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ABSTRACT 13 

While genetic tumor heterogeneity has long been recognized, recent work has revealed 14 

significant variation among cancer cells at the epigenetic and transcriptional levels. Profiling 15 

tumors at the single-cell level in individual cancer types has shown that transcriptional 16 

heterogeneity is organized into cancer cell states, implying that diverse cell states may represent 17 

stable and functional units with complementary roles in tumor maintenance and progression. 18 

However, it remains unclear to what extent these states span tumor types, constituting general 19 

features of cancer. Furthermore, the role of cancer cell states in tumor progression and their 20 

specific interactions with cells of the tumor microenvironment remain to be elucidated. Here, we 21 

perform a pan-cancer single-cell RNA-Seq analysis across 15 cancer types and identify a catalog 22 

of 16 gene modules whose expression defines recurrent cancer cell states, including ‘stress’, 23 

‘interferon response’, ‘epithelial-mesenchymal transition’, ‘metal response’, ‘basal’ and ‘ciliated’. 24 

Using mouse models, we find that induction of the interferon response module varies by tumor 25 

location and is diminished upon elimination of lymphocytes. Moreover, spatial transcriptomic 26 

analysis further links the interferon response in cancer cells to T cells and macrophages in the 27 

tumor microenvironment. Our work provides a framework for studying how cancer cell states 28 

interact with the tumor microenvironment to form organized systems capable of immune evasion, 29 

drug resistance, and metastasis.   30 
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Introduction 31 

 32 

Transcriptional heterogeneity in cancer is increasingly recognized as a driver of tumor progression, 33 

metastasis and treatment failure1–5. Single-cell RNA-Sequencing (scRNA-Seq) has enabled the unbiased 34 

transcriptomic profiling of individual tumor cells and has revealed a striking amount of heterogeneity 35 

among malignant cells of the same tumor6–12. Furthermore, evidence has emerged suggesting that 36 

transcriptional heterogeneity is organized into modules of co-expressed genes13. Data from 37 

glioblastoma6,7, oligodendroglioma14, astrocytoma15, head and neck cancer10 and melanoma16,17 among 38 

others, indicates that, within a tumor, cancer cells are heterogeneous in their degree of differentiation, 39 

ranging from stem- or progenitor-like to fully differentiated. These studies performed in a variety of cancer 40 

types have also shown the existence of cancer cell states related to stress response, interferon response, 41 

and hypoxia6–10. While certain states have been found in multiple studies, a general catalog of cell states 42 

across cancer types remains to be established. Such a coherent framework - if it exists - would allow us 43 

to search for common themes across cancer types and to understand how tumors are organized 44 

independently of their origin. 45 

Beyond malignant cells, tumors are composed of a complex microenvironment including immune 46 

and stromal cells, which also play critical roles in tumorigenesis18. In particular, the clinical success of 47 

immunotherapy across multiple cancers19–22 hints at commonalities in the interactions between cancer 48 

cells and the tumor microenvironment (TME). Causative links have been drawn between specific 49 

elements of the TME and cancer cell states10,23,24. In one study of head and neck cancer, a population of 50 

partial epithelial-mesenchymal transition (pEMT) cancer cells at the leading edge of tumors was shown 51 

to interact with cancer-associated fibroblasts and mediate invasion10. In glioblastoma and triple-negative 52 

breast cancer, factors of the TME appear to induce malignant cells to adopt a stem-like state23,24. These 53 

works point to a need for a systematic analysis of cancer cell states, with a particular focus on the relation 54 

to the non-malignant cell types of the TME.  55 

Here, we characterize recurrent cancer cell states and their relationship with the TME by 56 

systematically assaying 15 cancer types to identify a catalog of recurrent cancer cell states using a gene-57 
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centric approach. Analyzing scRNA-Seq data from previously published data as well as newly collected 58 

tumors, we identified 16 coherent gene modules and quantified their expression in malignant cells of 59 

each sample. This catalog includes modules present in all studied tumors, as well as others that are 60 

specific to particular sets of cancer types. To further study the cancer cells states, we used experimental 61 

models to perturb the tumor microenvironment and test for differential effects on the cancer cell states. 62 

While some of the states are related to known aspects of cancer biology, we present evidence that these 63 

processes are heterogeneously deployed by cells of the same tumor, and that this heterogeneity recurs 64 

across a wide range of cancer types. A detailed analysis of the interferon response module further led us 65 

to study its dependencies in vivo in the context of TME perturbations and to establish its proximity to 66 

macrophages and T cells across cancer types. Overall, the catalog of cancer cell states is a coherent 67 

representation of the makeup of a tumor, and provides a framework for the analysis and testing of the 68 

features of tumorigenesis.  69 

 70 
Recurring gene modules across diverse cancer types 71 
 72 
We collected 19 fresh primary untreated patient tumors spanning 9 cancer types immediately after 73 

surgery (Supplementary Table 1). We dissociated each tumor to obtain a single-cell suspension, and 74 

processed for scRNA-Seq without prior sorting to ensure an unbiased assessment of the tumor cellular 75 

composition. Our tumor collection included 9 cancer types: carcinoma of the ovary (OVCA), endometrium 76 

(UCEC), breast (BRCA), prostate (PRAD), kidney (KIRC), liver (LIHC), colon (COAD) and pancreas 77 

(PDAC), as well as one non-epithelial cancer type, gastrointestinal stromal tumor (GIST) (Fig. 1a). We 78 

first identified the malignant cells in our dataset by analyzing the transcriptomes using a combination of 79 

marker genes, singleR annotation25, and inferred copy number variation26, and controlling for the 80 

possibility of doublets (Fig. 1b-c, Extended Data Fig. 1-2, see Methods). Across our samples, we 81 

annotated 9,036 malignant and 18,546 non-malignant cells (Supplementary Table 2). To extend our 82 

dataset, we also performed this analysis in tumors from prior publications, including additional PDAC27 83 

and LIHC28, as well as additional tumor types: cholangiocarcinoma (CHCA)29, lung adenocarcinoma 84 

(LUAD)30, head and neck squamous cell carcinoma (HNSC)10, skin squamous cell carcinoma (SKSC)31, 85 
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glioblastoma multiforme (GBM)7 and oligodendroglioma (OGD)14, resulting in a total of 19,942 malignant 86 

cells from 62 untreated primary tumors spanning 15 cancer types (Fig. 1a).  87 

Our approach to defining cell states involved first cataloging the underlying gene modules, 88 

following recent work that has identified gene modules as the defining features of cell states6,7,10,14. This 89 

is a flexible approach since it allows for cells expressing combinations of modules, and thus for the 90 

complexity of possible cell states. We analyzed the malignant cells using non-negative matrix 91 

factorization (NMF) to identify gene modules as sets of co-expressed genes (Fig. 1d, see Methods). Our 92 

method detects groups of genes that are co-expressed within the sample, i.e. that are expressed 93 

coherently in a subset of cells. To search for recurring gene modules across tumors, we then compared 94 

the gene composition of the identified modules (Fig. 1e, see Methods). By thus performing the integration 95 

at the level of gene modules rather than expression matrices, the impact of technical variation across the 96 

samples and studies is limited. Despite the independent identification of these modules in a variety of 97 

cancer types – thereby not presuming recurrence – we found that modules obtained in different tumors 98 

overlap significantly (Fig. 1e, top bar). Importantly, this finding of recurrence rather than uniqueness 99 

would not be the result of batch effects.  100 
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 101 
Figure 1: A catalog of recurrent cancer gene modules. 102 

a. Tumors collected in this study and tumors included from previous reports for joint analysis. The 103 
background color indicates the organ system of origin: cutaneous (grey), gastrointestinal (blue), 104 
gynecological (red) and genitourinary (yellow). White background indicates non-epithelial tumors.  105 

b. UMAP embedding of cells from 19 tumors collected spanning a total of 9 cancer types, colored 106 
as in a. 107 

c. As in b., colored by annotation as malignant or non-malignant 108 
d. Heatmap of expression levels for 241 genes in the malignant cells of the ovarian tumor OVCA 109 

NYU1. Genes are ordered by their module membership (horizontal lines) and the colors of the 110 
indicated genes correspond to their consensus module annotation described in e. 111 

e. Heatmap of the significance of the overlap between individual tumor modules (hypergeometric 112 
test). The bottom bar indicates the significance of the overlap with consensus modules 113 
(hypergeometric test). The top bar indicates the identity of the tumor samples, colored as in a. 114 
Extended Data Figure 3h indicates the significance of the overlap of each consensus module 115 
with each tumor specific gene module.  116 

f. Table of consensus modules, selected genes and putative regulators identified using SCENIC 117 
(regulators identified in at least 2 tumors are shown), colored as in d. See also Extended Data 118 
Figure 3h and Supplementary Table 4.  119 
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The recurrence of the gene modules enabled us to construct a catalog of 16 consensus modules 120 

(henceforth ‘modules’; Fig. 1f, Extended Data Fig. 3f, Supplementary Table 3, see Methods), with a 121 

median of 37 genes per module. To establish whether a module is significantly present in the population 122 

of cancer cells in each tumor, we used the gene set overdispersion metric32 (Extended Data Fig. 4a, see 123 

Methods). Consistent with Figure 1d, some modules were enriched in specific organ systems (such as 124 

the brain or gynecological organs), while others spanned several organ systems and histologies (see 125 

below). We also tested for the overdispersion of the modules in independent datasets representing 126 

normal epithelia from the fallopian tube33, breast34 and liver35 (Extended Data Fig. 4b) in order to ask 127 

whether the modules reflect a reconstitution of the heterogeneity found in normal tissues. For most 128 

modules, we found that the overdispersion was lower in normal epithelial samples, suggesting that they 129 

are not as differentially expressed in normal tissues, with some exceptions which we detail below. 130 

However, the fact that the catalog of modules are indeed detected to some extent in normal tissues 131 

suggests that the modules are not specific to cancer, but rather are co-opted from existing ones and 132 

expressed more heterogeneously (see Discussion). We also studied the gene composition and cancer 133 

type-specificity of the modules, distinguishing modules related to cellular processes (Extended Data Fig. 134 

3a) from those related to cell identity (Extended Data Fig. 3b).  135 

As expected, we recovered a highly recurrent module consisting of cell cycle genes (e.g., TOP2A, 136 

PCNA), capturing the subset of cancer cells in any tumor that is cycling at the time of sampling. Another 137 

process which recurred across tumor types was the stress response (e.g., JUN, FOS, HSPA1B), which 138 

has been previously described12,36,37 and shown to have a role in drug resistance in melanoma17. We also 139 

present spatial transcriptomics data below (Fig. 5) that provides additional support for the in vivo 140 

existence of this state among cancer cells in the absence of dissociation.  141 

An interferon response module, which has been identified in metastatic ovarian carcinoma12, was 142 

detected as widely occuring, showing that interferon response in malignant cells is heterogeneous across 143 

a range of solid tumor types. In addition to interferon stimulated genes such as STAT1 and IFIT1, this 144 

module contained components of antigen presentation, a well-characterized effect of interferon38, with 145 

both MHC I genes such as HLA-A39,40 and MHC II genes including HLA-DRA. While MHC II expression 146 
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is classically associated with professional antigen-presenting cells, this pathway has also been shown to 147 

be expressed in normal epithelial cells and in cancer cells41,42. Interferon response generally functions as 148 

a defense response recruiting and activating immune cells, and has been extensively studied in cancer43–149 

45. In this context, interferon ligands may be secreted by cancer cells and dendritic cells (DCs) (for type I 150 

interferons, IFNα and IFNβ), or by natural killer (NK) and T cells (for IFNγ). Alternatively, the interferon 151 

response may be cancer cell intrinsic, i.e. activated independently from signaling by other cell types; 152 

indeed, a recent study comparing gene modules across cancer cell lines in vitro also identified an 153 

interferon response module46, supporting the possibility of a TME-independent response. 154 

Two modules relating to metabolic processes were also found across a range of cancer types: a 155 

hypoxia module (e.g., VEGF, ADM)6,47–50 and an oxidative phosphorylation module (e.g., ATP5H, 156 

LAMTOR2)9. Metabolic adaptation to hypoxia in solid tumors, with increased glycolysis and induction of 157 

angiogenesis, has been implicated in cancer progression, drug resistance, invasion and metastasis51,52. 158 

Nonetheless, recent studies have shown a role for oxidative phosphorylation in several cancer types, 159 

suggesting that cancer cells may rely on both glycolysis and oxidative phosphorylation for energy 160 

production53,54. An additional gene module of metallothionein genes – which we refer to here as a metal-161 

response module – may have a role in proliferation and drug resistance in several cancer types55–58.  162 

Another set of modules correspond to cell identity, and appear to be related to the tissue and cell 163 

of origin (Extended Data Fig. 3b). The majority of the tumors profiled were of epithelial origin, and 164 

accordingly we identified modules overlapping with known epithelial cell type markers: an alveolar module 165 

(e.g., AGER, CAV1) which was particularly present as expected in LUAD59–61, as well as basal (e.g., 166 

KRT5 and KRT15), squamous (e.g., KLK10, LY6D), and glandular (e.g., CLU, MUC5B) cell modules 167 

(Extended Data Fig. 3f-g). A module composed of cilium-related genes (e.g., FOXJ1, PIFO) was present 168 

in gynecological tumors as well as LUAD and GBM. In ovarian and endometrial tumors, this module was 169 

present only in the endometrioid samples (OVCA NYU2-3, UCEC NYU2-3), and not in the high grade 170 

serous samples (OVCA NYU1, UCEC NYU1), pointing to cilium formation as a characteristic of 171 

endometrioid histology. The presence of the module in normal fallopian tube and lung epithelial tissues 172 

(Extended Data Fig. 4b-c)62,63 suggests that its differential expression in cancer mirrors the heterogeneity 173 
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of the tissue of origin. The heterogeneous expression of differentiation modules that we observe within 174 

tumors may provide a more detailed understanding of tumor architecture from a clinical pathology 175 

perspective where each tumor is assessed for grade and histological subtype.  176 

Two of the modules spanning multiple cancer types were related to epithelial-mesenchymal 177 

transition (EMT): a complete mesenchymal module (cEMT) (e.g., COL1A1, FN1) and a partial 178 

mesenchymal module (pEMT) (e.g., LAMC2, VIM) lacking canonical mesenchymal markers such as 179 

collagen genes10. The pEMT module has been recently characterized in HNSC10 and SKSC31 (Extended 180 

Data Fig. 3c-e), but is also found in GBM7, suggesting that cells from different lineages converge upon 181 

this identity in cancer. We detected the presence of the cEMT module in a minority of samples, but a 182 

range of cancer types: mainly PDAC, CHCA, LUAD, and GBM. A recent study has shown that pEMT and 183 

cEMT can occur in a range of cancer types64, and may represent two pathways converging upon the 184 

phenotypic properties conferred by mesenchymal differentiation including migration and drug 185 

resistance11,65. Using TCGA data66, we indeed found that expression of the pEMT gene module is 186 

associated with decreased progression-free survival (Extended Data Fig. 16, see Methods)67,68.  187 

Finally, we identified three neurological cancer-specific modules that were analogous to those 188 

described by Tirosh et al.14 and Neftel et al.7 (Extended Data Fig. 3c): the astrocyte (AC)-like (e.g., APOE, 189 

ALDOC), oligodendrocyte progenitor cell (OPC)-like (e.g., OLIG1, OLIG2), and neural progenitor cell 190 

(NPC)-like (e.g., DLX1, DLX5) modules. 191 

The broad incidence of these modules across a range of cancer types highlights redeployment of 192 

differentiation programs and distinct expression levels in cancer and normal tissues. Moreover, while 193 

many of the genes identified have been implicated in aspects of cancer biology (as discussed above), 194 

our single-cell approach enabled us to show that they are heterogeneously expressed among the 195 

malignant cells of a tumor (Extended Data Fig. 4a), and generally expressed at higher levels in malignant 196 

versus normal epithelial cells (Extended Data Fig. 4d).  197 

To test whether the catalog of 16 modules can also be detected using an independent approach, 198 

we used SCENIC69, a method that identifies genes that are both correlated in their expression and 199 

regulated by the same transcription factor. We found that each module of our catalog had significant 200 
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overlap with several SCENIC regulons (Extended Data Fig. 3h, Supplementary Table 4, see Methods). 201 

For instance, the interferon response module overlapped with several SCENIC regulons annotated with 202 

the transcription factors STAT1 and IRF1.  203 

 204 

Defining cancer cell states by gene module expression 205 

Having established the catalog of cancer gene modules, we next sought to understand how they are 206 

generally assembled at the level of individual cells. In particular, we asked whether cells are constrained 207 

in which modules or combinations of modules they can express. For this, we scored each malignant cell 208 

for the expression of each of the modules (Fig. 2a, see Methods). In the SKSC Ji1 sample, for example, 209 

expression of basal, squamous and cycling modules was mutually exclusive, but each of these had co-210 

expression with the stress or pEMT module (Fig. 2a, Extended Data Fig. 7a-b). More generally, we found 211 

that most cells express a combination of modules, though not all combinations are possible. These results 212 

support the notion that, in defining a cancer cell state, it is crucial to examine the complete set of gene 213 

modules expressed. 214 

Since the modules recur across cancer types, we reasoned that the cell module scores could 215 

serve as natural axes across which to compare cancer cells of different patients. Figure 2b represents a 216 

dimensionality reduction performed on the module scores of cells from 19 different tumors collected at 217 

NYU (see Methods). Most notably, the cancer cells in this space do not group by patient or cancer type, 218 

but rather by their most highly expressed module (Fig. 2b,c, Extended Data Fig. 6a-c). This is in sharp 219 

contrast with the finding that, in gene expression space, cancer cells cluster by patient36, and highlights 220 

commonalities across cancer types when variation due to individual genes is removed. As described for 221 

SKSC Ji1 (Fig. 2a), there is a degree of co-expression between certain modules: for example pEMT is 222 

co-expressed with stress and interferon-response (Fig. 2d, Extended Data Fig. 6b). Together with the 223 

fact that cells do not form distinct clusters, this supports the view that cancer cell states do not generally 224 

represent discrete entities. We did observe, however, discrete clusters corresponding to cells expressing 225 

the cycle or cilium module. These clusters are also identified when examining tumors individually in gene 226 
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 10 

expression-based dimensionality reductions, and are therefore not artifacts of the module score 227 

dimensionality reduction (Extended Data Fig. 6d).  228 

Since certain modules are also present in non-cancer samples (Extended Data Fig. 4b-c), we 229 

asked whether the fraction of cells expressing each module varies between malignant and non-malignant 230 

epithelia. For this, we compared the module expression frequency in the malignant cells to those in non-231 

malignant cells from matched samples, both in our dataset and that of Kim et al.30, Ji et al.31 and Pu et 232 

al.70 (Fig. 2e and Extended Data Fig. 6f). While for LUAD, SKSC and THCA we compared to the epithelial 233 

cells of paired adjacent normal samples30,31, in PDAC, non-malignant ductal cells from the same samples 234 

served as a paired normal comparison (see Methods).  235 

The pEMT module was expressed at higher frequencies in all three cancer types relative to normal 236 

(Fig. 2e), in line with the common occurrence of EMT in epithelial cancers67. The interferon response 237 

module exhibited increased expression frequency in LUAD and SKSC relative to normal, but was 238 

unchanged in PDAC (Fig. 2e). This may be partly explained by the fact that the ductal cells used as a 239 

reference are part of the tumor itself, and are exposed to the TME.  240 

Normal lung and skin have squamous components, and consistently we observed no difference 241 

in squamous expression in the tumor samples (Fig. 2e). In contrast, the squamous module was induced 242 

in the PDAC relative to normal ductal cells, indicating squamous differentiation in the malignant cell 243 

population. A similar trend was observed for the basal module (Extended Data Fig. 6f). Several 244 

classifications of PDAC have been proposed based on bulk transcriptomics71–73, including a distinction 245 

between classical (high expression of glandular genes, including TFF1 and CEACAM6) and basal 246 

subtypes (high expression of squamous and basal genes, including LY6D and KRT15). Although 247 

squamous cell pancreatic cancer is rare74,75, the increase in squamous expression frequency in PDAC 248 

suggests that partial metaplasia towards a squamous program is common. Expression of the glandular 249 

module was unchanged in LUAD and PDAC relative to their normal counterparts, but increased in SKSC 250 

relative to normal skin. This pattern suggests that a malignant population of cells retains expression of 251 

modules associated with its cell type of origin (for example, retention of the squamous module in SKSC) 252 
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and further deploys gene modules from other cell types (increased expression of the glandular module 253 

in SKSC).  254 

 255 

Figure 2: Expression of gene modules underlies cancer cell states. 256 
a. Gene expression UMAP embedding of malignant cells of SKSC Ji1, colored by module score for 257 

the 8 indicated modules.  258 
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b. Module score TSNE embedding of the cancer cells of all 18 tumors, colored by the most high 259 
scoring module.  260 

c. Same as b, colored by cancer type, as in Figure 1a. 261 
d. Same as b, colored by pEMT module score.  262 
e. Boxplots of the expression frequency (fraction of cells with module score greater than 0.5) of the 263 

squamous, glandular, pEMT and interferon response modules in paired normal and tumor 264 
samples.   265 

 266 
Expression of the interferon response is modulated by the tumor microenvironment 267 
 268 
Cancer cell states may reflect common physical constraints and interactions with the cellular components 269 

of their microenvironment76–78. Notably, the success of immunotherapy in a range of cancer types points 270 

to conserved interactions between cancer cells and immune cells19–22, leading us to ask whether 271 

interactions with the immune system shape the set of occurring cancer cell states. The interferon 272 

response module in particular may be involved in interactions between cancer cells and the TME. In 273 

tumors, type I interferons are secreted by cancer cells and DCs in response to DNA fragments activating 274 

the cGAS/STING pathway79–81, and result in T cell priming and antitumor activity44. IFNγ is mainly 275 

produced by adaptive immune cells upon activation45, and leads to up-regulation of MHC I genes, initially 276 

facilitating tumor rejection but ultimately leading to IFN-unresponsive tumors through immunoediting82. 277 

Following these observations, we asked whether adaptive immune cells are necessary to elicit the 278 

interferon response module in cancer cells in vivo. For this, we used an established allograft mouse 279 

cancer model in which the TME can be readily perturbed (see Methods). We performed scRNA-Seq on 280 

four orthotopic pancreatic tumors to verify that gene modules could be recapitulated in the orthotopic 281 

model. Identifying gene modules using NMF as we did previously, we found that five were recapitulated 282 

in this system: cycling, stress response, interferon response, hypoxia, and glandular differentiation (Fig. 283 

3a,b, Supplementary Table 4). 284 

In parallel, we collected scRNA-Seq data from four orthotopic tumors formed in Rag1-/- mice, 285 

which lack T and B cells. Analyzing the gene module expression in the malignant cells from these tumors 286 

we found that cycling, stress response, hypoxia and glandular differentiation were expressed at similar 287 

frequencies between the Rag1-/- and WT mice (Fig. 3c). In contrast, the interferon response module was 288 

expressed at lower frequencies in the tumors from the Rag1-/- mice (p < 10-10, Kolmogorov-Smirnov test, 289 
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Fig. 3d). Furthermore, all of the genes of the interferon response module were up-regulated in the 290 

interferon response-expressing cells relative to other cancer cells, suggesting that a coordinated 291 

response is maintained - albeit in fewer cells (Extended Data Fig. 8d). The MHC I genes of the interferon 292 

response module (B2m, H2-D1, H2-K1) have a lower overall expression in the Rag1-/- mice (although 293 

they remain relatively up-regulated in the interferon response-expressing cells), suggesting that 294 

lymphocyte depletion has an additional general effect on the expression of MHC I genes which is 295 

interferon response-independent.  296 

We next tested whether different tumor microenvironments would also modulate the expression 297 

of the interferon response module. In one experiment, we compared the orthotopic tumors in the 298 

pancreas, the site of origin of the cancer, to heterotopic tumors in the peritoneum, a common site of 299 

metastasis. We found that tumors in the peritoneum have a lower frequency of interferon response-300 

expressing cells (p < 10-6 in Kolmogorov-Smirnov test, Fig. 3e). In a second experiment, we compared 301 

frequencies across two heterotopic sites - peritoneum and liver - in order to model different metastatic 302 

sites in vivo. Here, we found that the interferon response module is expressed at a higher frequency in 303 

the liver relative to the peritoneum (p < 10-10, Kolmogorov-Smirnov test, Fig. 3f). 304 
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 305 
Figure 3: Cancer cell states in perturbed tumor microenvironments.  306 

a. Heatmap of the significance of the overlap between modules obtained by NMF in an orthotopic 307 
model of pancreatic cancer and modules obtained in patient samples in Figure 1f 308 
(hypergeometric test).  309 

b. UMAP embedding of malignant cells from orthotopic pancreatic tumors, colored according to the 310 
expression score of the six modules shown in a.  311 

c. Module expression frequencies in WT mice vs Rag1-/- mice (mean ± standard error). 312 
d. Violin plots of interferon module expression score in WT mice vs Rag1-/- mice.  313 
e. Same as d, for pancreas versus peritoneum.  314 
f. Same as d, for peritoneum versus liver.  315 

 316 
Collectively, this set of experiments provides an initial assessment of the occurrence of the 317 

interferon response module in cancer. The presence of this module across a variety of cancer types (Fig. 318 

1), organs and immune settings (Fig. 3), suggests that the heterogeneity of interferon response across 319 

malignant cells is a common feature of tumors. We found that the adaptive immune system is necessary 320 

for most, but not all, of the expression of this module. The remaining expression in the lymphocyte-321 

depleted condition suggests other causes of interferon response in cancer cells, either cancer extrinsic, 322 

for example interferon secretion by NK cells, or cancer-intrinsic, consistent with reports of an interferon 323 
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response module in vitro83. Notably, this finding does not discriminate between signaling mechanisms 324 

eliciting an interferon response and long term immunoediting leading to selection of the state within the 325 

tumor40,82.  326 

 327 

Spatial organization of malignant and non-malignant cell types in the tumor 328 
 329 
To further analyze the organization and interactions between cancer cell states and cells of the TME, we 330 

turned to sequencing-based spatial transcriptomics (ST)84. Unlike scRNA-Seq which is obtained after 331 

dissociation – resulting in loss of any spatial information – array-based ST data captures mRNA at each 332 

location within the tissue not at single-cell resolution84, but rather capturing ~10 cells per spot. We 333 

therefore sought to leverage the properties of both modalities by integrating the paired data for ten tumors 334 

(Fig. 4a-c, OVCA NYU1, OVCA NYU3, UCEC NYU3, BRCA NYU0, BRCA NYU1, BRCA NYU2, PDAC 335 

NYU1, GIST NYU1, GIST NYU2, LIHC NYU1). Each of our ten tumor ST datasets consisted of ~2,000 336 

spots (ranging from 1,351 to 2,624) over a 6mm x 6mm area. Spots on the ST array are separated by 337 

100µm allowing us to gain insight into the tumor microenvironment, where, for example, paracrine 338 

signaling functions at such distances85.  339 

Since each spot is a combination of cells of one or more cell types, its transcriptome can be 340 

represented as a weighted sum of cell type transcriptomes. To infer the contribution of each cell type at 341 

each spot, we performed non-negative linear least squares (NNLS) regression using the average 342 

expression profiles of cell types from the paired single cell data (see Methods). We then compared the 343 

coefficients obtained for each cell type to those obtained in a random model, and considered a cell to be 344 

present in a spot if its coefficient was more than two standard deviations above the mean in the random 345 

set. These annotations were further validated by the pathologists on our team (C.H. and D.F.D.). As a 346 

framework for further analysis, we divided the spots into three categories according to their cell type 347 

annotations: ‘Malignant’, containing only malignant cells, ‘Normal’, containing only immune and stromal 348 

cells, and ‘Both’, containing a combination (Fig. 4a, Extended Data Fig. 9, Supplementary File 2).  349 

As an independent method for spot categorization, we also directly compared the spots and 350 

single-cell transcriptomes of the 10 paired datasets. Figure 4b shows a dimensional reduction plot of the 351 
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transcriptomes from the OVCA NYU1 sample, with gray dots indicating the ST spots and the other colors 352 

indicating single-cell transcriptomes, colored by the annotated cell types. By invoking mutual nearest 353 

neighbor (MNN) integration and joint dimensionality reduction86, we found that data from the two 354 

modalities are well integrated (see Methods, Fig. 4b,c, Extended Data Fig. 10). The single cells form 355 

clusters at the periphery, indicating distinct cell types. The ST spots are either mixed with individual 356 

single-cell clusters, indicating a pure population, or bridge multiple clusters, indicating a combination of 357 

cell types. Overlaying the spot categories determined by the NNLS method onto this plot, we consistently 358 

observed that ‘Malignant’ spots were mixed with the malignant cell cluster, ‘Normal’ spots were in the 359 

region of non-malignant cell types, and ‘Both’ spots spanned both malignant and non-malignant single-360 

cell clusters. As a second example, the LIHC ST dataset showed two spatially distinct tumor nodules 361 

(Fig. 4c), with the left having substantial mixing between malignant and non-malignant cells and the right 362 

consisting of almost only malignant cells. The joint dimensionality reduction analysis reflected the two 363 

corresponding malignant clusters, which were not distinct when considering the single-cell dimensionality 364 

reduction alone (Extended Data Fig. 12f). This analysis highlights the potential of integrating paired 365 

spatial and single-cell datasets to anchor single cells in their spatial context.  366 

To further test the accuracy of the NNLS method to annotate spots, we performed paired scRNA-367 

Seq and ST on two patient-derived melanoma xenografts (PDX) (Extended Data Fig. 11a-b, see 368 

Methods). In this setting, only malignant cells are of human origin and therefore express human genes, 369 

enabling us to reliably identify malignant cells or spots. Using the NNLS method on the full mouse and 370 

human transcriptomes, we first established a ‘ground truth’ for spot identities. We then simulated the 371 

patient samples by converting mouse genes to their human orthologs, thereby removing the species 372 

information. Annotating the spots using NNLS in this way resulted in 99% and 89% specificity for each 373 

sample, supporting its accuracy. 374 

The presence of ‘Normal’ and ‘Both’ spots in each sample enabled us to ask how the cell type 375 

composition of the tissue changes in the presence of malignant cells. The fraction of endothelial cells 376 

was consistently lower in the spots also containing malignant cells (Fig. 4d), suggesting an incomplete 377 

vascularization of the tumor87,88. Conversely, neutrophils were found in higher numbers in the ‘Both’ spots 378 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473565
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

(Fig. 4e). Tumor-associated macrophages are broadly defined as M1 - anti-tumor/pro-inflammatory - and 379 

M2 - pro-tumor/anti-inflammatory89–91. In our single-cell data, we detected two populations of 380 

macrophages, one expressing pro-inflammatory genes (e.g., TNF, SPP1, ISG15), and the other 381 

characterized by antigen presentation and complement (e.g., HLA-DRA, C1QA, CD163) (Extended Data 382 

Fig. 12a,c, Supplementary Table 6). To compare the location of M1 and M2 macrophages relative to that 383 

of cancer cells, we scored each spot containing a macrophage for its expression of the signatures of both 384 

populations, and calculated the M1-M2 score, which allowed us to compare macrophage polarity across 385 

spot categories (Fig. 4f). In the six gynecological samples - ovarian, endometrial and breast cancer - we 386 

found that ‘Both’ spots contained a significantly higher M1-M2 score than ‘Normal’ spots, suggesting a 387 

robust anti-tumor macrophage activity in proximity to cancer cells. This is in contrast to the findings of a 388 

study performed in colorectal carcinoma that detected higher M2 in the tumor relative to adjacent normal 389 

tissue92. These results suggest the presence of an inflammatory host response surrounding malignant 390 

cells within a few 100µms, highlighting the value of studying the architecture of tumors at high resolution. 391 

Beyond the M1/M2 dichotomy, macrophage with diverse phenotypes, including pro-angiogenic 392 

macrophages93 and mesenchymal-like macrophages94, are emerging as key players in tumor-immune 393 

interactions. A similar analysis for T cell subtypes - cytotoxic, helper and regulatory - did not show 394 

consistent results across samples (Extended Data Fig. 12b,d,e, Supplementary Table 7).  395 
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 396 
Figure 4: Spatial organization of the tumor microenvironment. 397 

a. H&E images for the 8 indicated patient tumors overlaid with the locations of the spatial 398 
transcriptomic spots colored according to their annotation as ‘Malignant’, ’Both’, or ‘Normal’. Bar 399 
plots indicate the fraction of non-malignant cell types in the ‘Normal’ and ‘Both’ spots for each 400 
sample.  401 

b. Joint dimensionality reduction of single-cell and ST spots for the OVCA NYU1 sample. The top 402 
inset indicates the H&E image as in a. The bottom inset shows the same joint dimensionality 403 
reduction with the ST spots colored according to their annotation. 404 

c. Joint dimensionality reduction of single-cell and ST spots for the LIHC NYU 1 sample, as in b. 405 
The top right inset shows the same joint dimensionality reduction with spots colored according to 406 
their coordinate along the x axis.  407 

d. Boxplots of the fractions of endothelial cells and neutrophils in ‘Normal’ and ‘Both’ spots for each 408 
sample (*, p-value < 0.05; Wilcoxon test).  409 
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e. Boxplots of fractions of neutrophils in ‘Normal’ and ‘Both’ spots for each sample (*, p-value < 0.05; 410 
Wilcoxon test).  411 

f. Boxplots of M1-M2 score in ‘Normal’ and ‘Both’ spots for each sample (*, p-value < 0.05; ***,  p-412 
value < 0.001; Wilcoxon test).  413 
 414 

Cancer cell state analysis of tumor cellular neighborhoods 415 

Having identified the malignant and non-malignant cell types within each tumor, we next sought 416 

to query the composition of cellular neighborhoods in terms of cancer cell states. For this, we mapped 417 

cancer cell states within each ST sample, scoring each ‘Malignant’ spot for its expression of each module 418 

(Fig. 5a, see Methods). To establish the validity of this scoring approach, we first turned again to the PDX 419 

data and scored the ‘Malignant’ spots for the expression of modules (Extended Data Fig. 11e-f). Since 420 

human malignant cells can unambiguously be distinguished from mouse TME cells in this system, we 421 

first used the single cell data to confirm that the modules are differentially expressed by malignant cells 422 

themselves and rule out the possibility of an artifact stemming from TME contamination. For example, 423 

the pEMT module includes genes normally expressed by fibroblasts, but we detected its presence in the 424 

malignant cells (Extended Data Fig. 11g-h). The interferon response module was not present, as 425 

expected since, like the Rag-/- mice (Fig. 3c), these mice are lymphocyte deficient.  426 

To characterize the cell type composition surrounding each ‘Malignant’ spot, we calculated, for 427 

each cell type, two score indices meant to capture their microenvironment. We defined the ‘neighborhood 428 

score’ as the fraction of surrounding spots containing that cell type (Fig. 5b, see Methods). This score 429 

thus directly measures the cell type composition in the adjacent spots. The proximity score measures 430 

how close the spot of interest is to each cell type, and is calculated as the inverse of the shortest distance 431 

to a cell of that type (Fig. 5c, see Methods).  432 

Correlating the module scores and cell type neighborhood profiles across the ‘Malignant’ spots of 433 

each tumor revealed how cancer cell states and cell types of the TME co-localize to form ‘neighborhoods’ 434 

(Fig. 5d). For the BRCA NYU2 tumor shown in Fig. 5a-c, one grouping in the heatmap of relationships 435 

contained the interferon response module and macrophages. Studying this correlation more closely 436 

confirmed the significance of this positive relationship between the module score and the macrophage 437 

neighborhood score (Fig. 5e). A consistent relationship was also observed when computing the presence 438 
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of macrophages using the proximity score (Fig. 5f). To explore this relationship across all samples, we 439 

calculated the correlation score (±log10(p-value)) of the macrophage neighborhood (Fig. 5g). The 440 

correlation with the interferon response was positive in all the samples, and significant for 8 of 10 441 

samples. This was not the case for any other module (Fig. 5g). This suggests that macrophages may 442 

elicit the expression of the interferon response module, or that the interferon response-expressing cancer 443 

cells may recruit macrophages. Indeed, a recent study showed that stimulation of the interferon response 444 

pathway in tumors leads to recruitment and activation of macrophages95.  445 

Extending this analysis for all pairs of cell types and modules using both neighborhood and 446 

proximity measures (Fig. 5h,i), we identified other consistent co-localizations of cell states with cell types 447 

of the TME. In addition to macrophages, the interferon response-expressing cancer cells co-localize with 448 

T cells according to both measures (Fig. 5h,i), in line with the finding in vivo that lymphocytes lead to 449 

increased interferon response (Fig. 3d). Further work is required to establish the mode and directionality 450 

of these interactions (Extended Data Fig. 14). Cancer cells undergoing EMT were positively correlated 451 

with fibroblasts and endothelial cells, and negatively correlated with other malignant cells, consistent with 452 

the finding that they are enriched at the interface of the tumor (Extended Data Fig. 13) and interact with 453 

cancer-associated fibroblasts10.  454 
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 455 

Figure 5. Mapping cancer cell states and their interactions with the TME.  456 
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a. Scoring ST spots for module expression. In the top schematic of spots colored by their annotation 457 
as ‘Malignant’, ‘Both’ and ‘Normal’. Only ‘Malignant’ spots are scored for their expression of each 458 
module. For the BRCA NYU2 sample, ‘Malignant’ spots are indicated and colored by their 459 
expression of the 6 indicated modules. 460 

b. Characterizing ST spots by cell type neighborhood. In the top schematic grey spots indicate the 461 
presence of the cell type of interest, orange indicates ‘Malignant’ spots, and dashed lines their 462 
surrounding spots. For the same sample as in a, the spots are colored by neighborhood 463 
macrophage score.  464 

c. Characterizing ST spots by cell type proximity. In the top schematic, spots are colored as in b and 465 
arrows the distance to the closest spot containing the cell type of interest. For the same sample 466 
as in a, the spots are colored by the macrophage proximity score. 467 

d. Heatmap of correlations between module scores and cell type neighborhood scores for BRCA 468 
NYU2 (‘Malignant’ spots only). Boxes indicate clusters of correlated module expression scores 469 
and cell type neighborhoods.  470 

e. Plot of the relationship between the interferon response module score and macrophage 471 
neighborhood score in the BRCA NYU2 sample (‘Malignant’ spots only). 472 

f. Plot of the relationship between the interferon response module score and macrophage proximity 473 
in the BRCA NYU2 (‘Malignant’ spots only) 474 

g. Boxplot of correlation scores (±log10(p-value)) between module scores and macrophage 475 
neighborhood scores across 10 samples, colored as in Figure 1a. Positive scores correspond to 476 
positive correlations. Dashed lines indicate p-value = 0.05.  477 

h. Correspondence map of significance between module expression scores and cell type 478 
neighborhoods. Color represents the median ±log10(p-value) of the correlation, with red 479 
corresponding to positive correlations and blue to negative correlations. Point size represents the 480 
fraction of samples in which the correlation is of the same sign as the median correlation. Black 481 
outlines indicate relationships where the median ±log10(p-value) of the correlation was greater 482 
than 0.75, and the fraction of samples in which the correlation is of the same sign as the median 483 
correlation is greater than 0.5, using both the neighborhood and proximity metrics (see Fig. 5i).  484 

i. Correspondence map of significance between module score and cell type proximity, colored as 485 
in Figure 5h.  486 

 487 
 488 
 To further study the co-localization of macrophages and T cells with interferon response-489 

expressing malignant cells, we turned to CO-Detection by indEXing (CODEX) - a multiplexed protein 490 

staining assay - which enables spatial analysis at single-cell resolution96. For four of the samples used 491 

for spatial transcriptomics (OVCA NYU1, UCEC NYU3, LIHC NYU1, GIST NYU1), we stained for 23 492 

markers (Fig. 6, see Methods), including HLA-DRA as a marker for the interferon response 493 

(Supplementary Table 2). Using a supervised gating strategy, we identified malignant cells and cells of 494 

the TME, including macrophages, T cells, endothelial cells, and fibroblasts (Extended Data Fig. 15). A 495 

subset of PanCytokeratin(PanCK)/EPCAM positive cells was also positive for HLA-DRA, providing 496 

evidence at the protein-level that MHCII is differentially expressed in malignant cells of a tumor (Fig. 6a). 497 
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We therefore defined malignant cells as either interferon response-positive or negative, and compared 498 

their proximity to macrophages and T cells. Again, we used the two metrics of proximity and neighborhood 499 

(Fig. 5a) to study cell co-localization. For example, for macrophages, the ‘proximity’ of a malignant cell to 500 

macrophages is defined as 1/(1+distance), taking the distance to the closest macrophage (Fig. 6b); and 501 

the ‘neighborhood’ is defined as the fraction of cells annotated as macrophages within a 100µm radius. 502 

For each tile within a given sample, we used the average measure for interferon-positive and for 503 

interferon-negative cells to compute a log ratio (Fig. 6b). For both macrophages and T cells, the median 504 

log ratio across tiles was positive for both the proximity and neighborhood metrics across the four 505 

samples, indicating that interferon response-positive malignant cells are preferentially co-localized with 506 

these two cell types relative to interferon response-negative malignant cells (Fig. 6c-d). This suggests 507 

that at least a subset of cancer cell states interact with the TME, either being elicited by immune or 508 

stromal cells, or altering the cell type composition of their surroundings. Further work will elucidate the 509 

causal architecture of these relationships.   510 

 511 
Figure 6: CODEX analysis of samples from four cancer types supporting a proximity of interferon 512 
response-expressing malignant cells to macrophages and T cells. 513 

a. Cell populations and marker expression in a region of OVCA NYU1. Top row displays an entire 514 
tile, bottom row displays an enlargement. Top and bottom left: Colored by populations as defined 515 
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in Extended Data Fig. 15. Top right and bottom center: Colored by expression of markers used to 516 
define cell types, as indicated. Bottom right: Colored by expression of PanCK and of HLA-DRA, 517 
used to define interferon response positive and negative malignant cells.  518 

b. For the tile shown in a., histogram showing the distance between malignant cells and the nearest 519 
macrophage, for interferon-response positive (light green) and negative (dark green) malignant 520 
cells. Lines indicate the mean distance for each population, used to calculate the log2(proximity 521 
ratio).  522 

c. Boxplots of the distribution of log2(proximity ratio) of macrophages, T cells and malignant cells 523 
across tiles of each sample (*, p-value < 0.05; ***,  p-value < 0.001; two-sided t-test).   524 

d. Boxplots of the distribution of log2(neighborhood ratio)  - see Figure 5b - of macrophages, T cells 525 
and malignant cells across tiles of each sample (*, p-value < 0.05; ***,  p-value < 0.001; two-sided 526 
t-test).  527 

 528 
Discussion 529 
 530 
Single-cell approaches have greatly advanced our understanding of intra-tumoral heterogeneity, and 531 

several studies have led to the demonstration of cancer cell states6–11,14,36. While such states were 532 

identified in individual cancer types, here we provide the first pan-cancer analysis of transcriptional 533 

heterogeneity among malignant cells. Our systematic analysis across cancer types led us to propose a 534 

unified catalog of gene modules that underpin recurrent cancer cell states. Building upon findings made 535 

in individual cancer types, we identify 16 modules spanning the 15 cancer types studied here - including 536 

cycling, stress response, interferon response, hypoxia, and pEMT - as well as modules more specific to 537 

cellular identity in specific organ systems - including basal, squamous, glandular, and ciliated 538 

differentiation. We expect that future work97 will expand the list of cancer cell states and their cancer-type 539 

or organ-type specificities as well as pan-cancer features. 540 

Cancer cell states cannot be defined as distinctly as cell types6,17,36. Our results indicate that this 541 

likely follows from the expression of combinations of modules: since these are not generally mutually 542 

exclusive (Fig. 2a, Extended Data Fig. 7), this leads to continuous variation rather than discrete clusters 543 

(Fig. 3b). Conversely, distinct states may be observed when the gene modules are mutually exclusive 544 

with others, as in the case of the cycling and cilium gene modules (Fig. 2b, Extended Data Fig. 7). Our 545 

analysis thus supports the notion that the basic underlying units of tumor transcriptional variability are the 546 

gene modules, whose combinatorial products define the cancer cell states. Further work is required to 547 
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disentangle the relationships that relate the gene modules in terms of their co-expression and mutual 548 

exclusivity in determining cell states. 549 

Much of the heterogeneity observed across cancer cells appears to result from redeployment of 550 

modules typically expressed in other cellular and developmental contexts98. Indeed, our catalog of cancer 551 

gene modules includes general features of cell physiology (cycling), specific processes and responses 552 

(stress, hypoxia, oxidative phosphorylation, interferon and metal response), and developmental 553 

programs (EMT, alveolar, basal, squamous, glandular, ciliated, AC-like, OPC-like, NPC-like). Relative to 554 

their normal counterparts, cancer cells exploit the existing gene modules, expressing them at different 555 

levels (Fig. 2e, Extended Data Fig. 4d) and more heterogeneously (Extended Data Fig. 4c). The interferon 556 

response module, for example, while typically associated with cellular immune response to pathogens, 557 

is heterogeneously activated in malignant cells.  558 

It remains unclear to what extent the heterogeneity among cancer cells results from heterogeneity 559 

in the signals they receive, or from intrinsic differences between the cells – genetic, epigenetic, or 560 

stochastic. Our observations of cancer states across a wide range of cancer types provide evidence that 561 

cancer cell states are not genetically defined, but rather represent cellular plasticity. In addition, in vitro 562 

and in vivo studies have shown that cancer cells exhibit a high degree of plasticity and can transition from 563 

one state to another7,83. In particular, populations seeded by a single state recover the same state 564 

proportions as the original tumor7,83. Thus, while the individual state identities are highly plastic, their 565 

overall distribution may be a stable property. Interestingly, in glioblastoma, tumors harboring different 566 

genetic drivers share the same set of states, but differ in the proportions of each state7. In this view, an 567 

early phase of tumorigenesis would generate the oncogenic background upon which later epigenetic 568 

changes would lead to heterogeneity among the malignant population99.  569 

Several of the gene modules that we identify here may enable the hallmarks proposed by 570 

Hanahan and Weinberg76,77, raising the possibility that the cancer hallmarks do not need to be assembled 571 

by all individual cells. Rather, cell states may cooperate within the tumor ecosystem leading to higher 572 

fitness of the tumor as a whole78. For example, induction of angiogenesis or down-regulation of immune 573 

surveillance may be mediated by a subset of cancer cells to the benefit of the others. To understand 574 
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these complex relationships, it is crucial to consider the physical constraints of the tumor, including 575 

signaling between neighboring cells, diffusion of oxygen and nutrients, and segregation into niches with 576 

distinct composition. The co-localization that we observed of interferon response-expressing cells with T 577 

cells and macrophages (Figs. 5,6) highlights that the functional role of cancer cell states may be 578 

understood by analyzing the tumor architecture. Recent work has also shown that in glioblastoma 579 

macrophages elicit a mesenchymal state among the malignant cells94. Furthermore, in head and neck 580 

squamous cell carcinoma, pEMT expressing cells were found to be located at the leading edge of the 581 

tumor10, and this finding appears to be general to several cancer types (Extended Data Fig. 13).  582 

The presence of an interferon response in cancer has been studied extensively, and attempts 583 

have been made to harness the response for therapy100. Here, we found that genes involved in interferon 584 

response are co-regulated and heterogeneously expressed across malignant cells of the tumors in all 15 585 

cancer types studied here (Fig. 1), suggesting that the existence of this state is a necessary feature of 586 

tumorigenesis. Indeed, tumors lacking IFNγ receptors fail to develop in mouse models82. Paradoxically, 587 

however, in tumors containing both interferon responsive and unresponsive cells, the unresponsive cells 588 

increase in frequency82. Thus, the subset of cells expressing the interferon response module appears to 589 

support the growth of other cells within the tumor. This may be explained by the dual function of these 590 

genes - with MHCI and MHCII eliciting heightened immune detection of the cells, but PDL1 leading to a 591 

generalized increase in immune tolerance100.  592 

Understanding cancer cell states has critical implications for therapeutic advances, as 593 

intratumoral heterogeneity is a recognized cause of treatment failure and relapse1–5,101. In particular, the 594 

study of the relationships between cancer cell states and the TME – with an emphasis on immune cell 595 

populations – may shed light on the contribution of heterogeneity to tumor fitness, and highlight 596 

vulnerabilities that can be exploited for targeted therapy.   597 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473565
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Methods 598 

All of the data from this manuscript has been submitted to GEO with accession number GSE153374.  599 
 600 
Patient tumor scRNA-Seq: 601 
 602 
Data collection and processing. Tumors were collected post-operatively from patients who signed an 603 
IRB approved consent to use their biospecimen for research. Each sample was washed in PBS and cut 604 
into 4–5-mm3 pieces, of which 2-3 were reserved for spatial transcriptomics (see below). The remainder 605 
was dissociated for scRNA-Seq using the Miltenyi human tumor dissociation kit according to 606 
manufacturer's instructions. Red blood cell lysis was performed in ACK lysis buffer for 3 minutes. Cells 607 
were counted and viability was assessed by trypan blue on a hemocytometer. For samples with low 608 
viability (<50%), dead cells were removed using the Miltenyi dead cell separator. Single-cell 609 
encapsulation and library preparations were performed using the inDrop platform102. Libraries were 610 
sequenced on an Illumina NextSeq and reads aligned using a custom inDrop pipeline as previously 611 
described103. To exclude cells with low quality transcriptomes from analysis, cells with fewer than 500 612 
UMIs or more than 30% mitochondrial or ribosomal reads were filtered out. The Seurat single-cell 613 
transformation86,104 was used to normalize and center the data, and to identify variable genes.  614 
 615 
Analysis of previously published data. Published datasets were downloaded from GEO. For PDAC9, 616 
LIHC28, CHCA29, LUAD30, HNSC10, SKSC31, THCA70, and OGD14, raw counts were used and normalized 617 
as above. For GBM7, normalized data was used and centered, and variable genes were identified using 618 
the ‘vst’ method in the Seurat package86,104.  619 

 620 
Cell type annotation and detection of malignant cells. To annotate cell types and identify malignant 621 
cells, the following procedure was used.  622 
 623 
Cell type identification. Part 1: The Seurat package86 was used to select variable genes, reduce 624 
dimensionality, cluster the cells, and search for differentially expressed genes (using thresholds of p-625 
value < 0.01, percentage of cells expressing > 10%, log fold-change > 0.25, sorted by log fold-change). 626 
These genes were cross-referenced with the literature to identify immune (expressing PTPRC, CD19, 627 
CD4, CD8A, FOXP3, CD68, S100A8, MS4A2), stromal (expressing HBA1, PECAM1, COL4A1 or 628 
COL1A1), and epithelial (EPCAM, KRT) cell types. Part 2: The SingleR package25 was used with the 629 
Human Primary Cell Atlas database105 to annotate each cell as a cell type. Cells that received the 630 
following SingleR annotations were classified as non-malignant: B_cell, BM, BM & Prog., CMP, DC, 631 
Endothelial_cells Erythroblast, Gametocytes, GMP, HSC_-G-CSF, HSC_CD34+, Macrophage, MEP, 632 
Monocyte, MSC, Myelocyte, Neutrophils, NK_cell, Osteoblasts, Platelets, Pre-B_cell_CD34-, Pro-633 
B_cell_CD34+, Pro-Myelocyte, and T_cells. Differential gene expression was performed on each of the 634 
identified cell types (Extended Data Fig.1c, Supplementary File 1). These annotations served as the basis 635 
for annotation of the spatial transcriptomic spots, and were used to validate the annotation of clusters 636 
identified by gene expression in Part 1.  637 
 638 
Malignant cell identification. Part 1: For epithelial and stromal tumors, the expression pattern of the 639 
epithelial and stromal cluster respectively was examined to distinguish malignant from non-malignant 640 
cells (Supplementary File 1). Specifically, genes were identified which are overexpressed in malignant 641 
relative to normal tissue for each cancer type: WFDC2106 for OVCA and UCEC; CLU107 and MGP107 for 642 
BRCA; LAMC2108and TM4SF1109 for PDAC; CEACAM5110 for COAD; APOH111 for LIHC; TMPRSS2112 643 
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and CLDN4112 for PRAD; CA9113 for KIRC; PDGFRA, KCNK3114 and ANO1115 for GIST. Part 2: RNA-644 
based copy-number variation inference was performed on the putative set of malignant cells, as 645 
implemented in the inferCNV package26, using all other cells from the sample as a reference and 646 
searching for consistent patterns of copy-number variation (Extended Data Fig. 2b). Part 3: 647 
Dimensionality reduction was performed on the putative sets of malignant cells from different tumors to 648 
validate that they form separate clusters, a known property of malignant cells36 (Extended Data Fig. 2a).  649 
 650 
Non-negative matrix factorization (NMF) and module detection. NMF was performed separately on 651 
the identified malignant cells of each sample (Fig. 1c). Starting from the normalized centered expression 652 
of variable genes, all negative values were set to 0, as previously described10. The “nsNMF” method was 653 
applied for ranks between 5 and 25 – as implemented in the NMF R package10,116. To define non-654 
overlapping gene modules, a previously described gene ranking algorithm was implemented117. 655 
Beginning with the matrix of the contribution of genes (rows) to the factors (columns), two ranking 656 
matrices were constructed, (list 1) ranking the gene contributions to each factor and (list 2) ranking for 657 
each gene the factors to which it contributes. For each factor, genes were added in the order of their 658 
contribution (list 1), until a gene was reached which contributed more to another factor, i.e. its rank across 659 
factors (list 2) was not 1. Factors which yielded fewer than 5 genes were removed, and the procedure 660 
repeated. With this method, the number of modules was at most the rank of the NMF, and the modules 661 
were robust to the rank chosen. The highest rank for which the number of modules was equal to the rank 662 
was selected for downstream analysis.  663 
 664 
Graph-based clustering and identification of consensus gene modules. The full list of modules 665 
obtained for individual tumors was filtered to retain only those with at least 5% overlap (by Jaccard index) 666 
with at least 2 other modules. An adjacency matrix was then constructed connecting genes according to 667 
the number of individual tumor modules in which they co-occur. Gene-gene connections were filtered out 668 
if they occurred in fewer than 2 individual tumor modules, and genes with fewer than 3 connections were 669 
removed. The graph was clustered using infomap clustering implemented in the igraph package118. 670 
Finally, modules with potential biological relevance were retained by filtering out those with fewer than 5 671 
genes or without significant overlap with gene ontology terms. The final graph (Extended Data Fig. 3f) 672 
was visualized with the fruchterman-reingold layout.  673 
 674 
SCENIC module identification and module comparison. SCENIC regulon identification was 675 
performed using the SCENIC package69 implemented in R and Python. Genes were filtered to have at 676 
least 0.05 counts per cell on average and to be detected in at least 5% of the cells, and the transcription 677 
factor-binding databases used were 500bp-upstream and tss-centered-10kb. To compare modules 678 
obtained by NMF in individual tumors to each other (Fig. 1e, Extended Data Fig. 3g), the significance of 679 
the pairwise overlap was calculated using the hypergeometric distribution. SCENIC-derived regulons 680 
were similarly compared to the consensus modules (Extended Data Fig. 3h), and were considered to 681 
match a consensus module if the p-value of the overlap was <10-3. Transcription factors annotated to 682 
regulons matching each consensus module were then tabulated (Supplementary Table 4) and the top 1-683 
2 factors found in multiple samples are shown in Figure 1f ‘Regulators’.  684 
 685 
Module annotation and receptor-ligand analysis. Gene Ontology terms were accessed using the 686 
MSigDB package in R119 (Extended Data Fig. 2a). Cell type markers were downloaded from 687 
PanglaoDB120 (Extended Data Fig. 2b). Tumor-derived signatures were accessed from Neftel et al.7 688 
(Extended Data Fig. 2c),, Puram et al.10 (Extended Data Fig. 2d) and Ji et al.31 (Extended Data Fig. 2e) 689 
The significance of the overlap between each consensus module and each downloaded gene set was 690 
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calculated using the hypergeometric distribution. Receptor-ligand analysis (Extended Data Fig. 14) was 691 
performed using Nichenet.  692 
 693 
Significance of module presence. The previously described ‘overdispersion’ approach was used to 694 
quantify the differential expression of a particular module in a set of malignant cells (Extended Data Fig. 695 
4a-c)32. For each module, PCA was performed on the expression of the module genes, and the variance 696 
explained by PC1 was calculated. For each module, 103 random lists of genes with similar expression 697 
levels were generated as has been done previously6, and the variance explained by PC1 in those 698 
genesets was calculated. The significance of the presence was calculated as -log10(p), where p is the 699 
fraction of random genesets that resulted in a higher PC1 variance than the module itself. This enabled 700 
the identification of tumors in which specific modules are differentially expressed in a statistically 701 
significant manner. 702 
 703 
Module expression scoring. The expression level of each module in individual cells (Fig. 2a,d, 704 
Extended Data Fig. 6b,d) was scored as follows. For each module, 103 random lists of genes with similar 705 
expression levels were generated as has been done previously6. For each cell, the average centered 706 
expression of these genesets was calculated, along with that of the module genes. p was defined as the 707 
fraction of random genesets with a higher average expression than the module itself. The score was 708 
defined as -log10(p) and rescaled linearly to [0,1]. A module was considered expressed in a given cell if 709 
its score was higher than 0.5, and these binary values were used to calculate the frequency of expression 710 
of each module in each sample (Fig. 2e, Extended Data Fig. 6e-g). The matrix of module expression 711 
scores was used to perform TSNE with 500 iterations and a perplexity of 100 (Fig. 2b-d, Extended Data 712 
Fig. 6a-c). The mixing of tumors in the TSNE was assessed by calculating the entropy at each point using 713 
its 20 nearest neighbors (Extended Data Fig. 6c).  714 
 715 
Analysis of normal epithelial cells. For normal fallopian tube33, breast34 epithelium and normal liver35, 716 
single-cell RNA-Seq data was downloaded from GEO. For LUAD30 and SKSC31, single-cell RNA-Seq of 717 
matched samples representing normal lung and skin were downloaded from GEO as for the tumor 718 
samples. Cells were then annotated according to the lines of evidence 1. and 2. (see ‘Cell type annotation 719 
and detection of malignant cells’) to identify epithelial cells. For pancreas, the single-cell RNA-Seq data 720 
collected from PDAC9 contained malignant as well as non-malignant epithelial cells, with non-malignant 721 
cells expressing high levels of epithelial cell markers (e.g., EPCAM) but low levels of cancer-specific 722 
genes (e.g., LAMC2, CDKN2A and TM4SF1) and displaying low CNV9. Further analysis of each normal 723 
cell dataset, including significance of module presence and scoring module expression, was performed 724 
as for the malignant cell datasets.  725 
 726 
TCGA survival analysis. Scoring and survival analysis were performed as in Cook et al.68. Expression 727 
profiles were obtained from https://gdc.cancer.gov/node/905, normalized and z-scored. To infer the 728 
expression of modules in these bulk RNA-Seq samples, modules were first filtered by calculating the 729 
specificity of each gene for each cell type using the genesorteR package121 (Extended Data Fig. 16a), 730 
and retaining genes whose median specificity across tumor samples was highest in malignant cells 731 
(Extended Data Fig. 16b). Samples were then scored by calculating the average z-score expression of 732 
these filtered modules. The proportions of leukocytes and stromal cells were accessed from Thorsson et 733 
al.122. Association with progression free survival was calculating using a Cox proportional hazards model 734 
with the following independent covariates: age, gender, stage, leukocyte fraction, stromal fraction, and 735 
expression of cycle, stress, interferon, pEMT, basal, squamous and glandular modules (Extended Data 736 
Fig. 16c).  737 
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 738 
Patient tumor spatial transcriptomics: 739 
 740 
Data collection and processing. From the 10 tumors (OVCA NYU1, OVCA NYU3, UCEC NYU3, BRCA 741 
NYU0, BRCA NYU1, BRCA NYU2, PDAC NYU1, GIST NYU1, GIST NYU2, LIHC NYU1), 2-3 pieces 742 
were embedded in OCT by placing them cut side down into a plastic mold. The OCT-filled mold was then 743 
snap frozen in chilled isopentane and stored at -80°C until use. Cryosections were then cut at 10µm 744 
thickness and mounted onto Visium arrays. Tissue optimization and library preparation were performed 745 
according to manufacturer’s instructions, with 12 minutes of permeabilization. Libraries were sequenced 746 
on an Illumina NextSeq and aligned using the Visium SpaceRanger pipeline. As a quality control step, 747 
spots with fewer than 500 UMIs or more than 30% mitochondrial or ribosomal reads were filtered out. 748 
The Seurat single-cell transformation 86,104 was used to normalize and center the data, and to identify 749 
variable genes. 750 
 751 
Deconvolution of spatial transcriptomic spots. Spots were annotated using three parallel methods. 752 
First, non-negative least squares (NNLS) regression was performed using the single-cell RNA-Seq 753 
expression profiles. Specifically, average profiles were calculated for each cell type (annotated using the 754 
SingleR package, see ‘Cell type annotation and detection of malignant cells’), using only the paired 755 
sample when possible (i.e. when at least 20 cells of that type were present) or the pooled expression 756 
profiles from all samples. These profiles were then used to perform linear regression on each spot using 757 
the NNLS package in R123 and obtain estimates for the coefficient of each cell type at each spot (Fig. 4a-758 
c, Extended Data Fig. 4). The genes used were the intersection of variable genes in the single cell data 759 
and spatially variable genes in the spatial transcriptomic data, obtained with ‘FindVariableFeatures’ and 760 
‘FindSpatiallyVariableFeatures’ respectively86,123. Because the distributions of regression coefficients 761 
varied across cell types, and were not usually bimodal, thresholds for cell type presence/absence were 762 
set for each cell type individually using a null distribution of coefficients in the sample, as follows. First, 763 
spots were selected which had a predicted score of 0 for the cell type in question (see below for mutual 764 
nearest neighbor annotation prediction). The resulting gene expression matrix was shuffled and used for 765 
NNLS, in 100 independent iterations. The distribution of coefficients for the cell type in question was then 766 
used to set the threshold at the mean + 2 x standard deviations. Second, mutual nearest neighbor (MNN) 767 
integration was performed using the Seurat package86,123, using the same set of genes as for NNLS. 768 
Prediction coefficients were obtained using the ‘TransferData’ function, and were binarized using a 769 
threshold of 0.9. Finally, NMF was performed on each dataset as described for the scRNA-Seq data (see 770 
‘NMF’). The output was processed as above (see ‘NMF’), and factors were named according to the gene 771 
with the highest coefficient (Extended Data Fig. 4).  772 
 773 
Annotation of spatial transcriptomic spots. Signatures for M1 and M2 macrophages and for cytotoxic, 774 
helper and regulatory T cells were obtained by performing differential gene expression on the 775 
macrophage population of OVCA NYU1, keeping the top 100 genes by p-value for each cluster (Extended 776 
Data Fig. 12a-b). The inflammatory and myofibroblast signatures were downloaded from Elyada et al.124. 777 
To ensure that the increase in M1-M2 score in the ‘Both’ spots relative to ‘Normal’ was not due to the 778 
presence of malignant cells themselves, we also scores the single-cell RNA-Seq data for the signatures, 779 
and confirmed that macrophages were the only cell type with wide bimodal distribution of M1-M2 scores 780 
(Extended Data Fig. 12c). Spatial transcriptomic spots containing macrophages, T cells or fibroblasts 781 
were scored for the expression of the respective signatures using the ‘AddModuleScore’ function in 782 
Seurat86,123 (Fig. 4f). Distances were calculated using euclidean distance on the pixel coordinates, and 783 
scaled such that the unit is inter-spot distance (100µm). The depth of malignant spots was calculated as 784 
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the shortest distance to a spot containing a non-malignant cell type. Proximity was defined as 785 
1/(1+distance) (Fig. 5c). The neighborhood of a spot was defined as spots of distance ≤ 1 (including the 786 
spot itself), resulting in sets of ≤ 7 neighbors per spot. The neighborhood cell type fraction was then 787 
calculated from the binarized cell type annotations of this set (Fig. 5b). ‘Malignant’ spots were scored for 788 
the expression of each module using the Seurat function “AddModuleScore” (Fig. 5a)86,123. 789 
 790 
Patient tumor CODEX: 791 
 792 
Staining and image acquisition: Four fresh frozen samples (OVCA NYU1, UCEC NYU3, LIHC NYU1, 793 
GIST NYU1) were cryosectioned at 10µm thickness and mounted onto a glass coverslip coated with poly-794 
lysine. The tissue was stained and the CODEX multicycle reaction performed as described in the CODEX 795 
user manual Revision C. Briefly, the sample coverslip was placed on Drierite beads for 5 minutes, then 796 
incubated in Acetone for 10 minutes and set in a humidity chamber for 2 minutes. The sample was 797 
hydrated in CODEX Hydration Buffer for twice for 2 minutes, fixed in 1.6% Paraformaldehyde in CODEX 798 
Hydration Buffer for 10 minutes, then washed in CODEX Hydration Buffer twice for 2 minutes. The sample 799 
was then equilibrated in CODEX Staining Buffer for 30 minutes, then stained with a barcoded antibody 800 
cocktail in CODEX Blocking Buffer for 3 hours in a humidity chamber. Antibodies comprising the antibody 801 
cocktail are listed in Table 7. The sample was washed three times for 2 minutes in CODEX Staining 802 
Buffer, fixed in 1.6% Paraformaldehyde in CODEX Storage Buffer for 10 minutes, and then washed 3 803 
times in 1X PBS. The sample was incubated in 4°C methanol for 5 minutes, washed 3 times in 1X PBS, 804 
and then fixed using the CODEX Final Fixative Reagent Solution for 20 minutes in a humidity chamber. 805 
The sample was washed three times in PBS and then stored in CODEX Storage Buffer for 3 days until 806 
imaging. A commercial Akoya CODEX instrument and a Keyence BZ-X800 microscope with a 20x Nikon 807 
PlanApo NA 0.75 objective were used to treat and image tissue using complementary fluorescent 808 
reporters. The protocols from Akoya CODEX user manual revision C were followed. The four samples 809 
were imaged and processed in one CODEX run. Every sample was imaged in 64 (8 x 8) tiles. 810 
 811 
Image processing: Raw TIFF image files were processed using the CODEX Processor. ImageJ and its 812 
CODEX Multiplex Analysis Viewer (MAV) plugin were used to visualize, annotate and define cell 813 
populations. Supervised clustering was used to define populations for each tissue. Briefly, the gating 814 
function in CodexMAV was used to define cells as positive by setting a gate on log10 intensity vs 815 
frequency of the marker of interest, for the non-malignant cell populations. To define malignant cell 816 
populations in epithelial cancers log10 EpCAM versus log10 PanCK intensities were used to define a 817 
double positive population. For the GI stromal tumor, log10 Podoplanin vs. αSMA intensities were used, 818 
where double positive cells were annotated as muscle and Podoplanin+ αSMA- were annotated as 819 
malignant. Further characterization of the malignant interferon response cell state of the malignant cells, 820 
in both tumor types, was conducted by gating on the log10 HLA-DR intensity vs. frequency. All gating 821 
was performed on the segmented image of each sample separately, and was based on marker intensity 822 
value independent of the visualized image. The threshold dictating the gate was verified visually by 823 
validating overlap between the defined population and marker expression, and was set for each marker 824 
and for each sample independently. Gating for each population was done sequentially to avoid overlap 825 
between populations. The x and y coordinates and the annotation of each cell were exported for further 826 
analysis. Spatial analysis was done in R for each sample independently. For each tile of the image, a 827 
distance matrix was calculated and used to quantify the distribution of distances closest to populations 828 
of interest (e.g Macrophage) in interferon and non-interferon malignant cells, or the distribution of number 829 
of cells of interest in a distance of choice. Tiles with obvious bubbles, tissue folding issues, non-malignant 830 
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cell dominance (more than 70%, mainly the blood vessel areas), or not containing any tissue, were 831 
excluded from the analysis. 832 
 833 
 834 
Orthotopic pancreatic tumor mouse models and scRNA-Seq:  835 
 836 
Tumor collection. All experiments were approved by the New York University School of Medicine 837 
Institutional Animal Care and Use Committee. Rag1-/- and WT C57BL/6 mice were obtained from Jackson 838 
Laboratories (Bar Harbor, ME). The KrasG12D;Tp53R172H;Pdx1Cre (KPC) derived cell line FC1242 was 839 
utilized for orthotopic injection of 100,000 cells into the tail of pancreata of 8-12 week old C57BL/6 or 840 
Rag-/- mice. To model liver and peritoneal metastases, mice received FC1242 via splenic (106 cells) and 841 
intraperitoneal (105 cells) injection, respectively. Tumors were harvested 2-3 weeks after injection and 842 
dissociated using Miltenyi mouse tumor dissociation kit enzymes D and R according to manufacturer's 843 
instructions. Red blood cell lysis was performed for 3 minutes in ACK lysis buffer. Dead cells were 844 
removed using the Miltenyi dead cell separator. In order to hash and pool replicates, cells were then 845 
labeled with Biolegend oligonucleotide-conjugated antibodies according to manufacturer’s instructions. 846 
Single-cell encapsulation and library preparation were performed using the 10x Genomics Chromium. 847 
Libraries were sequenced on an Illumina NextSeq and reads aligned using the 10x Genomics CellRanger 848 
pipeline. 849 
 850 
Transcriptomic analysis of mouse scRNA-Seq data. Quality control and processing were performed 851 
separately for each mouse scRNA-Seq sample separately as for the human data (‘Patient tumor scRNA-852 
Seq’). Samples from all 3 experiments were then combined for cell type annotation. NMF and module 853 
identification was performed for the 4 pancreatic WT tumors together. These modules were compared to 854 
the consensus modules obtained from patient tumors by orthology mapping using the biomart 855 
database125. Overlap between modules across species was tested using the hypergeometric distribution. 856 
Module expression was scored for each experiment separately as for the human data, and frequencies 857 
were compared across conditions using Kolmogorov-Smirnov tests on the distributions (maximum p-858 
value of pairwise comparisons across conditions is reported).  859 
 860 
 861 
Patient derived melanoma xenograft (PDX) models and scRNA-Seq:  862 
 863 
Tumors collection: Samples were obtained from the Hernando lab. Briefly, NSG (Jax 005557) mice 864 
were obtained from Jackson Laboratories (Bar Harbor, ME). Cells obtained from patient melanoma brain 865 
metastases were injected intradermally and collected after 82 days. For single-cell RNA-Seq, the sample 866 
was minced and incubated in 4mL HBSS buffer with 1mg Collagenase IV and 12.5uL DNAse I for 10min 867 
at 37C. Single-cell encapsulation and library preparation were performed using the 10x Genomics 868 
Chromium as above (‘Orthotopic pancreatic tumor mouse models and scRNA-Seq’). For spatial 869 
transcriptomics, samples were embedded in OCT and processed by Visium according to manufacturer’s 870 
instructions as above (‘Patient tumor spatial transcriptomics’). Libraries were sequenced on an Illumina 871 
NextSeq and reads aligned using the 10x Genomics pipelines. 872 
 873 
Transcriptomic analysis of scRNA-Seq PDX data: Quality control and processing were performed as 874 
for the human data (‘Patient tumor scRNA-Seq’). Cells with nCount_human > 100 x nCount_mouse were 875 
annotated as human, cells with nCount_mouse > nCount_human were annotated as mouse, and other 876 
cells were discarded. The presence of modules in human cells was calculated as above (‘Significance of 877 
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module presence’). Mouse cells were further clustered using Seurat and annotated using marker genes 878 
to obtain cell types for spatial transcriptomic deconvolution.  879 
 880 
Transcriptomic analysis of ST PDX data: Spatial transcriptomics analysis was performed as for the 881 
human data (‘Patient tumor spatial transcriptomics’). For NNLS deconvolution, the expression of human 882 
and mouse genes was used to generate a ‘ground truth’, and human orthologs of mouse genes were 883 
used to simulate patient tumors (Extended Data Fig. 11e-f).  884 
 885 
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