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Abstract 39 

Background: DNA methylation (DNAm) is commonly assayed using the Illumina Infinium 40 

MethylationEPIC BeadChip, but there is currently little published evidence to define the lower limits 41 

of the amount of DNA that can be used whilst preserving data quality. Such evidence is valuable for 42 

analyses utilising precious or limited DNA sources. 43 

Materials and methods: We use a single pooled sample of DNA in quadruplicate at three dilutions to 44 

define replicability and noise, and an independent population dataset of 328 individuals (from a 45 

community-based study including US-born non-Hispanic Black and white persons) to assess the 46 

impact of total DNA input on the quality of data generated using the Illumina Infinium 47 

MethylationEPIC BeadChip. 48 

Results: Data are less reliable and more noisy as DNA input decreases to 40ng, with clear reductions 49 

in data quality; however samples with a total input as low as 40ng pass standard quality control 50 

tests, and we observe little evidence that low input DNA obscures the associations between DNAm 51 

and two phenotypes, age and smoking status.  52 

Conclusions: DNA input as low as 40ng can be used with the Illumina Infinium MethylationEPIC 53 

BeadChip, provided quality checks and sensitivity analyses are undertaken. 54 

Keywords: DNA methylation, Illumina Infinium MethylationEPIC BeadChip, DNA input, low DNA, 55 

reliability 56 

Introduction 57 

Illumina Infinium MethylationEPIC BeadChips have been used extensively in epigenetic studies. 58 

Although Illumina recommend using at least 250ng of DNA on their BeadChips, there has been little 59 

published work examining the possibility of using less DNA than this. As DNA methylation (DNAm) 60 

profiling becomes more widespread, there is a need to ensure robust and reliable data can be 61 

generated from precious (e.g. clinical or historic) or limited (e.g. archaeological) biosamples. Two 62 

previous studies have assessed the effect of low levels of input DNA on the Illumina Infinium 63 

HumanMethylation450 BeadChip by generating data from multiple dilutions of the same biological 64 

samples. The first reported that correlations between genome-wide DNAm profiles remain above 65 

0.96 for dilutions containing as little as 10ng of DNA (Whalley et al., 2021); the second reported 66 

correlations with input of 1µg for total input as low as 10ng remained above 0.92 (Hovestadt et al., 67 
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2013). However, no study has yet investigated the expected increase in signal variability or noise 68 

induced by low input DNA and its impact on statistical power to detect associations with DNAm; this 69 

is important because a number of studies have demonstrated that many probes on these BeadChips 70 

have low reliability, particularly where DNAm sites are either highly methylated or unmethylated 71 

and have low variance (Dugue et al., 2016; Forest et al., 2018; Xu & Taylor, 2021), and conceivably 72 

this might be exacerbated by low levels of input DNA applied to the BeadChip. Additionally, no 73 

comparison of data generated using different input levels has yet been carried out using a large 74 

population dataset.  75 

Here we study assess whether low yields of input DNA are sufficient to reliably detect associations 76 

with DNA methylation measured using the Illumina Infinium MethylationEPIC BeadChip. The study 77 

consists of two parts: an initial analysis, where we assess reliability and noise within a single sample 78 

at three DNA concentrations; and a subsequent assessment of total input DNA on data quality and 79 

phenotype associations, using an independent population-based DNAm dataset of 328 individuals 80 

from the My Body My Story (MBMS) study (Krieger et al., 2011). We believe this is the first study 81 

assessing the impact of low input DNA explicitly utilising data from a large and socially diverse 82 

cohort.  83 

Materials and methods 84 

Study participants 85 

The initial analysis (which we refer to as Study 1) included varied DNA dilutions from a single source, 86 

utilising a DNA sample pooled from several individuals stored at -80°C. Unfortunately no details 87 

about the individuals contributing to this pooled sample were available. The sample was used to 88 

generate three dilutions resulting in three quantities of total DNA input (40ng, 200ng, and 400ng), in 89 

quadruplicate, resulting in 12 samples.  90 

The second analysis (which we refer to as Study 2) utilised the MBMS cohort. MBMS is a cohort 91 

recruited from four community health centers in Boston between 2008 and 2010, and was designed 92 

to investigate how racial discrimination affects risk of cardiovascular disease, taking into account a 93 

range of social and environmental factors. The cohort and recruitment procedures have previously 94 

been described in detail (Krieger et al., 2011); briefly, the study recruited 1005 individuals who met 95 

study inclusion criteria and were randomly selected from the patient rosters of the community 96 

health centers. Participants were eligible if they were aged between 35 and 64 years, had been born 97 

in the US, and self-identified their race/ethnicity as white non-Hispanic or black non-Hispanic.  98 
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Among the 1005 MBMS participants, 85% provided a finger prick blood sample on to filter paper 99 

(409 black; 466 white), and consequently biological material was limited and in some instances of 100 

poor quality. Blood spots were stored at -20°C, and DNA was extracted from blood spots using the 101 

QIAamp DNA Investigator Kit for FTA and Guthrie cards, with samples randomised across 96 well 102 

plates. Of the 875 participants who provided blood spots, 472 of the samples were judged to be 103 

suitable for DNA extraction (blood spots judged not to be suitable were primarily the first 104 

community health center where recruitment took place, whose membership was predominantly 105 

white). Of those, 48 yielded less than 40ng of DNA, the lowest input level investigated in Study 1, so 106 

we removed them from further analysis. After removing a further 96 participants from the sample 107 

set due to poor quality DNA extraction (as determined by high numbers of undetected probes on the 108 

EPIC BeadChip), there were 328 participants with DNA methylation data for analysis. DNAm data 109 

were generated using the Illumina Infinium MethylationEPIC BeadChip as described below. 110 

DNA methylation data generation 111 

For both studies, extracted DNA was bisulphite converted with the EZ DNA Methylation-Lightning™ 112 

Kit (Zymo Research) according to the manufacturer’s instructions. The eluant from the bisulphite-113 

converted DNA was then applied to the Illumina Infinium MethylationEPIC Beadchip to measure 114 

DNA methylation, according to the manufacturer’s protocol. The EPIC BeadChips were scanned using 115 

Illumina iScan, with an initial quality review conducted with GenomeStudio. Sample QC and 116 

normalisation were conducted using the pipeline implemented in the meffil R package, which has 117 

previously been described in detail (Min, Hemani, Davey Smith, Relton, & Suderman, 2018). Blood 118 

cell composition was estimated for MBMS using a deconvolution algorithm (Houseman et al., 2012) 119 

implemented in meffil, based on the “blood gse35069 complete” cell type reference. DNA 120 

methylation is reported in beta values; this measures methylation on a scale of 0 (0% methylation) 121 

to 1 (100% methylation). 122 

Study 1: Assessing reliability of DNAm measurement with low input DNA  123 

Using the single pooled sample of DNA described above, we used two methods to assess the 124 

reliability of DNAm measurements at different input DNA levels. Firstly, we assessed how well the 125 

measurements at the lower input levels (200ng and 40ng) replicate the measurements obtained 126 

with 400ng input DNA. To do this we calculated the mean methylation at each DNAm site across the 127 

four technical replicates at each input level. We then partitioned DNAm sites into bands based on 128 

their methylation level measured at 400ng (used as the reference level) in increments of 5%. Within 129 

each partition we calculated the standard deviation of the DNA methylation levels across all sites in 130 
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the partition and visualised this variation using boxplots at 40ng and 200ng. Stronger replication of 131 

the 400ng measurements would correspond to smaller variation within each partition.  132 

Secondly, we assessed the noise in DNAm measurement within each of the three DNA input levels 133 

using their four replicates. At each DNAm site, we took the mean of replicates 1 and 2, and used 134 

these means to partition the dataset into bands of 5% methylation as we did for the first analysis. 135 

Within each partition we then calculated the mean of replicates 3 and 4 at each DNAm site. We 136 

visualised the variation within each partition using boxplots of the mean of replicates 3 and 4 for all 137 

sites within the partition. Levene’s test (leveneTest in the R package car) was used to determine 138 

whether lower DNA input was associated with greater variance within each partition. Greater 139 

measurement noise would correspond to greater variance. As we tested 20 partitions, we used a p-140 

value threshold corrected for multiple tests (p<0.05/20). 141 

Study 2: Assessing the impact of low input DNA in a cohort study 142 

We then assessed how low DNA input affects the quality of Illumina Infinium MethylationEPIC 143 

Beadchip data using data from our cohort study, MBMS. We conducted two sets of analyses: we 144 

calculated a variety of QC-related metrics, and evaluated the effect of input DNA level on robust 145 

associations that have been reported in the DNAm literature.  146 

We utilised two standard QC metrics to represent data quality: proportion of probes with low signal, 147 

and median methylated signal across all probes on the BeadChip. Low signal was assessed using 148 

detection p-values, which indicate confidence that the signal from a probe is detectable above 149 

background noise. We used a detection p-value threshold of 0.01 to distinguish between detection 150 

success and failure. We plotted the relationship between the number of undetected probes and 151 

DNA input level and correlated the two variables to test the strength of the association. Median 152 

methylated signal refers to the strength of probe signal due to binding of methylated DNA to a 153 

probe. We plotted median methylated signal per sample against DNA input level, and tested their 154 

association.  155 

In addition to these QC steps, we compared DNAm measurements for each sample against a gold 156 

standard derived from all 135 samples with DNA input >200ng by simply calculating the mean for 157 

each individual probe on the BeadChip across the 135 samples. For all remaining samples with DNA 158 

<200ng (n=193), we calculated the difference between the methylation value at each probe and that 159 

of the gold standard, and summarised these differences per sample by taking the mean absolute 160 

difference, or MAD. We then evaluated the association between MAD and DNA input level using 161 

plots and by calculating Pearson’s correlation.  162 
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We tested whether variance in DNAm is associated with DNA input level at each site on the 163 

BeadChip using a procedure detailed elsewhere (Staley et al., 2021). We firstly use the function rq (a 164 

least absolute deviation regression) from the R package quantreg to test the association between 165 

methylation at each cpg site and DNA input level, including batch, cell counts, age, gender, smoking, 166 

and BMI as covariates in the model. From this model we take the absolute values of the residuals, 167 

and then test for an association between those residuals and DNA input level. We extracted 168 

coefficients and p-values from the model and applied a Bonferroni-corrected threshold of 5.8e-08 169 

(0.05/857774) to identify associated sites. We took the -log10 of the p-values and created a 170 

Manhattan plot. 171 

To assess how DNA input level might affect downstream analyses, we tested whether lower input 172 

DNA might increase noise in DNAm measurements to the point of obscuring associations with 173 

phenotypes. We tested this for two phenotypes, age and smoking status, because these both have 174 

robust associations with DNAm that can be reliably detected. We estimated epigenetic age using the 175 

Horvath (Horvath, 2013) and Hannum (Hannum et al., 2013) clocks. The absolute of the difference 176 

between epigenetic age and chronological age was calculated, and this difference was plotted 177 

against DNA input level. As random measurement error in a continuous outcome increases standard 178 

error, we used loess regression to test whether the standard error increased as DNA input decreased 179 

- this asks whether epigenetic age prediction becomes more noisy as DNA input level decreases. To 180 

assess whether noise might obscure the relationship between DNAm and smoking status, we tested 181 

whether reduced DNA input was associated with increased noise in the AHRR CpG cg05575921. To 182 

do this we regressed out the effect of smoking status on the unadjusted value of cg05575921 using a 183 

linear model, and tested the relationship between the absolute values of the residuals from the 184 

model and DNA input level in the same way as for epigenetic age, using loess regression. To derive 185 

smoking status, MBMS participants were asked "Have you smoked 100 or more cigarettes in your 186 

entire life?" and "Do you now smoke cigarettes every day, some days, or not at all?"; responses were 187 

combined and consolidated as either ‘current smoker’, ‘former smoker’ or ‘never smoker’. 188 

Results 189 

Participant characteristics 190 

Three quarters (74%) of participants in our study identified their race/ethnicity as Black non-191 

Hispanic, 56% lived in areas with high numbers of individuals below the poverty line, and two thirds 192 

(66%) had less than 4 years of college education. Characteristics of the 328 participants are 193 

summarised in Table 1; DNA quantity is marginally associated with smoking status (lower quantities 194 

for former and never smokers compared to current smokers), race/ethnicity (lower quantities for 195 
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white participants), and education (lower quantities for participants with <4 years of college 196 

education, and highest quantities for participants with less than high school education). 197 

  N (%) unless 
otherwise 

stated (total 
= 328) 

Regression 
coefficient/ 
Mean input 

DNA (ng) 

Association 
with total 
input DNA 
(p value) 

Age 
Mean (years) 48.9 (mean) 

0.05 0.97 
Standard deviation (years) 7.9 (SD) 

Gender 
Women (cis-gender) 210 (64%) 231.7 ng reference 

Men (cis-gender) 118 (36%) 201.1 ng 0.13 

Smoking 

Current 150 (46% 248.7 ng reference 

Former 63 (19%) 189.9 ng 0.03 

Never 115 (35%) 201 ng 0.03 

Race/ethnicity 
Black NH 242 (74%) 234.2 ng reference 

White NH 86 (26%) 182.7 ng 0.02 

Census tract 
poverty, % 

(2005-2009) 

<5% below poverty line 17 (5%) 230.2 ng reference 

>=5%,<10% below poverty line 53 (16%) 246.1 ng 0.75 

>=10%,<20% below poverty line 75 (23%) 176.4 ng 0.26 

>=20%,<40% below poverty line 
(“poverty area”) 

131 (40%) 231.7 ng 0.97 

>=40% below poverty line 
(“extreme poverty area”) 

52 (16%) 227.7 ng 0.96 

Education 

Less than high school 42 (13%) 273.7 ng 0.003 

> High school, < 4 years college 218 (66%) 226.2 ng 0.02 

4+ years college 68 (21%) 170.3 ng reference 
Table 1: Characteristics of the 328 MBMS participants with DNAm data passing QC. 198 

DNA methylation data 199 

In Study 1, quality control identified 55,706 probes for removal due to failed detection, primarily for 200 

to samples with 40ng input DNA (see Figure 1). This left 807,787 CpG sites for further analysis. For 201 

MBMS (Study 2) a total of 328 samples and 857,774 sites passed probe detection checks; however 202 

35 of these samples had a mismatch between the gender they reported in the study and sex as 203 

predicted by probe signal intensities targeting sites on the X and Y chromosomes. Furthermore, 204 

whereas correlation between chronological age and age estimated from DNA methylation was high 205 

in the dataset (Horvath clock R=0.63, Hannum clock R=0.69), correlation among these 35 was very 206 

low (Horvath clock R=-0.01, Hannum clock R=0.18). We included these 35 samples in our assessment 207 

of data quality using QC analyses as they displayed no evidence of low quality, and there was no 208 

relationship between sex/gender mismatch and DNA concentration (p=0.72, Wilcoxon rank sum 209 

test); but they were removed from analyses with phenotypes (epigenetic age and smoking), leaving 210 

293 individuals in the phenotype analysis. 211 
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 212 

Figure 1: Number of probes that fail the detection p-value at 40ng, 200ng and 400ng. Each bar represents one sample. 213 

Study 1 results: Assessing reliability of DNAm measurement with low input DNA 214 

The overall distributions of the methylation measurements across the BeadChip are virtually 215 

identical at 200ng and 400ng of input DNA, but it is skewed toward higher methylation levels for the 216 

40ng dilution (Figure 2A). To investigate the reliability of methylation measurements when samples 217 

have low input DNA, we assessed how well measurements at 200ng and 40ng replicated those at 218 

400ng by binning methylation sites according to methylation levels determined at 400ng, our 219 

reference. For both 40ng and 200ng, variance within each bin tends to be larger in bins representing 220 

intermediate methylation levels at 400ng. The main difference is the variation as measured by 221 

standard deviation tends to be 2-4 times larger at 40ng (SD = 0.01 to 0.04) than at 200ng (SD = 0.02 222 

to 0.17) (Figure 2B and 2C; Supplementary Table 1). This indicates a reduced replication of 400ng 223 

signal at 40ng compared to 200ng. 224 

 225 

Figure 2: A: Density of methylation beta values across the EPIC BeadChip for 40ng, 200ng and 400ng DNA. B: boxplot of the 226 
methylation of DNAm sites at 40ng, grouped in bins of 0.05 based on the methylation level of the DNAm site at 400ng. C: 227 
boxplot of the methylation of DNAm sites at 200ng, grouped in bins of 0.05 based on the methylation level of the DNAm site 228 
at 400ng. 229 
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As we had quadruplicate measurements for the three DNA input levels we were also able to assess 230 

the noise within each input level. This is important because measurements by Illumina Infinium 231 

MethylationEPIC Beadchips are known to be noisy, and low concentrations of DNA may exacerbate 232 

this issue (Belsky et al., 2020; Xu & Taylor, 2021). To assess noise at each DNA input level, we used 233 

two replicates to partition methylation sites by methylation level and then calculated the variance of 234 

each bin from the other two replicates. Using Levene’s test of variance to compare bin variances 235 

between dilutions, we show that 200ng is noisier than 400ng in 17 out of the 20 partitions (at 236 

p<0.05/20); and that 40ng is noisier than both 400ng and 200ng in all 20 partitions (at p<0.05/20). 237 

This demonstrates that as DNA input level decreases, measurement noise increases. Bin variances 238 

are illustrated in Figure 3, and Levene’s test statistics in Supplementary table 2. 239 

 240 

Figure 3: Plots of sample noise at A 40ng, B 200ng and C 400ng total input DNA. All CpG sites were binned into 5% 241 
partitions of methylation beta value based on the mean of replicates 1 and 2, and the mean of replicates 3 and 4 was used 242 
to create the boxplots. 243 

Study 2 results: Assessing the impact of low input DNA in a cohort study 244 

DNA for the MBMS cohort was extracted from dried blood spots and resulted in a range of DNA 245 

quantities for the 472 participants for whom DNA was extracted (mean 173ng, range 0ng to 246 

1186.8ng). As we excluded participants with less than 40ng DNA, and those with poor quality DNA, 247 

DNA quantities were higher for the 328 participants who were included in the analyses included in 248 

this paper (mean 220.7ng, range 40.6ng to 1186.8ng). We assessed the impact of DNA input level on 249 

the quality of the MBMS DNAm data in three ways: the proportion of probes failing detection p-250 

value, the median strength of methylated signal, and the mean absolute deviation of samples with 251 

lower than recommended DNA (200ng) in comparison to a gold standard based on measurements 252 

from the samples with at least 200ng DNA. Although the proportion of undetected probes increases 253 
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as input DNA decreases (R=-0.26,p=1.2e-06), we find that samples down to 40ng have acceptable 254 

proportions of undetected probes, i.e. within the limits of typical Illumina QC pipelines (<0.025%) 255 

(Figure 4A). Similarly, although median methylated signal is correlated with DNA input level (R=0.46, 256 

p<2.2e-16), the signal does not fall below typical quality thresholds (Figure 4B). Finally, as expected, 257 

samples with lower DNA input level tend to have higher mean absolute deviation from the gold 258 

standard based on samples with at least 200ng of DNA (R=-0.38, p=6.8e-08); Figure 4C. Thus, we 259 

have shown that measurement quality and precision decrease with input DNA levels. 260 

We then asked whether low DNA input level affects the variance of methylation measurements at 261 

specific individual sites on the BeadChip. Using linear regression with a BeadChip-wide Bonferroni-262 

corrected threshold of 5.8e-08, we observe associations between variance in methylation value and 263 

DNA input level at 17 sites (Figure 4D and Supplementary table 3). 264 

 265 

Figure 4: The relationship between DNA input level and A proportion of probes failing detection p-value, B median 266 
methylated signal, C mean absolute deviation from a composite of the high-input samples, D variance at each site on the 267 
Illumina Infinium MethylationEPIC Beadchip. 268 

Finally, we asked to what extent DNA input level might affect our ability to detect the association 269 

between DNA methylation and two phenotypes (age and smoking status) that have been strongly 270 

associated with DNA methylation in numerous previous studies. Using loess regression we found no 271 

evidence of an increase of standard error with decreasing DNA input level, suggesting that low DNA 272 
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input does not obscure associations between DNA methylation, and age estimation (as measured by 273 

the Horvath and Hannum epigenetic clocks) or smoking status (Figure 5).  274 

 275 

Figure 5: A scatter plot of the relationship between DNA input level, and the absolute of the difference between epigenetic 276 
age as estimated by the Horvath clock and chronological age; B A scatter plot of the relationship between DNA input, and 277 
the absolute of the difference between epigenetic age as estimated by the Hannum clock and chronological age; C A scatter 278 
plot of the residuals of the model lm(cg05575921 ~ smoking status) against total DNA input. For each plot the blue line 279 
represents the loess regression line and the grey shading represents the standard error of the regression. 280 

Discussion and conclusions 281 

This study demonstrates that although as little as 40ng is sufficient to produce Illumina Infinium 282 

MethylationEPIC Beadchip DNAm data that passes standard QC checks, data quality and reliability 283 

diminish as DNA input decreases. However, this reduction in data quality may have limited practical 284 

impact on downstream analyses, as we show that two strong phenotype associations with DNAm – 285 

age and smoking – do not appear to be adversely affected by using DNA input levels as low as 40ng. 286 

We hope this demonstration can empower studies to conduct DNAm investigations where it might 287 

have previously been assumed that samples were too limited to provide sufficient DNA; but due to 288 

the increase in both noise and variance that we have demonstrated, we would recommend caution 289 

and use of sensitivity analyses when working with less than 200ng DNA on the Illumina Infinium 290 

MethylationEPIC Beadchip. 291 

Our evaluation of DNA from a single source at three dilutions illustrates that using 40ng of DNA 292 

produces noisier measurements than using 200ng, and using 200ng is noisier than 400ng. This 293 

corresponds to reduced agreement we report between measurements at 40ng than at 200ng 294 

compared to those at 400ng. Analysis of data from a cohort of 328 individuals shows a clear impact 295 

of decreasing DNA input on the proportion of probes failing detection and on the strength of 296 

methylation signal; this is presumably because there is less DNA binding to probes. This also appears 297 

to be the reason for the clear impact of decreasing DNA input level on increasing deviation from a 298 

gold standard composite profile based on samples with at least 200ng DNA. Importantly, our 299 

analyses show how fast data quality decreases as input DNA decreases, so our findings can be used 300 
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identify thresholds on input DNA suited to specific research questions. It is notable that data quality 301 

is acceptable as assessed by common quality control metrics when input DNA as low as 40 ng. 302 

We would strongly recommend that researchers using DNA input of less than 200ng should run 303 

quality checks and sensitivity analyses with the lower concentration samples. As we show DNA input 304 

is strongly associated with variance at many specific DNAm sites, we would suggest extra caution 305 

around these sites as they may be particularly affected by low DNA concentrations. We have 306 

provided the full summary statistics from this variance EWAS in Supplementary table 3 so that 307 

researchers can utilise these results with p-value or effect thresholds appropriate to their data and 308 

research question. Finally, we show that associations of DNA methylation with age and smoking are 309 

observable in samples with input DNA as low as 40ng, and that we see little evidence of increased 310 

measurement noise as DNA input decreases to 40ng. This is encouraging as it suggests that useful 311 

data can be derived from low input DNA; but we would caution that we have tested two exposures 312 

that have particularly strong associations with DNAm, and so associations for other phenotypes may 313 

be affected to a greater extent.  314 

Strengths of our study include complementary analyses of both control and human cohort DNA 315 

samples; and both the large number and social diversity of individuals in the cohort analysis (n=328). 316 

Social diversity is very important for study generalisability because DNAm is affected by our social 317 

environment. The main limitation is that the impact of DNA input level may well be different for 318 

differing sample types and provenances, as DNA quality is affected by storage and extraction 319 

methods. Indeed we can see that with the much larger number of probes failing detection p-value 320 

thresholds from the 40ng samples of pooled frozen DNA in comparison to samples with close to 321 

40ng that were extracted from dried blood spots as part of the MBMS study. However, we were not 322 

able to measure DNA quality in this study so cannot comment further on how this may impact 323 

results. Additionally, we did not assay less than 40ng DNA, so we cannot comment on how data 324 

quality might be affected by lower levels of DNA input; future studies may want to investigate data 325 

quality using lower inputs. 326 
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