

1 **WHAT DO ZEBRAFISH PREFER? DIRECTIONAL AND COLOR**
2 **PREFERENCES IN MAZE TASKS**

3
4
5 Matheus Marcon^{4*}, Radharani Benvenutti^{1*}, Matheus Gallas-Lopes², Ana Paula
6 Herrmann^{2,3}, Angelo Piatto^{1,2,3}

7
8 ¹ Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas
9 da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
10 RS, Brazil.

11
12 ² Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde,
13 Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

14
15 ³ Programa de Pós-graduação em Farmacologia e Terapêutica, Instituto de
16 Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
17 (UFRGS), Porto Alegre, RS, Brazil.

18
19 ⁴ Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências
20 Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM),
21 Uberaba, MG, Brazil.

22
23 *These authors contributed equally to this manuscript.

24
25 *Correspondence:

26 Angelo Piatto, Ph.D.

27 Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas
28 da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento
29 Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.

30 Phone/Fax: +55 51 33083121

31 E-mail: angelopiato@ufrgs.br

39

ABSTRACT

40

41 Studies regarding the animals' innate preferences help elucidate and
42 avoid probable sources of bias and serve as a reference to improve and
43 develop new behavioral tasks. In zebrafish research, the results of innate
44 directional and color preferences are often not replicated between research
45 groups or even inside the same laboratory raising huge concerns on the
46 replicability and reproducibility. Thus, this study aimed to investigate the male
47 and female zebrafish innate directional and color preferences in the plus-maze
48 and T-maze behavioral tasks. As revealed by the percentage of time spent in
49 each zone of the maze, our results showed that males and females zebrafish
50 demonstrated no difference in directional preference in the plus-maze task.
51 Surprisingly, male and female zebrafish showed color preference differences in
52 the plus-maze task; males did not show any color preference, while female
53 zebrafish demonstrated a red preference compared to white, blue, and yellow
54 colors. Moreover, both male and female zebrafish demonstrated a strong black
55 color preference compared to the white color in the T-maze task. Thus, our
56 results demonstrate the importance of innate preference assays involved with
57 the directionality of the apparatus or the application of colors as a screening
58 process conducting behavioral tests (e.g., anxiety, learning and memory
59 assessment, locomotion, and preference) and highlight the need to analyze sex
60 differences.

61

62 **Keywords:** zebrafish; behavior; preference; color; direction; maze.

63

64

65

66

67

68

69

70

71

72

73 **1 INTRODUCTION**

74

75 Behavioral neuroscience research is fundamental and provides essential
76 findings to help understand and interpret human behavioral phenotypes. Also, it
77 provides researchers knowledge regarding the neural bases of behaviors,
78 including those subjacent to neuropsychiatric disorders and drug effects on the
79 central nervous system [1–3]. In pre-clinical research, experimental models
80 have been used to develop, model, and monitor diseases' progress, favoring
81 progress in understanding the neurobiology of human diseases [4,5]. Many
82 behavioral tests are employed to assess animal behavior. They range from
83 tests that evaluate less complex behaviors (locomotor assessment) to those
84 that evaluate more complex behaviors (learning and memory assessment) [6–
85 8].

86 Mazes are experimental tools often implemented in behavioral tests,
87 once they are applicable across species and, with small changes to its
88 configuration, allow to evaluate different sets of behavioral paradigms (e.g.,
89 anxiety, learning and memory assessment, locomotion, and preference) [9–13].
90 Most of the data generated using these apparatus come from studies with
91 rodent models, generally seeking to assess anxiety or cognition [13,14].

92 Along with the vast number of tasks designed for rodents, researchers
93 also explored the versatility of the mazes adapting these apparatus to assess
94 behavioral data from many other model organisms such as fruit flies [15], frogs
95 [16], and fish [17]. For example, in zebrafish, mazes have been used to study
96 anxiety [12,18,19], learning and memory [20–22], locomotion [23–25], and
97 preference [26–29]. Recently, a review article featuring an overview of maze
98 apparatuses and protocols to assess zebrafish behavior was published by our
99 research group and now is available in the literature [30].

100 Zebrafish is a model organism increasingly being used in behavioral
101 neuroscience research, enabling the study of a vast range of behavioral
102 paradigms [5,31], such as anxiety [32], learning and memory [33], and seizure
103 [34]. Furthermore, the zebrafish is a successful model for translational research
104 on human neurological disorders [35] and high-throughput screening of
105 potential treatments [36]. These animals provide rational, quick, and low-cost
106 tools to research due to their genetic tractability, conserved neurobiology, as

107 well as evident behavioral responses essential to model neuropsychiatric-like
108 disease phenotypes [37].

109 The zebrafish innate directional and color preferences also are frequent
110 subjects of scientific scrutiny [26,38–41], but results are often not replicated
111 between laboratories or even in the same research group [42]. For example,
112 results show several inconsistencies in the color preference studies regarding
113 the fish preference or aversion by the same color [38,39,43]. It can be related to
114 methodological problems such as the lack of standardized protocols, raising
115 huge concerns on several studies' replicability and reproducibility [44].

116 Studies about the animals' innate preference not only help to elucidate
117 and avoid probable sources of bias (e.g., zebrafish directional preference can
118 be the reason for the fish to spend more time in one of the arms of the maze
119 blunting the analysis of any intervention), but also serve as a reference to
120 improve and/or develop new behavioral tasks. Learning and memory protocols,
121 for example, often implement the technique of pairing rewards stimulus (e.g.,
122 food or conspecifics) with colorful visual cues [39,45], while anxiety protocols
123 mostly using the black and white colors to determine anxiety-like phenotypes
124 based on scototaxis [46–48], pointing once again to the importance of detecting
125 zebrafish preference or avoidance for different colors. Several behavioral
126 studies showed male and female differences for aggressiveness [49], stress
127 [50], and drug response [51], highlighting the relevance to consider all behavior
128 analyzes of manner sex-dependent.

129 In this context, this study aimed to investigate the male and female
130 zebrafish innate directional and color preferences in the T-maze and plus-maze
131 behavioral tasks to identify possible sources of bias and provide insights that
132 may contribute to the standardization of future protocols.

133

134 **2 MATERIAL AND METHODS**

135

136 **2.1 Animals**

137

138 All experiments were performed using 60 adult short-fin wild-type
139 zebrafish (*Danio rerio*, 6-month-old, 3–4 cm long, weighing 400-500 g) in a
140 50:50 male/female ratio. The fish were obtained from a local commercial

141 supplier (Delphis, RS, Brazil) and maintained for at least 15 days in an animal
142 facility (Altamar, SP, Brazil) before being assigned to the experimental tanks.
143 The density of animals was maintained at a maximum of 2 animals per L. The
144 water of the recirculation system was kept in the conditions required for the
145 species ($27 \pm 1^{\circ}\text{C}$; dissolved oxygen at $7.0 \pm 0.4 \text{ mg/L}$; pH 7.0 ± 0.3 ; total
146 ammonia at $<0.01 \text{ mg/L}$; alkalinity at 22 mg/L CaCO_3 ; total hardness at 5.8
147 mg/L ; and conductivity of $1500\text{--}1600 \mu\text{S/cm}$) being constantly filtered by
148 mechanical, biological and chemical filters. Animals were fed twice a day (09:00
149 a.m./05:00 p.m.) with commercial flake food (Poytara[®], Brazil) plus the brine
150 shrimp *Artemia salina*. All tests performed in this study followed ARRIVE
151 guidelines [52]. Lighting conditions consisted of a light/dark cycle of 14/10
152 hours. At the end of the experiments, zebrafish were euthanized by immersion
153 in cold water (0 to 4°C) until cessation of the any movements, followed by
154 decapitation to ensure death according to the AVMA Guidelines for the
155 Euthanasia of Animals [53]. All procedures were approved by the institutional
156 animal welfare and ethical review committee (approval n^o 36248/2019).
157

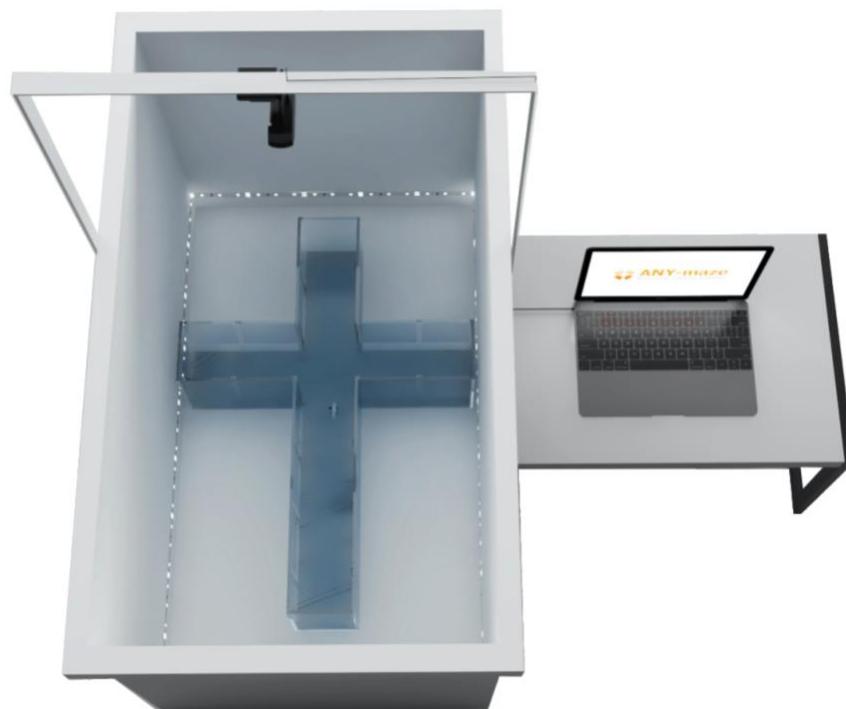
158 **2.2 Experiment design**

159

160 This study consisted of 3 independent experiments with maze tasks. All
161 our results were replicated and confirmed by two independent experiments for
162 each of the 3 experiments. In each experiment, one different set of animals was
163 used after the 15 days of the acclimation period to laboratory conditions. One
164 single experimental group ($n=20$) was allocated in two independent
165 experimental tanks (A and B) of 16-L ($40 \times 20 \times 24 \text{ cm}$) where stayed for 7 days
166 before the start of the experiments and throughout the experimental period. In
167 the experimental tanks, the animals were fed twice a day (in the morning after
168 the experiments and at 05:00 p.m.). Block randomization procedures were used
169 to counterbalance the sex of the animals and the two independent experimental
170 tanks, the order of the animals tested, and the maze and color positions during
171 the tests. The sample size used in the present study was defined a priori based
172 on previous literature and pilot studies. 20 fish (10 males and 10 females) were
173 used in each experiment. One exclusion criterion was established prior, in
174 which subjects that frequently stopped (more than 50% of the test time) or

175 never swam would be excluded from the data analysis. Thus, at the end of all
176 experiments, the number of animals was not the same for all experiments.
177 Specifically, in experiment 1, the number of animals was reduced to two males
178 (one male died during the habituation phase, and one male was excluded from
179 the data analysis) and two females (excluded from the data analysis). In
180 experiment 2, the number of animals was bigger for females than for male sex
181 (at the end of all experiments, when sex was confirmed by dissection, we
182 observed more females than males in the experimental tanks). In experiment 3,
183 the number of animals was reduced to one male (one male died on the test
184 day) and one female (excluded from the data analysis). The tanks were filled
185 with water from the animal facility. The determination of the sex of the animals
186 was performed by dissection, followed by the analysis of the gonads.

187


188 **2.3 Maze design**

189

190 We have used the same apparatus for all experiments. The complete
191 maze design utilized in this study is represented in figure 1. The apparatus
192 consisted of transparent plexiglass (1 cm thick) cross-shaped maze with a start
193 zone (10 × 10 × 15 cm) into the stem arm (40 × 10 × 15 cm) and 3 short arms
194 (20 × 10 × 15 cm) connected to the final stem arm. This apparatus is easily
195 adaptable to different maze shapes such as plus or T-mazes (implemented in
196 these experiments) by closing sliding doors present along the entire maze every
197 10 cm. The apparatus was placed inside a white plastic box (93 × 55 × 58) that
198 contained support of white plexiglass attached to the two sides of the box and
199 served to suspend a camera on top of the apparatus, which allowed filming the
200 behavior during the test from above. The camera distance from the floor of the
201 box was 89 cm. The box was covered with a white fabric to avoid interference
202 by environmental cues. A source of light (LED strip light) was fixed 5 cm above
203 the box floor around all inside walls to ensure that lighting conditions were the
204 same in each of the arms apparatus (275 lux was measured across the entire
205 maze with the aid of the Lux Light Meter Pro application version 2.0). The water
206 level was set at 5 cm inside the maze, and the water temperature was
207 maintained at 27°C (± 1°C) throughout the entire experiment. The heater wire
208 was covered with white adhesive tape (same color as the box and white fabric)

209 to avoid environmental clues. The maze was emptied and cleaned between the
210 test of each animal.

211

212

213 **Figure 1:** 3D Illustrative representation of the maze apparatus and the
214 experimental configuration used in behavior tests performed in this study.

215

216 **2.4 Habituation and task protocol**

217

218 All tasks were performed between 08:00 and 12:00 a.m. in a room used
219 exclusively for experiments with mazes, which was a different room than the
220 one where the animals were housed. To avoid novelty stress induced by the
221 environment, all animals were transported to the behavior room 1 hour before
222 the tests. The maze tasks consisted of 5 days. In the first 4 days, the fish were
223 placed in the apparatus in groups for habituation. The number of animals
224 gradually decreased over the days, helping to minimize social and novelty
225 stress (Sison and Gerlai 2010). On the fifth day (last day), the fish were tested
226 individually in the maze task. Briefly, on the first day of habituation, all animals
227 of the same group were placed in the apparatus's start zone. For the plus-maze
228 task, the start zone was the center zone, and for the T-maze task, the start zone
229 was at the beginning of the stem arm. After the start zone doors were opened,

230 the fish freely explored the apparatus for 20 minutes. On the second day, the
231 number of animals was reduced by half, and the fish could explore the maze for
232 10 min. By the third day of habituation, the number of animals was again
233 reduced by half, and fish could swim for only 5 min. On the fourth day (last day
234 for habituation), fish were individually placed on the maze and explored freely
235 for 5 min. On the fifth day (test day), the fish were individually placed on the
236 apparatus's starting zone remaining there for 2 min to habituate. Posteriorly, the
237 doors of the starting zone were opened the fish explored the maze for 5 min.

238

239 **2.5 Behavioral analyses**

240

241 On the fifth day (behavior assessment), the animals were not fed.
242 Following a protocol previously elaborated with randomization procedures using
243 random.org software (computerized random numbers) to avoid potential
244 confounders, the animals were transported from the experimental tank (A or B)
245 to the test. Animal behavior was recorded with a webcam (Logitech® C920 HD
246 pro) from above. The behavior analyses were performed from the recorded
247 videos dividing the tank into virtual zones with ANY-Maze® automated tracking
248 software 4.99 version (Stoelting Co., Wood Dale, IL, USA) for Windows system
249 10 version. For the behavioral and statistical analyses, blinding was achieved
250 by assigning to each animal a code that was revealed only after data analyses
251 (the coding was performed by a researcher who did not participate in the
252 experiments).

253

254 **2.6 Directional preference**

255

256 In experiment 1, to assess directional preference, our maze has been
257 configured to take the shape of a plus-maze. For this, the labyrinth stem arm
258 (40 cm) was blocked by closing a sliding door at half the length of the arm.
259 Thus, the maze stayed with four equal arms (each 20 cm long). We positioned
260 the maze with the help of a compass (available on the iOS version 13.5.1) so
261 that each arm was pointed in one of the cardinal directions (north, south, east,
262 and west). Briefly, the features of the plus-maze consisted of one center zone
263 (10 x 10 x 15 cm) and four identical arms (20 x 10 x 15 cm). The maze position

264 was counterbalanced (turning the maze by 90°) between animals to avoid
265 possible biases. Afterward, behavioral analyses were performed based on the
266 recorded videos' analysis by virtually dividing the maze into four zones (north
267 zone, south zone, east zone, and west zone). The time spent in each zone was
268 used as the exploratory parameter and expressed in percentage (%).

269

270 **2.7 Color preference**

271

272 In experiment 2, the same plus-maze used for experiment 1 was
273 implemented to assess zebrafish' innate color preference. For this purpose,
274 each arm was covered with a colored sleeve (white, red, blue, or yellow). The
275 position of each sleeve was counterbalanced between animals to avoid
276 possible biases. Afterward, behavioral analyses were performed based on the
277 recorded videos' analysis by virtually dividing the maze into four zones (white
278 zone, red zone, blue zone, and yellow zone). The time spent in each zone was
279 used as the exploratory parameter and expressed in percentage (%).

280

281 **2.8 Black or white color preference**

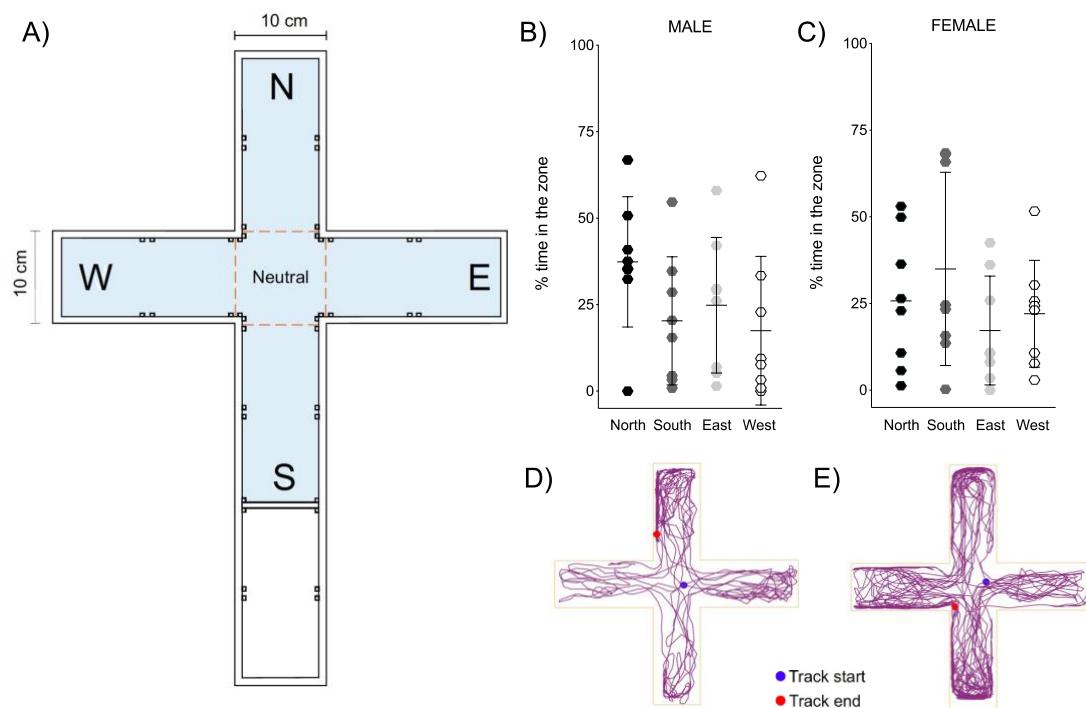
282

283 In experiment 3, to assess innate zebrafish preference between the color
284 black or white, our maze has been configured to take the shape of a T-maze.
285 One of the three short arms of the maze was blocked by closing a sliding door.
286 Thus, the maze stayed with two short arms (20 cm length) and the stem arm
287 (40 cm length). We covered one of the short arms with a black color sleeve and
288 the other with a white color sleeve. The position of each sleeve was
289 counterbalanced between animals. Briefly, the maze consisted of one start
290 zone (10 x 10 x 15 cm) into the stem arm (40 x 10 x 15 cm) and two identical
291 short arms (20 x 10 x 15 cm) connected to the final stem arm. Afterward,
292 behavioral analyses were performed out based on the recorded videos' analysis
293 by virtually dividing the maze into four zones (start arm, neutral zone, white
294 zone, and black zone). The time spent in each zone was used as the
295 exploratory parameter and expressed in percentage (%).

296

297

298 **2.9 Statistical analysis**


299

300 Results were analyzed by generalized estimating equation (GEE)
301 followed by Bonferroni post hoc test when appropriate. Subjects from the same
302 experimental group but different experimental tanks did not differ in any
303 behavioral measures, so they were combined into a male and female group for
304 statistical analysis and results presentation. The evaluation of the data
305 distribution for each variable was performed through the residual analysis.
306 When the normal distribution was not adequate, other
307 distributions/transformations were considered (Gamma and Log-normal
308 distribution). The differences were considered significant at $p < 0.05$. The data
309 were expressed as the mean \pm standard error of the mean (S.E.M). Data were
310 analyzed using IBM SPSS Statistics 18.0 for Windows 10 version, and the
311 graphics were assembled with the GraphPad Prism version 8 for macOS Big
312 Sur 11.0.1 version.

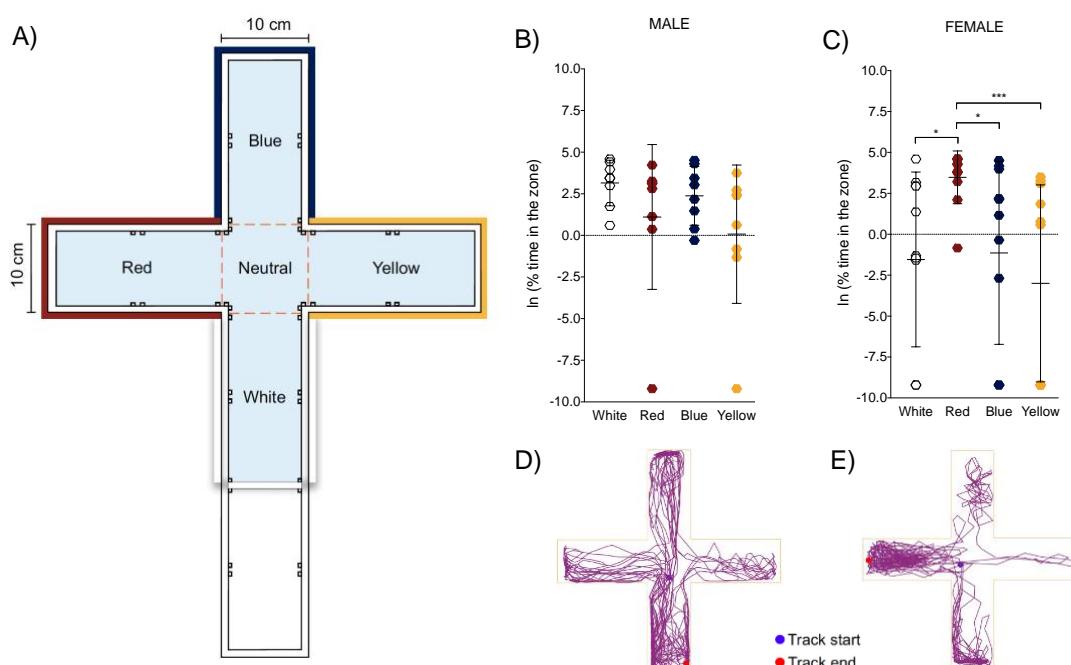
313

314 **3 RESULTS**

315

316

317 **Figure 2** The zebrafish innate directional preference in the plus-maze task was
318 positioned with each arm pointing to one of the cardinal directions (north, south,


319 east, and west). (A) Representative plus-maze design; (B) Male and (C) female
320 % of time spent in each zone of the maze; (D) Male and (E) female
321 representative track plot of the one animal behavior from the group for 5 min.
322 Male n = 8; Female n = 8. Data are expressed as a mean \pm S.E.M. Generalized
323 estimating equation (GEE).

324

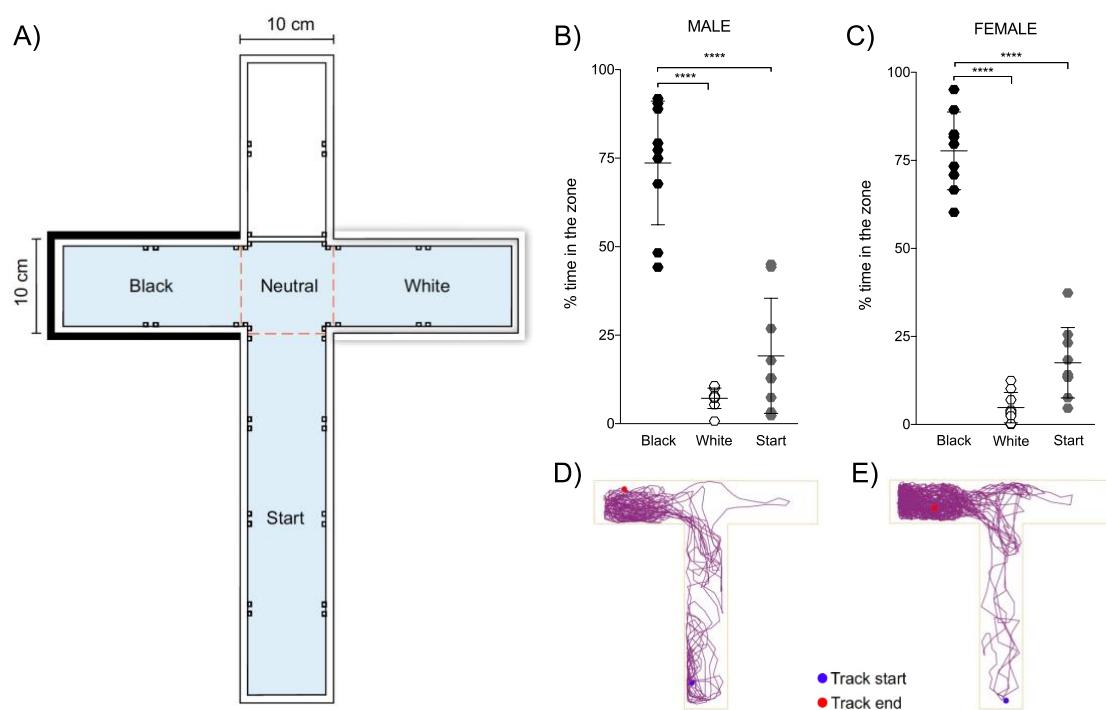
325 Figure 2 shows the zebrafish innate directional preference in the plus-
326 maze task positioned with each arm pointing to one of the cardinal directions
327 (north, south, east, and west). The GEE found no significant interaction
328 between sex and direction ($\chi^2=3.467$; 3; p=0.325). There were no statistical
329 differences in time spent by the male zebrafish ($\chi^2=6.419$; 3; p=0.093) and
330 female zebrafish ($\chi^2=2.282$; 3; p=0.516) between each of the zones. Therefore,
331 both sexes of zebrafish did not show a directional preference in this task.

332

333

334

335 **Figure 3:** The zebrafish innate color preference in the plus-maze task with each
336 arm of the maze covered with a colored sleeve (white, red, blue, or yellow). (A)
337 Representative plus-maze design; (B) Male and (C) Female % of time spent in
338 each zone of the maze; (D) Male and (E) Female representative track plot of the
339 one animal behavior from the group for 5 min. Male n = 8; Female n = 11. Data


340 are expressed as a mean \pm S.E.M. Generalized estimating equation (GEE)
341 followed by Bonferroni post hoc test. * $p<0.05$; *** $p<0.001$.

342

343 Figure 3 shows the zebrafish innate color preference in the plus-maze task
344 with each arm of the maze covered with a colored sleeve (white, red, blue, or
345 yellow). The GEE revealed an interaction between sex and colors ($\chi^2=9.774$; 3;
346 $p=0.021$). Thus, male and female zebrafish showed differences in preferences
347 for primary colors. There were no statistical differences ($\chi^2=7.203$; 3; $p=0.066$)
348 in the time spent in each of the zones in the male zebrafish. However, it was
349 revealed that the female zebrafish spend more time in the red zone than the
350 white, blue, and yellow zones ($\chi^2=18.730$; 3; $p<0.001$).

351

352

353

354 **Figure 4:** The innate zebrafish preference between the color black or white in
355 the T-maze task with each short arm of the maze covered with the black or
356 white color sleeves. (A) Representative T-maze design; (B) Male and (C)
357 Female % of time spent in each zone of the maze; (D) Male and (E) Female
358 Representative track plot of the behavior of one animal from the group for 5
359 min. Male n = 9. Female n = 9. Data are expressed as a mean \pm S.E.M.

360 Generalized estimating equation (GEE) followed by Bonferroni post hoc test.

361 ****p<0.0001.

362

363 Figure 4 shows the innate zebrafish preference between the color black or
364 white in the T-maze task with each short arm of the maze covered with sleeves
365 of the black or white color. The GEE revealed no significant interaction between
366 sex and colors ($\chi^2=1.745$; 2; p=0.418). Male ($\chi^2=896.319$; 2; p<0.0001) and
367 female ($\chi^2=462.796$; 2; p<0.0001) zebrafish showed a strong preference for the
368 black color when compared to the white color. Therefore, both sexes spent
369 more time in the black zone when compared to the white zone.

370

371 **4 DISCUSSION**

372

373 In this study, we have investigated the zebrafish innate directional and
374 color preferences in the maze's tasks to identify possible biases and provide
375 results that contribute to the standardization of future protocols. Our results
376 revealed that male and female zebrafish had no directional preference, and
377 both sexes showed a similar preference in the plus-maze task. Still, male and
378 female zebrafish showed color preference differences in the plus-maze task;
379 males did not show any color preference, while females preferred the red color
380 compared to the white color, blue color, and yellow color. Moreover, male and
381 female zebrafish showed no differences in black and white color preference;
382 both sexes showed a preference for the black color when compared to the
383 white color in the T-maze task.

384

385 **4.1 Directional preference**

386

387 The analysis of directional preference contributes as a screening process
388 when it is desired to carry out behavioral tests (for example, other preferences
389 or learning and memory), mainly in maze tasks. In experiment 1, the plus-maze
390 task, with each arm of the maze pointing to the cardinal directions (north, south,
391 east, and west), was used to assess the zebrafish's directional preference. The
392 plus-maze task is ideal for assessing directional preference because the maze

393 with four equal arms allows researchers to point the apparatus to each of the
394 main directions.

395 Our result showed that zebrafish of both sexes had no directional
396 preference; both sexes similarly had directional behavior, as demonstrated by
397 the % of time spent in each zone of the maze. Our result is different from
398 another literature study that showed bimodal directional preference (east-west)
399 when the plus-maze was positioned pointed to the same directions (cardinal
400 points) [40]. However, agreeing with the authors of this study's conclusion, we
401 hypothesized that these differences could be explained by the differences in the
402 protocols (for example, habituation to maze), mainly related to the labyrinth's
403 dimensions. In our study, the dimension of plus-maze was the same type used
404 in the behavior analysis (20 × 10 cm) (see for example [18,45], while in the
405 study of Osipova et al., (2016) the plus-maze dimension was smaller (6 × 3 cm).

406 When the zebrafish directional preference was tested in the T-maze task
407 with the two short arms pointing northeast/southwest or north/south, males
408 zebrafish showed a directional preference to southwest and south directions,
409 respectively, but females had no directional preference [54]. Therefore,
410 biological differences between the sexes can contribute as a relevant factor in
411 the behavioral analysis, but this was not observed in our results [55]. Although
412 the T-maze task is not ideal for analyzing directional preference, it can be useful
413 as screening before other behavior tests in this maze to avoid direction bias.

414

415 **4.2 Color preference**

416

417 Several behavioral protocols that assess zebrafish learning and memory
418 use colored clues as a conditioned stimulus. Despite this, there is no consensus
419 in the scientific literature regarding the zebrafish' innate color preference. For
420 example, two studies found that zebrafish showed a greater preference for red
421 over yellow [38,39], while another study found that zebrafish had a preference
422 for blue and green and avoided yellow and red [56,57]. A lack of standardization
423 in the protocols used to assess color preference could explain why there is
424 inconsistency in the scientific literature results. Furthermore, most studies did
425 not evaluate differences between males and females.

426 For this reason, in experiment 2, we investigated if the zebrafish has an
427 innate color preference, aiming to add relevant information for this research
428 field. For this reason, in experiment 2, we investigated if the zebrafish has an
429 innate color preference, aiming to add relevant information for this research
430 field. Surprisingly, male and female zebrafish showed color preference
431 differences; even though we did not observe innate color preference in males,
432 the females showed a preference for the red color compared to the white color,
433 blue color, and yellow color, as demonstrated by % of time spent in each zone
434 of the maze. It is already known that there are behavioral differences between
435 males and females in terms of aggressiveness [49], stress [50], and drug
436 response [51]. Our study shows a sex difference in innate color preference for
437 the first time, emphasizing the importance of assessing differences between
438 males and females in studies that use colors as clues.

439

440 **4.3 Black or white color preference**

441

442 In experiment 3, the T-maze task with each short arm of the maze
443 covered with sleeves of the black or white color was used to investigate if the
444 zebrafish has an innate black or white color preference. It is important to
445 differentiate the task implemented in this study from other protocols of light vs.
446 dark preference of zebrafish once some researchers utilize “light” as
447 interchangeable with “white” and “dark” as interchangeable with “black” when
448 these represent two different variables (color of the walls vs. level of illumination
449 of the apparatus) [46]. Another key factor of this test is the habituation period,
450 which reduces the animals’ anxiety as we exclude the novelty factor. In this
451 context, our test focus on zebrafish’ preference rather than anxiety-like
452 behaviors assessed in similar protocols using these colors [32,47,58–60].

453 Our data showed that male and female zebrafish had the same
454 preference when it was compared between black and white colors; both sexes
455 had a strong preference for the black color over the white color, as shown by %
456 of time spent in each zone of the maze, which replicated findings shown in
457 other studies. The first reports on the strong zebrafish preference for the black
458 color chamber were described by Serra *et al.* (1999), whose results were also
459 replicated by several researchers [46,61], leading to the development of

460 protocols to assess anxiety-like behaviors based on the animals' scototaxis
461 [47,62].

462 On the other hand, juvenile zebrafish display a strong avoidance of the
463 black color chamber when facing the same task, possibly due to endogenous
464 avoidance for the dark color at that stage of life [63]. Other researchers also put
465 the black or white paradigm to the test, pointing out some inconsistencies in the
466 methodology implemented, like the background shades, illumination in the
467 testing facility, the settings of the apparatus, and other interferents that may
468 lead researchers to improper interpretation of the results [46,64,65] By
469 manipulating the light level, for example, researchers reported that under
470 different light conditions, zebrafish exhibits a preference for different chambers,
471 either the white or the dark one [66].

472 Although most of the studies point to a preference for the black color
473 chamber by the zebrafish, it was important to characterize the normal behavior
474 of the zebrafish in the black and white color preference test under the
475 experimental conditions and the maze implemented in our laboratory,
476 improving, by these means, the execution of future experiments through
477 standardization and the avoidance of biases that may interfere in the obtention
478 of behavioral data (e.g., implementing zebrafish models of anxiety).

479

480 **5 CONCLUSIONS**

481

482 Overall, we have shown in this study that zebrafish had some innate
483 preferences. Male and female zebrafish showed no directional preference in the
484 plus-maze task. However, male and female zebrafish showed a different color
485 preference in the plus-maze task; male zebrafish did not show any color
486 preference, while female zebrafish preferred the red color compared to the
487 white color, blue color, and yellow color. Both sexes showed a strong
488 preference for the black color when compared to the white color in the T-maze
489 task. Our results show the importance of innate preference analysis involved
490 with the directionality of the apparatus or the application of colors as a
491 screening process conducting behavioral tests (e.g., anxiety, learning and
492 memory assessment, locomotion, and preference) and highlight the need to
493 analyze differences between the sexes. This study was confirmatory to

494 characterize the innate directional and color preference of zebrafish, identifying
495 possible biases, and providing insights that contribute to the standardization of
496 future protocols.

497

498 **Acknowledgments**

499

500 We thank the Conselho Nacional de Desenvolvimento Científico e
501 Tecnológico (CNPq, proc. 303343/2020-6), Coordenação de Aperfeiçoamento
502 de Pessoal de Nível Superior - Brasil (CAPES), and Pró-Reitoria de Pesquisa
503 (PROPESQ) at Universidade Federal do Rio Grande do Sul (UFRGS) for
504 funding.

505

506 **Conflict of interest statement**

507

508 The authors declare no conflicts of interest.

509

510 **6 REFERENCES**

511

- 512 [1] E.J. Nestler, S.E. Hyman, Animal models of neuropsychiatric disorders, *Nat.*
513 *Neurosci.* 13 (2010) 1161–1169. <https://doi.org/10.1038/nn.2647>.
- 514 [2] C. Maximino, R.X. do C. Silva, S. de N.S. da Silva, L. do S. dos S. Rodrigues,
515 H. Barbosa, T.S. de Carvalho, L.K. dos R. Leão, M.G. Lima, K.R.M. Oliveira,
516 A.M. Herculano, Non-mammalian models in behavioral neuroscience:
517 consequences for biological psychiatry, *Front. Behav. Neurosci.* 9 (2015)
518 233. <https://doi.org/10.3389/fnbeh.2015.00233>.
- 519 [3] C. Maximino, F.J. van der Staay, Behavioral models in psychopathology:
520 epistemic and semantic considerations, *Behav. Brain Funct.* 15 (2019) 1.
521 <https://doi.org/10.1186/s12993-019-0152-4>.
- 522 [4] P.M. Conn, Animal models for the study of human disease, 2nd ed.,
523 Academic Press, 2017.
- 524 [5] A.M. Stewart, O. Braubach, J. Spitsbergen, R. Gerlai, A.V. Kalueff, Zebrafish
525 models for translational neuroscience research: from tank to bedside,
526 *Trends Neurosci.* 37 (2014) 264–278.
527 <https://doi.org/10.1016/j.tins.2014.02.011>.
- 528 [6] J.J. Buccafusco, ed., *Methods of Behavior Analysis in Neuroscience*, 2nd
529 ed., CRC Press/Taylor & Francis, Boca Raton (FL), 2009.
530 <http://www.ncbi.nlm.nih.gov/books/NBK5228/> (accessed June 20, 2020).
- 531 [7] A.V. Kalueff, A.M. Stewart, R. Gerlai, Zebrafish as an emerging model for
532 studying complex brain disorders, *Trends Pharmacol. Sci.* 35 (2014) 63–75.
533 <https://doi.org/10.1016/j.tips.2013.12.002>.
- 534 [8] D. Wahlsten, *Mouse Behavior Testing*, Academic Press, 2011.

535 [9] R. Aoki, T. Tsuboi, H. Okamoto, Y-maze avoidance: an automated and rapid
536 associative learning paradigm in zebrafish, *Neurosci. Res.* 91 (2015) 69–72.
537 <https://doi.org/10.1016/j.neures.2014.10.012>.

538 [10] R.M.J. Deacon, J.N.P. Rawlins, T-maze alternation in the rodent, *Nat. Protoc.* 1 (2006) 7–12. <https://doi.org/10.1038/nprot.2006.2>.

540 [11] Y.-H. Kim, K.-S. Lee, Y.-S. Kim, Y.-H. Kim, J.-H. Kim, Effects of hypoxic
541 preconditioning on memory evaluated using the T-maze behavior test, *Anim. Cells Syst.* 23 (2019) 10–17.
543 <https://doi.org/10.1080/19768354.2018.1557743>.

544 [12] Z.K. Varga, Á. Zsigmond, D. Pejtsik, M. Varga, K. Demeter, É. Mikics, J.
545 Haller, M. Aliczki, The swimming plus-maze test: a novel high-throughput
546 model for assessment of anxiety-related behaviour in larval and juvenile
547 zebrafish (*Danio rerio*), *Sci. Rep.* 8 (2018) 16590.
548 <https://doi.org/10.1038/s41598-018-34989-1>.

549 [13] A.A. Walf, C.A. Frye, The use of the elevated plus maze as an assay of
550 anxiety-related behavior in rodents, *Nat. Protoc.* 2 (2007) 322–328.
551 <https://doi.org/10.1038/nprot.2007.44>.

552 [14] H.A. Bimonte-Nelson, ed., *The Maze Book: Theories, Practice, and*
553 *Protocols for Testing Rodent Cognition*, Humana Press, 2015.
554 <https://doi.org/10.1007/978-1-4939-2159-1>.

555 [15] S. Kwon, J.-E. Bae, S.-H. Lee, K.-S. Chae, Effects of gravity on positive
556 phototaxis in fruit fly *Drosophila melanogaster*: Gravity and phototaxis in fruit
557 fly, 46 (2016) 272–277. <https://doi.org/10.1111/1748-5967.12173>.

558 [16] R.B. Coleman, K. Aguirre, H.P. Spiegel, C. Pecos, J.A. Carr, B.N. Harris,
559 The plus maze and scototaxis test are not valid behavioral assays for anxiety
560 assessment in the South African clawed frog, *J. Comp. Physiol. A*
561 *Neuroethol. Sens. Neural. Behav. Physiol.* 205 (2019) 567–582.
562 <https://doi.org/10.1007/s00359-019-01351-3>.

563 [17] T. Lucon-Xiccato, A. Bisazza, Complex maze learning by fish, *Anim. Behav.*
564 125 (2017) 69–75. <https://doi.org/10.1016/j.anbehav.2016.12.022>.

565 [18] K.A. Connors, T.W. Valenti, K. Lawless, J. Sackerman, E.S. Onaivi, B.W.
566 Brooks, G.G. Gould, Similar anxiolytic effects of agonists targeting serotonin
567 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel
568 environments, *Aquat. Toxicol. Amst. Neth.* 151 (2014) 105–113.
569 <https://doi.org/10.1016/j.aquatox.2013.12.005>.

570 [19] J. Sackerman, J.J. Donegan, C.S. Cunningham, N.N. Nguyen, K. Lawless,
571 A. Long, R.H. Benno, G.G. Gould, Zebrafish Behavior in Novel
572 Environments: Effects of Acute Exposure to Anxiolytic Compounds and
573 Choice of *Danio rerio* Line, *Int. J. Comp. Psychol.* 23 (2010) 43–61.

574 [20] G. de P. Cognato, J.W. Bortolotto, A.R. Blazina, R.R. Christoff, D.R. Lara,
575 M.R. Vianna, C.D. Bonan, Y-Maze memory task in zebrafish (*Danio rerio*):
576 the role of glutamatergic and cholinergic systems on the acquisition and
577 consolidation periods, *Neurobiol. Learn. Mem.* 98 (2012) 321–328.
578 <https://doi.org/10.1016/j.nlm.2012.09.008>.

579 [21] B.T. Ngoc Hieu, N.T. Ngoc Anh, G. Audira, S. Juniardi, R.A.D. Liman, O.B.
580 Villaflores, Y.-H. Lai, J.-R. Chen, S.-T. Liang, J.-C. Huang, C.-D. Hsiao,
581 Development of a Modified Three-Day T-maze Protocol for Evaluating
582 Learning and Memory Capacity of Adult Zebrafish, *Int. J. Mol. Sci.* 21 (2020)
583 E1464. <https://doi.org/10.3390/ijms21041464>.

584 [22] A. Pilehvar, R.M. Town, R. Blust, The effect of copper on behaviour,
585 memory, and associative learning ability of zebrafish (*Danio rerio*),
586 *Ecotoxicol. Environ. Saf.* 188 (2020) 109900.
587 <https://doi.org/10.1016/j.ecoenv.2019.109900>.

588 [23] X. Cousin, T. Daouk, S. Péan, L. Lyphout, M.-E. Schwartz, M.-L. Bégout,
589 Electronic individual identification of zebrafish using radio frequency
590 identification (RFID) microtags, *J. Exp. Biol.* 215 (2012) 2729–2734.
591 <https://doi.org/10.1242/jeb.071829>.

592 [24] L. Grossman, A. Stewart, S. Gaikwad, E. Utterback, N. Wu, J. Dileo, K.
593 Frank, P. Hart, H. Howard, A.V. Kalueff, Effects of piracetam on behavior
594 and memory in adult zebrafish, *Brain Res. Bull.* 85 (2011) 58–63.
595 <https://doi.org/10.1016/j.brainresbull.2011.02.008>.

596 [25] C. Vignet, M.-L. Bégout, S. Péan, L. Lyphout, D. Leguay, X. Cousin,
597 Systematic screening of behavioral responses in two zebrafish strains,
598 *Zebrafish*. 10 (2013) 365–375. <https://doi.org/10.1089/zeb.2013.0871>.

599 [26] A. Buatois, S. Nguyen, C. Bailleul, R. Gerlai, Colored-Light Preference in
600 Zebrafish (*Danio rerio*), *Zebrafish*. (2021).
601 <https://doi.org/10.1089/zeb.2020.1977>.

602 [27] M. Cleal, M.O. Parker, Moderate developmental alcohol exposure reduces
603 repetitive alternation in a zebrafish model of fetal alcohol spectrum
604 disorders, *Neurotoxicol. Teratol.* 70 (2018) 1–9.
605 <https://doi.org/10.1016/j.ntt.2018.09.001>.

606 [28] M.P. Faillace, A. Pisera-Fuster, R. Bernabeu, Evaluation of the rewarding
607 properties of nicotine and caffeine by implementation of a five-choice
608 conditioned place preference task in zebrafish, *Prog. Neuropsychopharmacol. Biol. Psychiatry*. 84 (2018) 160–172.
609 <https://doi.org/10.1016/j.pnpbp.2018.02.001>.

610 [29] S. Zhang, X. Liu, M. Sun, Q. Zhang, T. Li, X. Li, J. Xu, X. Zhao, D. Chen, X.
611 Feng, Reversal of reserpine-induced depression and cognitive disorder in
612 zebrafish by sertraline and Traditional Chinese Medicine (TCM), *Behav. Brain Funct. BBF*. 14 (2018) 13. <https://doi.org/10.1186/s12993-018-0145-8>.

613 [30] R. Benvenutti, M. Marcon, M. Gallas-Lopes, A.J. de Mello, A.P. Herrmann,
614 A. Piato, Swimming in the maze: An overview of maze apparatuses and
615 protocols to assess zebrafish behavior, *Neurosci. Biobehav. Rev.* 127
616 (2021) 761–778. <https://doi.org/10.1016/j.neubiorev.2021.05.027>.

617 [31] M.B. Orger, G.G. de Polavieja, Zebrafish Behavior: Opportunities and
618 Challenges, *Annu. Rev. Neurosci.* 40 (2017) 125–147.
619 <https://doi.org/10.1146/annurev-neuro-071714-033857>.

620 [32] A. Stewart, S. Gaikwad, E. Kyzar, J. Green, A. Roth, A.V. Kalueff, Modeling
621 anxiety using adult zebrafish: a conceptual review, *Neuropharmacology*. 62
622 (2012) 135–143. <https://doi.org/10.1016/j.neuropharm.2011.07.037>.

623 [33] R. Gerlai, Learning and memory in zebrafish (*Danio rerio*), *Methods Cell Biol.*
624 134 (2016) 551–586. <https://doi.org/10.1016/bs.mcb.2016.02.005>.

625 [34] U.P. Kundap, Y. Kumari, I. Othman, M.F. Shaikh, Zebrafish as a Model for
626 Epilepsy-Induced Cognitive Dysfunction: A Pharmacological, Biochemical
627 and Behavioral Approach, *Front. Pharmacol.* 8 (2017) 515.
628 <https://doi.org/10.3389/fphar.2017.00515>.

632 [35] S. Saleem, R.R. Kannan, Zebrafish: an emerging real-time model system to
633 study Alzheimer's disease and neurospecific drug discovery, *Cell Death*
634 *Discov.* 4 (2018) 45. <https://doi.org/10.1038/s41420-018-0109-7>.

635 [36] R. Gerlai, T.L. Poshusta, M. Rampersad, Y. Fernandes, T.M. Greenwood,
636 M.A. Cousin, E.W. Klee, K.J. Clark, Forward Genetic Screening Using
637 Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants,
638 *Behav. Genet.* 47 (2017) 125–139. <https://doi.org/10.1007/s10519-016-9818-y>.

640 [37] G. Bruni, A.J. Rennekamp, A. Velenich, M. McCarroll, L. Gendelev, E.
641 Fertsch, J. Taylor, P. Lakhani, D. Lensen, T. Evron, P.J. Lorello, X.-P.
642 Huang, S. Kolczewski, G. Carey, B.J. Caldarone, E. Prinsen, B.L. Roth,
643 M.J. Keiser, R.T. Peterson, D. Kokel, Zebrafish behavioral profiling identifies
644 multitarget antipsychotic-like compounds, *Nat. Chem. Biol.* 12 (2016) 559–
645 566. <https://doi.org/10.1038/nchembio.2097>.

646 [38] A. Avdesh, M.T. Martin-Iverson, A. Mondal, M. Chen, S. Askraba, N.
647 Morgan, M. Lardelli, D.M. Groth, G. Verdile, R.N. Martins, Evaluation of color
648 preference in zebrafish for learning and memory, *J. Alzheimers Dis. JAD.* 28
649 (2012) 459–469. <https://doi.org/10.3233/JAD-2011-110704>.

650 [39] Y.H. Kim, K.S. Lee, A.R. Park, T.J. Min, Adding preferred color to a
651 conventional reward method improves the memory of zebrafish in the T-
652 maze behavior model, *Anim. Cells Syst.* 21 (2017) 374–381.
653 <https://doi.org/10.1080/19768354.2017.1383938>.

654 [40] E.A. Osipova, V.V. Pavlova, V.A. Nepomnyashchikh, V.V. Krylov, Influence
655 of magnetic field on zebrafish activity and orientation in a plus maze, *Behav.*
656 *Processes.* 122 (2016) 80–86. <https://doi.org/10.1016/j.beproc.2015.11.009>.

657 [41] J.-S. Park, J.-H. Ryu, T.-I. Choi, Y.-K. Bae, S. Lee, H.J. Kang, C.-H. Kim,
658 Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses,
659 *Mol. Cells.* 39 (2016) 750–755. <https://doi.org/10.14348/molcells.2016.0173>.

660 [42] R. Gerlai, Reproducibility and replicability in zebrafish behavioral
661 neuroscience research, *Pharmacol. Biochem. Behav.* 178 (2019) 30–38.
662 <https://doi.org/10.1016/j.pbb.2018.02.005>.

663 [43] J. Oliveira, M. Silveira, D. Chacon, A. Luchiari, The zebrafish world of colors
664 and shapes: preference and discrimination, *Zebrafish.* 12 (2015) 166–173.
665 <https://doi.org/10.1089/zeb.2014.1019>.

666 [44] C. Lieggi, A.V. Kalueff, C. Lawrence, C. Collymore, The Influence of
667 Behavioral, Social, and Environmental Factors on Reproducibility and
668 Replicability in Aquatic Animal Models, *ILAR J.* (2020).
669 <https://doi.org/10.1093/ilar/ilz019>.

670 [45] M. Sison, R. Gerlai, Associative learning in zebrafish (*Danio rerio*) in the plus
671 maze, *Behav. Brain Res.* 207 (2010) 99.
672 <https://doi.org/10.1016/j.bbr.2009.09.043>.

673 [46] A. Faccioli, S. Tran, R. Gerlai, Re-examining the factors affecting choice in
674 the light-dark preference test in zebrafish, *Behav. Brain Res.* 327 (2017) 21–
675 28. <https://doi.org/10.1016/j.bbr.2017.03.040>.

676 [47] C. Maximino, T. Marques de Brito, C.A.G. de M. Dias, A. Gouveia, S. Morato,
677 Scototaxis as anxiety-like behavior in fish, *Nat. Protoc.* 5 (2010) 209–216.
678 <https://doi.org/10.1038/nprot.2009.225>.

679 [48] E.L. Serra, C.C. Medalha, R. Mattioli, Natural preference of zebrafish (*Danio*
680 *rerio*) for a dark environment, *Braz. J. Med. Biol. Res. Bras. Pesqui.*

681 Medicas E Biol. 32 (1999) 1551–1553. <https://doi.org/10.1590/s0100-879x1999001200016>.

682 [49] S.J. Dahlbom, T. Backström, K. Lundstedt-Enkel, S. Winberg, Aggression
683 and monoamines: effects of sex and social rank in zebrafish (*Danio rerio*),
684 *Behav. Brain Res.* 228 (2012) 333–338.
685 <https://doi.org/10.1016/j.bbr.2011.12.011>.

686 [50] C.L. Rambo, R. Mocelin, M. Marcon, D. Villanova, G. Koakoski, M.S. de
687 Abreu, T.A. Oliveira, L.J.G. Barcellos, A.L. Piatto, C.D. Bonan, Gender
688 differences in aggression and cortisol levels in zebrafish subjected to
689 unpredictable chronic stress, *Physiol. Behav.* 171 (2017) 50–54.
690 <https://doi.org/10.1016/j.physbeh.2016.12.032>.

691 [51] R. Genario, M.S. de Abreu, A.C.V.V. Giacomini, K.A. Demin, A.V. Kalueff,
692 Sex differences in behavior and neuropharmacology of zebrafish, *Eur. J.
693 Neurosci.* 52 (2020) 2586–2603. <https://doi.org/10.1111/ejn.14438>.

694 [52] N. Percie du Sert, V. Hurst, A. Ahluwalia, S. Alam, M.T. Avey, M. Baker, W.J.
695 Browne, A. Clark, I.C. Cuthill, U. Dirnagl, M. Emerson, P. Garner, S.T.
696 Holgate, D.W. Howells, N.A. Karp, S.E. Lazic, K. Lidster, C.J. MacCallum,
697 M. Macleod, E.J. Pearl, O.H. Petersen, F. Rawle, P. Reynolds, K. Rooney,
698 E.S. Sena, S.D. Silberberg, T. Steckler, H. Würbel, The ARRIVE guidelines
699 2.0: Updated guidelines for reporting animal research, *BMC Vet. Res.* 16
700 (2020). <https://doi.org/10.1186/s12917-020-02451-y>.

701 [53] American Veterinary Medical Association, AVMA Guidelines for the
702 Euthanasia of Animals: 2020 Edition, (2020).
703 <https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf>.

704 [54] Z.A. Bault, S.M. Peterson, J.L. Freeman, Directional and color preference in
705 adult zebrafish: Implications in behavioral and learning assays in
706 neurotoxicology studies, *J. Appl. Toxicol. JAT.* 35 (2015) 1502–1510.
707 <https://doi.org/10.1002/jat.3169>.

708 [55] E. Choleris, L.A.M. Galea, F. Sohrabji, K.M. Frick, Sex differences in the
709 brain: Implications for behavioral and biomedical research, *Neurosci.
710 Biobehav. Rev.* 85 (2018) 126–145.
711 <https://doi.org/10.1016/j.neubiorev.2017.07.005>.

712 [56] J. Oliveira, M. Silveira, D. Chacon, A. Luchiari, The zebrafish world of colors
713 and shapes: preference and discrimination, *Zebrafish.* 12 (2015) 166–173.
714 <https://doi.org/10.1089/zeb.2014.1019>.

715 [57] A. Buatois, S. Nguyen, C. Bailleul, R. Gerlai, Colored-Light Preference in
716 Zebrafish (*Danio rerio*), *Zebrafish.* 18 (2021) 243–251.
717 <https://doi.org/10.1089/zeb.2020.1977>.

718 [58] E. Angiulli, V. Pagliara, C. Cioni, F. Frabetti, F. Pizzetti, E. Alleva, M. Toni,
719 Increase in environmental temperature affects exploratory behaviour,
720 anxiety and social preference in *Danio rerio*, *Sci. Rep.* 10 (2020).
721 <https://doi.org/10.1038/s41598-020-62331-1>.

722 [59] R.E. Blaser, D.B. Rosenberg, Measures of Anxiety in Zebrafish (*Danio
723 rerio*): Dissociation of Black/White Preference and Novel Tank Test, *PLoS
724 ONE.* 7 (2012). <https://doi.org/10.1371/journal.pone.0036931>.

725 [60] C. Maximino, B. Puty, K.R. Matos Oliveira, A.M. Herculano, Behavioral and
726 neurochemical changes in the zebrafish leopard strain, *Genes Brain Behav.*
727 12 (2013) 576–582. <https://doi.org/10.1111/gbb.12047>.

728

729

730 [61] R.E. Blaser, L. Chadwick, G.C. McGinnis, Behavioral measures of anxiety in
731 zebrafish (*Danio rerio*), *Behav. Brain Res.* 208 (2010) 56–62.
732 <https://doi.org/10.1016/j.bbr.2009.11.009>.

733 [62] L.D.P. Magno, A. Fontes, B.M.N. Gonçalves, A. Gouveia, Pharmacological
734 study of the light/dark preference test in zebrafish (*Danio rerio*): Waterborne
735 administration, *Pharmacol. Biochem. Behav.* 135 (2015) 169–176.
736 <https://doi.org/10.1016/j.pbb.2015.05.014>.

737 [63] P.J. Steenbergen, M.K. Richardson, D.L. Champagne, The use of the
738 zebrafish model in stress research, *Prog. Neuropsychopharmacol. Biol.*
739 *Psychiatry.* 35 (2011) 1432–1451.
740 <https://doi.org/10.1016/j.pnpbp.2010.10.010>.

741 [64] S.D. Córdova, T.G. Dos Santos, D.L. de Oliveira, Water column depth and
742 light intensity modulate the zebrafish preference response in the black/white
743 test, *Neurosci. Lett.* 619 (2016) 131–136.
744 <https://doi.org/10.1016/j.neulet.2016.03.008>.

745 [65] A. Faccioli, M. Iqbal, A. Eada, S. Tran, R. Gerlai, The light-dark task in
746 zebrafish confuses two distinct factors: Interaction between background
747 shade and illumination level preference, *Pharmacol. Biochem. Behav.* 179
748 (2019) 9–21. <https://doi.org/10.1016/j.pbb.2019.01.006>.

749 [66] J.F. Stephenson, K.E. Whitlock, J.C. Partridge, Zebrafish preference for light
750 or dark is dependent on ambient light levels and olfactory stimulation,
751 *Zebrafish.* 8 (2011) 17–22. <https://doi.org/10.1089/zeb.2010.0671>.

752