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Abstract: 

Animals have been proposed to abstract compact representations of a task’s structure that 

could, in principle, support accelerated learning and flexible behavior. Whether and how such 

abstracted representations may be used to assign credit for inferred, but unobserved, relationships 

in structured environments are unknown. Here, we develop a novel hierarchical reversal-learning 

task and Bayesian learning model to assess the computational and neural mechanisms underlying 

how humans infer specific choice-outcome associations via structured knowledge. We find that 

the medial prefrontal cortex (mPFC) efficiently represents hierarchically related choice-outcome 

associations governed by the same latent cause, using a generalized code to assign credit for both 

experienced and inferred outcomes. Furthermore, mPFC and lateral orbital frontal cortex track 

the inferred current “position” within a latent association space that generalizes over stimuli. 

Collectively, these findings demonstrate the importance both of tracking the current position in 

an abstracted task space and efficient, generalizable representations in prefrontal cortex for 

supporting flexible learning and inference in structured environments.  

Introduction: 

Much of human and animal behavior relies on the ability to effectively represent the 

environment and infer the true state of the world, which in turn supports effective decision 

making. For example, the value of taking a vacation depends not only on the weather in your 

current location but the weather in other locales, which are systematically related to your own. 

Observing cold winter weather in Chicago (northern hemisphere) predicts summer weather in the 

southern hemisphere, making a trip to Santiago, Chile, all the more valuable. In this situation, 

your brain needs both the ability to represent the underlying structure of the world (e.g., the 

inverse relationship between weather in each hemisphere) and the ability to assign credit for an 

inferred outcome (warm weather in Santiago) given an observed outcome (cold weather in 

Chicago). While this inference process is critical to flexible learning, the neural substrates that 

support credit assignment for inferred outcomes in real-world hierarchical environments are still 

unknown. In the current study, we test the hypothesis that the prefrontal cortex efficiently 

represents a hierarchical task space and uses this to infer unseen outcomes and assign credit to 

the appropriate latent cause. 

Knowledge about the relational structure of environmental and task states is thought to be 

stored in representations called cognitive maps (Behrens et al., 2018; Gershman & Niv, 2010; 

O’Keefe & Nadel, 1978; Schuck, Cai, Wilson, Niv, et al., 2016; Tolman, 1948; Wilson et al., 

2014). These representations contain information critical to goal-directed behavior, encoding 

relationships between positions or task states in an efficient manner. For example, outside of 

physical space, cognitive maps might contain relational knowledge about transition probabilities 

between states, choice-outcome contingencies, or how these contingencies change over time 

(Baram et al., 2021; Boorman et al., 2016; Daw et al., 2011; Hampton et al., 2006). In principle, 

cognitive maps are powerful because they allow for rapid updating when the state of the 

environment shifts (Bartolo & Averbeck, 2020; Boorman et al., 2021) and generalization to 

similarly structured tasks (Baram et al., 2021; Behrens et al., 2018; Franklin & Frank, 2018; 

Whittington et al., 2020). Within the prefrontal cortex, the lateral orbitofrontal cortex (lOFC) and 

medial prefrontal cortex (mPFC), in particular, have previously been implicated in using a model 

of the task’s structure, or an abstracted cognitive map of the task space, to assign credit for 

specific rewards to specific past choices or causes (Boorman et al., 2013, 2016; Jocham et al., 
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2016; Takahashi et al., 2011; Tanaka et al., 2008; Walton et al., 2010; Wilson et al., 2014). 

However, the neural mechanisms that underlie assigning credit to latent causes that generalize to 

inferred, but unseen, relationships in structured environments remain poorly understood. 

To support credit assignment, prefrontal cortex may also play a critical role in tracking 

the state of knowledge within abstract task spaces. Unobservable task-relevant information that 

defines the current task state has been found during multi-step sequential tasks in OFC (Schuck, 

Cai, Wilson, Niv, et al., 2016; Wilson et al., 2014; Zhou et al., 2020). Moreover, recent work has 

pointed to interactions between the OFC and hippocampus that would allow the brain to track 

“positions” along trajectories through abstract task spaces to guide value-based decision making 

(Knudsen & Wallis, 2020; Zhou et al., 2019), with neurons in the anterior hippocampus coding 

the relative position along trajectories through the 3D abstract value space defined by each 

option’s current estimated value (Knudsen & Wallis, 2021). Recent advances in approaches to 

measure the neural representations of cognitive maps with functional magnetic resonance 

imaging (fMRI) have likewise identified abstracted cognitive maps of latent task spaces in 

human hippocampus and OFC (Clarke et al., 2019; Garvert et al., 2017; Park et al., 2020, 2021; 

Schapiro et al., 2016). Together, these insights suggest a new framework that may be extended to 

understanding associative learning in structured tasks: the brain might track the inferred position 

of hierarchically related associations in an abstracted “association space” that generalizes over 

choice stimuli for efficient model-based inferences and rapid updating.  

In the current study, we address these questions using a “hierarchical reversal-learning 

task”, which required participants to use knowledge about hierarchical relationships to infer 

unobserved outcomes and make effective goal-directed decisions. We show that mPFC is a 

critical region both for efficiently representing choice-outcome relationships governed by a 

shared latent cause and for updating inferred choice-outcome associations at the time of 

feedback. Finally, we find that the lOFC and mPFC encode the inferred “position” within an 

abstracted association space for choice-outcome associations governed by the same latent cause.  

Results 

Hierarchical reversal-learning task 

Participants completed a “hierarchical reversal-learning task” in which they tracked the 

probability that each of four fractal shapes would lead to either of two gift cards for one of two 

different online stores (Fig.1A). On each trial, participants choose between two of the four 

shapes based on two pieces of information: estimates of the probability that a particular shape 

will lead to a particular outcome, and the randomly generated potential payout indicated for each 

outcome (Fig.1B). Importantly, the set of fractal shapes were organized hierarchically into two 

independent systems of inverse pairs. Shapes A and B formed “System 1”, while shapes C and D 

formed “System 2”. This hierarchical organization gave participants the opportunity to infer 

unobserved outcomes for an unchosen shape when observing the outcomes derived from 

choosing the system pair. For example, participants could track the probability that A leads to 

outcome 1, by observing the frequency that B leads to outcome 2. Because the two systems were 

independent of each other, however, nothing could be learned about shapes C or D from 

observing the outcomes of shapes A or B. Participants completed a total of 160 trials across two 

sessions, during which the associative contingencies reversed three times (Fig.1C). Participants 

were told that one trial would be selected at random to count “for real” at the end of the 

experiment and they would be given money proportional to the number of points won on the gift 

card they received for that trial. 
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Behavioral results 

Optimal behavior in this task required that participants tracked which stimulus choices 

led to which of the two outcomes and used that knowledge to make decisions on the current trial. 

We characterized the influence of previous choice outcomes using logistic regression models that 

predicted the odds of choosing a certain shape given the currently desired outcome (i.e., the 

stimulus with a higher payoff) and outcomes resulting from the last three times that shape was 

chosen (EQ.8). Note that available choice stimuli changed on each trial so these outcomes may 

be more than 3 consecutive trials into the past. Critically, we also included the outcomes that 

could be inferred from choosing the system pair – the source of inferred information in our task – 

in the regression model. If participants utilized both experienced and inferred outcomes to learn, 

reinforcement learning theory predicts positive effects of each type of outcome that decline 

exponentially over time into the past (Bayer & Glimcher, 2005; Sugrue et al., 2005). 

This analysis showed significant effects for all three experienced and inferred choice-

outcome pairs going three choices into the past (all t(36)’s > 1.94, all p’s < .05) (Fig.1D). This 

learning-model agnostic analysis confirms that subjects learned from both the experienced and 

inferred choice-outcomes associations and utilized this information to make decisions on the 

current trial. We compared the magnitude of regression coefficients between experienced and 

inferred outcomes over time using a two-factor ANOVA. We found an expected main effect of 

time (F(2,72)= 5.63, p<.01), showing that outcomes from trials further in the past were less 

influential on the current choice. However, the magnitude of effects from experienced outcomes 

were not found to be significantly greater than those from inferred trials (F(1,36)=2.97, p=.09), 

and there was no significant interaction between outcome type and time (F(2,72)= 2.34, p=.10). 

Finally, the analysis showed no effect of the previous outcome’s reward magnitude on the 

subsequent trial’s choice (t(36)=-1.03, p=.85), consistent with the fact that they were generated 

randomly on each trial and there was no advantage to tracking rewards between trials in our task. 

Taken together, this analysis shows that subjects learned from both experienced and inferred 

outcomes and that directly experienced outcomes did not have a significant advantage in guiding 

future decisions relative to inferred outcomes in our task (results were similar when 

incorporating the subjective value of each outcome into the analysis (Fig.S1)). 

To estimate subjects’ trial-by-trial beliefs about stimulus-outcome associations, we fit each 

participant’s choices to a Bayesian reversal learning model (see methods) that utilized the history 

of outcomes observed from their choices, and outcomes inferred from the system pair. The best-

fitting “weighted inference model” jointly estimates the stimulus-outcome (transition) probability 

and the reversal probability and included three free parameters: 𝛼, an indifference term capturing 

the subjective preference for one outcome over the other; 𝛽, an inverse temperature term capturing 

participants’ sensitivity to differences in choice values; and 𝛾, an inference weight term which 

weighted the posterior belief in choice associations for experienced relative to inferred outcomes, 

reflecting the amount of information each subject derived from a directly experienced outcome 

relative to an inferred outcome (see EQs 2-6 and Table S1 for the distribution of parameter 

estimates). 

We compared the “weighted inference model” to two alternatives which did not include 

𝛾, but instead assumed the participants learned nothing from inference (“no-inference model”) or 

learned perfectly from inferred and experienced information (“perfect-inference model”), using 

Bayesian Information Criterion (BIC) (EQ.7). The weighted inference model was found to best 

capture choice data across subjects compared to these alternative models (lowest summed BIC 
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across subjects), showing that that the weighted inference model (BIC=7266.34) captured 

meaningful differences in participants' ability to infer from unobserved data (no-inference model 

BIC=7401.76; perfect-inference model BIC=(7278.12) (Fig.1E). We further confirmed this 

finding using forward chaining cross validation (k=8; Bergmeir & Benítez, 2012) to show that 

this model predicted out-of-sample choices better than models that assumed either no inference 

or perfect inference. 

Finally, we tested if subjects’ choices were a sigmoidal function of the estimated 

expected value of each choice option using the weighted inference model (likelihood ratio test 

(LRT) = 60.44, p=7.32x10-17). Fig.S1 shows the highly significant results of a multilevel logistic 

regression model predicting the subjects’ choices given the expected value (EQ.4) difference 

between the two options on each trial.  

 

Neural substrates of belief updating from experienced and inferred outcomes  

Our next analysis sought to identify the network of brain regions that support updating of 

choice-outcome associations by combining information from experienced and inferred outcomes 

at the time of feedback. We defined the belief update from feedback as the Kullback-Leibler 

divergence (DKL) between prior and the posterior beliefs after observing the outcome on each 

trial, also called the “Bayesian surprise” (Iglesias et al., 2013; Schwartenbeck et al., 2016a). 

Because participants may learn through both experienced and inferred outcomes, the total update 

on a given trial is the sum of the DKL for experienced and inferred choice-outcome associations 

(𝐷𝐾𝐿
𝑆𝑢𝑚; EQ.12). We used 𝐷𝐾𝐿

𝑆𝑢𝑚 as a parametric modulator of blood oxygen-level-dependent 

(BOLD) activity during feedback (see GLM 1) and found clusters of positive effects in pre-

supplementary motor area/dorsal anterior cingulate (preSMA/dACC) (peak voxel, [x,y,z]=[0, 18, 

50], t(36)=7.31), bilateral DLPFC (right, [x,y,z]=[46,24,48], t(36)=5.90; left, [x,y,z]=[ 36,8,36], 

t(36)=6.22) and bilateral anterior insula (right, [x,y,z]=[32, 26, 0], t(36)=5.35; left, [x,y,z]=[-32, 

22, 2], t(36)=5.69), (all whole-brain cluster-corrected with permutation-based threshold-free 

cluster enhancement (TFCE) (Smith & Nichols, 2009) at pTFCE <.05), suggesting these regions 

encode updates to the system of choice-outcome associations (Fig.S2, Table S2; see Fig.S3 for 

reward prediction error effects).  

Next, we tested for regions that carried additional information about updating derived 

from inferred information. We did this by calculating the DKL for the "no inference" model 

(𝐷𝐾𝐿
𝐸𝑥𝑝

), which quantified the update on the current trial if no inference occurred (i.e., only 

experienced information was used in the update). We then used the “weighted-inference model” 

to compute the DKL given the subject-specific weighting of inferred information (𝐷𝐾𝐿
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑

). We 

computed the difference between these regressors (𝐷𝐾𝐿
𝐷𝑖𝑓𝑓, 𝐸𝑄. 12) to quantify the additional 

updating that occurs when inferred information is combined with directly experienced 

information to update beliefs. We used the trial-by-trial estimates of 𝐷𝐾𝐿
𝐸𝑥𝑝

, and 𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

 as 

parametric modulators of BOLD activity at the time of feedback (see GLM 2), to identify regions 

that reflected the additional update gained from inference, even while controlling for updates due 

to experienced outcomes only. We found significant positive effects of 𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

 in clusters in 

preSMA/dACC ( [x,y,z]=[4, 20, 48], t(36)=5.56), bilateral DLPFC (right, [x,y,z]=[40, 38, 18], 

t(36)=4.37; left, [x,y,z]=[-44, 6, -24], t(36)=5.24) and bilateral anterior insula (right, [x,y,z]=[32, 

20, 4], t(36)=5.04; left, [x,y,z]=[-30, 22, -1], t(36)=5.36) (Fig.2A, Table S3). These results 

implicate this network in supporting the additional updating of beliefs about transition 

probabilities from inferred outcomes at feedback. 
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Recent studies have suggested that activity in the dopaminergic midbrain encodes 

prediction errors not only about reward value but also about outcome identity or ‘task state’ 

(Boorman et al., 2016; Gershman & Uchida, 2019; Howard & Kahnt, 2018; Iglesias et al., 2013; 

Langdon et al., 2018; Sharpe et al., 2017; Suarez et al., 2019). As such, we tested whether 

activity in the dopaminergic midbrain, in particular the ventral tegmental area (VTA), would also 

reflect the additional update of transition probabilities based on inferred information (𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

), 

using an independently defined region-of-interest (ROI) over the VTA and substantia nigra (SN) 

(Diaconescu et al., 2017). Consistent with our prediction, we found a significant positive effect 

of the combined update at the time feedback was delivered in the VTA ([x,y,z]=[2, 18, -12], 

t(36)=3.39, pTFCE <.05, ROI corrected), independent of reward prediction error. Notably, we 

found no significant effect of the reward prediction error (EQ.6) in the same VTA/SN ROI 

(Fig.S3), consistent with the fact that there was no incentive to learn from reward magnitudes in 

our task, and subjects did not show a behavioral effect of learning from reward magnitudes, as 

shown above. Collectively, this suggests that the VTA BOLD signal aligns with the 

instrumentally relevant variable to track in our task, and, importantly, incorporates inferred 

information based on knowledge of the task structure (Fig.2B).  

 

mPFC represents latent causes and assigns credit to inferred outcomes 

We hypothesized that the brain would reinstate the latent cause using an efficient code 

that generalizes over stimuli and outcomes governed by the same cause at feedback time. If 

participants retrieve representations of structural relationships at feedback to appropriately assign 

credit to the latent association, we would expect to decode the representations associated with the 

common causes that arise in trials where the systems’ pairs led to opposite outcomes. To probe 

which brain regions assigned credit to a shared representation for shapes governed by the same 

causal relationship (i.e., shapes part of the same system), we performed a multivariate pattern 

analysis (MVPA) on activity patterns at feedback, the critical time for credit assignment. First, 

we trained pattern-based classifiers (linear support-vector machines) to classify the chosen 

stimulus and its associated outcome identity at the time of feedback (e.g., A→O1), and then used 

the resulting feature weights to decode from patterns of activation on trials where the system pair 

led to the opposite outcome through the same causal relationship (e.g., B→O2) (Fig.3A, see 

supplement for details on decoding procedure). Importantly, this analysis controlled for both the 

shape stimulus and outcome identity such that no sensory information, neither the previous 

choice stimulus nor reward outcome identity, was shared between training and test sets. Thus, 

decoding is only possible if these events share information about the same causal relationships 

that bind shapes in the same system.  

We began by conducting a whole-brain searchlight analysis to estimate decoding 

accuracy at each voxel in the brain (Kriegeskorte et al., 2008). Based on our a priori hypotheses 

concerning lOFC and mPFC in credit assignment (Boorman et al., 2013, 2016; Jocham et al., 

2016; Tanaka et al., 2008; Walton et al., 2010), we tested anatomically defined ROIs (Glasser et 

al., 2016) of mPFC and lOFC that were hypothesized to contain these representations and used 

TFCE (Smith & Nichols, 2009) to correct for multiple comparisons. This analysis identified a 

significant cluster of voxels in the anterior portion of left mPFC ([x,y,z]=[-6,50,-10], t(36)=3.54, 

pTFCE <.05 ROI corrected); Fig. 3B, Table S4). However, we found no significant clusters in 

lOFC bilaterally (all p>.05 uncorrected). 

To more directly test whether these representations of the latent cause in mPFC relate to 

credit assignment during inference, we correlated the strength of representations of the latent 
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cause in mPFC at the time of feedback with model-derived estimates of the updates to outcome 

contingencies within each system. We used the same SVM classifier to compute the decodability 

of system representations at feedback during each trial. We quantified the decodability of each 

representation as its distance to the SVM hyperplane (Schuck & Niv, 2019) and signed the 

distances such that correct classifications were positive and incorrect classifications were 

negative. As before, we defined the total trial-by-trial belief update as the 𝐷𝐾𝐿
𝑆𝑢𝑚 between the 

prior and posterior beliefs after having observed an outcome. This whole-brain analysis revealed 

a significant cluster in mPFC (Spearman rank correlation; [x,y,z]=[8,46,-10], t(36)=4.19; pTFCE 

<.05 ROI corrected Fig. 3C, Table S5), which overlapped with the main effect of latent cause 

decoding (Fig. 3D; using the conjunction analysis with minimum statistics, at p <.05 uncorrected 

compared to conjunction null; (Nichols et al., 2005)). This finding shows enhanced 

representation of the common causal relationship with greater updating for credit assignment for 

both experienced and inferred outcomes at the time of feedback. 

  

lOFC and mPFC track inferred positions in a latent association space during learning 

 Our results have shown that mPFC contains a representation of underlying causal 

relationships that are used to infer information about related stimuli during feedback. Based on 

recent evidence showing that hippocampus and OFC may track the current position within a 

value or task space (Knudsen & Wallis, 2020, 2021; Park et al., 2020; Schuck, Cai, Wilson, Niv, 

et al., 2016), we hypothesized these regions may track the “position” of subjects’ current beliefs 

within an abstract “association space” for each system. To test this hypothesis, we used 

representational similarity analysis (RSA) to identify regions of the brain that coded relative 

“positions” within the inferred association space. That is, we sought to identify brain regions that 

had increasingly similar representations when subjects had increasingly similar beliefs about the 

choice-outcome contingencies for each system. We generated a model Representational 

Dissimilarity Matrix (RDM) that calculated the divergence (Jensen-Shannon Divergence (𝐷𝐽𝑆); a 

symmetric measure of the distance between distributions, EQ.13) between model estimates of the 

posterior belief distributions about stimulus-outcome associations in a system (e.g., q1) computed 

from our weighted-inference learning model in each trial across sessions. We also generated a 

RDM of neural similarity from activity patterns measured within a searchlight during the inter-

trial interval (ITI) by calculating the Euclidean distance between voxel patterns in each trial 

across sessions. We hypothesized that regions tracking one’s current position in the association 

space would show increasingly greater representational similarity for trials that had increasingly 

similar posterior beliefs about the specific position of a configuration of associations within a 

system. We reasoned that if subjects were tracking the latent cause governing a system of 

associations (A→O1, B → O2), then this coding should be independent of the specific choice 

made within that system (e.g., include both A (C) and B (D) choices for system 1 (2)) (see Fig. 

4A and Methods). 

We tested this hypothesis by constructing a general linear model that predicted values of 

the neural RDM while controlling for other possible explanations of neural similarity, using the 

𝐷𝐽𝑆 model RDM along with 5 control RDMs. These alternative RDMs controlled for the effect of 

the position in association space of the unchosen system for the current trial as well as similarity 

of the recently observed outcome, identity of the chosen object, identity of the unchosen object, 

magnitude of the RPE, and physical response made (see methods). We focus on the ITI 

following recent evidence of positional coding in an abstract value space during the ITI in 

monkey hippocampal single unit recording (Knudsen and Wallis, 2021). The RDM representing 
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task “position” revealed significant effects in a network of regions including bilateral lateral 

OFC (left lOFC, [x,y,z]=[-26, 30, -12], t(36)=4.24, pTFCE <.05 ROI corrected; right lOFC, 

[x,y,z]=[28, 28, -14], t(36)=3.79, pTFCE <.05 ROI corrected) and rostral mPFC ([x,y,z]=[4, 54, -

4], t(36)=4.56 , pTFCE <.05 ROI corrected) (Fig.4A, Table S6). Indeed, visualization of pattern 

similarity in lOFC on the trials immediately before and after an inferred reversal point support 

this finding by revealing a shift in representation from the previous to the current belief state, in 

tandem with the shift in model estimates (Fig. 4C). This visualization showed positive pattern 

similarity to the current state prior to the reversal and shift to negative pattern similarity at the 

inferred reversal point. Collectively, these findings show that the lOFC and rostral mPFC track 

the current position in an abstract association space that generalizes over choices in the same 

system.  

Discussion 

Understanding how the brain uses abstracted internal models to learn from unobserved, 

but inferred, outcomes is essential for understanding flexible behavior in complex environments. 

The current experiment adds to a growing body of work showing that the mPFC is critical to 

maintaining compact and generalizable representations of task-relevant variables (Baram et al., 

2021; Behrens et al., 2018; Constantinescu et al., 2016; Iordanova et al., 2007; Morton et al., 

2020; Samborska et al., 2021) but goes further to show these representations support credit 

assignment when outcomes can be inferred through shared hierarchical relationships. Our results 

show that mPFC selectively encodes the shared causal relationship between hierarchically 

related choice-outcome associations with a compact representation and leverages this code to 

assign credit for unseen, but inferred, choice-outcome associations. We also show that mPFC and 

lOFC code the current inferred position of the hierarchically related system within a common 

“association space” for each system, suggesting that these regions are integral for tracking the 

learner’s “position” within a latent association space as learning unfolds.  

We designed a novel hierarchical reversal learning task to test the hypothesis that 

assigning credit for inferred outcomes depends on the reinstatement of a generalizable neural 

representation that links both experienced and inferred causal relationships (Liu et al., 2021). 

Prior evidence across species has implicated both the lOFC and the mPFC in credit assignment 

(Boorman et al., 2013; Chan et al., 2016; Jocham et al., 2016; Takahashi et al., 2011; Tanaka et 

al., 2008; Tsujimoto et al., 2009; Walton et al., 2010) but the precise functional roles attributed to 

each region remained unclear. Consistent with studies showing that mPFC contains condensed, 

low-dimension codes for structurally related items in the environment (Constantinescu et al., 

2016; Doeller et al., 2010; Morton et al., 2020; Park et al., 2021; Samborska et al., 2021), we 

found that mPFC, but not OFC, reinstated the shared latent cause that governed two sets of 

stimulus-outcome associations in the same system. Importantly, this effect could not be 

explained by either the outcome’s identity or the identity of the chosen stimulus alone. Further, 

we show that the decodability of these representations in mPFC increases when subjects updated 

their estimates to a greater extent, which is consistent with prior work showing that 

representations in the mPFC are important for rapid updating between states (Klein-Flügge et al., 

2019; Muller et al., 2019). These results suggest that generalized representations in mPFC are 

used for credit assignment at feedback, directly linking knowledge about causal structure to 

inference about unobserved outcomes. Moreover, they provide novel evidence that cognitive 

maps may be used to generate inferences about an untaken choice based on knowledge about the 

underlying relational task structure.  
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Our study also extends our understanding of the network of regions involved in updating 

choice-outcome associations, by showing that these regions also support updating from inferred 

outcomes using a model of the task’s hierarchical structure. A network of regions’ activity 

reflected the full learning update (DKL) from an outcome, including the VTA, pre-SMA/dACC, 

dorsolateral prefrontal cortex, ventrolateral prefrontal cortex/lOFC, and anterior insula, 

consistent with past studies investigating directly experienced outcomes/stimuli (Boorman et al., 

2016; Iglesias et al., 2013; Schwartenbeck et al., 2016b). These findings support the view that 

dopaminergic precision-weighted prediction errors modulate both local cortical and long-

distance cortico-cortical and cortico-striatal synapses within a similar network of regions during 

incremental learning (Stephan et al., 2015). Notably, dopaminergic neurons in the VTA are 

known to signal reward prediction errors (Bayer & Glimcher, 2005; Montague et al., 1996; 

Schultz et al., 1997) but more recent work has suggested this role extends to updating value-

neutral associations between states or outcome identities. Indeed, activity in the VTA is 

modulated by errors in predicted outcome identity (Howard & Kahnt, 2018; Iglesias et al., 2013, 

2021; Oemisch et al., 2019; Suarez et al., 2019; Takahashi et al., 2017) and belief updating about 

the state of associative relationships in the environment (Schwartenbeck et al., 2016a; Sharpe et 

al., 2017) which have been shown to play a causal role in learning such value-neutral 

associations (Langdon et al., 2018; Sharpe et al., 2017). Here, we show activity in the VTA 

quantitatively encodes precision-weighted prediction errors about the state of hierarchically 

related choice-outcome associations, integrating information from both experienced and inferred 

outcomes. Furthermore, this signal only reflected how much to learn about the instrumentally 

relevant variable and did not track learning-irrelevant, but nonetheless rewarding, outcomes. We 

found no evidence that the VTA signal incorporated the monetary reward value obtained at 

feedback, which in our task is irrelevant for future behavior. This is consistent with the absence 

of any effect of reward magnitude on learning behaviorally. Taken together, our findings 

highlight the importance of dopamine in updating model-based associations through inference. 

Finally, we show that a network of brain regions including lOFC and mPFC track the 

inferred position in a latent association space that generalizes over choice-outcome associations 

within a system. We found that lOFC and rostral mPFC showed relational coding corresponding 

to the position in the hierarchically related choice-outcome association space, such that 

activation patterns were increasingly similar when the expectation and precision of beliefs about 

associations within a system were more similar. This finding dovetails with recent studies 

showing that relational position in a wide range of abstract spaces are coded by medial temporal 

lobe and orbitofrontal cortex (Constantinescu et al., 2016; Knudsen & Wallis, 2021; Park et al., 

2020; Theves et al., 2019). Here, we show this coding scheme applies to a hierarchically general 

latent causal space in lOFC and mPFC that reflects both the certainty and confidence in learned 

choice-outcome associations (Pouget et al., 2016). While we did not find any significant effects 

in hippocampus at the thresholds used, there was a subthreshold correlation in the head of the 

right hippocampus (pTFCE <.08 ROI corrected, Fig.S4). Recent pioneering studies using closed-

loop theta stimulation in monkeys have identified a causal role for hippocampal input to a 

homologous region of lOFC (Brodmann Area 13) during the ITI of a reward-guided learning task 

(Knudsen & Wallis, 2020). A second study elaborated these findings by showing that 

hippocampal neurons coded for direction dependent “positions” in the monkeys’ trajectory 

through an abstract 3D value space (Knudsen & Wallis, 2021). Taken together with our findings, 

this suggests that representations of learning trajectories in lOFC and mPFC may be derived 

from hippocampal relational codes, which are input to these regions through direct anatomical 
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connections (Barbas & Blatt, 1995). In our study, these codes can be used for accurate credit 

assignment and inference. More generally, our findings support the theory that the OFC 

represents an animal’s current position in a task space when its position cannot be directly 

observed (Schuck, Cai, Wilson, & Niv, 2016; Stalnaker et al., 2015; Wilson et al., 2014; Zhou et 

al., 2020). 

An intriguing open question is whether lOFC would reactivate specific individual past 

choices, as opposed to generalizable latent causes with a common code, for credit assignment to 

specific past choices. Previous work has shown that OFC reactivates choices which led to the 

currently observed outcome specifically at outcome time (Tsujimoto et al., 2009), and may 

trigger reactivation of sensory representations via descending anatomical connections between 

areas of posterior and lateral OFC and several sensory cortical regions (Carmichael & Price, 

1995; Cavada et al., 2000). Whether or not the same mechanism underlies credit assignment for 

inferred stimuli is unknown. Notably, we did not find any significant decoding of the chosen 

stimulus identity alone at feedback anywhere in the brain at our threshold used (pTFCE <.05). This 

finding is consistent with our fMRI decoding and behavioral analyses showing that by and large 

subjects treated stimulus-outcome associations governed by the same cause as a unitary 

representation, rather than treating its individual associations distinctly. Future work can 

elaborate these mechanisms by testing whether the appropriate inferred choices are reactivated in 

a modality-specific sensory cortex during learning. 

In conclusion, we find that the human brain represents latent causes with compact 

representations in mPFC, which support updating during credit assignment to inferred 

relationships. Further, relational codes in both lOFC and mPFC track learning positions along 

trajectories within an abstract association space that generalizes over stimuli, and rapidly update 

the actor’s position as learning dynamically unfolds. Collectively, these findings support a novel 

framework for understanding how the human brain learns in hierarchically structured settings 

that abound in the real world. 
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 Figures 

 
Fig.1 Learning Task Design and Behavioral Results  

a) Four fractal shapes were organized hierarchically into two independent systems of inversely 

related pairs. This meant that participants could infer the outcome of one object (e.g., shape B) 

after observing the outcome from choosing its system pair (e.g., shape A). 

b) Illustration of the fMRI task. Participants were presented with 2 of the 4 shapes to choose 

from in each trial. They chose between the shapes on the basis of two pieces of information: their 

estimate of the transition probabilities ( 𝑞1 ,  𝑞2 ) that an object would lead to either gift card 

outcome, and the randomly generated number of points they could potentially win on each gift 

card if obtained. The color of each number indicated the identity of the outcome on which that 

number of points could be won. In the example, green indicates the number of points for the 

Starbucks gift, while pink indicated the number of points for iTunes. Next, they observed the 

outcome of their choice (the gift card and amount) after a delay. 

c) Example of a participant’s learning trajectory as the task unfolded. Shaded regions indicated 

the true associations for system 1 (𝑞1, blue) and system 2 (𝑞2, red). Each system reversed 3 times 

during the experiment, switching 𝑞1 and 𝑞2 to 1-𝑞1 and 1-𝑞2, respectively. Blue and Red lines 
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indicate the estimated values of 𝑞1̂ and 𝑞2̂ based on the weighted-inference learning model (see 

computational models for details).  

d) Results of a logistic regression analysis which shows the influence of past choices and 

outcomes on the current choice. Both experienced and inferred past choice-outcome associations 

significantly predicted current choice. As expected, this influence decreased for trials further in 

the past. Height of the bars represents the mean of regression coefficients  SEM. 

e) Results of model comparisons using BIC (top) and 8-fold cross-validation (bottom) for 

weighted-inference, no-inference, and perfect-inference models (see computational models for 

details) 

 

 
Fig.2 Network of Regions that Reflect Additional Update for Inferred Information  

Sagittal and coronal slices through t-statistic maps display brain regions whose activity at 

feedback reflected the additional information gained from including inferred information 

compared to only experienced information (𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

). For illustration, maps display regions at a 

threshold of t(36)=2.71, p<.005, uncorrected.  
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Fig.3 Medial PFC Carries Representations of the Latent Cause to Assign Credit to Inferred 

Outcomes 

a) Illustration of the decoding procedure used to decode the latent cause. We first trained a linear 

SVM on specific shape-outcome combinations from each system (e.g., A→O1 and C→O1) then 

used it to classify the system pairs which led to the opposite outcome (B→O2 and D→O2). No 

information other than the latent cause was shared between training and testing trials. In a 

separate analysis (e), we correlated the amount of information about the latent cause in each trial 

(distance from SVM hyperplane) with the magnitude of updates estimated by the weighted-

inference learning model (see multivariate analysis for details). 

b) Sagittal slice through t-statistic map showing effects of decoding of the latent cause from 

analysis depicted in a in mPFC (SVC within an a priori mPFC ROI), displayed using the same 

conventions as Fig.2. 

c) Same as b but shows regions where the magnitude of information decoded about the latent 

cause was significantly correlated with 𝐷𝐾𝐿
𝑆𝑢𝑚 (SVC in mPFC ROI).  

d) Conjunction t-statistic map showing overlapping regions of b) and c) (p<.05 uncorrected). 
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Fig.4 Lateral OFC and Medial PFC Track Inferred Positions within Latent Association 

Space During Learning.  

a) Conceptual illustration of the RSA procedure used to test for estimated position within the 

latent association space. We constructed a model RDM that measured the dissimilarity of 

posterior beliefs (𝐷𝐽𝑆), estimated by the weighted inference learner, across trials in separate 

blocks. Only trials in which shapes from the same system were chosen by the participant were 

compared across blocks. Separate RDMs for each system were then compared to neural RDMs 

computed from the ITI period of the same trials, using the Euclidean distance between voxel 

activation patterns on these trials from different blocks as the measure of dissimilarity. Model 

and neural RDMs were then compared using linear regression (see “Representational Similarity 

analysis of Association Space” for details).  

b) Axial and sagittal slices through t-statistic map displaying regions in which the model RDM 

was significantly related to the neural RDM. Maps are displayed with the same conventions as in 

Fig.2. The clusters survived small volume correction within an a priori defined lOFC ROI (axial 

slice) and mPFC ROI (sagittal slice). 

c) Visualization of the relationship between model-estimated reversal points and neural pattern 

similarity. Dashed vertical line indicates a reversal point, where 0 is the trial directly after a 
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reversal in the configuration of each system, as estimated by the weighted-inference learner. 

Green line represents the neural similarity of the activation patterns in lOFC on each trial 

immediately preceding and subsequent to the reversal point, compared to a “template pattern” – 

defined as the average pattern from trials with the same configuration as those prior to the 

reversal point, but from the other block. Red line shows the model-derived belief estimate on the 

same trials. Note the corresponding shift in the model estimate and neural data from pre- to post-

reversal.  

Methods 

Subjects 

 

Forty subjects (25 females; mean age = 20.5) were recruited from the general population 

around University of California, Davis. None of the participants reported a history of neurological 

or psychiatric disorders. Subjects either received either course credit or money ($15/hour) for 

participation in the experiment. Two subjects were removed due to excessive motion during 

scanning (head movement > 3mm), while a third subject was removed for excessive dropout in 

ventral regions of the prefrontal cortex that are of interest to this study. Thus, the final sample 

included 37 subjects (22 Females; mean age = 20.5). All procedures were approved by the 

University of California, Davis IRB. Participants gave written consent before the experiment. 

 

Hierarchical-reversal-learning-task 

Task instruction 

Subjects completed a “hierarchical-reversal-learning-task” in which they tracked 

associations between abstract shapes (choices) and reward identities (outcomes) to optimize the 

possibility of larger rewards at the end of the experiment (Fig.1A). On each trial, subjects were 

presented with 2 of 4 different fractal shapes from which to choose. Two numbers between 0 and 

100 were presented at the top of the screen in unique colors. The color of the numbers corresponded 

to the identity of the gift-cards that the subject could win, and the magnitudes corresponded to the 

point value of the reward on the current trial. For example, a pink “42” meant that subjects could 

win 42 points on an iTunes gift-card while a green “58” meant they could win 58 points on a 

Starbucks gift card. The cumulative number of points available on each trial was always equal to 

100. Subjects were told that the point values were randomly chosen on each trial and there was no 

point to tracking them. 

Each shape had a certain probability of leading to one outcome and the inverse probability 

of leading to the other. For example, at the start of the experiment shape “A” would lead to the 

Starbucks gift-card with probability 𝑞1 and the iTunes gift-card with probability 1-𝑞1. However, 

these true probabilities would reverse such that a given shape would lead to each outcome with 

opposite probabilities. Continuing with our example, after a reversal, shape “A” would lead to an 

iTunes gift card with probability 𝑞1 probability and a Starbucks gift card with 1-𝑞1 probability. 

The point values (reward magnitudes) for each outcome were generated randomly from the range 

0-100 on each trial, meaning that subjects did not need to track the reward magnitudes between 

trials. Instead, to maximize rewards, participants had to track the probability a shape would lead 
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to each of the outcomes over trials and combine this with the reward magnitudes associated with 

each outcome on the current trial to guide their decisions based on their subjective preference.  

Crucially, the shapes were organized such that they formed 2 sets of inversely related 

“systems”. Shapes within a system always led to opposite outcomes and had inverted outcome 

probabilities. Shapes A and B were paired (system 1) and shapes C and D were paired (system 2). 

The inverse relationships within a system allowed subjects to learn the probability that a shape 

would lead to a specific outcome by observing the choice-outcome relationship of the other shape 

within the same pair. For example, experiencing that shape A led to Starbucks would also give you 

the knowledge that if shape B were available and it was chosen, the outcome would have been 

iTunes. The same relationship was true for shapes C and D. Between systems, observations were 

completely independent of each other such that observing an outcome from choosing A or B gives 

no information about the likely outcomes of choosing shapes C or D. These structural relationships 

between choice options and outcomes within a system, and the independence of items between 

systems, was clearly explained to participants before the experiment began. 

However, subjects did not have any prior knowledge about choice-outcome associations, 

and when reversals in choice-outcome associations occurred, or how many times reversals would 

occur (three times for each system, see Fig.1A). Therefore, subjects needed to infer both 

associative contingency for each choice and when reversals had occurred from their choices and 

outcome histories during experiments. 

 

Stimuli 

Four visually distinct unfamiliar fractal images were chosen such that the visual similarity 

between any two items were minimal and were presented to all participants as choice options. 

Images for system 1 and those for system 2 were randomized across participants.  

Two types of reward identities (two gift-cards images) were chosen from 7 different gift-

cards from stores familiar to participants: Best-Buy (blue), Barnes and Noble (tan), iTunes (pink), 

Regal (purple), REI (orange), Sephora (white), and Starbucks (green). The two reward identities 

were chosen prior to the fMRI experiment based on participant’s preference ratings. Subjects rated 

their preference level for each of these gift cards presented in a random order on a 1-100 scale. A 

pair of gift-cards having the minimum difference among four most highly preferred were selected 

per individual participant. These two gift-cards were assigned to outcome 1 (O1) and outcome 2 

(O2), counterbalanced across subjects, and presented during fMRI experiment. This procedure 

allowed us to minimize potential biases from initial preferences in choices during the reversal 

learning task, while maintaining a high desirability for each outcome. All stimuli in each phase 

were presented on a computer running Psychopy v1.84 (Peirce, 2009). 

 

Task-Schedule and Procedure 

We generated two separate schedules that determined which choice options (shapes) would 

be presented on each trial and when reversals would occur. In this experiment, there were six 

possible unique combinations of four choice stimulus on any trial. In the experiment schedule, 

none of the same combination was repeated twice in consecutive trials. Further, we optimized the 

schedule such that an ideal Bayesian learner (perfect inference model; see Computational models) 

would choose each shape and receive each outcome approximately equally, given an equal 
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preference between outcome identities. This was important because it minimized the potential for 

sampling bias in planned multivariate analyses (see Multivariate Analyses). Each schedule had 

predetermined reversal points where the choice-outcome associations switched (e.g., 𝑞1→1-𝑞1 
and 1-𝑞1→𝑞1) for a given system. During fMRI experiments system 1 reversed every 40 trials 

starting from the first trial onwards, while system 2 reversed every 40 trials starting from the 20th 

trial onwards, making the state of each system independent of each other. The independent reversal 

points of two systems made it so participants were not able to learn the choice-outcome 

associations of one system from that of the other.  

Subjects completed two blocks of 80 trials (160 trials total). Before the fMRI experiment, 

subjects were instructed that one trial would be chosen at random to count “for real” and would be 

used to calculate the subjects reward for the experiment. This makes each choice independent. 

Therefore, participants need to make an optimal decision for every trial to maximize their rewards. 

At the end of experiment, we randomly selected one trial and gave a reward proportionate to the 

number of points earned on the specific gift card received on that trial. The minimum reward given 

was $5 while the maximum value was $25.  

 

Behavioral Training 

To familiarize subjects with the task, all subjects completed a behavioral training session 

before the fMRI experiment. After behavioral training participants performed the fMRI 

experiment on different day within a week. The task used for behavioral training was the same 

with the fMRI task except for slight modifications to aid learning. During behavioral training the 

experimenter guided subjects through the first 30 practice choice trials to ensure that subjects 

understood the task, then left participants to complete the rest of the trials on their own. In addition, 

to ensure that subjects tracked the relationship between paired stimuli, subjects were tested every 

10th trial on the relationship between shapes, by asking them to connect shapes in the same pair 

with a single line (Fig.S5). The subjects received feedback via the line color - an incorrect pairing 
resulted in the line turning red, while a correct pairing turned the line green. During behavioral 

training participants learned the task with the same fractal images assigned to the same systems. 

However, we used 2 faux outcome identities (Zappos and Netflix) that would not be available for 

rewards during the fMRI experiment. Participants who understood the task well and performed 

well (model fit negative log-likelihood <130) were invited to return for fMRI experiments. Among 

48 participants who initially enrolled the experiment, 40 participants participated in fMRI 

experiment. 

 

Computational models 

Weighted-Inference learning model 

We designed a Bayesian computational model to predict the choice of participants in each 

trial t based on one’s choice and outcome history and available choice options and reward 

magnitudes of the current trial. On each trial, the model estimated the contingency that choosing a 

given shape (S) would lead to outcome 1 (O1), and by definition led to outcome 2 (O2) with the 

inverse probability which is denoted as follows: 
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𝑝(𝑆 → 𝑂1) =  𝑞𝑠  
𝑝(𝑆 → 𝑂2) =  1 − 𝑞𝑠 

Eq.1 

 

Choice-outcome contingencies for all shapes were modeled as separate distributions, but beliefs 

about contingencies for shapes in the same system were related through an inference term (𝛾 where 

0 < 𝛾 < ∞), which takes account to what extent an individual participant learns and updates 𝑞𝑠 
from direct experiences (the outcome 𝑦 after choosing S) compared to that from inferred outcomes 

(the outcome 𝑦′ if you had chosen 𝑆′ where, S and 𝑆′ are paired in the same system; if 𝑦 is O1 then 

𝑦′ is O2). On each trial t, the posterior belief about 𝑞𝑠 is computed using Bayes rule, as follows: 

 

𝑝(𝑞𝑠,𝑡|𝑦1:𝑡) ∝ {
𝑝(𝑦𝑡| 𝑞𝑠,𝑡) ⋅ 𝑝(𝑞𝑠,𝑡|𝑦1:𝑡−1, 𝑣𝑆) ⋅ 𝛾

𝑝(𝑦𝑡
′|𝑞𝑠′,𝑡) ⋅ 𝑝(𝑞𝑠′,𝑡|𝑦′1:𝑡−1, 𝑣𝑆) ⋅  1/𝛾

 

Eq.2 

 

That is, 𝛾 = 1 for an ideal learner who can take advantage of the structural relationship (𝑝(𝑆 →
𝑦𝑡) = 𝑝(𝑆′ → 𝑦𝑡

′)) and learn from inferred outcomes as much as they learn from experienced 

outcome. Therefore, a participant with a higher level of 𝛾  is more likely learn from direct 

experiences (𝑆 → 𝑦𝑡) but less likely to learn from inferred outcomes (𝑆′ → 𝑦𝑡
′). After each trial, 

the probabilities were normalized such that they remained bounded between 0 and 1. 

While the likelihood 𝑝(𝑦𝑡|𝑞𝑠,𝑡)  or 𝑝(𝑦𝑡
′|𝑞𝑠′,𝑡)  is 𝑞𝑠,𝑡  or 𝑞𝑠′,𝑡  respectively, we took into 

account the probability that the contingency of the system associated with the current choice (S) is 

reversed (𝑣𝑆 = 𝑝( 𝐽𝑠,𝑡 = 1)) when computing the prior, p(𝑞𝑠,𝑡|𝑦1:𝑡−1). The term 𝑣𝑆 indicated the 

subjects’ belief that choice-outcome contingencies had reversed (𝐽𝑠,𝑡 = 1) for the chosen shape, 

S. Taken together, the prior belief of the associative contingency for a chosen shape remained the 

same as the previous trial (𝑝(𝑞𝑠,𝑡−1)) with the probability 1 − 𝑣𝑆 (if no reversal has occurred) or 

flipped to the inverse probability (1- 𝑝(𝑞𝑠,𝑡−1)) with the probability 𝑣𝑠 (if a reversal has occurred). 

Therefore, the prior (𝑞𝑡|𝑦1:𝑡−1) is obtained by the following transition function: 

 

𝑝(𝑞𝑡|𝑦1:𝑡−1)  =  ∫[𝑝(𝑞𝑡−1|𝑦1:𝑡−1) ⋅ (1 − 𝑣𝑆)] + [1 − 𝑝(𝑞𝑡|𝑦1:𝑡−1) ⋅ 𝑣𝑆]𝑑𝑣𝑆 

Eq.3 

 

A second normalization step was done after applying the transition probabilities 𝑣𝑠 to the posterior 

probabilities of the current trial, such that the probability of all possible transitions equals to 1. 

Note that 𝑣𝑆 was defined and updated independently per four possible choice options. However, 

due to the inherent design of the underlying task structure, 𝑣𝑆for shapes within the same system 

should be more correlated than 𝑣𝑆 of the other system. Finally, note that the reversal probability is 

fixed during the experiment but unknown to participants. 

We then used the prior belief, in the associative contingencies, 𝑝(𝑞𝑠,𝑡|𝑦1:𝑡−1), to compute 

the expected value of a given shape (𝔼𝑆) on each trial according to the following formula:  

 

𝔼𝑆 = [𝑝(𝑞𝑠,𝑡|𝑦1:𝑡−1) ⋅ 𝑀𝑡
𝑂1 ⋅ 𝛼] + [1 − 𝑝(𝑞𝑠,𝑡|𝑦1:𝑡−1) ⋅ 𝑀𝑡

𝑂2 ⋅ 𝛼−1] 
Eq.4 
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where 𝛼 was a free parameter and reflected a subject's preference for one outcome (O1) over the 

other (O2) (0 < 𝛼 < ∞), and 𝑀𝑡
𝑂1  and 𝑀𝑡

𝑂2  indicated the reward magnitudes of the outcome 

available in the current trial, t. We then predicted the choice of a participant between the two 

available shapes (𝔼𝑆1 and 𝔼𝑆2) on each trial according to a SoftMax function: 

 

𝑝(𝑆1) =
𝑒𝔼𝑆1𝛽

𝑒𝔼𝑆1𝛽 + 𝑒𝔼𝑆2𝛽
 

Eq.5 

 

where the free parameter 𝛽, captured the level of sensitivity of choices to expected values (inverse 

temperature; 0 < 𝛽 < ∞). 

 

Finally, when the outcome was revealed, the reward prediction errors (rPE) were computed as 

follows: 

𝑟𝑃𝐸 = 𝑅 − 𝔼𝑆 𝑤ℎ𝑒𝑟𝑒 𝑅 = {
𝑀𝑡
𝑂1 ⋅ 𝛼 𝑖𝑓 𝑦𝑡 = 𝑂1

𝑀𝑡
𝑂2 ⋅ 𝛼−1𝑖𝑓 𝑦𝑡 = 𝑂2

 

Eq.6 

 

Alternative models 

We tested the weighted-inference learning model against two additional models which 

made alternative assumptions about how subjects updated the posterior belief from the inferred 

outcomes. In the first alternative model, named the “perfect-inference model”, 𝛾 was fixed to 1 in 

Eq.2, resulting in equal and optimal integration for experienced and inferred outcomes (𝛾𝑒𝑥𝑝= 

𝛾𝑖𝑛𝑓=1). In the second alternative model, called the “no-inference model”, we assumed that 

participants did not take the structural relationship between shapes in the same system into the 

updates. Specifically, we set 𝛾𝑖𝑛𝑓 = 0  while 𝛾𝑒𝑥𝑝 = 1  in Eq.2. Therefore, an agent using no-

inference model only learned from experienced outcomes but not from inferred outcomes. 

Parameter estimates 

The weighted-inference learning model has three free parameters, 𝛼, 𝛽, and 𝛾, and 

two alternative models have two free parameters, 𝛼, and 𝛽. We fit all three models using custom 

Markov Chain Monte Carlo (MCMC) code in MATLAB R2018a. Each model was fit to maximize 

the likelihood of choices given model estimates of the expected value of each choice on each trial 

Eq.6.  

Model Comparisons 

To test potential overfitting, we compared the goodness of fit for each model type using 

the sum of the Bayesian Information Criterion (BIC) over subjects. This gave us an overall measure 

of how well the data were fit by each model at the group level, while penalizing models that added 

additional free parameters.  

 

𝐵𝐼𝐶 = 𝑘 ∙ 𝑙𝑛(𝑛) − 2𝑙𝑛𝐿̂ 
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Eq.7 

 

where k is the number of parameters in the learning model, n is the number of choices (i.e., trials) 

the subject made, and 𝑙𝑛𝐿̂ indicates the log-likelihood of each model. 

 

Forward chaining cross-validation 

We also tested if the weighted-inference model better predicts out-of-sample data. In the 

current study, a subject’s belief that any choice would lead to a specific outcome is dependent on 

the observations and inferences made in the preceding trials. That is the choice at the trial t cannot 

be predicted from any randomly sampled trials but only from 𝑦1:𝑡−1. To account for the time-

dependence of our data, we applied a forward chaining cross validation (CV) (Bergmeir & Benítez, 

2012), which iteratively fits data from the earliest time points and uses the fitted model to predict 

later time points. We began by fitting the model on the first 20 trials of the experiment, then test 

the model on choices made in the 20 trials that came immediately after (trials 21 through 40). In 

the next iteration, we trained on the first 40 trials, and tested on choices made in the subsequent 

20 trials (trials 41 through 60). This process continued in steps of 20 until the last iteration which 

trained on the first 140 trials and then were tested on the last 20 (total of 8 folds). We summed 

together the negative log-likelihood returned from each test set to determine which model 

performed best. 

 

Model free analysis of effects of decision history to the current decision 

To test whether subjects showed a behavioral effect of learning on choice, we fit logistic 

regression models estimating the effects of past choice-outcome observations on which item was 

chosen at the current trial t. The regression model included the effect of experienced choice-

outcome association going three trials back (denoted 𝑡𝐸 − 𝑛 ), and inferred choice-outcome 

relationships going three trials back (denoted 𝑡𝐼 − 𝑛), such as the following: 

 

𝑙𝑛 (
𝑝(𝑐ℎ𝑜𝑠𝑒𝑛)

𝑝(𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛)
)

= 𝛽0 + 𝛽1𝑤𝑡𝐸−1𝑜𝑡𝐸−1 + 𝛽2𝑤𝑡𝐸−2𝑜𝑡𝐸−2 + 𝛽3𝑤𝑡𝐸−3𝑜𝑡𝐸−3 + 𝛽4𝑤𝑡𝐼−1𝑜𝑡𝐼−1
+ 𝛽5𝑤𝑡𝐼−2𝑜𝑡𝐼−2 + 𝛽6𝑤𝑡𝐼−3𝑜𝑡𝐼−3 + 𝛽7𝑀𝑡𝐸−1

𝑜𝑏𝑡  

Eq.8 

 

where n is the n-th previous trial that object was chosen, up to 3 previous experiences. For example, 

𝑡𝐸 − 1 means the outcome directly experienced the last time they chose the current shape. The 

same notation is used for previously inferred outcomes. In this study, participants were presented 

two choice options among four shapes in each trial. This means that the chosen option in the current 

trial may not be available in the previous trial. As such, if current choice 𝑆 or the paired shape, 𝑆′ 
was not available in the previous trial, then 𝑡𝐸 − 1 or 𝑡𝐼 − 1 was the last trial when 𝑆 or 𝑆′was 

chosen, respectively. We fit separate regression models for the choices of each of four shapes for 

each subject. For experienced trials, the value of each of these regressors was 1 if currently 

considered choice led to the desired outcome n-trials back and -1 if it did not. Thus: 
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𝑂𝑡𝐸−𝑛 = {
1 𝑖𝑓 𝑆𝑡𝐸−𝑛 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

−1 𝑖𝑓 𝑆𝑡𝐸−𝑛 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒
 

Eq.9 

 
We also included contextual, counter-factual information about the other option in the 

experienced regressors. For example, if the subject were choosing between choices A and C but 

choose C and got the desired outcome, this may deter them from choosing shape A the next time 

A and C are available. We included this information for completeness with respect to all the 

experienced information that could influence the choice of a shape on any given trial. 

 For inferred trials, the regressor had a value of 1 if the system pair (i.e., B when participants’ 

choice is A in the current trial) led to the undesired outcome n trials back, such that  

 

𝑂𝑡𝐼−𝑛 = {
−1 𝑖𝑓 𝑆𝑡𝐼−𝑛

′  𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

1 𝑖𝑓 𝑆𝑡𝐼−𝑛
′  𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

 

Eq.10 

 

because this indicates that the currently considered shape should lead to the desired current.  

We assumed that participants would desire the outcome with higher magnitude between 

O1 and O2. To test the effects of greater desirability in previous choices in the current decision, 

we assigned the difference in reward magnitude (𝑤𝑡𝐸−𝑛 = |𝑀𝑡𝐸−𝑛
𝑂1 −𝑀

𝑡𝐸−𝑛
𝑂2 |) as a weight on each 

regressor. We did not consider the subjective preference of one outcome type over the other (𝛼 in 
the model, Eq.4) for the model free regression analysis. However, we repeated the analysis using 

𝛼 to moderate the value of each stimulus (Eq.4) to test if subjective preference produced any 

changes in these results. Finally, 𝑀
𝑡𝐸−1
𝑜𝑏𝑡  represents the influence of the magnitude of the reward 

obtained the last time subject chose the currently considered choice. 

After fitting separate regression models for each fractal shape, we averaged together the 

regression coefficients (𝛽) across shapes, representing the subject specific influence of previous 

decisions on the current choice. 

 

MRI data Acquisition 

Data was acquired using Siemens Skyra 3 Tesla scanner. We used gradient-echo-planar 

imaging (EPI) pulse sequence, with a multi-band acceleration factor of 2, and set the slice angle 

of 30° relative to the anterior-posterior commissure line, minimizing the signal loss in the 

orbitofrontal cortex region (Weiskopf, Hutton, Josephs, & Deichmann, 2006). We acquired 38 

axial slices, 3mm thick with the following parameters: repetition time (TR) = 1200 ms, echo time 

(TE) = 24 ms, flip angle = 67°, field of view (FoV) = 192mm, voxel size = 3 × 3 × 3 mm3. 

Contiguous slices were acquired in interleaved order. We also acquired a field map to correct for 

potential deformations with dual echo-time images covering the whole brain, with the following 

parameters: TR = 630 ms, TE1 = 10 ms, TE2 = 12.46 ms, flip angle = 40°, FoV = 192mm, voxel 

size = 3 × 3 × 3 mm3. For accurate registration of the EPIs to the standard space, we acquired a 

T1-weighted structural image using a magnetization-prepared rapid gradient echo sequence 
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(MPRAGE) with the following parameters: TR = 1800 ms, TE = 2.96 ms, flip angle = 7°, FoV = 

256mm, voxel size = 1 × 1 × 1 mm3.  

 

Preprocessing 

Preprocessing of the data was done in SPM12 (Wellcome Trust Centre for Neuroimaging) 

in MATLAB (2018b Matworks). Data were preprocessed using the default options in SPM. Images 

were slice-time corrected and realigned to the first volume of each sequence. We realigned to 

correct for motion using a six-parameter rigid body transformation. Inhomogeneities in the field 

were corrected using the phase of non-EPI gradient echo images at 2 echo times, which were co-

registered with structural maps. Images were then spatially normalized by warping subject specific 

images to the reference brain in the MNI (Montreal Neurological Institute) coordinate system with 

2mm isotropic voxels. Finally, for the univariate analysis images were spatially smoothed using a 

gaussian kernel with full width at half maximum of 8mm.  

 

Univariate fMRI Analysis 

 To model BOLD activity in each voxel we used a GLM with four different regressors; the 

choice period (a boxcar, from the choice onset including the duration of .5s plus the reaction time 

of decisions), the button press (a stick function), the reward expectation period (a boxcar including 

jittered ISI) and the reward feedback phase (a 2 second boxcar). In the first GLM (GLM 1), we 

included the decision difficulty of each trial as a parametric regressor at the choice period. The 

decision difficulty was computed as the inverse of the expected value difference between options. 

See below: 

 
|𝔼𝑆1 − 𝔼𝑆2|

−1 

Eq. 11 

 

In addition, we computed the model-based belief updates to the choice-outcome associations after 

the outcome was observed in each trial and inputted this as a parametric regressor at the feedback 

phase. This belief update was calculated as the Kullback-Leibler divergence (𝐷𝐾𝐿) between the 

prior and posterior belief in 𝑞𝑠,𝑡 (Eq.1) for the chosen shape (𝑆),  

 

 𝐷𝐾𝐿(𝑡) = ∫ ln (
𝑝(𝑞𝑠,𝑡|𝑦1:𝑡)

𝑝(𝑞𝑠,𝑡|𝑦1:𝑡−1)
)𝑝(𝑞𝑠,𝑡|𝑦1:𝑡) 𝑑𝑞𝑠,𝑡  

Eq. 12 

 

The 𝐷𝐾𝐿  reflected changes in the model estimated “beliefs” about which choice led to which 

outcome (gift card identity) as participants progressed through learning. The 𝐷𝐾𝐿 for shapes in 

each system were summed together to generate 𝐷𝐾𝐿
𝑆𝑢𝑚. Six motion regressors were included as 

regressors of no interests in the model to account for translation and rotation in head position 

during the experiment. From the first-level analysis, contrast images of parameter estimates from 

regressors of the 𝐷𝐾𝐿
𝑆𝑢𝑚 were estimated for each participant and inputted for the one sample t-test 

in the second level analysis. 
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We performed an additional GLM (GLM 2) to distinguish the neural activity reflecting the 

additional information gained from inference in belief updates at the time of feedback. To address 

this, we computed the 𝐷𝐾𝐿 from the no-inference model (𝐷𝐾𝐿
𝐸𝑥𝑝

) in addition to 𝐷𝐾𝐿  which was 

estimated from the weighted-inference model given the subject specific weighting of inferred 

outcomes. We then generated 𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

 by subtracting 𝐷𝐾𝐿
𝐸𝑥𝑝

 from the 𝐷𝐾𝐿 of the weighted-inference 

model (𝐷𝐾𝐿
𝐷𝑖𝑓𝑓 = 𝐷𝐾𝐿

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 − 𝐷𝐾𝐿
𝐸𝑥𝑝

). Thus, 𝐷𝐾𝐿
𝐸𝑥𝑝

 this would account for the update that comes 

from experiencing outcomes alone (i.e., no inference), whereas 𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

 contained the additional 

updating that occurs when both inferred outcomes are integrated into a new belief. GLM2 was the 

same with the GLM1 except that we inputted two parametric regressors at the feedback phase.  

Group-level statistical inference 

Group level testing was done using a one-sample t-test (df=36) on the cumulative 

functional maps generated by the first level analysis. All first level maps were smoothed prior to 

being combined and tested at the group level. To correct for multiple comparisons, we used 

Threshold-Free Cluster Enhancement (TFCE) which uses permutation testing and accounts for 

both the height and extent of the cluster (Smith & Nichols, 2009). All parameters were set to 

default parameters (H=2, E=0.5) and we used 5000 permutations for analysis. In all ROI based 

analyses and whole brain analyses we report effects that surpassed a pTFCE< .05 threshold. 

We first performed group-level inference on independent anatomical ROIs, then performed 

exploratory whole brain analyses. For ROI analyses, we first extracted voxels from each ROI in 

each subject’s first-level activation map, averaged the maps together, then applied small volume 

TFCE correction. We used this analysis method for testing univariate effects of updating in VTA, 

decoding the latent cause of each system in mPFC and testing which regions represented 

association space. All other analyses were corrected for multiple comparisons at the whole brain 

level.  

 

Multivariate Analyses 

The MPVA analysis aimed to identify regions of the brain that coded knowledge of the 

relationship between system pairs - the underlying structure of the task. To test this, we estimated 

the BOLD activity patterns during the feedback phase using unsmoothed preprocessed images. 

The feedback period was modeled as a boxcar that had a constant duration lasting 2 seconds from 

the feedback onset of each trial. No parametric modulators were added.  

Each trial was labeled according to which shape was chosen and which outcome received 

from that choice (𝑆𝑡 → 𝑦𝑡 ). Our main hypothesis of this study was that subjects would use 

knowledge about the underlying relationships between shapes in a system to make inferences of 

unobserved outcomes at feedback. If participants retrieve representations of these structural 

relationships at feedback to appropriately assign credit learned from experiences to the latent 

association, we could expect to decode the representations associated with the common causes that 

arise in trials where the systems’ pairs led to opposite outcomes (𝑆𝑡
′ → 𝑦𝑡

′). For example, trials 

where one shape in the pair lead to outcome one (e.g., A→O1) should share the same causes (e.g., 

𝑞1) with trials where the other shape in the same system led to the opposite outcome (e.g., B→O2).  

Importantly, to make sure that the activity patterns are not associated with the outcomes 

(O1 or O2) presented on the screen but are associated with the latent causes (𝑞1or 𝑞2, i.e., the 
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reward contingency in the system 1 and 2), we organized training and testing labels in a way to 

control for visual information. Specifically, we trained a shape against another shape which shared 

the same outcomes but did not share the causes (e.g., A
𝑞1

→ O1 vs. C
𝑞2

→O1) to identify the activity 

patterns specifically associated with the causes. Subsequently, we tested theses activity patterns 

on independent data sets which included the shapes that did not share the outcome with the training 

shapes but share the causes (e.g., B
𝑞1

→ O2 vs. D
𝑞2

→O2). As this example showed, no sensory 

information was shared between training and testing sets that could influence the classifier to bias 

the results. See Table 1 for the full list of eight training and test pairs. 

 

Training Set Test Set 

A
 𝑞1 

→  O1 vs. C
𝑞2

→O1 B
𝑞1

→O2 vs. D
𝑞2

→O2 

A
𝑞1

→ O1 vs. D
1−𝑞2

→   O1 B
𝑞1

→O2 vs. C
1−𝑞2

→   O2 

A
1−𝑞1

→   O2 vs. C
1−𝑞2

→   O2 B
1−𝑞1

→   O1 vs D
1−𝑞2

→   O1 

A
1−𝑞1

→    O2 vs D
𝑞2

→O2 B
1−𝑞1

→   O1 vs C
𝑞2

→O1 

B
1−𝑞1

→    O1 vs C
𝑞2

→O1 A
1−𝑞1

→   O2 vs D
𝑞2

→O2 

B
1−𝑞1

→    O1 vs D
1−𝑞2

→   O1 A
1−𝑞1

→   O2 vs C
1−𝑞2

→   O2 

B
 𝑞1 

→ O2 vs C
1−𝑞2

→   O2 A
 𝑞1 

→ O1 vs D
1−𝑞2

→   O1 

B
 𝑞1 

→ O2 vs D
𝑞2

→O2 A
 𝑞1 

→ O1 vs C
𝑞2

→O1 

Table 1: Training and Testing Scheme of Linear Classifier for Latent Cause Decoding: This 

table shows all combinations of training left column) and testing (right column) trial sets used 

for decoding the latent cause at the time of feedback. Capital letters denote the chosen shape 

(A,B,C or D). Arrows followed by “O1” or “O2” indicate which outcome each shape led to on 

that trial. Note that training and test stimuli are matched for outcome identity so that no visual 

information can be used by the classifier to separate representations. Finally, letters above each 

arrow denote the latent cause (p or q) being decoded, indicating the system each stimulus 

belongs to (system 1 or system 2, respectively).  

 We then used a searchlight procedure to identify regions of the brain that contained 

representations of the underlying structure of the environment. Each searchlight consisted of a 

5x5x5 voxel cube placed around a centroid voxel in the brain. Each centroid was required to values 

in at least 10 of the surrounding voxels to be considered for further processing and were then 

standardized by z-scoring the beta values within each searchlight.  

The data were subset such that only the relevant trials were used for a particular classifier 

(see Table 1), then split by blocks into a training set and a test set. We used LIBSVM (Chang & 

Lin, 2011) to fit linear classifiers with training data, which we then used to classify data points 

from the test set. We iterated through this process for each of 2 blocks and for each of 8 

combinations of training and test labels, then computed the mean decoding accuracy (average 

proportion of correct classifications) across all 16 classifiers for each voxel. The mean decoding 

accuracy for each voxel was compared to a voxel specific null distribution which was estimated 

with the same procedure while randomly assigning the labels over 100 permutations at each 

searchlight. The mean classification accuracy of this null distribution was subtracted off the 
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classification accuracy of each searchlight to give us a measure of how reliably information about 

the latent cause could be decoded above chance. The resulting maps were then spatially smoothed 

using a gaussian kernel with full width half maximum of 8mm. 

Group-level analyses were preformed using a one-sample t-test on accuracy maps across 

subjects (see Group-level Inference). For this analysis we focused on a priori defined ROIs in 

lOFC and mPFC (see selecting a priori ROIs) and corrected for multiple comparisons within each 

ROI using small volume correction TFCE. The threshold for significance remained the same (pTFCE 

<.05) 

Trial-by-Trial Decoding Correlated with Belief Updates about Latent causes 

To test whether the strength of the neural representations followed beliefs in specific 

choice-outcome contingencies, we correlated the probability that representations for the latent 

cause could be decoded on each trial with trial-by-trial belief updates in choice-outcome 

relationships. We used the same decoding procedure mentioned above to classify voxel patterns at 

feedback in each trial (see Multivariate Analyses), but additionally calculated the distance of each 

pattern from the hyperplane that divides categories. Distances were obtained using the equation 

specified on the LIBSVM webpage (https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html). Patterns 

that are more distant from the hyperplane can be thought of as having more information about a 

category, and those that are closer to the hyperplane as having less information (Schuck & Niv, 

2019). We then signed the distance of each point according to whether the predicted category label 

was correct (+ for correct, – for incorrect), and averaged the distance from each relevant decoding 

scheme. The signed distances were then regressed against the magnitude of the belief updates 

about the choice-outcome contingencies at feedback (𝐷𝐾𝐿) estimated from the weighted-inference 

model.  

The distances to the hyperplane and the magnitude of the 𝐷𝐾𝐿 were then correlated using 

Spearman's rank correlation, in each voxel throughout the brain. We used Spearman’s correlation 

as a conservative measure against outliers or nonlinear relationships that could bias the results. 

The correlation values were normalized using a Fisher transform and the resulting maps were 

spatially smoothed using a Gaussian kernel with full width at half maximum of 8mm. Group level 

analyses were preformed using a one-sample t-test on correlation values, then we applied TFCE 

correction to volumes within preselected ROIs. The same thresholds were applied for group level 

statistical correction (pTFCE <.05). 

 

Representational similarity analysis (RSA) analysis of association space 

We used RSA to look for regions of the brain that tracked the position of each system 

within an abstract association space as learning unfolded. If participants represented the state of 

each system as “positions” within an abstract association space, then we should observe similar 

neural representations when subjects occupy similar regions of the association space. For example, 

if subjects believe that the configuration of system 1 is A→O1 and B→O2 with probability 𝑞1=.80, 

the neural representation of this belief should be highly similar to a trial where participants believe 

system 1 is in the same configuration but 𝑞1=.75. However, the neural similarity should be more 

dissimilar if 𝑞1=.55, and yet more dissimilar if subjects believe that the configuration of system 1 

has been reversed (A → 𝑂2 and B → 𝑂1; 𝑞1=.15). Note that while this example gives point 

estimates of 𝑞1, the true contingencies were defined as belief distributions which includes the 
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confidence of each belief. Such increases in the dissimilarity of voxel patterns would suggest that 

neural representation is coded as an abstract value space, because it shows that distal points in the 

association space are represented with proportionately dissimilar activity patterns. As in previous 

work, we focused our analysis during the time of the ITI (Knudsen & Wallis, 2021).  

To test this, we estimated the BOLD activity patterns during the ITI phase using 

unsmoothed preprocessed images. The ITI period was modeled as a boxcar and no parametric 

modulators were added. We created model representational dissimilarity matrices (RDMs) for 

each system (𝕊) which measures the dissimilarity of seven factors of each trial (𝑡) that could give 

rise to dissimilarity in neural representations. All RDMs were constructed such that they 

represented the dissimilarity of these factors between trials in separate blocks. The first two model 

RDM’s captured similarity of belief distributions across trials which were separated into the beliefs 

of the “task-relevant association” and “task-irrelevant association”. The task-relevant association 

RDM included the trial-by-trial dissimilarity between beliefs about 𝕊. This included the trials in 

which participants used their belief about reward contingency to choose a particular shape and 

subsequently updated the belief with the given feedback. Therefore, the size of the task-relevant 

RDM corresponded to the number of trials in which a participant chose a shape associated with 𝕊 

in block 1 ⨉ those trials in block 2. The task-irrelevant association RDM included the beliefs about 

reward contingencies for 𝕊, but it included the trials in which participants did not choose a shape 

associated with 𝕊, but needed to hold the representation for potential future or pending trials. 

Therefore, the size of the task-irrelevant RDM corresponded to the number of trials in which a 

participant chose a shape that was not associated with 𝕊 in block 1 ⨉ those trials in block 2. We 

computed the model RDMs of the task-relevant and -irrelevant contingencies in each of two 

systems. 

To compute the trial-by-trial dissimilarity between two belief distributions across sessions, 

we used the Jensen-Shannon Divergence (𝐷𝐽𝑆) between distributions. This metric is commonly 

used to measure the dissimilarity between two distributions (𝐷1 𝑎𝑛𝑑 𝐷2).  Note that 𝐷𝐽𝑆  is 

symmetric. That is, 𝐷𝐽𝑆(𝐷1||𝐷2) is the same with 𝐷𝐽𝑆(𝐷2||𝐷1) unlike the KL divergence. We 

computed 𝐷𝐽𝑆 by combining 𝐷𝐾𝐿 of each distribution to their mean distribution (𝐷̃): 

 

 

𝐷𝐽𝑆(𝐷1||𝐷2) =
1

2
𝐷𝐾𝐿(𝐷1||𝐷̃) +

1

2
𝐷𝐾𝐿(𝐷2||𝐷̃) 𝑤ℎ𝑒𝑟𝑒 𝐷̃ =

𝐷1 + 𝐷2
2

 

 Eq.13 

 

We included 5 additional model RDM’s to control for alternative possible explanations of 

neural similarity. These were as follows: the identity of the chosen shape (CS), the identity of the 

unchosen shape (US), choice location (right or left side; CL), the outcome identity (OI), and the 

signed reward prediction error (rPE) computed by the weighted-inference model (Eq.7). All of 

these model RDMs were binary matrices except for the rPE matrix, in which the dissimilarity was 

computed as the absolute difference in rPE’s between trials. All analyses were conducted 

separately per system (see Fig.S6 for correlation matrix).  

We then followed the same searchlight procedure as with the MVPA (5x5x5 voxel cube 

around a centroid voxel), at each centroid generated a neural RDM by calculating the Euclidean 

distance between voxel activities for trials in each session, after standardizing voxel activity within 

the ROI. We then regressed the neural similarity matrix against each of the model RDM’s (Flesch 

et al., 2021; Parkinson et al., 2017) using the following GLM: 
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𝑛𝑒𝑢𝑟𝑎𝑙 𝑅𝐷𝑀𝕊 = 𝛽0 + 𝛽1𝐷𝐽𝑆_𝑟𝑒𝑙
𝕊 + 𝛽2𝐷𝐽𝑆_𝑖𝑟𝑟

𝕊 + 𝛽3𝐶𝑆
𝕊 + 𝛽4𝑈𝑆

𝕊 + 𝛽5𝐶𝐿
𝕊 + 𝛽6𝑂𝐼

𝕊 + 𝛽7𝑟𝑃𝐸
𝕊 

Eq.14 

 

All predictors were z-scored before fitting the GLM. Each subject's resulting 𝐷𝐽𝑆_𝑟𝑒𝑙
𝕊  beta 

maps were averaged across systems to produce a single estimate of the correlation between system 

specific belief similarity and neural similarity. Group level analyses were preformed using a one-

sample t-test on smoothed beta values. We applied TFCE correction to volumes within preselected 

ROIs at pTFCE <.05 threshold for group level statistical correction. 

To visual this analysis and create Fig.4C, we performed the following procedure: First, we 

split the data into a left-out run and a visualized run. For the left-out run, we created two “template 

patterns” that represented the average multivariate pattern for each of the two possible 

configurations for a given system. For example, we created a template pattern for the state of 

system 1 when A→O1 and B→O2 ( 𝑞1 ) by averaging the activity in each voxel across trials in 

which the weighted-inference model indicated this belief was true. The same was done for all other 

possible configurations of each system ( 1 − 𝑞1 ,  𝑞2 ,  1 − 𝑞2 ). These template patterns were then 

used as a comparison for trials in the visualized block, pre- and post-reversal. Reversal points were 

identified as trials that subjects had a different beliefs about the configuration of a system 

compared to the trial before it (e.g., 𝑞1 flipped to 1 − 𝑞1). All reversal points were required to have 

at least 3 prior trials in which the same belief was held by the learning model (e.g., 𝑞1) and three 

trials after when the configuration changed (  1 − 𝑞1) . We then compared these trials to the 

template pattern that matched the belief prior to the reversal, such that if prior to the reversal the 

learner’s belief was that 𝑞1 was true, the neural pattern of those trials was compared to the template 

pattern for 𝑞1 . Similarity patterns were compared using spearman’s rank correlations. However, 

no statistical inference was conducted on the correlations, as they were only used to visualize the 

analysis conducted in figure 4B. 

Selecting a priori ROIs 

Regions of interest in prefrontal cortex were generated from anatomically defined regions 

in the Human Connectome Project Dataset (Glasser et al., 2016). The OFC ROIs corresponded to 

bilateral area BA13 (index 92) and for the mPFC we used BA10 (index 65). We included these 

regions because they have been previously implicated in credit assignment for causal choices, 

particularly in similar contingency learning tasks (Boorman et al., 2013, 2016; Jocham et al., 2016). 

To understand the role of dopaminergic regions of the midbrain in inferential updating, we looked 

at the ventral tegmental area (VTA) which has previously been linked to updating choice-outcome 

association (Boorman et al., 2016; Gershman & Uchida, 2019; Howard & Kahnt, 2018; Iglesias et 

al., 2013). Here, we used an anatomical VTA\SN ROI taken from a previous study linking the 

VTA to social updating about the trustworthiness of advice from others (Diaconescu et al., 2017).  
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Supplemental Information 

 

Fig.S1 Behavioral Results Including Preference Term              

a) Results of a logistic regression analysis which shows the influence of past choices and 

outcomes on the current choice. This model includes a preference term (𝛼) for each outcome 

identity when computing the value if each possible outcome in the current trial. Both 

experienced and inferred past choice-outcome associations significantly predicted current choice. 

Height of the bars represents the mean of regression coefficients  SEM. As expected, this 

influence decreased for trials further in the past. b) Logistic regression model predicting the 

probability of choosing Option 1 given the standardized (z-scored) difference in value for each 

option.  
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Fig.S2 Network of Regions that Reflect Updating Signals Combining Experienced and 

Inferred Information  

Sagittal and coronal slices showing t-statistic maps that display neural regions reflecting the 

updating of the stimulus outcome contingencies by integrating both inferred and experienced 

outcomes (𝐷𝐾𝐿
𝑆𝑢𝑚). Maps display regions at a threshold of t(36)=2.71, p<.005). 

 
 

 
Fig.S3 Network of Regions Whose Activity Reflects Reward Prediction Error  

Regions encoding the reward prediction error (𝑅𝑃𝐸) at the time of feedback (EQ.7). Maps are 

displayed with the same conventions as in Fig.S2. Clusters in Hippocampus and mPFC survived 

TFCE correction at the whole brain level (pTFCE <.05). Note the absence of any effect in VTA. 
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Fig.S4 Hippocampal Tracking of Inferred Position 

Coronal slice through t-statistic map showing a hippocampal region in which the model RDM 

was positively related to the neural RDM. Maps are displayed with the same conventions as in 

Fig.S2.  

 

 
Fig.S5 Matching Task 

Matching task completed by subject during learning of the causal inverse relationships. Items 

were randomly displayed in 4 quadrants of the screen, and participants were asked to match 

items of the same systems by consecutively pressing the numbers associated with each quadrant. 

For example, subjects would match the top left and bottom right corners by pressing 2 and 4 

consecutively. Correct matches were indicated by a green line connecting the shapes and 

incorrect responses were indicated by connecting shapes with a red line.  
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Fig.S6 Correlation Matrix of Regressors in Position Tracking Analysis 

Average Pearson correlations for all predictor variables in the position tracking analysis (Fig.4). 

All correlations were averaged over subjects and systems. The regressors were as follows: the 

𝐷𝐽𝑆 of the currently updated (relevant) system (𝐷𝐽𝑆_rel), 𝐷𝐽𝑆 of the irrelevant system (𝐷𝐽𝑆_irr), 

the identity of the chosen shape (CS), the identity of the unchosen shape (US), choice location 

(right or left side; CL), the outcome identity (OI), and the signed reward prediction error (rPE) 

computed by the weighted-inference model.  

 

Model 𝛼 Median 𝛼 IQR 𝛽 Median 𝛽 SD 𝛾 Median 𝛾 SD 

Weighted 

Inference 

1.04 0.49 0.04 0.045 1.29 1.27 

No 

Inference 

.99 0.44 

 

.049 0.05 0 0 

Perfect 

Inference 

1.03 .56 .032 .033 1 0 

Table S1. Distributions of parameter estimates for each behavioral model. 

fMRI activation table 

 

    Peak (MNI) 

Region  cluster 

size (k) 

p-value 

(uncorrected) 

p-value 

TFCE 

t-stat  x y z 

L.Ant. Insula 210  2.78x10-6 .005 5.69 -30 22 2 

R.Ant. Insula 93 7.90x10-6 .02 5.35 32 26 0 
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L. Dorsolateral 

PFC 

1209 5.42x10-7 4.00 

x10-4 

6.22 -36  8  36 

R. Dorsolateral 

PFC 

707 1.45x10-6 .002 5.9 46 24 28 

preSMA/Anterior 

Cingulate Cortex 

1319 1.93x10-8 0 7.31 0 18 50 

mPFC 310 3.61x10-5 .0720 4.85 -4  56 12 

Table S2. Univariate Activation at the Time of Feedback Given 𝑫𝑲𝑳
𝑺𝒖𝒎 Update (related to 

Fig.S2): ✶ indicates TFCE correction with an independently defined ROI. 

    Peak 

(MNI) 

   

Region  Voxels p-value p-value 

TFCE 

t-stat 

(max) 

x y z 

L. Anterior 

Insula 

116 7.38x10-7 .028 6.12 -30 22  -4 

R. Anterior 

Insula 

150 1.21x10-6 .029 5.58 32 22 -2 

L. Dorsolateral 

PFC 

649 1.18x10-5 .025 5.22 -44 24 28 

R. Dorsolateral 

PFC 

617 1.97x10-5 .025 5.05 44 26 28 

Pre-

Supplementary 

Motor Area/ 

Anterior 

Cingulate 

Cortex 

557 1.86x10-6 .015 5.86 4 20 50 

Ventral 

Tegmental 

Area\Substantia 

Nigra✶ 

89 .0005 .01 3.99 2 -18 -10 

Table S3. Univariate Activation at the Time of Feedback Given 𝐷𝐾𝐿
𝐷𝑖𝑓𝑓

 Difference Magnitude 

(related to Fig. 2): ✶ indicates TFCE correction with an anatomically independent defined ROI. 

    Peak 

(MNI) 

   

Region  Voxels p-value 

(uncorrected) 

p-value 

TFCE 

t-stat 

(max) 

x y z 

mPFC✶ 141 .002 .008 3.54 -6 50 -10 

Table S4. Decoding of the latent Cause Magnitude (related to Fig. 3B): ✶ indicates TFCE 

correction with anatomically independent defined ROI 
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    Peak 

(MNI) 

   

Region  Voxels p-value p-value 

TFCE 

t-stat 

(max) 

x y z 

mPFC ✶ 44 2.55x10-4 .0053 4.19 8 46 -10 

Ventral 

Tegmental 

Area\Substantia 

Nigra✶ 

63 7.30-4 .014 3.82 -2 -20 -12 

Table S5. Decodability of Latent Cause Correlated with Model Based Update (related to Fig. 

3C): ✶ indicates TFCE correction with an anatomically independent defined ROI 

    Peak 

(MNI) 

   

Region  Voxels p-value p-value 

TFCE 

t-stat 

(max) 

x y z 

L. 

Posterior 

OFC ✶ 

25 .0007 .002 4.24 -26 30 -12 

R. 

Posterior 

OFC ✶ 

23  .0002 .007 3.78 28 28 -14 

mPFC✶ 94 8.61x10-5 .0008 4.56 4 58 -4 

Vis. 

Cortex 

10602 4.14x10-6 2.71x10-17 5.65 6 -72 2 

Table S6. Tracking Position of Systems within Association Space (related to Fig. 4): ✶ indicates 

TFCE correction with an anatomically independent defined ROI 
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