

1 The impact of low input DNA on the reliability of DNA
2 methylation as measured by the Illumina Infinium
3 MethylationEPIC BeadChip

4 Sarah Holmes Watkins^{*1}, Karen Ho², Christian Testa³, Louise Falk⁴, Patrice Soule⁵, Linda V. Nguyen⁶,
5 Sophie FitzGibbon², Catherine Slack², Jarvis T. Chen³, George Davey Smith¹, Immaculata De Vivo^{5,6},
6 Andrew J. Simpkin⁷, Kate Tilling¹, Pamela D. Waterman³, Nancy Krieger³, Matthew Suderman¹,
7 Caroline Relton¹

8 ¹MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School,
9 University of Bristol, Bristol, UK

10 ²Bristol Bioresource Laboratories, Population Health Sciences, Bristol Medical School,
11 University of Bristol, Bristol, UK

12 ³Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard
13 University, Boston, MA 02115, USA

14 ⁴Integrative Cancer Epidemiology Programme (ICEP), Population Health Sciences, Bristol Medical
15 School, University of Bristol, Bristol, UK

16 ⁵Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard
17 T.H. Chan School of Public Health, Boston, MA, USA

18 ⁶Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,
19 USA

20 ⁷School of Medicine, National University of Ireland Galway, Galway, Ireland

21 * Corresponding author

22 **Funding**

23 This work was funded by the National Institutes of Health/National Institute on Minority Health and
24 Health Disparities (NIMHD) (5R01MD014304). The prior MBMS study was funded by the National
25 Institutes of Health/National Institute on Aging (1 R01 AG027122). The funder had no role in study
26 design, data collection and analysis, decision to publish, or preparation of the manuscript.

27 **Conflict of interest**

28 The authors declare no conflicts of interest

29 **Author contributions**

30 Designed the study: NK, CR, IDV, AJS, KT, PDW, JC, MS, GDS

31 Generated the pilot study data: KH, LF

32 Extracted DNA from MBMS dried blood spots: PS, LN, IDV

33 Generated MBMS Illumina data: KH, LF, SF, CS

34 Generated MBMS phenotype data: NK, CT, JC, PDW

35 Designed the analyses: MS, CR, SHW, KT

36 Conducted analyses: SHW
37 Critically reviewed and revised the analyses: CR, MS, SHW, NK, CT, JC, PDW, IDV, AJS, KT
38 SHW wrote the manuscript; all authors reviewed and revised the manuscript.

39 **Abstract**

40 **Background:** DNA methylation (DNAm) is commonly assayed using the Illumina Infinium
41 MethylationEPIC BeadChip, but there is currently little published evidence to define the lower limits
42 of the amount of DNA that can be used whilst preserving data quality. Such evidence is valuable for
43 analyses utilising precious or limited DNA sources.

44 **Materials and methods:** We use a single pooled sample of DNA in quadruplicate at three dilutions to
45 define replicability and noise, and an independent population dataset of 328 individuals (from a
46 community-based study including US-born non-Hispanic Black and white persons) to assess the
47 impact of total DNA input on the quality of data generated using the Illumina Infinium
48 MethylationEPIC BeadChip.

49 **Results:** Data are less reliable and more noisy as DNA input decreases to 40ng, with clear reductions
50 in data quality; however samples with a total input as low as 40ng pass standard quality control
51 tests, and we observe little evidence that low input DNA obscures the associations between DNAm
52 and two phenotypes, age and smoking status.

53 **Conclusions:** DNA input as low as 40ng can be used with the Illumina Infinium MethylationEPIC
54 BeadChip, provided quality checks and sensitivity analyses are undertaken.

55 **Keywords:** DNA methylation, Illumina Infinium MethylationEPIC BeadChip, DNA input, low DNA,
56 reliability

57 **Introduction**

58 Illumina Infinium MethylationEPIC BeadChips have been used extensively in epigenetic studies.
59 Although Illumina recommend using at least 250ng of DNA on their BeadChips, there has been little
60 published work examining the possibility of using less DNA than this. As DNA methylation (DNAm)
61 profiling becomes more widespread, there is a need to ensure robust and reliable data can be
62 generated from precious (e.g. clinical or historic) or limited (e.g. archaeological) biosamples. Two
63 previous studies have assessed the effect of low levels of input DNA on the Illumina Infinium
64 HumanMethylation450 BeadChip by generating data from multiple dilutions of the same biological
65 samples. The first reported that correlations between genome-wide DNAm profiles remain above
66 0.96 for dilutions containing as little as 10ng of DNA (Whalley et al., 2021); the second reported
67 correlations with input of 1µg for total input as low as 10ng remained above 0.92 (Hovestadt et al.,

68 2013). However, no study has yet investigated the expected increase in signal variability or noise
69 induced by low input DNA and its impact on statistical power to detect associations with DNAm; this
70 is important because a number of studies have demonstrated that many probes on these BeadChips
71 have low reliability, particularly where DNAm sites are either highly methylated or unmethylated
72 and have low variance (Dugue et al., 2016; Forest et al., 2018; Xu & Taylor, 2021), and conceivably
73 this might be exacerbated by low levels of input DNA applied to the BeadChip. Additionally, no
74 comparison of data generated using different input levels has yet been carried out using a large
75 population dataset.

76 Here we study assess whether low yields of input DNA are sufficient to reliably detect associations
77 with DNA methylation measured using the Illumina Infinium MethylationEPIC BeadChip. The study
78 consists of two parts: an initial analysis, where we assess reliability and noise within a single sample
79 at three DNA concentrations; and a subsequent assessment of total input DNA on data quality and
80 phenotype associations, using an independent population-based DNAm dataset of 328 individuals
81 from the My Body My Story (MBMS) study (Krieger et al., 2011). We believe this is the first study
82 assessing the impact of low input DNA explicitly utilising data from a large and socially diverse
83 cohort.

84 Materials and methods

85 Study participants

86 The initial analysis (which we refer to as Study 1) included varied DNA dilutions from a single source,
87 utilising a DNA sample pooled from several individuals stored at -80°C. Unfortunately no details
88 about the individuals contributing to this pooled sample were available. The sample was used to
89 generate three dilutions resulting in three quantities of total DNA input (40ng, 200ng, and 400ng), in
90 quadruplicate, resulting in 12 samples.

91 The second analysis (which we refer to as Study 2) utilised the MBMS cohort. MBMS is a cohort
92 recruited from four community health centers in Boston between 2008 and 2010, and was designed
93 to investigate how racial discrimination affects risk of cardiovascular disease, taking into account a
94 range of social and environmental factors. The cohort and recruitment procedures have previously
95 been described in detail (Krieger et al., 2011); briefly, the study recruited 1005 individuals who met
96 study inclusion criteria and were randomly selected from the patient rosters of the community
97 health centers. Participants were eligible if they were aged between 35 and 64 years, had been born
98 in the US, and self-identified their race/ethnicity as white non-Hispanic or black non-Hispanic.

99 Among the 1005 MBMS participants, 85% provided a finger prick blood sample on to filter paper
100 (409 black; 466 white), and consequently biological material was limited and in some instances of
101 poor quality. Blood spots were stored at -20°C, and DNA was extracted from blood spots using the
102 QIAamp DNA Investigator Kit for FTA and Guthrie cards, with samples randomised across 96 well
103 plates. Of the 875 participants who provided blood spots, 472 of the samples were judged to be
104 suitable for DNA extraction (blood spots judged not to be suitable were primarily the first
105 community health center where recruitment took place, whose membership was predominantly
106 white). Of those, 48 yielded less than 40ng of DNA, the lowest input level investigated in Study 1, so
107 we removed them from further analysis. After removing a further 96 participants from the sample
108 set due to poor quality DNA extraction (as determined by high numbers of undetected probes on the
109 EPIC BeadChip), there were 328 participants with DNA methylation data for analysis. DNAm data
110 were generated using the Illumina Infinium MethylationEPIC BeadChip as described below.

111 DNA methylation data generation

112 For both studies, extracted DNA was bisulphite converted with the EZ DNA Methylation-Lightning™
113 Kit (Zymo Research) according to the manufacturer's instructions. The eluant from the bisulphite-
114 converted DNA was then applied to the Illumina Infinium MethylationEPIC Beadchip to measure
115 DNA methylation, according to the manufacturer's protocol. The EPIC BeadChips were scanned using
116 Illumina iScan, with an initial quality review conducted with GenomeStudio. Sample QC and
117 normalisation were conducted using the pipeline implemented in the *meffil* R package, which has
118 previously been described in detail (Min, Hemani, Davey Smith, Relton, & Suderman, 2018). Blood
119 cell composition was estimated for MBMS using a deconvolution algorithm (Houseman et al., 2012)
120 implemented in *meffil*, based on the “blood gse35069 complete” cell type reference. DNA
121 methylation is reported in beta values; this measures methylation on a scale of 0 (0% methylation)
122 to 1 (100% methylation).

123 Study 1: Assessing reliability of DNAm measurement with low input DNA

124 Using the single pooled sample of DNA described above, we used two methods to assess the
125 reliability of DNAm measurements at different input DNA levels. Firstly, we assessed how well the
126 measurements at the lower input levels (200ng and 40ng) replicate the measurements obtained
127 with 400ng input DNA. To do this we calculated the mean methylation at each DNAm site across the
128 four technical replicates at each input level. We then partitioned DNAm sites into bands based on
129 their methylation level measured at 400ng (used as the reference level) in increments of 5%. Within
130 each partition we calculated the standard deviation of the DNA methylation levels across all sites in

131 the partition and visualised this variation using boxplots at 40ng and 200ng. Stronger replication of
132 the 400ng measurements would correspond to smaller variation within each partition.

133 Secondly, we assessed the noise in DNAm measurement within each of the three DNA input levels
134 using their four replicates. At each DNAm site, we took the mean of replicates 1 and 2, and used
135 these means to partition the dataset into bands of 5% methylation as we did for the first analysis.
136 Within each partition we then calculated the mean of replicates 3 and 4 at each DNAm site. We
137 visualised the variation within each partition using boxplots of the mean of replicates 3 and 4 for all
138 sites within the partition. Levene's test (*leveneTest* in the R package *car*) was used to determine
139 whether lower DNA input was associated with greater variance within each partition. Greater
140 measurement noise would correspond to greater variance. As we tested 20 partitions, we used a p-
141 value threshold corrected for multiple tests ($p < 0.05/20$).

142 Study 2: Assessing the impact of low input DNA in a cohort study

143 We then assessed how low DNA input affects the quality of Illumina Infinium MethylationEPIC
144 Beadchip data using data from our cohort study, MBMS. We conducted two sets of analyses: we
145 calculated a variety of QC-related metrics, and evaluated the effect of input DNA level on robust
146 associations that have been reported in the DNAm literature.

147 We utilised two standard QC metrics to represent data quality: proportion of probes with low signal,
148 and median methylated signal across all probes on the BeadChip. Low signal was assessed using
149 detection p-values, which indicate confidence that the signal from a probe is detectable above
150 background noise. We used a detection p-value threshold of 0.01 to distinguish between detection
151 success and failure. We plotted the relationship between the number of undetected probes and
152 DNA input level and correlated the two variables to test the strength of the association. Median
153 methylated signal refers to the strength of probe signal due to binding of methylated DNA to a
154 probe. We plotted median methylated signal per sample against DNA input level, and tested their
155 association.

156 In addition to these QC steps, we compared DNAm measurements for each sample against a gold
157 standard derived from all 135 samples with DNA input > 200 ng by simply calculating the mean for
158 each individual probe on the BeadChip across the 135 samples. For all remaining samples with DNA
159 < 200 ng (n=193), we calculated the difference between the methylation value at each probe and that
160 of the gold standard, and summarised these differences per sample by taking the mean absolute
161 difference, or MAD. We then evaluated the association between MAD and DNA input level using
162 plots and by calculating Pearson's correlation.

163 We tested whether variance in DNAm is associated with DNA input level at each site on the
164 BeadChip using a procedure detailed elsewhere (Staley et al., 2021). We firstly use the function *rq* (a
165 least absolute deviation regression) from the R package *quantreg* to test the association between
166 methylation at each cpg site and DNA input level, including batch, cell counts, age, gender, smoking,
167 and BMI as covariates in the model. From this model we take the absolute values of the residuals,
168 and then test for an association between those residuals and DNA input level. We extracted
169 coefficients and p-values from the model and applied a Bonferroni-corrected threshold of 5.8e-08
170 (0.05/857774) to identify associated sites. We took the -log10 of the p-values and created a
171 Manhattan plot.

172 To assess how DNA input level might affect downstream analyses, we tested whether lower input
173 DNA might increase noise in DNAm measurements to the point of obscuring associations with
174 phenotypes. We tested this for two phenotypes, age and smoking status, because these both have
175 robust associations with DNAm that can be reliably detected. We estimated epigenetic age using the
176 Horvath (Horvath, 2013) and Hannum (Hannum et al., 2013) clocks. The absolute of the difference
177 between epigenetic age and chronological age was calculated, and this difference was plotted
178 against DNA input level. As random measurement error in a continuous outcome increases standard
179 error, we used loess regression to test whether the standard error increased as DNA input decreased
180 - this asks whether epigenetic age prediction becomes more noisy as DNA input level decreases. To
181 assess whether noise might obscure the relationship between DNAm and smoking status, we tested
182 whether reduced DNA input was associated with increased noise in the AHRR CpG cg05575921. To
183 do this we regressed out the effect of smoking status on the unadjusted value of cg05575921 using a
184 linear model, and tested the relationship between the absolute values of the residuals from the
185 model and DNA input level in the same way as for epigenetic age, using loess regression. To derive
186 smoking status, MBMS participants were asked "Have you smoked 100 or more cigarettes in your
187 entire life?" and "Do you now smoke cigarettes every day, some days, or not at all?"; responses were
188 combined and consolidated as either 'current smoker', 'former smoker' or 'never smoker'.

189 Results

190 Participant characteristics

191 Three quarters (74%) of participants in our study identified their race/ethnicity as Black non-
192 Hispanic, 56% lived in areas with high numbers of individuals below the poverty line, and two thirds
193 (66%) had less than 4 years of college education. Characteristics of the 328 participants are
194 summarised in Table 1; DNA quantity is marginally associated with smoking status (lower quantities
195 for former and never smokers compared to current smokers), race/ethnicity (lower quantities for

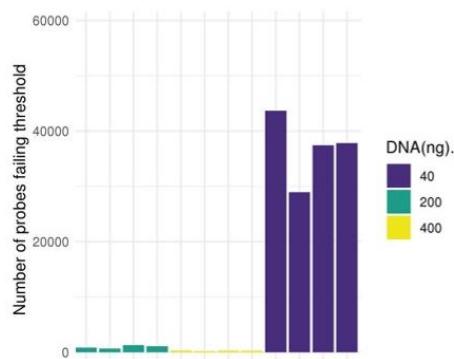
196 white participants), and education (lower quantities for participants with <4 years of college
197 education, and highest quantities for participants with less than high school education).

		N (%) unless otherwise stated (total = 328)	Regression coefficient/ Mean input DNA (ng)	Association with total input DNA (p value)
Age	Mean (years)	48.9 (mean)	0.05	0.97
	Standard deviation (years)	7.9 (SD)		
Gender	Women (cis-gender)	210 (64%)	231.7 ng	reference
	Men (cis-gender)	118 (36%)	201.1 ng	0.13
Smoking	Current	150 (46%)	248.7 ng	reference
	Former	63 (19%)	189.9 ng	0.03
	Never	115 (35%)	201 ng	0.03
Race/ethnicity	Black NH	242 (74%)	234.2 ng	reference
	White NH	86 (26%)	182.7 ng	0.02
Census tract poverty, % (2005-2009)	<5% below poverty line	17 (5%)	230.2 ng	reference
	>=5%,<10% below poverty line	53 (16%)	246.1 ng	0.75
	>=10%,<20% below poverty line	75 (23%)	176.4 ng	0.26
	>=20%,<40% below poverty line ("poverty area")	131 (40%)	231.7 ng	0.97
	>=40% below poverty line ("extreme poverty area")	52 (16%)	227.7 ng	0.96
Education	Less than high school	42 (13%)	273.7 ng	0.003
	> High school, < 4 years college	218 (66%)	226.2 ng	0.02
	4+ years college	68 (21%)	170.3 ng	reference

198 *Table 1: Characteristics of the 328 MBMS participants with DNAm data passing QC.*

199 DNA methylation data

200 In Study 1, quality control identified 55,706 probes for removal due to failed detection, primarily for
201 to samples with 40ng input DNA (see Figure 1). This left 807,787 CpG sites for further analysis. For
202 MBMS (Study 2) a total of 328 samples and 857,774 sites passed probe detection checks; however
203 35 of these samples had a mismatch between the gender they reported in the study and sex as
204 predicted by probe signal intensities targeting sites on the X and Y chromosomes. Furthermore,
205 whereas correlation between chronological age and age estimated from DNA methylation was high
206 in the dataset (Horvath clock R=0.63, Hannum clock R=0.69), correlation among these 35 was very
207 low (Horvath clock R=-0.01, Hannum clock R=0.18). We included these 35 samples in our assessment
208 of data quality using QC analyses as they displayed no evidence of low quality, and there was no
209 relationship between sex/gender mismatch and DNA concentration (p=0.72, Wilcoxon rank sum
210 test); but they were removed from analyses with phenotypes (epigenetic age and smoking), leaving
211 293 individuals in the phenotype analysis.

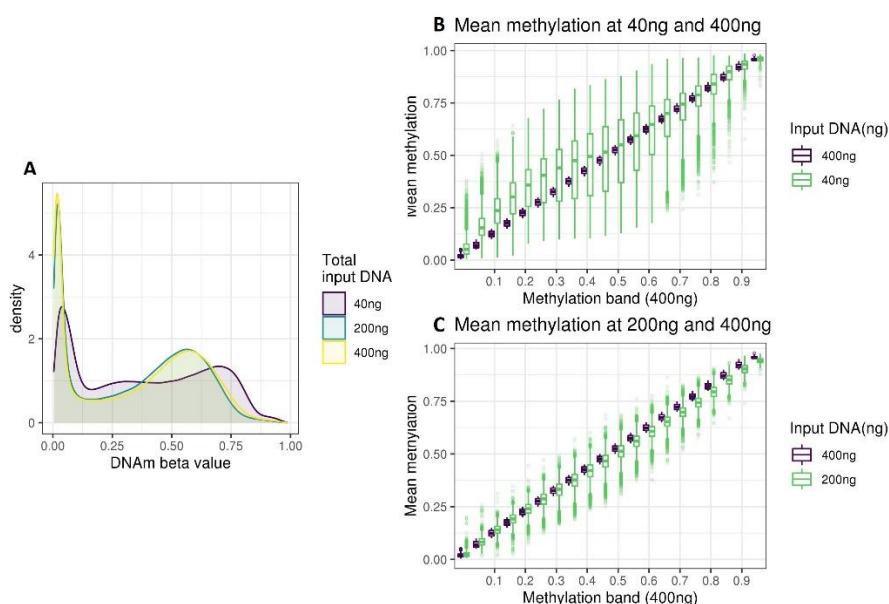


212

213 *Figure 1: Number of probes that fail the detection p-value at 40ng, 200ng and 400ng. Each bar represents one sample.*

214 **Study 1 results: Assessing reliability of DNAm measurement with low input DNA**

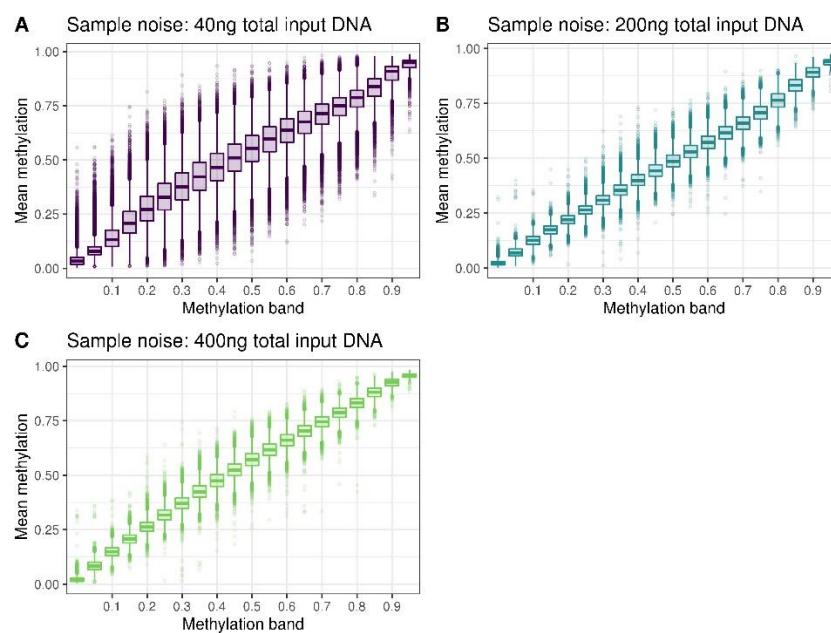
215 The overall distributions of the methylation measurements across the BeadChip are virtually
216 identical at 200ng and 400ng of input DNA, but it is skewed toward higher methylation levels for the
217 40ng dilution (Figure 2A). To investigate the reliability of methylation measurements when samples
218 have low input DNA, we assessed how well measurements at 200ng and 40ng replicated those at
219 400ng by binning methylation sites according to methylation levels determined at 400ng, our
220 reference. For both 40ng and 200ng, variance within each bin tends to be larger in bins representing
221 intermediate methylation levels at 400ng. The main difference is the variation as measured by
222 standard deviation tends to be 2-4 times larger at 40ng (SD = 0.01 to 0.04) than at 200ng (SD = 0.02
223 to 0.17) (Figure 2B and 2C; Supplementary Table 1). This indicates a reduced replication of 400ng
224 signal at 40ng compared to 200ng.



225

226 *Figure 2: A: Density of methylation beta values across the EPIC BeadChip for 40ng, 200ng and 400ng DNA. B: boxplot of the*
227 *methylation of DNAm sites at 40ng, grouped in bins of 0.05 based on the methylation level of the DNAm site at 400ng. C:*
228 *boxplot of the methylation of DNAm sites at 200ng, grouped in bins of 0.05 based on the methylation level of the DNAm site*
229 *at 400ng.*

230 As we had quadruplicate measurements for the three DNA input levels we were also able to assess
231 the noise within each input level. This is important because measurements by Illumina Infinium
232 MethylationEPIC Beadchips are known to be noisy, and low concentrations of DNA may exacerbate
233 this issue (Belsky et al., 2020; Xu & Taylor, 2021). To assess noise at each DNA input level, we used
234 two replicates to partition methylation sites by methylation level and then calculated the variance of
235 each bin from the other two replicates. Using Levene's test of variance to compare bin variances
236 between dilutions, we show that 200ng is noisier than 400ng in 17 out of the 20 partitions (at
237 $p<0.05/20$); and that 40ng is noisier than both 400ng and 200ng in all 20 partitions (at $p<0.05/20$).
238 This demonstrates that as DNA input level decreases, measurement noise increases. Bin variances
239 are illustrated in Figure 3, and Levene's test statistics in Supplementary table 2.



240

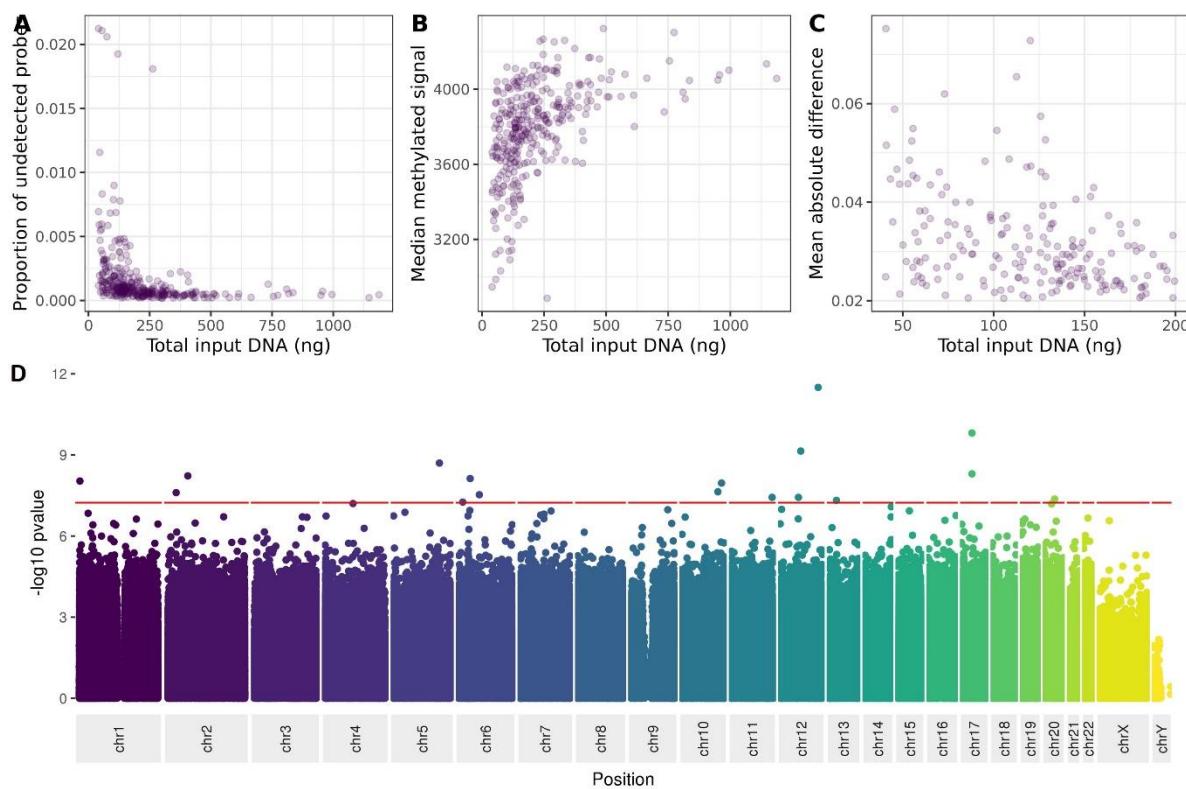
241 *Figure 3: Plots of sample noise at A 40ng, B 200ng and C 400ng total input DNA. All CpG sites were binned into 5%*
242 *partitions of methylation beta value based on the mean of replicates 1 and 2, and the mean of replicates 3 and 4 was used*
243 *to create the boxplots.*

244 **Study 2 results: Assessing the impact of low input DNA in a cohort study**

245 DNA for the MBMS cohort was extracted from dried blood spots and resulted in a range of DNA
246 quantities for the 472 participants for whom DNA was extracted (mean 173ng, range 0ng to
247 1186.8ng). As we excluded participants with less than 40ng DNA, and those with poor quality DNA,
248 DNA quantities were higher for the 328 participants who were included in the analyses included in
249 this paper (mean 220.7ng, range 40.6ng to 1186.8ng). We assessed the impact of DNA input level on
250 the quality of the MBMS DNAm data in three ways: the proportion of probes failing detection p-
251 value, the median strength of methylated signal, and the mean absolute deviation of samples with
252 lower than recommended DNA (200ng) in comparison to a gold standard based on measurements
253 from the samples with at least 200ng DNA. Although the proportion of undetected probes increases

254 as input DNA decreases ($R=-0.26, p=1.2e-06$), we find that samples down to 40ng have acceptable
255 proportions of undetected probes, i.e. within the limits of typical Illumina QC pipelines ($<0.025\%$)
256 (Figure 4A). Similarly, although median methylated signal is correlated with DNA input level ($R=0.46$,
257 $p<2.2e-16$), the signal does not fall below typical quality thresholds (Figure 4B). Finally, as expected,
258 samples with lower DNA input level tend to have higher mean absolute deviation from the gold
259 standard based on samples with at least 200ng of DNA ($R=-0.38, p=6.8e-08$); Figure 4C. Thus, we
260 have shown that measurement quality and precision decrease with input DNA levels.

261 We then asked whether low DNA input level affects the variance of methylation measurements at
262 specific individual sites on the BeadChip. Using linear regression with a BeadChip-wide Bonferroni-
263 corrected threshold of $5.8e-08$, we observe associations between variance in methylation value and
264 DNA input level at 17 sites (Figure 4D and Supplementary table 3).

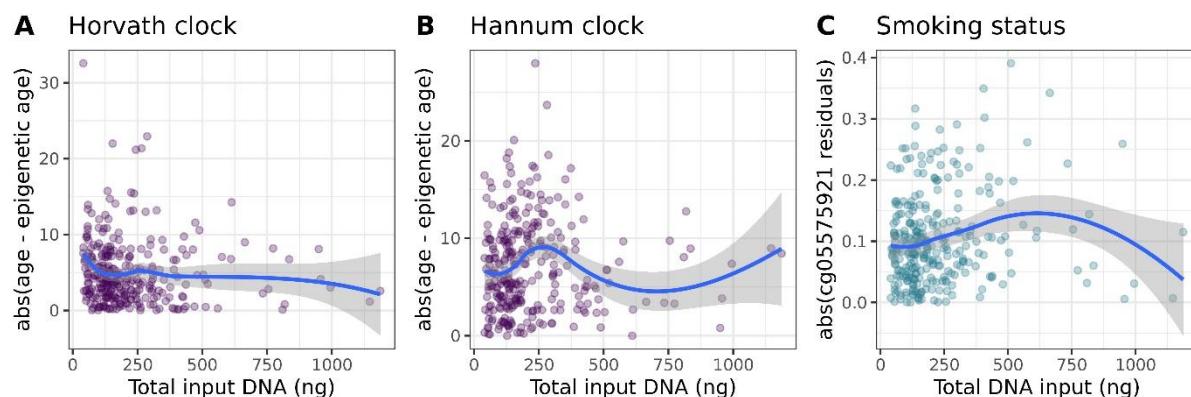


265

266 *Figure 4: The relationship between DNA input level and A proportion of probes failing detection p-value, B median*
267 *methylation signal, C mean absolute deviation from a composite of the high-input samples, D variance at each site on the*
268 *Illumina Infinium MethylationEPIC Beadchip.*

269 Finally, we asked to what extent DNA input level might affect our ability to detect the association
270 between DNA methylation and two phenotypes (age and smoking status) that have been strongly
271 associated with DNA methylation in numerous previous studies. Using loess regression we found no
272 evidence of an increase of standard error with decreasing DNA input level, suggesting that low DNA

273 input does not obscure associations between DNA methylation, and age estimation (as measured by
274 the Horvath and Hannum epigenetic clocks) or smoking status (Figure 5).



275
276 *Figure 5: A scatter plot of the relationship between DNA input level, and the absolute of the difference between epigenetic*
277 *age as estimated by the Horvath clock and chronological age; B A scatter plot of the relationship between DNA input, and*
278 *the absolute of the difference between epigenetic age as estimated by the Hannum clock and chronological age; C A scatter*
279 *plot of the residuals of the model lm(CG05575921 ~ smoking status) against total DNA input. For each plot the blue line*
280 *represents the loess regression line and the grey shading represents the standard error of the regression.*

281 Discussion and conclusions

282 This study demonstrates that although as little as 40ng is sufficient to produce Illumina Infinium
283 MethylationEPIC Beadchip DNAm data that passes standard QC checks, data quality and reliability
284 diminish as DNA input decreases. However, this reduction in data quality may have limited practical
285 impact on downstream analyses, as we show that two strong phenotype associations with DNAm –
286 age and smoking – do not appear to be adversely affected by using DNA input levels as low as 40ng.
287 We hope this demonstration can empower studies to conduct DNAm investigations where it might
288 have previously been assumed that samples were too limited to provide sufficient DNA; but due to
289 the increase in both noise and variance that we have demonstrated, we would recommend caution
290 and use of sensitivity analyses when working with less than 200ng DNA on the Illumina Infinium
291 MethylationEPIC Beadchip.

292 Our evaluation of DNA from a single source at three dilutions illustrates that using 40ng of DNA
293 produces noisier measurements than using 200ng, and using 200ng is noisier than 400ng. This
294 corresponds to reduced agreement we report between measurements at 40ng than at 200ng
295 compared to those at 400ng. Analysis of data from a cohort of 328 individuals shows a clear impact
296 of decreasing DNA input on the proportion of probes failing detection and on the strength of
297 methylation signal; this is presumably because there is less DNA binding to probes. This also appears
298 to be the reason for the clear impact of decreasing DNA input level on increasing deviation from a
299 gold standard composite profile based on samples with at least 200ng DNA. Importantly, our
300 analyses show how fast data quality decreases as input DNA decreases, so our findings can be used

301 identify thresholds on input DNA suited to specific research questions. It is notable that data quality
302 is acceptable as assessed by common quality control metrics when input DNA as low as 40 ng.

303 We would strongly recommend that researchers using DNA input of less than 200ng should run
304 quality checks and sensitivity analyses with the lower concentration samples. As we show DNA input
305 is strongly associated with variance at many specific DNAm sites, we would suggest extra caution
306 around these sites as they may be particularly affected by low DNA concentrations. We have
307 provided the full summary statistics from this variance EWAS in Supplementary table 3 so that
308 researchers can utilise these results with p-value or effect thresholds appropriate to their data and
309 research question. Finally, we show that associations of DNA methylation with age and smoking are
310 observable in samples with input DNA as low as 40ng, and that we see little evidence of increased
311 measurement noise as DNA input decreases to 40ng. This is encouraging as it suggests that useful
312 data can be derived from low input DNA; but we would caution that we have tested two exposures
313 that have particularly strong associations with DNAm, and so associations for other phenotypes may
314 be affected to a greater extent.

315 Strengths of our study include complementary analyses of both control and human cohort DNA
316 samples; and both the large number and social diversity of individuals in the cohort analysis (n=328).
317 Social diversity is very important for study generalisability because DNAm is affected by our social
318 environment. The main limitation is that the impact of DNA input level may well be different for
319 differing sample types and provenances, as DNA quality is affected by storage and extraction
320 methods. Indeed we can see that with the much larger number of probes failing detection p-value
321 thresholds from the 40ng samples of pooled frozen DNA in comparison to samples with close to
322 40ng that were extracted from dried blood spots as part of the MBMS study. However, we were not
323 able to measure DNA quality in this study so cannot comment further on how this may impact
324 results. Additionally, we did not assay less than 40ng DNA, so we cannot comment on how data
325 quality might be affected by lower levels of DNA input; future studies may want to investigate data
326 quality using lower inputs.

327 Acknowledgements

328 We are extremely grateful to all the MBMS participants who took part in this study, the staff at the
329 four participating community health centers, and the researchers who conducted participant
330 recruitment and interviews. We thank Elmer Freeman, Director of the Center for Community Health
331 Education Research and Services, Inc (Northeastern University, Boston) and Brent Coull, Professor of
332 Biostatistics and Environmental Health (Harvard TH Chan School of Public Health) for their
333 involvement with the original MBMS study and continued engagement with this project.

334 **References**

335 Belsky, D. W., Caspi, A., Arseneault, L., Baccarelli, A., Corcoran, D. L., Gao, X., . . . Moffitt, T. E. (2020).
336 Quantification of the pace of biological aging in humans through a blood test, the
337 DunedinPoAm DNA methylation algorithm. *Elife*, 9. doi:10.7554/eLife.54870

338 Dugue, P. A., English, D. R., MacInnis, R. J., Jung, C. H., Bassett, J. K., FitzGerald, L. M., . . . Milne, R. L.
339 (2016). Reliability of DNA methylation measures from dried blood spots and mononuclear
340 cells using the HumanMethylation450k BeadArray. *Sci Rep*, 6, 30317. doi:10.1038/srep30317

341 Forest, M., O'Donnell, K. J., Voisin, G., Gaudreau, H., MacIsaac, J. L., McEwen, L. M., . . . Greenwood,
342 C. M. T. (2018). Agreement in DNA methylation levels from the Illumina 450K array across
343 batches, tissues, and time. *Epigenetics*, 13(1), 19-32. doi:10.1080/15592294.2017.1411443

344 Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., . . . Zhang, K. (2013). Genome-
345 wide methylation profiles reveal quantitative views of human aging rates. *Mol Cell*, 49(2),
346 359-367. doi:10.1016/j.molcel.2012.10.016

347 Horvath, S. (2013). DNA methylation age of human tissues and cell types. *Genome Biol*, 14(10), R115.
348 doi:10.1186/gb-2013-14-10-r115

349 Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., . . .
350 Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture
351 distribution. *BMC Bioinformatics*, 13, 86. doi:10.1186/1471-2105-13-86

352 Hovestadt, V., Remke, M., Kool, M., Pietsch, T., Northcott, P. A., Fischer, R., . . . Jones, D. T. (2013).
353 Robust molecular subgrouping and copy-number profiling of medulloblastoma from small
354 amounts of archival tumour material using high-density DNA methylation arrays. *Acta
355 Neuropathol*, 125(6), 913-916. doi:10.1007/s00401-013-1126-5

356 Krieger, N., Waterman, P. D., Kosheleva, A., Chen, J. T., Carney, D. R., Smith, K. W., . . . Samuel, L.
357 (2011). Exposing racial discrimination: implicit & explicit measures--the My Body, My Story
358 study of 1005 US-born black & white community health center members. *PLoS One*, 6(11),
359 e27636. doi:10.1371/journal.pone.0027636

360 Min, J. L., Hemani, G., Davey Smith, G., Relton, C., & Suderman, M. (2018). Meffil: efficient
361 normalization and analysis of very large DNA methylation datasets. *Bioinformatics*, 34(23),
362 3983-3989. doi:10.1093/bioinformatics/bty476

363 Staley, J. R., Windmeijer, F., Suderman, M., Lyon, M. S., Davey Smith, G., & Tilling, K. (2021). A robust
364 mean and variance test with application to high-dimensional phenotypes. *Eur J Epidemiol*.
365 doi:10.1007/s10654-021-00805-w

366 Whalley, C., Payne, K., Domingo, E., Blake, A., Richman, S., Brooks, J., . . . Beggs, A. D. (2021). Ultra-
367 Low DNA Input into Whole Genome Methylation Assays and Detection of Oncogenic
368 Methylation and Copy Number Variants in Circulating Tumour DNA. *Epigenomes*, 5, 6.
369 doi:10.3390/epigenomes5010006

370 Xu, Z., & Taylor, J. A. (2021). Reliability of DNA methylation measures using Illumina methylation
371 BeadChip. *Epigenetics*, 16(5), 495-502. doi:10.1080/15592294.2020.1805692

372