

1 Treated like dirt: Robust forensic and ecological 2 inferences from soil eDNA after challenging 3 sample storage

4 *Tobias Guldberg Frøslev¹, Rasmus Ejrnæs², Anders J. Hansen¹, Hans Henrik Bruun³, Ida
5 Broman Nielsen^{1,4}, Flemming Ekelund³, Mette Vestergård^{3,5}, Rasmus Kjøller³*

6

- 7 1. *Section for Geogenetics, GLOBE Institute, University of Copenhagen, Øster
8 Voldgade 5-7, 1350 Copenhagen, Denmark.*
- 9 2. *Section for Biodiversity & Conservation, Department of Ecoscience, Aarhus
10 University, Grenåvej 14, 8410 Rønde, Denmark.*
- 11 3. *Department of Biology, University of Copenhagen, Universitetsparken 15, 2100
12 Copenhagen, Denmark.*
- 13 4. *Section for Evolutionary Genomics, GLOBE Institute, Øster Farimagsgade 5, 1353
14 Copenhagen, Denmark*
- 15 5. *Section for Entomology and Plant Pathology, Department of Agroecology, Aarhus
16 University, 4200 Slagelse, Denmark*

17
18 e-mail: tobiasgf@sund.ku.dk

19 Abstract

20 Biodiversity of soil microbiota is routinely assessed with environmental DNA-based methods,
21 among which amplification and massive parallel sequencing of marker genes (eDNA
22 metabarcoding) is the most common. Soil microbiota may for example be investigated in
23 relation to biodiversity research or as a tool in forensic investigations.

24 After sampling, the taxonomic composition of soil biotic communities may change. In order to
25 minimize community changes after sampling, it is desirable to reduce biological activity, e.g.
26 by freezing immediately after sampling. However, this may be impossible due to remoteness
27 of study sites or, in forensic cases, where soil has been attached to a questioned item for
28 protracted periods of time.

29 Here we investigated the effect of storage duration and conditions on the assessment of the
30 soil biota with eDNA metabarcoding. We extracted eDNA from freshly collected soil samples
31 and again from the same samples after storage under contrasting temperature conditions.
32 We used five different primer sets targeting bacteria, fungi, protists (cercozoans), general
33 eukaryotes, and plants. For these groups, we quantified differences in richness, evenness
34 and community composition. Subsequently, we tested whether we could correctly infer
35 habitat type and original sample identity after storage using a large reference dataset.

36
37 We found increased community composition differences with extended storage time and with
38 higher storage temperature. However, for samples stored less than 28 days at a maximum
39 of 20°C, changes were generally insignificant. Classification models could successfully
40
41

42 assign most stored samples to their exact location of origin and correct habitat type even
43 after weeks of storage. Even samples showing larger compositional changes generally
44 retained the original sample as the best match (relative similarity).
45
46 Our results show that for most biodiversity and forensic applications, storage of samples for
47 days and even several weeks may not be a problem, if storage temperature does not exceed
48 20°C. Even after suboptimal storage conditions, significant patterns can be reproduced.

49 1 Introduction

50 A teaspoon of soil may contain more than a billion bacterial cells, meters of fungal hyphae
51 and profuse numbers of protists, nematodes and small arthropods¹. Moreover, the
52 phylogenetic diversity of soil is stunning not only at global scale, but also at local scales^{2–5}.
53 Today, high-throughput sequencing – often with the approach called eDNA metabarcoding –
54 is the standard tool for mapping this enormous microbial biodiversity. DNA metabarcoding
55 has shown that soil microbial biodiversity varies at scales from global to local, with a strong
56 impact of habitat^{6,7}. The high microbial diversity in combination with different habitat
57 requirements for most microorganisms, make the microbial composition of any soil sample
58 unique, and with a compositional signature that reflects the habitat and sampling location.
59 The continuous introduction and extinction of microbial species to any specific site further
60 contributes to the uniqueness of any point or snapshot sample of the soil community. This
61 ecological fingerprint may be used for making inferences about the wider community
62 surrounding the sampling location, of potential use in ecological studies^{8,9}, as well as in
63 forensics¹⁰.

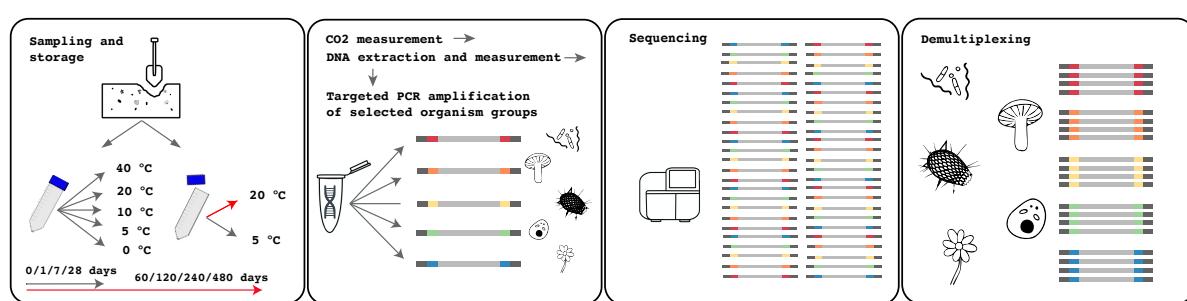
64 Almost a century ago, Edmond Locard stated that a perpetrator of a crime will bring
65 something to the crime scene, and leave with something from it¹¹. Soil is ubiquitous, and has
66 thus been of forensic interest for a long time, as it has the potential of linking persons or
67 objects to a crime scene¹². Until recently biotic forensic soil analyses have been based solely
68 on microscopic analyses. Hence, they have been restricted to a relatively small proportion of
69 the actual biotic component, and dependent on the skills of a few highly trained experts¹³.
70 High throughput sequencing extends the scope to all biotic components, introduces methods
71 that can be standardized, and produces relatively objective data, which may easily be
72 analyzed with common statistical approaches^{14–16}.

73 Two basic types of forensic cases can be identified – matching and provenance
74 prediction. In cases of matching (or discrimination), the likelihood that two soil samples share
75 the same origin in space is assessed – e.g. soil from a suspect's shoe sole and soil from a
76 crime scene. Here, DNA metabarcoding has a huge potential^{17–23}. Provenance prediction
77 can be used, when no potential crime scenes have been identified. Here, the likely origin(s)
78 of the questioned sample is narrowed down in terms of a potential geographical area or
79 habitat/location type. Provenance prediction using soil DNA metabarcoding has so far only
80 been explored in a single study¹⁰, but the same overall approach also has proven useful for
81 dust samples²⁴.

82 For biodiversity studies and forensic applications alike, it is important that the
83 detected community of the sample reflects the biotic composition at the sampling site with a
84 level of representativity adequate for the research question. For any soil sample, the final
85 detected community will depend on its actual taxonomic composition, analytical bias and
86 variance from the laboratory procedures, and finally the selected bioinformatic and statistical

87 approaches. For eDNA metabarcoding, a number of sources of variance and errors relate to
88 the last-mentioned points: e.g. DNA extraction method, PCR setup, sample tagging, library
89 building approach, contamination, sequencing platform, and sequence processing/filtering,
90 OTU definition, and statistical approaches^{25–27}. These sources of variance/error mainly
91 influence comparability between data from different studies, and to a great extent they can
92 be controlled and standardized by the researcher. In contrast, what happens to a sample
93 before it arrives in the lab may be less easy to control and standardize. Pre-analytical
94 handling and storage are known to result in changes in the taxonomic composition,
95 especially for heterotrophic microorganisms sensitive to the altered conditions.

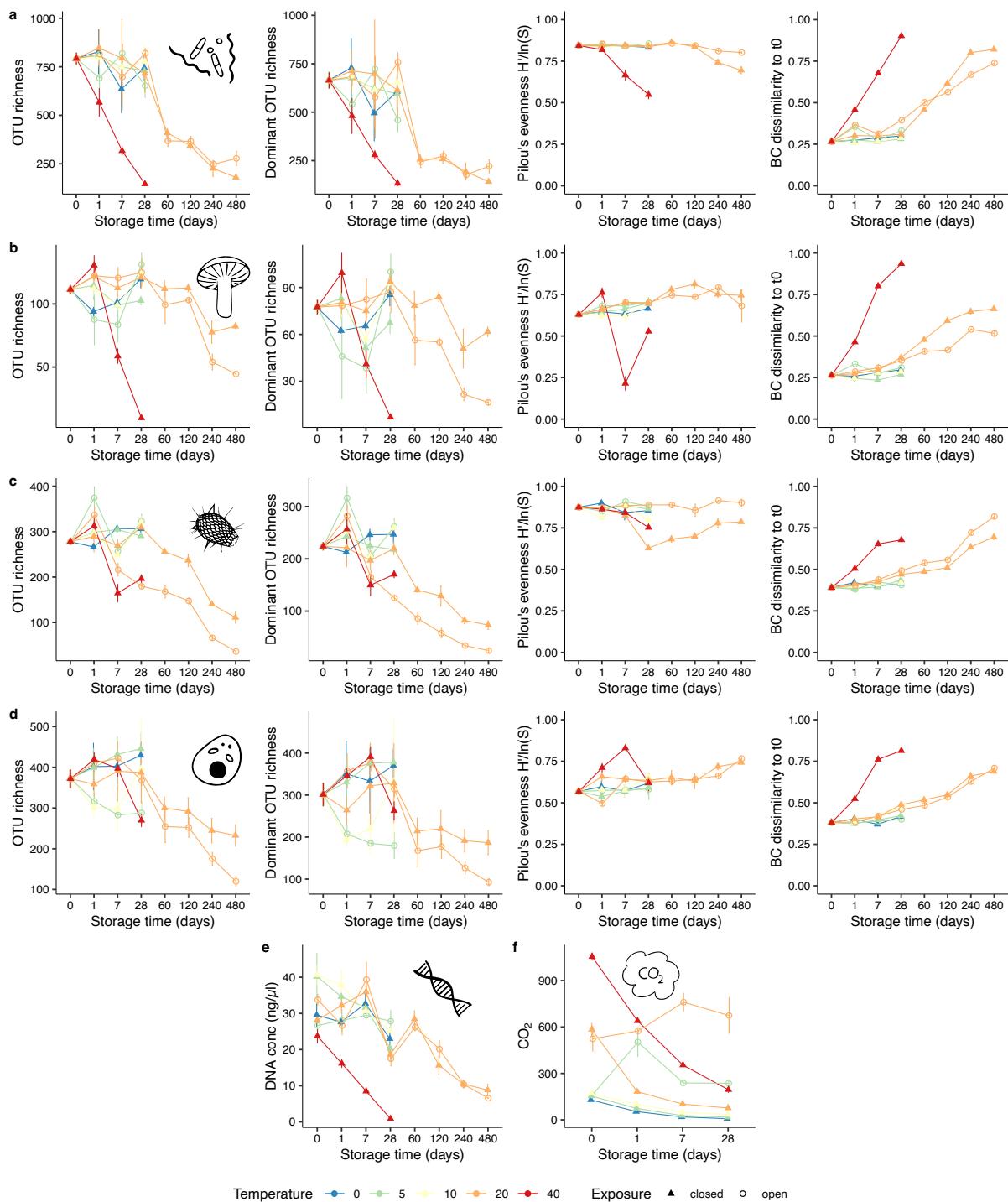
96 To minimize biotic activity immediately after sampling, most sampling protocols
97 prescribe to cool/freeze samples or add a buffer that inactivates biotic activity^{28,29}. In forensic
98 applications, a soil sample recovered from an object or from a suspect has usually been
99 removed from the crime scene for days, weeks or months and therefore has been subjected
100 to desiccation or temperatures different from its original conditions. These “sample storage”
101 conditions potentially change the biotic composition of the sample, which will ultimately affect
102 the interpretation of laboratory results. Thus, it is important to establish a range of storage
103 times and conditions that allow a valid interpretation of the different biotic components of soil
104 samples. A study investigating the storage effect on three different soils using a small set of
105 realistic storage scenarios for biodiversity studies concluded that the different approaches
106 only marginally impaired the inferred richness measures and community patterns³⁰. They did
107 find changes in richness, but the effect was insignificant, if rare taxa were not considered. In
108 their proposed guidelines, they advocated storage at 4°C for shorter periods (if possible),
109 and otherwise desiccation of the sample with silica gel. Another study examined the forensic
110 application of bacterial soil communities with a set of samples and locations, mimicking
111 realistic evidence samples, and subjected samples to storage at 4°C or 24°C and for
112 different time periods³¹. They found consistent biological change with storage time and
113 condition, but samples could still be assigned to the correct origin with supervised
114 classification (random forest) among the studied sites. It is, however, still unclear how
115 storage of soils impact basic biodiversity measures and compositional signatures of the
116 original sampling site and habitat type in a broader ecological context.


117 Here, we quantify the changes in taxonomic composition for a soil sample, which was
118 divided into multiple subsamples and stored under a range of conditions, with focus on
119 storage time, temperature and exposure (in closed containers or in open containers allowing
120 sample desiccation). We assessed biodiversity using eDNA metabarcoding targeting
121 bacteria, fungi, protists (cercozoans), general eukaryotes and plants by use of taxon-specific
122 primers (**Fig. 1**).

123 Our overall study aim was to assess the effect of sample storage on derived
124 biodiversity metrics with a focus on biodiversity assessment and forensic applications. We
125 approached this objective by investigating the following questions:

- 126 1) How does sample storage affect basic biotic patterns such as richness, evenness
127 and taxonomic composition?
- 128 2) To what degree does sample storage change the signature of the sampling location
129 and reduce the possibility of inferring the exact site of origin – i.e. sample matching?
- 130 3) To what degree does sample storage change the wider ecological signature and
131 reduce the possibility of inferring the habitat type of the sampling site – i.e. sample
132 provenance prediction?

133 Overall, we expected to see more change with longer storage time and higher storage
134 temperature. Further, we expected to see most change for groups able to grow within our


135 experimental systems, in particular bacteria and fungal molds, and least change for
136 organisms directly relying on photosynthetic products, such as mycorrhizal fungi. We
137 addressed point 1 by looking for significant changes in basic biodiversity measures, such as
138 sample richness and evenness, community dissimilarity, as well as OTU change and change
139 in taxonomic composition. To address points 2 and 3, we applied supervised learning. We
140 employed a reference dataset, which covers all major terrestrial habitat types in the study
141 area (Denmark). We chose to use k-nearest neighbors (KNN) as a simple supervised
142 classification approach applied directly on overall community dissimilarity measures, as we
143 did not aim for results directly dependent on presence/changes of particular taxa, and were
144 interested in seeing the effect of storage on the full community.
145

146 **Fig. 1. Experimental design.** Soil samples were stored at different temperatures and exposures, and eDNA
147 metabarcoding was performed targeting several organism groups. Soil was sampled, sieved and
148 mixed/homogenized, and triplicates of tubes were subjected to storage at different combinations of temperatures,
149 exposure, and storage time. Unexposed samples (tubes with lid on) were stored at 5°C, 10°C, 20°C and 40°C,
150 and exposed soil (no lid) were stored at 5°C and 20°C. Tubes were harvested and analyzed after 0, 1, 7 and 28
151 days for all combinations of temperature and exposure. Tubes stored at 20°C (exposed and unexposed) were
152 further harvested after 60,120, 240 and 480 days. 36 combinations of temperature, exposure and storage time
153 were analyzed for a total of 108 samples. Analysis included respiration (CO₂) measurement, DNA extraction and
154 measurement and PCR amplification and sequencing (metabarcoding) of selected organism groups.
155

156
157
158
159

160 **3 Results**

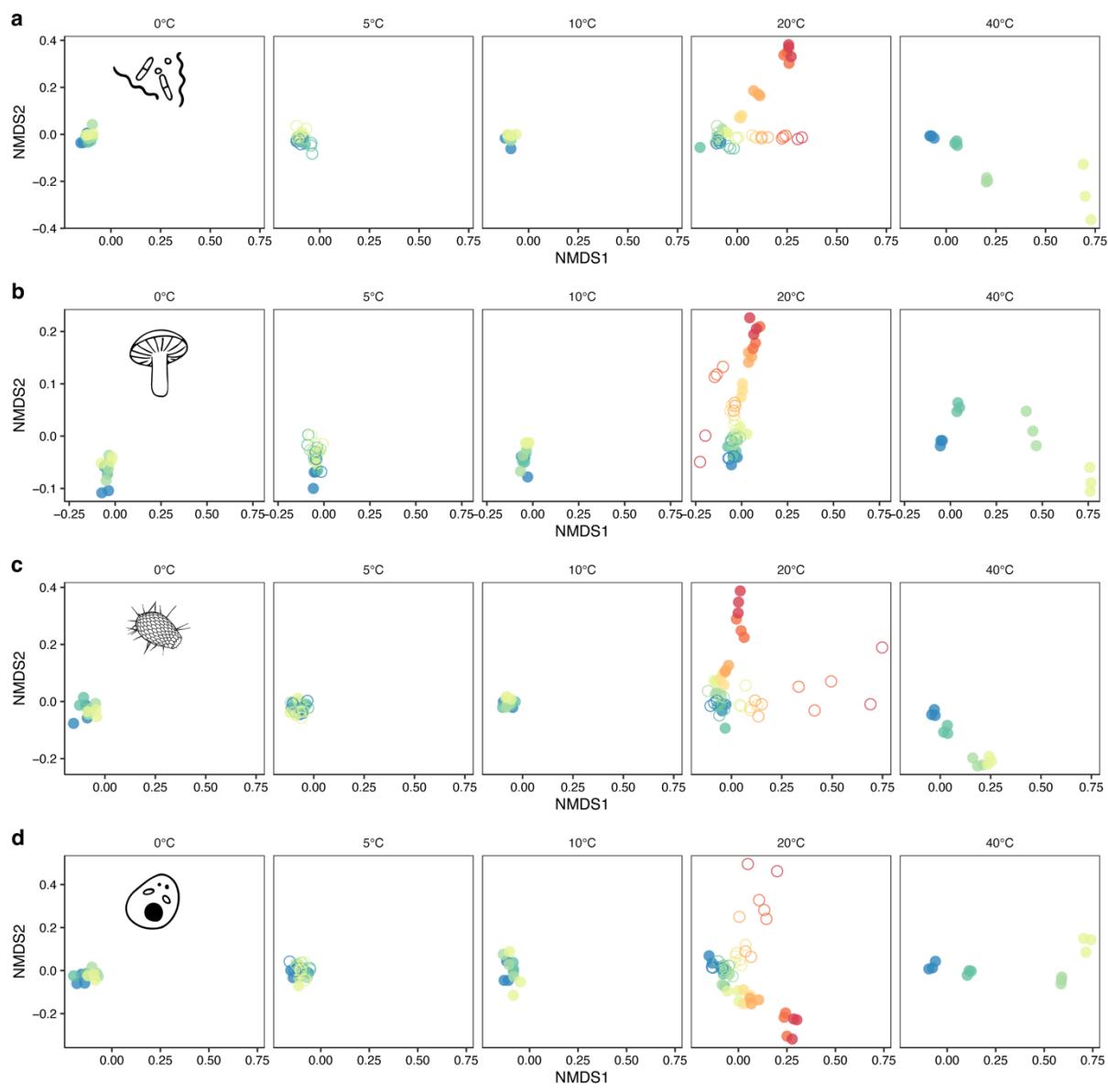
161

162 **Fig. 2. Absolute change with sample storage.** Rows show (from top to bottom) a: bacteria, b: fungi, c: protists
 163 and d: eukaryotes, and bottom row shows, e: changes in measured DNA concentrations and f: measured CO₂
 164 development. Plots (a-d) show, column 1: change in OTU richness; column 2: richness of dominant OTUs
 165 (registered with $\geq 1\%$ in each sample); column 3: community evenness as Pilou's evenness index ($H'/\ln(S)$);
 166 column 4: community change as Bray-Curtis dissimilarity from the centroid of the time zero communities. Plots
 167 show mean value +/- SEM for triplicates per treatment, with storage time on the x-axis, colors indicate storage
 168 temperature, and shape indicate exposure. Corresponding p-values for significant differences can be seen in
 169 Supplementary Table 2.

170 3.1 Absolute sample change from time zero with storage

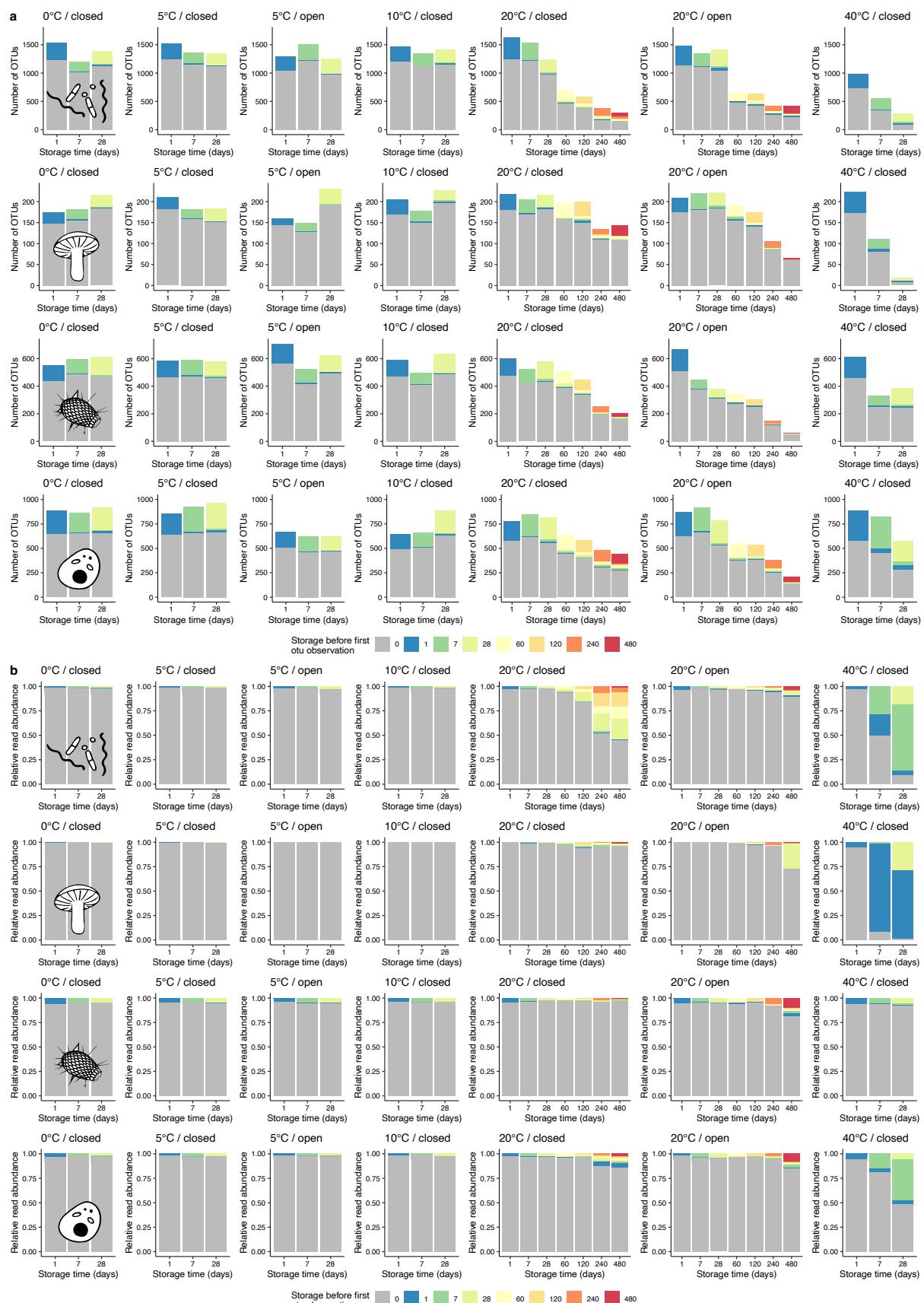
171 Overall, measures of richness, evenness and community composition were relatively stable
172 for all organism groups and systems $\leq 20^{\circ}\text{C}$ for up to 28 days (**Fig. 2a-d, Supplementary**
173 **Table 2**), whereas measures diverged gradually for most systems stored at 40°C or stored
174 at 20°C for 28 days or more. Generally, richness started to decrease after 1 to 28 days while
175 evenness was more stable except for a few treatments. Community compositional
176 dissimilarity to time zero started to increase at day 1 to 28. The concentration of DNA
177 extracted was decreasing for 40°C samples from day 1, and for 20°C samples stored for
178 more than 28 days (**Fig. 2e**). CO_2 development per hour increased with storage temperature
179 and decreased gradually with time for closed storage, whereas it was steady in open storage
180 (**Fig. 2f**).

181 **Richness (Fig. 2):** Generally, we found relatively large variation in richness
182 estimates, and thus relatively few changes with time were significant though the trends were
183 common for most taxa/treatment comparisons. The pattern for total richness and richness of
184 dominant OTUs, were similar. Bacteria had the highest number of significant differences
185 (20°C open & closed at 60 days or more, and 40°C at 7 days or more), whereas eukaryotes
186 was the groups with fewest significant differences (40°C 28 days, and 20°C (open) at 240
187 days or more, and 5°C (open) at 7 days). Despite the lack of significance, the downward
188 trend was evident for all 20°C samples stored for a long time, seemingly with a difference
189 between open and closed tubes for fungi, protists and eukaryotes, where the open tubes
190 showed a faster and more pronounced decrease in richness.


191 **Evenness (Fig. 2):** The evenness of bacterial communities did not change
192 significantly with time, although the figure shows a clear declining trend for 40°C (and partly
193 20°C closed) samples. For the other groups there were some significant differences, but
194 generally, evenness was relatively stable with time. The protist data showed a marked
195 difference for 20°C samples, where only the closed systems saw a drop in evenness from
196 day 28.

197 **Divergence from time 0 (Fig. 2):** All treatments gradually showed increased Bray-
198 Curtis dissimilarity to time 0 community composition (the calculated centroid), with 40°C (and
199 partly 20°C) samples increasing faster and more. All 40°C samples showed a clear and
200 significant trend, being significantly more dissimilar from time zero already after 1 day. For
201 most 20°C samples, divergence from time zero was apparent from day 28 day. For bacteria
202 and fungi, the closed 20°C tubes changed faster and more than the corresponding open
203 tubes, whereas protists showed the opposite pattern. The long term stored 20°C samples
204 changed as much or more than the 40°C (28 day) samples for protists and bacteria. The
205 results of the pairwise PERMANOVA (**Supplementary Table 3**) corresponded well with
206 these finding, but only few adjusted p-values were $<< 0.05$ due to the many comparisons.

207 **Community change (Fig. 3):** In the NMDs ordinations of the communities, the
208 samples stored at 0°C , 5°C and 10°C for up to 28 days, displayed no systematic change,
209 reflecting the low level of change observed in the other metrics. However, for the samples
210 stored at 20°C we observed a systematic change from day 28 and onwards, with open and
211 closed tubes clearly showing different trajectories (least evident for fungi). The 40°C samples
212 showed a clearly changed position already after 1 day of storage, and a different trajectory
213 compared to the 20°C samples. For samples exhibiting evident change (20°C for 28 or more
214 days and 40°C), the change was deterministic as triplicates generally remained close in the
215 ordination (although the protists displayed some variation in the 20°C open samples at day
216 240 and 480).


217 **OTU change (Fig. 4)** was calculated by comparing the OTU composition of the
218 combined triplicates of any treatment with the 21 combined time-zero samples. The
219 expected OTU change due to stochasticity (without any storage effect) was 20 - 30 %
220 corresponding to 2.6 - 5.9 % of the reads (**Supplementary Table 4**). **Fig. 4a** shows that the
221 change did not exceed the expected change for most samples stored at 20°C or lower,
222 whereas the 40°C samples showed a higher proportion of new OTUs per treatment – most
223 so for the eukaryotes. The contribution of new OTUs to the total read composition (**Fig. 4b**)
224 generally followed the same pattern for most treatments, except for long term storage and
225 40°C sample. For samples stored up to 28 days (and at 20°C or lower), the contribution of
226 new OTUs resembled the level expected due to stochasticity. However, the bacterial data
227 (20°C / closed) showed some late detected OTUs (day 28, 60 and 120) which later
228 contributed a higher relative abundance than expected from stochasticity. This was also the
229 case for fungi and eukaryotes, but less pronounced. For the protists, the relative contribution
230 of new OTUs was generally low even for 40°C samples and was highest for 20°C open at 48
231 days, whereas the other three markers (bacteria, fungi and eukaryotes) by far showed the
232 highest contribution of new OTUs in the 40°C samples already at day 7. The day 28 samples
233 at 40°C for bacteria were mainly composed of reads of OTUs observed at day 7, whereas for
234 fungi, OTUs observed already at day 1 dominated, and for eukaryotes they are dominated
235 by equal amounts of OTUs observed at time zero and day 7.

236 **Taxonomic changes (Fig. 5**, all taxonomic levels can be seen in **Supplementary**
237 **Figs. 1-4)**. **Bacteria**: For most treatments of 20°C or lower, few major taxonomic changes
238 occurred up to day 28. However, pronounced taxonomic changes took place in the 40°C
239 samples where the Firmicute genus *Alicyclobacillus* increased to finally dominate the
240 samples after 28 days. In the 20°C samples, gradual change in the proportions of several
241 taxa was observed from day 60, and there was a clear difference between the open and
242 closed tubes. The Firmicute genus *Bacillus* increased markedly after 120 days in the open
243 tubes, whereas the closed tubes saw a corresponding increase of the Acidobacteria
244 *Acidipila*. **Fungi**: For all treatments of 20°C or lower, Mortierellomycetes (*Mortierella*)
245 systematically increased, whereas Agaricomycetes (*Inocybe*, *Cortinarius*, etc.) concomitantly
246 decreased already after 7 days. In the 40°C samples, *Aspergillus* dominated already after 7
247 days. **Protists**: Reflecting the low OTU change, the taxonomic change of protists was less
248 pronounced, but with a few systematic changes. The 20°C (open and closed tubes)
249 displayed an increase of Allapsidae after 120 days, whereas, in the closed tubes, only
250 Cryomonadida (Rhogostoma lineage) increased from day 7, and decreased again at day
251 240. Whereas the other organism groups displayed a drastically different taxonomic
252 composition in 40°C samples, the taxonomic composition in the 40°C samples of the protists
253 was comparable to that of samples at lower temperatures. **Eukaryotes**: For most treatments
254 of 20°C or lower at 28 days or less, few systematic taxonomic changes occurred. For 20°C
255 closed there was a decline of metazoan (mainly in the form of Enoplea nematodes) and an
256 increase of fungi. This was also the case (but less linear) in the 20°C open tubes. This was
257 also seen very clearly for the 40°C, where the Metazoa OTUs disappeared at day 7, and
258 where an increase of Apicomplexa was also seen.

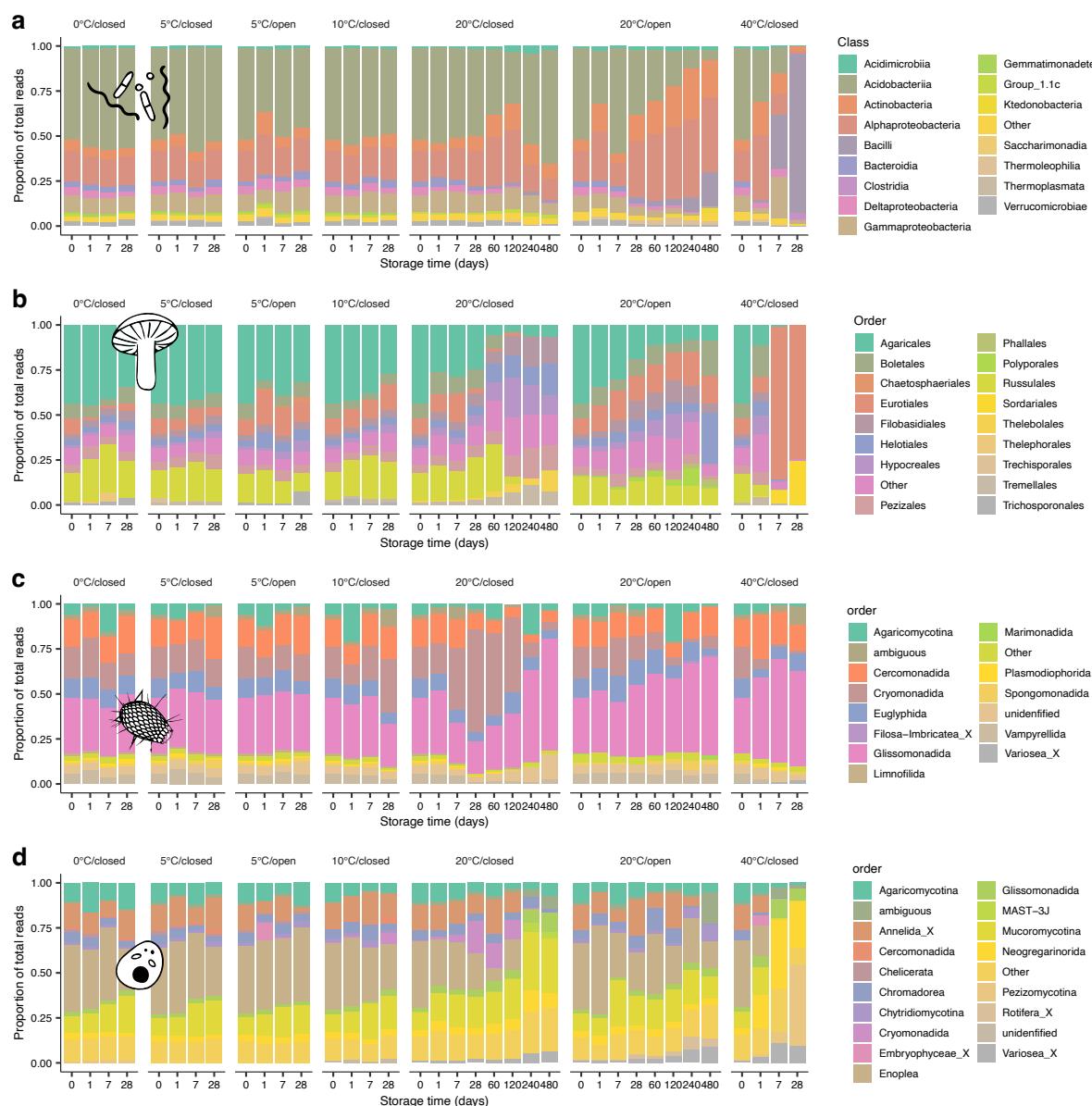

259
260
261
262
263
264

Figure 3. Community change with storage. NMDS ordinations of the stored samples showing community change with storage conditions and time for the four organism groups (a = bacteria, b = fungi, c = protists, d = eukaryotes). For each of the four organism groups, one NMDS ordination in 2 dimensions was performed on Hellinger transformed data. Axes show MNDS 1 and 2, colors indicate storage time, shape indicate exposure (open/closed tube), and facets reflect storage temperature.

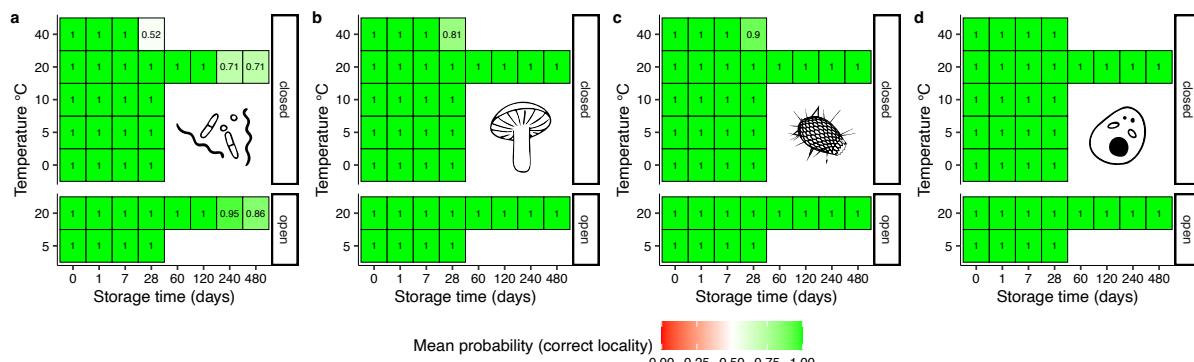
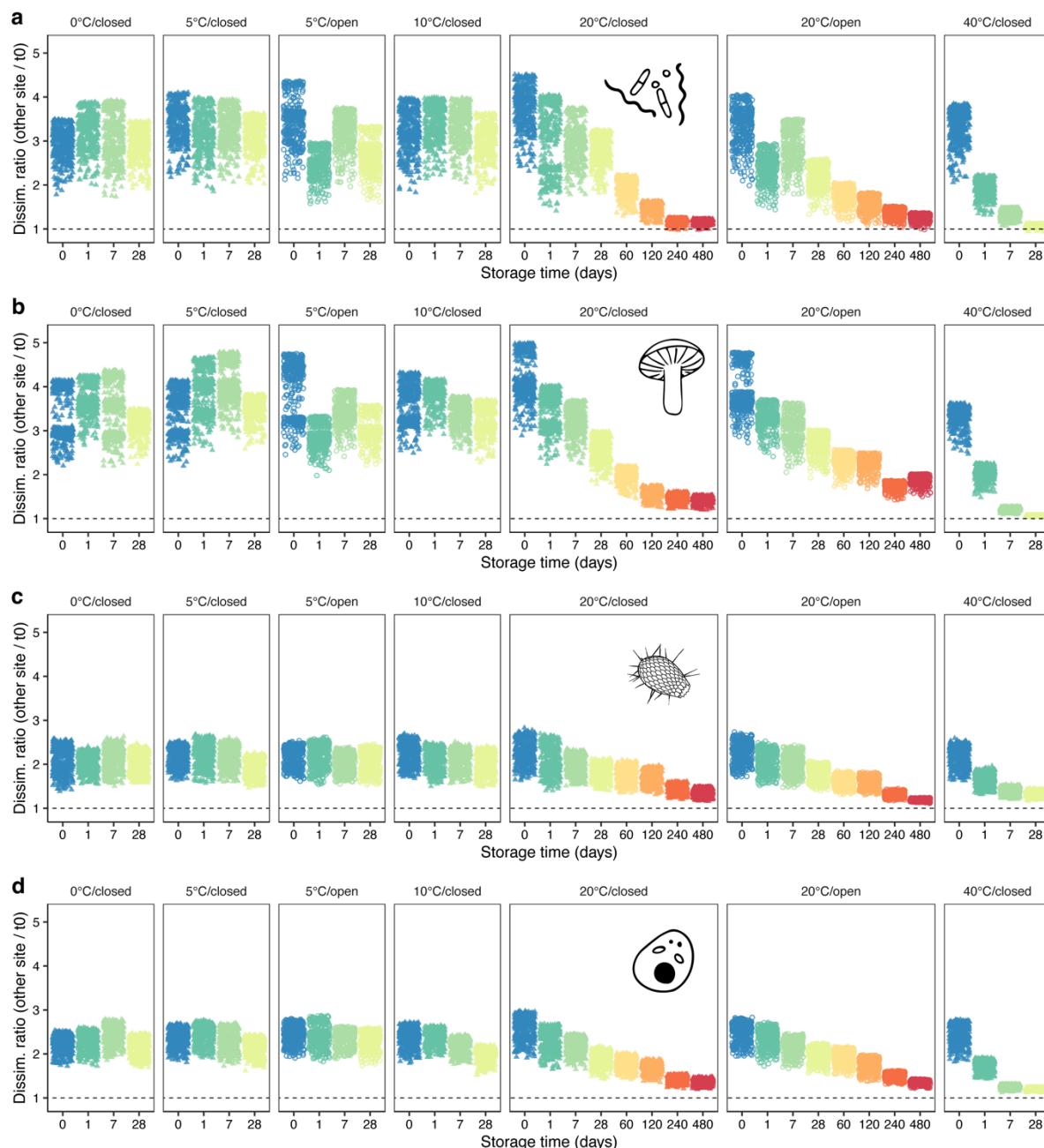


Fig. 4. OTU change. Bar plots showing the OTU composition in terms of the first appearance for a given OTU. a) shows the composition of OTUs, b) relative read abundance of the OTU composition. Rows in each plot show (from top to bottom): bacteria, fungi, protists and eukaryotes. All three replicates of a given treatment

269 (combination of storage time, temperature and exposure) are combined and compared to the combined
 270 composition of all 21 time-zero samples.
 271

272
 273 **Fig. 5. Taxonomic change with storage.** Bar plot showing the relative composition of reads from the most
 274 abundant taxa at class level. Rows show bacteria (a), fungi (b), protists (c) and eukaryotes (d). All three
 275 replicates of a given treatment (combination of storage time, temperature and exposure) are combined.
 276 **Supplementary Figs. 1-4** show composition at all taxonomic levels.

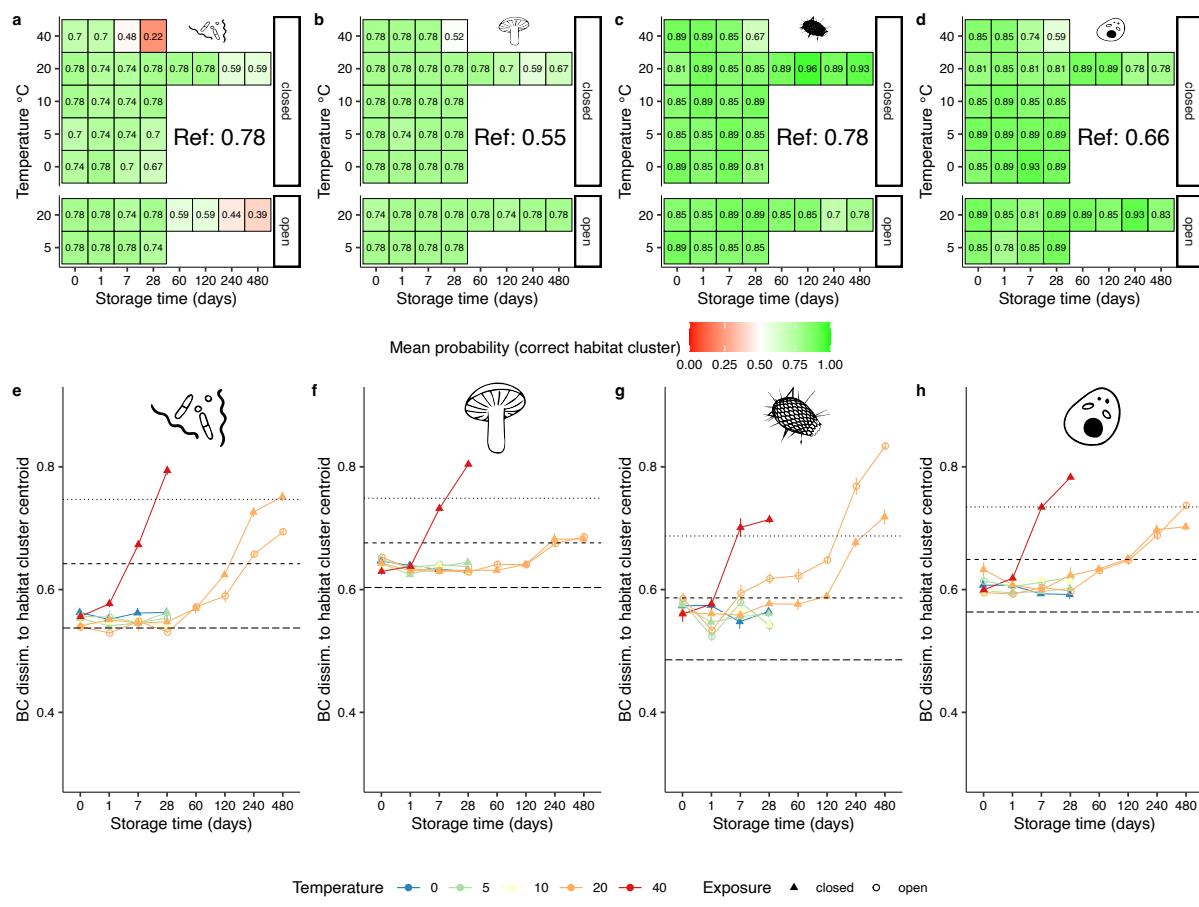
277


278 **Fig. 6. Supervised classification of exact location using k-nearest neighbor analysis (KNN).** Probability of
279 stored samples being classified as belonging to the exact sampling site, using nine time-zero stored samples as
280 ingroup and 129 samples representing a wide selection of terrestrial habitats in Denmark as outgroup.
281 Classification probability was calculated as the proportion of ingroup samples among the seven closest neighbors
282 – defined as those samples with the smallest Bray-Curtis dissimilarity to the examined stored sample. Cells show
283 the mean value of the triplicate per treatment. Panels show (from left to right): a: bacteria, b: fungi, c: protists and
284 d: eukaryotes.

285 3.2 Signature of exact location

286 We used supervised KNN classification to test if the stored samples could be reclassified to
287 the correct location (sampling site) as represented by nine un-stored (time zero) samples
288 using a 129 sample reference dataset as outgroup. Using a criterion of 0.5 mean probability,
289 the approach classified all stored samples correctly (**Fig. 6 a-d**). The dissimilarity ratio –
290 defined as the Bray Curtis dissimilarity of a stored sample to any of the 129 reference plots
291 divided by the Bray Curtis dissimilarity to time zero centroid of the stored samples – became
292 smaller with storage and temperature (**Fig. 7**), but the ratio never dropped below one. Thus,
293 no sample changed to become more similar to other localities than to the origin.

294 **Supplementary Fig. 5** shows how the absolute dissimilarity of stored samples to any of the
295 129 samples from the reference data show a steady increase for 40°C and long term (from
296 day 28) storage 20°C samples.


297

Exposure ▲ closed ◈ open Storage time ● 0 ● 1 ● 7 ● 28 ● 60 ● 120 ● 240 ● 480

298
299
300
301
302
303
304
305
306

Fig. 7. Dissimilarity ratio of stored samples to reference data compared to time zero. Each point shows the ratio between the Bray Curtis dissimilarity of a stored sample to one of the 129 reference plots divided by the Bray Curtis dissimilarity to time zero centroid of the stored samples. Thus, for each set of replicates for each treatment, the plot has 129 points. X-axis and color indicate storage time, symbol indicates exposure (open vs. closed tubes), and faceting corresponds to storage temperature and exposure. If a point is below the dotted line, it means that the stored sample is more similar to a reference plot than to the time zero centroid. This is not the case for any comparisons, meaning that the stored samples all retain highest similarity (lowest dissimilarity) to the time zero centroid compared to all reference plots.

307

308 **Fig. 8. Supervised classification of habitat type and dissimilarity to habitat type centroid.** *Upper panel (a-d):* Shows the probability of stored samples being classified as belonging 309 to the correct habitat type among nine habitat types defined by supervised classification of observational data 310 from the 129 reference sites, but without any samples representing the site of origin. Classification probability 311 was calculated as the proportion of ingroup samples among the nine closest neighbors – defined as those 312 samples (among the 129 reference samples only) with the smallest Bray-Curtis dissimilarity to the examined 313 stored sample. Cells show the mean value of the triplicate per treatment. Note that only classification probability 314 to the most probable habitat type (Mor forest) is shown. “Ref” indicates the classification success to the same 315 habitat type of the origin site sample (SN081) from the reference dataset for comparison. *Lower panel (e-h):* 316 Shows the Bray-Curtis dissimilarity of stored samples to the centroid of the most probable habitat type (Mor forest). 317 Horizontal long-dashed line shows the mean dissimilarity to the centroid of the original habitat type members, the short-dashed line shows one standard deviation of the former, 318 and the punctuated line shows two times standard deviation. Color indicates storage temperature and shape 319 indicates exposure. 320

322 3.3 Signature of habitat type

323 Using a supervised classification of the set of 130 reference sites into nine broadly 324 circumscribed habitat types (see supplementary information), we used KNN classification to 325 examine to which habitat type the stored samples were assigned. For all datasets, the 326 dominant habitat type for un-stored samples was Mor forest, followed by Mull forest. This 327 assignment fitted well with the ecological properties of the focal soil sampling site (SN081), 328 which is mature beech forest on relatively poor, but not strongly leached, till with a top-soil 329 pH of 3.9. This slightly ambiguous classification as acidic Mor forest borderline to alkaline 330 Mull forest was seen even at time zero (**Fig. 8**), and also for the original reference sample 331 from the focal site (SN081 indicated as “Ref” in **Fig. 8**). Using a criterion of 0.5 mean

332 probability, **Fig. 8 a-d** shows that this approach classified all stored samples correctly,
333 except for bacteria at 40°C after 7 and 28 days, and at 20 °C open after 480 days, and for
334 fungi at 40 °C after 28 days. The probability of correct assignment was generally constant
335 with storage time and with temperature. Apparent decline in assignment success was only
336 seen for the for 40°C samples and for the 20 °C bacteria samples. Although the KNN
337 approach was overall successful, **Fig. 8 e-h** shows that several stored samples exceeded
338 the dissimilarity to the habitat type centroid by more than two standard deviations (for the
339 reference data members of the habitat type). This was most evident for the protists although
340 this group showed the highest and most stable mean classification success. **Supplementary**
341 **Fig. 6** shows the classification probabilities towards the second most probable habitat type
342 (Mull forest).

343 Discussion

344 It is paramount in eDNA metabarcoding studies, that a sample adequately represents the
345 community, from which it was drawn. Ideally, it should be comparable to an immediately
346 processed sample, and only show deviations corresponding to what one would expect from
347 the chosen analytical workflow. However, immediate processing is often not possible, and
348 taxonomic compositional changes of the sample may occur. This is particularly the case in
349 forensic sampling where storage conditions of soil traces are beyond the control of the
350 analyst and for which storage under suboptimal conditions and for an unknown period of
351 time is the norm. Depending on the objective of the study, some degree of community
352 change during sample storage may be acceptable, but the uncertainties related to storage
353 conditions are crucial to understand.

354 In this study, we addressed community change across a combination of storage
355 conditions and periods. As expected, we found temperature-dependent community changes
356 during storage time. However, we also observed that changes in measures of richness and
357 diversity/evenness, and changes in community structure and taxonomic composition, were
358 small for storage temperatures of 10°C (to 20°C) or lower and storage times of 28 days or
359 less. However, biodiversity measures and community patterns diverged gradually for
360 treatments at 40°C already after 1 day and for samples stored at 20°C for 28 days or more.
361 Still, despite significant taxonomic compositional changes, we could still refer most samples
362 to original habitat type and exact location with supervised classification models.

363 Our results show limited taxonomic compositional change during short-term storage
364 (a few days) of samples. The variation in richness, evenness, community change and OTU
365 change of samples stored at 20°C or lower and for 28 days or less did not exceed the level
366 of variation for immediately analyzed (un-stored) samples. Thus, for studies of major
367 biodiversity patterns, soil samples can be collected and stored for shorter time periods
368 (days) without the need of immediate freezing/cooling, as long as it is possible to store
369 samples at 20°C or lower. This will often be possible in temperate regions, and is practical if
370 no lab facilities are nearby and/or if working with bulk samples, that need to be transported
371 for further processing, etc. Still, targeting of certain fast-growing taxa, e.g. molds like
372 *Mortierella* requires special consideration. On the other hand, our results show that higher
373 temperatures (40°C) induce relatively early changes in taxonomic composition, as well as
374 significant changes in other biodiversity measures already after one day. Hence, work in the
375 tropics need special attention when there is not access to cooling. Desiccation is a good
376 approach to conserve DNA^{30,32} and has also been used in practice for soil DNA studies with

377 a global scope⁶. In this study, we only investigated passive desiccation in the form of open
378 20°C (and 5°C) tubes, which clearly differed from their closed 20°C counterparts, and the
379 differentiation between closed and open treatments continued until the last sampling time.
380 Whether this continuous change was due to differential growth of species present from the
381 start, or partially from influx of new species to the open tubes is not clear. We expect that
382 active desiccation with e.g. silica gel followed by storage in closed container may be the best
383 approach, when cooling is not possible, as suggested by another study³⁰. We saw a more or
384 less identical pattern for total richness and richness of dominant OTUs, whereas other
385 studies³⁰ saw a marked difference with richness of dominant OTUs less sensitive to storage.
386

387 In this study, we combined the stored samples with a reference dataset representing
388 most major terrestrial habitat types in Denmark including one sample from the same study
389 site as the stored samples. Despite many differences in the sampling strategies of the two
390 datasets, we could classify the stored sample to the correct habitat type using supervised
391 classification in the form of simple KNN models.

392 The most important forensic lessons from this study, is that no stored sample gained
393 higher similarity to any other sample after storage. Thus, all samples retained highest
394 similarity to the original un-stored sample (time zero centroid) when compared to a reference
395 dataset of 129 samples representing most terrestrial habitats in Denmark. Hence, the KNN
396 models depending on compositional similarity could correctly match all stored samples to the
397 correct exact location (as defined by the un-stored samples).

398 In forensic matching of samples – i.e. comparison of a trace sample to a crime scene
399 – it is not permissible to get false matches, which may potentially lead to conviction of
400 innocent persons. Thus, when employing community compositional approaches like this
401 study, it is important to consider the strengths and weaknesses of the analytical approaches.
402 The KNN approach uses dissimilarities to known observations, so if case evidence samples
403 are merely investigated in the context of few other observations – or with observations from
404 entirely different habitat types – false positives are likely. We suggest that real life forensic
405 cases should not exclusively rely on approaches like KNN based on closest match, but also
406 consider whether the observed dissimilarities lie within or close to the variation seen for
407 replicated samples from the same locality, and ideally be combined with a score-based
408 likelihood ratio-like measure. The matching approach applied here depends on a
409 representative sampling with several replicates of the reference site. In the case of matching
410 of two trace samples, or one trace sample with several compositionally diverse references,
411 other approaches than KNN are needed.

412 Contrary to models for matching of forensic samples, models for provenance
413 prediction (as defined and applied here) will most likely only be used as an investigative tool
414 in forensic cases – e.g. to narrow down areas of interest – and thus some flexibility of
415 models may be allowed as avoidance of false positive predictions is less critical. Here we
416 tested whether the stored soil samples could correctly be classified to a wider habitat type of
417 the location where they were collected. The KNN models for all organism groups were very
418 successful and only failed for 40°C after 7 and 28 days for bacteria, and after 28 days for
419 fungi.

420 For real-life forensic applications, we recommend prioritizing large representative
421 ecological reference databases – i.e. sequence data from soils of a wide selection of habitat
422 types – to reduce uncertainty in ecological inferences and site matching. Further studies are
423 needed to test if such ecological reference database should be based on single bulk
424 samples constructed for maximal representation of larger localities (habitat types) as used in
this study, or one based on several replicates of smaller soil samples representing smaller or

425 larger localities. Along with this, other sources of variation (like seasonality) also need to be
426 addressed in future studies.

427 The changes we see in the stored samples are systematic – i.e. the replicates
428 change in the same direction, as also detected in other in another study³³. Furthermore, we
429 see that the direction of community change depends on temperature and exposure
430 (open/closed tube). It may thus be possible to predict storage condition and time for a
431 questioned sample. This could be a valuable approach for forensic samples, where time
432 since removal from the original site may be of interest, parallel to the estimation of post-
433 mortem intervals. We also see clear differences in the taxonomic composition related to
434 temperature and exposure, and it may be possible and interesting to identify indicator taxa
435 for storage conditions. On the other side of this coin, it may also be possible to identify and
436 extract those taxa that are least sensitive to storage and use these to build provenance and
437 matching models that are robust irrespective of storage conditions. However, rigid
438 examination of these topics would require soils from several different habitat types, as
439 patterns likely depend on soil type.

440 In conclusion, this study shows that soil samples retains a large proportion of the
441 original taxonomic compositional signature during relatively extended storage, and that the
442 observed deviation – although deterministic – does not exceed the variance between
443 replicated un-stored samples, if they are not stored warm or for a very long time. Still, this
444 source of variation in biodiversity patterns from soil eDNA metabarcoding needs to be
445 compared to other sources like seasonality, samples size, etc., to inform sampling strategies
446 for biodiversity studies as well as making a solid foundation for interpretation of forensic
447 analyses.

448

449 2. Materials and Methods

450 2.1 Experimental setup

451 We sampled soil in a mature beech (*Fagus sylvatica*) forest at the Strødam nature reserve in
452 N Zealand, Denmark on August 31, 2017. The soil had a pH of 3.9 (H₂O), a water content of
453 25% and organic matter content of 10%. Loose and coarse litter was removed from the soil
454 surface before soil sampling, and the upper 10 cm was sampled, which then included a thin,
455 ≈ 1 cm organic layer O and the top of the A horizon. The soil sample was taken from a single
456 pit, about 5 liters in total in the middle of a permanently marked plot (SN081) established
457 during the Biowide project³⁴.

458 Immediately after sampling, soil was carried to the laboratory (30 min drive) and
459 sieved (5-mm mesh). 50-ml centrifuge (Falcon) tubes acted as experimental units and 3.2 g
460 fresh weight of the sieved soil was added to each centrifuge tube. Tubes were then stored in
461 combinations of temperature and exposure. The experimental setup was completed within 2-
462 3 hours after field sampling (**Fig. 1**).

463 Five sets of tubes were closed with a lid to avoid desiccation and stored at 0°C, 5°C,
464 10°C, 20°C and 40°C, respectively. Two sets of tubes were left open to allow desiccation
465 and stored at 5°C and 20°C, respectively. Tubes were harvested after 0 days (1 hour), 1
466 day, 1 week (7 days) and 4 weeks (28 days) and, further for tubes incubated at 20°C, after 2,
467 4, 8 and 16 months (60, 120, 240 and 480 days). All 36 treatments (experimental

468 combinations of storage time, temperature and exposure) were in triplicate (i.e, n=108). Prior
469 to storage, an 8-mm hole had been drilled into the lids and fitted with a rubber plug to allow
470 for subsequent gas measurements. We used production of CO₂ over time as a measure of
471 total biological activity in our tubes. At each harvest event, CO₂ production was measured for
472 all tubes. The un-capped tubes were fitted with lids 30 mins before measuring CO₂. After gas
473 measurement, the harvested tubes were placed at -80°C for later DNA extraction and
474 sequencing, while all remaining tubes were placed back at their respective incubation
475 temperatures.

476 2.2 Measuring of CO₂

477 We sampled gas from the headspace air from each sample tube with a gas-tight syringe
478 inserted through the rubber plug. The 0.5 ml air sample was injected into a gas
479 chromatograph equipped with a thermal conductivity detector (Mikrolaboratoriet, Århus) for
480 the determination of CO₂ concentration. Gases were separated before detection on a 1.8-m
481 Haysep Q column operated at 45 °C. During each CO₂ measuring event, we measured the
482 CO₂ concentration of atmospheric air and CO₂ standards as appropriate.

483 2.3 Sequence data

484 2.3.1 DNA extraction

485 DNA was extracted from 107 soil samples (originally 108 samples, but one failed) in two
486 batches, one with the 84 tubes stored for 0, 1, 7 and 28 days, and the other with the 23
487 tubes stored for 60, 120, 240 and 480 days. From each sample, 0.25 g of soil was subjected
488 to DNA extraction using DNeasy PowerSoil Kit (Qiagen), following the manufacturer's
489 protocol, except for the elution step, where 105 µl 1 x TET-buffer was used. For
490 contamination control, five extraction blanks were included. Prior to extraction, the samples
491 were homogenized using a TissueLyser II at 30 Hz for 10 min. DNA concentrations were
492 measured with Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen) and samples were
493 normalized to a concentration of 1 ng/µl prior to PCR amplification.

494 2.3.2 DNA amplification and sequencing

495 DNA was amplified using five different markers targeting bacteria, fungi, protists (Cercozoa),
496 general eukaryotes and plants, respectively (see **Supplementary Table 1** for primer and
497 PCR information). The reason to include both a general eukaryote marker and specifically
498 address fungi, plants and Cercozoa was to ensure appropriate amplification of some of our
499 target groups, but still also to explore the usefulness of a more general primer but with less
500 sequencing depth within specific clades. PCR reactions contained 0.04 U/µl AmpliTaq Gold
501 (Life Technologies), 0.6 µM of each primer, 0.8 mg/ml bovine serum albumin (BSA), 1X Gold
502 Buffer, 2.5 mM of MgCl₂, 0.2 mM of each dNTPs and 1 µl DNA extract in a 25 µl total reaction
503 volume. Seven PCR blanks were included for every primer set. Fragment presence and
504 sizes were verified on 2% agarose gel, stained with GelRedTM (Biotium).

505 Both forward and reverse primers were designed with 96 unique tags (MID/barcodes)
506 of 6 bp at the 5'end using a restrictive dual indexing approach, where no primer tag (forward
507 or reverse) was used more than once in any sequencing library, and no specific

508 combinations of forward and reverse tag were reused in the study. PCR products were
509 pooled for a total of 10 pools – two per primer set, with one pool containing the first 84
510 samples and another the remaining 23 samples. One or two extraction blanks, and two to
511 three PCR negatives were included in each pool. PCR pools were purified with MinElute
512 PCR purification kit (QIAGEN GmbH) and the length of PCR amplicons were verified on
513 2100 Bioanalyzer High Sensitivity Chip (Agilent Technologies). Each of the five pools
514 containing 84 samples was built into four separate sequencing libraries, while pools
515 containing 23 samples were built into one library per pool, four library negatives were also
516 included (a total of 29 libraries). Libraries were built using the TruSeq DNA PCR Free Library
517 Preparation Kit (Illumina), replacing all the manufacturer suggested clean-up steps (sample
518 purification beads) with MinElute purification. A final library purification was carried out using
519 Agencourt AMPure XP beads (Beckman Coulter) with 1.6 times beads to sample, and a final
520 elution in 25 ul EB-buffer (Qiagen). Library concentration and presence of amplicons was
521 verified with Qubit and BioAnalyzer (as above) and sequencing was done at the Danish
522 National High Throughput DNA Sequencing Centre, on the Illumina MiSeq v.3 platform
523 (Illumina) with samples divided on four 300 bp paired end runs.

524 2.4 Post sequencing bioinformatic treatment

525 2.4.1 Sequence processing

526 Bioinformatic steps followed the general procedures of earlier studies^{35,36} with minor
527 modifications. Demultiplexing of samples was done with a custom script that keeps R1 and
528 R2 separate for DADA2 processing, and is based on Cutadapt³⁷ searching for a sequence
529 pattern matching the full length combined tag and primer allowing for no errors, and
530 removing possible remnants of the other primer at the 3' end. We used DADA2 (v 1.8)³⁸ to
531 identify OTUs as amplicon sequence variants (ASVs) and removal of chimeras (bismeras).
532 For highly length variable markers (ITS2 for fungi), the script included a sliding window
533 truncation of sequences from the 5' end with Sickle³⁹ (with options: pe -l 50 -q 28 -x -f -t
534 sanger) to maximize output and quality of the ITS2 sequences that have length variation and
535 therefore large differences in the onset of the quality drop towards the 3' end. For the other
536 markers where amplicon length is homogeneous, we applied a fixed length cutoff of the 5'
537 end, that allowed for ample overlap between R1 and R2 reads. Sequences were filtered and
538 matched between R1 and R2 reads with DADA2 (using fastqPairedFilter with options
539 maxN=0, maxEE=2, truncQ=2, matchIDs=TRUE). It has been advocated to use subsequent
540 clustering and post-clustering curation to derive reliable biodiversity metrics³⁵ (i.e. better
541 species level OTU delimitation). However, this study was in part concerned with forensic
542 application of environmental DNA, and we expected that intra-specific variation (artefacts or
543 not) overall constitutes a reproducible signal, and therefore of potential value in forensic
544 applications. Also, reproducibility and combinability of data is lowered by imposing arbitrary
545 clustering levels and selection of representative sequences/centroids. Thus, we chose to
546 apply our analyses to non-clustered OTUs (i.e. ASVs).

547 2.4.2 Taxonomic assignment

548 For taxonomic assignment of OTUs, we used several different approaches. The bacterial
549 data was assigned using the *assignTaxonomy* command in dada2 using the
550 “silva_nr_v132_train_set.fa.gz” reference data. The fungal, protist and eukaryotic datasets

551 were matched against reference databases using vsearch⁴⁰ and a custom script that uses
552 the top 10 matches to assign a majority rule taxonomy, and a similar approach was used for
553 the plant data but using matches from BLASTn searches on GenBank. Assignment of the
554 fungal data was done by matching the OTUs against the UNITE database for fungi⁴¹ and all
555 eukaryotes⁴², and annotation of the Protozoa and eukaryote datasets was done by matching
556 against the PR2 database⁴³.

557 Forensic application would ideally utilize all data produced by a primer set to
558 maximize reproducibility, whereas biodiversity studies generally work with focal taxonomic
559 lineages. In this study, we only removed non-target sequences from the fungal dataset
560 before downstream analyses, as these primers amplify a substantial amount of non-target
561 (plant) sequences. For the plant sequence data, we could only identify six species of
562 Viridiplantae – two vascular plants (*Fagus sylvatica* and *Hordeum vulgare*) and four green
563 algae (*Bracteacoccus bullatus*, *Chlamydomonas hedleyi*, *Desmococcus olivaceus*,
564 *Trebouxia decolorans*) – and this dataset was deemed too sparse to include in the remaining
565 analyses.

566 2.5 Statistical analyses

567 For all analyses relying on OTU tables, the relevant table was resampled to the 25th
568 percentile to get even sequencing depth (but allowing a minor part of the samples to have
569 lower read counts), as community dissimilarity measure, Bray-Curtis dissimilarity was used
570 on Hellinger transformed OTU tables, and non-metric multidimensional scaling (NMDS) was
571 done using the settings k=2, try=500, trymax= 4000 (using functions *rrarefy*, *decostand*,
572 *vegdist* and *metaMDS* from vegan package⁴⁴). All statistical analyses were run in R version
573 4.0.3 (2020-10-10)⁴⁵ on a x86_64-apple-darwin17.0 (64-bit) platform running under macOS
574 Big Sur 10.16

575 2.5.1 Absolute sample change from time zero with storage

576 Data from time zero samples (n=27, i.e. three from each of the nine combination of
577 temperature and exposure) were used for the time zero population (reference) when
578 analyzing effects of storage with time. To address changes in richness and diversity with
579 storage, OTU richness was used as a proxy for total taxonomic/species richness. Following
580 the findings of³⁰, we also measured the change in richness of dominant OTUs (OTUs
581 registered with $\geq 1\%$ in each sample). Pilou's evenness index ($H'/\ln(S)$) was used as a
582 measure of evenness/diversity. To address change in community composition, we calculated
583 Bray-Curtis dissimilarity between any stored sample and the centroid of all time zero
584 samples. The centroid of time zero was calculated with the *dist_to_centroid* function (usedist
585 package). For each particular treatment set (i.e. combination of temperature, exposure and
586 storage time), we assessed significant changes in richness, evenness and community
587 composition compared to the time zero communities, using t-tests with Bonferroni correction
588 for multiple tests (i.e. 29 tests, excluding time zero combinations). Significant differences in
589 community composition (compared to time 0) was also assessed with pairwise
590 PERMANOVA as implemented in the function *pairwise.adonis*⁴⁶ with the argument “reduce”
591 to compare only against time 0). We considered p-values of <0.01 as significant. Community
592 change was visualized with NMDS ordination.

593 Changes in OTUs over time was evaluated by identifying all OTUs observed for the
594 first time at each storage time, using all OTUs from all 21 time zero replicates as a baseline

595 of OTUs known to be present, and expected to potentially be detected after storage. Due to
596 high microbial community complexity, sample heterogeneity and sampling stochasticity, we
597 would expect OTU change between any sample comparisons. To calculate the expected
598 number of new OTUs for any triplicate of (non-stored) samples, we randomly picked three of
599 the 21 time zero samples and compared to the remaining 18 samples, 100 times.
600 Furthermore, we evaluated the taxonomic composition for each treatment group, again
601 combining triplicates per treatment.

602 2.5.2 Relative change – habitat signature and forensic application

603 Despite of significant absolute changes in biodiversity metrics for stored samples, the
604 change might still be insignificant for several applications, as the sample may have retained
605 its signature – in terms of biological composition – of the exact sampling location or at least
606 of the habitat type in a broader context. Therefore, to address the relative stability of the
607 biotic signal of the stored samples, and thus the forensic utility and robustness of biodiversity
608 measures, the stored samples were analyzed together with a reference dataset. The
609 reference dataset stems from ³⁴ and contains sequence data from 130 40m × 40m plots
610 across Denmark. The 130 plots represent major gradients of moisture, fertility and
611 succession, and thus include representatives of most natural to semi-natural habitats
612 terrestrial habitat types in Denmark, as well as some agricultural and silvicultural land-use
613 types ³⁴. Soil samples from the reference dataset were collected and processed like the
614 samples in this study, except that each of the 130 samples were constructed from a bulk
615 sample of 81 smaller samples, that the soil was thoroughly mechanically homogenized
616 (potentially releasing more intracellular DNA), that 4 grams of soil was used for the DNA
617 extraction, and that the soil was sampled three years earlier in 2014 (November-December).
618 The bulk sample used for the storage samples in this study was taken in the middle of one
619 (SN081) of the plots used for the reference dataset, and this plot was excluded from those
620 analyses where it could bias the interpretation.

621 Sequence data (OTU tables) from the present study and the reference dataset were
622 combined for each of the four organism groups. Taxonomy was only assigned for the fungal
623 data, to allow for exclusion of non-target sequences. For these combined analyses, we
624 discarded OTUs with less than 10 reads in the reference dataset, and thereby excluded
625 OTUs unique to the stored samples, that could otherwise make these samples more similar
626 due to unique OTUs in that dataset. For supervised classification, we used k-nearest
627 neighbor analysis (KNN) on community dissimilarity measures (Bray-Curtis dissimilarity of
628 Hellinger transformed OTU tables).

629 2.5.2.1 Signature of exact location

630 Using KNN, we investigated to which degree the stored samples retained characteristics of
631 the exact location where they were collected, in the context of our reference dataset of
632 terrestrial habitats in Denmark. Data from the reference dataset acted as outgroup. To avoid
633 inflating classification success, we used only nine of the 27 time zero samples (triplicates of
634 0°C closed and 5°C closed and open) as ingroup. The soil used for the storage samples was
635 sampled in the middle of one of the plots (SN081) from the reference dataset, so this sample
636 could reasonably have been coded as ingroup. We chose, however, to exclude it from the
637 models to not imposing any biases.

638 We calculated the proportion of ingroup and outgroup samples among the seven
639 nearest neighbors (of the 129 reference plots and nine time zero samples) as the
640 classification probability. As a direct visualization of the relative dissimilarities underlying this
641 approach, we calculated and plotted a dissimilarity ratio for each stored sample in the form
642 of the Bray-Curtis dissimilarities between the stored sample and the time zero centroid,
643 compared to the dissimilarity between stored sample and each of the 129 reference plots.

644 **2.5.2.2 Signature of habitat type**

645 Using a similar approach as above, we investigated to which degree the stored
646 samples retained characteristics of the broader habitat type, to which the un-stored original
647 sample was assigned. We used the survey dataset of 36 323 observations of 5 464 species
648 (of vascular plants, bryophytes, macrofungi, lichens, and insects) recorded across the 130
649 reference sites (Brunbjerg et al 2019) to define nine strata (from hereon: habitat types), eight
650 natural types and one agricultural. These habitat types were defined by supervised
651 classification (see supplementary data) and encompassed the following: Mor forest, Mull
652 forest, Bog forest, Swamp forest, Heathland, Grassland, Moor (acidic wetland), Fen (alkaline
653 wetland), and Agriculture.
654 We then calculated the proportion of different natural strata among the nine nearest
655 neighbors (of the 129 reference plots, excluding the reference sample from the sampling site
656 of the stored samples, as well as all stored samples) as the classification probability. For
657 comparison, we also calculated the classification probability for the original (SN081)
658 reference sample from the sampling site. We established the variance of the ingroup stratum
659 by calculating the Bray-Curtis dissimilarity of the cluster members to the habitat cluster
660 centroid. Subsequently, the dissimilarity of stored samples to habitat centroids was related to
661 the said variance in order to assess probability of correct habitat type assignment.

662 **References**

- 663 1. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning.
664 *Nature* **515**, 505–511 (2014).
- 665 2. Lekberg et al 2014 Will different OTU delineation methods change interpretation of arbuscular
666 mycorrhizal fungal community patterns.pdf.
- 667 3. Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An Underground Revolution: Biodiversity
668 and Soil Ecological Engineering for Agricultural Sustainability. *Trends Ecol. Evol.* **31**, 440–452
669 (2016).
- 670 4. Harder, C. B. et al. Local diversity of heathland Cercozoa explored by in-depth sequencing. *ISME J.* **10**, 2488–2497 (2016).
- 672 5. Bang-Andreasen, T. et al. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial
673 Numbers and Community Composition. *Front. Microbiol.* **8**, 1400 (2017).

674 6. Tedersoo, L. *et al.* Fungal biogeography. Global diversity and geography of soil fungi. *Science*
675 **346**, 1256688 (2014).

676 7. Bahram, M. *et al.* Structure and function of the global topsoil microbiome. *Nature* **560**, 233–237
677 (2018).

678 8. Ejrnæs, R. *et al.* Uniquity: A general metric for biotic uniqueness of sites. *Biol. Conserv.* **225**, 98–
679 105 (2018).

680 9. Frøslev, T. G. *et al.* The biodiversity effect of reduced tillage on soil microbiota. *Ambio* (2021)
681 doi:10.1007/s13280-021-01611-0.

682 10. Fløjgaard, C. *et al.* Predicting provenance of forensic soil samples: Linking soil to ecological
683 habitats by metabarcoding and supervised classification. *PLoS One* **14**, e0202844 (2019).

684 11. Locard, E. The analysis of dust traces. *J. Crim. Law Criminol.* **1**, 276 (1930).

685 12. Bull, P. A., Parker, A. & Morgan, R. M. The forensic analysis of soils and sediment taken from the
686 cast of a footprint. *Forensic Sci. Int.* **162**, 6–12 (2006).

687 13. Ritz, K., Dawson, L. & Miller, D. *Criminal and Environmental Soil Forensics*. (Springer Science &
688 Business Media, 2008).

689 14. Young, J. M. & Linacre, A. Massively parallel sequencing is unlocking the potential of
690 environmental trace evidence. *Forensic Sci. Int. Genet.* **50**, 102393 (2021).

691 15. Oliveira, M. & Amorim, A. Microbial forensics: new breakthroughs and future prospects. *Appl.*
692 *Microbiol. Biotechnol.* **102**, 10377–10391 (2018).

693 16. Allwood, J. S., Fierer, N. & Dunn, R. R. The Future of Environmental DNA in Forensic Science.
694 *Appl. Environ. Microbiol.* **86**, (2020).

695 17. Young, J. M., Austin, J. J. & Weyrich, L. S. Soil DNA metabarcoding and high-throughput
696 sequencing as a forensic tool: considerations, potential limitations and recommendations. *FEMS*
697 *Microbiol. Ecol.* **93**, (2017).

698 18. Young, J. M., Higgins, D. & Austin, J. J. Soil DNA: advances in DNA technology offer a powerful
699 new tool for forensic science. *Geological Society, London, Special Publications* **492**, (2019).

700 19. Young, J. M., Weyrich, L. S., Breen, J., Macdonald, L. M. & Cooper, A. Predicting the origin of
701 soil evidence: High throughput eukaryote sequencing and MIR spectroscopy applied to a crime
702 scene scenario. *Forensic Sci. Int.* **251**, 22–31 (2015).

703 20. Habtom, H. *et al.* Soil characterisation by bacterial community analysis for forensic applications:
704 A quantitative comparison of environmental technologies. *Forensic Sci. Int. Genet.* **26**, 21–29
705 (2017).

706 21. Jesmok, E. M., Hopkins, J. M. & Foran, D. R. Next-generation sequencing of the bacterial 16S
707 rRNA gene for forensic soil comparison: A feasibility study. *J. Forensic Sci.* **61**, 607–617 (2016).

708 22. Demanèche, S., Schäuser, L., Dawson, L., Franqueville, L. & Simonet, P. Microbial soil
709 community analyses for forensic science: Application to a blind test. *Forensic Sci. Int.* **270**, 153–
710 158 (2017).

711 23. Damaso, N. *et al.* Bioinformatics Approach to Assess the Biogeographical Patterns of Soil
712 Communities: The Utility for Soil Provenance. *J. Forensic Sci.* **63**, 1033–1042 (2018).

713 24. Grantham, N. S. *et al.* Fungi identify the geographic origin of dust samples. *PLoS One* **10**,
714 e0122605 (2015).

715 25. Zinger, L. *et al.* DNA metabarcoding—Need for robust experimental designs to draw sound
716 ecological conclusions. *Mol. Ecol.* **28**, 1857–1862 (2019).

717 26. Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable
718 metabarcoding of environmental samples. *Methods Ecol. Evol.* **9**, 134–147 (2018).

719 27. Bálint, M. *et al.* Millions of reads, thousands of taxa: microbial community structure and
720 associations analyzed via marker genes. *FEMS Microbiol. Rev.* **40**, 686–700 (2016).

721 28. Lindahl, B. D. *et al.* Fungal community analysis by high-throughput sequencing of amplified
722 markers—a user’s guide. *New Phytol.* **199**, 288–299 (2013).

723 29. Rissanen, A. J., Kyrhela, E., Aho, T., Oittinen, T. & Tiirola, M. Storage of environmental samples
724 for guaranteeing nucleic acid yields for molecular microbiological studies. *Appl. Microbiol.*
725 *Biotechnol.* **88**, 977–984 (2010).

726 30. Guerrieri, A. *et al.* Effects of soil preservation for biodiversity monitoring using environmental
727 DNA. *Mol. Ecol.* (2020) doi:10.1111/mec.15674.

728 31. Badgley, A. J., Jesmok, E. M. & Foran, D. R. Time Radically Alters Ex Situ Evidentiary Soil 16S
729 Bacterial Profiles Produced Via Next-Generation Sequencing,. *J. Forensic Sci.* **63**, 1356–1365
730 (2018).

731 32. Alsos, I. G. *et al.* The Treasure Vault Can be Opened: Large-Scale Genome Skimming Works
732 Well Using Herbarium and Silica Gel Dried Material. *Plants* **9**, (2020).

733 33. Foran, D. R. & Badgley, A. J. Bacterial Profiling of Soil For Forensic Investigations: Consideration
734 of Ex Situ Changes in Questioned and Known Soil Samples. *J. Forensic Sci.* **65**, 471–480 (2020).

735 34. Brumbjerg, A. K. *et al.* A systematic survey of regional multitaxon biodiversity: evaluating
736 strategies and coverage. *bioRxiv* 158030 (2019) doi:10.1101/158030.

737 35. Frøslev, T. G. *et al.* Algorithm for post-clustering curation of DNA amplicon data yields reliable
738 biodiversity estimates. *Nat. Commun.* **8**, 1188 (2017).

739 36. Frøslev, T. G. *et al.* Man against machine: Do fungal fruitbodies and eDNA give similar
740 biodiversity assessments across broad environmental gradients? *Biol. Conserv.* **233**, 201–212
741 (2019).

742 37. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
743 *EMBnet.journal* **17**, 10–12 (2011).

744 38. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nat.*
745 *Methods* **13**, 581–583 (2016).

746 39. Joshi, N. A. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ
747 files (Version 1.33)[Software]. (2011).

748 40. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool
749 for metagenomics. *PeerJ* **4**, e2584 (2016).

750 41. Abarenkov, K. *et al.* UNITE general FASTA release for Fungi 2. (2021)
751 doi:10.15156/BIO/1280049.

752 42. Abarenkov, K. *et al.* UNITE general FASTA release for eukaryotes 2. (2021)
753 doi:10.15156/BIO/1280160.

754 43. Guillou, L. *et al.* The Protist Ribosomal Reference database (PR2): a catalog of unicellular
755 eukaryote small sub-unit rRNA sequences with curated taxonomy. *Nucleic Acids Res.* **41**, D597–
756 604 (2013).

757 44. Oksanen, J. *et al.* The vegan package. *Community ecology package* **10**, 719 (2007).

758 45. R Core Team. *R: A language and environment for statistical computing. R Foundation for*
759 *Statistical Computing, Vienna, Austria.* (2020).

760 46. Arbizu, P. M. *pairwiseAdonis: Pairwise multilevel comparison using adonis.* (2020).

761

762

763 Acknowledgments

764 This is a contribution to a national research project to develop soil forensic methods
765 supported by Innovation Fund Denmark Grand Solutions (grant no. 6151-00002B,
766 <https://innovationsfonden.dk>), and a contribution to a project on optimizing strategies for
767 eDNA based biodiversity surveys, DNAmark, supported by Aage V. Jensen Foundation. The
768 funders did not participate in study design, data collection and analysis, decision to publish,
769 or preparation of the manuscript. Jens H. Petersen is thanked for designing four of the
770 organism group icons.

771 Author contributions

772 RK, TGF, FE, MV, AJH, RE conceived the overall study. RK carried out the sampling and
773 designed the storage setup. IBN did the lab work. TGF, RK and RE decided on the analytical
774 approach. TGF did the bioinformatics, statistical analyses, and plots. TGF and RK wrote the
775 first draft. All authors contributed to the finalizing of the manuscript.

776

777 Additional information

778 Supplementary Information accompanies this paper at DOIxxx

779

780 Competing interests: The authors declare no competing financial interests.

781

782 Article title: Treated like dirt: Robust forensic and ecological inferences from soil eDNA after
783 challenging sample storage
784
785 *Authors: Tobias Guldberg Frøslev, Rasmus Ejrnæs, Anders J. Hansen, Hans Henrik Bruun, Ida*
786 *Broman Nielsen, Flemming Ekelund, Mette Vestergård, Rasmus Kjøller*
787
788 The following Additional Information is available for this article:
789
790 **Supplementary Information 1** Construction of habitat types for supervised classification
791
792 **Supplementary Table 1** Information of primers and amplification
793
794 **Supplementary Table 2** Changes in biodiversity measures with storage. The table shows results of pairwise t-
795 tests.
796
797 **Supplementary Table 3**. Community change with time. The table show results of PERMANOVA tests of
798 community change.
799
800 **Supplementary Table 4**. Expected new OTUs in sample. Table shows expected number of new OTUs when
801 sampling 3 random replicates.
802
803 **Supplementary Fig. 1**. Taxonomic change with storage (bacteria). Bar plot showing the relative composition of
804 reads from the most abundant taxa.
805
806 **Supplementary Fig. 2**. Taxonomic change with storage (fungi). Bar plot showing the relative composition of
807 reads from the most abundant taxa.
808
809 **Supplementary Fig. 3**. Taxonomic change with storage (protists). Bar plot showing the relative composition of
810 reads from the most abundant taxa.
811
812 **Supplementary Fig. 4**. Taxonomic change with storage (eukaryotes). Bar plot showing the relative composition
813 of reads from the most abundant taxa.
814
815 **Supplementary Fig. 5**. Community dissimilarity of stored samples to reference data.
816
817 **Supplementary Figure 6**. Supervised classification of habitat type and dissimilarity to habitat type centroid.
818
819 **Supplementary Information 1. Construction of habitat types (clusters) for supervised**
820 **classification**
821 We investigated to what degree the stored samples retained characteristics of the same
822 broader habitat type to which the un-stored original samples belonged. We aimed for a simple habitat
823 classification that would be ecologically meaningful. A parallel aim was a relatively easy visual
824 recognition of the resulting types, in order to ensure forensic applicability, i.e. that provenancing
825 analyses would point to habitat types that can be identified by the police without compulsory
826 assistance from ecological expertise. Thus, we chose to define these habitat types from major abiotic
827 gradients (hydrology, soil pH/fertility, successional stage/vegetation structure) and re-classify it using
828 species composition of the above-ground biota (not soil eDNA). These ecological complex gradients
829 have proven by far the most important governing species composition of terrestrial communities of
830 plants, animals and macrofungi¹. Using standardized methods, site species data on vascular plants,
831 bryophytes, macrofungi, lichens, gastropods and arthropods were collected from the same 130 study
832 sites (40 × 40 m) as those we used in the eDNA analyses². The survey data set contained 36 323
833 observations of 5 464 species recorded across the 130 reference sites. The original inventory was
834 based on 25 design strata, representing the mentioned three complex gradients and a more detailed
835 array of agricultural and silvicultural types. For the present study, we simplified these strata to eight
836 natural types (combinations of canopy-covered vs. open, poor/acidic vs. rich/alkaline, and dry vs. wet)

837 and one agricultural (rotational fields and lays): viz. Mor forest, Mull forest, Bog forest, Swamp forest,
838 Heathland, Grassland, Moor (acidic wetland), Fen (alkaline wetland), and Agriculture. The
839 discrimination in the original stratification between plantation forest and natural forest was abandoned
840 in the simplified classification.

841 Using these nine strata, we applied supervised learning to adjust the classification in order to
842 best reflect the actual above-ground species composition. We did an NMDS ordination in six
843 dimensions (metaMDS, try = 100, trymax = 200), and used the first four dimensions for quadratic
844 discriminant analysis. This resulting model was used to reclassify the 130 sites. Only three sites
845 changed class assignment as a consequence of the re-classification, i.e. one Agricultural to
846 Grassland, one Mor Forest to Mull forest and one Mull Forest to Mor forest. The focal site of soil
847 sampling for the present study was borderline between Mull Forest to Mor forest.
848
849

850 **Supplementary Table 1.** Information of primers and amplification.

851

Organism group and target gene	Primers (Forward + reverse) and references.	PCR (thermocycling)
Bacteria (16S)	341F: CCTACGGGAGGCAGCAG ³ R806: GGACTACHVGGGTWTCTAAT ⁴	95°C 5 min; (95°C, 15 sec; 55°C, 30 sec; 72°C, 40 sec) x 32; 72°C, 4 min; 4°C ∞
Fungi (ITS2 nrDNA)	gITS7: GTGARTCATCGARTCTTG ⁵ ITS4: TCCTCCGCTTATTGATATGC ⁶	95°C 5 min; (95°C, 30 sec; 55°C, 30 sec; 72°C, 1 min) x 31; 72°C, 7 min; 4°C ∞
Protists (18S nrDNA)	Cerc479F: TGTTGCAGTTAAAAGCTCGT ⁷ Cerc750R: TGAATACTAGCACCCCCAAC	95°C 5 min; (95°C, 1 min; 55°C, 1 min; 72°C, 1 min) x 32; 72°C, 7 min; 4°C ∞
Plants (ITS2 nrDNA)	S2F: ATGCGATACTGGTGTGAAT ⁸ ITS4: TCCTCCGCTTATTGATATGC ⁶	95°C 5 min; (95°C, 30 sec; 55°C, 30 sec; 72°C, 1 min) x 35; 72°C, 7 min; 4°C ∞
Eukaryotes (18S nrDNA)	TAReuk454FWD1: CCAGCASCYGCCTTAATTCC ⁹ TAReukREV3: ACTTCGTTCTGATYRA	95°C 7 min; (95°C, 30 sec; 53°C, 30 sec; 72°C, 45 sec) x 15, (95°C, 30 sec; 48°C, 30 sec; 72°C, 45 sec) x 20; 72°C, 7 min; 4°C ∞

852

853

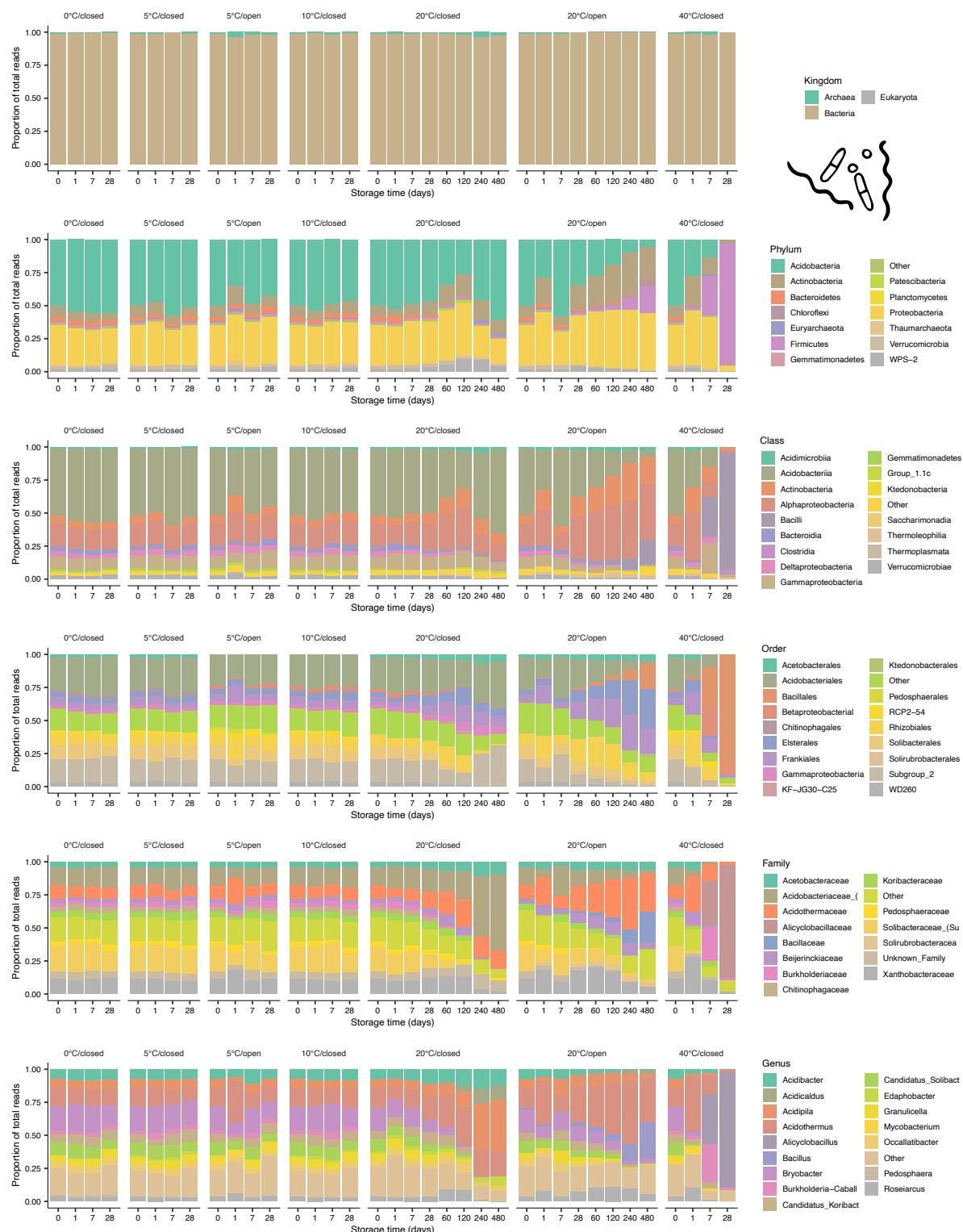
854

855 **Supplementary Table 2. Changes in biodiversity measures with storage.** Pairwise t-
856 tests for significant difference in measures compared to time 0 (not stored) samples. All 29
857 time-0 samples were used as part of the time-0 population. P-values were corrected for
858 multiple comparisons.

Storage conditions			Richness			Richness (dominant species)			Evenness			Dissimilarity to time 0				
exp	temp	days	Bac.	Fun.	Pro.	Euk.	Bac.	Fun.	Pro.	Euk.	Bac.	Fun.	Pro.	Euk.		
closed	0	1	1.000 ns	0.026 *	0.765 ns	1.000 ns	1.000 ns	0.013 *	1.000 ns	0.825 ns	1.000 ns	0.318 ns	1.000 ns	1.000 ns	0.039 *	1.000 ns
		7	0.924 ns	0.046 *	0.166 ns	1.000 ns	1.000 ns	0.114 ns	0.531 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	
		28	1.000 ns	1.000 ns	0.729 ns	0.582 ns	1.000 ns	1.000 ns	0.915 ns	0.633 ns	1.000 ns	0.284 ns	0.507 ns	0.110 ns	0.005 **	0.068 ns
	5	1	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	0.912 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	
		7	1.000 ns	0.261 ns	0.073 ns	0.927 ns	1.000 ns	0.127 ns	1.000 ns	0.732 ns	1.000 ns	0.002 **	1.000 ns	1.000 ns	0.432 ns	1.000 ns
		28	1.000 ns	0.327 ns	0.306 ns	0.603 ns	1.000 ns	0.834 ns	1.000 ns	0.768 ns	1.000 ns	0.256 ns	1.000 ns	1.000 ns	0.121 ns	0.000 ****
	10	1	1.000 ns	1.000 ns	0.236 ns	0.190 ns	1.000 ns	1.000 ns	0.077 *	0.018 ns	0.174 ns	1.000 ns	0.065 ns	1.000 ns	0.906 ns	0.140 ns
		7	1.000 ns	0.168 ns	0.133 ns	1.000 ns	1.000 ns	0.114 ns	0.711 ns	0.969 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	0.684 ns	0.264 ***
		28	1.000 ns	0.005 **	0.233 ns	1.000 ns	1.000 ns	0.058 ns	0.342 ns	1.000 ns	1.000 ns	0.000 ****	0.011 *	0.053 ns	0.117 ns	0.813 ns
20	1	1	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	0.416 ns	1.000 ns	1.000 ns	
		7	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	0.000 ****	0.064 ns	0.397 ns	1.000 ns	0.980 ns
		28	1.000 ns	1.000 *	0.049 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	1.000 ns	0.000 ****	1.000 *	0.000 ns	0.151 ****	0.000 ns
	60	1	0.000 ****	1.000 *	0.021 ns	0.631 ****	0.000 ns	1.000 ****	0.000 ns	0.577 *	0.011 *	0.029 **	0.003 ns	1.000 ****	0.000 ns	0.001 ***
		120	0.000 ****	1.000 ns	0.527 ns	0.763 ns	0.000 ****	1.000 ns	0.175 ns	1.000 ns	0.696 ns	0.058 ns	0.000 ****	1.000 ns	<2e-16 ****	0.000 ***
		240	0.001 **	0.316 ns	0.000 ****	0.157 ns	0.001 ***	1.000 ns	0.000 ****	0.157 ns	0.1220 ns	0.081 ns	0.396 ns	0.010 ns	0.000 **	0.001 ***
	480	1	0.000 ****	0.000 ****	0.007 **	0.049 *	0.000 ****	0.073 ns	0.000 ****	0.171 ns	0.1360 ns	0.445 ns	0.000 ****	0.000 ****	0.000 ****	0.005 ****
		7	0.000 ****	0.000 ****	0.005 **	0.009 **	0.000 ****	0.000 ****	0.002 **	0.876 ns	0.0220 *	0.008 **	0.000 ****	1.000 ns	0.000 ****	<2e-16 ****
40	1	1	0.202 ns	0.357 ns	0.600 ns	0.3420 ns	0.504 ns	0.657 ns	1.000 ns	0.576 ns	0.1180 ns	0.108 ns	1.000 ns	0.031 *	0.000 ****	
		7	0.000 ****	0.007 **	0.063 ns	1.000 ns	0.000 ****	0.093 ns	0.161 ns	0.104 ns	0.0990 ns	0.024 *	0.2530 ns	0.000 ****	<2e-16 ****	0.000 **
		28	0.000 ****	<2e-16 ****	0.005 **	0.009 **	0.000 ****	0.000 ****	0.002 **	0.876 ns	0.0220 *	0.008 **	0.000 ****	1.000 ns	0.000 ****	<2e-16 ****
	5	1	0.510 ns	1.000 ns	0.155 ns	0.2770 ns	0.345 ns	1.000 ns	0.124 ns	0.057 ns	0.9840 ns	0.600 ns	1.000 ns	1.000 ns	0.069 ns	0.106 ns
		7	1.000 ns	0.528 ns	0.450 **	0.0021 ns	1.000 ns	0.390 ns	0.654 **	0.001 ns	0.8460 *	0.018 ns	0.1560 ns	1.000 ns	0.954 ns	1.000 ns
		28	0.366 ns	0.444 ns	0.242 ns	0.2150 ns	0.149 ns	0.540 ns	0.360 ns	0.075 ns	0.1200 ns	0.000 ns	1.000 ns	1.000 ns	0.139 ns	0.218 ns
	20	1	1.000 ns	0.244 ns	0.455 ns	1.000 ns	1.000 ns	1.000 ns	0.650 ns	1.000 ns	0.0550 ns	1.000 ns	0.1800 ns	0.054 ns	0.742 ns	1.000 ns
		7	1.000 ns	1.000 ns	0.240 ns	0.5891 ns	1.000 ns	1.000 ns	0.165 ns	0.289 ns	1.0000 ns	0.0000 ns	1.0000 ns	0.2220 ns	0.689 ns	0.994 ns
		28	1.000 ns	1.000 ns	0.000 ****	1.000 ns	1.000 ns	1.000 ns	0.000 ****	1.0000 ns	0.3180 ns	1.0000 ns	0.0000 ns	0.0000 ns	0.018 *	0.078 ns
		60	0.000 ***	1.000 *	0.041 ns	0.4950 ****	0.000 ns	1.000 ****	0.003 **	0.326 ns	0.2910 ns	0.0000 ****	1.0000 ns	0.6110 ns	0.0000 ***	0.0000 **
		120	0.000 ****	0.376 ns	0.000 ****	0.0630 ns	0.000 ****	0.003 **	0.000 ***	0.104 ns	1.0000 ns	0.0280 *	1.0000 ns	0.2740 ns	0.0060 **	0.0000 ***
		240	0.000 ****	0.018 *	0.000 ****	0.0000 ****	0.000 ****	0.000 ****	0.000 ****	0.000 ***	0.1370 ns	0.0000 ****	0.0830 *	0.0200 ****	<2e-16 ****	0.0080 **
		480	0.022 *	0.000 ****	<2e-16 ****	0.0000 ****	0.002 **	0.000 ****	0.000 ****	0.000 ****	0.2510 ns	1.0000 ns	0.0000 ****	0.0110 *	0.1500 ns	0.0460 *
open	5	1	0.510 ns	1.000 ns	0.155 ns	0.2770 ns	0.345 ns	1.000 ns	0.124 ns	0.057 ns	0.9840 ns	0.600 ns	1.0000 ns	1.0000 ns	0.069 ns	0.106 ns
		7	1.000 ns	0.528 ns	0.450 **	0.0021 ns	1.000 ns	0.390 ns	0.654 **	0.001 ns	0.8460 *	0.018 ns	0.1560 ns	1.0000 ns	0.954 ns	1.0000 ns
		28	0.366 ns	0.444 ns	0.242 ns	0.2150 ns	0.149 ns	0.540 ns	0.360 ns	0.075 ns	0.1200 ns	0.0000 ns	1.0000 ns	1.0000 ns	0.1390 ns	0.2180 ns
	20	1	1.000 ns	0.244 ns	0.455 ns	1.0000 ns	1.0000 ns	1.0000 ns	0.6500 ns	1.0000 ns	0.0550 ns	1.0000 ns	0.1800 ns	0.0540 ns	0.7420 ns	1.0000 ns
		7	1.000 ns	1.000 ns	0.240 ns	0.5891 ns	1.0000 ns	1.0000 ns	0.1650 ns	0.2890 ns	1.00000 ns	0.00000 ns	1.00000 ns	0.22200 ns	0.6890 ns	0.9940 ns

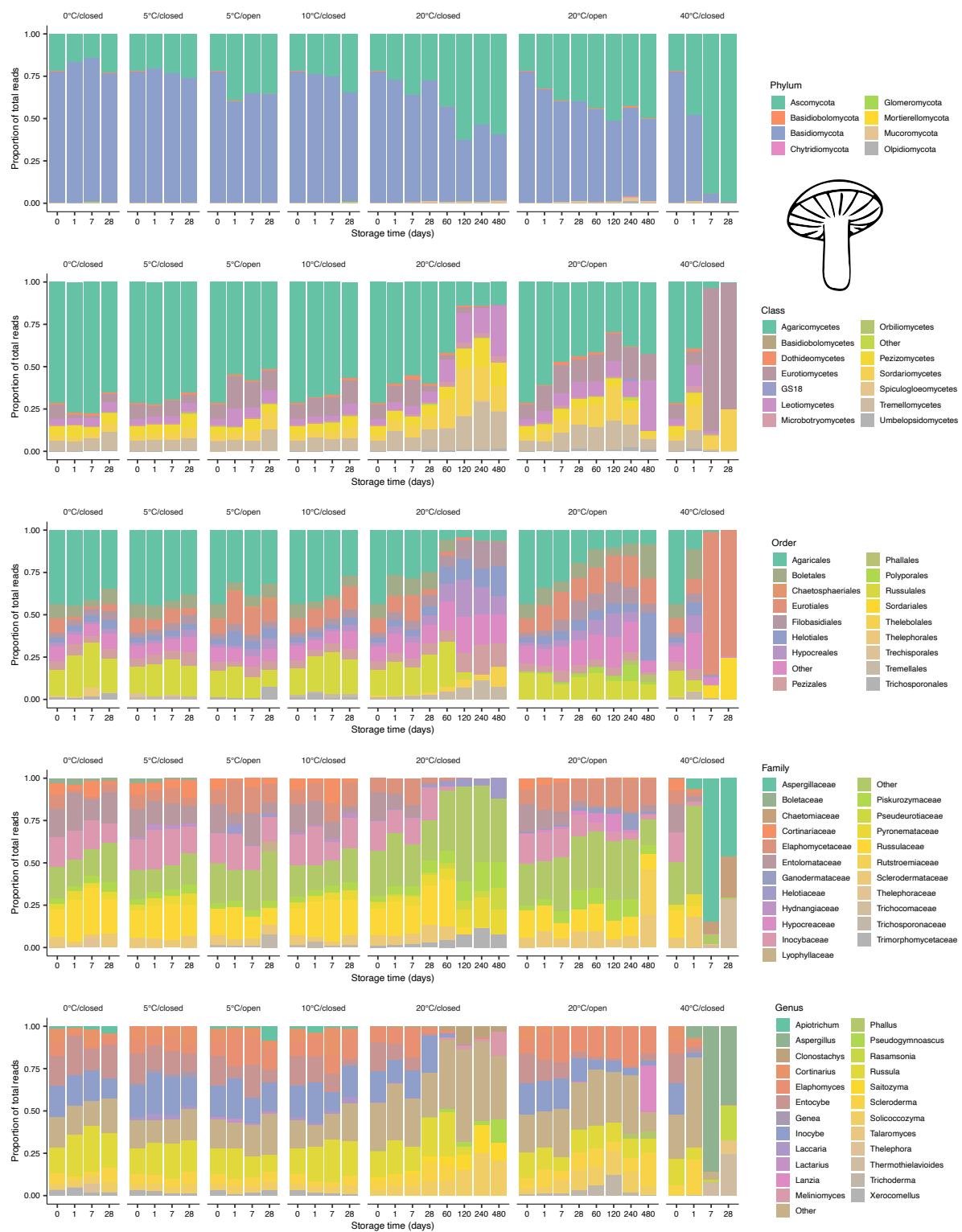
859
860
861
862

863 **Supplementary Table 3. Community change with time.** The table show adjusted p-
864 values (Bonferroni) for the PERMANOVA tests of community change of stored samples
865 against un-stored samples using the function pairwise.adonis with “reduce” argument to
866 restrict comparisons with time zero (all 21 time zero samples acted as time zero reference).
867


Exposure	Temperature	Storage time	Bacteria	Fungi	Protists	Eukaryotes
closed	0	1	1	1	1	1
closed	0	7	1	1	1	0.551
closed	0	28	1	1	1	1
closed	5	1	1	1	1	1
closed	5	7	1	1	1	1
closed	5	28	1	1	1	1
closed	10	1	1	1	1	1
closed	10	7	1	1	1	1
closed	10	28	1	0.464	1	0.029 *
closed	20	1	1	1	1	1
closed	20	7	1	1	1	1
closed	20	28	0.116	0.029 *	0.029 *	0.087 .
closed	20	60	0.029 *	0.058 .	0.029 *	0.029 *
closed	20	120	0.029 *	0.029 *	0.029 *	0.029 *
closed	20	240	0.058 .	0.116	0.058 .	0.058 .
closed	20	480	0.087 .	0.029 *	0.029 *	0.058 .
closed	40	1	0.058 .	0.058 .	0.029 *	0.029 *
closed	40	7	0.029 *	0.029 *	0.029 *	0.087 .
closed	40	28	0.029 *	0.029 *	0.058 .	0.058 .
open	5	1	0.029 *	1	1	1
open	5	7	1	1	1	1
open	5	28	0.435	1	1	1
open	20	1	0.029 *	0.754	1	1
open	20	7	1	0.116	1	0.551
open	20	28	0.029 *	0.029 *	0.029 *	0.058 .
open	20	60	0.029 *	0.058 .	0.029 *	0.058 .
open	20	120	0.058 .	0.029 *	0.029 *	0.029 *
open	20	240	0.029 *	0.058 .	0.087 .	0.029 *
open	20	480	0.174	0.203	0.29	0.087 .

868
869
870

871 **Supplementary Table 4.** Expected new OTUs in sample. Expected number of new OTUs
872 when sampling 3 new replicates compared to the other 18 time zero replicates. The second
873 column shows the expected number of new OTUs (+/- 1 sd) and the mean percentage of
874 total OTUs this constitutes. The last column shows how large a proportion of the total reads
875 these expected new OTUs represent. Values are estimated by randomly selecting 3 of the
876 21 time zero replicates and comparing the AOTU composition with the remaining 18 time
877 zero replicates. The values are used to compare with the observed contribution of new
878 OTUs of the stored samples compared to all 21 time zero samples.
879


Organism group	# new otus	Relative read abundance of new OTUs (%)
Bacteria	334 ± 76 (22.1 %)	2.6 ± 0.7
Fungi	42 ± 7 (19.8 %)	3.2 ± 4.9
Protists	120 ± 13 (21.5 %)	5.9 ± 0.8
Eukaryotes	258 ± 52 (30.2 %)	3.7 ± 1.3

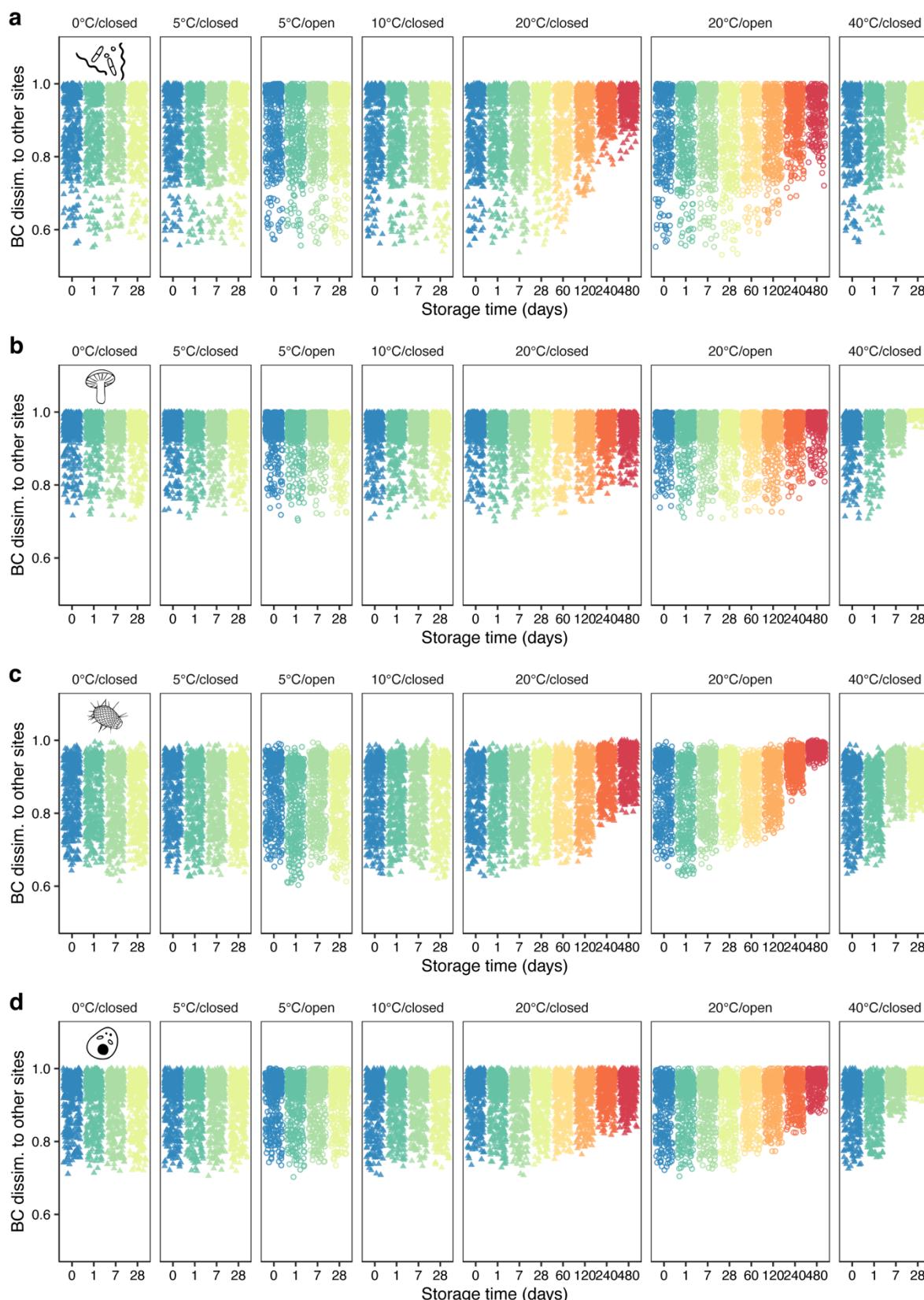
880
881

882
883
884
885
886
887

Supplementary Figure 1. Taxonomic change with storage (bacteria). Bar plot showing the relative composition of reads from the most abundant taxa at major taxonomic levels for different combinations of storage conditions (temperature, exposure) and time. All three replicates of a given treatment (combination of storage time, temperature and exposure) are combined.

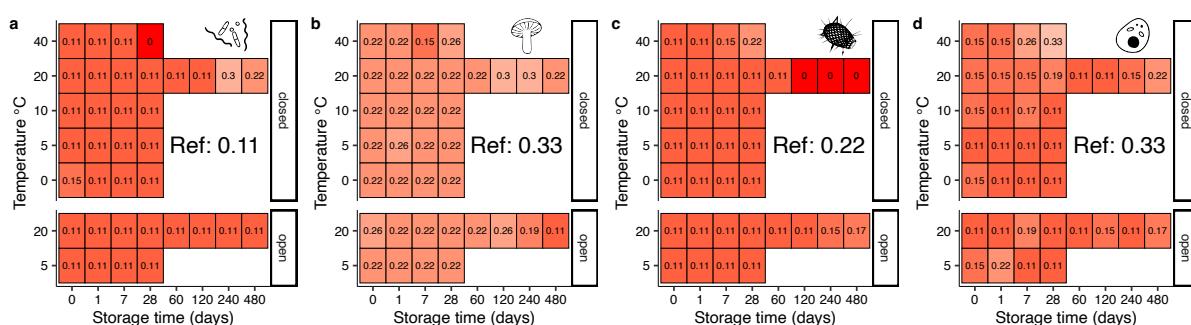
888
889 **Supplementary Figure 2. Taxonomic change with storage (fungi).** Bar plot showing the relative composition
890 of reads from the most abundant taxa at major taxonomic levels for different combinations of storage conditions
891 (temperature, exposure) and time. All three replicates of a given treatment (combination of storage time,
892 temperature and exposure) are combined. Kingdom level not shown (all reads not assigned to Fungi were
893 removed).
894

895
896
897
898
899
900
901


Supplementary Figure 3. Taxonomic change with storage (protists). Bar plot showing the relative composition of reads from the most abundant taxa at major taxonomic levels for different combinations of storage conditions (temperature, exposure) and time. All three replicates of a given treatment (combination of storage time, temperature and exposure) are combined. Kingdom level not shown (all reads were assigned to Eukaryota except a few unassigned).

902
903
904
905
906
907
908

Supplementary Figure 4. Taxonomic change with storage (eukaryotes). Bar plot showing the relative composition of reads from the most abundant taxa at major taxonomic levels for different combinations of storage conditions (temperature, exposure) and time. All three replicates of a given treatment (combination of storage time, temperature and exposure) are combined. Kingdom level not shown (all reads were assigned to Eukaryota except a few unassigned).


909

Exposure ▲ closed ◦ open Storage time ● 0 ● 1 ● 7 ● 28 ● 60 ● 120 ● 240 ● 480

910

911 **Supplementary Figure 5. Community dissimilarity of stored samples to reference data.** Each point shows
912 the Bray-Curtis dissimilarity of a stored sample to one of the 129 reference plots (excluding SN081, which was
913 collected at the same locality as the stored samples). X-axis and color indicate storage time, shape exposure
914 (open closed tubes), and faceting corresponds to storage temperature and exposure. The plots shows that
915 storage does not result in increased similarity (decreased dissimilarity) to other sites. NB: Y-axis truncated at 0.5
916

917 **Supplementary Figure 6. Supervised classification of habitat type and dissimilarity to habitat type**
918 **centroid.** *Upper panel* (a: bacteria, b: fungi, c: protists, d: eukaryotes) shows the probability of stored samples
919 being classified as belonging to the second most probable habitat type among nine habitat types defined by
920 supervised classification of observational data from the 129 reference sites, but without any samples
921 representing the site of origin. Classification probability was calculated as the proportion of ingroup samples
922 among the closest neighbors – defined as those samples (among the 129 reference samples only) with the
923 smallest Bray-Curtis dissimilarity to the examined stored sample. Cells show the mean value of the triplicate per
924 treatment. Note that only dissimilarity to the *second most probable* habitat type (Mull forest) is shown. “Ref”
925 indicates the classification success to the same habitat type of the origin site sample (SN081) from the reference
926 dataset for comparison.
927

928

929 References

930

931 1. Brunbjerg, A. K. *et al.* Multi-taxon inventory reveals highly consistent biodiversity responses to
932 ecospace variation. *Oikos* **129**, 1381–1392 (2020).

933 2. Brunbjerg, A. K. *et al.* A systematic survey of regional multi-taxon biodiversity: evaluating
934 strategies and coverage. *BMC Ecol.* **19**, 43 (2019).

935 3. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by
936 denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes
937 coding for 16S rRNA. *Appl. Environ. Microbiol.* **59**, 695–700 (1993).

938 4. Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect
939 methanogenic communities using quantitative real-time polymerase chain reaction. *Biotechnol.*
940 *Bioeng.* **89**, 670–679 (2005).

941 5. Ihrmark, K. *et al.* New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of
942 artificial and natural communities. *FEMS Microbiol. Ecol.* **82**, 666–677 (2012).

943 6. White, T. J., Bruns, T., Lee, S., Taylor, J. & Others. Amplification and direct sequencing of fungal
944 ribosomal RNA genes for phylogenetics. *PCR protocols: a guide to methods and applications* **18**,
945 315–322 (1990).

946 7. Harder, C. B. *et al.* Local diversity of heathland Cercozoa explored by in-depth sequencing. *ISME
947 J.* **10**, 2488–2497 (2016).

948 8. Chen, S. *et al.* Validation of the ITS2 region as a novel DNA barcode for identifying medicinal
949 plant species. *PLoS One* **5**, e8613 (2010).

950 9. Stoeck, T. *et al.* Multiple marker parallel tag environmental DNA sequencing reveals a highly
951 complex eukaryotic community in marine anoxic water. *Mol. Ecol.* **19 Suppl 1**, 21–31 (2010).

952

953