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ABSTRACT

Complex bulk samples of invertebrates from biodiversity surveys present a great
challenge for taxonomic identification, especially if obtained from unexplored ecosystems.
High-throughput imaging combined with machine learning for rapid classification could
overcome this bottleneck. Developing such procedures requires that taxonomic labels
from an existing source data set are used for model training and prediction of an unknown
target sample. Yet the feasibility of transfer learning for the classification of unknown
samples remains to be tested. Here, we assess the efficiency of deep learning and domain
transfer algorithms for family-level classification of below-ground bulk samples of
Coleoptera from understudied forests of Cyprus. We trained neural network models with
images from local surveys versus global databases of above-ground samples from tropical
forests and evaluated how prediction accuracy was affected by: (a) the quality and
resolution of images, (b) the size and complexity of the training set and (c) the
transferability of identifications across very disparate source-target pairs that do not
share any species or genera. Within-dataset classification accuracy reached 98% and
depended on the number and quality of training images and on dataset complexity. The
accuracy of between-datasets predictions was reduced to a maximum of 82% and
depended greatly on the standardisation of the imaging procedure. When the source and
target images were of similar quality and resolution, albeit from different faunas, the
reduction of accuracy was minimal. Application of algorithms for domain adaptation
significantly improved the prediction performance of models trained by non-
standardised, low-quality images. Our findings demonstrate that existing databases can
be used to train models and successfully classify images from unexplored biota, when the
imaging conditions and classification algorithms are carefully considered. Also, our
results provide guidelines for data acquisition and algorithmic development for high-

throughput image-based biodiversity surveys.

KEYWORDS: arthropod, biodiversity assessment, bulk sample, Coleoptera, convolutional

neural network, domain adaptation, image classification, machine learning


https://doi.org/10.1101/2021.12.22.473797
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473797; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

INTRODUCTION

Biological identifications increasingly rely on machine learning algorithms that use
photographic images to place unidentified specimens into a taxonomic classification. As
these methods are proving to be very powerful especially for identification of the species-
rich and morphologically diverse insects, it is now possible to place a specimen with high
confidence against curated image libraries, e.g. those obtained from pinned museum
collections (Buschbacher et al. 2020; Hansen et al. 2020). With the rapid increase of such
images, machine learning can greatly increase the capacity for species identification
without putting demand on scarce taxonomy experts (Valan et al. 2019; Hgye et al. 2021).
The methodology therefore is likely to play a major role in the taxonomic endeavour in
future, and potentially deep learning can have similar impacts on the practice of taxonomy
as the revolution of DNA barcoding and metabarcoding some 20 years ago, or it could
work in concert with these molecular approaches (Hgye et al. 2021; Wiihrl et al. 2021;
Yang et al. 2021). However, the true potential and possible limitations of algorithmic
methods for exploiting the information contained in specimen images remain to be
established, as the various applications and choice of machine learning algorithms
continue to be refined (Valan et al. 2019; Romero et al. 2020).

The greatest challenge for modern taxonomy probably is the study of highly
diverse and poorly studied biota and geographic regions, harbouring many undescribed
species (Costello et al. 2013). In particular, in studies of invertebrate diversity, such as
those from tropical forest canopy or the soil, huge numbers of specimens are collected
and subsequently need to be classified and counted as part of ecological and
environmental studies (Novotny et al. 2007; Caruso et al. 2018). Imaging of these
specimens is comparatively fast with the help of recently described automated imagers
(Arje et al. 2020; Wiihrl et al. 2021) or by taking high resolution images of large sets of
specimens in a single photo, which can then be cropped to represent single individuals for
subsequent classification (Hudson et al. 2015; https://www.site100.0org). Automated
classification based on these images would remove the need for manual identification by
taxonomic experts who individually can handle only a small portion of the diversity
spectrum usually encountered in such studies (Basset et al. 2012), and thus may help to

provide rapid assessment of threatened arthropod assemblages, where speed is a priority.
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In machine learning, images are classified against a class of defined objects, e.g. the
images of a particular taxonomic group. A model trained to separate the types of images
in this source is used to classify unlabeled objects in the target, such as an unknown set of
specimens in a sample. Most recent studies used convolutional neural networks (CNN,
LeCun et al. 2015) for the task of image classification. Because of the lack of images for
training the full parameters of a CNN model, approaches like fine-tuning of the existing
CNN (Arje et al. 2020) or feature transfers from the pre-trained CNN (Valan et al. 2019)
are commonly used in biodiversity studies, following the successful applications of pre-
trained CNN outputs as generic image features (Donahue et al. 2013; Razavian et al. 2014).
These methods of transfer learning have already shown great power in taxon annotation
and detections applied to insect specimens, and in some cases surpass the capabilities of
trained taxonomists (Valan et al. 2021).

Yet, applications of image classification algorithms for insect biodiversity research
have mainly been limited to narrow tasks and specific target sets, such as pinned museum
specimens (Valan et al. 2019; Hansen et al. 2020), aligned body parts (Buschbacher et al
2020; Klasen et al. 2021), or small target groups of a few species (Arje et al. 2020). In most
of these studies the unlabeled (target) set is from the same category, i.e. the target taxa at
species or higher hierarchical levels are included in the training set. However, as
collecting labeled datasets is the most laborious part of machine learning applications, it
is desirable that models trained in one dataset can be used for prediction tasks of others
(called ‘domain adaptation’, eg. Kouw & Loog 2021). While methods for domain
adaptation have been successfully applied to fields such as medical image classification
(Guan & Liu 2021), they have not been used in the context of biodiversity surveys. Their
application would be particularly useful in classification of specimens from complex,
mixed trap samples, especially from unexplored areas whose components are unlikely to
be present in the training set.

Building such an image-based classification system may be complicated by several
factors because the assumption of identical distributions between the source and target
datasets rarely holds. Capture bias is a well established problem in machine learning, as
objects appear in different contexts (location, lighting, background, etc.) or are taken on
different imaging devices. Images of arthropods may be from collection specimens taken
in a fairly standardised position and lighting conditions (Valan et al. 2019; Hansen et al.

2020), or may be obtained directly from bulk samples and photographed either singly
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(Raitoharju et al. 2018; Valan et al. 2019; Wubhrl et al. 2021) or cropped from large-field
composite images (Buschbacher et al. 2020; Hansen et al. 2020). Images thus feature
different aspects of the specimens and differ in illumination and magnification, which
affects the recognition of key features (Raitoharju et al. 2018; Arje et al. 2020). Other
issues are unrelated to differences in image acquisition, but result from the biases of
defining the semantic categories (Tommasi et al. 2017). Such “category bias” may arise
from inconsistent labeling, either due to the application of different taxon concepts used
for naming of species and higher taxa, or due to specimen misidentification. The resulting
noisy or incorrect data labels then reduce the effectiveness of the model. In addition, in
particular in higher taxonomic categories, the same name is assigned to visually different
images due to the distributional shift of subclasses (e.g. different genera representing a
family in the source and target). Furthermore, in general cross-dataset applications, the
model can encounter a category which is missing in the source training data, e.g. a new
family may be present. The treatment of such anomalous (or out-of-distribution; see Tabak
et al. 2018) samples affects the reliability of the biodiversity assessment. As more
variation is encountered, to fully learn the structure of the data, the model should scale
with the size and complexity of the training data.

In practice, due to these problems of intra-class variability and the inconsistencies
of the photographs, the success of deep learning in taxonomy to date has been in
situations where a bespoke image library is available that holds a narrow representation
of the query taxa and images under the same aspect and imaging conditions (brightness,
angle, magnification, etc; Buschbacher et al. 2020; Valan et al. 2021). However, the utility
of these methods remains largely untested in the application to samples from poorly
characterised species, as those from bulk arthropod sampling of fauna in unexplored
areas that have not been encountered previously in the image reference set. [deally, such
samples would be identifiable against images drawn from other sources, for example an
image database of well characterised regional communities and taxa obtained elsewhere.

Here, we test the usage of deep learning for insect classification based on bulk-
sample images in real-world scenarios of high-throughput biodiversity surveys. We
characterise bulk samples of poorly known communities of Coleoptera (beetles), where
high species diversity, idiosyncratic morphological variation, and the constraints of bulk
images provide a challenging, but realistic situation for the machine-based classification.

The aim was a classification at family-level, as the first step towards an in-depth study of
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biodiverse regions and complex ecosystems around the globe. Specifically, we address
three parameters to affect the prediction accuracy: (i) the quality of images, especially the
resolution of the image using standard macrophotography versus high-resolution
stacking technology; (ii) the transferability of identifications across communities from
different habitats and continents, i.e. when the input subclass is not present in the training
data; and (iii) the impact of the size and complexity of the training set. We conclude that
the prediction success for the classification depends on the beetle family (i.e. some classes
are more easily predicted) and the number of images and the image acquisition methods

of the training set.

MATERIALS AND METHODS

Sample collection and taxon selection

As the target for classification, we used a collection of leaf-litter samples from a
total of 46 sites distributed across five forest habitats of the Troodos mountain range of
Cyprus (Fig. 1). These samples were processed as described by Noguerales et al. (2021)
to extract bulk Coleoptera specimens from the substrate using a Berlese apparatus.
During sample processing, single specimens were selected from the bulk samples and
individually processed. Bulk samples and single specimens were preserved in 100%
ethanol and subsequently photographed following two different imaging protocols (see
below). For more details on soil sampling and habitat descriptions, see Arribas et al.
(2016) and Noguerales et al. (2021), respectively. During sample processing and imaging,
the most common families/subfamilies, with 5 or more photographs per taxonomic rank,
were identified and used for downstream analysis. The chosen families were: Brentidae,
Carabidae, Chrysomelidae, Cryptophagidae, Curculionidae, Latridiidae, Leiodidae,
Melyridae, Ptilidae, Staphylinidae:Scaphidiinae, Staphylinidae (excluding Scaphidiinae)
and Tenebrionidae (Table S1).
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Figure 1. Schematic diagrams summarizing the experimental workflow of the study,
depicting the geographical context and the different imaging procedures for generating the
three image datasets: Gu, Global High Quality, Ly, Local High Quality; L1, Local Low Quality.
Taxa classification was performed using two alternative deep learning algorithms:
convolutional neural network (CNN) and domain adversarial neural network (DANN). For
more details on algorithm-specific architectures, see Figure S1.
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Image data acquisition

Local High Quality (Ly) and Local Low Quality (L1) datasets

Specimens from bulk-samples were air-dried and placed at regular distances onto
filter paper in a Petri dish. In cases of large disparity in body size, we split the bulk samples
into different size categories which were separately photographed in order to improve
the focus and resolution across all specimens regardless of their body size. As much as
possible, specimens were positioned for photography in the dorsal view.

Bulk-sample photographs were taken using a Zeiss AXIO Zoom.V16 Stereo Zoom
Microscope equipped with a Zeiss AxioCam HRc (High Resolution 13 Megapixels Color
Microscope) camera at the Imaging and Analysis Centre at the Natural History Museum
(NHM) in London, United Kingdom. This on-axis instrument with motorised focus drive
and motorised stage enables large high-resolution images by dividing the field into
regular tile-images which were subsequently xyz stitched. Depending on the sample size,
photographs were taken by dividing them into 16-64 tiles, each with 25-30 slices (z-
stacks) using the Zeiss NEO 2 Blue Edition software. We rendered z-stack images with the
Helicon Focus v.5.3.14 software (https://www.heliconsoft.com) using the pyramid-based
algorithm (‘Method C’) and default parameters. Focus stacking was also performed using
the depth-map algorithm (‘Method B’) in Helicon Focus with a radius value of 8 and a
smoothing parameter of 4, yielding qualitatively similar images to the former method.
Consequently, only photos from ‘Method C’ were used for downstream analyses.

Finally, we manually cropped single specimen photos from the bulk-sample
images using INSELECT v.0.1.35 software (Hudson et al. 2015). After some minor
corrections of bounding edges, cropped single-specimen images were exported and
taxonomically identified at the family/subfamily level by the authors. Only whole-bodied
specimens were considered for further analyses. The cropped images were resized to
255x255 pixels for subsequent classification tasks. When an image was not an exact
square, the edges were padded using the average pixel value of the outermost portions of
the image to enforce a square shape.

The individual frames cropped from the bulk samples were denoted the Local High
Quality (Ln) data set, referring to the fact that they were obtained from a local area and

thus represent a small taxonomically confined set, and taken at high image resolution. The
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Ly dataset represented the best case scenario, where high-resolution training images of
local samples are obtained under controlled conditions with high-performance imaging
equipment.

During the processing of local bulk samples, the selected individual specimens
were also photographed using a conventional stereoscope NIKON SMZ1270i equipped
with a NIKON DS-Fi3 Microscope Camera (5.9 megapixels) controlled by the NIKON DS-
L4 v.1.5.0.3 control unit. These photographs were intended to represent a more realistic
scenario of local specimens being photographed during field sampling and sample sorting
in local lab facilities using conventional instruments. These images were denoted Local

Low Quality (L.) dataset.

Global High Quality (Gy) dataset

We also obtained a wider sample of images from a global catalogue of Coleoptera
specimens available at https://www.flickr.com/photos/site-100/. These images had been
obtained from local sampling campaigns at 11 sites throughout Central America, Africa
and Southeastern Asia (see Table S2) and photographed in bulk using the Zeiss AXIO
Zoom, as described above, while others were individually taken at high-resolution on a
single lens reflex (SLR) camera (Canon EOS 500D) and macro lens (Canon MP-E 65mm
f/2.8 1-5x Macro). Helicon Focus software was used to render z-stack images, as
aforementioned described. This dataset was denoted the Global High Quality (Gy) dataset.
For each of the selected families, all specimen photographs available for the respective
sites were used. Relative numbers of available specimens per family were usually
correlated across sites, with greatest numbers in Staphylinidae. The numbers of images

in the three data sets are shown in Table S1.

Image classification with neural network (NN)

Feature transfer and neural network classifier

We employed the strategy of feature transfer from the pre-trained convolutional

neural network (CNN) proposed by Valan et al. (2019). We chose the outputs of the fifth

convolutional block of the VGG19 model after 2-dimensional average pooling as a set of
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features for an image, based on the results of Valan et al. (2019) and our pilot analyses.
These 512-dimensional image features were used for the classification with a neural
network. Alternative pre-trained models, VGG16 and ResNet, were also tested, but were
outperformed by the VGC19 model.

The neural network classifier consisted of two fully connected (FC) layers with
ReLU activation and a softmax output layer (Fig. 1 and Fig. S1). The dropout was applied
after the FC layers with a dropout rate of 0.6. The neural network was trained with the
stochastic gradient descent algorithm with the softmax cross-entropy loss. The numbers
of units in the two FClayers (512 and 256 for the first and second FC layers respectively)
and the dropout rate were determined by five-fold cross-validation with a random 200
images of the Gu dataset, and these hyperparameters were used throughout all

classification tasks in this study.
Within-dataset classification

The CNN model was trained with N images randomly selected from the dataset and
predicted the class of n test images randomly selected from the rest. N ranged between
100 and 700 for Ly, 50 and 250 for L1, and 100 and 900 for Gu. The number of test images,
n, was set to 200 for Ly and Gy, and 50 for L. due to the small size of the dataset. To
evaluate the consistency of prediction accuracy, ten replicates were generated for each
scenario of N images. The output of the final softmax layer was used as the prediction
probability of each class, and the image was classified to the class with the highest

prediction probability. The accuracy of the prediction was measured as the proportion of
successful predictions in the test set, Acc = % 1[% = y;], where ¥, is the predicted

class of the i-th image, y;, the true class, and [y, = y;] is 1 if §, = y; and 0 otherwise.

The classification performance for each class was measured by the multiclass
recall rate, multiclass precision and the F1-score. Recall rate of class c is defined as a
proportion of correct predictions of ¢ out of the actual number of images of ¢, Recall. =

%. Multiclass precision is defined as a proportion of correct predictions of ¢
i=1YVi=

s =yillyi=c]

out of the number of images predicted as c, Precision, = S el The F1-score is
=11~

a harmonic mean of the multiclass recall rate and precision. Thus, while the recall rate is

interpreted as the fraction of images of a class present in the sample that are selected, the
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precision quantifies the fraction of the images predicted as members of a class that are
actually correct. The Fl-score represents the overall performance of a classifier with
respect to these two measures.

For the Lu dataset, we tested the effects of a locality-wise sampling strategy on
prediction accuracy. Instead of pooling all images and randomly selecting a training set
from them, we split the images based on their sampling sites within Cyprus by generating
separate training sets composed of images from S randomly selected sites in the Troodos
mountains. Then, the NN predicted 200 images from the sampling sites not present in the
training set. The number of sites, S, ranged from 4 to 28 with an interval of 4.

In addition, we used an Ly-trained model to predict the class of 16 high-quality
images belonging to 8 families/subfamilies, Coccinellidae, Elateridae, Endomychidae,
Hydrophilidae, Laemophloeidae, Phalacridae, Scarabaeidae and Scydmaeninae, which
were not present in the training data, and thus test the effect of unknown inputs (hereafter

out-of-distribution samples) on the classification (see Tabak et al. 2018).

Between-datasets classification

For the between-dataset prediction the CNN model was trained with a source
dataset to predict images from a different target dataset. The NN was trained with N
images randomly selected from the source dataset, which was then used to predict all
images of the target dataset. The target accuracy, Acc; was measured as the proportion
of successful predictions of the target images. The baseline accuracy within the source
dataset, Accg, measured in the within-dataset classification was compared with the target
accuracy, Accy. The accuracy reduction, AAcc(S,T) = Accg — Accy, was recorded as a
measure of transferability between the datasets. High AAcc indicates large reduction of
accuracy, hence difficulty in transfer. We ran the above procedures for three source-target
pairs (training dataset- predicted dataset), Gu~> Ly, Gu~ Ly and L.~ Lu. These settings
simulate two alternative scenarios: (i) a global image database is used to predict local
samples (Gu>Lu and Gy~Ly) and (ii) conventional images, as those representing single-
specimen photographs by local taxonomists, are used to predict local high-resolution
images (L.>Ln).

Divergence between the source and target datasets was measured with a dataset

classification error. A linear support vector machine (SVM) was trained to classify images

-11 -
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to the source or target dataset with the features of 200 randomly selected images from
both datasets. Conversely to above analyses, here the model was trained to classify
datasets instead of taxa. Then, a classification error of the SVM, &gyyrce—targer» Was
measured as a proportion of incorrect predictions of 200 test images sampled from the
two datasets. An intuitive interpretation of this measure is that the dataset classification
task is harder when the feature distributions between two datasets are more similar.
Therefore, a large classification error indicates high similarity between source and target
datasets. This approach is commonly used to measure the dataset bias (Tommasi et al.

2017).

Between-datasets classification with domain adversarial training

In addition to the ordinal CNN setups described above, we employed the domain
adversarial training of neural networks (DANN, Ganin et al. 2016) to improve the accuracy
of the between-dataset classifications. DANN uses labeled images from the source as well
as unlabeled images from the target dataset in its training process to improve the target
predictions. The DANN model jointly predicts the taxon (class label) of the source images
and the dataset (domain) of all input images (as in the previous section) by adding layers
for the dataset classification to the classifier (Fig. S1). The training procedure then
optimizes the model parameters in the shared part of the network to not only minimize
the loss of the label classifier (taxon prediction) but at the same time to maximize the loss
of the domain classifier (dataset prediction). This adversarial training procedure
optimizes shared intermediate features to be invariant between the two domains, and
hence the model can generalise across them, which potentially improves the accuracy in
target predictions. In this study, a softmax layer with binary cross entropy loss was added
as a dataset classifier to the NN after the second FC layer. The regularization parameter,
A, which controls the relative importance of the two classifiers, were set to A =0.1, 0.5 and
1.0, and the best performing results (A = 0.1) were reported.

The performance of the DANN method was measured with procedures similar to
those in the previous section. A mixed set of images of size N was randomly selected from
target and source datasets, and training was done using taxon labels from the source
images and dataset labels for all images. Next, 400 mixed test images were predicted, and

their source and target accuracies and their difference were recorded. We applied the

-12 -


https://doi.org/10.1101/2021.12.22.473797
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473797; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

DANN to the three pairs from the previous section. The total number of images N ranged
between 300 and 800 for L.>Ly, 400 and 1400 for Gy>Ly, and 300 and 1000 for Gy>L.. The
proportions of source images were 0.3, 0.67 and 0.83 for L.> Ly, Gu>Ln and Gu~LL
respectively, which yielded training images from the source similar in number to the other
training setups. The effect of DANN on target accuracy was tested using linear regression
with the model type and the number of images as explanatory variables. Models of neural
networks were implemented in Python with Keras (https://keras.io) and TensorFlow

(https://www.tensorflow.org) libraries, and all statistical analyses were conducted with R

(R Core Team 2021).

RESULTS

Performance of within-dataset classification

Effects of datasets and the number of images

The accuracy of within-dataset classification and the effect of the number of
training images varied among datasets. The accuracy for the Ly samples generally
improved with an increasing number of training images and reached an average of 96%
with 700 images (Fig. 2a). The maximum classification accuracy for the Ly was 98%. When
the locality-wise training was performed, the accuracy slightly decreased to an average of
91% with 28 localities, which were roughly equivalent to 680 images.

The within-dataset classification accuracy of the L1 images, taken by a conventional
stereoscope and camera, was generally lower compared to the Ly dataset. The accuracy
increased monotonically with the increasing number of images and reached an average of
89% with 250 images (Fig. 2b). The within-dataset classification accuracy of the Gu
images was also lower compared to the Ly. The improvement of accuracy was slower than
for the other datasets, and the average accuracy was 84% with the maximum number of

900 images (Fig. 2c).
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Figure 2. Effect of increasing the number of images on prediction accuracy. Training the
convolutional neural network (CNN) on a subset of images and prediction of the class of
images for (a) Local High Quality (Ly) images selected either at random or under locality-
wise selection for predicting the class of Ly images, (b) Local Low Quality (L) images for
training and predicting the class of either Ly, or Ly images, and (c) Global High Quality (Gn)
images for training and predicting the class of either L1, Ly or Gy images.
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Classification error was visualised as a scaled confusion matrix for a trial with 400
training images in the Ly random sampling (Table S3). The large taxonomic groups were
correctly classified in most cases. For example, four families (Carabidae, Curculionidae,
Ptiliidae and Staphylinidae) were classified with more than 95% recall rate (Fig. 3a), while
the remaining taxa had widely different recall rates ranging from 0% to 82% (Fig. 3a). In
the extreme case of the family Melyridae, with the lowest number of available images (n
=5), no images were predicted correctly (Fig. 3a). When a taxon had >50 images, its recall
rate and precision approached 1.0 (Fig. 3a,c). The F1-scores showed a similar pattern, i.e.
for those images that were called to be members of a taxon, these predictions were
generally correct (Fig. 3e). Class-wise recall rates and F1-scores showed a strong positive
correlation with the number of images (rho = 0.81 and 0.85, respectively; Fig 3a,e). The
effect of the number of images on the class-wise precision was also positive, but slightly
weaker (rho = 0.41, Fig. 3c). Failed predictions included ventral views of insect bodies,
specimens with missing body parts or multiple specimens in a single image (see Fig. S2).
Apart from these irregular images, most failed predictions were for taxa represented by

<20 images (Fig. 3a,c,e).
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Figure 3. Effect of the increasing number of images on recall rates (panels a and b),
multiclass precision (panels c and d) and F1-scores (panels e and f). We used 400 randomly
selected Local High Quality (Ly) images for training and predicting the class of Ly images
(within-dataset classification) (left panels), and 800 randomly selected Global High Quality
(Gu) images for training and predicting the class of Ly images (right panels). Note that x-
axes representing the number of images on a logarithmic scale. Circle sizes represent the
number of countries where samples of a given family were collected from (as a proxy of intra-
family morphological variation).
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Prediction probabilities and out-of-distribution samples

Prediction probabilities for the successful predictions (average 0.98) were overall
higher than for the failed predictions (average 0.79, Fig. 4), when using the Ly dataset with
400 training images. For images assigned to families not present in the training data (that
is, out-of-distribution samples), the prediction probabilities were also lower on average
than for the successful predictions (average 0.83, Fig. 4). However, four samples were
predicted incorrectly with probabilities of more than 0.95 (Fig. 4). For example, three
images of Coccinellidae, Hydrophilidae and Phalacridae were classified as Ptiliidae with
probabilities >0.95.

To detect the failed predictions, we set conservative threshold values for the
prediction probabilities and marked samples below the threshold as potential
misclassification. When the threshold value was set to 0.95,92% of successful predictions
were retained while 76% of failures and 75% of out-of-distribution samples were

correctly detected as misclassifications (Fig. 4).

Figure 4. Prediction probabilities for the successful, failed and out-of-distribution
predictions at a 0.95 threshold (horizontal line). (a) Intra-dataset predictions of Ly images
using 400 randomly selected images for training. (b) predictions of Ly images using 800 Gu
images for training.
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Performance of between-dataset classification

The accuracy of cross-dataset predictions depended on the combination of source
and target datasets. We first considered the effect of image quality. When the L1 images
were used to train the NN and then to predict the Ly images, the accuracy remained largely
constant at 71% for 250 images (Fig. 2b). The accuracy reduction (A4cc), i.e. the reduction
in success of predictions compared to the predictions expected from within-dataset
classification, also rapidly increased with the number of images, indicating that the

training with Li, images did not improve the prediction of the Ly images (Fig. 5).

Figure 5. The effect of increasing numbers of images on the accuracy reduction in across-
dataset predictions. Subsets of randomly selected images of one dataset are used for training
and predicting the class of another set, as indicated by different colours. The x-axis
representing the number of images is on a logarithmic scale. Higher accuracy reduction
indicates a worse performance on prediction compared to the within-dataset prediction
accuracy. The solid and dashed lines represent results of the convolutional neural network
(CNN) and domain adversarial neural network (DANN), respectively. Note that only the L,
to Ly prediction accuracy improved with the use of DANN.
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Second, we considered the power of the global dataset to predict the local data,
using the Gu and the Ly as a source-target pair. The prediction accuracy for this
comparison was close to the within-Gy predictions, with the average accuracy being 79%
and the maximum 82% with 900 images (Fig. 2c), indicating that the local set from the
Cyprus collection (Lu) behaves in a similar way as the other local sets contributing to the
Gu dataset. The accuracy reduction from Gy to Ly was on average 0.04 and remained
almost constant after 300 images (Fig. 5). The power of the Gy dataset required the high
image quality exhibited by the target (Lu); when the Gu-trained model was used to predict
the L. images, the accuracy was significantly lower (Fig. 2c). This was also evident from
the increased accuracy reduction with increased number of images; whereas the Gy to Gu
predictions improved with more images, the Gy to Li, predictions did not, resulting in a
higher AAcc (Fig. 5). The dataset classification errors (€souce-target) were 0.20 (Gu>Lu), 0.06
(Gu~Lr) and 0.01 (Luy>L), indicating high similarity between the Gu and Ly images and the
distinctiveness of the Li.

Table S4 shows a confusion matrix of the Gy>Ly prediction trained by 800 images.
Chrysomelidae, Curculionidae and Staphylinidae had recall rates >0.90 (Fig. 3b), but more
taxa were incorrectly classified than in the case of the Ly>Lu prediction. No image of
Leiodidae and Scaphidiinae, with the available training images <50, was predicted
correctly (Fig. 3b). Misclassification mostly affected morphologically similar taxa, e.g. the
reciprocal confusion of Brentidae and Curculionidae (Table S4).

There was a strong positive correlation between class-wise recall rates and the
number of images in the source dataset (rho = 0.77, Fig. 3b). Three taxa with >300 images
had recall rates >0.95, while the taxa with <40 images had recall rates <0.4 (Fig. 3b). The
effect of the number images on the class-wise precision and F1-score was also positive,
but slightly weaker (rho = 0.16 and 0.42, respectively; Fig. 3d,f). Surprisingly, the F1-
scores were greatly reduced relative to the recall score for the Chrysomelidae, indicating
the precision of the prediction was low even if the recall was high (Fig. 3d,f), i.e. the true
Chrysomelidae were correctly classified, but many other taxa were incorrectly classified
as Chrysomelidae.

As observed in the within-dataset classification, average prediction probabilities
of successful predictions (0.98) were consistently higher than the failed predictions (0.84)
and out-of-distribution samples (0.77). However, failed predictions more frequently had

probabilities > 0.95 (Fig. 4b).
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The performance of the domain adversarial training

The DANN significantly improved the target accuracy of the Li>Ly prediction,

which involves images from very different setups (Fig. 6). A linear regression model
showed that the target accuracy increased by 6.2% (Fig. 6) and the accuracy reduction
decreased by 0.060 when the DANN model was used with labeled L. and unlabeled Lu
images (Fig. 5). The average target accuracy was 79% with 200 labeled L1 images and 400

unlabeled Ly images (Fig. 6), approaching the same level of accuracy as Gu>Lu predictions.

Figure 6. Effect of the number of images on prediction accuracy of the convolutional neural
network (CNN, panels a and c) and the domain adversarial neural network (DANN, panels b
and d) training for the Local Low Quality (L1) and Local High Quality (Ly) images. Top panels
(a and b) represent between-dataset predictions (L.~>Ly) while bottom panels (c and d)
indicate within-dataset predictions (L.>L). Solid lines represent regression lines between the
number of images and accuracy. For both between- and within-dataset predictions, models
using DANN were trained with a mixed set of randomly selected images from the L, and Ly
datasets. For other dataset comparisons, see Figures S3 and S4.
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On the contrary, the DANN did not improve the target accuracy when the Gy was
used as a source dataset (Fig. S3 and S4). The Gu>Lu target accuracy was on average 0.75
with 940 labeled Gu images and 460 unlabeled Ly images (in total 1400 images), which
was significantly lower than the between-dataset predictions by the plain NN model (Fig.
S3).In the Gy~L. prediction, a similar trend was observed (Fig. S4) and the target accuracy

was not significantly different from the NN.

DISCUSSION

This work adds to the growing number of studies demonstrating the power of
CNNs in image-based taxonomic classification. Specifically, we tested the possibility of
classifying specimens from bulk samples of beetles, whereby unknown local samples
were classified using a model trained on similarly photographed bulk samples from a
global sampling effort. We envision that mixed trap samples in future will be routinely
photographed with high-resolution cameras, producing huge numbers of valuable images,
but unlike most existing studies that use pinned or cardboard-glued specimens, these
images present specimens in diverse angles, habitus, magnification, and lighting
(Schneider et al. 2021; Wiihrl et al. 2021). We show that these images provide sufficient
information for specimens to be identified as members of particular families of Coleoptera.
Within a local dataset, classification accuracy regularly reached 95% or more, which is
similar to findings from other studies using more standardised photographs from
museum collections (e.g. ~92% and 96% for Diptera and Coleoptera, respectively; Valan
et al. 2019). We also confirm that classification performance depends on the number of
images used for training (Figs. 2-3), as widely seen in image recognition applications
generally (Donahue et al. 2013) and in insect classification in particular (e.g. >90% recall
rates were obtained for taxa with >50 images; Valan et al. 2019, 2021). We find that the
prediction accuracy generally does not increase further after about 200 images in each of
the three datasets used here. However, the degree of accuracy is greatly affected by the
image quality and the complexity of the dataset: both the Li (low image quality) and in
particular the Gu (high complexity) datasets show comparatively low accuracy of

predictions if trained on themselves.
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Utility of global databases for classifying local faunas

The critical question in this study is about the success of domain transfer in a
situation where the source and target data are from different faunas. We here used the
challenging case of the below-ground fauna of a Mediterranean island as the domain
target for images trained on a set of above-ground samples from several tropical forests
across the globe (the Gu set), which presumably do not share any species or genera.
However, most local bulk samples, even from such disparate ecosystems, share a similar
set at the family level, especially for a small number of species-rich families which are
found in similar relative proportions in most samples. We find that the Gu>Ly prediction
suffered only low accuracy reduction, confirming the possibility of classifying the high-
throughput images from Cyprus by training a convolutional neural network (CNN) model
with the global images even though the target species are not present in the training data.
We note that the Gy dataset is a complex composite of samples from 11 different sites
around the globe, collected using a range of different trapping methods (which explains
why the within-dataset accuracy was lower than in the other datasets). We argue that this
is not necessarily a negative feature, as such a complexity may allow the CNN model
trained on this set to capture general family traits of the global fauna and thus make it
suitable for a greater range of classification tasks at local level. The high accuracy obtained
using the global training set indicates that it is not strictly necessary to create local
reference databases for training, when targeting higher taxonomic levels. This finding
opens the way for local biodiversity assessment studies around the globe using a
universal training set. Global databases have the additional advantage of offering high
numbers of images per taxon, which is more difficult to obtain locally, while it is critical
for increasing the performance of the CNN-based classification (Fig. 2; Donahue et al
2013; Valan etal. 2019, 2021).

Despite the high prediction accuracy of the dataset as a whole, some taxa may show
consistently lower classification performance. The primary factor affecting recall and
precision is the number of images per family. The required quantity was available only for
the largest families (which were also available for the greatest number of countries
globally, as a measure of complexity of the training set). However, a few taxa, including
the widely sampled Chrysomelidae, showed low F1-scores even with a large number of

images (Fig. 3b,d,f). This example is particularly striking because of the high recall rate,
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but low precision, i.e. while most specimens of Chrysomelidae in the sample are identified
with a high prediction probability, the model misclassifies a lot of them and incorrectly
assigns specimens of other families to them. The Chrysomelidae behaves poorly against
the local Ly model, but this is commensurate with a low representation of images (Fig.
3a,c,e). The finding may suggest a negative impact of within-family morphological
disparity on classification precision, possibly only present in the wider Gy dataset.
Interestingly, Chrysomelidae also showed low classification performance in the study of
Valan etal. (2019). The family is composed of morphologically rather distinct subfamilies,
and an increased number of images may help to unveil the subclasses generating low

performance models.

Lessons from combining DANN with differing databases

We show that photographs taken from similar imaging setups (Gu and Lu) are
readily used for between-region image classifications while images taken by a
conventional stereoscope (L.) exhibited a large accuracy reduction for the prediction of
the local high quality dataset. Considering the nearly identical taxonomic composition of
the Ly and L, datasets, the large accuracy reduction indicates a negative impact of the
original image quality and the lack of standardization between the target-source pairs.
The overall dissimilarity of Ly from Gy and L., measured by dataset classification errors
also suggest a negative effect of non-standardized imaging on prediction performance.
These results are in accordance with the reduction in classification accuracy observed by
other studies comparing different imaging procedures, e.g. training with high-resolution
museum specimens to predict field images (Knyshov et al. 2021). The application of
alternative algorithms may overcome limitations resulting from the usage of highly
different images taken by unstandardized imaging conditions. In the current study, we
could successfully ameliorate the accuracy reductions between Ly and Li, using DANN, a
method designed for domain adaptation (Ganin et al. 2016). However, in other
combinations of datasets such as Gy and Ly, the DANN did not improve the target
prediction performance. This may be due to poor hyperparameter tuning or insufficient
training of the model with a complex loss function (Kouw & Loog 2021). Nevertheless, our

study would offer some evidence that DANN (or domain adaptation techniques in general)
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can be considered a method of choice when a standardized image acquisition is not

available.

Improvements from using alternative metrics for model performance

While CNN-based image classification for biodiversity assessment is becoming
increasingly popular, its performance is not always assessed with a broad set of
performance metrics. As observed in Chrysomelidae, the reduction of performance was
only detectable in the multiclass precisions and F1 scores, but not in the recalls, which
revealed a specific difficulty in the classification of this group. Given the inferential power
of these performance metrics, we encourage their integration in biodiversity-related
applications.

Another overlooked metric is the confidence of predictions. We could detect failed
predictions and potential out-of-distribution samples by setting a threshold value on the
probabilities. In accordance with Hendrycs & Gimpel (2017), such misclassified or out-of-
distribution samples were predicted with consistently lower prediction probabilities.
Because out-of-distribution samples are common in biodiversity surveys, detection of
unknown target samples based on low prediction confidence is particularly useful. A
potential difficulty of this approach is that calibration of the threshold requires extra data.
Conventional deep neural networks can be uncalibrated, that is, prediction probabilities
do not precisely reflect prediction accuracy (Guo et al. 2017). Such uncalibrated models
can make an incorrect prediction with excessively high confidence. This overconfident
failure is noticeable in our analysis (Fig. 4b). Therefore, additional labeled samples are
required to set a robust threshold for the identification of failure and out-of-distribution
samples. Methods for explicit calibration of prediction probabilities or detection of out-of-
distribution samples without additional data (e.g. Hsu et al. 2020; Mukhoti et al. 2020) are
being actively developed in the machine learning field, and applying those methods is a
potential future direction. As the DANN could remove the dataset biases caused by the
imaging instruments, the purpose-specific models will expand the possibility of machine

learning applications to biodiversity surveys (see Hgye et al. 2020).
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Building the global database for CNN-based classification

As new images become available for ever more species, the reference library for
taxonomic identification is rapidly growing. Our training set was derived from various
biodiversity hotspots around the world and was classified at the level of families only.
Given the geographic and taxonomic distance of these samples, the family category is the
only meaningful level exhibiting overlap of source and target, but conceivably the
methodology could be applied at lower levels, e.g. genera, if more similar samples had
been used. The current set of images is limited with regard to the number of families
(classes) and number of images per family (intra-class variability), resulting in out-of-
distribution errors and prediction errors, respectively. Both issues can be addressed with
a wider selection of images, eg. those available from the SITE-100 project
(https://www.site100.org) taken with similar equipment. Based on our results, any future
image collection should consider the need for standardisation, including that imaging
should use the same aspect, e.g. dorsal view for Coleoptera (also see Hansen et al. 2019),
uniform background across images (preferably a clear colour without textures), clear
separation of specimens in the photographs, and similar optical equipment and
magnification. The exact parameters remain to be explored within and across studies, but
standardisation of imaging is critical to transferability when rolling out large-scale efforts
for image-based classification in biodiversity studies. As part of this effort, image
segmentation should be improved and automated (Schneider et al. 2021; Schwartz &
Alfaro 2021), to increase our capability for rapidly generating ‘clean’ and individual-based
image databases extracted from bulk samples. A potential bottleneck is the need to
expand the training set gradually, which generally requires recomputation of the model
when new classes are added, although recent update methods may simplify this process
(Hadsell et al. 2020). A second issue affecting the accuracy of predictions is the “category
bias” from inconsistent categorisation and labeling of the training set itself. In the current
study, images in the training set were classified from the images by recognising the overall
gestalt of a family. These class labels were straightforward for most groups, but
identification of some beetle families may be compromised due to images that obscured
appendages or other key traits, especially in small-bodied Leiodidae, Latridiidae or
Cryptophagidae, which may have contributed to the prediction errors seen in these

families (Table S3). Thus, corrections to the class labels in the database may be required,

-24 -


https://doi.org/10.1101/2021.12.22.473797
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473797; this version posted December 23, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

possibly by integrating image-based classification with widely-established DNA
barcoding and phylogenetic placement methods that confirm the class membership.
Likewise, combining image acquisition for biodiversity assessment with metabarcoding
could be instrumental for validating or improving genetic-based inferences (Yang et al.
2021) or estimating biomass and abundance (e.g. Hgye et al. 2020; Schneider et al. 2021).
Metabarcoding studies often lose morphological information of specimens, but imaging

could be accommodated as a routine step before the DNA extraction of bulk samples.

CONCLUSIONS

To our knowledge, this is the first attempt of domain transfer for taxonomic
classification of an entirely unknown dataset, as a key element of using image-based
identification in biodiversity studies at the global scale. We show that the approach is
highly feasible, but needs careful consideration of the imaging procedure, the algorithmic
approach, and the choice of training sets. The future vision of this approach is an
increasingly complete set of images, covering the diversity of major taxonomic groups,
against which samples from any ecosystem and biogeographic region can be classified at
a certain hierarchical level (e.g. families of beetles). In our approach we lack the close
alignment of source and target that would guarantee high transferability, but at the
expense of lower generalization capability. Further studies are required to study the
trade-offs and to establish best practice for the specific research question at hand. Once a
stable expanded image database has been created, it can be used for broader applications
in biodiversity research and monitoring, potentially building a global model applicable to

any sampling site and possibly used while still in the field.
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Figure S1. Detailed scheme of architectures of the convolutional neural network (CNN)
and domain adversarial neural networks (DANN) used in this study. For DANN, the
outputs of the second fully connected (FC256) layer were forwarded to two softmax
layers for taxon and dataset classification. A gradient reversal layer was inserted between
the FC(256) and dataset softmax layers to achieve domain adversarial training as

proposed in Ganin et al. (2016).
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Figure S2. Exemplar images of incorrect classification.
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Figure S3. Effect of the number of images on prediction accuracy of the convolutional

neural network (CNN, left panels) and the domain adversarial neural network (DANN,

right panels) training for the Local High Quality (Lu) and Global High Quality (Gu) images.

Gu>Lu (top panels) indicates between-dataset predictions, while Gy>Gn (bottom panels)

represent within-dataset predictions. Solid lines represent regression lines between the

number of images and accuracy. For both between- and within-dataset predictions,

models using DANN were trained with a mixed set of randomly selected images from the

Gy and Ly datasets.
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Figure S4. Effects of the number of images on prediction accuracy of the convolutional
neural network (CNN, left panels) and the domain adversarial neural network (DANN,
right panels) training for the Local Low Quality (L) and Global High Quality (Gu) images.
Gu>LL (top panels) indicates between-dataset predictions, while Gu>Gn (bottom panels)
represent within-dataset predictions. Solid lines represent regression lines between the
number of images and accuracy. For both between- and within-dataset predictions,
models using DANN were trained with a mixed set of randomly selected images from the

Gy and L datasets.
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Table S1. Number of images per taxa and dataset used in the present study.

Family/subfamily Local High Quality (Lu) Local Low Quality (L) Global High Quality (Gu)
Brentidae 18 11 67
Carabidae 223 40 155
Chrysomelidae 8 16 445
Cryptophagidae 11 16 42
Curculionidae 111 33 351
Latridiidae 26 13 28
Leioidae 6 2 28
Melyridae 5 11 8
Ptilidae 52 14 17
Scaphidiinae 6 6 37
Staphylinidae 463 117 443
Tenebrionidae 31 27 66
Total 730 306 1687
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Table S2. Sampling sites for the Global High Quality (Gu) dataset. Images were obtained from a global catalogue of Coleoptera specimens

available at https://www.flickr.com/photos/site-100/

Country Locality Number of images Latitude Longitude Elevation (m)
Borneo Poring, Sabah 151 6°03'N 116°42'E 550
Ecuador Yasuni, Onkone Gare | 829 0°39'30.05"S 76°27'9.56" W 216
Equatorial Guinea [ Djibloho, Oyala 193 1°36'27.40"-1°37'13.10" N 10°51'26.60"-10°52'52.00"E | 670
French Guiana Nouragues 161 4°05'15.70" N 52°40'52.70"W 130
Honduras Cortes 228 14°50'15.00" N 87°53'43.00" W 415
México Chamela 132 19°29'54.70" N 105°02'38.40" W 97

India Mizoram 46 23°27'00.00" N -23°47'24.00"N |92°36'-92°45"E 800-1600
Panama Cerro Hoya 306 7°14'N 80°53'W 550
Panama Santa Fe 307 8°32'N 81°07'W 550
South Africa Hogsback 60 32°36'21.60"S 26°57'43.30"E 1070
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Table S3. A scaled confusion matrix for the prediction of Local High Quality (Lu) images based on a training set of 400 randomly selected

images from the same dataset (Lu). Rows represent the predicted classes and columns the true classes. The matrix was scaled so that each

column sums up to one.

Brentidae

Carabidae

Chrysomelidae

Cryptophagidae

Curculionidae

Latridiidae

Leiodidae

Melyridae

Ptiliidae

Scaphidiinae

Staphylinidae

Tenebrionidae

Brentidae

0.757

Carabidae

0.952

0.429

0.003

Chrysomelidae

0.154

0.231

Cryptophagidae

0.385

0.471

Curculionidae

0.135

0.977

0.098

0.250

0.010

0.213

Latridiidae

0.235

0.023

0.820

0.500

0.003

0.138

Leiodidae

0.462

0.769

Melyridae

0.000

Ptiliidae

0.176

1.000

Scaphidiinae

0.571

Staphylinidae

0.108

0.048

0.118

0.250

0.983

0.038

Tenebrionidae

0.082

0.613
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Table S4. A scaled confusion matrix for the prediction of Local High Quality (Lu) images based on a training set of 800 randomly selected

Global High Quality (Gu) images. Rows represent the predicted classes and columns the true classes. The matrix was scaled so that each

column sums up to one.

Brentidae | Carabidae | Chrysomelidae | Cryptophagidae | Curculionidae | Latridiidae | Leiodidae | Melyridae | Ptiliidae | Scaphidiinae | Staphylinidae | Tenebrionidae
Brentidae 0.444 0.072
Carabidae 0.655 0.091 0.038 0.167 0.065
Chrysomelidae 0.103 1.00 0.273 0.154 0.667 0.231 0.667 0.013 0.129
Cryptophagidae 0.273 0.038 0.019
Curculionidae 0.444 0.004 0.901 0.577 0.80 0.250 0.004 0.548
Latridiidae 0.091 0.038
Leiodidae 0.091 0.000 0.077
Melyridae 0.056 0.20
Ptiliidae 0.091 0.365
Scaphidiinae 0.004 0.000 0.004
Staphylinidae 0.233 0.091 0.027 0.333 0.058 0.978 0.097
Tenebrionidae 0.056 0.154 0.167 0.161
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