which are systematically related to your own.
Observing cold winter weather in Chicago (northern hemisphere) predicts summer weather in the
southern hemisphere, making a trip to Santiago, Chile, all the more valuable. In this situation,
your brain needs both the ability to represent the underlying structure of the world (e.g., the
inverse relationship between weather in each hemisphere) and the ability to assign credit for an
inferred outcome (warm weather in Santiago) given an observed outcome (cold weather in
Chicago). While this inference process is critical to flexible learning, the neural substrates that
support credit assignment for inferred outcomes in real-world hierarchical environments are still
unknown. In the current study, we test the hypothesis that the prefrontal cortex efficiently
represents a hierarchical task space and uses this to infer unseen outcomes and assign credit to
the appropriate latent cause.

Knowledge about the relational structure of environmental and task states is thought to be
stored in representations called cognitive maps (Behrens et al., 2018; Gershman & Niv, 2010;
O’Keefe & Nadel, 1978; Schuck, Cai, Wilson, Niv, et al., 2016; Tolman, 1948; Wilson et al.,
2014). These representations contain information critical to goal-directed behavior, encoding
relationships between positions or task states in an efficient manner. For example, outside of
physical space, cognitive maps might contain relational knowledge about transition probabilities
between states, choice-outcome contingencies, or how these contingencies change over time
(Baram et al., 2021; Boorman et al., 2016; Daw et al., 2011; Hampton et al., 2006). In principle,
cognitive maps are powerful because they allow for rapid updating when the state of the
environment shifts (Bartolo & Averbeck, 2020; Boorman et al., 2021) and generalization to
similarly structured tasks (Baram et al., 2021; Behrens et al., 2018; Franklin & Frank, 2018;
Whittington et al., 2020). Within the prefrontal cortex, the lateral orbitofrontal cortex (IOFC) and
medial prefrontal cortex (mPFC), in particular, have previously been implicated in using a model
of the task’s structure, or an abstracted cognitive map of the task space, to assign credit for
specific rewards to specific past choices or causes (Boorman et al., 2013, 2016; Jocham et al.,
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2016; Takahashi et al., 2011; Tanaka et al., 2008; Walton et al., 2010; Wilson et al., 2014).
However, the neural mechanisms that underlie assigning credit to latent causes that generalize to
inferred, but unseen, relationships in structured environments remain poorly understood.

To support credit assignment, prefrontal cortex may also play a critical role in tracking
the state of knowledge within abstract task spaces. Unobservable task-relevant information that
defines the current task state has been found during multi-step sequential tasks in OFC (Schuck,
Cai, Wilson, Niv, et al., 2016; Wilson et al., 2014; Zhou et al., 2020). Moreover, recent work has
pointed to interactions between the OFC and hippocampus that would allow the brain to track
“positions” along trajectories through abstract task spaces to guide value-based decision making
(Knudsen & Wallis, 2020; Zhou et al., 2019), with neurons in the anterior hippocampus coding
the relative position along trajectories through the 3D abstract value space defined by each
option’s current estimated value (Knudsen & Wallis, 2021). Recent advances in approaches to
measure the neural representations of cognitive maps with functional magnetic resonance
imaging (fMRI) have likewise identified abstracted cognitive maps of latent task spaces in
human hippocampus and OFC (Clarke et al., 2019; Garvert et al., 2017; Park et al., 2020, 2021;
Schapiro et al., 2016). Together, these insights suggest a new framework that may be extended to
understanding associative learning in structured tasks: the brain might track the inferred position
of hierarchically related associations in an abstracted “association space” that generalizes over
choice stimuli for efficient model-based inferences and rapid updating.

In the current study, we address these questions using a “hierarchical reversal-learning
task™, which required participants to use knowledge about hierarchical relationships to infer
unobserved outcomes and make effective goal-directed decisions. We show that mPFC is a
critical region both for efficiently representing choice-outcome relationships governed by a
shared latent cause and for updating inferred choice-outcome associations at the time of
feedback. Finally, we find that the IOFC and mPFC encode the inferred “position” within an
abstracted association space for choice-outcome associations governed by the same latent cause.

Results

Hierarchical reversal-learning task

Participants completed a “hierarchical reversal-learning task™ in which they tracked the
probability that each of four fractal shapes would lead to either of two gift cards for one of two
different online stores (Fig.1A). On each trial, participants choose between two of the four
shapes based on two pieces of information: estimates of the probability that a particular shape
will lead to a particular outcome, and the randomly generated potential payout indicated for each
outcome (Fig.1B). Importantly, the set of fractal shapes were organized hierarchically into two
independent systems of inverse pairs. Shapes A and B formed “System 17, while shapes C and D
formed “System 2”. This hierarchical organization gave participants the opportunity to infer
unobserved outcomes for an unchosen shape when observing the outcomes derived from
choosing the system pair. For example, participants could track the probability that A leads to
outcome 1, by observing the frequency that B leads to outcome 2. Because the two systems were
independent of each other, however, nothing could be learned about shapes C or D from
observing the outcomes of shapes A or B. Participants completed a total of 160 trials across two
sessions, during which the associative contingencies reversed three times (Fig.1C). Participants
were told that one trial would be selected at random to count “for real” at the end of the
experiment and they would be given money proportional to the number of points won on the gift
card they received for that trial.
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Behavioral results

Optimal behavior in this task required that participants tracked which stimulus choices
led to which of the two outcomes and used that knowledge to make decisions on the current trial.
We characterized the influence of previous choice outcomes using logistic regression models that
predicted the odds of choosing a certain shape given the currently desired outcome (i.e., the
stimulus with a higher payoff) and outcomes resulting from the last three times that shape was
chosen (EQ.8). Note that available choice stimuli changed on each trial so these outcomes may
be more than 3 consecutive trials into the past. Critically, we also included the outcomes that
could be inferred from choosing the system pair — the source of inferred information in our task —
in the regression model. If participants utilized both experienced and inferred outcomes to learn,
reinforcement learning theory predicts positive effects of each type of outcome that decline
exponentially over time into the past (Bayer & Glimcher, 2005; Sugrue et al., 2005).

This analysis showed significant effects for all three experienced and inferred choice-
outcome pairs going three choices into the past (all t(36)’s > 1.94, all p’s < .05) (Fig.1D). This
learning-model agnostic analysis confirms that subjects learned from both the experienced and
inferred choice-outcomes associations and utilized this information to make decisions on the
current trial. We compared the magnitude of regression coefficients between experienced and
inferred outcomes over time using a two-factor ANOVA. We found an expected main effect of
time (F(2,72)=5.63, p<.01), showing that outcomes from trials further in the past were less
influential on the current choice. However, the magnitude of effects from experienced outcomes
were not found to be significantly greater than those from inferred trials (F(1,36)=2.97, p=.09),
and there was no significant interaction between outcome type and time (F(2,72)= 2.34, p=.10).
Finally, the analysis showed no effect of the previous outcome’s reward magnitude on the
subsequent trial’s choice (t(36)=-1.03, p=.85), consistent with the fact that they were generated
randomly on each trial and there was no advantage to tracking rewards between trials in our task.
Taken together, this analysis shows that subjects learned from both experienced and inferred
outcomes and that directly experienced outcomes did not have a significant advantage in guiding
future decisions relative to inferred outcomes in our task (results were similar when
incorporating the subjective value of each outcome into the analysis (Fig.S1)).

To estimate subjects’ trial-by-trial beliefs about stimulus-outcome associations, we fit each
participant’s choices to a Bayesian reversal learning model (see methods) that utilized the history
of outcomes observed from their choices, and outcomes inferred from the system pair. The best-
fitting “weighted inference model” jointly estimates the stimulus-outcome (transition) probability
and the reversal probability and included three free parameters: «, an indifference term capturing
the subjective preference for one outcome over the other; 5, an inverse temperature term capturing
participants’ sensitivity to differences in choice values; and y, an inference weight term which
weighted the posterior belief in choice associations for experienced relative to inferred outcomes,
reflecting the amount of information each subject derived from a directly experienced outcome
relative to an inferred outcome (see EQs 2-6 and Table S1 for the distribution of parameter
estimates).

We compared the “weighted inference model” to two alternatives which did not include
y, but instead assumed the participants learned nothing from inference (“no-inference model”) or
learned perfectly from inferred and experienced information (“perfect-inference model”), using
Bayesian Information Criterion (BIC) (EQ.7). The weighted inference model was found to best
capture choice data across subjects compared to these alternative models (lowest summed BIC
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across subjects), showing that that the weighted inference model (BIC=7266.34) captured
meaningful differences in participants' ability to infer from unobserved data (no-inference model
BIC=7401.76; perfect-inference model BIC=(7278.12) (Fig.1E). We further confirmed this
finding using forward chaining cross validation (k=8; Bergmeir & Benitez, 2012) to show that
this model predicted out-of-sample choices better than models that assumed either no inference
or perfect inference.

Finally, we tested if subjects’ choices were a sigmoidal function of the estimated
expected value of each choice option using the weighted inference model (likelihood ratio test
(LRT) = 60.44, p=7.32x10Y"). Fig.S1 shows the highly significant results of a multilevel logistic
regression model predicting the subjects’ choices given the expected value (EQ.4) difference
between the two options on each trial.

Neural substrates of belief updating from experienced and inferred outcomes

Our next analysis sought to identify the network of brain regions that support updating of
choice-outcome associations by combining information from experienced and inferred outcomes
at the time of feedback. We defined the belief update from feedback as the Kullback-Leibler
divergence (DkL) between prior and the posterior beliefs after observing the outcome on each
trial, also called the “Bayesian surprise” (Iglesias et al., 2013; Schwartenbeck et al., 2016a).
Because participants may learn through both experienced and inferred outcomes, the total update
on a given trial is the sum of the Dk for experienced and inferred choice-outcome associations
(DR¥™: EQ.12). We used DR%™ as a parametric modulator of blood oxygen-level-dependent
(BOLD) activity during feedback (see GLM 1) and found clusters of positive effects in pre-
supplementary motor area/dorsal anterior cingulate (preSMA/JACC) (peak voxel, [x,y,z]=[0, 18,
50], t(36)=7.31), bilateral DLPFC (right, [x,y,z]=[46,24,48], t1(36)=5.90; left, [X,y,z]=[ 36,8,36],
t(36)=6.22) and bilateral anterior insula (right, [X,y,z]=[32, 26, 0], t(36)=5.35; left, [X,y,z]=[-32,
22, 2], 1(36)=5.69), (all whole-brain cluster-corrected with permutation-based threshold-free
cluster enhancement (TFCE) (Smith & Nichols, 2009) at prrce <.05), suggesting these regions
encode updates to the system of choice-outcome associations (Fig.S2, Table S2; see Fig.S3 for
reward prediction error effects).

Next, we tested for regions that carried additional information about updating derived
from inferred information. We did this by calculating the Dk, for the "no inference" model

(D,ffp), which quantified the update on the current trial if no inference occurred (i.e., only

experienced information was used in the update). We then used the “weighted-inference model”

to compute the Dk given the subject-specific weighting of inferred information (D,z'zeighted). We

computed the difference between these regressors (D,?Lif T EQ.12) to quantify the additional
updating that occurs when inferred information is combined with directly experienced

information to update beliefs. We used the trial-by-trial estimates of D27, and Do/ as
parametric modulators of BOLD activity at the time of feedback (see GLM 2), to identify regions
that reflected the additional update gained from inference, even while controlling for updates due
to experienced outcomes only. We found significant positive effects of D,?iff in clusters in
preSMA/JACC ( [x,y,z]=[4, 20, 48], t(36)=5.56), bilateral DLPFC (right, [x,y,z]=[40, 38, 18],
1(36)=4.37; left, [x,y,z]=[-44, 6, -24], t(36)=5.24) and bilateral anterior insula (right, [x,y,z]=[32,
20, 4], t(36)=5.04; left, [x,y,z]=[-30, 22, -1], t(36)=5.36) (Fig.2A, Table S3). These results
implicate this network in supporting the additional updating of beliefs about transition
probabilities from inferred outcomes at feedback.
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Recent studies have suggested that activity in the dopaminergic midbrain encodes
prediction errors not only about reward value but also about outcome identity or ‘task state’
(Boorman et al., 2016; Gershman & Uchida, 2019; Howard & Kahnt, 2018; Iglesias et al., 2013;
Langdon et al., 2018; Sharpe et al., 2017; Suarez et al., 2019). As such, we tested whether
activity in the dopaminergic midbrain, in particular the ventral tegmental area (VTA), would also
reflect the additional update of transition probabilities based on inferred information (D,?zf ! ),
using an independently defined region-of-interest (ROI) over the VTA and substantia nigra (SN)
(Diaconescu et al., 2017). Consistent with our prediction, we found a significant positive effect
of the combined update at the time feedback was delivered in the VTA ([x,y,z]=[2, 18, -12],
t(36)=3.39, prrce <.05, ROI corrected), independent of reward prediction error. Notably, we
found no significant effect of the reward prediction error (EQ.6) in the same VTA/SN ROI
(Fig.S3), consistent with the fact that there was no incentive to learn from reward magnitudes in
our task, and subjects did not show a behavioral effect of learning from reward magnitudes, as
shown above. Collectively, this suggests that the VTA BOLD signal aligns with the
instrumentally relevant variable to track in our task, and, importantly, incorporates inferred
information based on knowledge of the task structure (Fig.2B).

mPFC represents latent causes and assigns credit to inferred outcomes

We hypothesized that the brain would reinstate the latent cause using an efficient code
that generalizes over stimuli and outcomes governed by the same cause at feedback time. If
participants retrieve representations of structural relationships at feedback to appropriately assign
credit to the latent association, we would expect to decode the representations associated with the
common causes that arise in trials where the systems’ pairs led to opposite outcomes. To probe
which brain regions assigned credit to a shared representation for shapes governed by the same
causal relationship (i.e., shapes part of the same system), we performed a multivariate pattern
analysis (MVPA) on activity patterns at feedback, the critical time for credit assignment. First,
we trained pattern-based classifiers (linear support-vector machines) to classify the chosen
stimulus and its associated outcome identity at the time of feedback (e.g., A—O1), and then used
the resulting feature weights to decode from patterns of activation on trials where the system pair
led to the opposite outcome through the same causal relationship (e.g., B—02) (Fig.3A, see
supplement for details on decoding procedure). Importantly, this analysis controlled for both the
shape stimulus and outcome identity such that no sensory information, neither the previous
choice stimulus nor reward outcome identity, was shared between training and test sets. Thus,
decoding is only possible if these events share information about the same causal relationships
that bind shapes in the same system.

We began by conducting a whole-brain searchlight analysis to estimate decoding
accuracy at each voxel in the brain (Kriegeskorte et al., 2008). Based on our a priori hypotheses
concerning IOFC and mPFC in credit assignment (Boorman et al., 2013, 2016; Jocham et al.,
2016; Tanaka et al., 2008; Walton et al., 2010), we tested anatomically defined ROIs (Glasser et
al., 2016) of mPFC and IOFC that were hypothesized to contain these representations and used
TFCE (Smith & Nichols, 2009) to correct for multiple comparisons. This analysis identified a
significant cluster of voxels in the anterior portion of left mPFC ([x,y,z]=[-6,50,-10], t(36)=3.54,
prece <.05 ROI corrected); Fig. 3B, Table S4). However, we found no significant clusters in
IOFC bilaterally (all p>.05 uncorrected).

To more directly test whether these representations of the latent cause in mPFC relate to
credit assignment during inference, we correlated the strength of representations of the latent
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cause in mPFC at the time of feedback with model-derived estimates of the updates to outcome
contingencies within each system. We used the same SVM classifier to compute the decodability
of system representations at feedback during each trial. We quantified the decodability of each
representation as its distance to the SVM hyperplane (Schuck & Niv, 2019) and signed the
distances such that correct classifications were positive and incorrect classifications were
negative. As before, we defined the total trial-by-trial belief update as the DR¥™ between the
prior and posterior beliefs after having observed an outcome. This whole-brain analysis revealed
a significant cluster in mPFC (Spearman rank correlation; [x,y,z]=[8,46,-10], t(36)=4.19; prrce
<.05 ROI corrected Fig. 3C, Table S5), which overlapped with the main effect of latent cause
decoding (Fig. 3D; using the conjunction analysis with minimum statistics, at p <.05 uncorrected
compared to conjunction null; (Nichols et al., 2005)). This finding shows enhanced
representation of the common causal relationship with greater updating for credit assignment for
both experienced and inferred outcomes at the time of feedback.

IOFC and mPFC track inferred positions in a latent association space during learning

Our results have shown that mPFC contains a representation of underlying causal
relationships that are used to infer information about related stimuli during feedback. Based on
recent evidence showing that hippocampus and OFC may track the current position within a
value or task space (Knudsen & Wallis, 2020, 2021; Park et al., 2020; Schuck, Cai, Wilson, Niv,
et al., 2016), we hypothesized these regions may track the “position” of subjects’ current beliefs
within an abstract “association space” for each system. To test this hypothesis, we used
representational similarity analysis (RSA) to identify regions of the brain that coded relative
“positions” within the inferred association space. That is, we sought to identify brain regions that
had increasingly similar representations when subjects had increasingly similar beliefs about the
choice-outcome contingencies for each system. We generated a model Representational
Dissimilarity Matrix (RDM) that calculated the divergence (Jensen-Shannon Divergence (D)s); a
symmetric measure of the distance between distributions, EQ.13) between model estimates of the
posterior belief distributions about stimulus-outcome associations in a system (e.g., g*) computed
from our weighted-inference learning model in each trial across sessions. We also generated a
RDM of neural similarity from activity patterns measured within a searchlight during the inter-
trial interval (ITI) by calculating the Euclidean distance between voxel patterns in each trial
across sessions. We hypothesized that regions tracking one’s current position in the association
space would show increasingly greater representational similarity for trials that had increasingly
similar posterior beliefs about the specific position of a configuration of associations within a
system. We reasoned that if subjects were tracking the latent cause governing a system of
associations (A->01, B - 02), then this coding should be independent of the specific choice
made within that system (e.qg., include both A (C) and B (D) choices for system 1 (2)) (see Fig.
4A and Methods).

We tested this hypothesis by constructing a general linear model that predicted values of
the neural RDM while controlling for other possible explanations of neural similarity, using the
D;s model RDM along with 5 control RDMs. These alternative RDMs controlled for the effect of
the position in association space of the unchosen system for the current trial as well as similarity
of the recently observed outcome, identity of the chosen object, identity of the unchosen object,
magnitude of the RPE, and physical response made (see methods). We focus on the ITI
following recent evidence of positional coding in an abstract value space during the ITI in
monkey hippocampal single unit recording (Knudsen and Wallis, 2021). The RDM representing
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task “position” revealed significant effects in a network of regions including bilateral lateral
OFC (left IOFC, [x,y,z]=[-26, 30, -12], t(36)=4.24, ptrce <.05 ROI corrected; right IOFC,
[x,y,z]=[28, 28, -14], t(36)=3.79, prrce <.05 ROI corrected) and rostral mPFC ([x,y,z]=[4, 54, -
4], 1(36)=4.56 , pece <.05 ROI corrected) (Fig.4A, Table S6). Indeed, visualization of pattern
similarity in IOFC on the trials immediately before and after an inferred reversal point support
this finding by revealing a shift in representation from the previous to the current belief state, in
tandem with the shift in model estimates (Fig. 4C). This visualization showed positive pattern
similarity to the current state prior to the reversal and shift to negative pattern similarity at the
inferred reversal point. Collectively, these findings show that the IOFC and rostral mPFC track
the current position in an abstract association space that generalizes over choices in the same
system.

Discussion

Understanding how the brain uses abstracted internal models to learn from unobserved,
but inferred, outcomes is essential for understanding flexible behavior in complex environments.
The current experiment adds to a growing body of work showing that the mPFC is critical to
maintaining compact and generalizable representations of task-relevant variables (Baram et al.,
2021; Behrens et al., 2018; Constantinescu et al., 2016; lordanova et al., 2007; Morton et al.,
2020; Samborska et al., 2021) but goes further to show these representations support credit
assignment when outcomes can be inferred through shared hierarchical relationships. Our results
show that mPFC selectively encodes the shared causal relationship between hierarchically
related choice-outcome associations with a compact representation and leverages this code to
assign credit for unseen, but inferred, choice-outcome associations. We also show that mPFC and
IOFC code the current inferred position of the hierarchically related system within a common
“association space” for each system, suggesting that these regions are integral for tracking the
learner’s “position” within a latent association space as learning unfolds.

We designed a novel hierarchical reversal learning task to test the hypothesis that
assigning credit for inferred outcomes depends on the reinstatement of a generalizable neural
representation that links both experienced and inferred causal relationships (Liu et al., 2021).
Prior evidence across species has implicated both the IOFC and the mPFC in credit assignment
(Boorman et al., 2013; Chan et al., 2016; Jocham et al., 2016; Takahashi et al., 2011; Tanaka et
al., 2008; Tsujimoto et al., 2009; Walton et al., 2010) but the precise functional roles attributed to
each region remained unclear. Consistent with studies showing that mPFC contains condensed,
low-dimension codes for structurally related items in the environment (Constantinescu et al.,
2016; Doeller et al., 2010; Morton et al., 2020; Park et al., 2021; Samborska et al., 2021), we
found that mPFC, but not OFC, reinstated the shared latent cause that governed two sets of
stimulus-outcome associations in the same system. Importantly, this effect could not be
explained by either the outcome’s identity or the identity of the chosen stimulus alone. Further,
we show that the decodability of these representations in mPFC increases when subjects updated
their estimates to a greater extent, which is consistent with prior work showing that
representations in the mPFC are important for rapid updating between states (Klein-Fliigge et al.,
2019; Muller et al., 2019). These results suggest that generalized representations in mPFC are
used for credit assignment at feedback, directly linking knowledge about causal structure to
inference about unobserved outcomes. Moreover, they provide novel evidence that cognitive
maps may be used to generate inferences about an untaken choice based on knowledge about the
underlying relational task structure.
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Our study also extends our understanding of the network of regions involved in updating
choice-outcome associations, by showing that these regions also support updating from inferred
outcomes using a model of the task’s hierarchical structure. A network of regions’ activity
reflected the full learning update (Dkc) from an outcome, including the VTA, pre-SMA/dACC,
dorsolateral prefrontal cortex, ventrolateral prefrontal cortex/IOFC, and anterior insula,
consistent with past studies investigating directly experienced outcomes/stimuli (Boorman et al.,
2016; Iglesias et al., 2013; Schwartenbeck et al., 2016b). These findings support the view that
dopaminergic precision-weighted prediction errors modulate both local cortical and long-
distance cortico-cortical and cortico-striatal synapses within a similar network of regions during
incremental learning (Stephan et al., 2015). Notably, dopaminergic neurons in the VTA are
known to signal reward prediction errors (Bayer & Glimcher, 2005; Montague et al., 1996;
Schultz et al., 1997) but more recent work has suggested this role extends to updating value-
neutral associations between states or outcome identities. Indeed, activity in the VTA is
modulated by errors in predicted outcome identity (Howard & Kahnt, 2018; Iglesias et al., 2013,
2021; Oemisch et al., 2019; Suarez et al., 2019; Takahashi et al., 2017) and belief updating about
the state of associative relationships in the environment (Schwartenbeck et al., 2016a; Sharpe et
al., 2017) which have been shown to play a causal role in learning such value-neutral
associations (Langdon et al., 2018; Sharpe et al., 2017). Here, we show activity in the VTA
quantitatively encodes precision-weighted prediction errors about the state of hierarchically
related choice-outcome associations, integrating information from both experienced and inferred
outcomes. Furthermore, this signal only reflected how much to learn about the instrumentally
relevant variable and did not track learning-irrelevant, but nonetheless rewarding, outcomes. We
found no evidence that the VTA signal incorporated the monetary reward value obtained at
feedback, which in our task is irrelevant for future behavior. This is consistent with the absence
of any effect of reward magnitude on learning behaviorally. Taken together, our findings
highlight the importance of dopamine in updating model-based associations through inference.

Finally, we show that a network of brain regions including IOFC and mPFC track the
inferred position in a latent association space that generalizes over choice-outcome associations
within a system. We found that IOFC and rostral mPFC showed relational coding corresponding
to the position in the hierarchically related choice-outcome association space, such that
activation patterns were increasingly similar when the expectation and precision of beliefs about
associations within a system were more similar. This finding dovetails with recent studies
showing that relational position in a wide range of abstract spaces are coded by medial temporal
lobe and orbitofrontal cortex (Constantinescu et al., 2016; Knudsen & Wallis, 2021; Park et al.,
2020; Theves et al., 2019). Here, we show this coding scheme applies to a hierarchically general
latent causal space in IOFC and mPFC that reflects both the certainty and confidence in learned
choice-outcome associations (Pouget et al., 2016). While we did not find any significant effects
in hippocampus at the thresholds used, there was a subthreshold correlation in the head of the
right hippocampus (prrce <.08 ROI corrected, Fig.S4). Recent pioneering studies using closed-
loop theta stimulation in monkeys have identified a causal role for hippocampal input to a
homologous region of IOFC (Brodmann Area 13) during the ITI of a reward-guided learning task
(Knudsen & Wallis, 2020). A second study elaborated these findings by showing that
hippocampal neurons coded for direction dependent “positions” in the monkeys’ trajectory
through an abstract 3D value space (Knudsen & Wallis, 2021). Taken together with our findings,
this suggests that representations of learning trajectories in IOFC and mPFC may be derived
from hippocampal relational codes, which are input to these regions through direct anatomical
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connections (Barbas & Blatt, 1995). In our study, these codes can be used for accurate credit
assignment and inference. More generally, our findings support the theory that the OFC
represents an animal’s current position in a task space when its position cannot be directly
observed (Schuck, Cai, Wilson, & Niv, 2016; Stalnaker et al., 2015; Wilson et al., 2014; Zhou et
al., 2020).

An intriguing open question is whether IOFC would reactivate specific individual past
choices, as opposed to generalizable latent causes with a common code, for credit assignment to
specific past choices. Previous work has shown that OFC reactivates choices which led to the
currently observed outcome specifically at outcome time (Tsujimoto et al., 2009), and may
trigger reactivation of sensory representations via descending anatomical connections between
areas of posterior and lateral OFC and several sensory cortical regions (Carmichael & Price,
1995; Cavada et al., 2000). Whether or not the same mechanism underlies credit assignment for
inferred stimuli is unknown. Notably, we did not find any significant decoding of the chosen
stimulus identity alone at feedback anywhere in the brain at our threshold used (prrce <.05). This
finding is consistent with our fMRI decoding and behavioral analyses showing that by and large
subjects treated stimulus-outcome associations governed by the same cause as a unitary
representation, rather than treating its individual associations distinctly. Future work can
elaborate these mechanisms by testing whether the appropriate inferred choices are reactivated in
a modality-specific sensory cortex during learning.

In conclusion, we find that the human brain represents latent causes with compact
representations in mPFC, which support updating during credit assignment to inferred
relationships. Further, relational codes in both IOFC and mPFC track learning positions along
trajectories within an abstract association space that generalizes over stimuli, and rapidly update
the actor’s position as learning dynamically unfolds. Collectively, these findings support a novel
framework for understanding how the human brain learns in hierarchically structured settings
that abound in the real world.
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Fig.1 Learning Task Design and Behavioral Results

a) Four fractal shapes were organized hierarchically into two independent systems of inversely
related pairs. This meant that participants could infer the outcome of one object (e.g., shape B)
after observing the outcome from choosing its system pair (e.g., shape A).

b) Ilustration of the fMRI task. Participants were presented with 2 of the 4 shapes to choose
from in each trial. They chose between the shapes on the basis of two pieces of information: their
estimate of the transition probabilities ( g, g?) that an object would lead to either gift card
outcome, and the randomly generated number of points they could potentially win on each gift
card if obtained. The color of each number indicated the identity of the outcome on which that
number of points could be won. In the example, green indicates the number of points for the
Starbucks gift, while pink indicated the number of points for iTunes. Next, they observed the
outcome of their choice (the gift card and amount) after a delay.

c) Example of a participant’s learning trajectory as the task unfolded. Shaded regions indicated
the true associations for system 1 (g1, blue) and system 2 (g2, red). Each system reversed 3 times
during the experiment, switching g and g2 to 1-g* and 1-q2, respectively. Blue and Red lines
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indicate the estimated values of g and g2 based on the weighted-inference learning model (see
computational models for details).

d) Results of a logistic regression analysis which shows the influence of past choices and
outcomes on the current choice. Both experienced and inferred past choice-outcome associations
significantly predicted current choice. As expected, this influence decreased for trials further in
the past. Height of the bars represents the mean of regression coefficients + SEM.

e) Results of model comparisons using BIC (top) and 8-fold cross-validation (bottom) for
weighted-inference, no-inference, and perfect-inference models (see computational models for

details)

[ |
271 T value 6.00

presMA dIPFC

y=-21

Fig.2 Network of Regions that Reflect Additional Update for Inferred Information
Sagittal and coronal slices through t-statistic maps display brain regions whose activity at
feedback reflected the additional information gained from including inferred information
compared to only experienced information (D,?Liff). For illustration, maps display regions at a
threshold of t(36)=2.71, p<.005, uncorrected.
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Fig.3 Medial PFC Carries Representations of the Latent Cause to Assign Credit to Inferred
Outcomes

a) lllustration of the decoding procedure used to decode the latent cause. We first trained a linear
SVM on specific shape-outcome combinations from each system (e.g., A—O1 and C—O1) then
used it to classify the system pairs which led to the opposite outcome (B—02 and D—02). No
information other than the latent cause was shared between training and testing trials. In a
separate analysis (e), we correlated the amount of information about the latent cause in each trial
(distance from SVM hyperplane) with the magnitude of updates estimated by the weighted-
inference learning model (see multivariate analysis for details).

b) Sagittal slice through t-statistic map showing effects of decoding of the latent cause from
analysis depicted in a in mPFC (SVC within an a priori mPFC ROI), displayed using the same
conventions as Fig.2.

c) Same as b but shows regions where the magnitude of information decoded about the latent
cause was significantly correlated with Dg%™ (SVC in mPFC ROI).

d) Conjunction t-statistic map showing overlapping regions of b) and c) (p<.05 uncorrected).
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Fig.4 Lateral OFC and Medial PFC Track Inferred Positions within Latent Association
Space During Learning.
a) Conceptual illustration of the RSA procedure used to test for estimated position within the
latent association space. We constructed a model RDM that measured the dissimilarity of
posterior beliefs (D)), estimated by the weighted inference learner, across trials in separate
blocks. Only trials in which shapes from the same system were chosen by the participant were
compared across blocks. Separate RDMs for each system were then compared to neural RDMs
computed from the ITI period of the same trials, using the Euclidean distance between voxel
activation patterns on these trials from different blocks as the measure of dissimilarity. Model
and neural RDMs were then compared using linear regression (see “Representational Similarity
analysis of Association Space” for details).
b) Axial and sagittal slices through t-statistic map displaying regions in which the model RDM
was significantly related to the neural RDM. Maps are displayed with the same conventions as in
Fig.2. The clusters survived small volume correction within an a priori defined IOFC ROI (axial
slice) and mPFC ROI (sagittal slice).
c) Visualization of the relationship between model-estimated reversal points and neural pattern
similarity. Dashed vertical line indicates a reversal point, where 0 is the trial directly after a

2.71 Tvalue 6.00
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reversal in the configuration of each system, as estimated by the weighted-inference learner.
Green line represents the neural similarity of the activation patterns in IOFC on each trial
immediately preceding and subsequent to the reversal point, compared to a “template pattern” —
defined as the average pattern from trials with the same configuration as those prior to the
reversal point, but from the other block. Red line shows the model-derived belief estimate on the
same trials. Note the corresponding shift in the model estimate and neural data from pre- to post-
reversal.

Methods
Subjects

Forty subjects (25 females; mean age = 20.5) were recruited from the general population
around University of California, Davis. None of the participants reported a history of neurological
or psychiatric disorders. Subjects either received either course credit or money ($15/hour) for
participation in the experiment. Two subjects were removed due to excessive motion during
scanning (head movement > 3mm), while a third subject was removed for excessive dropout in
ventral regions of the prefrontal cortex that are of interest to this study. Thus, the final sample
included 37 subjects (22 Females; mean age = 20.5). All procedures were approved by the
University of California, Davis IRB. Participants gave written consent before the experiment.

Hierarchical-reversal-learning-task
Task instruction

Subjects completed a “hierarchical-reversal-learning-task” in which they tracked
associations between abstract shapes (choices) and reward identities (outcomes) to optimize the
possibility of larger rewards at the end of the experiment (Fig.1A). On each trial, subjects were
presented with 2 of 4 different fractal shapes from which to choose. Two numbers between 0 and
100 were presented at the top of the screen in unique colors. The color of the numbers corresponded
to the identity of the gift-cards that the subject could win, and the magnitudes corresponded to the
point value of the reward on the current trial. For example, a pink “42” meant that subjects could
win 42 points on an iTunes gift-card while a green “58” meant they could win 58 points on a
Starbucks gift card. The cumulative number of points available on each trial was always equal to
100. Subjects were told that the point values were randomly chosen on each trial and there was no
point to tracking them.

Each shape had a certain probability of leading to one outcome and the inverse probability
of leading to the other. For example, at the start of the experiment shape “A” would lead to the
Starbucks gift-card with probability g* and the iTunes gift-card with probability 1-q*. However,
these true probabilities would reverse such that a given shape would lead to each outcome with
opposite probabilities. Continuing with our example, after a reversal, shape “A” would lead to an
iTunes gift card with probability g probability and a Starbucks gift card with 1-g* probability.
The point values (reward magnitudes) for each outcome were generated randomly from the range
0-100 on each trial, meaning that subjects did not need to track the reward magnitudes between
trials. Instead, to maximize rewards, participants had to track the probability a shape would lead
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to each of the outcomes over trials and combine this with the reward magnitudes associated with
each outcome on the current trial to guide their decisions based on their subjective preference.

Crucially, the shapes were organized such that they formed 2 sets of inversely related
“systems”. Shapes within a system always led to opposite outcomes and had inverted outcome
probabilities. Shapes A and B were paired (system 1) and shapes C and D were paired (system 2).
The inverse relationships within a system allowed subjects to learn the probability that a shape
would lead to a specific outcome by observing the choice-outcome relationship of the other shape
within the same pair. For example, experiencing that shape A led to Starbucks would also give you
the knowledge that if shape B were available and it was chosen, the outcome would have been
iTunes. The same relationship was true for shapes C and D. Between systems, observations were
completely independent of each other such that observing an outcome from choosing A or B gives
no information about the likely outcomes of choosing shapes C or D. These structural relationships
between choice options and outcomes within a system, and the independence of items between
systems, was clearly explained to participants before the experiment began.

However, subjects did not have any prior knowledge about choice-outcome associations,
and when reversals in choice-outcome associations occurred, or how many times reversals would
occur (three times for each system, see Fig.1A). Therefore, subjects needed to infer both
associative contingency for each choice and when reversals had occurred from their choices and
outcome histories during experiments.

Stimuli

Four visually distinct unfamiliar fractal images were chosen such that the visual similarity
between any two items were minimal and were presented to all participants as choice options.
Images for system 1 and those for system 2 were randomized across participants.

Two types of reward identities (two gift-cards images) were chosen from 7 different gift-
cards from stores familiar to participants: Best-Buy (blue), Barnes and Noble (tan), iTunes (pink),
Regal (purple), REI (orange), Sephora (white), and Starbucks (green). The two reward identities
were chosen prior to the fMRI experiment based on participant’s preference ratings. Subjects rated
their preference level for each of these gift cards presented in a random order on a 1-100 scale. A
pair of gift-cards having the minimum difference among four most highly preferred were selected
per individual participant. These two gift-cards were assigned to outcome 1 (O1) and outcome 2
(02), counterbalanced across subjects, and presented during fMRI experiment. This procedure
allowed us to minimize potential biases from initial preferences in choices during the reversal
learning task, while maintaining a high desirability for each outcome. All stimuli in each phase
were presented on a computer running Psychopy v1.84 (Peirce, 2009).

Task-Schedule and Procedure

We generated two separate schedules that determined which choice options (shapes) would
be presented on each trial and when reversals would occur. In this experiment, there were six
possible unique combinations of four choice stimulus on any trial. In the experiment schedule,
none of the same combination was repeated twice in consecutive trials. Further, we optimized the
schedule such that an ideal Bayesian learner (perfect inference model; see Computational models)
would choose each shape and receive each outcome approximately equally, given an equal
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preference between outcome identities. This was important because it minimized the potential for
sampling bias in planned multivariate analyses (see Multivariate Analyses). Each schedule had
predetermined reversal points where the choice-outcome associations switched (e.g., g*>1-¢q*
and 1-g1->q?) for a given system. During fMRI experiments system 1 reversed every 40 trials
starting from the first trial onwards, while system 2 reversed every 40 trials starting from the 20"
trial onwards, making the state of each system independent of each other. The independent reversal
points of two systems made it so participants were not able to learn the choice-outcome
associations of one system from that of the other.

Subjects completed two blocks of 80 trials (160 trials total). Before the fMRI experiment,
subjects were instructed that one trial would be chosen at random to count “for real” and would be
used to calculate the subjects reward for the experiment. This makes each choice independent.
Therefore, participants need to make an optimal decision for every trial to maximize their rewards.
At the end of experiment, we randomly selected one trial and gave a reward proportionate to the
number of points earned on the specific gift card received on that trial. The minimum reward given
was $5 while the maximum value was $25.

Behavioral Training

To familiarize subjects with the task, all subjects completed a behavioral training session
before the fMRI experiment. After behavioral training participants performed the fMRI
experiment on different day within a week. The task used for behavioral training was the same
with the fMRI task except for slight modifications to aid learning. During behavioral training the
experimenter guided subjects through the first 30 practice choice trials to ensure that subjects
understood the task, then left participants to complete the rest of the trials on their own. In addition,
to ensure that subjects tracked the relationship between paired stimuli, subjects were tested every
10th trial on the relationship between shapes, by asking them to connect shapes in the same pair
with a single line (Fig.S5). The subjects received feedback via the line color - an incorrect pairing
resulted in the line turning red, while a correct pairing turned the line green. During behavioral
training participants learned the task with the same fractal images assigned to the same systems.
However, we used 2 faux outcome identities (Zappos and Netflix) that would not be available for
rewards during the fMRI experiment. Participants who understood the task well and performed
well (model fit negative log-likelihood <130) were invited to return for fMRI experiments. Among
48 participants who initially enrolled the experiment, 40 participants participated in fMRI
experiment.

Computational models
Weighted-Inference learning model

We designed a Bayesian computational model to predict the choice of participants in each
trial t based on one’s choice and outcome history and available choice options and reward
magnitudes of the current trial. On each trial, the model estimated the contingency that choosing a
given shape (S) would lead to outcome 1 (O1), and by definition led to outcome 2 (O2) with the
inverse probability which is denoted as follows:
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p(§ — 01) = g
p(§ > 02)=1-g¢qs
Eq.1

Choice-outcome contingencies for all shapes were modeled as separate distributions, but beliefs
about contingencies for shapes in the same system were related through an inference term (y where
0 <y < ), which takes account to what extent an individual participant learns and updates g,
from direct experiences (the outcome y after choosing S) compared to that from inferred outcomes
(the outcome y' if you had chosen S’ where, Sand S’ are paired in the same system; if y is O1 then
y'is 02). On each trial t, the posterior belief about g, is computed using Bayes rule, as follows:

p(qsely )oc{ pVel 45,e) - P sl Vi1, V5) - ¥
sttt

pelds o) - P(Asiely 1:6-1. V) - 1)y
Eqg.2

That is, y = 1 for an ideal learner who can take advantage of the structural relationship (p(S -
ye) = p(S' = y{)) and learn from inferred outcomes as much as they learn from experienced
outcome. Therefore, a participant with a higher level of y is more likely learn from direct
experiences (S — y;) but less likely to learn from inferred outcomes (S’ — y{). After each trial,
the probabilities were normalized such that they remained bounded between 0 and 1.

While the likelihood p(y¢|qs:) of p(¥{|qsie) 1S qse OF qs, ¢ respectively, we took into
account the probability that the contingency of the system associated with the current choice (S) is
reversed (vs = p(]s’t = 1)) when computing the prior, p(qs¢|y1..—1). The term vg indicated the
subjects’ belief that choice-outcome contingencies had reversed (]S,t = 1) for the chosen shape,
S. Taken together, the prior belief of the associative contingency for a chosen shape remained the
same as the previous trial (p(qs,t_l)) with the probability 1 — v (if no reversal has occurred) or
flipped to the inverse probability (1- p(qs't_l)) with the probability v, (if a reversal has occurred).
Therefore, the prior (q¢|y,..—1) 1S obtained by the following transition function:

p(qely1e-1) = f[P(CIt—1|3’1:t—1) (1= v)] + [1 - p(qelyre-1) - vsldvs
Eq.3

A second normalization step was done after applying the transition probabilities v to the posterior
probabilities of the current trial, such that the probability of all possible transitions equals to 1.
Note that vg was defined and updated independently per four possible choice options. However,
due to the inherent design of the underlying task structure, vsfor shapes within the same system
should be more correlated than v of the other system. Finally, note that the reversal probability is
fixed during the experiment but unknown to participants.

We then used the prior belief, in the associative contingencies, p(qs,tlyl:t_l), to compute
the expected value of a given shape (Es) on each trial according to the following formula:

Es = [p(qse|yre—1) - MO - a] + [1 — p(qse|yre—s) - MP? - a7
Eq.4
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where a was a free parameter and reflected a subject's preference for one outcome (O1) over the
other (02) (0 < a < ), and MP! and MP? indicated the reward magnitudes of the outcome
available in the current trial, t. We then predicted the choice of a participant between the two
available shapes (Eg; and Eg,) on each trial according to a SoftMax function:

e]E51B
p(S1) = eEsiB + eEs2B

Eq.5

where the free parameter g, captured the level of sensitivity of choices to expected values (inverse
temperature; 0 < 8 < o0).

Finally, when the outcome was revealed, the reward prediction errors (rPE) were computed as
follows:
MPY-aif y, =01

rPE = R — Ec where R =
* {Mé’z -a7lif y, = 02

Alternative models

We tested the weighted-inference learning model against two additional models which
made alternative assumptions about how subjects updated the posterior belief from the inferred
outcomes. In the first alternative model, named the “perfect-inference model”, y was fixed to 1 in
Eq.2, resulting in equal and optimal integration for experienced and inferred outcomes (Vey,=
Ying=1). In the second alternative model, called the “no-inference model”, we assumed that
participants did not take the structural relationship between shapes in the same system into the
updates. Specifically, we set y;,r = 0 while y.,, = 1 in Eq.2. Therefore, an agent using no-
inference model only learned from experienced outcomes but not from inferred outcomes.

Parameter estimates

The weighted-inference learning model has three free parameters, «, 8, and y, and
two alternative models have two free parameters, «, and . We fit all three models using custom
Markov Chain Monte Carlo (MCMC) code in MATLAB R2018a. Each model was fit to maximize
the likelihood of choices given model estimates of the expected value of each choice on each trial
Eq.6.

Model Comparisons

To test potential overfitting, we compared the goodness of fit for each model type using
the sum of the Bayesian Information Criterion (BIC) over subjects. This gave us an overall measure
of how well the data were fit by each model at the group level, while penalizing models that added
additional free parameters.

BIC =k - In(n) — 2InL
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Eq.7

where k is the number of parameters in the learning model, n is the number of choices (i.e., trials)
the subject made, and InL indicates the log-likelihood of each model.

Forward chaining cross-validation

We also tested if the weighted-inference model better predicts out-of-sample data. In the
current study, a subject’s belief that any choice would lead to a specific outcome is dependent on
the observations and inferences made in the preceding trials. That is the choice at the trial #cannot
be predicted from any randomly sampled trials but only from y,.._,. To account for the time-
dependence of our data, we applied a forward chaining cross validation (CV) (Bergmeir & Benitez,
2012), which iteratively fits data from the earliest time points and uses the fitted model to predict
later time points. We began by fitting the model on the first 20 trials of the experiment, then test
the model on choices made in the 20 trials that came immediately after (trials 21 through 40). In
the next iteration, we trained on the first 40 trials, and tested on choices made in the subsequent
20 trials (trials 41 through 60). This process continued in steps of 20 until the last iteration which
trained on the first 140 trials and then were tested on the last 20 (total of 8 folds). We summed
together the negative log-likelihood returned from each test set to determine which model
performed best.

Model free analysis of effects of decision history to the current decision

To test whether subjects showed a behavioral effect of learning on choice, we fit logistic
regression models estimating the effects of past choice-outcome observations on which item was
chosen at the current trial t. The regression model included the effect of experienced choice-
outcome association going three trials back (denoted t£ —n), and inferred choice-outcome
relationships going three trials back (denoted t! — n), such as the following:

p(chosen)
n (p(unchosen))
= Po + P1WE_10E_; + PoWiE_,0,E_o + P3WE_30E_5 + BaWi_10.0_4
+ BsWyi_504_5 + BeWyr_3041_3 + ﬁ7MfEbfl

Eq.8

where n is the n-th previous trial that object was chosen, up to 3 previous experiences. For example,
tE — 1 means the outcome directly experienced the last time they chose the current shape. The
same notation is used for previously inferred outcomes. In this study, participants were presented
two choice options among four shapes in each trial. This means that the chosen option in the current
trial may not be available in the previous trial. As such, if current choice S or the paired shape, S’
was not available in the previous trial, then t& — 1 or t/ — 1 was the last trial when S or S'was
chosen, respectively. We fit separate regression models for the choices of each of four shapes for
each subject. For experienced trials, the value of each of these regressors was 1 if currently
considered choice led to the desired outcome n-trials back and -1 if it did not. Thus:
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0 _ { 1if S,;z_, led to the desired outcome
tE-n —

—1if S,z_, led to the undesired outcome
Eq.9

We also included contextual, counter-factual information about the other option in the
experienced regressors. For example, if the subject were choosing between choices A and C but
choose C and got the desired outcome, this may deter them from choosing shape A the next time
A and C are available. We included this information for completeness with respect to all the
experienced information that could influence the choice of a shape on any given trial.

For inferred trials, the regressor had a value of 1 if the system pair (i.e., B when participants’
choice is A in the current trial) led to the undesired outcome n trials back, such that

0, = -1if S’tz_n led to the desired outcome
th-n —

1if S;z_n led to the undesired outcome
Eq.10

because this indicates that the currently considered shape should lead to the desired current.

We assumed that participants would desire the outcome with higher magnitude between
01 and O2. To test the effects of greater desirability in previous choices in the current decision,
we assigned the difference in reward magnitude (w,z_,, = M — M2 _ |) as a weight on each

regressor. We did not consider the subjective preference of one outcome type over the other (a in
the model, Eq.4) for the model free regression analysis. However, we repeated the analysis using
a to moderate the value of each stimulus (Eq.4) to test if subjective preference produced any

changes in these results. Finally, Mfé’fl represents the influence of the magnitude of the reward
obtained the last time subject chose the currently considered choice.

After fitting separate regression models for each fractal shape, we averaged together the
regression coefficients (f) across shapes, representing the subject specific influence of previous

decisions on the current choice.

MRI data Acquisition

Data was acquired using Siemens Skyra 3 Tesla scanner. We used gradient-echo-planar
imaging (EPI) pulse sequence, with a multi-band acceleration factor of 2, and set the slice angle
of 30° relative to the anterior-posterior commissure line, minimizing the signal loss in the
orbitofrontal cortex region (Weiskopf, Hutton, Josephs, & Deichmann, 2006). We acquired 38
axial slices, 3mm thick with the following parameters: repetition time (TR) = 1200 ms, echo time
(TE) = 24 ms, flip angle = 67°, field of view (FoV) = 192mm, voxel size = 3 x 3 x 3 mm3.
Contiguous slices were acquired in interleaved order. We also acquired a field map to correct for
potential deformations with dual echo-time images covering the whole brain, with the following
parameters: TR = 630 ms, TE1 =10 ms, TE2 = 12.46 ms, flip angle = 40°, FoV = 192mm, voxel
size = 3 x 3 x 3 mma3. For accurate registration of the EPIs to the standard space, we acquired a
T1-weighted structural image using a magnetization-prepared rapid gradient echo sequence
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(MPRAGE) with the following parameters: TR = 1800 ms, TE = 2.96 ms, flip angle = 7°, FoV =
256mm, voxel size =1 x 1 x 1 mma3.

Preprocessing

Preprocessing of the data was done in SPM12 (Wellcome Trust Centre for Neuroimaging)
in MATLAB (2018b Matworks). Data were preprocessed using the default options in SPM. Images
were slice-time corrected and realigned to the first volume of each sequence. We realigned to
correct for motion using a six-parameter rigid body transformation. Inhomogeneities in the field
were corrected using the phase of non-EPI gradient echo images at 2 echo times, which were co-
registered with structural maps. Images were then spatially normalized by warping subject specific
images to the reference brain in the MNI (Montreal Neurological Institute) coordinate system with
2mm isotropic voxels. Finally, for the univariate analysis images were spatially smoothed using a
gaussian kernel with full width at half maximum of 8mm.

Univariate fMRI Analysis

To model BOLD activity in each voxel we used a GLM with four different regressors; the
choice period (a boxcar, from the choice onset including the duration of .5s plus the reaction time
of decisions), the button press (a stick function), the reward expectation period (a boxcar including
jittered IS1) and the reward feedback phase (a 2 second boxcar). In the first GLM (GLM 1), we
included the decision difficulty of each trial as a parametric regressor at the choice period. The
decision difficulty was computed as the inverse of the expected value difference between options.
See below:

|Es; — Esp| ™!
Eq. 11

In addition, we computed the model-based belief updates to the choice-outcome associations after
the outcome was observed in each trial and inputted this as a parametric regressor at the feedback
phase. This belief update was calculated as the Kullback-Leibler divergence (Dg;) between the
prior and posterior belief in g5, (Eq.1) for the chosen shape (S),

P(qs,tlY1:e)

(e V1) +)d
p(qs,tlyl:t—l))p(qs'tly 1e) ddse

Dy, (t) = Jln(
Eq. 12

The Dy, reflected changes in the model estimated “beliefs” about which choice led to which
outcome (gift card identity) as participants progressed through learning. The D, for shapes in
each system were summed together to generate D¥™. Six motion regressors were included as
regressors of no interests in the model to account for translation and rotation in head position
during the experiment. From the first-level analysis, contrast images of parameter estimates from
regressors of the D™ were estimated for each participant and inputted for the one sample t-test
in the second level analysis.
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We performed an additional GLM (GLM 2) to distinguish the neural activity reflecting the
additional information gained from inference in belief updates at the time of feedback. To address
this, we computed the Dy, from the no-inference model (D5;*) in addition to Dy, which was
estimated from the weighted-inference model given the subject specific weighting of inferred

outcomes. We then generated D,?if ! by subtracting D,ffp from the D, of the weighted-inference

model (D27 = ppei9tted — pE*Py Thus, DL this would account for the update that comes
from experiencing outcomes alone (i.e., no inference), whereas D,?iff contained the additional
updating that occurs when both inferred outcomes are integrated into a new belief. GLM2 was the

same with the GLM1 except that we inputted two parametric regressors at the feedback phase.
Group-level statistical inference

Group level testing was done using a one-sample t-test (df=36) on the cumulative
functional maps generated by the first level analysis. All first level maps were smoothed prior to
being combined and tested at the group level. To correct for multiple comparisons, we used
Threshold-Free Cluster Enhancement (TFCE) which uses permutation testing and accounts for
both the height and extent of the cluster (Smith & Nichols, 2009). All parameters were set to
default parameters (H=2, E=0.5) and we used 5000 permutations for analysis. In all ROI based
analyses and whole brain analyses we report effects that surpassed a ptrce< .05 threshold.

We first performed group-level inference on independent anatomical ROIs, then performed
exploratory whole brain analyses. For ROI analyses, we first extracted voxels from each ROI in
each subject’s first-level activation map, averaged the maps together, then applied small volume
TFCE correction. We used this analysis method for testing univariate effects of updating in VTA,
decoding the latent cause of each system in mPFC and testing which regions represented
association space. All other analyses were corrected for multiple comparisons at the whole brain
level.

Multivariate Analyses

The MPVA analysis aimed to identify regions of the brain that coded knowledge of the
relationship between system pairs - the underlying structure of the task. To test this, we estimated
the BOLD activity patterns during the feedback phase using unsmoothed preprocessed images.
The feedback period was modeled as a boxcar that had a constant duration lasting 2 seconds from
the feedback onset of each trial. No parametric modulators were added.

Each trial was labeled according to which shape was chosen and which outcome received
from that choice (S; = y;). Our main hypothesis of this study was that subjects would use
knowledge about the underlying relationships between shapes in a system to make inferences of
unobserved outcomes at feedback. If participants retrieve representations of these structural
relationships at feedback to appropriately assign credit learned from experiences to the latent
association, we could expect to decode the representations associated with the common causes that
arise in trials where the systems’ pairs led to opposite outcomes (S{ — y;). For example, trials
where one shape in the pair lead to outcome one (e.g., A—01) should share the same causes (e.g.,
q') with trials where the other shape in the same system led to the opposite outcome (e.g., B—02).

Importantly, to make sure that the activity patterns are not associated with the outcomes
(01 or O2) presented on the screen but are associated with the latent causes (qlor g2, i.e., the
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reward contingency in the system 1 and 2), we organized training and testing labels in a way to
control for visual information. Specifically, we trained a shape against another shape which shared
1 2

the same outcomes but did not share the causes (e.g., AL 01 vs. Cq—>Ol) to identify the activity
patterns specifically associated with the causes. Subsequently, we tested theses activity patterns
on independent data sets which included the shapes that did not share the outcome with the training

1 2
shapes but share the causes (e.g., BL 02 vs. Dq—>02). As this example showed, no sensory
information was shared between training and testing sets that could influence the classifier to bias
the results. See Table 1 for the full list of eight training and test pairs.

Training Set Test Set
q* q? q* q?
A— O1lvs. C-01 B—02 vs. D—02
q* 1-q* q* 1-q?
A—- 0Olvs. D—01 B—-02vs. C—02
1-q* 1—q? 1-q* 1-q*
A—02 vs. C—02 B—01vs D—01
1-q" q? 1-q* PE
A—> 02 vs D02 B—01vs C-01
1-q* q? 1—q* pp
B— 0O1vs C-01 A—02 vs D02
1-q* 1-q2 1-q* 1-q2
B— 01 vs D—01 A—02 vs C—02
q* 1-q* q* 1-q*
B—02 vs C—02 A—01vs D—01
q* q? q* q?
B—02 vs D-02 A—01vs C-01

Table 1: Training and Testing Scheme of Linear Classifier for Latent Cause Decoding: This
table shows all combinations of training left column) and testing (right column) trial sets used
for decoding the latent cause at the time of feedback. Capital letters denote the chosen shape
(4,B,C or D). Arrows followed by “O1” or “O2” indicate which outcome each shape led to on
that trial. Note that training and test stimuli are matched for outcome identity so that no visual
information can be used by the classifier to separate representations. Finally, letters above each
arrow denote the latent cause (p or q) being decoded, indicating the system each stimulus
belongs to (system 1 or system 2, respectively).

We then used a searchlight procedure to identify regions of the brain that contained
representations of the underlying structure of the environment. Each searchlight consisted of a
5x5x5 voxel cube placed around a centroid voxel in the brain. Each centroid was required to values
in at least 10 of the surrounding voxels to be considered for further processing and were then
standardized by z-scoring the beta values within each searchlight.

The data were subset such that only the relevant trials were used for a particular classifier
(see Table 1), then split by blocks into a training set and a test set. We used LIBSVM (Chang &
Lin, 2011) to fit linear classifiers with training data, which we then used to classify data points
from the test set. We iterated through this process for each of 2 blocks and for each of 8
combinations of training and test labels, then computed the mean decoding accuracy (average
proportion of correct classifications) across all 16 classifiers for each voxel. The mean decoding
accuracy for each voxel was compared to a voxel specific null distribution which was estimated
with the same procedure while randomly assigning the labels over 100 permutations at each
searchlight. The mean classification accuracy of this null distribution was subtracted off the
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classification accuracy of each searchlight to give us a measure of how reliably information about
the latent cause could be decoded above chance. The resulting maps were then spatially smoothed
using a gaussian kernel with full width half maximum of 8mm.

Group-level analyses were preformed using a one-sample t-test on accuracy maps across
subjects (see Group-level Inference). For this analysis we focused on a priori defined ROIs in
IOFC and mPFC (see selecting a priori ROIs) and corrected for multiple comparisons within each
ROI using small volume correction TFCE. The threshold for significance remained the same (ptrce
<.05)

Trial-by-Trial Decoding Correlated with Belief Updates about Latent causes

To test whether the strength of the neural representations followed beliefs in specific
choice-outcome contingencies, we correlated the probability that representations for the latent
cause could be decoded on each trial with trial-by-trial belief updates in choice-outcome
relationships. We used the same decoding procedure mentioned above to classify voxel patterns at
feedback in each trial (see Multivariate Analyses), but additionally calculated the distance of each
pattern from the hyperplane that divides categories. Distances were obtained using the equation
specified on the LIBSVM webpage (https://www.csie.ntu.edu.tw/~cjlin/libsvm/fag.html). Patterns
that are more distant from the hyperplane can be thought of as having more information about a
category, and those that are closer to the hyperplane as having less information (Schuck & Niv,
2019). We then signed the distance of each point according to whether the predicted category label
was correct (+ for correct, — for incorrect), and averaged the distance from each relevant decoding
scheme. The signed distances were then regressed against the magnitude of the belief updates
about the choice-outcome contingencies at feedback (Dg;,) estimated from the weighted-inference
model.

The distances to the hyperplane and the magnitude of the Dy, were then correlated using
Spearman's rank correlation, in each voxel throughout the brain. We used Spearman’s correlation
as a conservative measure against outliers or nonlinear relationships that could bias the results.
The correlation values were normalized using a Fisher transform and the resulting maps were
spatially smoothed using a Gaussian kernel with full width at half maximum of 8mm. Group level
analyses were preformed using a one-sample t-test on correlation values, then we applied TFCE
correction to volumes within preselected ROIs. The same thresholds were applied for group level
statistical correction (prrce <.05).

Representational similarity analysis (RSA) analysis of association space

We used RSA to look for regions of the brain that tracked the position of each system
within an abstract association space as learning unfolded. If participants represented the state of
each system as “positions” within an abstract association space, then we should observe similar
neural representations when subjects occupy similar regions of the association space. For example,
if subjects believe that the configuration of system 1 is A—O1 and B—0O2 with probability q*=.80,
the neural representation of this belief should be highly similar to a trial where participants believe
system 1 is in the same configuration but g'=.75. However, the neural similarity should be more
dissimilar if g1=.55, and yet more dissimilar if subjects believe that the configuration of system 1
has been reversed (A —» 02 and B - 01; q'=.15). Note that while this example gives point
estimates of g1, the true contingencies were defined as belief distributions which includes the

25


https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
https://doi.org/10.1101/2021.12.22.473879
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473879; this version posted December 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

confidence of each belief. Such increases in the dissimilarity of voxel patterns would suggest that
neural representation is coded as an abstract value space, because it shows that distal points in the
association space are represented with proportionately dissimilar activity patterns. As in previous
work, we focused our analysis during the time of the ITI (Knudsen & Wallis, 2021).

To test this, we estimated the BOLD activity patterns during the ITI phase using
unsmoothed preprocessed images. The ITI period was modeled as a boxcar and no parametric
modulators were added. We created model representational dissimilarity matrices (RDMs) for
each system (S) which measures the dissimilarity of seven factors of each trial (t) that could give
rise to dissimilarity in neural representations. All RDMs were constructed such that they
represented the dissimilarity of these factors between trials in separate blocks. The first two model
RDM’s captured similarity of belief distributions across trials which were separated into the beliefs
of the “task-relevant association” and “task-irrelevant association”. The task-relevant association
RDM included the trial-by-trial dissimilarity between beliefs about S. This included the trials in
which participants used their belief about reward contingency to choose a particular shape and
subsequently updated the belief with the given feedback. Therefore, the size of the task-relevant
RDM corresponded to the number of trials in which a participant chose a shape associated with S
in block 1 X those trials in block 2. The task-irrelevant association RDM included the beliefs about
reward contingencies for S, but it included the trials in which participants did not choose a shape
associated with S, but needed to hold the representation for potential future or pending trials.
Therefore, the size of the task-irrelevant RDM corresponded to the number of trials in which a
participant chose a shape that was not associated with S in block 1 X those trials in block 2. We
computed the model RDMs of the task-relevant and -irrelevant contingencies in each of two
systems.

To compute the trial-by-trial dissimilarity between two belief distributions across sessions,
we used the Jensen-Shannon Divergence (D;s) between distributions. This metric is commonly
used to measure the dissimilarity between two distributions (D; and D,). Note that Djg is
symmetric. That is, D;s(D;||D;) is the same with D;s(D,||D;) unlike the KL divergence. We

computed D;s by combining Dy, of each distribution to their mean distribution (D):

D, + D,
2

1 ~ 1 ~ ~
D;s(Dy]1Dz) = EDKL(DIHD) + EDKL(DZHD) where D =
Eq.13

We included 5 additional model RDM’s to control for alternative possible explanations of
neural similarity. These were as follows: the identity of the chosen shape (CS), the identity of the
unchosen shape (US), choice location (right or left side; CL), the outcome identity (Ol), and the
signed reward prediction error (rPE) computed by the weighted-inference model (Eq.7). All of
these model RDMs were binary matrices except for the rPE matrix, in which the dissimilarity was
computed as the absolute difference in rPE’s between trials. All analyses were conducted
separately per system (see Fig.S6 for correlation matrix).

We then followed the same searchlight procedure as with the MVPA (5x5x5 voxel cube
around a centroid voxel), at each centroid generated a neural RDM by calculating the Euclidean
distance between voxel activities for trials in each session, after standardizing voxel activity within
the ROI. We then regressed the neural similarity matrix against each of the model RDM’s (Flesch
et al., 2021; Parkinson et al., 2017) using the following GLM:
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neural RDMS = By + B1D}% ver + B2Djs ir + B3CSS + BUSS + BsCLS + OIS + B,rPES
Eq.14

All predictors were z-scored before fitting the GLM. Each subject's resulting D,SS_Tel beta
maps were averaged across systems to produce a single estimate of the correlation between system
specific belief similarity and neural similarity. Group level analyses were preformed using a one-
sample t-test on smoothed beta values. We applied TFCE correction to volumes within preselected
ROIs at prrce <.05 threshold for group level statistical correction.

To visual this analysis and create Fig.4C, we performed the following procedure: First, we
split the data into a left-out run and a visualized run. For the left-out run, we created two “template
patterns” that represented the average multivariate pattern for each of the two possible
configurations for a given system. For example, we created a template pattern for the state of
system 1 when A—0O1 and B—02 (g') by averaging the activity in each voxel across trials in
which the weighted-inference model indicated this belief was true. The same was done for all other
possible configurations of each system (1 — g%, g2, 1 — g?). These template patterns were then
used as a comparison for trials in the visualized block, pre- and post-reversal. Reversal points were
identified as trials that subjects had a different beliefs about the configuration of a system
compared to the trial before it (e.g., q* flipped to 1 — g1). All reversal points were required to have
at least 3 prior trials in which the same belief was held by the learning model (e.g., g') and three
trials after when the configuration changed ( 1 — ¢*). We then compared these trials to the
template pattern that matched the belief prior to the reversal, such that if prior to the reversal the
learner’s belief was that q* was true, the neural pattern of those trials was compared to the template
pattern for g . Similarity patterns were compared using spearman’s rank correlations. However,
no statistical inference was conducted on the correlations, as they were only used to visualize the
analysis conducted in figure 4B.

Selecting a priori ROIs

Regions of interest in prefrontal cortex were generated from anatomically defined regions
in the Human Connectome Project Dataset (Glasser et al., 2016). The OFC ROIs corresponded to
bilateral area BA13 (index 92) and for the mPFC we used BA10 (index 65). We included these
regions because they have been previously implicated in credit assignment for causal choices,
particularly in similar contingency learning tasks (Boorman et al., 2013, 2016; Jocham et al., 2016).
To understand the role of dopaminergic regions of the midbrain in inferential updating, we looked
at the ventral tegmental area (VTA) which has previously been linked to updating choice-outcome
association (Boorman et al., 2016; Gershman & Uchida, 2019; Howard & Kahnt, 2018; Iglesias et
al., 2013). Here, we used an anatomical VTA\SN ROI taken from a previous study linking the
VTA to social updating about the trustworthiness of advice from others (Diaconescu et al., 2017).
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Fig.S1 Behavioral Results Including Preference Term
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a) Results of a logistic regression analysis which shows the influence of past choices and
outcomes on the current choice. This model includes a preference term () for each outcome
identity when computing the value if each possible outcome in the current trial. Both
experienced and inferred past choice-outcome associations significantly predicted current choice.
Height of the bars represents the mean of regression coefficients + SEM. As expected, this
influence decreased for trials further in the past. b) Logistic regression model predicting the
probability of choosing Option 1 given the standardized (z-scored) difference in value for each

option.
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Fig.S2 Network of Regions that Reflect Updating Signals Combining Experienced and

Inferred Information

Sagittal and coronal slices showing t-statistic maps that display neural regions reflecting the

updating of the stimulus outcome contingencies by integrating both inferred and experienced

outcomes (Dg¥™). Maps display regions at a threshold of t(36)=2.71, p<.005).
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Fig.S3 Network of Regions Whose Activity Reflects Reward Predlctlon Error

Regions encoding the reward prediction error (RPE) at the time of feedback (EQ.7). Maps are

displayed with the same conventions as in Fig.S2. Clusters in Hippocampus and mPFC survived

TFCE correction at the whole brain level (ptrce <.05). Note the absence of any effect in VTA.

2.71
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Fig.S4 Hippocampal Tracking of Inferred Position

Coronal slice through t-statistic map showing a hippocampal region in which the model RDM
was positively related to the neural RDM. Maps are displayed with the same conventions as in
Fig.S2.

System1 System2

g —>
1-q" auen

g —> :
1-g we o1%

Correct Match Correct Match

Fig.S5 Matching Task

Matching task completed by subject during learning of the causal inverse relationships. Items
were randomly displayed in 4 quadrants of the screen, and participants were asked to match
items of the same systems by consecutively pressing the numbers associated with each quadrant.
For example, subjects would match the top left and bottom right corners by pressing 2 and 4
consecutively. Correct matches were indicated by a green line connecting the shapes and
incorrect responses were indicated by connecting shapes with a red line.

30


https://doi.org/10.1101/2021.12.22.473879
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473879; this version posted December 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Regressor Correlation Matrix

Djs rel -
Djs_irr -0.8 (-DU
Q
-
CS 63
=
us @)
o
-
CL @
=
ol 8
rPE

Djs_rel Djs_irr rPE

Fig.S6 Correlation Matrix of Regressors in Position Tracking Analysis

Average Pearson correlations for all predictor variables in the position tracking analysis (Fig.4).
All correlations were averaged over subjects and systems. The regressors were as follows: the
D of the currently updated (relevant) system (D,s_rel), D;s of the irrelevant system (D;g_irr),
the identity of the chosen shape (CS), the identity of the unchosen shape (US), choice location
(right or left side; CL), the outcome identity (Ol), and the signed reward prediction error (rPE)
computed by the weighted-inference model.

Model a Median | 2 IQR B Median | f SD y Median |y SD
Weighted 1.04 0.49 0.04 0.045 1.29 1.27
Inference

No .99 0.44 .049 0.05 0 0
Inference

Perfect 1.03 .56 .032 .033 1 0
Inference

Table S1. Distributions of parameter estimates for each behavioral model.

fMRI activation table

Peak (MNI)
Region cluster p-value p-value | t-stat X y z
size (k) | (uncorrected) | TFCE
L.Ant. Insula 210 2.78x10° .005 5.69 -30 22 2
R.Ant. Insula 93 7.90x10° .02 5.35 32 26 0
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L. Dorsolateral 1209 5.42x1077 4.00 6.22 -36 8 36
PFC x10*

R. Dorsolateral 707 1.45x10°® .002 5.9 46 24 28
PFC

preSMA/Anterior | 1319 1.93x10°8 0 7.31 0 18 50
Cingulate Cortex

mPFC 310 3.61x10° .0720 4.85 -4 56 12

Table S2. Univariate Activation at the Time of Feedback Given D3%™ Update (related to
Fig.S2): * indicates TFCE correction with an independently defined ROI.

Peak

(MNI)
Region Voxels p-value p-value | t-stat X y z

TFCE (max)

L. Anterior 116 7.38x107 | .028 6.12 -30 22 -4
Insula
R. Anterior 150 1.21x10° | .029 5.58 32 22 -2
Insula
L. Dorsolateral | 649 1.18x10° | .025 5.22 -44 24 28
PFC
R. Dorsolateral | 617 1.97x10° | .025 5.05 44 26 28
PFC
Pre- 557 1.86x10° | .015 5.86 4 20 50
Supplementary
Motor Area/
Anterior
Cingulate
Cortex
Ventral 89 .0005 .01 3.99 2 -18 -10
Tegmental
Area\Substantia
Nigra*

Table S3. Univariate Activation at the Time of Feedback Given D,?Liff Difference Magnitude

(related to Fig. 2): x indicates TFCE correction with an anatomically independent defined ROL.

Peak
(MNI)
Region Voxels p-value p-value | t-stat X y z
(uncorrected) | TFCE (max)
mPFEC % 141 .002 .008 3.54 -6 50 -10

Table S4. Decoding of the latent Cause Magnitude (related to Fig. 3B): * indicates TFCE
correction with anatomically independent defined ROI
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Peak

(MNI)
Region Voxels p-value p-value | t-stat X y z

TFCE (max)

mPFC 44 2.55x10* | .0053 4.19 8 46 -10
Ventral 63 7.30* 014 3.82 -2 -20 -12
Tegmental
Area\Substantia
Nigrax

Table S5. Decodability of Latent Cause Correlated with Model Based Update (related to Fig.
3C): x indicates TFCE correction with an anatomically independent defined ROI

Peak

(MNI)
Region Voxels p-value p-value t-stat X y z

TFCE (max)

L. 25 .0007 .002 4.24 -26 30 -12
Posterior
OFC x
R. 23 .0002 .007 3.78 28 28 -14
Posterior
OFC *
mPFCx | 94 8.61x10° |.0008 4.56 4 58 -4
Vis. 10602 4.14x10° | 2.71x10Y | 5.65 6 -72 2
Cortex

Table S6. Tracking Position of Systems within Association Space (related to Fig. 4): » indicates
TFCE correction with an anatomically independent defined ROI
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