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Abstract

Background: The oral microbiota is emerging as an influential factor of host physiology and disease
state. Factors influencing oral microbiota composition have not been well characterised. In
particular, there is a lack of population-based studies. We undertook a large hypothesis-free study of
the saliva microbiota, considering potential influential factors of host health (frailty; diet;
periodontal disease), demographics (age; sex; BMI) and sample processing (storage time), in a
sample (n=679) of the TwinsUK cohort of adult twins.

Results: Alpha and beta diversity of the saliva microbiota was associated most strongly with frailty
(alpha diversity: Q = 0.003, Observed; Q=0.002, Shannon; Q=0.003, Simpson; Beta diversity: Q =
0.002, Bray Curtis dissimilarity ) and age (alpha diversity: Q=0.006, Shannon; Q=0.003, Simpson; beta
diversity: Q=0.002, Bray Curtis dissimilarity; Q= 0.032, Weighted UniFrac) in multivariate models
including age, frailty, sex, BMI, frailty and diet, and adjustment for multiple testing. Those with a
more advanced age were more likely to be dissimilar in the saliva microbiota composition than
younger participants (P = 5.125e-06, ANOVA). In subsample analyses, including consideration of
periodontal disease (total n=138, periodontal disease n=66), the association with frailty remained for
alpha diversity (Q=0.002, Observed ASVs; Q= 0.04 Shannon Index), but not beta diversity, whilst age
was not demonstrated to associate with alpha or beta diversity in this subsample, potentially due to
insufficient statistical power. Length of time that samples were stored prior to sequencing was
associated with beta diversity (Q = 0.002, Bray Curtis dissimilarity). Six bacterial taxa were associated
with age after adjustment for frailty and diet.

Conclusions: Frailty and age emerged as the most influential factors of saliva microbiota
composition. Whilst frailty and age are correlates, the associations were independent of each other,
suggesting that both biological and chronological ageing are key drivers of saliva microbiota
composition.
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Introduction

The oral microbiota are emerging as an important factor in human disease, and their influence on
host health are relatively under explored compared to those communities residing at other body
sites, such as the gut. Improved understanding of these communities is imperative to appropriately
design studies and determine causation in disease, with a view to develop interventions that
effectively treat or even prevent disease.

The oral microbiota has previously been associated with numerous oral and systemic disease,
including dental caries, periodontal disease, diseases of the oral mucosa, oral cancer and peri-
implantitis [1,2]. Systemic disease associated with the oral microbiota include obesity [3],
rheumatoid arthritis [4], HIV infection [5], liver cirrhosis [6], inflammatory bowel disease [7],
polycystic ovary syndrome [8], type 2 diabetes [9], atherosclerosis and cardiovascular disease [10]
and, more recently, Alzheimer’s disease [11]. The oral microbiota are known to play an important
physiological role in nitric oxide homeostasis which influences blood pressure [12].

There is an ongoing research effort to understand the composition of the oral microbiota, however
previous studies have focused predominantly on disease cohorts. Studies of the general population
are currently lacking. In particular, there is limited characterisation of the oral microbiota in relation
to potential influencing factors such as age, sex, BMI, diet and general health (frailty). The measured
composition can also be influenced by study protocol, including sample collection, storage,
processing, and sequencing method. Here, we characterise the salivary microbiota presentin a
deeply phenotyped cohort of generally healthy adults, while accounting for demographic and
protocol-related covariates.

Methods
Study design

The study was undertaken as an exploratory investigation of potential influential factors of saliva
microbiota composition. In addition to saliva microbiota, data were collected for multiple potential
contributory factors, and the aim of the study was to evaluate which of these were important with
regards to saliva microbiota composition whilst controlling for the other factors.

Participants

Participants of this study are members of the TwinsUK cohort, the largest UK registry of adult twins
[13] for whom microbiome, health and dietary data had been collected as part of the ongoing data
collection for the study of age-related disease. Participants are invited to visit the unit for
phenotyping on a rolling basis approximately every four years. Participants enrolled in this study
visited the between June 2014 and May 2017. The majority of participants were Caucasian females.
The age of participants ranged from 38 to 80 (median age 66). General health status of the
participants was captured using a frailty index generated from self-report diagnoses of disorders and
health, following Rockwood and colleagues’ 2008 method [14]. Briefly, this is a measure of health
deficit computed by dividing the number of age-associated health deficits by the total of 36
domains. Participant demographics are summarized in Table 1.
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Age Sex BMI HEI Frailty Zygosity Ethnicity  No. days Fasted
samples stored Status
Median N Median Median Median
(1QR) (%F) (IQR) (1QR) (1QR) median (IQR) (% fasted)
Caucasian:
656
" 66 625 25 55 0.18* MZ: 376 53 93
2
“ 5 (15) (92) (6) (11) (0.15) Dz 303 Black: 4 (87)
2 % 3 Asian: 4
c 5 ©
£SE5 Mixed: 8*
F8E
Caucasian:
563
67 541 25 58 0.18 MZ: 326 51 93
2 (14) (93) (6) (12) (0.15) DZ: 256 Black: 2 (89)
% I~ Asian: 4
©
83 o Mixed: 8*
SR SR
Caucasian:
63 134 25 58 0.18 MZ: 77 132% 114
87
(15) (100) (6) (14) (0.16) DZ: 57 (12)

Periodontal

Disease
Subsample
134)

(n

Table 1 Participant Characteristics
* Data unavailable for some participants

Saliva sample collection

Saliva samples were collected from participants during routine volunteer visits to the NIHR BRC
Clinical Research Facility associated with the Department of Twin Research at King’s College London.
Participants were requested to arrive for their volunteer visit to the Clinical Research Facility having
fasted for at least six hours, prior to collection of saliva samples. This was specified as abstinence
from food, beverages other than water, smoking, and chewing gum for 6 hours. Participants were
instructed to spit into a 30 ml sterile Falcon tube for ten minutes, and to try and produce as much
saliva as possible in this time. Completed samples were immediately placed at 4 degrees Celsius
before being transported in an insulated cooling bag to the laboratory within the same building. On
arrival in the laboratory, samples were aliquoted into Eppendorf tubes and stored at -80°C. Frozen
saliva samples were shipped on dry ice at -40°C to Stanford University for DNA extraction and 16S
rRNA gene sequencing.

Saliva sample processing and 16S rRNA gene sequencing

DNA extraction was performed using the DNeasy PowerSoil HTP 96 DNA extraction kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. This includes a mechanical cell lysis
step, of bead beating for 20 minutes. Saliva samples were randomly distributed, to avoid a twin -pair
samples being placed adjacent to one another and both DNA extraction and PCR blanks were
included. Prior to sequencing, samples were pooled in equimolar ratios. The V4 region of the 165
rRNA gene was amplified using PCR, in triplicate, using primers 515F and 806R which include error-
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correcting barcodes and illumine adaptors. Sequencing was undertaken on an lllumina HiSeq 25000
platform, generating a total of 167.8 million reads.

Microbiota profiling

Reads were denoised using DADA2 to generate ASVs [15]. Chimeras were removed using the
consensus method. Taxonomy of ASVs was assigned using the SILVA database, version 1.3.2 [16].
ASVs assigned as “mitochondria” or “chloroplast”, or which were unassigned at kingdom level were
removed from the dataset. DNA extraction and PCR blanks were utilised to detect contaminant
ASVs, which originate from laboratory equipment, laboratory reagents or personnel. DNA extraction
and PCR blanks were used as input for the Decontam R package version 1.2.1 [17], which identified
46 contaminant ASVs. The ASVs identified as contaminants were removed from the dataset. A
phylogenetic tree was generated for the ASVs by matching the ASVs into the SILVA nr v132
phylogenetic tree backbone using the fragment-insertion function (version 2018.6.17) in QIIME2.

Taxonomic and phylogenetic composition of the saliva microbiota was visualised using Phyloseq [18]
and Metacoder [19] R packages, after conversion of taxon counts to per sample relative abundance.

Alpha diversity of samples was calculated from the un-trimmed and un-normalised ASV table as
described in McMurdie et al. [20] and captured using three measures - Observed ASVs, Shannon
Index and Simpson Index.

Bray-Curtis dissimilarity and Weighted Uni Frac beta diversity distances were generated after
applying the negative binomial variance stabilising transformation using DEseq2 [21], Phyloseq [18]
and Vegan [22] R packages.

Statistical analysis

Analyses were undertaken using R version 4.0.3. Association of variables with alpha diversity was
assessed using linear mixed effects models applied using the ‘Ime4’ R package [23], and association
with beta diversity was calculated using marginal permutational analysis of variance (PERMANOVA)
applied via the ‘Vegan’ R package [22] with 999 permutations. Factors considered were age, sex,
frailty, BMI, fasting status and length of time samples were stored in freezer. All factors were
considered whilst adjusting for all other factors listed, plus sequencing depth. Dietary and
periodontal disease data were not available within the full sample due to these being introduced
during certain time windows of collection (data is considered missing at random). Therefore, two
subsample analyses were undertaken, including participants with these data, using the same
approach as above and additionally considering diet (subsample n=582) and periodontal disease
(subsample n = 134). In the periodontal disease subsample, only 4 participants were male, they were
removed from the sample to avoid bias.

Differential abundance of ASVs present in more than 5% of samples was modelled against age using
the ‘DESeq2’ R package, adjusting for frailty, diet, sex, BMI, whether participants had fasted prior to
sample collection, storage time of samples and sequencing depth. Adjustment for multiple testing
was applied to all models, using false discovery rate (FDR).

Results

Taxon characterisation of the saliva microbiota
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Within 704 participants the saliva microbiota comprised 3,339 ASVs, comprising 15 phyla. The most

dominant phyla in ascending order were Proteobacteria, Firmicutes and Bacteroidetes (Figure 1).
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of TwinsUK participants (n=679). Colour and size of nodes relate to the taxonomic level and abundance of
taxa, respectively. Higher to lower taxonomic levels range from blue to dark green to light green, to grey.

The top 20 most abundant taxa across all samples comprised 63 ASVs assigned to seven phyla:
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, Epsilonbacteraeota, and
Spirochaetes. At genus assignment level, the most prevalent taxa in the cohort (defined as presence
in more than 80% of samples) were Streptococcus, Haemophilus, Veillonella, Prevotella_7,
Prevotella_6, Ruminococcaceae-UCG-14, Porphyromonas, Actinomyces, Alloprevotella, Rothia,
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Fusobacterium, Oribacterium, Lachnoanaerobaculum, Campylobacter, Kingella, Lautropia,
Cardiobacterium, Peptostreptococcus, Catonella, Mogibacterium, FO058, Bergeyella,
Capnocytophagia, Granulicatella, and Treponema_2.

Diversity of the saliva microbiota

Alpha diversity was captured using three measures: Observed ASVs, Shannon diversity and Simpson
Diversity. Beta diversity was captured using Bray Curtis dissimilarity and Weighted UniFrac distance.
Models to investigate association with alpha and beta diversity were repeated in two sub-samples,
the dietary subsample and the periodontal disease subsample with additional investigation of diet
and periodontal disease, respectively.

Mixed-effects multivariate regression models were used to investigate association of the saliva
microbiota with alpha diversity. An association between alpha diversity of the saliva microbiota was
demonstrated for the following factors: age, frailty, sample storage time and periodontal disease
(Table 2).

Independent associations of beta diversity with age and frailty were demonstrated using a
multivariate model, and this finding was robust across all models except within the periodontal
disease subsample (n=134, Table 4), which may reflect a power issue. Frailty and the length of time
that samples were stored prior to sequencing was associated with Bray Curtis dissimilarity. The
association between beta diversity and age, sex, BMI, diet, frailty, participant fasting status and
sample storage time is presented below (Figure 3).
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Full Sample Dietary Subsample Periodontal Disease Subsample
Observed Shannon Simpson Observed Shannon Simpson Observed Shannon Simpson

Est. Q Est. Q Est. Q Est. Q Est. Q Est. Q Est. Q Est. Q Est. Q
Age -0.02 0774  0.152  0.004" 0.15  0.003" -0.03 0.741 0.12 0.006 0.5 0.003" | 002 0262 022 0.128 0.12 0.28
Sex (M) -003 0841  -0293 0.5 -026 0.164 -0.01 0.93 028 019 -0.26 0.191 - = = - - -
BMI 002 0774 006 0.215 008  0.083 0.02 0.763 006 0279 0.08 0.097 0.18  0.055 0.14 0.237 0.12 0.507
Frailty -0.15 0004 -0.166  0.002" -0.16  0.003" -0.16 0.003" -016 0002”7 -0.16 0.003" | -035 00027 -0.29 0.04” -0.18 0.283
Storage Time | 0.09 008 003 0.54 004 044 0.002 0.08 0001  0.496 00001  0.525 001 033 0.01 0.256 0.005 0.51
Relatedness NA 0.61 NA 0.281 NA 0.326 NA 1 NA 0.971 NA 1 NA 1 NA 1 NA 1
Fasting Status | NA 0.61 NA 0.281 NA 0.326 NA 1 NA 0.99 NA 1 NA 1 NA 1 NA 1
Diet - - - - - - -0.006 0.168 -0.036 0.456 0.003 0.946 -0.08  0.367 0.005 0.98 0.05 0.51
PD - - - - - - - - - - - - 037 0055 0.004 0.981 0.002 0.991

Table 2 Association with saliva microbiota alpha diversity of potential influential factors. Multivariate models are presented for each sample: full sample,
dietary sub-sample, and periodontal disease subsample. All models are adjusted for multiple testing and resultant Q values are given. Full sample (n=679): in a multivariate
model adjusting for all other variables listed (not including diet or periodontal disease), factors associated with saliva microbiota alpha diversity were age (Q = 0.004,
Shannon Index; Q=0.003, Simpson Index) and frailty (Q=0.004, Observed; Q = 0.002, Shannon Index; Q=0.003, Simpson Index). In the dietary subsample (n=582), the
associations demonstrated in the full sample were robust to adjustment for diet; factors associated with alpha diversity were age (Q = 0.006, Shannon Index; Q=0.003,
Simpson Index) and frailty (Q=0.003, Observed; Q = 0.002, Shannon Index; Q=0.003, Simpson Index). In the periodontal disease subsample (n=134), alpha diversity was
associated with frailty (Q=0.002, Observed; Q=0.04, Shannon).

"8sUud2I| [eUONRUIBIU| 0'F AN-AG-DDe Japun a|ge|reAe
apeuw sl | ‘Aunadiad ur uudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajuelb sey oym ‘1spunyioyine ayi si (mainal 19ad Aq paijiniad Jou sem Yyaiym)
wiudaud sy Joy 1spjoy 1yBuAdod 8yl "TZ0Z ‘€2 Jequiadaq paisod UoISIsA SIYl :9T8E/1'22 2T T202/T0TT 0T/610 10p//:sdny :10p uudaid Axygolq


https://doi.org/10.1101/2021.12.22.473816
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473816; this version posted December 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Bray Curtis Bray Curtis Diet Subsample
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Diet-
Relatedness -
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0.207

° BMI- 0.372 0.371
8
5 Weighted UniFrac Weighted UniFrac Diet Subsample
>
* ¥ L
Age - 0.045 0.032
Fasting Status - 0.104 0.106
Diet- 0.165

Relatedness -

BMI- 0.380 0.370

Marginal R2

Figure 3 Association of factors with beta diversity of the saliva microbiota

Models using both the full sample (n=679) and diet subsample (n=582) are shown. Adonis R2 (marginal) is plotted for each
variable. The diet subsample includes only participants for whom dietary data were available. Bars are annotated with FDR
adjusted p values (Q values). Age was significantly associated with beta diversity after adjusting for all other factors listed
plus sequencing depth when measured using both Bray Curtis and Weighted UniFrac. Frailty was associated with Bray
Curtis beta diversity (Q = 0.003). Bray Curtis dissimilarity was also associated with sample storage time (length of time that
samples were stored in the freezer (Q = 0.004) and diet (Q=0.04; subsample analysis).

Correlation between variables is shown in Table 3. A significant association was demonstrated
between frailty and fasting status, whilst association between all other variables were non-

significant.
BMI Frailty Diet Age Male
Sex
Frailty 0.13
Diet -0.062 -0.06
Age 0.012 0.336 -0.087
Male Sex 0.014 -0.033 0.046 0.074
Fasted -0.013 -0.125 0.045 -0.046 -0.026

Table 3 Rho coefficients of correlation between participant characteristics. Significantly correlated factors
were frailty and age (p= 2.2e-16), frailty and fasting status (p=0.001), frailty and BMI {p=0.0007), BMI and
having fasted prior to sample collection (p=0.001), and diet and age (p=0.035).

In the sub-sample analysis of participants with periodontal disease data, implementing the
same multivariate model with the addition of periodontal disease, age was not associated
with Bray Curtis dissimilarity or weighted UniFrac. This was also true for frailty and sample
storage time. The loss of association of age, frailty and sample storage time with beta
diversity in the periodontal disease subsample analysis may potentially be due to
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insufficient statistical power; the periodontal disease sub-sample was substantially smaller
(n=138) than the full sample (n=679). Periodontal disease was strongly associated with both
Bray Curtis dissimilarity (Q = 0.009) and Weighted Uni Frac distance (Q = 0.009).

Bray Curtis Weighted UniFrac
R2 Q R2 Q
Relatedness 0.009 0.302 0.009 0.381
Sample Storage Time 0.008 0.302 0.009 0.381
Fasting Status 0.009 0.302 0.008 0.381
BMI 0.008 0.326 0.010 0.381
Diet 0.015 0.063 0.034 0.014*
Frailty 0.014 0.070 0.003 0.807
Periodontal Disease 0.039 0.009%* 0.054 0.009**
Age 0.015 0.063 0.014 0.342

Table 4 Oral health subsample PERMANOVA including participants with data for periodontal disease
(n=134). In this subsample, an association of saliva microbiota beta diversity with periodontal disease
(Q=0.009, Bray Curtis; Q=0.009, Weighted UniFrac) and Diet (Q=0.014, Weighted UniFrac) was demonstrated.

Across 5 age groups, variation in distribution of beta diversity increased sequentially with
age, demonstrating that younger participants were more similar in their saliva microbiota
diversity than older participants (Figure 3).
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Figure 3. Bray Curtis beta dispersion of age within full cohort sample.
A difference in the variance across age groups was demonstrated (P = 5.125e-06, ANOVA).

Saliva microbiota taxa associated with age

The association of saliva microbiota composition age was explored taxonomically. After
adjustment for all factors available for the dietary data subsample (n=582, methods), and
multiple testing, six ASVs were associated with age (Figure 4).
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Figure 4. Saliva microbiota associated with age
Age was associated with six taxa in a multivariate model after adjustment for sex, frailty and diet of participants. Taxa
positively associated with age were Comamonas (Q= 0.029), Phocaeicola abscessus (Q = 0.037) and Anaeroglobulus
germinatus (Q = 0.004). Taxa inversely associated with age were Veillonella (Q = 0.0002), Haemophilus (Q = 0.0004),
Veillonella atypica/dispar (Q = 0.037) and Granulicatella adiacens/para-adiecens (Q = 0.05).

Discussion

The composition of the saliva microbiota requires characterisation in order to understand links with
health and disease. In this explorative study we performed a multifactorial investigation of the saliva
microbiota in a large, unselected, population sample from TwinsUK. Age and frailty (health deficit)
emerged independently from each other as the strongest influential factors of alpha and beta
diversity, after adjustment for all other factors. Taxonomically the association with age was driven by
six bacterial species.

These findings suggest that both chronological and biological ageing may be important with regards
to saliva microbiota composition. Potentially, there may be an influence of the ageing immune
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system and immunosenescence, which is also thought to underly increased incidence and severity of
infection with increasing biological age (frailty) [24].

There are limited prior studies of the saliva microbiota composition, however these have
demonstrated an association of diversity with BMI [25] and frailty [26]. In a study by Wu et al. which
characterised the salivary microbiome of 62 younger adults in relation to obesity, an association of
BMI was demonstrated with both alpha diversity (Chaol, P < 0.01; Shannon diversity, P < 0.05) and
beta diversity differences (unweighted UniFrac, P = 0.001) [25]. The study design accounted for age,
sex and oral hygiene. In contrast, in TwinsUK, no association for BMI was demonstrated, although
our sample comprised older adults with lower average BMI (25) and modest intra sample variation
(SD 6). In addition, Wu et al. targeted the V3 variable region, which could potentially account for the
difference in results if there is higher sensitivity for taxa which associate with obesity.

A study of the saliva microbiota by Ogawa et al. included consideration of frailty. Of participants, 16
lived in a nursing home and 15 lived within the general community [26]. Those who were nursing
home dwellers had a mean age of 87, whereas those who lived within the community had a mean
age of 84. Participants were admitted to the nursing home on recommendation by a medical doctor
due to frailty. The authors therefore classified the nursing home group as frail and the independent
community dwellers as non-frail. Ogawa et al. demonstrated a significant inverse association of
alpha diversity of the saliva microbiota with nursing home dwelling, which was interpreted to be due
to frailty. They accounted for age, BMI and dental health, but included no adjustment for diet. A
difference in diet between the non-frail and frail groups could be an important unmeasured
confounder, given the dwelling of participants. Our study was conducted in community dwelling
older adults, and measured frailty using the frailty index. We did adjust for diet as well as other
covariates and found a significant inverse association of frailty with alpha diversity, this
corroborating their results. Additionally, in the present study we found evidence that frailty was
associated with different microbiota composition (Bray Curtis dissimilarity and Weighted
UniFrac distance).

A recent population study by Burcham et al., considered factors which influence the oral microbiota
in adults versus children (Burcham et al. 2020). Oral samples were obtained using buccal swabs of
the teeth, tongue, cheeks and gums. Therefore, multiple oral sites were included, in addition to
saliva. The source of saliva microbiota is predominantly the biofilm on the dorsum of the tongue,
however all other oral microbial niches contribute taxa (Davenport 2017). The buccal swabs used by
Burcham are therefore relevant to the saliva microbiota but may not be directly comparable.
Burcham et al. included 172 adults aged between 20 and 57, median age 34. They did not consider
age within the adult or child groups, but on comparison of both groups they demonstrated
significantly lower Shannon diversity in adults versus children. Within both groups they considered
weight status, sex, prescription of antibiotics in the last 6 months and oral hygiene habits (visits to
the dentist for professional descaling). They showed that in adults only, composition of the
microbiota (beta diversity) varied with oral hygiene habits. There was no association between weight
status, sex or ingestion of antibiotics in last 6 months. However, youth oral microbiome beta
diversity was associated with both sex and weight (Burcham et al. 2020). In the present study, oral
hygiene habits were not accounted for, but could potentially be explain some of the signal identified
for age and frailty.

In a study by Zhang et al, in which they considered age, sex, BMI and inflammatory and rheumatoid
arthritis disease markers, there was no association of any factors with beta diversity of the saliva
microbiota [27]. However, age was the only factor which was close to significance, and study was
limited by small sample size (n=98).
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A technical factor - length of time that samples were stored prior to sequencing - also emerged as a

distinguishing feature of beta diversity, suggesting that some taxa are more affected than others by

long-term freezing. This will be relevant to many studies using larger cohorts which collect data over
a wide time span [28].

Moving forward, it will be important to investigate the role of host genetic factors in determining
the composition of the saliva microbiota. A recent study using twin based heritability estimates of
saliva microbiota from 209 twin pairs found that whilst overall non-shared environment is the most
important factor [28,29], substantial heritability was demonstrated for 28 percent of ASVs in their
samples [28]. They also demonstrated heritability of differential immune response to commensal
oral microbes, which would provide a mechanism for heritability of the microbiota.

In TwinsUK saliva samples, the most abundant phylum within the saliva microbiota was
demonstrated to be Proteobacteria (Figure 1). In our study, employing sequencing of the V4
16SrRNA gene variable region, the taxonomic composition demonstrated is in contrast with prior
studies, the majority show Bacteroidetes to be the dominant phylum [26,30-32]. In these prior
studies, a key common difference accounting for taxonomic discrepancy is choice of primer; these
prior studies undertook sequencing of the V2 variable region. Murugesan et al. undertook a large
recent study of the saliva microbiota of 997 younger adults with mean age of 38, using targeting of
the V2 variable region, demonstrated that the dominant phylum of the saliva microbiota was
Bacteroidetes [32]. Proteobacteria were the third most dominant phylum. This finding was
replicated in studies by Ogawa et al., Gomez et al., and Tsuda et al. [26,30,31].

In the study by Ogawa et al. of 31 elderly adults, within community dwelling older adults, the saliva
microbiota were dominated at the phylum level by Bacteroidetes. Proteobacteria was the third most
abundant phylum, after Firmicutes. There are important methodological differences compared to
the present study, which are likely to account for the taxonomic discrepancy. The most influential
methodological discrepancy is likely to be choice of primers. However, in addition they generated de
novo operational taxonomic units (OTUs) and assigned taxonomy of using the Greengenes database.
In the present study ASVs were generated and taxonomy was assigned using the SILVA database.
Ogawa and colleagues required their participants to refrain from food, drink, smoking and use of
toothpaste for 2 hours prior to saliva collection. In the present study, participants were asked to fast
and refrained from smoking or chewing gum for at least 6 hours, whereas there was no stipulation
about toothpaste. Ogawa et al. undertook DNA extraction, PCR and sequencing immediately,
whereas in the present study samples were frozen prior to these steps. The primary factor mediating
the taxonomic discrepancy between both studies is likely to be choice of variable region targeted by
the PCR primers.

Tsuda et al. undertook a study of the saliva microbiota of 44 adults who had fasted overnight, using
pyrosequencing after PCR targeting of the V1-V2 hypervariable region [30]. The dominant phylum
was Firmicutes, whilst Bacteroidetes, Actinobacteria and Proteobacteria were the second, third and
fourth most abundant, respectively. Another study, by Lundmark et al. evaluated the saliva
microbiota of 114 adults, using targeting of the V3-V4 hypervariable region [33]. They demonstrated
that the most abundant phyla in order of dominance were Firmicutes, Bacteroidetes, and
Proteobacteria.

There are few studies of the saliva microbiota which use targeting of the V4 variable region, however
in a small study of 20 adult participants, using this method, in accordance with our study,
Proteobacteria was the most dominant phylum, whilst Firmicutes was the second most dominant
[34]. In the study by Gomez et al. the dominant phylum of the subgingival plaque of children aged 5
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to 11 is Firmicutes [31]. However their study was not directly comparable, being of children, and
using primers which target the V2 variable region rather than V4.

These high phylogenetic level taxon discrepancies between studies which employ targeting of
different variable regions of the 16S rRNA gene indicate that primer selection is an important factor
having influence on downstream findings. The primers used in this study, 515F and 806R, were
initially used by the Earth Microbiome Project, and have since been modified for use with the
lllumina platform [35]. This modification rectified the previously held bias against Crenarchaeota and
Thaumarchaeota [36]. These primers have been demonstrated to perform well for characterising the
gut microbiota, however efficacy/performance for characterisation of the oral microbiota requires
further investigation. A recent study showed a discrepancy in performance when applied to human
gut versus skin microbiota [37]. Most studies of the saliva microbiota have employed primers which
target the V2 variable region. This region demonstrated higher resolution for Streptococcus, the
most abundant genus in the oral cavity [38].

Our study benefitted from several strengths. Firstly, this was a large, relatively unselected
population of older community dwelling adults with a breadth of data which enabled us to consider
a number of potentially important factors, including host general health, diet and periodontal
disease. There are key strengths in the technical aspects of sample processing: DNA extraction and
sequencing was performed by the same person, samples from twin pairs were separated on the DNA
extraction plates and all samples were included in two lanes of the same sequencing run. The
inclusion of blank reagent only samples allowed for removal of potential contaminant ASVs from the
dataset, sometimes referred to as the “kitome”. Consideration of contaminants may be particularly
important for lower biomass samples such as saliva. There were also limitations to the work which
are important to consider. Our sample is a volunteer cohort and there may therefore be a healthy
volunteer bias. For example, in relation to frailty, our sample in accordance with the wider TwinsUK
cohort is comprised of relatively healthy (lower frailty), community dwelling participants, and may
not reflect changes at high levels of frailty. Similarly, participants are older adults, but few
participants were aged over 70 or less than 40. Despite this, however we were able to demonstrate
importance of these factors. A possible limitation was that we used targeting of the V4 region in
order to analyse concurrently with gut microbiota, which, as discussed above, may have lower
resolution for key taxa of the oral microbiota, and particularly Streptococcus. We used sampling of
the saliva microbiota, which derive predominantly from oral mucosal surfaces. However, the
microbiota of other sites, and particularly subgingival plaque may be more pathologically relevant. In
our study we did not include an investigation of oral hygiene or smoking habits.

Conclusions

In a multivariate exploratory study of a population sample, TwinsUK, composition of the saliva
microbiota was associated with age and frailty, indicating that both chronological and biological
ageing are implicated. Diversity of the saliva microbiota increased with age; younger participants
were more likely to have a similar saliva microbiota composition, whereas older participants
demonstrated wider difference. Storage time before processing was a key methodological variable.
There were six bacterial taxa within the saliva microbiota associated with age. Our findings highlight
the importance of time (both in vivo and ex vivo) and general health in the composition of the
salivary microbiota composition and highlight the need to take account of these factors in any study
of the association of the salivary microbiota and disease.
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