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ABSTRACT

Studies regarding the animals’ innate preferences help elucidate and
avoid probable sources of bias and serve as a reference to improve and
develop new behavioral tasks. In zebrafish research, the results of innate
directional and color preferences are often not replicated between research
groups or even inside the same laboratory raising huge concerns on the
replicability and reproducibility. Thus, this study aimed to investigate the male
and female zebrafish innate directional and color preferences in the plus-maze
and T-maze behavioral tasks. As revealed by the percentage of time spent in
each zone of the maze, our results showed that males and females zebrafish
demonstrated no difference in directional preference in the plus-maze task.
Surprisingly, male and female zebrafish showed color preference differences in
the plus-maze task; males did not show any color preference, while female
zebrafish demonstrated a red preference compared to white, blue, and yellow
colors. Moreover, both male and female zebrafish demonstrated a strong black
color preference compared to the white color in the T-maze task. Thus, our
results demonstrate the importance of innate preference assays involved with
the directionality of the apparatus or the application of colors as a screening
process conducting behavioral tests (e.g., anxiety, learning and memory
assessment, locomotion, and preference) and highlight the need to analyze sex

differences.
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73 1 INTRODUCTION
74
75 Behavioral neuroscience research is fundamental and provides essential
76  findings to help understand and interpret human behavioral phenotypes. Also, it
77  provides researchers knowledge regarding the neural bases of behaviors,
78 including those subjacent to neuropsychiatric disorders and drug effects on the
79  central nervous system [1-3]. In pre-clinical research, experimental models
80 have been used to develop, model, and monitor diseases' progress, favoring
81 progress in understanding the neurobiology of human diseases [4,5]. Many
82 behavioral tests are employed to assess animal behavior. They range from
83 tests that evaluate less complex behaviors (locomotor assessment) to those
84 that evaluate more complex behaviors (learning and memory assessment) [6—
85 8]
86 Mazes are experimental tools often implemented in behavioral tests,
87 once they are applicable across species and, with small changes to its
88 configuration, allow to evaluate different sets of behavioral paradigms (e.g.,
89 anxiety, learning and memory assessment, locomotion, and preference) [9-13].
90 Most of the data generated using these apparatus come from studies with
91 rodent models, generally seeking to assess anxiety or cognition [13,14].
92 Along with the vast number of tasks designed for rodents, researchers
93 also explored the versatility of the mazes adapting these apparatus to assess
94  behavioral data from many other model organisms such as fruit flies [15], frogs
95 [16], and fish [17]. For example, in zebrafish, mazes have been used to study
96 anxiety [12,18,19], learning and memory [20-22], locomotion [23-25], and
97 preference [26—29]. Recently, a review article featuring an overview of maze
98 apparatuses and protocols to assess zebrafish behavior was published by our
99 research group and now is available in the literature [30].
100 Zebrafish is a model organism increasingly being used in behavioral
101  neuroscience research, enabling the study of a vast range of behavioral
102  paradigms [5,31], such as anxiety [32], learning and memory [33], and seizure
103  [34]. Furthermore, the zebrafish is a successful model for translational research
104  on human neurological disorders [35] and high-throughput screening of
105 potential treatments [36]. These animals provide rational, quick, and low-cost

106  tools to research due to their genetic tractability, conserved neurobiology, as
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107  well as evident behavioral responses essential to model neuropsychiatric-like
108 disease phenotypes [37].

109 The zebrafish innate directional and color preferences also are frequent
110  subjects of scientific scrutiny [26,38—41], but results are often not replicated

111  between laboratories or even in the same research group [42]. For example,
112 results show several inconsistencies in the color preference studies regarding
113 the fish preference or aversion by the same color [38,39,43]. It can be related to
114  methodological problems such as the lack of standardized protocols, raising
115 huge concerns on several studies' replicability and reproducibility [44].

116 Studies about the animals’ innate preference not only help to elucidate
117  and avoid probable sources of bias (e.g., zebrafish directional preference can
118 be the reason for the fish to spend more time in one of the arms of the maze
119  blunting the analysis of any intervention), but also serve as a reference to

120 improve and/or develop new behavioral tasks. Learning and memory protocols,
121  for example, often implement the technique of pairing rewards stimulus (e.g.,
122  food or conspecifics) with colorful visual cues [39,45], while anxiety protocols
123 mostly using the black and white colors to determine anxiety-like phenotypes
124  based on scototaxis [46—48], pointing once again to the importance of detecting
125  zebrafish preference or avoidance for different colors. Several behavioral

126  studies showed male and female differences for aggressiveness [49], stress
127  [50], and drug response [51], highlighting the relevance to consider all behavior
128 analyzes of manner sex-dependent.

129 In this context, this study aimed to investigate the male and female

130 zebrafish innate directional and color preferences in the T-maze and plus-maze
131  behavioral tasks to identify possible sources of bias and provide insights that

132  may contribute to the standardization of future protocols.

133

134 2 MATERIAL AND METHODS

135

136 2.1 Animals

137

138 All experiments were performed using 60 adult short-fin wild-type

139  zebrafish (Danio rerio, 6-month-old, 3—4 cm long, weighing 400-500 g) in a

140 50:50 male/female ratio. The fish were obtained from a local commercial
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supplier (Delphis, RS, Brazil) and maintained for at least 15 days in an animal
facility (Altamar, SP, Brazil) before being assigned to the experimental tanks.
The density of animals was maintained at a maximum of 2 animals per L. The
water of the recirculation system was kept in the conditions required for the
species (27 £ 1°C; dissolved oxygen at 7.0 + 0.4 mg/L; pH 7.0 £ 0.3; total
ammonia at <0.01 mg/L; alkalinity at 22 mg/L CaCOgs; total hardness at 5.8
mg/L; and conductivity of 1500-1600 uS/cm) being constantly filtered by
mechanical, biological and chemical filters. Animals were fed twice a day (09:00

a.m./05:00 p.m.) with commercial flake food (Poytara®, Brazil) plus the brine

shrimp Artemia salina. All tests performed in this study followed ARRIVE
guidelines [52]. Lighting conditions consisted of a light/dark cycle of 14/10
hours. At the end of the experiments, zebrafish were euthanized by immersion
in cold water (0 to 4 °C) until cessation of the any movements, followed by
decapitation to ensure death according to the AVMA Guidelines for the
Euthanasia of Animals [53]. All procedures were approved by the institutional

animal welfare and ethical review committee (approval n°® 36248/2019).

2.2 Experiment design

This study consisted of 3 independent experiments with maze tasks. All
our results were replicated and confirmed by two independent experiments for
each of the 3 experiments. In each experiment, one different set of animals was
used after the 15 days of the acclimation period to laboratory conditions. One
single experimental group (n=20) was allocated in two independent
experimental tanks (A and B) of 16-L (40 x 20 x 24 cm) where stayed for 7 days
before the start of the experiments and throughout the experimental period. In
the experimental tanks, the animals were fed twice a day (in the morning after
the experiments and at 05:00 p.m.). Block randomization procedures were used
to counterbalance the sex of the animals and the two independent experimental
tanks, the order of the animals tested, and the maze and color positions during
the tests. The sample size used in the present study was defined a priori based
on previous literature and pilot studies. 20 fish (10 males and 10 females) were
used in each experiment. One exclusion criterion was established prior, in

which subjects that frequently stopped (more than 50% of the test time) or
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never swam would be excluded from the data analysis. Thus, at the end of all
experiments, the number of animals was not the same for all experiments.
Specifically, in experiment 1, the number of animals was reduced to two males
(one male died during the habituation phase, and one male was excluded from
the data analysis) and two females (excluded from the data analysis). In
experiment 2, the number of animals was bigger for females than for male sex
(at the end of all experiments, when sex was confirmed by dissection, we
observed more females than males in the experimental tanks). In experiment 3,
the number of animals was reduced to one male (one male died on the test
day) and one female (excluded from the data analysis). The tanks were filled
with water from the animal facility. The determination of the sex of the animals

was performed by dissection, followed by the analysis of the gonads.

2.3 Maze design

We have used the same apparatus for all experiments. The complete
maze design utilized in this study is represented in figure 1. The apparatus
consisted of transparent plexiglass (1 cm thick) cross-shaped maze with a start
zone (10 x 10 x 15 cm) into the stem arm (40 x 10 x 15 cm) and 3 short arms
(20 x 10 x 15 cm) connected to the final stem arm. This apparatus is easily
adaptable to different maze shapes such as plus or T-mazes (implemented in
these experiments) by closing sliding doors present along the entire maze every
10 cm. The apparatus was placed inside a white plastic box (93 x 55 x 58) that
contained support of white plexiglass attached to the two sides of the box and
served to suspend a camera on top of the apparatus, which allowed filming the
behavior during the test from above. The camera distance from the floor of the
box was 89 cm. The box was covered with a white fabric to avoid interference
by environmental cues. A source of light (LED strip light) was fixed 5 cm above
the box floor around all inside walls to ensure that lighting conditions were the
same in each of the arms apparatus (275 lux was measured across the entire
maze with the aid of the Lux Light Meter Pro application version 2.0). The water
level was set at 5 cm inside the maze, and the water temperature was
maintained at 27°C (x 1°C) throughout the entire experiment. The heater wire

was covered with white adhesive tape (same color as the box and white fabric)
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to avoid environmental clues. The maze was emptied and cleaned between the

test of each animal.

Figure 1: 3D lllustrative representation of the maze apparatus and the

experimental configuration used in behavior tests performed in this study.

2.4 Habituation and task protocol

All tasks were performed between 08:00 and 12:00 a.m. in a room used
exclusively for experiments with mazes, which was a different room than the
one where the animals were housed. To avoid novelty stress induced by the
environment, all animals were transported to the behavior room 1 hour before
the tests. The maze tasks consisted of 5 days. In the first 4 days, the fish were
placed in the apparatus in groups for habituation. The number of animals
gradually decreased over the days, helping to minimize social and novelty
stress (Sison and Gerlai 2010). On the fifth day (last day), the fish were tested
individually in the maze task. Briefly, on the first day of habituation, all animals
of the same group were placed in the apparatus's start zone. For the plus-maze
task, the start zone was the center zone, and for the T-maze task, the start zone

was at the beginning of the stem arm. After the start zone doors were opened,
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the fish freely explored the apparatus for 20 minutes. On the second day, the
number of animals was reduced by half, and the fish could explore the maze for
10 min. By the third day of habituation, the number of animals was again
reduced by half, and fish could swim for only 5 min. On the fourth day (last day
for habituation), fish were individually placed on the maze and explored freely
for 5 min. On the fifth day (test day), the fish were individually placed on the
apparatus's starting zone remaining there for 2 min to habituate. Posteriorly, the

doors of the starting zone were opened the fish explored the maze for 5 min.

2.5 Behavioral analyses

On the fifth day (behavior assessment), the animals were not fed.
Following a protocol previously elaborated with randomization procedures using
random.org software (computerized random numbers) to avoid potential
confounders, the animals were transported from the experimental tank (A or B)
to the test. Animal behavior was recorded with a webcam (Logitech® C920 HD
pro) from above. The behavior analyses were performed from the recorded
videos dividing the tank into virtual zones with ANY-Maze® automated tracking
software 4.99 version (Stoelting Co., Wood Dale, IL, USA) for Windows system
10 version. For the behavioral and statistical analyses, blinding was achieved
by assigning to each animal a code that was revealed only after data analyses
(the coding was performed by a researcher who did not participate in the

experiments).

2.6 Directional preference

In experiment 1, to assess directional preference, our maze has been
configured to take the shape of a plus-maze. For this, the labyrinth stem arm
(40 cm) was blocked by closing a sliding door at half the length of the arm.
Thus, the maze stayed with four equal arms (each 20 cm long). We positioned
the maze with the help of a compass (available on the iOS version 13.5.1) so
that each arm was pointed in one of the cardinal directions (north, south, east,
and west). Briefly, the features of the plus-maze consisted of one center zone

(10 x 10 x 15 cm) and four identical arms (20 x 10 x 15 cm). The maze position

8
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was counterbalanced (turning the maze by 90°) between animals to avoid
possible biases. Afterward, behavioral analyses were performed based on the
recorded videos' analysis by virtually dividing the maze into four zones (north
zone, south zone, east zone, and west zone). The time spent in each zone was

used as the exploratory parameter and expressed in percentage (%).

2.7 Color preference

In experiment 2, the same plus-maze used for experiment 1 was
iImplemented to assess zebrafish' innate color preference. For this purpose,
each arm was covered with a colored sleeve (white, red, blue, or yellow). The
position of each sleeve was counterbalanced between animals to avoid
possible biases. Afterward, behavioral analyses were performed based on the
recorded videos' analysis by virtually dividing the maze into four zones (white
zone, red zone, blue zone, and yellow zone). The time spent in each zone was

used as the exploratory parameter and expressed in percentage (%).

2.8 Black or white color preference

In experiment 3, to assess innate zebrafish preference between the color
black or white, our maze has been configured to take the shape of a T-maze.
One of the three short arms of the maze was blocked by closing a sliding door.
Thus, the maze stayed with two short arms (20 cm length) and the stem arm
(40 cm length). We covered one of the short arms with a black color sleeve and
the other with a white color sleeve. The position of each sleeve was
counterbalanced between animals. Briefly, the maze consisted of one start
zone (10 x 10 x 15 cm) into the stem arm (40 x 10 x 15 cm) and two identical
short arms (20 x 10 x 15 cm) connected to the final stem arm. Afterward,
behavioral analyses were performed out based on the recorded videos' analysis
by virtually dividing the maze into four zones (start arm, neutral zone, white
zone, and black zone). The time spent in each zone was used as the

exploratory parameter and expressed in percentage (%).
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298 2.9 Statistical analysis

299

300 Results were analyzed by generalized estimating equation (GEE)

301 followed by Bonferroni post hoc test when appropriate. Subjects from the same
302 experimental group but different experimental tanks did not differ in any

303  behavioral measures, so they were combined into a male and female group for
304  statistical analysis and results presentation. The evaluation of the data

305 distribution for each variable was performed through the residual analysis.

306 When the normal distribution was not adequate, other

307  distributions/transformations were considered (Gamma and Log-normal

308 distribution). The differences were considered significant at p<0.05. The data
309 were expressed as the mean + standard error of the mean (S.E.M). Data were
310 analyzed using IBM SPSS Statistics 18.0 for Windows 10 version, and the

311 graphics were assembled with the GraphPad Prism version 8 for macOS Big
312 Sur 11.0.1 version.

313
314 3 RESULTS
315
10cm MALE FEMALE
A) B) 100 C) 100
h q 75 75
q
) ) o
£ 50 ¢ £ s0| @ ©
b q c £
= : = = ° o
§ £ £ .
s W Neutral E =< <
- . . 5 » 25 25 &
p q
-
o
0] e o ® e
b q . S .- @@
i 1 North South East West North South East West
q
q
AP ® Track start
316 C ® Track end

317  Figure 2 The zebrafish innate directional preference in the plus-maze task was

318 positioned with each arm pointing to one of the cardinal directions (north, south,
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319 east, and west). (A) Representative plus-maze design; (B) Male and (C) female
320 % of time spent in each zone of the maze; (D) Male and (E) female

321 representative track plot of the one animal behavior from the group for 5 min.
322 Male n =8; Female n = 8. Data are expressed as a mean = S.E.M. Generalized
323 estimating equation (GEE).

324

325 Figure 2 shows the zebrafish innate directional preference in the plus-
326 maze task positioned with each arm pointing to one of the cardinal directions
327  (north, south, east, and west). The GEE found no significant interaction

328 between sex and direction (y?=3.467; 3; p=0.325). There were no statistical
329 differences in time spent by the male zebrafish (32=6.419; 3; p=0.093) and

330 female zebrafish (32=2.282; 3; p=0.516) between each of the zones. Therefore,
331  both sexes of zebrafish did not show a directional preference in this task.
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335 Figure 3: The zebrafish innate color preference in the plus-maze task with each
336 arm of the maze covered with a colored sleeve (white, red, blue, or yellow). (A)
337 Representative plus-maze design; (B) Male and (C) Female % of time spent in
338 each zone of the maze; (D) Male and (E) Female representative track plot of the

339 one animal behavior from the group for 5 min. Male n = 8; Female n = 11. Data
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are expressed as a mean + S.E.M. Generalized estimating equation (GEE)

followed by Bonferroni post hoc test. *p<0.05; **p<0.001.

Figure 3 shows the zebrafish innate color preference in the plus-maze task
with each arm of the maze covered with a colored sleeve (white, red, blue, or
yellow). The GEE revealed an interaction between sex and colors (y?=9.774; 3;
p=0.021). Thus, male and female zebrafish showed differences in preferences
for primary colors. There were no statistical differences (y?=7.203; 3; p=0.066)
in the time spent in each of the zones in the male zebrafish. However, it was
revealed that the female zebrafish spend more time in the red zone than the

white, blue, and yellow zones (¥°=18.730; 3; p<0.001).
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Figure 4: The innate zebrafish preference between the color black or white in
the T-maze task with each short arm of the maze covered with the black or
white color sleeves. (A) Representative T-maze design; (B) Male and (C)
Female % of time spent in each zone of the maze; (D) Male and (E) Female
Representative track plot of the behavior of one animal from the group for 5

min. Male n = 9. Female n = 9. Data are expressed as a mean = S.E.M.
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Generalized estimating equation (GEE) followed by Bonferroni post hoc test.
****n<0.0001.

Figure 4 shows the innate zebrafish preference between the color black or
white in the T-maze task with each short arm of the maze covered with sleeves
of the black or white color. The GEE revealed no significant interaction between
sex and colors (x?=1.745; 2; p=0.418). Male (¢?=896.319; 2; p<0.0001) and
female (x°=462.796; 2; p<0.0001) zebrafish showed a strong preference for the
black color when compared to the white color. Therefore, both sexes spent

more time in the black zone when compared to the white zone.

4 DISCUSSION

In this study, we have investigated the zebrafish innate directional and
color preferences in the maze's tasks to identify possible biases and provide
results that contribute to the standardization of future protocols. Our results
revealed that male and female zebrafish had no directional preference, and
both sexes showed a similar preference in the plus-maze task. Still, male and
female zebrafish showed color preference differences in the plus-maze task;
males did not show any color preference, while females preferred the red color
compared to the white color, blue color, and yellow color. Moreover, male and
female zebrafish showed no differences in black and white color preference;
both sexes showed a preference for the black color when compared to the

white color in the T-maze task.

4.1 Directional preference

The analysis of directional preference contributes as a screening process
when it is desired to carry out behavioral tests (for example, other preferences
or learning and memory), mainly in maze tasks. In experiment 1, the plus-maze
task, with each arm of the maze pointing to the cardinal directions (north, south,
east, and west), was used to assess the zebrafish's directional preference. The

plus-maze task is ideal for assessing directional preference because the maze
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with four equal arms allows researchers to point the apparatus to each of the
main directions.

Our result showed that zebrafish of both sexes had no directional
preference; both sexes similarly had directional behavior, as demonstrated by
the % of time spent in each zone of the maze. Our result is different from
another literature study that showed bimodal directional preference (east-west)
when the plus-maze was positioned pointed to the same directions (cardinal
points) [40]. However, agreeing with the authors of this study's conclusion, we
hypothesized that these differences could be explained by the differences in the
protocols (for example, habituation to maze), mainly related to the labyrinth's
dimensions. In our study, the dimension of plus-maze was the same type used
in the behavior analysis (20 x 10 cm) (see for example [18,45], while in the
study of Osipova et al., (2016) the plus-maze dimension was smaller (6 x 3 cm).

When the zebrafish directional preference was tested in the T-maze task
with the two short arms pointing northeast/southwest or north/south, males
zebrafish showed a directional preference to southwest and south directions,
respectively, but females had no directional preference [54]. Therefore,
biological differences between the sexes can contribute as a relevant factor in
the behavioral analysis, but this was not observed in our results [55]. Although
the T-maze task is not ideal for analyzing directional preference, it can be useful

as screening before other behavior tests in this maze to avoid direction bias.

4.2 Color preference

Several behavioral protocols that assess zebrafish learning and memory
use colored clues as a conditioned stimulus. Despite this, there is no consensus
in the scientific literature regarding the zebrafish' innate color preference. For
example, two studies found that zebrafish showed a greater preference for red
over yellow [38,39], while another study found that zebrafish had a preference
for blue and green and avoided yellow and red [56,57]. A lack of standardization
in the protocols used to assess color preference could explain why there is
inconsistency in the scientific literature results. Furthermore, most studies did

not evaluate differences between males and females.
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For this reason, in experiment 2, we investigated if the zebrafish has an
innate color preference, aiming to add relevant information for this research
field. For this reason, in experiment 2, we investigated if the zebrafish has an
innate color preference, aiming to add relevant information for this research
field. Surprisingly, male and female zebrafish showed color preference
differences; even though we did not observe innate color preference in males,
the females showed a preference for the red color compared to the white color,
blue color, and yellow color, as demonstrated by % of time spent in each zone
of the maze. It is already known that there are behavioral differences between
males and females in terms of aggressiveness [49], stress [50], and drug
response [51]. Our study shows a sex difference in innate color preference for
the first time, emphasizing the importance of assessing differences between

males and females in studies that use colors as clues.

4.3 Black or white color preference

In experiment 3, the T-maze task with each short arm of the maze
covered with sleeves of the black or white color was used to investigate if the
zebrafish has an innate black or white color preference. It is important to
differentiate the task implemented in this study from other protocols of light vs.
dark preference of zebrafish once some researchers utilize “light” as
interchangeable with “white” and “dark” as interchangeable with “black” when
these represent two different variables (color of the walls vs. level of illumination
of the apparatus) [46]. Another key factor of this test is the habituation period,
which reduces the animals’ anxiety as we exclude the novelty factor. In this
context, our test focus on zebrafish' preference rather than anxiety-like
behaviors assessed in similar protocols using these colors [32,47,58—60].

Our data showed that male and female zebrafish had the same
preference when it was compared between black and white colors; both sexes
had a strong preference for the black color over the white color, as shown by %
of time spent in each zone of the maze, which replicated findings shown in
other studies. The first reports on the strong zebrafish preference for the black
color chamber were described by Serra et al. (1999), whose results were also

replicated by several researchers [46,61], leading to the development of
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protocols to assess anxiety-like behaviors based on the animals’ scototaxis
[47,62].

On the other hand, juvenile zebrafish display a strong avoidance of the
black color chamber when facing the same task, possibly due to endogenous
avoidance for the dark color at that stage of life [63]. Other researchers also put
the black or white paradigm to the test, pointing out some inconsistencies in the
methodology implemented, like the background shades, illumination in the
testing facility, the settings of the apparatus, and other interferents that may
lead researchers to improper interpretation of the results [46,64,65] By
manipulating the light level, for example, researchers reported that under
different light conditions, zebrafish exhibits a preference for different chambers,
either the white or the dark one [66].

Although most of the studies point to a preference for the black color
chamber by the zebrafish, it was important to characterize the normal behavior
of the zebrafish in the black and white color preference test under the
experimental conditions and the maze implemented in our laboratory,
improving, by these means, the execution of future experiments through
standardization and the avoidance of biases that may interfere in the obtention

of behavioral data (e.g., implementing zebrafish models of anxiety).

5 CONCLUSIONS

Overall, we have shown in this study that zebrafish had some innate
preferences. Male and female zebrafish showed no directional preference in the
plus-maze task. However, male and female zebrafish showed a different color
preference in the plus-maze task; male zebrafish did not show any color
preference, while female zebrafish preferred the red color compared to the
white color, blue color, and yellow color. Both sexes showed a strong
preference for the black color when compared to the white color in the T-maze
task. Our results show the importance of innate preference analysis involved
with the directionality of the apparatus or the application of colors as a
screening process conducting behavioral tests (e.g., anxiety, learning and
memory assessment, locomotion, and preference) and highlight the need to

analyze differences between the sexes. This study was confirmatory to
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characterize the innate directional and color preference of zebrafish, identifying
possible biases, and providing insights that contribute to the standardization of

future protocols.
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