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Abstract
Background: DNA methylation (DNAm) is commonly assayed using the lllumina Infinium

MethylationEPIC BeadChip, but there is currently little published evidence to define the lower limits
of the amount of DNA that can be used whilst preserving data quality. Such evidence is valuable for

analyses utilising precious or limited DNA sources.

Materials and methods: We use a single pooled sample of DNA in quadruplicate at three dilutions to
define replicability and noise, and an independent population dataset of 328 individuals (from a
community-based study including US-born non-Hispanic Black and white persons) to assess the
impact of total DNA input on the quality of data generated using the lllumina Infinium

MethylationEPIC BeadChip.

Results: Data are less reliable and more noisy as DNA input decreases to 40ng, with clear reductions
in data quality; however samples with a total input as low as 40ng pass standard quality control
tests, and we observe little evidence that low input DNA obscures the associations between DNAm

and two phenotypes, age and smoking status.

Conclusions: DNA input as low as 40ng can be used with the Illumina Infinium MethylationEPIC

BeadChip, provided quality checks and sensitivity analyses are undertaken.

Keywords: DNA methylation, lllumina Infinium MethylationEPIC BeadChip, DNA input, low DNA,

reliability

Introduction

[lumina Infinium MethylationEPIC BeadChips have been used extensively in epigenetic studies.
Although Illumina recommend using at least 250ng of DNA on their BeadChips, there has been little
published work examining the possibility of using less DNA than this. As DNA methylation (DNAm)
profiling becomes more widespread, there is a need to ensure robust and reliable data can be
generated from precious (e.g. clinical or historic) or limited (e.g. archaeological) biosamples. Two
previous studies have assessed the effect of low levels of input DNA on the Illumina Infinium
HumanMethylation450 BeadChip by generating data from multiple dilutions of the same biological
samples. The first reported that correlations between genome-wide DNAm profiles remain above
0.96 for dilutions containing as little as 10ng of DNA (Whalley et al., 2021); the second reported

correlations with input of 1ug for total input as low as 10ng remained above 0.92 (Hovestadt et al.,
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2013). However, no study has yet investigated the expected increase in signal variability or noise
induced by low input DNA and its impact on statistical power to detect associations with DNAm; this
is important because a number of studies have demonstrated that many probes on these BeadChips
have low reliability, particularly where DNAm sites are either highly methylated or unmethylated
and have low variance (Dugue et al., 2016; Forest et al., 2018; Xu & Taylor, 2021), and conceivably
this might be exacerbated by low levels of input DNA applied to the BeadChip. Additionally, no
comparison of data generated using different input levels has yet been carried out using a large

population dataset.

Here we study assess whether low yields of input DNA are sufficient to reliably detect associations
with DNA methylation measured using the lllumina Infinium MethylationEPIC BeadChip. The study
consists of two parts: an initial analysis, where we assess reliability and noise within a single sample
at three DNA concentrations; and a subsequent assessment of total input DNA on data quality and
phenotype associations, using an independent population-based DNAm dataset of 328 individuals
from the My Body My Story (MBMS) study (Krieger et al., 2011). We believe this is the first study
assessing the impact of low input DNA explicitly utilising data from a large and socially diverse

cohort.

Materials and methods

Study participants

The initial analysis (which we refer to as Study 1) included varied DNA dilutions from a single source,
utilising a DNA sample pooled from several individuals stored at -80°C. Unfortunately no details
about the individuals contributing to this pooled sample were available. The sample was used to
generate three dilutions resulting in three quantities of total DNA input (40ng, 200ng, and 400ng), in

guadruplicate, resulting in 12 samples.

The second analysis (which we refer to as Study 2) utilised the MBMS cohort. MBMS is a cohort
recruited from four community health centers in Boston between 2008 and 2010, and was designed
to investigate how racial discrimination affects risk of cardiovascular disease, taking into account a
range of social and environmental factors. The cohort and recruitment procedures have previously
been described in detail (Krieger et al., 2011); briefly, the study recruited 1005 individuals who met
study inclusion criteria and were randomly selected from the patient rosters of the community
health centers. Participants were eligible if they were aged between 35 and 64 years, had been born

in the US, and self-identified their race/ethnicity as white non-Hispanic or black non-Hispanic.
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99  Among the 1005 MBMS participants, 85% provided a finger prick blood sample on to filter paper
100 (409 black; 466 white), and consequently biological material was limited and in some instances of
101 poor quality. Blood spots were stored at -20°C, and DNA was extracted from blood spots using the
102  QlAamp DNA Investigator Kit for FTA and Guthrie cards, with samples randomised across 96 well
103 plates. Of the 875 participants who provided blood spots, 472 of the samples were judged to be
104  suitable for DNA extraction (blood spots judged not to be suitable were primarily the first
105  community health center where recruitment took place, whose membership was predominantly
106  white). Of those, 48 yielded less than 40ng of DNA, the lowest input level investigated in Study 1, so
107 we removed them from further analysis. After removing a further 96 participants from the sample
108 set due to poor quality DNA extraction (as determined by high numbers of undetected probes on the
109 EPIC BeadChip), there were 328 participants with DNA methylation data for analysis. DNAm data

110  were generated using the lllumina Infinium MethylationEPIC BeadChip as described below.

111 DNA methylation data generation

112 For both studies, extracted DNA was bisulphite converted with the EZ DNA Methylation-Lightning™
113 Kit (Zymo Research) according to the manufacturer’s instructions. The eluant from the bisulphite-
114  converted DNA was then applied to the Illumina Infinium MethylationEPIC Beadchip to measure
115 DNA methylation, according to the manufacturer’s protocol. The EPIC BeadChips were scanned using
116 [llumina iScan, with an initial quality review conducted with GenomeStudio. Sample QC and

117  normalisation were conducted using the pipeline implemented in the meffil R package, which has
118 previously been described in detail (Min, Hemani, Davey Smith, Relton, & Suderman, 2018). Blood
119  cell composition was estimated for MBMS using a deconvolution algorithm (Houseman et al., 2012)
120 implemented in meffil, based on the “blood gse35069 complete” cell type reference. DNA

121 methylation is reported in beta values; this measures methylation on a scale of 0 (0% methylation)

122  to 1 (100% methylation).

123 Study 1: Assessing reliability of DNAmM measurement with low input DNA

124  Using the single pooled sample of DNA described above, we used two methods to assess the

125 reliability of DNAm measurements at different input DNA levels. Firstly, we assessed how well the
126 measurements at the lower input levels (200ng and 40ng) replicate the measurements obtained
127  with 400ng input DNA. To do this we calculated the mean methylation at each DNAm site across the
128  four technical replicates at each input level. We then partitioned DNAm sites into bands based on
129  their methylation level measured at 400ng (used as the reference level) in increments of 5%. Within

130 each partition we calculated the standard deviation of the DNA methylation levels across all sites in
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131  the partition and visualised this variation using boxplots at 40ng and 200ng. Stronger replication of

132  the 400ng measurements would correspond to smaller variation within each partition.

133  Secondly, we assessed the noise in DNAm measurement within each of the three DNA input levels
134  using their four replicates. At each DNAm site, we took the mean of replicates 1 and 2, and used
135  these means to partition the dataset into bands of 5% methylation as we did for the first analysis.
136  Within each partition we then calculated the mean of replicates 3 and 4 at each DNAm site. We
137  visualised the variation within each partition using boxplots of the mean of replicates 3 and 4 for all
138  sites within the partition. Levene’s test (leveneTest in the R package car) was used to determine
139  whether lower DNA input was associated with greater variance within each partition. Greater

140 measurement noise would correspond to greater variance. As we tested 20 partitions, we used a p-

141 value threshold corrected for multiple tests (p<0.05/20).

142  Study 2: Assessing the impact of low input DNA in a cohort study

143  We then assessed how low DNA input affects the quality of lllumina Infinium MethylationEPIC
144  Beadchip data using data from our cohort study, MBMS. We conducted two sets of analyses: we
145  calculated a variety of QC-related metrics, and evaluated the effect of input DNA level on robust

146  associations that have been reported in the DNAm literature.

147  We utilised two standard QC metrics to represent data quality: proportion of probes with low signal,
148  and median methylated signal across all probes on the BeadChip. Low signal was assessed using

149  detection p-values, which indicate confidence that the signal from a probe is detectable above

150  background noise. We used a detection p-value threshold of 0.01 to distinguish between detection
151  success and failure. We plotted the relationship between the number of undetected probes and

152  DNAinput level and correlated the two variables to test the strength of the association. Median

153 methylated signal refers to the strength of probe signal due to binding of methylated DNA to a

154  probe. We plotted median methylated signal per sample against DNA input level, and tested their

155 association.

156 In addition to these QC steps, we compared DNAm measurements for each sample against a gold
157  standard derived from all 135 samples with DNA input >200ng by simply calculating the mean for
158  each individual probe on the BeadChip across the 135 samples. For all remaining samples with DNA
159  <200ng (n=193), we calculated the difference between the methylation value at each probe and that
160  of the gold standard, and summarised these differences per sample by taking the mean absolute
161  difference, or MAD. We then evaluated the association between MAD and DNA input level using

162 plots and by calculating Pearson’s correlation.
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163  We tested whether variance in DNAm is associated with DNA input level at each site on the

164  BeadChip using a procedure detailed elsewhere (Staley et al., 2021). We firstly use the function rq (a
165 least absolute deviation regression) from the R package quantreg to test the association between
166  methylation at each cpg site and DNA input level, including batch, cell counts, age, gender, smoking,
167  and BMI as covariates in the model. From this model we take the absolute values of the residuals,
168 and then test for an association between those residuals and DNA input level. We extracted

169 coefficients and p-values from the model and applied a Bonferroni-corrected threshold of 5.8e-08
170 (0.05/857774) to identify associated sites. We took the -log10 of the p-values and created a

171 Manhattan plot.

172  To assess how DNA input level might affect downstream analyses, we tested whether lower input
173 DNA might increase noise in DNAmM measurements to the point of obscuring associations with

174 phenotypes. We tested this for two phenotypes, age and smoking status, because these both have
175 robust associations with DNAm that can be reliably detected. We estimated epigenetic age using the
176 Horvath (Horvath, 2013) and Hannum (Hannum et al., 2013) clocks. The absolute of the difference
177 between epigenetic age and chronological age was calculated, and this difference was plotted

178  against DNA input level. As random measurement error in a continuous outcome increases standard
179  error, we used loess regression to test whether the standard error increased as DNA input decreased
180 - this asks whether epigenetic age prediction becomes more noisy as DNA input level decreases. To
181  assess whether noise might obscure the relationship between DNAmM and smoking status, we tested
182  whether reduced DNA input was associated with increased noise in the AHRR CpG cg05575921. To
183  do this we regressed out the effect of smoking status on the unadjusted value of cg05575921 using a
184  linear model, and tested the relationship between the absolute values of the residuals from the

185 model and DNA input level in the same way as for epigenetic age, using loess regression. To derive
186  smoking status, MBMS participants were asked "Have you smoked 100 or more cigarettes in your
187  entire life?" and "Do you now smoke cigarettes every day, some days, or not at all?"; responses were

188 combined and consolidated as either ‘current smoker’, ‘former smoker’ or ‘never smoker’.

189  Results

190 Participant characteristics

191  Three quarters (74%) of participants in our study identified their race/ethnicity as Black non-

192 Hispanic, 56% lived in areas with high numbers of individuals below the poverty line, and two thirds
193 (66%) had less than 4 years of college education. Characteristics of the 328 participants are

194  summarised in Table 1; DNA quantity is marginally associated with smoking status (lower quantities

195  for former and never smokers compared to current smokers), race/ethnicity (lower quantities for
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196  white participants), and education (lower quantities for participants with <4 years of college

197  education, and highest quantities for participants with less than high school education).

N (%) unless | Regression | Association
otherwise coefficient/ with total
stated (total | Mean input input DNA
=328) DNA (ng) (p value)
Mean (years) 48.9 (mean)
Age Standard deviation (years) 7.9 (SD) 0.05 0.97
Gender Women (cis-gender) 210 (64%) 231.7 ng reference
Men (cis-gender) 118 (36%) 201.1 ng 0.13
Current 150 (46% 248.7 ng reference
Smoking Former 63 (19%) 189.9 ng 0.03
Never 115 (35%) 201 ng 0.03
Race/ethnicity Black NH 242 (74%) 234.2 ng reference
White NH 86 (26%) 182.7 ng 0.02
<5% below poverty line 17 (5%) 230.2 ng reference
>=5%,<10% below poverty line 53 (16%) 246.1 ng 0.75
Census tract >=10%,<20% below poverty line 75 (23%) 176.4 ng 0.26
poverty, % >=20%,<40% below poverty line
(2005-2009) | (“poverty area”) PO 131 (40%) 231.7ng 0.97
>”=40% below poverty Ilge 52 (16%) 227.7 ng 0.96
(“extreme poverty area”)
Less than high school 42 (13%) 273.7 ng 0.003
Education > High school, < 4 years college 218 (66%) 226.2 ng 0.02
4+ years college 68 (21%) 170.3 ng reference

198 Table 1: Characteristics of the 328 MBMS participants with DNAm data passing QC.

199  DNA methylation data

200 In Study 1, quality control identified 55,706 probes for removal due to failed detection, primarily for
201  to samples with 40ng input DNA (see Figure 1). This left 807,787 CpG sites for further analysis. For
202 MBMS (Study 2) a total of 328 samples and 857,774 sites passed probe detection checks; however
203 35 of these samples had a mismatch between the gender they reported in the study and sex as

204  predicted by probe signal intensities targeting sites on the X and Y chromosomes. Furthermore,

205  whereas correlation between chronological age and age estimated from DNA methylation was high
206  in the dataset (Horvath clock R=0.63, Hannum clock R=0.69), correlation among these 35 was very
207 low (Horvath clock R=-0.01, Hannum clock R=0.18). We included these 35 samples in our assessment
208  of data quality using QC analyses as they displayed no evidence of low quality, and there was no
209 relationship between sex/gender mismatch and DNA concentration (p=0.72, Wilcoxon rank sum
210  test); but they were removed from analyses with phenotypes (epigenetic age and smoking), leaving

211 293 individuals in the phenotype analysis.


https://doi.org/10.1101/2021.12.22.473840
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473840; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

60000

40000

K DNA(ng).
d B
H 20
400
20000
212 Ll o I

213 Figure 1: Number of probes that fail the detection p-value at 40ng, 200ng and 400ng. Each bar represents one sample.

Number of probes failing threshold

214  Study 1 results: Assessing reliability of DNAmM measurement with low input DNA

215  The overall distributions of the methylation measurements across the BeadChip are virtually

216 identical at 200ng and 400ng of input DNA, but it is skewed toward higher methylation levels for the
217  40ngdilution (Figure 2A). To investigate the reliability of methylation measurements when samples
218 have low input DNA, we assessed how well measurements at 200ng and 40ng replicated those at
219  400ng by binning methylation sites according to methylation levels determined at 400ng, our

220 reference. For both 40ng and 200ng, variance within each bin tends to be larger in bins representing
221 intermediate methylation levels at 400ng. The main difference is the variation as measured by

222  standard deviation tends to be 2-4 times larger at 40ng (SD = 0.01 to 0.04) than at 200ng (SD = 0.02
223  t00.17) (Figure 2B and 2C; Supplementary Table 1). This indicates a reduced replication of 400ng
224 signal at 40ng compared to 200ng.
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226 Figure 2: A: Density of methylation beta values across the EPIC BeadChip for 40ng, 200ng and 400ng DNA. B: boxplot of the
227 methylation of DNAm sites at 40ng, grouped in bins of 0.05 based on the methylation level of the DNAm site at 400ng. C:
228 boxplot of the methylation of DNAm sites at 200ng, grouped in bins of 0.05 based on the methylation level of the DNAm site
229 at 400ng.
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230  As we had quadruplicate measurements for the three DNA input levels we were also able to assess
231  the noise within each input level. This is important because measurements by Illlumina Infinium

232 MethylationEPIC Beadchips are known to be noisy, and low concentrations of DNA may exacerbate
233 this issue (Belsky et al., 2020; Xu & Taylor, 2021). To assess noise at each DNA input level, we used
234  two replicates to partition methylation sites by methylation level and then calculated the variance of
235 each bin from the other two replicates. Using Levene’s test of variance to compare bin variances

236 between dilutions, we show that 200ng is noisier than 400ng in 17 out of the 20 partitions (at

237  p<0.05/20); and that 40ng is noisier than both 400ng and 200ng in all 20 partitions (at p<0.05/20).
238 This demonstrates that as DNA input level decreases, measurement noise increases. Bin variances

239  areillustrated in Figure 3, and Levene’s test statistics in Supplementary table 2.

A Sample noise: 40ng total input DNA B Sample noise: 200ng total input DNA
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241 Figure 3: Plots of sample noise at A 40ng, B 200ng and C 400ng total input DNA. All CpG sites were binned into 5%
242 partitions of methylation beta value based on the mean of replicates 1 and 2, and the mean of replicates 3 and 4 was used
243 to create the boxplots.

244  Study 2 results: Assessing the impact of low input DNA in a cohort study

245 DNA for the MBMS cohort was extracted from dried blood spots and resulted in a range of DNA

246 guantities for the 472 participants for whom DNA was extracted (mean 173ng, range Ong to

247 1186.8ng). As we excluded participants with less than 40ng DNA, and those with poor quality DNA,
248 DNA quantities were higher for the 328 participants who were included in the analyses included in
249  this paper (mean 220.7ng, range 40.6ng to 1186.8ng). We assessed the impact of DNA input level on
250  the quality of the MBMS DNAm data in three ways: the proportion of probes failing detection p-
251  value, the median strength of methylated signal, and the mean absolute deviation of samples with
252 lower than recommended DNA (200ng) in comparison to a gold standard based on measurements

253  from the samples with at least 200ng DNA. Although the proportion of undetected probes increases
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254  asinput DNA decreases (R=-0.26,p=1.2e-06), we find that samples down to 40ng have acceptable
255 proportions of undetected probes, i.e. within the limits of typical lllumina QC pipelines (<0.025%)
256  (Figure 4A). Similarly, although median methylated signal is correlated with DNA input level (R=0.46,
257  p<2.2e-16), the signal does not fall below typical quality thresholds (Figure 4B). Finally, as expected,
258 samples with lower DNA input level tend to have higher mean absolute deviation from the gold

259 standard based on samples with at least 200ng of DNA (R=-0.38, p=6.8e-08); Figure 4C. Thus, we

260 have shown that measurement quality and precision decrease with input DNA levels.

261  We then asked whether low DNA input level affects the variance of methylation measurements at
262 specific individual sites on the BeadChip. Using linear regression with a BeadChip-wide Bonferroni-
263 corrected threshold of 5.8e-08, we observe associations between variance in methylation value and

264 DNA input level at 17 sites (Figure 4D and Supplementary table 3).
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266 Figure 4: The relationship between DNA input level and A proportion of probes failing detection p-value, B median
267 methylated signal, C mean absolute deviation from a composite of the high-input samples, D variance at each site on the
268 Illumina Infinium MethylationEPIC Beadchip.

269 Finally, we asked to what extent DNA input level might affect our ability to detect the association
270 between DNA methylation and two phenotypes (age and smoking status) that have been strongly
271 associated with DNA methylation in numerous previous studies. Using loess regression we found no

272 evidence of an increase of standard error with decreasing DNA input level, suggesting that low DNA
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input does not obscure associations between DNA methylation, and age estimation (as measured by

the Horvath and Hannum epigenetic clocks) or smoking status (Figure 5).
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Figure 5: A scatter plot of the relationship between DNA input level, and the absolute of the difference between epigenetic
age as estimated by the Horvath clock and chronological age; B A scatter plot of the relationship between DNA input, and
the absolute of the difference between epigenetic age as estimated by the Hannum clock and chronological age; C A scatter
plot of the residuals of the model Im(cg05575921 ~ smoking status) against total DNA input. For each plot the blue line
represents the loess regression line and the grey shading represents the standard error of the regression.

Discussion and conclusions

This study demonstrates that although as little as 40ng is sufficient to produce lllumina Infinium
MethylationEPIC Beadchip DNAm data that passes standard QC checks, data quality and reliability
diminish as DNA input decreases. However, this reduction in data quality may have limited practical
impact on downstream analyses, as we show that two strong phenotype associations with DNAm —
age and smoking — do not appear to be adversely affected by using DNA input levels as low as 40ng.
We hope this demonstration can empower studies to conduct DNAm investigations where it might
have previously been assumed that samples were too limited to provide sufficient DNA; but due to
the increase in both noise and variance that we have demonstrated, we would recommend caution
and use of sensitivity analyses when working with less than 200ng DNA on the lllumina Infinium

MethylationEPIC Beadchip.

Our evaluation of DNA from a single source at three dilutions illustrates that using 40ng of DNA
produces noisier measurements than using 200ng, and using 200ng is noisier than 400ng. This
corresponds to reduced agreement we report between measurements at 40ng than at 200ng
compared to those at 400ng. Analysis of data from a cohort of 328 individuals shows a clear impact
of decreasing DNA input on the proportion of probes failing detection and on the strength of
methylation signal; this is presumably because there is less DNA binding to probes. This also appears
to be the reason for the clear impact of decreasing DNA input level on increasing deviation from a
gold standard composite profile based on samples with at least 200ng DNA. Importantly, our

analyses show how fast data quality decreases as input DNA decreases, so our findings can be used
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301 identify thresholds on input DNA suited to specific research questions. It is notable that data quality

302 is acceptable as assessed by common quality control metrics when input DNA as low as 40 ng.

303  We would strongly recommend that researchers using DNA input of less than 200ng should run

304  quality checks and sensitivity analyses with the lower concentration samples. As we show DNA input
305 is strongly associated with variance at many specific DNAm sites, we would suggest extra caution
306  around these sites as they may be particularly affected by low DNA concentrations. We have

307  provided the full summary statistics from this variance EWAS in Supplementary table 3 so that

308 researchers can utilise these results with p-value or effect thresholds appropriate to their data and
309 research question. Finally, we show that associations of DNA methylation with age and smoking are
310  observable in samples with input DNA as low as 40ng, and that we see little evidence of increased
311 measurement noise as DNA input decreases to 40ng. This is encouraging as it suggests that useful
312 data can be derived from low input DNA; but we would caution that we have tested two exposures
313 that have particularly strong associations with DNAm, and so associations for other phenotypes may

314 be affected to a greater extent.

315 Strengths of our study include complementary analyses of both control and human cohort DNA

316  samples; and both the large number and social diversity of individuals in the cohort analysis (n=328).
317 Social diversity is very important for study generalisability because DNAm is affected by our social
318 environment. The main limitation is that the impact of DNA input level may well be different for
319  differing sample types and provenances, as DNA quality is affected by storage and extraction

320 methods. Indeed we can see that with the much larger number of probes failing detection p-value
321  thresholds from the 40ng samples of pooled frozen DNA in comparison to samples with close to
322  40ng that were extracted from dried blood spots as part of the MBMS study. However, we were not
323  able to measure DNA quality in this study so cannot comment further on how this may impact

324  results. Additionally, we did not assay less than 40ng DNA, so we cannot comment on how data

325  quality might be affected by lower levels of DNA input; future studies may want to investigate data

326  quality using lower inputs.
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