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Summary

Antisense oligonucleotide therapy targeting ATXN2 —a gene in which mutations cause neurodegenerative
diseases spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis—has entered clinical trials in
humans. Additional methods to lower ataxin-2 levels would be beneficial not only in uncovering
potentially cheaper or less invasive therapies, but also in gaining greater mechanistic insight into how
ataxin-2 is normally regulated. We performed a genome-wide fluorescence activated cell sorting (FACS)-
based CRISPR screen in human cells and identified multiple subunits of the lysosomal vacuolar ATPase
(v-ATPase) as regulators of ataxin-2 levels. We demonstrate that Etidronate—a U.S. Food and Drug
Administration (FDA)-approved drug that inhibits the v-ATPase —lowers ataxin-2 protein levels in mouse
and human neurons. Moreover, oral administration of the drug to mice in their water supply and food is
sufficient to lower ataxin-2 levels in the brain. Thus, we uncover Etidronate as a safe and inexpensive
compound for lowering ataxin-2 levels and demonstrate the utility of FACS-based screens for identifying

targets to modulate levels of human disease proteins.
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Introduction

Many neurodegenerative diseases are associated with accumulation of misfolded proteins (Forman et al.,
2004), and strategies to rid these proteins are emerging as a promising therapeutic approach (Bennett et
al., 2021). TDP-43 is the disease protein in nearly all cases of amyotrophic lateral sclerosis (ALS)
(Neumann et al., 2006). Despite the presence of TDP-43 pathology in ALS and numerous other
neurodegenerative disorders (de Boer et al., 2020), targeting TDP-43 presents several challenges. TDP-43

is not only tightly regulated and its function essential in most cell types (Kim et al., 2020), but also
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reducing its levels in vivo results in embryonic lethality during development and motor phenotypes in

adult mice (Kim et al., 2020; Yang et al., 2014).

Another approach could be to target a modifier of TDP-43 aggregation and toxicity. Ataxin-2—a
polyglutamine (polyQ) protein for which long (>34) polyQ expansions cause spinocerebellar ataxia 2
(SCA2) (Imbert et al., 1996; Pulst et al., 1996; Sanpei et al., 1996) and intermediate-length (27-33) repeats
are a risk factor for ALS (Elden et al., 2010)—is a potent modifier of TDP-43 toxicity (Armakola et al.,
2011; Becker et al., 2017; Elden et al., 2010; Kim et al., 2014). Antisense oligonucleotides (ASOs)
targeting ataxin-2 in vivo show marked protection against motor deficits and extend lifespan in TDP-43
overexpressing mice (Becker et al., 2017) and in SCA2 mice (Scoles et al., 2017). These results have
motivated recent administration of ataxin-2 targeting ASOs to human ALS patients with or without polyQ
expansions in a phase 1 clinical trial (ClinicalTrials.gov identifier: NCT04494256). Gene-based therapies,
like ASOs, hold great promise to provide disease-modifying treatments for these devastating
neurodegenerative diseases but are yet unproven for ALS patients. Despite this enormous progress,
questions remain regarding the potential safety or dosage limitations of using ASOs, and little is known
about how ataxin-2 is normally regulated. Thus, we searched for other ways to modulate ataxin-2 protein

levels using an efficient genome-wide screening paradigm.

We developed a fluorescence activated cell sorting (FACS)-based screening method using pooled
CRISPR/Cas9-mediated genome-wide deletion libraries in conjunction with antibody staining to detect
endogenous protein levels. The screen revealed numerous novel genetic modifiers of ATXN2 protein
levels, including multiple subunits of the lysosomal vacuolar ATPase (v-ATPase). We show that inhibiting

the lysosomal v-ATPase with small molecule drugs (FDA-approved) results in decreased ataxin-2 protein
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levels in mouse and human iPSC-derived neurons, as well as in vivo in the brains of mice upon oral
administration of the drug in their water supply and diet. These results demonstrate the potential to re-

purpose a cheap, readily available small molecule drug as a novel treatment for ALS and SCA?2 patients.

Results:

FACS-based genome-wide CRISPR-Cas9 KO screens in human cells reveal modifiers of ataxin-2 protein
levels

To find additional ways (e.g., new targets or pathways) to lower ataxin-2 levels and expand potential
therapeutic strategies, we developed a fluorescence-activated cell sorting (FACS)-based genome-wide
CRISPR knockout (KO) screen for modifiers of endogenous ataxin-2 protein levels (i.e., without protein
tags like Flag or GFP or overexpression) (Figure 1A). We optimized conditions to sensitively detect
changes in ataxin-2 protein levels in human cells by antibody staining and FACS (Figure S1) and
engineered HeLa cells to stably express Cas9 along with either a blasticidin-resistance cassette (HeLa-
Cas9-Blast) or blue fluorescent protein (BFP) (HeLa-Cas9-BFP). To create genome-wide KO cell lines,
we transduced HeLa-Cas9-Blast and HeLa-Cas9-BFP cells (as biological replicates) with a lentiviral
sgRNA library comprising 10 sgRNAs per gene—targeting ~21,000 human genes—and ~10,000 safe-
targeting sgRNAs (Morgens et al., 2017) (Figure 1A). After fixing the cells in methanol and
immunostaining them with antibodies targeting endogenous ataxin-2 and a control protein (GAPDH or
B-actin), we used FACS to sort the highest and lowest 20% levels of endogenous ataxin-2 expressors
relative to levels of the control protein (Figure 1A). We performed the screen four times, twice each with
B-actin and GAPDH as the control proteins. We used two different control proteins instead of one to
minimize the possibility of selecting hits that were simply global regulators of transcription, translation,

or cell size, or otherwise idiosyncratic to the biology of a given control protein.
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After sorting cells based on ataxin-2 expression levels, we extracted genomic DNA and performed next
generation sequencing (NGS) of the barcoded sgRNAs. Using the Cas9 high-throughput maximum-
likelihood estimator (casTLE) algorithm (Morgens et al., 2016), we isolated genes that when knocked out
increased or decreased ataxin-2 protein levels (Figure 1B). A false discovery rate (FDR) cutoff of 5%
revealed an overlapping set of 52 gene knockouts that decreased—and 36 that increased —ataxin-2 levels
across the four screens (Figure 1C). As expected, the strongest hit that lowered ataxin-2 levels was ATXN2
itself, demonstrating the effectiveness of this screening approach (Figure 1B). The full list of hits from

the screens is shown in Supplementary Data Table 1.

We individually validated screen hits by treating HeLa cells with siRNAs targeting those gene products
followed by immunoblotting. We selected genes for follow-up based on a combination of significance
(casTLE) score and effect size (Morgens et al., 2016) (Supplementary Data Table 1), as well as known
and predicted direct (physical) and indirect (functional) associations with ataxin-2 or between hits. The
list of hits included genes known to have a direct association with ataxin-2, such as LSM12, as well as
many novel and potent genetic modifiers of ataxin-2 protein levels, such as CFAP20, CLASRP, CMTR?2,
LUC7L3, PAXBPI1, PNISR, ATP6VIA, and ATP6VICI1, and others (Figure 1D, 1E, and 2B). Strikingly,
some of the hits (e.g., PNISR and PAXBPI) lowered ataxin-2 levels as much as targeting ataxin-2 itself
(Figure 1F). We further validated hits in the human neuroblastoma cell line (SH-SY5Y), where many —
but not all—had a significant effect on ataxin-2 protein levels (Figure S2A and S2B). In addition to
identifying numerous previously unknown regulators of ataxin-2, the high rate of validation of hits from

the initial screen and its relative ease (a genome-wide screen can be completed in < 1 week from fixation
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to NGS analysis) suggests these FACS/antibody-staining based screens—using fixed cells to uncover

regulators of protein levels—may be useful in many other contexts.

Inhibition of lysosomal v-ATPase subunits via siRNA or small molecule drug treatment lowers ataxin-2
protein levels in vitro

We observed a striking number of genes encoding subunits of lysosomal vacuolar ATPases (v-ATPases)
that decreased ataxin-2 levels when knocked out (Figure 2A). Lysosomal v-ATPases help to maintain an
acidic pH (~4.5) in the lysosome, by pumping protons from the cytosol to the lumen via consumption of
ATP (Maxson and Grinstein, 2014). We used siRNAs and immunoblotting to confirm that knocking down
numerous v-ATPase subunits leads to decreased ataxin-2 protein levels (Figure 2B and 2C). We also
generated a constitutive knockout of the v-ATPase subunit ATP6V1A —a central subunit in v-ATPase
function (Maxson and Grinstein, 2014)—using CRISPR-Cas9 in HeLa cells, which resulted in a marked
decrease in ataxin-2 protein levels (Figure 2E and 2F). Levels of other polyQ disease proteins huntingtin
and ataxin-1 were unaltered in these cells (Figure S3). To determine whether the mechanism of regulation
was at the protein or RNA level, we performed RT-qPCR after siRNA treatments and observed no change
in steady state ATXN2 mRNA levels (Figure 2D). RNA-sequencing confirmed that knocking down a
v-ATPase subunit using siRNAs did not lead to changes in ATXN2 mRNA levels or other noteworthy
transcriptional changes (Figure S4). These results provide evidence that the mechanism of v-ATPase

regulation of ataxin-2 is at the protein level.

In addition to being enriched as screen hits, the v-ATPases stood out for another reason: the availability
of small molecule inhibitors. Etidronate is a small molecule (~206 Daltons) lysosomal v-ATPase inhibitor

(Figure 3A) that was FDA-approved in 1977 as a drug to treat Paget disease of bone (Altman et al., 1973).
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Interestingly, Paget disease of bone has been connected to TDP-43 proteinopathy (Gitcho et al., 2009;
Neumann et al., 2007; Watts et al., 2004). Etidronate is a bisphosphonate whose structural similarity to
both ADP and phosphate is thought to be a mechanism by which it inhibits the v-ATPase (Altman et al.,
1973). Etidronate has a 0.8901 predicted probability of crossing the blood brain barrier (BBB) according
to ADMET in silico modeling (van de Waterbeemd and Gifford, 2003), and also a wide therapeutic index.
Given these encouraging properties, especially its safety in humans, we tested whether Etidronate
treatment could lower ataxin-2 levels in mouse primary neurons (Figure 3B). We also tested whether
Thonzonium, another FDA-approved drug (~511 Daltons) that inhibits the lysosomal v-ATPase through
a different mechanism (uncoupling the proton transport and ATPase activity of the v-ATPase proton

pumps), would decrease ataxin-2 protein levels.

Treatment of mouse cortical neurons with either drug for 24 hours resulted in a strong dose-dependent
decrease in ataxin-2 protein levels (Figure 3C, S5A, and S5B). Although Thonzonium decreased ataxin-2
protein levels across a wide range of doses (Figure S5A and S5B), it became toxic to neurons at
concentrations greater than 10 yM, as has been previously reported (Chan et al., 2012) (data not shown).
However, Etidronate was not toxic across multiple orders of magnitude of concentrations (range of 10 nM
to 100 uM tested) (Figure 3D). We also treated human iPSC-derived neurons with Etidronate (Figure 3E)
and observed a similar safe and significant decrease in ataxin-2 levels (Figure 3F and 3G). Thus, two
different v-ATPase inhibitors, working through distinct mechanisms, potently decrease ataxin-2 protein

levels in neurons.

Oral administration of Etidronate lowers ataxin-2 protein levels in vivo
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We next tested if peripheral administration of Etidronate in vivo could decrease ataxin-2 levels in the
brains of wild type (WT) mice. Given that oral administration of the drug mimics the most common mode
of drug intake for humans and the wide range of doses that lowered ataxin-2 protein levels in vitro (Figure
3C and 3D), we dissolved Etidronate into the water supply (10 M concentration) and MediGel®
(ClearH,0) diet (30 M concentration) of WT adult mice (~3-4 months old) and allowed voluntary
consumption over one week (Figure 3H). We performed immunoblotting on cortical extracts from mice
that drank and ate either normal or drug-infused water and MediGel®, respectively. After a one-week
treatment period, we observed a ~20% decrease in ataxin-2 protein levels in the brains of mice that
consumed Etidronate compared to the control group (n=15 in each group) (Figure 3H and 3I). These
findings suggest that Etidronate administration in the water supply and MediGel® food is sufficient to

lower levels of ataxin-2 in the brains of mice.

Discussion

Here we used a highly efficient and robust FACS-based CRISPR screen to uncover numerous regulators
of ataxin-2 levels—a validated target for ALS and SCA?2 based on human genetics—including genes
encoding several subunits of lysosomal v-ATPases for which small molecule drugs are available. One of
these drugs, Etidronate, can safely and effectively decrease ataxin-2 levels in mouse and human neurons
across a wide range of doses in vitro, as well as in vivo when orally administered to mice. Etidronate’s
safety profile and molecular properties that indicate its ability to cross the BBB are highly favorable,
providing a promising starting compound for future optimization to decrease ataxin-2 levels in the brain.
Clinical trials in humans will be required to determine Etidronate’s safety and efficacy as a treatment for
ALS or SCA2. ASO and gene therapy approaches show promise for neurodegenerative disease but are

currently prohibitively expensive (hundreds of thousands of US dollars per year for ASOs or several
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million US dollars for a one-time gene therapy treatment). We purchased 1g of Etidronate for $50. The
affordability of this compound could be especially useful in developing countries, like Cuba, where SCA2
is relatively common (Veldzquez-Pérez et al., 2011). Etidronate has also been used to treat Paget disease
of bone and osteoporosis for over forty years, providing the additional advantage of familiarity and
experience with its application in the real world. Since many human diseases are caused by moderate
increases or decreases in a gene product, we suspect that the protein levels-based screening approach
shown here and in the accompanying manuscript by Rodriguez et al. (please see accompanying
manuscript), as well as by others (Lu et al., 2013; Park et al., 2013; Rousseaux et al., 2018), could be

broadly applicable to different human disease situations, including haploinsufficiency.

Limitations of the study

Although we demonstrate that Etidronate can lower levels of ataxin-2 in vitro and in vivo, a limitation of
this study is that we did not test whether the drug can rescue degeneration and motor phenotypes in a
mouse model. Our previous study demonstrated that lowering levels of ataxin-2 prolonged survival and
ameliorated motor impairments in a mouse model of TDP-43 proteinopathy (Becker et al., 2017). We
faced difficulty in testing oral administration of Etidronate in this mouse model (Wils et al., 2010) because
of the aggressive progression of disease (mice succumb prior to weaning age, at which point mice begin
to eat/drink from their own food/water supplies). While future efforts will test the efficacy of this drug in
ameliorating ALS phenotypes in other mouse models of ALS with later disease onset (Mitchell et al.,
2015), we remain encouraged by the ability of Etidronate to lower ataxin-2 levels in vivo, as ATXN2 is a
previously validated therapeutic target in mouse models of ALS (Becker et al., 2017) and SCA2 (Scoles

et al.,2017) as well as by human genetics (Elden et al., 2010; Scoles and Pulst, 2018).
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Figure 1: Genome-wide CRISPR-Cas9 KO screens in human cells identify regulators of ataxin-2

protein levels. (A) Pooled CRISPR—Cas9 screening paradigm. After transducing HeLa cells expressing

Cas9 with a lentiviral sgRNA library, we fixed and co-immunostained the cells for ataxin-2 and a control

protein (B-actin or GAPDH). We then used FACS to sort top and bottom 20% ataxin-2 expressors relative

to control protein levels (duplicate sorts were performed using each control). After isolating genomic
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DNA from these populations, as well as the unsorted control population, we performed NGS to read
sgRNA barcodes. (B) Volcano plots based on effect and confidence scores summarizing genes that modify
ataxin-2 protein levels relative to B-actin (left) or GAPDH (right) levels when knocked out (FDR < 0.05).
(C) Overlap between hits identified in -actin- and GAPDH-controlled screens for hits that decrease (left)
and increase (right) ataxin-2 protein levels when knocked out (FDR < 0.05). (D) Schematic of proteins
encoded by selected hits (5% FDR), categorized by function and subcellular localization. (E) Validation
of numerous top hit genes overlapping across all screens. We transfected HeLLa-Cas9 cells with non-
targeting (NT) siRNAs or with siRNAs targeting mRNA transcripts encoded by hit genes, then performed
immunoblotting on lysates. Quantifications are normalized to the NT siRNA condition (mean+SD;
analyzed using 2-way ANOVA; ****: p<0.0001, ***: p<0.001, **: p<0.01, *: p<0.05, ns: not significant).
(F) Representative immunoblot of ataxin-2 and B-actin protein levels upon treatment with NT, PNISR,

PAXBPI,and ATXN2 siRNAs in HeLa cells.
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Figure 2: Inhibiting lvsosomal v-ATPase leads to decreased ataxin-2 protein levels in vitro. (A) Left,

volcano plot shows confidence score on y-axis and effect score on x-axis, with gene hits encoding subunits
of lysosomal v-ATPases highlighted in red. Right, a representation of the lysosomal v-ATPase, with its
V, and V, domains, as well as individual subunits. (B) Immunoblot and (C) Quantification of ataxin-2
protein levels after HeLa cells were transfected with siRNAs against various v-ATPase subunits. (D)
RT-qPCR quantification of ATXN2 RNA levels after siRNA knockdown of v-ATPase subunits in HeLa
cells. Values normalized to B-actin RNA levels. Quantifications for ¢ and d are normalized to the NT
siRNA condition (mean + SD; analyzed using one-way ANOVA with post-hoc Dunnett’s multiple
comparisons tests; ****: p<0.0001, ***: p<0.001, **: p<0.01, *: p<0.05, ns: not significant). (E)
Immunoblot on lysates from WT or ATP6V1A KO HeLa cell lines. (F) Representative microscopy images

of WT or ATP6VIA KO cells, stained for ataxin-2 or -actin (scale bar = 20 ym). Ataxin-2 fluorescence
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quantifications are shown on the right (lines denote mean + SD; analyzed using unpaired t-test; **¥*:

p<0.0001).
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Figure 3: Small molecule drug Etidronate lowers ataxin-2 protein levels in mouse primary neurons

human iPSC-derived neurons, and in vivo in mice. (A) Structure of the small molecule drug Etidronate
(C,HsO,P,). Etidronate is a bisphosphonate v-ATPase inhibitor. (B) Timeline of primary neuron plating
from embryonic mouse cortex and drug treatment. (C) Immunoblot on lysates from mouse primary
neurons treated with various doses of Etidronate. (D) Quantification of the dose-dependent effect of
Etidronate on ataxin-2 (normalized to -actin). (E) Timeline of induced neuron differentiation in a human
iPSC line with NGN2 stably integrated and drug treatment. (F) Immunoblot on lysates from human iPSC-
derived neurons treated with 10 nM, 100 nM, or 1 yM of Etidronate. (G) Quantification of Figure 3F,
with ataxin-2 protein levels normalized to B-actin (loading control) protein levels (mean + SD). (H)
Example immunoblot of cortex lysates from mice given normal or drug-infused water and MediGel®. (I)
Quantification of immunoblots (e.g., Figure 3H) probing for ataxin-2 (normalized to 3-actin protein levels)
using lysates from cortices of mice that received water or drug treatment (mean + SEM; analyzed using
Welch’s t-test; **: p<0.01). We performed the experiment two independent times, for a total of n=15 in

each treatment group.
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Figure S1: Calibration steps prior to conducting genome-wide screens. (A) Overview of screen

optimization strategy . Briefly, HeLa cells expressing Cas9 were infected with a lentiviral sgRNA targeting
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ataxin-2, and puromycin was used to select for cells that received a guide. Cells were kept pooled to retain
a mosaic population. These cells were then fixed in methanol, immunostained, and sorted using FACS for
the top and bottom 25% of ataxin-2 expressors relative to a control protein (GAPDH or B-actin). The
sorted and unsorted populations were Sanger sequenced and analyzed for insertions or deletions (indels)
at the ATXN2 locus. (B) Immunoblot of the WT and ATXN2 mosaic KO populations, as generated in panel
a. (C) Gating strategy for FACS. Left, FACS plot for WT population around which a gate is drawn; Right,
mosaic population relative to the WT population. The green and orange gates represent the bottom and
top 25% of ATXN2 expressors relative to GAPDH, respectively. (D) Indel (insertion and deletion) analysis
of the unsorted mosaic population (i.e. FACS plot in panel c, Right) when Sanger sequenced at the ATXN2
locus, showing a mixture of cells containing various indels. (E) Indel analysis at ATXN2 locus for the
sorted populations. Left, overrepresentation of ATXN2 WT cells in the top 25% population (orange gate
in panel c); Right, underrepresentation of WT cells / mostly various indels in the bottom 25% sorted

population (green gate in panel c). (F) Same as in panel C, except using -actin as control. (G) Same as

in panel D, except using -actin as control. (H) Same as in panel E, except using B-actin as control.
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Figure S2: Validation of screen results in neuroblastoma cell line SH-SYSY. (A) Validation of

numerous top hit genes in SH-SYS5Y cells using siRNA transfections and immunoblot analyses as in Fig.
1 e and f. Quantifications are normalized to the NT siRNA condition (mean + SD; analyzed using 2-way
ANOVA; *##%%: p<0.0001, ***: p<0.001, **: p<0.01, *: p<0.05, ns: not significant). (B) Representative
immunoblot of ataxin-2 and B-actin protein levels upon application of NT, CFAP20, CMTR2, CLASRP,

and ATXN2 siRNAs to SH-SYSY cells.
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Figure S3: Other polyQ protein levels are unaltered in ATP6VIA KO cells. (A) Immunoblot on

lysates from ATP6VIA KO HeLa cells probed for huntingtin, ataxin-2, ataxin-1, and GAPDH. (B)
Quantification of immunoblot in panel (A), normalized to GAPDH (loading control) levels and to the WT

cell line (mean + SD; analyzed using 2-way ANOVA with post-hoc Siddk's multiple comparisons tests;

*%: p<0.01, ns: not significant).
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Figure S4: MA plot 72 hours after treatment with NT vs. ATP6VIA siRNAs in HeLa cells. To

determine whether there are broad transcriptional changes after knocking down a v-ATPase subunit, we

performed RNA-seq after HeLa cells were treated with NT or ATP6VIA siRNAs. Few noteworthy

transcriptional changes are seen (apart from ATP6V1A itself) upon knockdown of ATP6VIA (FDR<0.01).
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Figure S5: Treating mouse cortical neurons with another drug, Thonzonium, leads to decrease in

ataxin-2 protein levels. a, Immunoblot on lysates from mouse primary neurons treated with various doses

of Thonzonium. b, Quantification of the dose-dependent effect of Thonzonium on ataxin-2 (normalized

to B-actin) (mean + SD).
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Table S1: List of hits from screen with B-actin control. Two biological replicate screens were

performed using B-actin as a control in HeLa cells. Hits based on FDR<0.05.

Table S2: List of hits from screen with GAPDH control. Two biological replicate screens were

performed using GAPDH as a control in HeLa cells. Hits based on FDR<0.05.
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Methods

Pooled FACS Screen

Generating HeLa-Cas9 cells. To generate cells that stably express Cas9, lentivirus containing Cas9 with
blasticidin resistance cassette (Cas9-Blast) or blue fluorescent protein (Cas9-BFP) were generated using
standard protocols. Low-passage HeLa cells were transfected at 40-50% confluency in a 100 mm dish
with lentiviral concentrations such that the infection rate was ~20%, to reduce the chance that a single cell
will incorporate multiple lentiviral particles. 4 days after adding the lentivirus, the culturing media was
changed to blasticidin (10 yg/mL)-containing DMEM, high glucose, GlutaMAX™ , HEPES media media
(Gibco) to select for cells that incorporated Cas9-Blast. The blasticidin-containing DMEM media was
replaced every 24 hours until a control plate in parallel of the same quantity of non-Cas9-infected HeLa

cells exhibited complete cell death. Cas9-BFP cells were clonally isolated using FACS.

Genome-wide deletion library production and titering. All gRNA oligonucleotides were constructed on a
microfluidic array, then lentivirus was generated using standard protocols. Briefly, all guides were pooled
together at roughly the same concentration (10 sgRNAs per gene targeting ~21,000 human genes and
~10,000 safe-targeting sgRNAs), which were cloned into a lentiviral backbone. This pool was used to
transfect low-passage HEK293T cells at 70-80% confluency in 150 mm dishes, from which the resulting

supernatant contained all 25,000 sgRNAs, with each sgRNA represented ~1000 times.

Generating genome-wide knockout cell line. HeLLa-Cas9 cells were cultured in DMEM, high glucose,
GlutaMAX™  HEPES media (Gibco) containing 10% FBS (Omega) and 1% penicillin-streptomycin (P/S)
(Gibco) in 150 mm plates. The viral media generated above —containing 1000x representation of each

sgRNA —was used to infect the HeLa-Cas9 cells. The virus titering was performed such that 5-10% of
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cells were mCherry-positive, to reduce the chance that a single cell will incorporate multiple gRNAs. 24
hours after infection, media was changed to DMEM media containing puromycin (1 #g/mL) to select for
infected cells. The puromycin-containing media was replaced every 24 hours until >90% of cells were
mCherry-positive, and an uninfected control plate containing HelL.a-Cas9 cells exhibited complete cell
death when subjected to puromycin selection. The cells were grown for an additional five days to give

Cas9 ample time to cut.

Fixation and IF. After trypsinization, approximately 400 million cells of the genome-wide deletion cell
line were fixed in 100% methanol for 10 minutes at -20°C. The number of cells to fix was chosen based
on ensuring 1000x coverage of the whole genome (250,000 guide elements) while accounting for cells
lost during fixation/staining/FACS. After placing in blocking solution (0.4% PBS-Triton containing 5%
normal donkey serum and 0.5% BSA) for one hour, primary antibodies against ataxin-2 (1:100; Rabbit;
ProteinTech 21776-1-AP) and house-keeping protein GAPDH (1:500; Mouse; Sigma-Aldrich G8795) or
B-actin (1:100; Mouse; ThermoFisher Scientific MA1-744) were added to the sample and left overnight
at 4°C on a shaker. After rinsing one time in PBS-Triton (0.4%), fluorescent secondary antibodies were
added (1:500) for two hours. The cells were then rinsed in PBS, resuspended in PBS containing 2 mM

EDTA, and taken directly to the FACS facility for sorting.

Fluorescence activated cell sorting. To identify genetic modifiers of ataxin-2 protein levels, the cell
suspension was sorted using a BD FACSAria II cell sorter with a 70 xm nozzle (BD Biosciences). Cell
populations containing the lowest and highest 20% of ataxin-2 levels—relative to B-actin or GAPDH—
were sorted, respectively. Each sorted population, as well as the unsorted (starting) population, were spun

down at 600g for 20 minutes at room temperature before extracting genomic DNA.
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Genomic DNA extraction, PCR amplification, and next-generation sequencing. Genomic DNA was
extracted immediately after pelleting using the Blood and Tissue DNeasy Maxi Kit (QIAGEN, 51194).
The DNA was isolated according to the manufacturer’s instructions, with the exception of eluting with
buffer EB, rather than buffer AE. After PCR amplification using Agilent Herculase II Fusion DNA
Polymerase Kit, deep sequencing was performed on an Illumina NextSeq 550 platform to determine
library composition. Guide composition between the sorted top 20% and the unsorted (starting)
populations were compared using Cas9 high Throughput maximum Likelihood Estimator (casTLE)
(Morgens et al., 2016) to determine genes that, when knocked out, increased or decreased ataxin-2 protein
levels. Briefly, enrichment of individual guides was calculated as median normalized log ratios of counts
between the various conditions. Gene-level effects were then calculated from ten guides targeting each
gene, and an effect size estimate was derived for each gene with an associated-likelihood ratio to describe
the significance of the gene-level effects. By randomly permutating the targeting elements, the distribution
of the log-likelihood ratio was estimated and P values derived (Morgens et al., 2016). All data is available

under Gene Expression Omnibus accession no. GSE189417.

Validation & Drug Treatments

Cell culture and siRNA transfection. HeLa cells (ATCC®) were cultured in DMEM, high glucose,
GlutaMAX™ | HEPES media (Gibco) containing 10% fetal-bovine serum (FBS) (Omega) and 1%
penicillin-streptomycin (P/S) (Gibco) in a controlled humidified incubator at 37°C with 5% CO,. For
knockdown experiments, cells were reverse transfected with SMARTPool ON-TARGETplus siRNAs

(GE Dharmacon) targeting a control siRNA pool (D0O01810-10) or a gene of interest at a final
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concentration of 200 nM for 72 hours in 12-well plates, after complexing with Dharmafectl (GE

Dharmacon) in Opti-MEM (Gibco) for 30 minutes.

SH-SYSY cells (ATCC®) were cultured in DMEM/F12, GlutaMAX™ -supplemented media (Gibco)
containing 10% FBS (Omega) and 1% P/S (Gibco) at 37°C with 5% CO,. siRNA reverse transfection
experiments were conducted similarly as for HeLa, except for performing knockdown for 96 hours in two
doses (a second dose given after 24 hours with a full media change) and complexing with Lipofectamine
RNAIMAX (Invitrogen) in Opti-MEM (Gibco) for 20 minutes prior to addition of cells. Cells were

cultured in 24-well plates.

Generating ATXN2 mosaic knockout cell line. To generate mosaic ATXN2 KO HeLa-Cas9 cells, a sgRNA
oligonucleotide targeting the first shared exon in ATXN2 (sequence GATGGCATGGAGCCCGATCC)
was cloned into a lentiviral backbone that contains mCherry and a puromycin resistance cassette. This
construct was used to transfect low-passage HEK293T cells at 70-80% confluency in 100 mm plates.
HeLa-Cas9 cells (cultured in DMEM, high glucose, GlutaMAX™ , HEPES media containing 10% FBS
and 1% penicillin-streptomycin in 100 mm plates) were then infected with the lentiviral media generated
above, such that ~50% of cells were mCherry-positive. 24 hours after infection, the media was changed
to puromycin-containing media (1 pxg/mL) to select for cells that received a sgRNA. The puromycin-
containing media was replaced every 24 hours until >90% of cells were mCherry-positive, and an
uninfected control plate containing HeLLa-Cas9 cells exhibited complete cell death upon subjection to
puromycin selection. The cells were grown for an additional week to give Cas9 ample time to cut prior to

use in flow cytometry.
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Western Blots. Ice-cold RIPA buffer (Sigma-Aldrich R0278) containing protease inhibitor cocktail
(Thermo Fisher 78429) and phosphatase inhibitor (Thermo Fisher 78426) were placed on cells for lysis.
After 1-2 minutes, the lysates were moved to Protein LoBind tubes (Eppendorf 02243108), vortexed, and
placed on ice. The lysates were vortexed two more times after 10 minute intervals then pelleted at
maximum speed on a table-top centrifuge for 15 minutes at 4°C. After moving the supernatant to new
Protein LoBind tubes, protein concentrations were determined using bicinchoninic acid (Invitrogen 23225)
assays. Samples were denatured at 70°C in LDS sample buffer (Invitrogen NPOO08) containing 2.5% 2-
mercaptoethanol (Sigma-Aldrich) for 10 minutes. Samples were run on 4-12% Bis—Tris gels (Thermo
Fisher) using gel electrophoresis, then wet-transferred (Bio-Rad Mini Trans-Blot Electrophoretic Cell
170-3930) onto 0.45 pm nitrocellulose membranes (Bio-Rad 162-0115) at 100V for 90 minutes. Odyssey
Blocking Buffer (LiCOr 927-40010) was applied to membranes for one hour then replaced with Odyssey
Blocking Buffer containing antibodies against ataxin-2 (1:1000, ProteinTech 21776-1-AP) and B-actin
(1:2000, Thermo Fisher Scientific MA1-744) and placed on a shaker overnight at room temperature. After
rinsing three times in PBS-Tween (0.1%) for 10 minutes each, membranes were incubated in Odyssey
Blocking Buffer containing HRP-conjugated anti-rabbit IgG (H+L) (1:2000, Life Technologies 31462) or
anti-mouse IgG (H+L) (1:2000, Fisher 62-6520) secondary antibodies for one hour. After rinsing the blots
three additional times in PBS-Tween (0.1%), the membranes were developed using ECL Prime kit

(Invitrogen) and imaged using ChemiDoc XRS+ System and Image Lab software (Bio-Rad Laboratories).

RT-gPCR and RNA Quantification. After reverse transfection with siRNAs in 12-well plates as described
in the ‘Cell culture and siRNA transfection’ section, the PureLink® RNA Mini Kit was used to isolate

RNA with DNase digestion (Thermo Fisher Scientific 12183025). To convert RNA to cDNA, we used

the Applied Biosystems High-Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific
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4368813). Each sample had biological triplicates, and technical quadruplicates for each of the replicates.
gqPCR was performed using TagMan™ Universal Master Mix II (Thermo Fisher Scientific4440040), using
1 uL of 20X TagMan gene-specific expression assay to the reaction and our probes of interest (Thermo
Fisher Scientific; human ATXN2: Hs00268077_m1, human ACTB: Hs01060665_g1). The Delta-Delta Ct
method was run on the thermocycler and visualized on Thermo Fisher Connect™ , from which relative

expression values were averaged across all biological/technical replicates per condition.

RNA-sequencing. To determine whether there are broad transcriptional changes after knocking down a v-
ATPase subunit, we performed RNA-seq after HeLa cells were treated with NT or ATP6V1A siRNAs for
72 hours, as described in the 'Cell culture and siRNA transfection' section. Briefly, we isolated RNA using
the PureLink® RNA Mini Kit with DNase digestion (Thermo Fisher Scientific 12183025), then
determined RNA quantity and purity by optical density measurements of OD260/280 and OD230/260
using a NanoDrop spectrophotometer. We assessed structural integrity of the total RNA using a 2200
TapeStation Instrument with RNA ScreenTapes (Agilent Technologies), then prepared mRNA libraries
using SureSelect Strand-Specific RNA Library Preparation kit for Illumina (G9691B) on an Agilent Bravo
Automated Liquid Handling Platform, following the manufacturer’s protocol. Libraries were sequenced
on an [llumina Nova-Seq 6000 machine. Once the data was retrieved, alignment of RN A-sequencing reads
to the human hg38 transcriptome was performed using STAR v2.7.3a(Dobin et al., 2013) following
ENCODE standard options, read counts were generated using RSEM v1.3.1, and differential expression
analysis was performed in R v4.0.2 using the DESeq2 package v1.28.1 (Love et al., 2014) (detailed
pipeline v2.1.2 and options available on https://github.com/emc2cube/Bioinformatics/). All data is

available under Gene Expression Omnibus accession no. GSE189417.
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Immunocytochemistry and microscopy. WT or ATP6VIA KO HeLa cells were grown on poly-L-lysine-
coated glass coverslips [0.1% (wt/vol)] in 24-well plates, then fixed with 4% paraformaldehyde for 30
minutes. Next, the cells were rinsed 3 times with PBS, then blocked with 1% BSA containing 0.4% Triton
X-100 for one hour. After overnight primary antibody incubation (1:1000 ataxin-2; 1:1000 B-actin), cells
were rinsed 3 times with PBS prior to incubating with fluorescent secondary antibodies (1:500) for one
hour. After rinsing with PBS 3 times, coverslips were mounted using Prolong Diamond Antifade mount
containing DAPI (Thermo Fisher Scientific). All steps were carried out at room temperature. Images were
acquired using a Zeiss LSM 710 confocal microscope. Images were processed and analyzed using ImageJ

(version 2.1.0).

In vitro drug treatments. Mouse primary neurons were obtained from timed-pregnant, C57BL/6 mice at
E16.5 (Charles River). The cortices were dissected out and dissociated into single-cell suspensions with a
papain dissociation system (Worthington Biochemical Corporation) and plated onto poly-L-lysine (Sigma
Aldrich)-coated plates (0.1% (wt/vol)) at a density of 350,000 cells per well in 24-well plates. The neurons
were grown in Neurobasal medium (Gibco) supplemented with P/S (Gibco), GlutaMAX (Invitrogen), and
B-27 serum-free supplements (Gibco) at 37°C with 5% CO,. After 4 days in vitro (DIV), a full media
change was performed containing various concentrations of Etidronate (ranging from 1 nM to 100 xM)
or water (control), or Thonzonium (ranging from 1 nM to 10 uM) or DMSO (control), and cells were
lysed 24 hours later to collect protein. All mouse experiments were approved by the Stanford University

Administrative Panel on Animal Care (APLAC).

Human iPSCs-derived neurons (iNeurons) were induced utilizing a Tet-On induction system to express

the transcription factor Ngn2. Briefly, iPSCs were maintained in mTeSR1 medium (Stemcell

29


https://doi.org/10.1101/2021.12.20.473567
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473567; this version posted December 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Technologies) on Matrigel-coated plates (Fisher Scientific CB-40230). The following day, doxycycline
(2 pg/mL) was added to the media to induce Ngn2 expression, followed by puromycin (2 ug/mL)
treatment to rapidly and efficiently induce iNeurons. Three days following induction, the differentiating
iNeurons were dissociated using Accutase (STEMCELL Technologies) and resuspended in a culture
medium consisting of Neurobasal media (Thermo Fisher), N2 (Thermo Fisher), B-27 (Thermo Fisher),
BDNF/GDNF (R&D Systems) on Matrigel-coated assay plates. This resuspension mixture was then plated
onto Matrigel-coated 24-well plates. Half-media changes were performed every 2-3 days. 6-7 days after
Ngn?2 induction, the cells were treated with 10 nM, 100 nM, or 1 M Etidronate (dissolved in media) or

water (control, all to equal volumes).

In vivo drug treatments. 3-4-month-old WT C57/BL6 mice were given normal (control group) or
Etidronate-infused water (10 M) and MediGel® Sucralose (ClearH,O) (30 M) (treatment group) for
voluntary consumption, with 15 animals in each group. After one week, the animals perfused with PBS
before dissecting out their brains for flash-freezing. Olfactory bulbs were removed, the hemispheres were
separated, and each hemisphere was divided into cortex and cerebellum chunks. Left cortices were then
Dounce homogenized and treated for protein extraction in a conventional manner, as described above in

the Western Blots section.

Statistical Methods. Analyses were performed using RStudio (version 1.3.959) or Prism 9.0 (GraphPad),

and graphs were generated using Prism 9.0. Data represent mean + SD. Specific tests (e.g., unpaired t-test,

one-way ANOVA, two-way ANOVA, post-hoc tests) and significance are indicated in figure legends.
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Data and code availability. The data supporting the findings of this study are available from the
corresponding author upon reasonable request. All sequencing data is available under Gene Expression
Omnibus accession no. GSE189417. Source code for analyzing CRISPR screen data using casTLE method

(Morgens et al., 2016) can be found at the following URL.:

https://bitbucket.org/dmorgens/castle/downloads/. Detailed pipelines and options used for casTLE and

RNA-seq are available on https://github.com/emc2cube/Bioinformatics/.
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