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Abstract

In this study we explore the interference rejection and spatial sampling properties of multi-axis
Optically Pumped Magnetometer (OPM) data. We use both vector spherical harmonics and
eigenspectra to quantify how well an array can separate neuronal signal from environmental
interference while adequately sampling the entire cortex. We found that triaxial OPMs have superb
noise rejection properties allowing for very high orders of interference (L=6) to be accounted for while
minimally affecting the neural space (2dB attenuation for a 60-sensor triaxial system). To adequately
model the signals arising from the cortex, we show that at least 11" order (143 spatial degrees of
freedom) irregular solid harmonics or 95 eigenvectors of the lead field are needed to model the neural
space for OPM data (regardless of number of axes measured). This can be adequately sampled with
75-100 equidistant triaxial sensors (225-300 channels) or 200 equidistant radial channels. In other
words, ordering the same number of channels in triaxial (rather than purely radial) configuration gives
significant advantages not only in terms of external noise rejection but also minimizes cost, weight
and cross-talk.

1 Introduction

Optically Pumped Magnetometers (OPMs) and Superconducting Quantum Interference Sevices
(SQUIDS) both measure the brain’s neuromagnetic field (Baillet, 2017; Xia et al., 2006). However, the
measured signal differs in both its amplitude and spatial information content. These differences arise
because OPMs can be placed directly on the scalp and therefore sample higher spatial frequencies of
the brain’s magnetic field at greater magnitude (livanainen et al., 2021). In theory these higher spatial
frequencies should result in better spatial resolution, but if their information is to be represented
without any form of signal aliasing more dense arrays or custom sensor layouts are required (Ahonen
et al., 1993; Beltrachini et al., 2021; Tierney et al., 2020; Vrba & Robinson, 2002).

One powerful approach to quantifying the degree of higher spatial frequency content in MEG has been
to use the Signal Space Separation (SSS) method (Taulu & Kajola, 2005). This approach has the added
benefit that it can simultaneously model an array’s ability to reject environmental interference. This
is because SSS provides a model for both the neural data and environmental interference. The models
for the neuronal data and the interference respectively are the gradients of irregular and regular
spherical harmonics. The irregular harmonics tend to zero at coordinates far from coordinate system’s
origin (outside the sensor array) and are thus useful for modelling magnetic fields coming from inside
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the sensor array (brain signals). The regular harmonics become zero at the origin (inside the array)
and are therefore useful for modeling magnetic fields that come from outside the array (interference).

An open question for OPM recordings is how many orders of spherical harmonics are required to
model the environmental interference and the neuronal data. With regards to interference, our
previous work has suggested that the limited sensor numbers in typical OPM arrays can result in the
attenuation of neuronal signal if too high a spatial order of interference is selected (Tierney et al.,
2021). Furthermore, it is worth considering whether the ability of OPMs to measure in more than one
direction affects the selection of the spherical harmonic model order for the neuronal signal and
magnetic interference. This is an important consideration as previous work on cryogenic systems has
led to diverging approaches to system design. For example, work on (SQUID based) cryogenic systems
has suggested that a two-layer, sensor array (comprising 400 sensors) measuring in more than 1
direction should achieve shielding factors greater than 60dB using SSS (Nurminen et al., 2010). It has
been demonstrated empirically even adding a small number of tangential channels improves shielding
factors (Nurminen et al., 2013). However, other authors have argued that optimal system design (for
maximizing SNR) consists of 1% order radial gradiometers combined with 3™ order synthetic
gradiometers (Fife et al., 1999; Vrba & Robinson, 2002).

Optimal system design for OPM recordings is less clear as one has the added issues of optimizing for
wearability and subject movement (Boto et al., 2018). For example, optically pumped gradiometers
offer promising noise cancellation properties (Limes et al., 2020; Sheng et al., 2017), yet as larger
sensor baselines are used, one may compromise wearability. The tradeoff is therefore to shorten the
baseline (Nardelli et al., 2020) but this will result in lower depth sensitivity (Hdmaldinen et al., 1993;
Vrba & Robinson, 2002). Software approaches for magnetometers not reliant on (fixed) reference
arrays such as beamformers (van Veen & Buckley, 1988), SSS (Taulu & Kajola, 2005) or Signal Space
Projection (Uusitalo & Iimoniemi, 1997) are thus quite attractive. Recent work on OPMs has suggested
that beamformers have their interference control improved by multi-axis recordings (Brookes et al.,
2021) allowing for movement in excess of 1m to be made (Seymour et al., 2021). With these issues in
mind, it is worth exploring to what extent a single layer of vector OPMs can separate brain signal from
magnetic interference and how this interacts with sampling density.

There are many diverging viewpoints and methods to optimize neuronal sampling with OPMs. One
could use different definitions of optimality or information content (Beltrachini et al., 2021; livanainen
etal., 2021), including minimization of aliasing (Tierney et al., 2020) or seeking to minimize correlation
between sources (Boto et al., 2016). One extensive exploration of radial oriented OPMs suggest that
between 177 and 276 sensors are required for sufficient sampling (livanainen et al., 2021). The broad
estimate of requisite number of sensors arises due to the use of different basis sets (eigenbasis and
spatial frequency basis) for the estimation of the spatial degrees of freedom in the data. The SSS basis
set can also provide an estimate of the spatial degrees of freedom in the data and we compare this
estimate with the estimate from the eigenbasis.

Throughout this work we rely on the SSS framework to explore the issues raised. We chose to use
SSS as a basis as it provides a unifying theoretical framework for both neuronal sampling and
environmental interference rejection. All of its interference rejection properties can be derived
theoretically once the geometry of the MEG array is known. It also allows one to provide an upper
bound on the number of spatial degrees of freedom in OPM data. We can therefore theoretically
explore the interactions of multi-axis recordings and varying sampling densities while modeling
neural data and magnetic interference. We expect these results to be useful for those wishing to
design OPM arrays for MEG experiments.
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2 Theory
2.1 SSS as a model of brain signal and interference

SSS represents the MEG signal (H) as a linear combination of the gradients of spherical harmonics
(Y,,,(6, @)) with coefficients a;,,, and Bj,,. The full formulation for the magnetic field in spherical
coordinates (1, 8, @) is

(o)
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where p, is the magnetic permeability. The first term represents the neural space (with the gradient
of irregular spherical harmonics) while the second term represents the interference space (with the
gradient of regular spherical harmonics). When modelling MEG recordings, each set of basis functions
is truncated to a maximum value of [. This value is chosen in order to represent sufficient variance in
the signal or sufficiently model environmental interference. The number of columns in each basis set
is [2,0x + 2lmax, where L, is the order of the harmonic used. The spherical harmonic basis functions
(v (8, 9)) are complex functions. For a more intuitive representation of the harmonics, we replace
them with real valued harmonics, as in previous work (Mellor et al., 2021). In cartesian coordinates
(x,y, z) these harmonics (S;™) are known as the solid harmonics and are defined as follows:
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where the associated Legendre polynomial (P/™) has the following form:
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For ease of notation we refer to the basis set representing the neural space and interference space as
A and B respectively.

Sm
A= (V—Tll_H)-n, B = (7risf™) n 6

With n being the unit vector representing the senor’s sensitive axis and - represents the dot product.

We provide an explicit form for A and B in Appendix | and code to create these harmonics is made
publicly available at https://github.com/tierneytim/OPM/blob/master/spm opm_vsim.m
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2.2 The orthogonality of interference and neuronal data

For the model of the interference (B) to be practically useful, it needs to share minimal variance with
the lead fields (L). This is not guaranteed for every array design. To asses this we measure the lead
field variance attenuation when the interference term is regressed from the data. This regression step
can be summarized in one projection as follows

M= 1-BB* 7

where B7 is the pseudoinverse. We can now summarize the variance attenuation for each brain area
in decibels (dB)

) var(ML;) 8
attenuation; = 1010g10T(L,-)L
where var(L;) is defined as
n —\2
Lij—L 9
var(L;) = 27( - ”) .

{ n—1
j=1

The indices i, j refer to the magnetic field produced by the i*" brain area (in this case a vertex on a
cortical mesh) at the jt" sensor for n sensors. L_u refers to the arithmetic mean for the i*" brain area
across sensors. Now we have a metric for every brain area that summarizes how much variance is lost
for a given regular solid harmonic order of B. We can also calculate these metrics for any sensor array
or number of measurement axes. This is crucial for establishing robustness of a given array design to
environmental interference.

2.3 The order of harmonics required to model the neural space

As OPMs sample higher spatial frequencies one would assume they would require higher orders of
harmonics in matrix A to fully model the neural data. We arbitrarily describe the data as fully modelled
when 99% of signal variance is explained in greater than 95% of brain regions. Similarly, to section 2.2
we can measure the variance explained (VE;) as

_var(NLy) 10
L= var(L;)
where
N = AA* 11

The order of harmonics required to model the neuronal data is important as using sufficiently high
order harmonics would allow us to bandlimit (in terms of the spatial frequencies represented by the
harmonics) the OPM data. Any interference or noise outside this bandlimit would then be suppressed.
It also allows us to come up with an upper bound for the number of independent samples in the data.

2.4 Assessing the efficiency of the neural model

The more efficiently a given model can represent the neural data the more interference can be
rejected. An “efficient” model would have fewer parameters than there are measurements. As a
benchmark to compare the use of solid harmonics to model the neural data, we also consider
eigenvectors (V) of the lead field covariance (C) matrix to model the neural data.

C=LLt =Vt 12
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Where X represents the covariance matrix’s eigenvalues. Comparing the basis set IV and A in terms of
their efficiency is of interest as algorithms such as DSSP (Cai et al., 2019; Sekihara et al., 2016) project
the data onto the lead field eigenvectors. The software for MEG/EEG analysis, SPM, also performs this
step as a preprocessing procedure for source reconstruction (Friston et al., 2008; Lopez et al., 2014).
As V is an orthogonal matrix the projector (0) that projects the data onto this basis is simply

0=Vt 13

We can then once again calculate the variance explained as follows

_ var(OL;) 14
Y owar(Ly)

In summary, we have now derived two subspace definitions which can be used to model neuronal
signal, one based on solid harmonic gradients (4, eq. 6) and one based exclusively on the MEG system
lead-fields (matrix V eq. 12). If we use the exact same threshold for when we consider the brain fully
modelled (>99% signal power in >95% of brain regions) we can compare the relative efficiency of both
models (Vand A) in representing neural data. We can then explore how both these models change as
a function of sampling density and number of measured axes.

2.5 Considerations for non-spherical sampling

We also consider the implications of the using spherical harmonic models of neural data in non-
spherical sampling situations. As one places sensors closer to the brain the relative influence of
different sensors may change based on their distance to the origin (of the sensor coordinate system).
This is because as the harmonic orders get higher in the matrix A, the dependency on the distance to
the origin increases. If every sensor has the same distance to the origin (spherical sampling) this does
not matter, but if sensors are not equidistant to the origin some sensors may have excessive influence
on the modelling. This process can be captured formally with the statistical concept of Leverage.

Leverage = diag(AA*) 15

Each Leverage value tells us how influential a given observation is on the model. More formally it is
the rate of change of the model with respect to the data. We can make this measure relative by
dividing it by its mean value. Now each leverage value tells us how influential a data point is relative
to the average data point. It is computed as follows:

n
Leverage(relative) = Leverage 5 16

where n is the number of sensors and p is the number of parameters of the model.

3. Methods

3.1 Lead field generation

OPMs were modelled as point magnetometers displaced 6.5mm from the scalp. The brain mesh used
to generate these lead-fields was the MNI canonical mesh available in SPM12 with 8196 vertices. The
separation between vertices is approximately 5 mm on average. The orientation of the source was
defined by the surface normal of the cortical mesh at that location. The forward model was the Nolte
single shell model (Nolte, 2003). The sensors were placed on the scalp surface with separations of 85
to 15mm in steps of 5mm. The sensor placement algorithm is described elsewhere (Tierney et al.,
2020). For each level of sensor spacing we simulated single axis, dual axis and triaxial sensors,
generating 3 lead-field matrices per sensor spacing.
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3.2 The Orthogonality of interference and multi-axis OPM recordings

We generated the first three orders of the regular solid harmonics in cartesian coordinates. The lead
field attenuation (as documented in section 2.2) was then calculated for each order, at each level of
spatial sampling for single, dual and triaxial recordings respectively. We also calculated the lead field
attenuation for orders L=1 to 12 for single, dual and triaxial systems comprising of 60 and 400 sensors.
This second analysis is intended to compare the limits of interference rejection in a realistic wearable
array to an ideal, but impractical, array.

3.3 Order of harmonics required to model the neural space

We generated the first 15 orders of the real irregular solid harmonics in cartesian coordinates for the
densest sampling (15mm separation). The variance this basis set explained in the lead fields was
calculated for single, dual and triaxial systems, as described in section 2.3. For comparison we also
calculated the variance explained for magnetometers displaced 24mm from the scalp (to represent a
cryogenic, SQUID based system). At this point we also estimate the impact of non-spherical sampling
on the model of the neural data. We computed the leverage as described in section 2.5 and compared
the sensors’ influence on the neuronal model to its distance to the origin (of the sensor coordinate
system) at different orders of spherical harmonics (L=1, L=6, L=12). For comparison we also calculated
these same metrics on a sphere. For simplicity of presentation we only examine one sensitive axis.

3.4 Assessing the efficiency of the neural model

The efficiency of the model to represent the neural data (the number of basis vectors required) is
compared against the eigenvectors of the lead field which also form a compact basis set for describing
the neural space (livanainen et al., 2021). To assess how many eigenvectors are required to model the
neural space we compute the variance explained as in section 2.4. We do this for all steps of spatial
sampling for, single, dual and triaxial measurements.

3.5 Software

Software required to generate the vector spherical harmonics described in this paper is made freely
available on the first author’s GitHub page (https://github.com/tierneytim/OPM). The key function is
spm_opm vslm.  Examples and tests can also be found on  GitHub
(https://github.com/tierneytim/OPM/blob/master/testScripts/testVSM.m).

4. Results

4.1 The Orthogonality of Interference and multi-axis OPM recordings

Figure 1 (A, B, C) shows the expected lead field attenuation when regressing regular solid harmonics
of increasing order (L=1, L=2, L=3) from OPM data for single axis, dual axis and triaxial sensors. As
expected, as the number of sensors is increased there is less risk of attenuating sensitivity to neuronal
sources. Interestingly, all sensor types (triaxial, dual axis and single axis) converge rapidly to an
expected signal loss at all investigated orders. For greater than 30 sensors (90 channels) the expected
signal loss is lower than 1dB for triaxial sensors even at high harmonic order (L=3). This is in contrast
to single axis sensors which see greater than 15dB attenuation at this point. For L=3, This same
information is represented spatially on the brain (Figure 1D) for radial, dual and triaxial sensors.
Ultimately, triaxial sensors allow for suppression of more spatially complex interference patterns with
minimal risk of brain signal loss.

In Figure 2A and 2B we explore the statistical and physical limit of using high order models of
interference on OPM data. Unsurprisingly, as the number of regressors (order? + 2 x order )
approaches the number of channels the attenuation grows rapidly for all systems representing the
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statistical limit of interference control (Figure 2A). In Figure 2B when the number of sensors is large
relative to the number of regressors the lead field attenuation is determined by the spatial similarity
of the magnetic fields generated by the brain and the interference space (representing a physical limit
of using higher order models). However, one can see that for even a 60-sensor system the order of
harmonics that one could remove from the data without exceeding 3dB of (neuronal space)
attenuation for a triaxial system is greater than 6.

A D

m 51
B e A A
s |77 7
=10}
=)
c
L sl
Z -15
= —— Single (Median)
o -20 - — — Single (2.5% quantile)
] Dual (Median)
9 25| = = Dual (2.5% quantile)
- Triaxial (Median) S
~ = Triaxial (2.5% quantile) - -
-30 ‘ ' : ‘ : rI a X I a
20 40 60 80 100 (;?
Number of Channels 1
B L= 1 r
or === —_
g Sr o
5 2]
2 -10f -
I R @)
2 - —
IS a_ " e
15[/ M
= —— Single (Median) 5 3
ic-20+ — — Single (2.5% quantile) -
) Dual (Median) _.G_J'
9 25| = = Dual (2.5% quantile) -+
B Triaxial (Median) <
= = Triaxial (2.5% quantile) -
P . . ‘ ot
20 40 60 80 100 @
Number of Channels Ll__
C -
Y S e E— ©
8
g 5 — 3
S
=-101
5
c
L el
%0 [ _aemmmmmmmm==-
% Single (Median)
i -20 = = Single (2.5% quantile)
B Dual (Median)
] 25 |- = = Dual (2.5% quantile)
- Triaxial (Median)
— = Triaxial (2.5% quantile)
30 L I 1 ] I

20 40 60 80 100
Number of Channels

Radial

Figure 1. The orthogonality of interference and multi-axis OPM recordings. A, B and C show the expected lead field attenuation
in decibels (y axis) when regressing regular solid harmonics of increasing order (L=1, L=2, L=3) from OPM data for single axis
(blue), dual axis (red) and triaxial (green) sensors. Solid lines show the median expected signal loss and dashed lines show the
signal loss from the worst-affected top 2.5% of brain regions (worst case scenario). The x-axis indicates the number of
channels. D shows the spatial distribution of the expected signal loss for L=3, for radial, dual-axis and triaxial sensors. To
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summarize the figure, multi-axis recordings allow the removal of more complex environmental interference whilst preserving
the neuronal signal. Importantly this is partly a factor of channel number but heavily determined by geometry as lower
numbers of triaxial channels have less attenuation then large numbers of single axis or dual axis sensors (eg compare 60 tri-
axials to 60 dual- or 60 single-axis sensors).

A Interference Suppresion for 60 Sensor System B Interference Suppresion for 400 Sensor System
0= 0=

]
(4]

-5

-10 10+

-15 -16

-20 2 ok

Lead Field Attenuation (dB)
Lead Field Attenuation (dB)

Single (.025 quantile)

Single (.025 quantile)

25 Dual (.025 quantile) 25 Dual (.025 quantile)
Triaxial (.025 quantile) Triaxial (.025 quantile)
.30 | 1 1 1 1 .30 1 1 1 |
2 4 6 8 10 12 2 4 6 8 10 12
Interference Harmonic Order Interference Harmonic Order

Figure 2. Statistical and physical limits of interference suppression for a 60 (A) and 400 channel (B) OPM system.
A. The 2.5% quantile lead field attenuation (decibels) for a 60-sensor system measuring single, dual and triaxial
channels respectively. In other words, for a triaxial system, one could remove ~10 orders of external interference
at the price of attenuating neuronal signals from 2.5% of the cortex by 5dBs. Triaxial systems offer clear
advantages over dual and single axis systems in terms of minimal attenuation at high harmonic order. As the
number of regressors (order? + 2 X order ) approaches the number of channels the attenuation grows rapidly
for all systems (representing the statistical limit of interference control). The same results are plotted in B for a
400-sensor system. In this case, the number of regressors never approaches the number of channels and we do
not see the sudden attenuation of lead field variance at higher orders. In this case the lead field attenuation is
representative of the physical limit of using higher order models.

4.2 Order of harmonics required to model the neural space

Figure 3 shows the order of irregular solid harmonics required to explain OPM data (6.5mm scalp
offset point magnetometers) and SQUID data (24mm scalp offset point magnetometers) for single,
dual and triaxial systems. These simulations were performed on the data with the highest degree of
spatial sampling (15mm separation). Encouragingly, for the SQUID data (which only differs from the
OPM data in scalp offset), the saturation of the harmonics (achieving 99% variance explained for 95%
of brain regions) occurs at the same harmonic order (8) as in previous research (Taulu & Kajola, 2005).
The OPM data saturates at L=11 implying there are at most 143 spatial degrees of freedom (see
discussion for comparison with existing literature). Perhaps surprisingly, the results of Figure 3 also
imply that multi-axis measurements provide no new spatial information concerning the brain’s activity
when compared to single axis measurements. However, this is due to the large number of sensors
used in the simulation and will be explored further in the next section.
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Figure 3. Order of irregular harmonics required to model OPM data. The y axis shows the variance explained for a given
harmonic order (x axis) for OPMs and SQUIDS for single, dual and triaxial sensors (stars, circles and dashed lines repsectively).
On the right we show the spatial profile of the variance explained across the brain for both OPMs and SQUIDS at L=8.

If we examine where the irregular solid harmonics poorly explain the brain data we note a spatial
profile. As an example, at L=8 (Figure 3 right) it would appear the harmonic model only explains 80%
of the variance in areas at the front and back of the head in OPM data. This effect is largely explained
by the sensors that are most distant from the origin of the coordinate system having the least
influence on the model (Figure 4). This phenomenon is more pronounced for data with higher spatial
frequency content (such as OPM data) as higher harmonic orders (L=6, L=12) have many more highly
influential sensors than at lower orders (L=1). Interestingly, in the case of spherical sampling, each
sensor is equally influential on the model regardless of spatial frequency content.
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Figure 4. Sensor influence on irregular harmonic model of brain activity. Sensors displaced far from the origin of the coordinate
system (x axis) have less relative leverage (y axis) than sensors closer to the coordinate system origin. This effect is stronger
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at higher orders of harmonics. Essentially, sensors displaced far from the origin have minimal impact on the model at high
orders. This analysis is performed for both scalp-based sampling and sampling on a sphere. Note that although sampling on
a sphere provides the most equitable impact of sensors on the model it is a special case where regular and irregular harmonics
become highly correlated (perfectly correlated in the case of single axis radial sensors) rendering the separation of brain
signal from interference highly challenging.

4.3 Information content of multi-axis sensors at lower sampling densities

The results of the previous sections would suggest that while multi axis recordings provide a much
better model of magnetic interference they provide no new spatial information about the neural signal
when compared to a large arary of single axis sensors. We explore this phenomenon by examining the
eigenspetra of the leadfields. We argue that sufficient sampling of the neural space has occurred when
additional sensors do not increase the number of eigenvectors that contribute substantial variance to
the lead fields. This is seen in Figure 5, where the number of eigenvectors required to explain 99% of
variance in 95% of brain areas saturates at lower sensor numbrs for triaxial sensors when compared
to dual or single axis sensors. In fact, the figure shows that there are diminishing returns (in terms of
characterising neuronal signal) for triaxial systems after 75 sensors (~225 channels). This is not the
case for an equally distributed radial system which does not saturate until 150-200 sensors (or
channels) while the triaxial system completely saturates at 100 sensors (300 channels). Figure 5B
shows these same data in terms of channel rather than sensor count and we see that radial only
systems can be constructed with lower channel counts to sample the same (neuronal) information.

AOO 99% Variance explained for 95% of brain areas B 100 99% Variance explained for 95% of brain areas
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Figure 5. Eigenspoectra of single, dual and triaxial OPM system. A. The figure graphs the number of sensors (x-axis) vs the
number of eigenvectors (y-axis) to ahchive 99% variance explained in >95% of brain region. When the number of eigenvectors
stops changing as a funcion of sensor number, one has fully sampled the neural space. B shows the same information but the
X axis is changed to channel count. The comparison of these two figures celarly shows that while triaxial systems allow for
sampling the neuronal signal with lower sensor counts (A) radial only systems can be constructed with lower channel counts
to sample the same information (B).

5. Discussion

By using vector spherical harmonics and eigenpectra as a theoretical basis we have explored the
interference rejection and spatial sampling properties of single, dual and triaxial OPM data. We found
that triaxial OPMs have superb noise rejection properties allowing for very high orders of interference
(L=6) to be accounted for while minimally affecting the neural space (2dB attenuation for a 60-sensor
triaxial system). The neural space was efficiently modelled by both irregular solid harmonics (L=11,
number of triaxial/dual/radial channels =143) and by the eigenvectors of the lead fields (number of
triaxial sensors and eigenvectors < 100). We now discuss the implications for system design of these
findings.
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Spherical harmonics are commonly used to model the brain and magnetic interference with the SSS
method (Clarke et al., 2020; Nurminen et al., 2010; Taulu et al., 2005; Taulu & Simola, 2006). Our work
here reveals that for OPM data the default parameters derived for SQUID data should change for OPM
data. In SQUID data the neural space is modelled with harmonics of order 8 and the interference is
modelled with harmonic of order 3. For OPM data the neural space should be modelled with at least
harmonics of order 11 regardless of the number of axes measured. As an interesting side note we
found that if one were to truncate the model before L=11 (Figure 3), the front and the back of the
brain are poorly modelled. This is because as one places sensors closer to the brain, a sensor’s ability
to influence the model becomes strongly dependent on its distance to the origin of the coordinate
system (Figure 4).

When modelling interference, the appropriate order strongly depends on the number of
measurement axes. In short, radial only designs will perform poorly even at low harmonic order but
triaxial systems will perform well at very high orders. Importantly, this effect is not driven by differing
number of channels between single, dual and triaxial systems. We can see clearly in Figure 1 that
regardless of how many radial channels are utilized, the lead field attenuation will always be greater
than that due to 20 triaxial sensors (60 channels). In triaxial systems, the limit for how high an order
can be used will be determined by the number of regressors in the interference model approaching
the number of data points (Figure 2). While it is clear that having more axes improve noise rejection
(Brookes et al., 2021; Nurminen et al., 2010), rejection performance is also improved by the sensors
being closer to the brain. Proximity to the brain shifts the neural spatial frequency content higher
(Figure 3) and magnetic interference (which is spatially low frequency at a distance) becomes
progressively more orthogonal to the neural signal. As such, on-scalp systems should (theoretically)
have better noise rejection properties than off-scalp systems.

With regards to sampling, we have built upon previous work which has shown that custom arrays can
be designed to model a particular brain region (Beltrachini et al., 2021; livanainen et al., 2021; Tierney
et al., 2020). In the current work we show that 100 equidistant triaxial sensors are sufficient to model
the whole brain. In fact, there are diminishing returns in having more than 75 triaxial sensors (Figure
5A). In terms of channel number, the triaxial arrangement is not as efficient as a purely radial array
(Figure 5B). Essentially, while the vector components of a triaxial system do add independent
information, the information gain per channel is smaller than it is for a radial only design. However, in
addition to the enhanced noise rejection properties there are practical considerations. As the
manufacturing of triaxial OPMs negligibly affects their weight and cost, it may be beneficial to design
a sparser triaxial array than a dense single axis array to optimize subject comfort and array wearability.
Furthermore, the average sensor spacings are increased from 22mm (for single axis only) to 32mm for
triaxial. Increasing the distance between sensors by 50% will have the added benefit of reducing the
effects of sensor cross-talk (Nardelli et al., 2019) by a factor > 2.

With regards to limitations we are assuming that a triaxial sensor can be constructed without
compromising performance. It has been shown that tangential components may be more affected by
volume currents (livanainen et al., 2017) and we do not investigate the implications here or of the
impact of different forward models (Stenroos et al., 2014; Stenroos & Sarvas, 2012). It is also worth
considering that measuring multiple axes also often occurs a small increase in white noise (Osborne
et al., 2018). However, even if triaxial sensors come with additional white noise burden, we note that

environmental interference such as vibration induced noise can exceed 100fT/+v/Hz easily (Tierney et
al., 2021). As such, we are (currently) often limited by interference and not white noise. To mitigate
this increased white noise, one could project the triaxial system on to either the eigenvectors of the
lead fields (matrix V in section 2) or onto the irregular solid harmonics (matrix A in section 2).
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We expect this white noise mitigation to be greater for projecting onto the eigenvectors of the lead
field than on to irregular solid harmonics (assuming white noise is spread equally among the regressors
of V and A) as V required < 100 regressors to represent the neural signal whereas A required at least
143 regressors. The compact way in which IV represents the neuronal signal is important as projecting
the data onto V is a preprocessing step applied in all SPM source reconstruction algorithms (Friston
et al., 2008; Lopez et al., 2014) and as a first stage in preprocessing for the noise rejection algorithm
DSSP (Cai et al., 2019; Sekihara et al., 2016).

There also are many other algorithms used for interference suppression that are not considered here.
We chose to use SSS as a basis because all of its interference rejection properties can be derived
theoretically once the geometry of the MEG array is known. It also allows one to provide an upper
bound on the number of spatial degrees of freedom in OPM data. Other data driven techniques such
as ICA (Vigario et al., 2000), tSSS (Taulu & Hari, 2009) or the canonical correlation step in DSSP (Cai et
al., 2019) are more difficult to consider because they are data driven. However, a full consideration of
the applicability of these techniques for suppressing interference in OPMs is warranted. As a final
point we have also not considered whether the positions and orientations of dual axis sensors could
be further optimized to have performance similar to triaxial systems. In the current work we have first
simulated a radial sensor and then arbitrarily chosen the second axis. In principle the first axis need
not be radial and the second could be optimized.

With these limitations in mind, we have shown theoretically that triaxial OPM sensors are capable of
separating signal from inference (with higher spatial frequency content) with minimal risk of
attenuating brain signal when using regular solid harmonics. Furthermore, sparser arrays can be
constructed with triaxial sensors than radial sensors (at the cost of increased channel count). These
findings all suggest that future systems based around triaxial arrays could allow for minimization of
cost, weight and interference while maximizing the system’s sensitivity to neural data in sparse arrays.

Appendix I: Real, Cartesian, Vector Spherical Harmonics

Here we provide explicit expressions for the matrices A and B introduced in section 2.

s asm  asm 9 sm
A=\Vim | n =g gy T g .
i
B=(Vrls™) -n= arlSlmnx + @r’Slmny + grlS{”nz

where n,, n,, n, refer to the components of the unit vector (n) representing the sensors sensitive axis.
We introduce the variable t to refer to any of the axes, x, y, z and calculate the partial derivatives as
below.

asm 9 . ji
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. . .0 . . .
The only unknown in the above equation is aS{" which can be expressed as follows in Cartesian

coordinates

(—apllnﬂ (;) |m| cos (|m| atan %) xz-}ll-_yz + sin (|m| atan %) a;_xl;,llml (;)’ m<o0
;—sz ia;—xﬂm(;), m=0 iv
taP{" (;) m sin (m atan %) xz?ll-_yz + cos (m atan %) a:—xle (;) ) m>0


https://doi.org/10.1101/2021.12.22.473837
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473837; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

(—apllml (;) |m| cos (|m| atang) xszyz + sin (|m| atan%) aaa_ypllml (;), m<0
g] g]

@S{n=4a@le(§), m=0 v

aP™ G) msin (m atan %) xz-T-—yz + cos (m atan %) aaa—yP,m (;) , m>0

sin (|m| atan%) a%l’llmI (;), m<0
%Szmz la%sz(f—,), m=0 vi

kcos (m atan %) a%P{" (7Z_~)’ m>0

Where

= ()= i c (ﬂk_m(k —m(ATE yzr)zl(xmzk_m”)(m_zv 2ty 2)) vii

k=m

L —yzkm(f — ml 21 2 k-m+2y(m=2[ 7 3 3
;—yleG)=(—1)mzlzc< yz Gk = m)(Vx +yr)2:{(ymz (VY )) viii

k=m

0z r2+k

iplm (;) _ (—1)"121 i . (Zk—m—l(k - m)mJ'Z\/m + (_mzk—m+1)(1vm)> N

k=m

With c¢ defined as follows

l+k—-1
(T :

This work was supported by a Wellcome collaborative award to GRB, Matthew Brookes and Richard
Bowtell (203257/2/16/Z, 203257/B/16/Z). SM was funded through the EPSRC-funded UCL Centre for
Doctoral Training in Medical Imaging (EP/L016478/1) and GO through EPSRC (EP/T001046/1) funding
from the Quantum Technology hub in sensing and timing (sub-award QTPRF02). The Wellcome
Centre for Human Neuroimaging is supported by core funding from the Wellcome Trust
(203147/2/16/Z). We also would like to thank Vishal Shah and his team at QuSpin for their support
throughout the development of our OPM system.

Acknowledgements

References

Ahonen, A. |., Himrudinen, M. S., llmoniemi, R. J., Kajola, M. J., Knuutila, J. E. T., Simola, J. T., &
Vilkman, V. A. (1993). Sampling Theory for Neuromagnetic Detector Arrays. IEEE
Transactions on Biomedical Engineering, 40(9), 859—869.
https://doi.org/10.1109/10.245606


https://doi.org/10.1101/2021.12.22.473837
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473837; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature
Neuroscience, 20(3), 327-339. https://doi.org/10.1038/nn.4504

Beltrachini, L., von Ellenrieder, N., Eichardt, R., & Haueisen, J. (2021). Optimal design of on-
scalp electromagnetic sensor arrays for brain source localisation. Human Brain Mapping,
42(15). https://doi.org/10.1002/hbm.25586

Boto, E., Bowtell, R., Kruger, P., Fromhold, T. M., Morris, P. G., Meyer, S. S., Barnes, G. R., &
Brookes, M. J. (2016). On the potential of a new generation of magnetometers for MEG: A
beamformer simulation study. PLoS ONE, 11(8), 1-24.
https://doi.org/10.1371/journal.pone.0157655

Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muiioz, L. D., Mullinger, K.
J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2018). Moving
magnetoencephalography towards real-world applications with a wearable system.
Nature, 555(7698). https://doi.org/10.1038/nature26147

Brookes, M. J., Boto, E., Rea, M., Shah, V., Osborne, J., Holmes, N., Hill, R. M., Leggett, J.,
Rhodes, N., & Bowtell, R. (2021). Theoretical advantages of a triaxial optically pumped
magnetometer magnetoencephalography system. Neurolmage, 236, 118025.
https://doi.org/10.1016/j.neuroimage.2021.118025

Cai, C., Kang, H., Kirsch, H. E., Mizuiri, D., Chen, J., Bhutada, A., Sekihara, K., & Nagarajan, S. S.
(2019). Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve
stimulators in magnetoencephalography data. Journal of Neural Engineering, 16(6).
https://doi.org/10.1088/1741-2552/ab4065

Clarke, M., Larson, E., Tavabi, K., & Taulu, S. (2020). Effectively combining temporal projection
noise suppression methods in magnetoencephalography. Journal of Neuroscience
Methods, 341(November 2019), 108700.
https://doi.org/10.1016/j.jneumeth.2020.108700

Fife, A. A., Vrba, J., Robinson, S. E., Anderson, G., Betts, K., & Burbank, M. B. (1999). Synthetic
gradiometer systems for MEG. |EEE Transactions on Applied Superconductivity, 9(2 PART
3), 4063-4068. https://doi.org/10.1109/77.783919

Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R.,
Flandin, G., & Mattout, J. (2008). Multiple sparse priors for the M/EEG inverse problem.
Neurolmage, 39(3), 1104-1120. https://doi.org/10.1016/j.neuroimage.2007.09.048

Hamaldinen, M. S., Hari, R., llmoniemi, R. J., Knuutila, J., & Lounasmaa, O. v. (1993).
Magnetoencephalography - theory, instrumentation, and applications to noninvasivee
studies of the working human brain. In Reviews of modern physics (Vol. 65, Issue 2, pp.
413-505). https://doi.org/10.1103/RevModPhys.65.413

livanainen, J., Mdkinen, A. J., Zetter, R., Stenroos, M., llmoniemi, R. J., & Parkkonen, L. (2021).
Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and
optimal design. Neurolmage, 118747. https://doi.org/10.1016/j.neuroimage.2021.118747

livanainen, J., Stenroos, M., & Parkkonen, L. (2017). Measuring MEG closer to the brain:
Performance of on-scalp sensor arrays. Neurolmage, 147(December 2016), 542-553.
https://doi.org/10.1016/j.neuroimage.2016.12.048


https://doi.org/10.1101/2021.12.22.473837
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473837; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Lopez, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures
for Bayesian MEG/EEG source reconstruction in SPM. Neurolmage, 84, 476—487.
https://doi.org/10.1016/j.neuroimage.2013.09.002

Mellor, S. J., Tierney, T., O’Neill, G., Alexander, N., Seymour, R., Holmes, N., Lopez, J. D., Hill, R.,
Boto, E., Rea, M., Roberts, G., Leggett, J., Bowtell, R., Brookes, M. J., Maguire, E., Walker,
M., & Barnes, G. (2021). Magnetic Field Mapping and Correction for Moving OP-MEG. |EEE
Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2021.3100770

Nardelli, N. v., Krzyzewski, S. P., & Knappe, S. A. (2019). Reducing crosstalk in optically-pumped
magnetometer arrays. Physics in Medicine and Biology, 64(21).
https://doi.org/10.1088/1361-6560/ab4c06

Nardelli, N. v., Perry, A. R., Krzyzewski, S. P., & Knappe, S. A. (2020). A conformal array of
microfabricated optically-pumped first-order gradiometers for magnetoencephalography.
EPJ Quantum Technology, 7(1). https://doi.org/10.1140/epjqt/s40507-020-00086-4

Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use
for magnetoenchephalography forward calculation in realistic volume conductors. Physics
in Medicine and Biology, 48(22), 3637—3652. https://doi.org/10.1088/0031-
9155/48/22/002

Nurminen, J., Taulu, S., Nenonen, J., Helle, L., Simola, J., & Ahonen, A. (2013). Improving MEG
performance with additional tangential sensors. IEEE Transactions on Biomedical
Engineering, 60(9), 2559-2566. https://doi.org/10.1109/TBME.2013.2260541

Nurminen, J., Taulu, S., & Okada, Y. (2010). Improving the performance of the signal space
separation method by comprehensive spatial sampling. Physics in Medicine and Biology,
55(5), 1491-1503. https://doi.org/10.1088/0031-9155/55/5/015

Osborne, J., Orton, J., Alem, O., & Shah, V. (2018). Fully integrated, standalone zero field
optically pumped magnetometer for biomagnetism. In S. M. Shahriar & J. Scheuer (Eds.),
Steep Dispersion Engineering and Opto-Atomic Precision Metrology Xl (Issue February, p.
51). SPIE. https://doi.org/10.1117/12.2299197

Sekihara, K., Kawabata, Y., Ushio, S., Sumiya, S., Kawabata, S., Adachi, Y., & Nagarajan, S. S.
(2016). Dual signal subspace projection (DSSP): A novel algorithm for removing large
interference in biomagnetic measurements. Journal of Neural Engineering, 13(3).
https://doi.org/10.1088/1741-2560/13/3/036007

Seymour, R. A., Alexander, N., Mellor, S., O’neill, G. C., Tierney, T. M., Barnes, G. R., & Maguire,
E. A. (2021). Using OPMs to measure neural activity in standing, mobile participants.
Neurolamge . https://doi.org/10.1101/2021.05.26.445793

Stenroos, Matti., & Sarvas, J. (2012). Bioelectromagnetic forward problem: Isolated source
approach revis(it)ed. Physics in Medicine and Biology, 57(11), 3517—-3535.
https://doi.org/10.1088/0031-9155/57/11/3517

Stenroos, M., Hunold, A., & Haueisen, J. (2014). Comparison of three-shell and simplified
volume conductor models in magnetoencephalography. Neurolmage, 94, 337-348.
https://doi.org/10.1016/j.neuroimage.2014.01.006


https://doi.org/10.1101/2021.12.22.473837
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473837; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Taulu, S., & Hari, R. (2009). Removal of magnetoencephalographic artifacts with temporal
signal-space separation: demonstration with single-trial auditory-evoked responses.
Human Brain Mapping, 30(5), 1524-1534. https://doi.org/10.1002/hbm.20627

Taulu, S., & Kajola, M. (2005). Presentation of electromagnetic multichannel data: The signal
space separation method. Journal of Applied Physics, 97(12).
https://doi.org/10.1063/1.1935742

Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Physics in Medicine and Biology, 51(7), 1759—
1768. https://doi.org/10.1088/0031-9155/51/7/008

Taulu, S., Simola, J., & Kajola, M. (2005). Applications of the signal space separation method.
IEEE Transactions on Signal Processing, 53(9), 3359—-3372.
https://doi.org/10.1109/TSP.2005.853302

Tierney, T. M., Alexander, N., Mellor, S., Holmes, N., Seymour, R., O’Neill, G. C., Maguire, E. A,,
& Barnes, G. R. (2021). Modelling optically pumped magnetometer interference in MEG as
a spatially homogeneous magnetic field. Neurolmage, 244.
https://doi.org/10.1016/j.neuroimage.2021.118484

Tierney, T. M., Mellor, S., O’Neill, G. C., Holmes, N., Boto, E., Roberts, G., Hill, R. M., Leggett, J.,
Bowtell, R., Brookes, M. J., & Barnes, G. R. (2020). Pragmatic spatial sampling for wearable
MEG arrays. Scientific Reports, 10(1), 21609. https://doi.org/10.1038/s41598-020-77589-
8

Uusitalo, M. A., & limoniemi, R. J. (1997). Signal-space projection method for separating MEG
or EEG into components. Medical & Biological Engineering & Computing, 35(2), 135-140.
https://doi.org/10.1007/BF02534144

van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A Versatile Approach to Spatial
Filtering. IEEE ASSP Magazine, 5(2), 4-24. https://doi.org/10.1109/53.665

Vigario, R., Sarel3, J., Jousmaki, V., Himaldinen, M., & Qja, E. (2000). Independent component
approach to the analysis of EEG and MEG recordings. In IEEE Transactions on Biomedical
Engineering (Vol. 47, Issue 5). https://doi.org/10.1109/10.841330

Vrba, J., & Robinson, S. E. (2002). SQUID sensor array configurations for
magnetoencephalography applications. Superconductor Science and Technology TOPICAL,
15,51-89.

Xia, H., Ben-Amar Baranga, A., Hoffman, D., & Romalis, M. v. (2006). Magnetoencephalography
with an atomic magnetometer. Applied Physics Letters, 89(21), 2004—-2007.
https://doi.org/10.1063/1.2392722


https://doi.org/10.1101/2021.12.22.473837
http://creativecommons.org/licenses/by/4.0/

