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ABSTRACT	

	

Complex	 bulk	 samples	 of	 invertebrates	 from	 biodiversity	 surveys	 present	 a	 great	

challenge	for	taxonomic	identification,	especially	if	obtained	from	unexplored	ecosystems.	

High-throughput	imaging	combined	with	machine	learning	for	rapid	classification	could	

overcome	 this	 bottleneck.	Developing	 such	 procedures	 requires	 that	 taxonomic	 labels	

from	an	existing	source	data	set	are	used	for	model	training	and	prediction	of	an	unknown	

target	 sample.	Yet	 the	 feasibility	of	 transfer	 learning	 for	 the	 classification	of	unknown	

samples	remains	to	be	tested.	Here,	we	assess	the	efficiency	of	deep	learning	and	domain	

transfer	 algorithms	 for	 family-level	 classification	 of	 below-ground	 bulk	 samples	 of	

Coleoptera	from	understudied	forests	of	Cyprus.	We	trained	neural	network	models	with	

images	from	local	surveys	versus	global	databases	of	above-ground	samples	from	tropical	

forests	 and	 evaluated	 how	 prediction	 accuracy	 was	 affected	 by:	 (a)	 the	 quality	 and	

resolution	 of	 images,	 (b)	 the	 size	 and	 complexity	 of	 the	 training	 set	 and	 (c)	 the	

transferability	 of	 identifications	 across	 very	 disparate	 source-target	 pairs	 that	 do	 not	

share	 any	 species	 or	 genera.	Within-dataset	 classification	 accuracy	 reached	 98%	 and	

depended	on	the	number	and	quality	of	training	images	and	on	dataset	complexity.	The	

accuracy	 of	 between-datasets	 predictions	 was	 reduced	 to	 a	 maximum	 of	 82%	 and	

depended	greatly	on	the	standardisation	of	the	imaging	procedure.	When	the	source	and	

target	 images	were	 of	 similar	 quality	 and	 resolution,	 albeit	 from	 different	 faunas,	 the	

reduction	 of	 accuracy	 was	 minimal.	 Application	 of	 algorithms	 for	 domain	 adaptation	

significantly	 improved	 the	 prediction	 performance	 of	 models	 trained	 by	 non-

standardised,	low-quality	images.	Our	findings	demonstrate	that	existing	databases	can	

be	used	to	train	models	and	successfully	classify	images	from	unexplored	biota,	when	the	

imaging	 conditions	 and	 classification	 algorithms	 are	 carefully	 considered.	 Also,	 our	

results	 provide	 guidelines	 for	 data	 acquisition	 and	 algorithmic	 development	 for	 high-

throughput	image-based	biodiversity	surveys.	
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INTRODUCTION	

	

Biological	identifications	increasingly	rely	on	machine	learning	algorithms	that	use	

photographic	images	to	place	unidentified	specimens	into	a	taxonomic	classification.	As	

these	methods	are	proving	to	be	very	powerful	especially	for	identification	of	the	species-

rich	and	morphologically	diverse	insects,	it	is	now	possible	to	place	a	specimen	with	high	

confidence	 against	 curated	 image	 libraries,	 e.g.	 those	 obtained	 from	 pinned	 museum	

collections	(Buschbacher	et	al.	2020;	Hansen	et	al.	2020).	With	the	rapid	increase	of	such	

images,	 machine	 learning	 can	 greatly	 increase	 the	 capacity	 for	 species	 identification	

without	putting	demand	on	scarce	taxonomy	experts	(Valan	et	al.	2019;	Høye	et	al.	2021).	

The	methodology	therefore	is	likely	to	play	a	major	role	in	the	taxonomic	endeavour	in	

future,	and	potentially	deep	learning	can	have	similar	impacts	on	the	practice	of	taxonomy	

as	the	revolution	of	DNA	barcoding	and	metabarcoding	some	20	years	ago,	or	 it	could	

work	in	concert	with	these	molecular	approaches	(Høye	et	al.	2021;	Wührl	et	al.	2021;	

Yang	 et	 al.	 2021).	 However,	 the	 true	 potential	 and	 possible	 limitations	 of	 algorithmic	

methods	 for	 exploiting	 the	 information	 contained	 in	 specimen	 images	 remain	 to	 be	

established,	 as	 the	 various	 applications	 and	 choice	 of	 machine	 learning	 algorithms	

continue	to	be	refined	(Valan	et	al.	2019;	Romero	et	al.	2020).	

The	 greatest	 challenge	 for	 modern	 taxonomy	 probably	 is	 the	 study	 of	 highly	

diverse	and	poorly	studied	biota	and	geographic	regions,	harbouring	many	undescribed	

species	(Costello	et	al.	2013).	In	particular,	in	studies	of	invertebrate	diversity,	such	as	

those	from	tropical	forest	canopy	or	the	soil,	huge	numbers	of	specimens	are	collected	

and	 subsequently	 need	 to	 be	 classified	 and	 counted	 as	 part	 of	 ecological	 and	

environmental	 studies	 (Novotny	 et	 al.	 2007;	 Caruso	 et	 al.	 2018).	 Imaging	 of	 these	

specimens	is	comparatively	fast	with	the	help	of	recently	described	automated	imagers	

(Ärje	et	al.	2020;	Wührl	et	al.	2021)	or	by	taking	high	resolution	images	of	large	sets	of	

specimens	in	a	single	photo,	which	can	then	be	cropped	to	represent	single	individuals	for	

subsequent	 classification	 (Hudson	 et	 al.	 2015;	 https://www.site100.org).	 Automated	

classification	based	on	these	images	would	remove	the	need	for	manual	identification	by	

taxonomic	 experts	 who	 individually	 can	 handle	 only	 a	 small	 portion	 of	 the	 diversity	

spectrum	usually	encountered	in	such	studies	(Basset	et	al.	2012),	and	thus	may	help	to	

provide	rapid	assessment	of	threatened	arthropod	assemblages,	where	speed	is	a	priority.	
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In	machine	learning,	images	are	classified	against	a	class	of	defined	objects,	e.g.	the	

images	of	a	particular	taxonomic	group.	A	model	trained	to	separate	the	types	of	images	

in	this	source	is	used	to	classify	unlabeled	objects	in	the	target,	such	as	an	unknown	set	of	

specimens	 in	a	sample.	Most	recent	studies	used	convolutional	neural	networks	(CNN,	

LeCun	et	al.	2015)	for	the	task	of	image	classification.	Because	of	the	lack	of	images	for	

training	the	full	parameters	of	a	CNN	model,	approaches	like	fine-tuning	of	the	existing	

CNN	(Ärje	et	al.	2020)	or	feature	transfers	from	the	pre-trained	CNN	(Valan	et	al.	2019)	

are	commonly	used	in	biodiversity	studies,	following	the	successful	applications	of	pre-

trained	CNN	outputs	as	generic	image	features	(Donahue	et	al.	2013;	Razavian	et	al.	2014).	

These	methods	of	transfer	learning	have	already	shown	great	power	in	taxon	annotation	

and	detections	applied	to	insect	specimens,	and	in	some	cases	surpass	the	capabilities	of	

trained	taxonomists	(Valan	et	al.	2021).	

Yet,	applications	of	image	classification	algorithms	for	insect	biodiversity	research	

have	mainly	been	limited	to	narrow	tasks	and	specific	target	sets,	such	as	pinned	museum	

specimens	(Valan	et	al.	2019;	Hansen	et	al.	2020),	aligned	body	parts	(Buschbacher	et	al.	

2020;	Klasen	et	al.	2021),	or	small	target	groups	of	a	few	species	(Ärje	et	al.	2020).	In	most	

of	these	studies	the	unlabeled	(target)	set	is	from	the	same	category,	i.e.	the	target	taxa	at	

species	 or	 higher	 hierarchical	 levels	 are	 included	 in	 the	 training	 set.	 However,	 as	

collecting	labeled	datasets	is	the	most	laborious	part	of	machine	learning	applications,	it	

is	desirable	that	models	trained	in	one	dataset	can	be	used	for	prediction	tasks	of	others	

(called	 ‘domain	 adaptation’,	 e.g.	 Kouw	 &	 Loog	 2021).	 While	 methods	 for	 domain	

adaptation	have	been	successfully	applied	to	fields	such	as	medical	image	classification	

(Guan	&	Liu	2021),	they	have	not	been	used	in	the	context	of	biodiversity	surveys.	Their	

application	 would	 be	 particularly	 useful	 in	 classification	 of	 specimens	 from	 complex,	

mixed	trap	samples,	especially	from	unexplored	areas	whose	components	are	unlikely	to	

be	present	in	the	training	set.	

Building	such	an	image-based	classification	system	may	be	complicated	by	several	

factors	because	the	assumption	of	identical	distributions	between	the	source	and	target	

datasets	rarely	holds.	Capture	bias	is	a	well	established	problem	in	machine	learning,	as	

objects	appear	in	different	contexts	(location,	lighting,	background,	etc.)	or	are	taken	on	

different	imaging	devices.	Images	of	arthropods	may	be	from	collection	specimens	taken	

in	a	fairly	standardised	position	and	lighting	conditions	(Valan	et	al.	2019;	Hansen	et	al.	

2020),	or	may	be	obtained	directly	 from	bulk	samples	and	photographed	either	singly	
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(Raitoharju	et	al.	2018;	Valan	et	al.	2019;	Wuhrl	et	al.	2021)	or	cropped	from	large-field	

composite	 images	 (Buschbacher	 et	 al.	 2020;	Hansen	 et	 al.	 2020).	 Images	 thus	 feature	

different	 aspects	 of	 the	 specimens	 and	 differ	 in	 illumination	 and	magnification,	which	

affects	 the	 recognition	of	key	 features	 (Raitoharju	et	al.	 2018;	Ärje	et	al.	 2020).	Other	

issues	 are	 unrelated	 to	 differences	 in	 image	 acquisition,	 but	 result	 from	 the	 biases	 of	

defining	the	semantic	categories	(Tommasi	et	al.	2017).	Such	“category	bias”	may	arise	

from	inconsistent	labeling,	either	due	to	the	application	of	different	taxon	concepts	used	

for	naming	of	species	and	higher	taxa,	or	due	to	specimen	misidentification.	The	resulting	

noisy	or	incorrect	data	labels	then	reduce	the	effectiveness	of	the	model.	In	addition,	in	

particular	in	higher	taxonomic	categories,	the	same	name	is	assigned	to	visually	different	

images	due	to	the	distributional	shift	of	subclasses	(e.g.	different	genera	representing	a	

family	in	the	source	and	target).	Furthermore,	in	general	cross-dataset	applications,	the	

model	can	encounter	a	category	which	is	missing	in	the	source	training	data,	e.g.	a	new	

family	may	be	present.	The	treatment	of	such	anomalous	(or	out-of-distribution;	see	Tabak	

et	 al.	 2018)	 samples	 affects	 the	 reliability	 of	 the	 biodiversity	 assessment.	 As	 more	

variation	is	encountered,	to	fully	learn	the	structure	of	the	data,	the	model	should	scale	

with	the	size	and	complexity	of	the	training	data.	

In	practice,	due	to	these	problems	of	intra-class	variability	and	the	inconsistencies	

of	 the	 photographs,	 the	 success	 of	 deep	 learning	 in	 taxonomy	 to	 date	 has	 been	 in	

situations	where	a	bespoke	image	library	is	available	that	holds	a	narrow	representation	

of	the	query	taxa	and	images	under	the	same	aspect	and	imaging	conditions	(brightness,	

angle,	magnification,	etc;	Buschbacher	et	al.	2020;	Valan	et	al.	2021).	However,	the	utility	

of	 these	methods	 remains	 largely	 untested	 in	 the	 application	 to	 samples	 from	 poorly	

characterised	 species,	 as	 those	 from	 bulk	 arthropod	 sampling	 of	 fauna	 in	 unexplored	

areas	that	have	not	been	encountered	previously	in	the	image	reference	set.	Ideally,	such	

samples	would	be	identifiable	against	images	drawn	from	other	sources,	for	example	an	

image	database	of	well	characterised	regional	communities	and	taxa	obtained	elsewhere.	

Here,	we	test	 the	usage	of	deep	 learning	 for	 insect	classification	based	on	bulk-

sample	 images	 in	 real-world	 scenarios	 of	 high-throughput	 biodiversity	 surveys.	 We	

characterise	bulk	samples	of	poorly	known	communities	of	Coleoptera	(beetles),	where	

high	species	diversity,	idiosyncratic	morphological	variation,	and	the	constraints	of	bulk	

images	provide	a	challenging,	but	realistic	situation	for	the	machine-based	classification.	

The	aim	was	a	classification	at	family-level,	as	the	first	step	towards	an	in-depth	study	of	
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biodiverse	 regions	and	complex	ecosystems	around	 the	globe.	 Specifically,	we	address	

three	parameters	to	affect	the	prediction	accuracy:	(i)	the	quality	of	images,	especially	the	

resolution	 of	 the	 image	 using	 standard	 macrophotography	 versus	 high-resolution	

stacking	 technology;	 (ii)	 the	 transferability	of	 identifications	across	 communities	 from	

different	habitats	and	continents,	i.e.	when	the	input	subclass	is	not	present	in	the	training	

data;	and	(iii)	the	impact	of	the	size	and	complexity	of	the	training	set.	We	conclude	that	

the	prediction	success	for	the	classification	depends	on	the	beetle	family	(i.e.	some	classes	

are	more	easily	predicted)	and	the	number	of	images	and	the	image	acquisition	methods	

of	the	training	set.	

	

MATERIALS	AND	METHODS	

	

Sample	collection	and	taxon	selection	

	

As	the	target	for	classification,	we	used	a	collection	of	leaf-litter	samples	from	a	

total	of	46	sites	distributed	across	five	forest	habitats	of	the	Troodos	mountain	range	of	

Cyprus	(Fig.	1).	These	samples	were	processed	as	described	by	Noguerales	et	al.	(2021)	

to	 extract	 bulk	 Coleoptera	 specimens	 from	 the	 substrate	 using	 a	 Berlese	 apparatus.	

During	 sample	processing,	 single	 specimens	were	 selected	 from	 the	bulk	 samples	and	

individually	 processed.	 Bulk	 samples	 and	 single	 specimens	 were	 preserved	 in	 100%	

ethanol	and	subsequently	photographed	following	two	different	imaging	protocols	(see	

below).	 For	more	 details	 on	 soil	 sampling	 and	 habitat	 descriptions,	 see	 Arribas	 et	 al.	

(2016)	and	Noguerales	et	al.	(2021),	respectively.	During	sample	processing	and	imaging,	

the	most	common	families/subfamilies,	with	5	or	more	photographs	per	taxonomic	rank,	

were	identified	and	used	for	downstream	analysis.	The	chosen	families	were:	Brentidae,	

Carabidae,	 Chrysomelidae,	 Cryptophagidae,	 Curculionidae,	 Latridiidae,	 Leiodidae,	

Melyridae,	 Ptilidae,	 Staphylinidae:Scaphidiinae,	 Staphylinidae	 (excluding	 Scaphidiinae)	

and	Tenebrionidae	(Table	S1).	 	
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Figure	 1.	 Schematic	 diagrams	 summarizing	 the	 experimental	 workflow	 of	 the	 study,	
depicting	the	geographical	context	and	the	different	imaging	procedures	for	generating	the	
three	image	datasets:	GH,	Global	High	Quality,	LH,	Local	High	Quality;	LL,	Local	Low	Quality.	
Taxa	 classification	 was	 performed	 using	 two	 alternative	 deep	 learning	 algorithms:	
convolutional	neural	network	(CNN)	and	domain	adversarial	neural	network	(DANN).	For	
more	details	on	algorithm-specific	architectures,	see	Figure	S1.	
	

	 	

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473797doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473797
http://creativecommons.org/licenses/by/4.0/


-	8	-	

Image	data	acquisition	

	

Local	High	Quality	(LH)	and	Local	Low	Quality	(LL)	datasets	

	

Specimens	from	bulk-samples	were	air-dried	and	placed	at	regular	distances	onto	

filter	paper	in	a	Petri	dish.	In	cases	of	large	disparity	in	body	size,	we	split	the	bulk	samples	

into	different	size	categories	which	were	separately	photographed	in	order	to	improve	

the	focus	and	resolution	across	all	specimens	regardless	of	their	body	size.	As	much	as	

possible,	specimens	were	positioned	for	photography	in	the	dorsal	view.	

Bulk-sample	photographs	were	taken	using	a	Zeiss	AXIO	Zoom.V16	Stereo	Zoom	

Microscope	equipped	with	a	Zeiss	AxioCam	HRc	(High	Resolution	13	Megapixels	Color	

Microscope)	camera	at	the	Imaging	and	Analysis	Centre	at	the	Natural	History	Museum	

(NHM)	in	London,	United	Kingdom.	This	on-axis	instrument	with	motorised	focus	drive	

and	 motorised	 stage	 enables	 large	 high-resolution	 images	 by	 dividing	 the	 field	 into	

regular	tile-images	which	were	subsequently	xyz	stitched.	Depending	on	the	sample	size,	

photographs	were	 taken	 by	 dividing	 them	 into	 16-64	 tiles,	 each	with	 25-30	 slices	 (z-

stacks)	using	the	Zeiss	NEO	2	Blue	Edition	software.	We	rendered	z-stack	images	with	the	

Helicon	Focus	v.5.3.14	software	(https://www.heliconsoft.com)	using	the	pyramid-based	

algorithm	(‘Method	C’)	and	default	parameters.	Focus	stacking	was	also	performed	using	

the	depth-map	algorithm	(‘Method	B’)	 in	Helicon	Focus	with	a	radius	value	of	8	and	a	

smoothing	parameter	of	4,	 yielding	qualitatively	 similar	 images	 to	 the	 former	method.	

Consequently,	only	photos	from	‘Method	C’	were	used	for	downstream	analyses.	

Finally,	 we	 manually	 cropped	 single	 specimen	 photos	 from	 the	 bulk-sample	

images	 using	 INSELECT	 v.0.1.35	 software	 (Hudson	 et	 al.	 2015).	 After	 some	 minor	

corrections	 of	 bounding	 edges,	 cropped	 single-specimen	 images	 were	 exported	 and	

taxonomically	identified	at	the	family/subfamily	level	by	the	authors.	Only	whole-bodied	

specimens	were	 considered	 for	 further	 analyses.	 The	 cropped	 images	were	 resized	 to	

255x255	 pixels	 for	 subsequent	 classification	 tasks.	 When	 an	 image	 was	 not	 an	 exact	

square,	the	edges	were	padded	using	the	average	pixel	value	of	the	outermost	portions	of	

the	image	to	enforce	a	square	shape.	

The	individual	frames	cropped	from	the	bulk	samples	were	denoted	the	Local	High	

Quality	(LH)	data	set,	referring	to	the	fact	that	they	were	obtained	from	a	local	area	and	

thus	represent	a	small	taxonomically	confined	set,	and	taken	at	high	image	resolution.	The	
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LH	dataset	represented	the	best	case	scenario,	where	high-resolution	training	images	of	

local	samples	are	obtained	under	controlled	conditions	with	high-performance	imaging	

equipment.	

During	 the	 processing	 of	 local	 bulk	 samples,	 the	 selected	 individual	 specimens	

were	also	photographed	using	a	 conventional	stereoscope	NIKON	SMZ1270i	equipped	

with	a	NIKON	DS-Fi3	Microscope	Camera	(5.9	megapixels)	controlled	by	the	NIKON	DS-

L4	v.1.5.0.3	control	unit.	These	photographs	were	intended	to	represent	a	more	realistic	

scenario	of	local	specimens	being	photographed	during	field	sampling	and	sample	sorting	

in	local	lab	facilities	using	conventional	instruments.	These	images	were	denoted	Local	

Low	Quality	(LL)	dataset.	

	

Global	High	Quality	(GH)	dataset	

	

We	also	obtained	a	wider	sample	of	images	from	a	global	catalogue	of	Coleoptera	

specimens	available	at	https://www.flickr.com/photos/site-100/.	These	images	had	been	

obtained	from	local	sampling	campaigns	at	11	sites	throughout	Central	America,	Africa	

and	 Southeastern	Asia	 (see	Table	 S2)	 and	 photographed	 in	 bulk	 using	 the	 Zeiss	AXIO	

Zoom,	as	described	above,	while	others	were	individually	taken	at	high-resolution	on	a	

single	lens	reflex	(SLR)	camera	(Canon	EOS	500D)	and	macro	lens	(Canon	MP-E	65mm	

f/2.8	 1-5x	 Macro).	 Helicon	 Focus	 software	 was	 used	 to	 render	 z-stack	 images,	 as	

aforementioned	described.	This	dataset	was	denoted	the	Global	High	Quality	(GH)	dataset.	

For	each	of	the	selected	families,	all	specimen	photographs	available	for	the	respective	

sites	 were	 used.	 Relative	 numbers	 of	 available	 specimens	 per	 family	 were	 usually	

correlated	across	sites,	with	greatest	numbers	in	Staphylinidae.	The	numbers	of	images	

in	the	three	data	sets	are	shown	in	Table	S1.	

	

Image	classification	with	neural	network	(NN)	

	

Feature	transfer	and	neural	network	classifier	

	

We	employed	the	strategy	of	feature	transfer	from	the	pre-trained	convolutional	

neural	network	(CNN)	proposed	by	Valan	et	al.	(2019).	We	chose	the	outputs	of	the	fifth	

convolutional	block	of	the	VGG19	model	after	2-dimensional	average	pooling	as	a	set	of	
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features	for	an	image,	based	on	the	results	of	Valan	et	al.	(2019)	and	our	pilot	analyses.	

These	 512-dimensional	 image	 features	 were	 used	 for	 the	 classification	 with	 a	 neural	

network.	Alternative	pre-trained	models,	VGG16	and	ResNet,	were	also	tested,	but	were	

outperformed	by	the	VGC19	model.	

The	neural	network	classifier	 consisted	of	 two	 fully	 connected	 (FC)	 layers	with	

ReLU	activation	and	a	softmax	output	layer	(Fig.	1	and	Fig.	S1).	The	dropout	was	applied	

after	the	FC	layers	with	a	dropout	rate	of	0.6.	The	neural	network	was	trained	with	the	

stochastic	gradient	descent	algorithm	with	the	softmax	cross-entropy	loss.	The	numbers	

of	units	in	the	two	FC	layers	(512	and	256	for	the	first	and	second	FC	layers	respectively)	

and	the	dropout	rate	were	determined	by	five-fold	cross-validation	with	a	random	200	

images	 of	 the	 GH	 dataset,	 and	 these	 hyperparameters	 were	 used	 throughout	 all	

classification	tasks	in	this	study.	

	

Within-dataset	classification	

	

The	CNN	model	was	trained	with	N	images	randomly	selected	from	the	dataset	and	

predicted	the	class	of	n	test	images	randomly	selected	from	the	rest.	N	ranged	between	

100	and	700	for	LH,	50	and	250	for	LL,	and	100	and	900	for	GH.	The	number	of	test	images,	

n,	was	 set	 to	200	 for	LH	and	GH,	 and	50	 for	LL	due	 to	 the	 small	 size	of	 the	dataset.	To	

evaluate	the	consistency	of	prediction	accuracy,	ten	replicates	were	generated	for	each	

scenario	of	N	 images.	The	output	of	 the	 final	softmax	 layer	was	used	as	 the	prediction	

probability	 of	 each	 class,	 and	 the	 image	 was	 classified	 to	 the	 class	 with	 the	 highest	

prediction	probability.	The	accuracy	of	the	prediction	was	measured	as	the	proportion	of	

successful	 predictions	 in	 the	 test	 set,	!"" = 	 %
&
∑ [)*+ = ),]
&

,.%
,	 where	)*+ 	is	 the	 predicted	

class	of	the	i-th	image,	), ,	the	true	class,	and	[)*+ = ),]	is	1	if	)*+ = ),	and	0	otherwise.	

The	 classification	 performance	 for	 each	 class	 was	 measured	 by	 the	 multiclass	

recall	 rate,	multiclass	 precision	 and	 the	 F1-score.	 Recall	 rate	 of	 class	c	 is	 defined	 as	 a	

proportion	of	correct	predictions	of	c	out	of	the	actual	number	of	images	of	c,	/0"1223 =
∑ [45+ .46][46.3]
7

689

∑ [46.3]
7

689

.	Multiclass	precision	is	defined	as	a	proportion	of	correct	predictions	of	c	

out	of	the	number	of	images	predicted	as	c,	:;0"<=<>?3 =
∑ [45+ .46][45+ .3]
7

689

∑ [45+ .3]
7

689

.	The	F1-score	is	

a	harmonic	mean	of	the	multiclass	recall	rate	and	precision.	Thus,	while	the	recall	rate	is	

interpreted	as	the	fraction	of	images	of	a	class	present	in	the	sample	that	are	selected,	the	
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precision	quantifies	the	fraction	of	the	images	predicted	as	members	of	a	class	that	are	

actually	 correct.	 The	 F1-score	 represents	 the	 overall	 performance	 of	 a	 classifier	with	

respect	to	these	two	measures.	

For	 the	LH	dataset,	we	 tested	 the	effects	of	 a	 locality-wise	 sampling	 strategy	on	

prediction	accuracy.	Instead	of	pooling	all	images	and	randomly	selecting	a	training	set	

from	them,	we	split	the	images	based	on	their	sampling	sites	within	Cyprus	by	generating	

separate	training	sets	composed	of	images	from	S	randomly	selected	sites	in	the	Troodos	

mountains.	Then,	the	NN	predicted	200	images	from	the	sampling	sites	not	present	in	the	

training	set.	The	number	of	sites,	S,	ranged	from	4	to	28	with	an	interval	of	4.	

In	addition,	we	used	an	LH-trained	model	 to	predict	 the	class	of	16	high-quality	
images	 belonging	 to	 8	 families/subfamilies,	 Coccinellidae,	 Elateridae,	 Endomychidae,	

Hydrophilidae,	 Laemophloeidae,	 Phalacridae,	 Scarabaeidae	 and	 Scydmaeninae,	 which	

were	not	present	in	the	training	data,	and	thus	test	the	effect	of	unknown	inputs	(hereafter	

out-of-distribution	samples)	on	the	classification	(see	Tabak	et	al.	2018).	

	

Between-datasets	classification	

	

For	 the	 between-dataset	 prediction	 the	 CNN	model	 was	 trained	 with	 a	 source	

dataset	 to	 predict	 images	 from	 a	 different	 target	 dataset.	 The	NN	was	 trained	with	N	

images	randomly	selected	 from	the	source	dataset,	which	was	then	used	to	predict	all	

images	of	the	target	dataset.	The	target	accuracy,	!""@	was	measured	as	the	proportion	

of	successful	predictions	of	 the	target	 images.	The	baseline	accuracy	within	the	source	

dataset,	!""A,	measured	in	the	within-dataset	classification	was	compared	with	the	target	

accuracy,	!""@ .	 The	 accuracy	 reduction,	∆!""(D, F) = 	!""A − !""@ ,	 was	 recorded	 as	 a	

measure	of	transferability	between	the	datasets.	High	ΔAcc	 indicates	large	reduction	of	

accuracy,	hence	difficulty	in	transfer.	We	ran	the	above	procedures	for	three	source-target	

pairs	 (training	 dataset�predicted	 dataset),	 GH�LH,	 GH�LL	 and	 LL�LH.	 These	 settings	

simulate	 two	alternative	 scenarios:	 (i)	 a	global	 image	database	 is	used	 to	predict	 local	

samples	 (GH�LH	and	GH�LL)	and	 (ii)	 conventional	 images,	 as	 those	 representing	 single-

specimen	 photographs	 by	 local	 taxonomists,	 are	 used	 to	 predict	 local	 high-resolution	

images	(LL�LH).	

	 Divergence	between	the	source	and	target	datasets	was	measured	with	a	dataset	

classification	error.	A	linear	support	vector	machine	(SVM)	was	trained	to	classify	images	
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to	the	source	or	target	dataset	with	the	features	of	200	randomly	selected	images	from	

both	 datasets.	 Conversely	 to	 above	 analyses,	 here	 the	 model	 was	 trained	 to	 classify	

datasets	 instead	 of	 taxa.	 Then,	 a	 classification	 error	 of	 the	 SVM,	 IJKLM3NOPQMRNP ,	 was	

measured	as	a	proportion	of	incorrect	predictions	of	200	test	images	sampled	from	the	

two	datasets.	An	intuitive	interpretation	of	this	measure	is	that	the	dataset	classification	

task	 is	 harder	when	 the	 feature	 distributions	between	 two	datasets	 are	more	 similar.	

Therefore,	a	large	classification	error	indicates	high	similarity	between	source	and	target	

datasets.	This	approach	is	commonly	used	to	measure	the	dataset	bias	(Tommasi	et	al.	

2017).	

	

Between-datasets	classification	with	domain	adversarial	training	

	

In	addition	to	the	ordinal	CNN	setups	described	above,	we	employed	the	domain	

adversarial	training	of	neural	networks	(DANN,	Ganin	et	al.	2016)	to	improve	the	accuracy	

of	the	between-dataset	classifications.	DANN	uses	labeled	images	from	the	source	as	well	

as	unlabeled	images	from	the	target	dataset	in	its	training	process	to	improve	the	target	

predictions.	The	DANN	model	jointly	predicts	the	taxon	(class	label)	of	the	source	images	

and	the	dataset	(domain)	of	all	input	images	(as	in	the	previous	section)	by	adding	layers	

for	 the	 dataset	 classification	 to	 the	 classifier	 (Fig.	 S1).	 The	 training	 procedure	 then	

optimizes	the	model	parameters	in	the	shared	part	of	the	network	to	not	only	minimize	

the	loss	of	the	label	classifier	(taxon	prediction)	but	at	the	same	time	to	maximize	the	loss	

of	 the	 domain	 classifier	 (dataset	 prediction).	 This	 adversarial	 training	 procedure	

optimizes	shared	 intermediate	 features	 to	be	 invariant	between	 the	 two	domains,	 and	

hence	the	model	can	generalise	across	them,	which	potentially	improves	the	accuracy	in	

target	predictions.	In	this	study,	a	softmax	layer	with	binary	cross	entropy	loss	was	added	

as	a	dataset	classifier	to	the	NN	after	the	second	FC	layer.	The	regularization	parameter,	

λ,	which	controls	the	relative	importance	of	the	two	classifiers,	were	set	to	λ	=	0.1,	0.5	and	

1.0,	and	the	best	performing	results	(λ	=	0.1)	were	reported.	

The	performance	of	the	DANN	method	was	measured	with	procedures	similar	to	

those	in	the	previous	section.	A	mixed	set	of	images	of	size	N	was	randomly	selected	from	

target	 and	 source	 datasets,	 and	 training	was	done	 using	 taxon	 labels	 from	 the	 source	

images	and	dataset	labels	for	all	images.	Next,	400	mixed	test	images	were	predicted,	and	

their	 source	and	 target	accuracies	and	 their	difference	were	 recorded.	We	applied	 the	
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DANN	to	the	three	pairs	from	the	previous	section.	The	total	number	of	images	N	ranged	

between	300	and	800	for	LL�LH,	400	and	1400	for	GH�LH,	and	300	and	1000	for	GH�LL.	The	

proportions	 of	 source	 images	 were	 0.3,	 0.67	 and	 0.83	 for	 LL�LH,	 GH�LH	 and	 GH�LL	

respectively,	which	yielded	training	images	from	the	source	similar	in	number	to	the	other	

training	setups.	The	effect	of	DANN	on	target	accuracy	was	tested	using	linear	regression	

with	the	model	type	and	the	number	of	images	as	explanatory	variables.	Models	of	neural	

networks	were	 implemented	 in	 Python	with	 Keras	 (https://keras.io)	 and	 TensorFlow	

(https://www.tensorflow.org)	libraries,	and	all	statistical	analyses	were	conducted	with	R	

(R	Core	Team	2021).	

	

RESULTS	

	

Performance	of	within-dataset	classification	

	

Effects	of	datasets	and	the	number	of	images	

	

The	 accuracy	 of	 within-dataset	 classification	 and	 the	 effect	 of	 the	 number	 of	

training	 images	 varied	 among	 datasets.	 The	 accuracy	 for	 the	 LH	 samples	 generally	

improved	with	an	increasing	number	of	training	images	and	reached	an	average	of	96%	

with	700	images	(Fig.	2a).	The	maximum	classification	accuracy	for	the	LH	was	98%.	When	

the	locality-wise	training	was	performed,	the	accuracy	slightly	decreased	to	an	average	of	

91%	with	28	localities,	which	were	roughly	equivalent	to	680	images.	

The	within-dataset	classification	accuracy	of	the	LL	images,	taken	by	a	conventional	

stereoscope	and	camera,	was	generally	lower	compared	to	the	LH	dataset.	The	accuracy	

increased	monotonically	with	the	increasing	number	of	images	and	reached	an	average	of	

89%	 with	 250	 images	 (Fig.	 2b).	 The	 within-dataset	 classification	 accuracy	 of	 the	 GH	

images	was	also	lower	compared	to	the	LH.	The	improvement	of	accuracy	was	slower	than	

for	the	other	datasets,	and	the	average	accuracy	was	84%	with	the	maximum	number	of	

900	images	(Fig.	2c).	 	
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Figure	2.	Effect	of	increasing	the	number	of	images	on	prediction	accuracy.	Training	the	
convolutional	neural	network	(CNN)	on	a	subset	of	 images	and	prediction	of	 the	class	of	
images	for	(a)	Local	High	Quality	(LH)	images	selected	either	at	random	or	under	locality-
wise	selection	for	predicting	the	class	of	LH	images,	(b)	Local	Low	Quality	(LL)	images	for	
training	and	predicting	the	class	of	either	LL	or	LH	images,	and	(c)	Global	High	Quality	(GH)	
images	for	training	and	predicting	the	class	of	either	LL,	LH	or	GH	images.	
	

	
	

Classification	error	was	visualised	as	a	scaled	confusion	matrix	for	a	trial	with	400	

training	images	in	the	LH	random	sampling	(Table	S3).	The	large	taxonomic	groups	were	

correctly	classified	in	most	cases.	For	example,	four	families	(Carabidae,	Curculionidae,	

Ptiliidae	and	Staphylinidae)	were	classified	with	more	than	95%	recall	rate	(Fig.	3a),	while	

the	remaining	taxa	had	widely	different	recall	rates	ranging	from	0%	to	82%	(Fig.	3a).	In	

the	extreme	case	of	the	family	Melyridae,	with	the	lowest	number	of	available	images	(n	

=	5),	no	images	were	predicted	correctly	(Fig.	3a).	When	a	taxon	had	>50	images,	its	recall	

rate	and	precision	approached	1.0	(Fig.	3a,c).	The	F1-scores	showed	a	similar	pattern,	i.e.	

for	 those	 images	 that	 were	 called	 to	 be	 members	 of	 a	 taxon,	 these	 predictions	 were	

generally	correct	(Fig.	3e).	Class-wise	recall	rates	and	F1-scores	showed	a	strong	positive	

correlation	with	the	number	of	images	(rho	=	0.81	and	0.85,	respectively;	Fig	3a,e).	The	

effect	of	the	number	of	images	on	the	class-wise	precision	was	also	positive,	but	slightly	

weaker	(rho	=	0.41,	Fig.	3c).	Failed	predictions	included	ventral	views	of	insect	bodies,	

specimens	with	missing	body	parts	or	multiple	specimens	in	a	single	image	(see	Fig.	S2).	

Apart	from	these	irregular	images,	most	failed	predictions	were	for	taxa	represented	by	

<20	images	(Fig.	3a,c,e).	 	
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Figure	 3.	 Effect	 of	 the	 increasing	 number	 of	 images	 on	 recall	 rates	 (panels	 a	 and	 b),	
multiclass	precision	(panels	c	and	d)	and	F1-scores	(panels	e	and	f).	We	used	400	randomly	
selected	Local	High	Quality	(LH)	images	for	training	and	predicting	the	class	of	LH	images	
(within-dataset	classification)	(left	panels),	and	800	randomly	selected	Global	High	Quality	
(GH)	images	for	training	and	predicting	the	class	of	LH	images	(right	panels).	Note	that	x-
axes	representing	the	number	of	images	on	a	logarithmic	scale.	Circle	sizes	represent	the	
number	of	countries	where	samples	of	a	given	family	were	collected	from	(as	a	proxy	of	intra-
family	morphological	variation).	
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Prediction	probabilities	and	out-of-distribution	samples	

	

Prediction	probabilities	for	the	successful	predictions	(average	0.98)	were	overall	

higher	than	for	the	failed	predictions	(average	0.79,	Fig.	4),	when	using	the	LH	dataset	with	

400	training	images.	For	images	assigned	to	families	not	present	in	the	training	data	(that	

is,	out-of-distribution	samples),	the	prediction	probabilities	were	also	lower	on	average	

than	 for	 the	 successful	predictions	 (average	0.83,	Fig.	4).	However,	 four	samples	were	

predicted	 incorrectly	with	probabilities	of	more	 than	0.95	 (Fig.	4).	 For	example,	 three	

images	of	Coccinellidae,	Hydrophilidae	and	Phalacridae	were	classified	as	Ptiliidae	with	

probabilities	>0.95.	

To	 detect	 the	 failed	 predictions,	 we	 set	 conservative	 threshold	 values	 for	 the	

prediction	 probabilities	 and	 marked	 samples	 below	 the	 threshold	 as	 potential	

misclassification.	When	the	threshold	value	was	set	to	0.95,	92%	of	successful	predictions	

were	 retained	 while	 76%	 of	 failures	 and	 75%	 of	 out-of-distribution	 samples	 were	

correctly	detected	as	misclassifications	(Fig.	4).	

	

Figure	 4.	 Prediction	 probabilities	 for	 the	 successful,	 failed	 and	 out-of-distribution	
predictions	at	a	0.95	threshold	(horizontal	line).	(a)	Intra-dataset	predictions	of	LH	images	
using	400	randomly	selected	images	for	training.	(b)	predictions	of	LH	images	using	800	GH	
images	for	training.	
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Performance	of	between-dataset	classification	

	

The	accuracy	of	cross-dataset	predictions	depended	on	the	combination	of	source	

and	target	datasets.	We	first	considered	the	effect	of	image	quality.	When	the	LL	images	

were	used	to	train	the	NN	and	then	to	predict	the	LH	images,	the	accuracy	remained	largely	

constant	at	71%	for	250	images	(Fig.	2b).	The	accuracy	reduction	(ΔAcc),	i.e.	the	reduction	

in	 success	 of	 predictions	 compared	 to	 the	 predictions	 expected	 from	 within-dataset	

classification,	 also	 rapidly	 increased	 with	 the	 number	 of	 images,	 indicating	 that	 the	

training	with	LL	images	did	not	improve	the	prediction	of	the	LH	images	(Fig.	5).	

	

Figure	5.	The	effect	of	increasing	numbers	of	images	on	the	accuracy	reduction	in	across-
dataset	predictions.	Subsets	of	randomly	selected	images	of	one	dataset	are	used	for	training	
and	 predicting	 the	 class	 of	 another	 set,	 as	 indicated	 by	 different	 colours.	 The	 x-axis	
representing	 the	number	of	 images	 is	 on	a	 logarithmic	 scale.	Higher	accuracy	 reduction	
indicates	 a	worse	 performance	 on	 prediction	 compared	 to	 the	within-dataset	 prediction	
accuracy.	The	solid	and	dashed	lines	represent	results	of	the	convolutional	neural	network	
(CNN)	and	domain	adversarial	neural	network	(DANN),	respectively.	Note	that	only	the	LL	
to	LH	prediction	accuracy	improved	with	the	use	of	DANN.	
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Second,	we	considered	the	power	of	 the	global	dataset	 to	predict	 the	 local	data,	

using	 the	 GH	 and	 the	 LH	 as	 a	 source-target	 pair.	 The	 prediction	 accuracy	 for	 this	

comparison	was	close	to	the	within-GH	predictions,	with	the	average	accuracy	being	79%	

and	the	maximum	82%	with	900	images	(Fig.	2c),	indicating	that	the	local	set	from	the	

Cyprus	collection	(LH)	behaves	in	a	similar	way	as	the	other	local	sets	contributing	to	the	

GH	 dataset.	 The	 accuracy	 reduction	 from	GH	 to	 LH	was	 on	 average	 0.04	 and	 remained	

almost	constant	after	300	images	(Fig.	5).	The	power	of	the	GH	dataset	required	the	high	

image	quality	exhibited	by	the	target	(LH);	when	the	GH-trained	model	was	used	to	predict	

the	LL	images,	the	accuracy	was	significantly	lower	(Fig.	2c).	This	was	also	evident	from	

the	increased	accuracy	reduction	with	increased	number	of	images;	whereas	the	GH	to	GH	

predictions	improved	with	more	images,	the	GH	to	LL	predictions	did	not,	resulting	in	a	

higher	ΔAcc	(Fig.	5).	The	dataset	classification	errors	(εsouce-target)	were	0.20	(GH�LH),	0.06	

(GH�LL)	and	0.01	(LH�LL),	indicating	high	similarity	between	the	GH	and	LH	images	and	the	

distinctiveness	of	the	LL.	

Table	S4	shows	a	confusion	matrix	of	the	GH�LH	prediction	trained	by	800	images.	

Chrysomelidae,	Curculionidae	and	Staphylinidae	had	recall	rates	>0.90	(Fig.	3b),	but	more	

taxa	were	 incorrectly	 classified	 than	 in	 the	 case	 of	 the	 LH�LH	 prediction.	No	 image	 of	

Leiodidae	 and	 Scaphidiinae,	 with	 the	 available	 training	 images	 <50,	 was	 predicted	

correctly	(Fig.	3b).	Misclassification	mostly	affected	morphologically	similar	taxa,	e.g.	the	

reciprocal	confusion	of	Brentidae	and	Curculionidae	(Table	S4).	

There	was	a	strong	positive	correlation	between	class-wise	recall	rates	and	the	

number	of	images	in	the	source	dataset	(rho	=	0.77,	Fig.	3b).	Three	taxa	with	>300	images	

had	recall	rates	>0.95,	while	the	taxa	with	<40	images	had	recall	rates	<0.4	(Fig.	3b).	The	

effect	of	the	number	images	on	the	class-wise	precision	and	F1-score	was	also	positive,	

but	 slightly	weaker	 (rho	 =	0.16	 and	 0.42,	 respectively;	 Fig.	 3d,f).	 Surprisingly,	 the	 F1-

scores	were	greatly	reduced	relative	to	the	recall	score	for	the	Chrysomelidae,	indicating	

the	precision	of	the	prediction	was	low	even	if	the	recall	was	high	(Fig.	3d,f),	i.e.	the	true	

Chrysomelidae	were	correctly	classified,	but	many	other	taxa	were	incorrectly	classified	

as	Chrysomelidae.	

As	observed	in	the	within-dataset	classification,	average	prediction	probabilities	

of	successful	predictions	(0.98)	were	consistently	higher	than	the	failed	predictions	(0.84)	

and	out-of-distribution	samples	(0.77).	However,	failed	predictions	more	frequently	had	

probabilities	>	0.95	(Fig.	4b).	
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The	performance	of	the	domain	adversarial	training	

	

The	 DANN	 significantly	 improved	 the	 target	 accuracy	 of	 the	 LL�LH	 prediction,	

which	 involves	 images	 from	 very	 different	 setups	 (Fig.	 6).	 A	 linear	 regression	 model	

showed	that	the	target	accuracy	increased	by	6.2%	(Fig.	6)	and	the	accuracy	reduction	

decreased	by	0.060	when	the	DANN	model	was	used	with	 labeled	LL	and	unlabeled	LH	

images	(Fig.	5).	The	average	target	accuracy	was	79%	with	200	labeled	LL	images	and	400	

unlabeled	LH	images	(Fig.	6),	approaching	the	same	level	of	accuracy	as	GH�LH	predictions.	

	

Figure	6.	Effect	of	the	number	of	images	on	prediction	accuracy	of	the	convolutional	neural	
network	(CNN,	panels	a	and	c)	and	the	domain	adversarial	neural	network	(DANN,	panels	b	
and	d)	training	for	the	Local	Low	Quality	(LL)	and	Local	High	Quality	(LH)	images.	Top	panels	
(a	 and	 b)	 represent	 between-dataset	 predictions	 (LL�LH)	 while	 bottom	 panels	 (c	 and	 d)	
indicate	within-dataset	predictions	(LL�L).	Solid	lines	represent	regression	lines	between	the	
number	of	images	and	accuracy.	For	both	between-	and	within-dataset	predictions,	models	
using	DANN	were	trained	with	a	mixed	set	of	randomly	selected	images	from	the	LL	and	LH	
datasets.	For	other	dataset	comparisons,	see	Figures	S3	and	S4.	
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On	the	contrary,	the	DANN	did	not	improve	the	target	accuracy	when	the	GH	was	

used	as	a	source	dataset	(Fig.	S3	and	S4).	The	GH�LH	target	accuracy	was	on	average	0.75	

with	940	labeled	GH	images	and	460	unlabeled	LH	images	(in	total	1400	images),	which	

was	significantly	lower	than	the	between-dataset	predictions	by	the	plain	NN	model	(Fig.	

S3).	In	the	GH�LL	prediction,	a	similar	trend	was	observed	(Fig.	S4)	and	the	target	accuracy	

was	not	significantly	different	from	the	NN.	

	

DISCUSSION	

	

This	work	 adds	 to	 the	 growing	 number	 of	 studies	 demonstrating	 the	 power	of	

CNNs	 in	 image-based	 taxonomic	 classification.	 Specifically,	we	 tested	 the	possibility	of	

classifying	 specimens	 from	 bulk	 samples	 of	 beetles,	 whereby	 unknown	 local	 samples	

were	 classified	 using	 a	model	 trained	on	 similarly	 photographed	 bulk	 samples	 from	 a	

global	sampling	effort.	We	envision	that	mixed	trap	samples	in	future	will	be	routinely	

photographed	with	high-resolution	cameras,	producing	huge	numbers	of	valuable	images,	

but	 unlike	most	 existing	 studies	 that	 use	 pinned	 or	 cardboard-glued	 specimens,	 these	

images	 present	 specimens	 in	 diverse	 angles,	 habitus,	 magnification,	 and	 lighting	

(Schneider	et	al.	2021;	Wührl	et	al.	2021).	We	show	that	these	images	provide	sufficient	

information	for	specimens	to	be	identified	as	members	of	particular	families	of	Coleoptera.	

Within	a	local	dataset,	classification	accuracy	regularly	reached	95%	or	more,	which	is	

similar	 to	 findings	 from	 other	 studies	 using	 more	 standardised	 photographs	 from	

museum	collections	(e.g.	~92%	and	96%	for	Diptera	and	Coleoptera,	respectively;	Valan	

et	al.	2019).	We	also	confirm	that	classification	performance	depends	on	the	number	of	

images	 used	 for	 training	 (Figs.	 2-3),	 as	widely	 seen	 in	 image	 recognition	 applications	

generally	(Donahue	et	al.	2013)	and	in	insect	classification	in	particular	(e.g.	>90%	recall	

rates	were	obtained	for	taxa	with	>50	images;	Valan	et	al.	2019,	2021).	We	find	that	the	

prediction	accuracy	generally	does	not	increase	further	after	about	200	images	in	each	of	

the	three	datasets	used	here.	However,	the	degree	of	accuracy	is	greatly	affected	by	the	

image	quality	and	the	complexity	of	the	dataset:	both	the	LL	(low	image	quality)	and	in	

particular	 the	 GH	 (high	 complexity)	 datasets	 show	 comparatively	 low	 accuracy	 of	

predictions	if	trained	on	themselves.	 	
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Utility	of	global	databases	for	classifying	local	faunas	

	

The	 critical	 question	 in	 this	 study	 is	 about	 the	 success	 of	 domain	 transfer	 in	 a	

situation	where	the	source	and	target	data	are	from	different	faunas.	We	here	used	the	

challenging	 case	 of	 the	 below-ground	 fauna	 of	 a	Mediterranean	 island	 as	 the	 domain	

target	for	images	trained	on	a	set	of	above-ground	samples	from	several	tropical	forests	

across	 the	 globe	 (the	 GH	 set),	 which	 presumably	 do	 not	 share	 any	 species	 or	 genera.	

However,	most	local	bulk	samples,	even	from	such	disparate	ecosystems,	share	a	similar	

set	at	 the	 family	 level,	especially	 for	a	small	number	of	species-rich	 families	which	are	

found	in	similar	relative	proportions	in	most	samples.	We	find	that	the	GH�LH	prediction	

suffered	only	low	accuracy	reduction,	confirming	the	possibility	of	classifying	the	high-

throughput	images	from	Cyprus	by	training	a	convolutional	neural	network	(CNN)	model	

with	the	global	images	even	though	the	target	species	are	not	present	in	the	training	data.	

We	note	that	 the	GH	dataset	 is	a	complex	composite	of	samples	 from	11	different	sites	

around	the	globe,	collected	using	a	range	of	different	trapping	methods	(which	explains	

why	the	within-dataset	accuracy	was	lower	than	in	the	other	datasets).	We	argue	that	this	

is	 not	 necessarily	 a	 negative	 feature,	 as	 such	 a	 complexity	may	 allow	 the	 CNN	model	

trained	on	this	set	to	capture	general	family	traits	of	the	global	fauna	and	thus	make	it	

suitable	for	a	greater	range	of	classification	tasks	at	local	level.	The	high	accuracy	obtained	

using	 the	 global	 training	 set	 indicates	 that	 it	 is	 not	 strictly	 necessary	 to	 create	 local	

reference	 databases	 for	 training,	when	 targeting	 higher	 taxonomic	 levels.	This	 finding	

opens	 the	 way	 for	 local	 biodiversity	 assessment	 studies	 around	 the	 globe	 using	 a	

universal	 training	 set.	Global	databases	have	 the	additional	 advantage	of	offering	high	

numbers	of	images	per	taxon,	which	is	more	difficult	to	obtain	locally,	while	it	is	critical	

for	 increasing	 the	 performance	 of	 the	 CNN-based	 classification	 (Fig.	 2;	Donahue	 et	 al.	

2013;	Valan	et	al.	2019,	2021).	

	 Despite	the	high	prediction	accuracy	of	the	dataset	as	a	whole,	some	taxa	may	show	

consistently	 lower	 classification	 performance.	 The	 primary	 factor	 affecting	 recall	 and	

precision	is	the	number	of	images	per	family.	The	required	quantity	was	available	only	for	

the	 largest	 families	 (which	 were	 also	 available	 for	 the	 greatest	 number	 of	 countries	

globally,	as	a	measure	of	complexity	of	the	training	set).	However,	a	few	taxa,	including	

the	widely	sampled	Chrysomelidae,	showed	low	F1-scores	even	with	a	large	number	of	

images	(Fig.	3b,d,f).	This	example	is	particularly	striking	because	of	the	high	recall	rate,	
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but	low	precision,	i.e.	while	most	specimens	of	Chrysomelidae	in	the	sample	are	identified	

with	a	high	prediction	probability,	the	model	misclassifies	a	lot	of	them	and	incorrectly	

assigns	specimens	of	other	families	to	them.	The	Chrysomelidae	behaves	poorly	against	

the	local	LH	model,	but	this	is	commensurate	with	a	low	representation	of	images	(Fig.	

3a,c,e).	 The	 finding	 may	 suggest	 a	 negative	 impact	 of	 within-family	 morphological	

disparity	 on	 classification	 precision,	 possibly	 only	 present	 in	 the	 wider	 GH	 dataset.	

Interestingly,	Chrysomelidae	also	showed	low	classification	performance	in	the	study	of	

Valan	et	al.	(2019).	The	family	is	composed	of	morphologically	rather	distinct	subfamilies,	

and	an	 increased	number	of	 images	may	help	 to	unveil	 the	 subclasses	generating	 low	

performance	models.	

	

Lessons	from	combining	DANN	with	differing	databases	

	

We	 show	 that	 photographs	 taken	 from	 similar	 imaging	 setups	 (GH	 and	 LH)	 are	

readily	 used	 for	 between-region	 image	 classifications	 while	 images	 taken	 by	 a	

conventional	stereoscope	(LL)	exhibited	a	large	accuracy	reduction	for	the	prediction	of	

the	local	high	quality	dataset.	Considering	the	nearly	identical	taxonomic	composition	of	

the	LH	and	LL	datasets,	 the	 large	accuracy	reduction	 indicates	a	negative	 impact	of	 the	

original	 image	quality	and	the	 lack	of	standardization	between	the	target-source	pairs.	

The	overall	dissimilarity	of	LH	from	GH	and	LL	measured	by	dataset	classification	errors	

also	suggest	 a	negative	effect	of	non-standardized	 imaging	on	prediction	performance.	

These	results	are	in	accordance	with	the	reduction	in	classification	accuracy	observed	by	

other	studies	comparing	different	imaging	procedures,	e.g.	training	with	high-resolution	

museum	 specimens	 to	 predict	 field	 images	 (Knyshov	 et	 al.	 2021).	 The	 application	 of	

alternative	 algorithms	 may	 overcome	 limitations	 resulting	 from	 the	 usage	 of	 highly	

different	 images	taken	by	unstandardized	 imaging	conditions.	 In	 the	current	study,	we	

could	successfully	ameliorate	the	accuracy	reductions	between	LH	and	LL	using	DANN,	a	

method	 designed	 for	 domain	 adaptation	 (Ganin	 et	 al.	 2016).	 However,	 in	 other	

combinations	 of	 datasets	 such	 as	 GH	 and	 LH,	 the	 DANN	 did	 not	 improve	 the	 target	

prediction	performance.	This	may	be	due	to	poor	hyperparameter	tuning	or	insufficient	

training	of	the	model	with	a	complex	loss	function	(Kouw	&	Loog	2021).	Nevertheless,	our	

study	would	offer	some	evidence	that	DANN	(or	domain	adaptation	techniques	in	general)	
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can	 be	 considered	 a	 method	 of	 choice	 when	 a	 standardized	 image	 acquisition	 is	 not	

available.	

	

Improvements	from	using	alternative	metrics	for	model	performance	

	

While	 CNN-based	 image	 classification	 for	 biodiversity	 assessment	 is	 becoming	

increasingly	 popular,	 its	 performance	 is	 not	 always	 assessed	 with	 a	 broad	 set	 of	

performance	metrics.	As	observed	in	Chrysomelidae,	the	reduction	of	performance	was	

only	detectable	in	the	multiclass	precisions	and	F1	scores,	but	not	in	the	recalls,	which	

revealed	a	specific	difficulty	in	the	classification	of	this	group.	Given	the	inferential	power	

of	 these	 performance	 metrics,	 we	 encourage	 their	 integration	 in	 biodiversity-related	

applications.		

Another	overlooked	metric	is	the	confidence	of	predictions.	We	could	detect	failed	

predictions	and	potential	out-of-distribution	samples	by	setting	a	threshold	value	on	the	

probabilities.	In	accordance	with	Hendrycs	&	Gimpel	(2017),	such	misclassified	or	out-of-

distribution	 samples	 were	 predicted	 with	 consistently	 lower	 prediction	 probabilities.	

Because	 out-of-distribution	 samples	 are	 common	 in	 biodiversity	 surveys,	 detection	 of	

unknown	 target	 samples	 based	 on	 low	 prediction	 confidence	 is	 particularly	 useful.	 A	

potential	difficulty	of	this	approach	is	that	calibration	of	the	threshold	requires	extra	data.	

Conventional	deep	neural	networks	can	be	uncalibrated,	that	is,	prediction	probabilities	

do	not	precisely	reflect	prediction	accuracy	(Guo	et	al.	2017).	Such	uncalibrated	models	

can	make	an	 incorrect	prediction	with	excessively	high	 confidence.	This	overconfident	

failure	is	noticeable	in	our	analysis	(Fig.	4b).	Therefore,	additional	labeled	samples	are	

required	to	set	a	robust	threshold	for	the	identification	of	failure	and	out-of-distribution	

samples.	Methods	for	explicit	calibration	of	prediction	probabilities	or	detection	of	out-of-

distribution	samples	without	additional	data	(e.g.	Hsu	et	al.	2020;	Mukhoti	et	al.	2020)	are	

being	actively	developed	in	the	machine	learning	field,	and	applying	those	methods	is	a	

potential	future	direction.	As	the	DANN	could	remove	the	dataset	biases	caused	by	the	

imaging	instruments,	the	purpose-specific	models	will	expand	the	possibility	of	machine	

learning	applications	to	biodiversity	surveys	(see	Høye	et	al.	2020).	 	
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Building	the	global	database	for	CNN-based	classification	

	

As	new	images	become	available	for	ever	more	species,	the	reference	library	for	

taxonomic	 identification	 is	rapidly	growing.	Our	training	set	was	derived	from	various	

biodiversity	hotspots	around	the	world	and	was	classified	at	 the	 level	of	 families	only.	

Given	the	geographic	and	taxonomic	distance	of	these	samples,	the	family	category	is	the	

only	 meaningful	 level	 exhibiting	 overlap	 of	 source	 and	 target,	 but	 conceivably	 the	

methodology	could	be	applied	at	 lower	 levels,	e.g.	genera,	 if	more	similar	samples	had	

been	used.	The	 current	 set	of	 images	 is	 limited	with	 regard	 to	 the	number	of	 families	

(classes)	and	number	of	 images	per	 family	 (intra-class	variability),	 resulting	 in	out-of-

distribution	errors	and	prediction	errors,	respectively.	Both	issues	can	be	addressed	with	

a	 wider	 selection	 of	 images,	 e.g.	 those	 available	 from	 the	 SITE-100	 project	

(https://www.site100.org)	taken	with	similar	equipment.	Based	on	our	results,	any	future	

image	 collection	 should	 consider	 the	 need	 for	 standardisation,	 including	 that	 imaging	

should	use	the	same	aspect,	e.g.	dorsal	view	for	Coleoptera	(also	see	Hansen	et	al.	2019),	

uniform	 background	 across	 images	 (preferably	 a	 clear	 colour	without	 textures),	 clear	

separation	 of	 specimens	 in	 the	 photographs,	 and	 similar	 optical	 equipment	 and	

magnification.	The	exact	parameters	remain	to	be	explored	within	and	across	studies,	but	

standardisation	of	imaging	is	critical	to	transferability	when	rolling	out	large-scale	efforts	

for	 image-based	 classification	 in	 biodiversity	 studies.	 As	 part	 of	 this	 effort,	 image	

segmentation	 should	 be	 improved	 and	 automated	 (Schneider	 et	 al.	 2021;	 Schwartz	 &	

Alfaro	2021),	to	increase	our	capability	for	rapidly	generating	‘clean’	and	individual-based	

image	 databases	 extracted	 from	 bulk	 samples.	 A	 potential	 bottleneck	 is	 the	 need	 to	

expand	the	training	set	gradually,	which	generally	requires	recomputation	of	the	model	

when	new	classes	are	added,	although	recent	update	methods	may	simplify	this	process	

(Hadsell	et	al.	2020).	A	second	issue	affecting	the	accuracy	of	predictions	is	the	“category	

bias”	from	inconsistent	categorisation	and	labeling	of	the	training	set	itself.	In	the	current	

study,	images	in	the	training	set	were	classified	from	the	images	by	recognising	the	overall	

gestalt	 of	 a	 family.	 These	 class	 labels	 were	 straightforward	 for	 most	 groups,	 but	

identification	of	some	beetle	families	may	be	compromised	due	to	images	that	obscured	

appendages	 or	 other	 key	 traits,	 especially	 in	 small-bodied	 Leiodidae,	 Latridiidae	 or	

Cryptophagidae,	 which	 may	 have	 contributed	 to	 the	 prediction	 errors	 seen	 in	 these	

families	(Table	S3).	Thus,	corrections	to	the	class	labels	in	the	database	may	be	required,	
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possibly	 by	 integrating	 image-based	 classification	 with	 widely-established	 DNA	

barcoding	 and	 phylogenetic	 placement	 methods	 that	 confirm	 the	 class	 membership.	

Likewise,	combining	image	acquisition	for	biodiversity	assessment	with	metabarcoding	

could	be	instrumental	for	validating	or	improving	genetic-based	inferences	(Yang	et	al.	

2021)	or	estimating	biomass	and	abundance	(e.g.	Høye	et	al.	2020;	Schneider	et	al.	2021).	

Metabarcoding	studies	often	lose	morphological	information	of	specimens,	but	imaging	

could	be	accommodated	as	a	routine	step	before	the	DNA	extraction	of	bulk	samples.		

	

CONCLUSIONS	

	

To	 our	 knowledge,	 this	 is	 the	 first	 attempt	 of	 domain	 transfer	 for	 taxonomic	

classification	 of	 an	 entirely	 unknown	 dataset,	 as	 a	 key	 element	 of	 using	 image-based	

identification	 in	biodiversity	 studies	at	 the	global	 scale.	We	show	 that	 the	approach	 is	

highly	feasible,	but	needs	careful	consideration	of	the	imaging	procedure,	the	algorithmic	

approach,	 and	 the	 choice	 of	 training	 sets.	 The	 future	 vision	 of	 this	 approach	 is	 an	

increasingly	complete	set	of	 images,	covering	the	diversity	of	major	taxonomic	groups,	

against	which	samples	from	any	ecosystem	and	biogeographic	region	can	be	classified	at	

a	 certain	hierarchical	 level	 (e.g.	 families	of	beetles).	 In	our	approach	we	 lack	 the	 close	

alignment	 of	 source	 and	 target	 that	 would	 guarantee	 high	 transferability,	 but	 at	 the	

expense	 of	 lower	 generalization	 capability.	 Further	 studies	 are	 required	 to	 study	 the	

trade-offs	and	to	establish	best	practice	for	the	specific	research	question	at	hand.	Once	a	

stable	expanded	image	database	has	been	created,	it	can	be	used	for	broader	applications	

in	biodiversity	research	and	monitoring,	potentially	building	a	global	model	applicable	to	

any	sampling	site	and	possibly	used	while	still	in	the	field.	 	
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Figure	S1.	Detailed	scheme	of	architectures	of	the	convolutional	neural	network	(CNN)	

and	 domain	 adversarial	 neural	 networks	 (DANN)	 used	 in	 this	 study.	 For	 DANN,	 the	

outputs	 of	 the	 second	 fully	 connected	 (FC256)	 layer	 were	 forwarded	 to	 two	 softmax	

layers	for	taxon	and	dataset	classification.	A	gradient	reversal	layer	was	inserted	between	

the	 FC(256)	 and	 dataset	 softmax	 layers	 to	 achieve	 domain	 adversarial	 training	 as	

proposed	in	Ganin	et	al.	(2016).	
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Figure	S2.	Exemplar	images	of	incorrect	classification.	

	

	
	 	

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473797doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473797
http://creativecommons.org/licenses/by/4.0/


-	34	-	

Figure	S3.	Effect	of	 the	number	of	 images	on	prediction	accuracy	of	 the	convolutional	

neural	network	 (CNN,	 left	panels)	 and	 the	domain	adversarial	neural	network	 (DANN,	

right	panels)	training	for	the	Local	High	Quality	(LH)	and	Global	High	Quality	(GH)	images.	

GH�LH	(top	panels)	indicates	between-dataset	predictions,	while	GH�GH	(bottom	panels)	

represent	within-dataset	predictions.	Solid	lines	represent	regression	lines	between	the	

number	 of	 images	 and	 accuracy.	 For	 both	 between-	 and	 within-dataset	 predictions,	

models	using	DANN	were	trained	with	a	mixed	set	of	randomly	selected	images	from	the	

GH	and	LH	datasets.	
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Figure	S4.	Effects	of	the	number	of	images	on	prediction	accuracy	of	the	convolutional	

neural	network	 (CNN,	 left	panels)	 and	 the	domain	adversarial	neural	network	 (DANN,	

right	panels)	training	for	the	Local	Low	Quality	(LL)	and	Global	High	Quality	(GH)	images.	

GH�LL	(top	panels)	indicates	between-dataset	predictions,	while	GH�GH	(bottom	panels)	

represent	within-dataset	predictions.	Solid	lines	represent	regression	lines	between	the	

number	 of	 images	 and	 accuracy.	 For	 both	 between-	 and	 within-dataset	 predictions,	

models	using	DANN	were	trained	with	a	mixed	set	of	randomly	selected	images	from	the	

GH	and	LL	datasets.	
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Table	S1.	Number	of	images	per	taxa	and	dataset	used	in	the	present	study.	

	

Family/subfamily	 Local	High	Quality	(LH)	 Local	Low	Quality	(LL)	 Global	High	Quality	(GH)	

Brentidae	 18	 11	 67	

Carabidae	 	223	 40	 155	

Chrysomelidae	 8		 16	 445	

Cryptophagidae	 11		 16	 42	

Curculionidae	 111		 33	 351	

Latridiidae	 26	 13	 28	

Leioidae	 6		 2	 28	

Melyridae	 5		 11	 8	

Ptilidae	 52		 14	 17	

Scaphidiinae	 6		 6	 37	

Staphylinidae	 463	 117	 443	

Tenebrionidae	 31		 27	 66	

Total	 730	 306	 1687	
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Table	S2.	Sampling	sites	for	the	Global	High	Quality	(GH)	dataset.	Images	were	obtained	from	a	global	catalogue	of	Coleoptera	specimens	

available	at	https://www.flickr.com/photos/site-100/	

	

Country	 Locality	 Number	of	images	 Latitude	 Longitude	 Elevation	(m)	

Borneo	 Poring,	Sabah		 151	 6°	03'	N	 116°	42'	E	 550	

Ecuador	 Yasuni,	Onkone	Gare	 829	 0°	39'	30.05"	S	 76°	27'	9.56"	W	 216	

Equatorial	Guinea	 Djibloho,	Oyala	 193	 1°	36'	27.40"	-	1°	37'	13.10"	N	 10°	51'	26.60"	-	10°	52'	52.00"	E	 670	

French	Guiana	 Nouragues	 161	 4°	05'	15.70"	N	 52°	40'	52.70"	W	 130	

Honduras	 Cortes		 228	 14°	50′	15.00″	N		 87°	53′	43.00″	W		 415	

México	 Chamela	 132	 19°	29'	54.70"	N		 105	°02'	38.40"	W		 97	

India	 Mizoram	 46	 23°	27'	00.00"	N	-	23°	47'	24.00"	N		 92°	36'	-	92°	45'	E		 800-1600	

Panamá	 Cerro	Hoya	 306	 7°	14'	N	 80°	53'	W	 550	

Panamá	 Santa	Fe	 307	 8°	32'	N		 81°	07'	W	 550	

South	Africa	 Hogsback	 60	 32°	36'	21.60"	S	 26°	57'	43.30"	E		 1070	
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Table	S3.	A	scaled	confusion	matrix	for	the	prediction	of	Local	High	Quality	(LH)	images	based	on	a	training	set	of	400	randomly	selected	

images	from	the	same	dataset	(LH).	Rows	represent	the	predicted	classes	and	columns	the	true	classes.	The	matrix	was	scaled	so	that	each	

column	sums	up	to	one.	

	

	 Brentidae	 Carabidae	 Chrysomelidae	 Cryptophagidae	 Curculionidae	 Latridiidae	 Leiodidae	 Melyridae	 Ptiliidae	 Scaphidiinae	 Staphylinidae	 Tenebrionidae	

Brentidae	 0.757	 	 	 	 	 	 	 	 	 	 	 	

Carabidae	 	 0.952	 	 	 	 	 	 	 	 0.429	 0.003	 	

Chrysomelidae	 	 	 0.154	 	 	 	 0.231	 	 	 	 	 	

Cryptophagidae	 	 	 0.385	 0.471	 	 	 	 	 	 	 	 	

Curculionidae	 0.135	 	 	 	 0.977	 0.098	 	 0.250	 	 	 0.010	 0.213	

Latridiidae	 	 	 	 0.235	 0.023	 0.820	 	 0.500	 	 	 0.003	 0.138	

Leiodidae	 	 	 0.462	 	 	 	 0.769	 	 	 	 	 	

Melyridae	 	 	 	 	 	 	 	 0.000	 	 	 	 	

Ptiliidae	 	 	 	 0.176	 	 	 	 	 1.000	 	 	 	

Scaphidiinae	 	 	 	 	 	 	 	 	 	 0.571	 	 	

Staphylinidae	 0.108	 0.048	 	 0.118	 	 	 	 0.250	 	 	 0.983	 0.038	

Tenebrionidae	 	 	 	 	 	 0.082	 	 	 	 	 	 0.613	
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Table	S4.	A	scaled	confusion	matrix	for	the	prediction	of	Local	High	Quality	(LH)	images	based	on	a	training	set	of	800	randomly	selected	

Global	High	Quality	(GH)	images.	Rows	represent	the	predicted	classes	and	columns	the	true	classes.	The	matrix	was	scaled	so	that	each	

column	sums	up	to	one.	

	

	 Brentidae	 Carabidae	 Chrysomelidae	 Cryptophagidae	 Curculionidae	 Latridiidae	 Leiodidae	 Melyridae	 Ptiliidae	 Scaphidiinae	 Staphylinidae	 Tenebrionidae	

Brentidae	 0.444	 	 	 	 0.072	 	 	 	 	 	 	 	

Carabidae	 	 0.655	 	 0.091	 	 0.038	 	 	 	 0.167	 	 0.065	

Chrysomelidae	 	 0.103	 1.00	 0.273	 	 0.154	 0.667	 	 0.231	 0.667	 0.013	 0.129	

Cryptophagidae	 	 	 	 0.273	 	 0.038	 	 	 0.019	 	 	 	

Curculionidae	 0.444	 0.004	 	 	 0.901	 0.577	 	 0.80	 0.250	 	 0.004	 0.548	

Latridiidae	 	 	 	 0.091	 	 0.038	 	 	 	 	 	 	

Leiodidae	 	 	 	 0.091	 	 	 0.000	 	 0.077	 	 	 	

Melyridae	 0.056	 	 	 	 	 	 	 0.20	 	 	 	 	

Ptiliidae	 	 	 	 0.091	 	 	 	 	 0.365	 	 	 	

Scaphidiinae	 	 0.004	 	 	 	 	 	 	 	 0.000	 0.004	 	

Staphylinidae	 	 0.233	 	 0.091	 0.027	 	 0.333	 	 0.058	 	 0.978	 0.097	

Tenebrionidae	 0.056	 	 	 	 	 0.154	 	 	 	 0.167	 	 0.161	
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