

1 **Background selection under evolving**

2 **recombination rates**

3 Tom R. Booker^{1,*}, Bret A. Payseur² and Anna Tigano³

4 1. Department of Zoology, University of British Columbia, Vancouver Campus, Vancouver,
5 BC, Canada

6 2. Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.

7 3. Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC,
8 Canada

9 *Correspondence: booker@zoology.ubc.ca

10 **Abstract**

11 Background selection (BGS), the effect that purifying selection exerts on sites linked to
12 deleterious alleles, is expected to be ubiquitous across eukaryotic genomes. The effects of BGS
13 reflect the interplay of the rates and fitness effects of deleterious mutations with
14 recombination. A fundamental assumption of BGS models is that recombination rates are
15 invariant over time. However, in some lineages recombination rates evolve rapidly, violating
16 this central assumption. Here, we investigate how recombination rate evolution affects genetic
17 variation under BGS. We show that recombination rate evolution modifies the effects of BGS in
18 a manner similar to a localised change in the effective population size, potentially leading to an
19 underestimation of the genome-wide effects of selection. Furthermore, we find evidence that
20 recombination rate evolution in the ancestors of modern house mice may have impacted
21 inferences of the genome-wide effects of selection in that species.

22 Introduction

23 Different modes of selection (e.g. positive, purifying and balancing) all affect genetic variation
24 at sites linked to the actual targets of selection (reviewed in Charlesworth 2009). In the case of
25 purifying selection, the removal of deleterious mutations causes linked neutral variants to be
26 lost along with them through a process referred to as background selection (BGS; Charlesworth
27 et al. 1993). Of the mutations that affect fitness in natural populations, the vast majority are
28 likely deleterious with a comparatively small proportion of beneficial mutations (Eyre-Walker
29 and Keightley 2007). For those reasons, it has been proposed that BGS is ubiquitous across
30 eukaryotic genomes and should be incorporated into null models for population genomics
31 (Comeron 2017; Johri et al. 2020). Indeed, recent studies have used BGS to set baseline
32 patterns for identifying the locations and effects of positively selected mutations (DeGiorgio et
33 al. 2016; Campos et al. 2017) and understanding Lewontin's paradox of genetic diversity
34 (Buffalo 2021). Interpreting genome-wide patterns of genetic diversity in terms of BGS,
35 however, requires accurate estimates of population genetic parameters, particularly
36 recombination rates.

37 In many species, the recombination rate per base pair (r) varies across the genome both
38 between and within chromosomes (Stapley et al. 2017). For example, in the house mouse (*Mus*
39 *musculus*) the average r for chromosome 19 (the shortest chromosome) is around 60% higher
40 than for chromosome 1 (the longest chromosome) (Cox et al. 2009). The requirement of at least
41 one cross-over per chromosome per meiosis in mammals causes shorter chromosomes to
42 recombine at a higher average rate than longer ones (Pardo-Manuel et al. 2001; Segura et al.

43 2013; Dumont 2017). Local recombination rates can vary substantially across chromosomes as
44 well and in some cases this variation is predicted by gross features of chromosome architecture
45 such as the locations of centromeres and telomeres (Paigen et al. 2008). Actual recombination
46 events in mice are typically restricted to narrow windows of the genome (on the order of 1-5
47 Kbp), referred to as hotspots (Paigen et al. 2008). The positions of recombination hotspots in
48 mice, and in some other vertebrates, are determined by the binding of a protein encoded by
49 the *PRDM9* gene to specific DNA motifs (Baudat et al. 2010; Baker et al. 2017), although
50 hotspots are still observed in *PRDM9* knockout lines and dogs, which lack a functional copy of
51 *PRDM9* (Brick et al. 2012; Auton et al. 2013).

52 Estimates of r can be obtained empirically by examining the inheritance of genetic markers
53 through controlled crosses or through pedigrees, or by comparing an individual's genome to
54 that of its gametes (e.g. Sun et al. 2019). Both methods reconstruct recombination events over
55 one or a few generations, and thus provide estimates of r for contemporary populations.

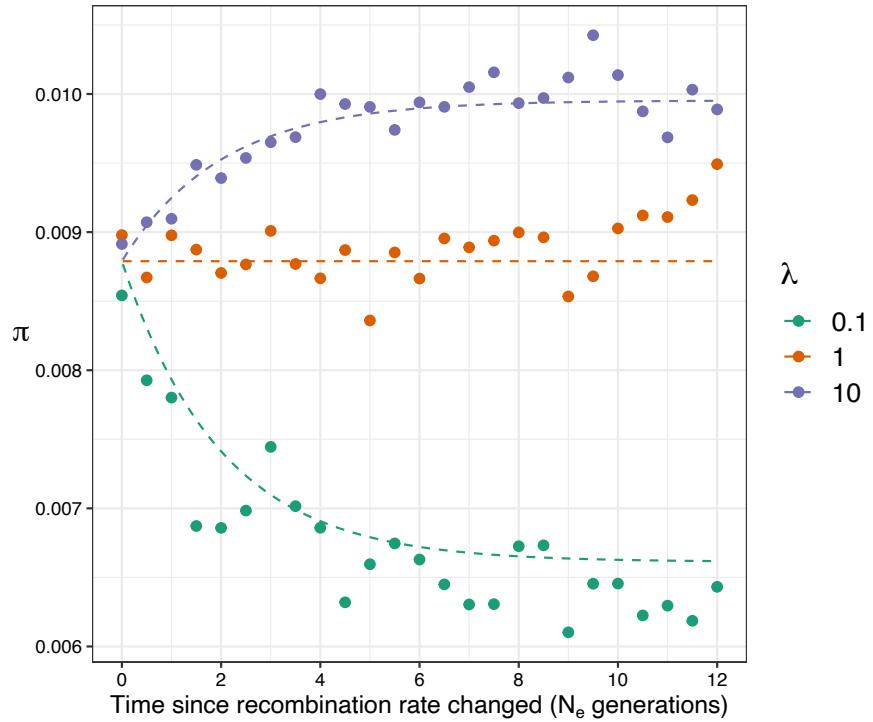
56 Alternatively, estimates of r can be obtained indirectly by analysing patterns of linkage
57 disequilibrium across the genome (e.g. Spence and Song 2019), in which case estimates reflect
58 both recent and ancestral recombination events. Whether recombination rates are estimated
59 from marker transmission or population genetics, using such estimates when analysing of
60 variation across the genome in terms of BGS implicitly assumes that the recombination
61 landscape has not changed over the time in which patterns of diversity have been established.

62 However, recombination rate landscapes can evolve very rapidly in some lineages. For example,
63 due to the relationship between chromosome size and average r , changes in chromosome
64 length (i.e. karyotype evolution) may induce changes in r . The lineage leading to *Mus musculus*

65 (2n=40) has experienced large chromosomal rearrangements since it shared a common
66 ancestor with *Mus pahari* (2n=48) 3-5 million years ago (Thybert et al. 2018). Moreover,
67 different populations of *Mus musculus domesticus* harbouring different karyotypes exhibit
68 different genomic landscapes of recombination (Vara et al. 2021). Chromosomal fusions can
69 exhibit meiotic drive (Chmátal et al. 2014) so new karyotypes may spread to fixation very
70 rapidly. Even mice with the same karyotype vary in regional recombination rate across
71 substantial proportions of the genome (Dumont et al. 2011; Wang et al 2017) and in total
72 number of crossovers (Dumont and Payseur 2011; Peterson and Payseur 2021), both within and
73 between subspecies. There is also evidence that *PRDM9*, the gene that encodes the protein
74 that dictates the locations of recombination events, has undergone recurrent bouts of positive
75 selection in mice (Oliver et al. 2009) and natural populations of *M. musculus spp.* possess
76 various *PRDM9* alleles corresponding to different suites of recombination hotspots (Smagulova
77 et al. 2016). Overall, there is clear evidence from mice that recombination rates can evolve on
78 broad and fine scales.

79 Changes in the recombination rate over time may influence patterns of genetic variation across
80 the genome (Comeron 2017). For example, chromosomal fusions would decrease
81 recombination rates experienced by individual nucleotides in the fused chromosomes, and thus
82 increase the effects of BGS and other processes mediated by recombination. Consistent with
83 this, Cicconardi et al. (2021) found evidence suggesting that chromosomes that underwent
84 fusions in the ancestors of extant *Heliconius* butterfly species now exhibit reduced
85 recombination rates and π presumably due to amplified BGS effects. Following evolution of the
86 recombination rate landscape there will be a lag period wherein patterns of genetic variation

87 more closely reflect ancestral recombination rates than derived rates. Over time, as new
88 deleterious mutations arise and cause BGS, patterns of genetic variation will come to reflect
89 derived recombination rates. Depending on the extent and rate of recombination rate
90 evolution, population genomic analysis of lineages that are still within the lag period may be
91 obscured. In this paper, we examine how patterns of neutral genetic variation under BGS
92 respond to evolution of the recombination rate and describe how this could affect and have
93 affected analyses that are used to identify the effects of selection on a genome-wide scale.


94 **Results**

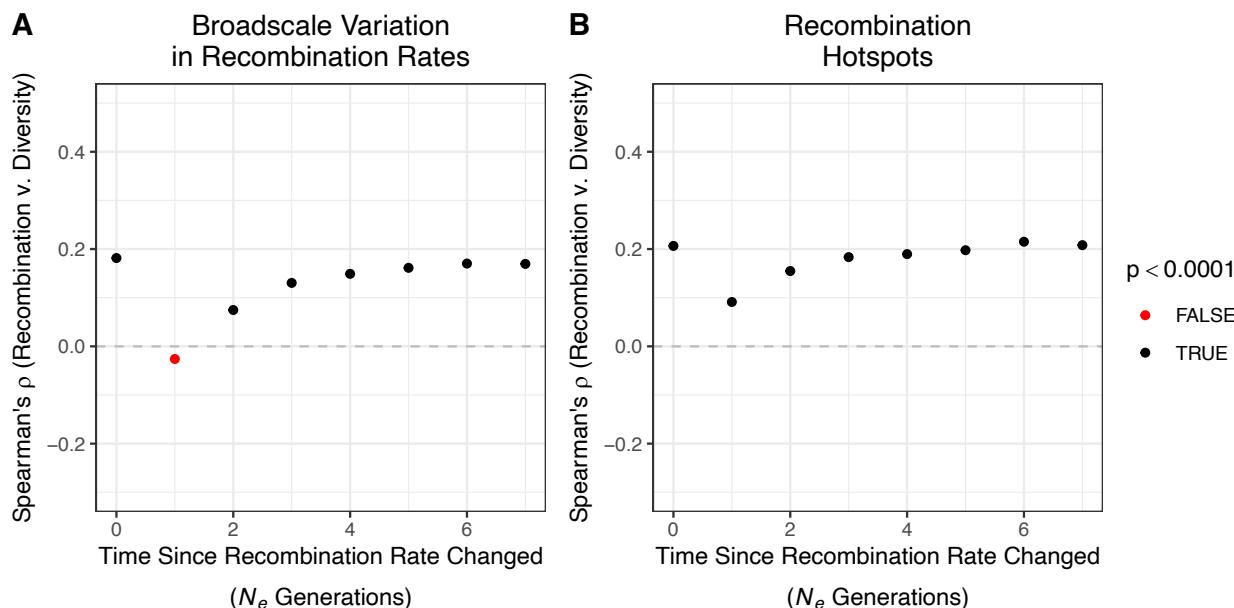
95 **Background selection under evolving recombination rates**

96 The effects of BGS reflect the interplay of purifying selection and recombination (Nordborg et
97 al. 1996), so changes to the recombination rate will influence the effects of BGS. An increase in
98 the recombination rate between neutral sites and sites subject to purifying selection will
99 decrease the effect of BGS and *vice versa* for a decrease in the recombination rate. At a neutral
100 locus ν , coalescence times under BGS ($T_{BGS,\nu}$) are shorter than those expected under neutrality
101 ($T_{Neutral}$) (Nordborg et al. 1996) and the effect of BGS is often expressed as $B_\nu =$
102 $T_{BGS,\nu}/T_{Neutral}$ (e.g. Nordborg et al. 1996). Consider a population that underwent a change in
103 the recombination rate such that ν experiences a BGS effect of B'_ν under the derived
104 recombination rate regime. Even with instantaneous changes in the recombination rate,
105 genetic variation at ν would not reflect B'_ν immediately, as there would be a lag period after
106 recombination rate change wherein coalescence times (and patterns of genetic variation)
107 would more closely reflect B_ν .
108 Under strong purifying selection, BGS resembles a localised reduction in the effective
109 population size, so the period of lag after a change in the recombination rate may resemble the
110 change in coalescence times following a change in the population size. If the recombination
111 rate changed at time t in the past (measured in $2N_e$ generations), then BGS under the new
112 recombination rate can be described with:

$$113 \quad B_{\nu,t} = B_\nu \left(1 + \left(\frac{B_\nu}{B'_\nu} - 1\right) e^{-t}\right). \quad [1]$$

114 We obtained Equation 1 by modifying an expression that describes coalescence times after an
115 instantaneous change in the population size from Johri et al. (2020). Note that Pool and Nielsen
116 (2009) provided similar expressions to those given by Johri et al. (2020).

117
118 **Figure 1.** The effect of background selection on nucleotide diversity (π) over time after
119 recombination rates change by a factor λ . The dashed lines were calculated using Equation 1
120 and formulae from Nordborg et al (1996). Points indicate the mean from 100 replicate
121 simulations. Nucleotide diversity was calculated for neutral sites 10,000bp away from sites
122 subject to purifying selection.
123 We modelled deleterious mutations occurring in a single functional element (e.g. a protein
124 coding exon) and examined π for neutral mutations in and around this region after an
125 instantaneous change in the recombination rate (Figure S1). π gradually departs from the
126 expectations based on the ancestral recombination rate over $4N_e$ generations, when it finally
127 aligns to the derived recombination rate (Figure 1,S2). Up to $\sim 2N_e$ generations after a change in
128 the recombination rate, π more closely resembled the expectation under the ancestral


129 recombination rate than it did the derived rate (Figure 1, S2). After around $4N_e$ generations,
130 coalescence times closely reflected those expected under BGS given the derived recombination
131 rate, as measured by π (Figure 1, S2). When deleterious mutations have nearly neutral
132 deleterious effects, Equation 1 may not predict changes in nucleotide diversity particularly well
133 because in such cases BGS does not resemble a simple reduction in N_e (Good et al. 2014;
134 Cvijović et al. 2018).

135 In the case of a population that has recently undergone shifts in the recombination rate
136 landscape (i.e. less than $2N_e$ generations ago), estimates of r from such a population would
137 likely reflect contemporary recombination rates regardless of how they were obtained.
138 Estimates of r from patterns of marker inheritance in crosses or pedigrees always reflect
139 contemporary rates and population genetic estimates (i.e. obtained from patterns of LD) can
140 reflect contemporary recombination rates within $0.5N_e$ generations of a change in r (Figure S3).
141 Depending on the extent and nature of recombination rate evolution, population genomic
142 analyses that compare features of genetic variation to estimates of r could lead to an
143 underestimation of the effects of BGS (and other forms of selection) on patterns of genetic
144 variation.

145 **Patterns of genetic variation after evolution of the recombination
146 landscape**

147 To demonstrate how population genomic analyses may be affected by changes in r , we
148 simulated two scenarios of BGS under evolving recombination rates. In the first, the broadscale

149 landscape of r was rearranged (Figure S4A). In the second, the locations of recombination
150 hotspots were shifted, as if a new PRDM9 allele had fixed in a population (Figure S4B). In both
151 scenarios, deleterious mutations occurred at random across the genome generating
152 widespread BGS such that there was a positive correlation between π and r at equilibrium
153 (Figure 2). For the sake of our analyses have assumed that recombination rate is invariant
154 among individuals, even as heritable variation in recombination rates has been reported in
155 several species (reviewed in Stapley et al. 2017).

156

157 **Figure 2.** Spearman's correlation between nucleotide diversity (π) and recombination rate (r)
158 over time after recombination rates evolve. Panel A shows results for a broad-scale shift in the
159 recombination landscape and panel B shows results for recombination rate evolution by the
160 movement of hotspots. Results are shown for 10 Kbp analysis windows.
161 A positive correlation between π and r is a hallmark of widespread selection across a genome
162 (Cutter and Payseur 2013), but evolution of the recombination rate may obscure this pattern. In
163 both the scenarios we simulated, changes in r did not influence the average nucleotide diversity
164 across simulated chromosomes (Figure S5), because under the models of recombination rate

165 evolution we implemented the average map length was constant over time. However, before
166 the change in the recombination rate, there was a positive correlation between π and r in both
167 scenarios that was detectable when examining 10Kbp, 100Kbp and 1Mbp analysis windows
168 (Figure 2,S6). Following changes in the recombination rate landscape under the model of
169 broadscale recombination rate variation, the correlation between π and r was either absent or
170 misleading (Figure 2A, S6A). Under the model of recombination hotspot evolution, the
171 correlation between π and r was weakened by change in the landscape of hotspots (Figure 2B).
172 In both cases we simulated, a positive correlation between π and derived r was restored to
173 levels similar to what had been observed before the recombination maps changed after about
174 $4N_e$ generations (Figure 2, S6). Figure 2 shows results for 10,000bp analysis windows, but
175 similar results were found when examining larger windows (Figure S5).

176 **Rapid recombination rate evolution in house mice**

177 Rapid evolution of recombination rates in *Mus musculus* may have influenced our ability to
178 identify the effects of selection across that species' genome. Kartje et al. (2020) recently
179 demonstrated that natural populations of *M. m. domesticus* exhibit a very weak correlation
180 between π and r (when examining analysis windows of various widths) and concluded that
181 selection at linked sites exerted only modest effects on genetic variation throughout the
182 genome. This is notable because wild mice are thought to have large effective population sizes
183 for mammals (Leffler et al. 2012) and genome-wide effect of selection is thought to be more
184 pronounced in species with large N_e (Cutter and Payseur 2013). As discussed in the
185 Introduction, there is evidence that mice have undergone rapid evolution of the recombination

186 rate. For example, around 3-5 MYA the lineage leading to *M. musculus* experienced a burst of
187 karyotype evolution (Thybert et al. 2018). If that burst of karyotype evolution affected
188 recombination rates and ancestral mouse populations were very large, then contemporary
189 mice may still be within the lag period described by Equation 1. Patterns of genetic diversity in
190 mice may still be adjusting to historical changes in the recombination rate, and we may see a
191 stronger correlation between π and r in genomic regions that have not undergone dramatic
192 changes in the recombination rate.

193 Using an alignment of genomes from closely related species, Thybert et al. (2018) distinguished
194 chromosomes in the *M. musculus* genome that have or have not undergone dramatic
195 rearrangements in the last 5 million years from those that have not. We re-analysed data from
196 Kartje et al. (2020) and found that the correlation between π and r is stronger and more
197 significant on chromosomes that have not undergone largescale rearrangements in the last 3-5
198 million years (Table 1) for *M. m. domesticus* individuals from France and Germany. This pattern
199 holds when looking at analysis windows of 5 Kbp and 1 Mbp (Table 1). No substantial
200 correlations were found for mice from Gough Island in any comparison. *M. m. domesticus* are
201 believed to have colonised Gough Island in the 19th century and to have experienced a severe
202 population bottleneck (Gray et al. 2014), a demographic history that could have further
203 obscured the correlation between nucleotide diversity and recombination rate in that
204 population.

205

206 **Table 1.** The correlation between nucleotide diversity (π) and recombination rate (r) for three
207 populations of house mice (*Mus musculus domesticus*) calculated from all autosomes,
208 conserved chromosomes that exhibit no syntenic breaks between *M. musculus* and *M. pahari*
209 and chromosomes that experienced large scale rearrangements as identified by Thybert et al.
210 (2018). Correlations with p -values less than 0.01 are highlighted in bold text.

Window Size	Population	Whole Genome		Conserved Chromosomes		Rearranged Chromosomes	
		Spearman's ρ	p -value	Spearman's ρ	p -value	Spearman's ρ	p -value
5Kbp	Gough Island	0.007 67	4.28 × 10⁻⁵	0.008 80	0.0102	0.004 86	0.0302
5Kbp	France	0.004 08	0.0295	0.0403	6.10 × 10⁻³²	-0.0107	1.76 × 10⁻⁶
5Kbp	Germany	0.007 52	6.05 × 10⁻⁵	0.0152	9.63 × 10⁻⁶	0.003 86	0.0849
1Mbp	Gough Island	0.0536	0.009 46	0.0588	0.124	0.0437	0.0748
1Mbp	France	0.0450	0.0294	0.135	0.000 400	0.009 99	0.684
1Mbp	Germany	0.0535	0.009 53	0.0775	0.0428	0.0426	0.0828

211

212 Discussion

213 Evolution of the recombination rate will influence the effects of selection at linked sites (e.g.
214 BGS and selective sweeps) and thus influence patterns of genetic variability. Estimates of the
215 recombination rate made from contemporary populations may not adequately predict genetic
216 variability up to $2N_e$ generations following evolution of the recombination rate landscape
217 (Figure 1, 2). Our re-analysis of the Kartje et al. (2020) data suggests that mice are still within
218 the lag period after evolution of the recombination rate, such that π in *M. m. domesticus* does
219 not fully reflect contemporary recombination rates in *Mus musculus*. In contrast, the ancestors
220 of *Heliconius* butterflies also underwent large-scale karyotype evolution, but gross patterns of π
221 versus chromosome length in those species suggest that patterns of variation have largely re-
222 equilibrated after changes in r (Cicconardi et al. 2021).

223 While our re-analysis of the data from Kartje et al. (2020) suggests that recombination rate
224 evolution in the ancestors of mice obscures the evidence for natural selection across the
225 genome, the overall correlations between π and r were still fairly weak on the conserved
226 chromosomes (Table 1). The largest rank correlation coefficient we found was 0.135 for the
227 sample of *M. m. domesticus* from France (1Mbp windows; Table 1). By contrast, Spearman's
228 rank correlation between nucleotide diversity and recombination rate in humans has been
229 reported to be 0.219 for 400 Kbp analysis windows (Cai et al. 2009). The variance in
230 recombination rates across the *M. musculus* genome is less than a half that which has been
231 reported for humans (Jensen-Seaman et al. 2004), so perhaps the effects of BGS across the
232 genome are more homogenous in *M. musculus* than they are in humans, contributing to the
233 weak correlations between π and r shown in Table 1. Beyond the pulse of karyotype evolution
234 reported by Thybert et al. (2018), there is clear evidence of recent and likely ongoing evolution
235 of the recombination rate in *M. musculus* (see Introduction), which may further obscure
236 genome-wide evidence for the effects of natural selection. For example, there is strong
237 evidence that the landscape of recombination hotspots in the *M. musculus* genome has evolved
238 rapidly among sub-species and populations (Smagulova et al. 2015). Our simulations suggest
239 that even a single change to the locations of hotspots can substantially weaken the correlation
240 between π and r (Figure 2, S6). Of course, there are reasons why species may not exhibit a
241 strong positive correlation between π and r that have nothing to do with recombination rate
242 evolution (Cutter and Payseur 2013). For example, wild and domesticated rice (*Oryza spp.*)
243 exhibit negative correlations between π and r , but in those species there is a strong positive
244 correlation between the density of functional sites (i.e. sites subject to purifying selection) and

245 the recombination rate (Flowers et al. 2011). In such a case, the effects of BGS are primarily
246 occurring in regions of high recombination.

247 This short paper should add to the growing appreciation of recombination as an evolutionarily
248 labile trait. As pointed out by Comeron (2017) and Smukowski Heil et al. (2015), information on
249 recombination rates in outgroup species is an important covariate when performing population
250 genomic analyses. In some lineages, recombination rates may evolve very slowly. Birds, for
251 example, have highly conserved karyotypes and in some cases highly conserved recombination
252 landscapes (Damas et al. 2018; Singhal et al. 2015). Evolution of the recombination rate is
253 another of the many possible reasons why one might not be able to adequately identify the
254 effects of BGS (or natural selection more broadly) from population genomic data (See reviews
255 by Cutter and Payseur 2013 and Comeron 2017), but conservation of recombination landscapes
256 will likely make comparative population genomics more straightforward.

257 **Methods**

258 **Model**

259 Background selection has been modelled as the reduction in effective population size (N_e) at a
260 neutral site due to the removal of linked deleterious variants. The effects of background
261 selection are often expressed as $B = \frac{N_e}{N_0}$, where N_e is the effective population size and N_0 is the
262 expected population size under strict neutrality. In a non-recombining genome, B is
263 proportional to the ratio of the deleterious mutation rate to the strength of selection acting on

264 harmful mutations (Charlesworth et al. 1993). For a neutral site present on a recombining
265 chromosome, the effects of background selection depend on the density of functional sites (i.e.
266 those that can mutate to deleterious alleles), the strength of selection at functional sites, the
267 mutation rate at functional sites and the recombination rate between the neutral site and the
268 functional sites (Hudson and Kaplan 1995; Nordborg et al. 1996; Nordborg 1997). For a neutral
269 locus v linked to x functional sites, the reduction in N_e has been described with the following
270 equation:

$$271 \quad B_v = \frac{N_e}{N_0} = \exp\left[-\sum_x \frac{u_x}{t(1 + (1-t)r_{x,v}/t)^2}\right]$$

272 where u_x is the deleterious mutation rate at functional site x , t is the heterozygous fitness
273 effect of a deleterious mutation (i.e. 0.5s in the case of semi-dominance) and $r_{x,v}$ is the
274 recombination map distance between the neutral locus and functional site x . In the above
275 equation, deleterious mutations have fixed effects, but it is straightforward to incorporate a
276 distribution of fitness effects (Nordborg et al. 1996). The above equation holds when selection
277 is sufficiently strong such that random drift does not overwhelm selection ($N_e s > 1$) (Good et
278 al. 2014).

279

280 **Simulations**

281 We simulated BGS under recombination rate evolution using two types of simulations in *SLiM*
282 v3.2 (Haller and Messer 2019). We simulated diploid populations of $N_e = 5,000$ individuals. In all

283 cases, we scaled mutation, recombination and the strength of selection to approximate
284 evolution in a large population.

285
286 The first set of simulations was designed to examine how long it takes for patterns of neutral
287 diversity under BGS to equilibrate after the recombination rate evolves. In these simulations,
288 the genome was 25 Kbp long with a 5 Kbp functional element in the centre. Mutations occurred
289 in the functional element at rate $\mu = 5 \times 10^{-7}$ and had semi-dominant fitness effects with a
290 fixed selection coefficient of $s = -0.01$. We also simulated cases with varying fitness effects
291 using a gamma distribution with mean (\bar{s}) of -0.1 and a shape parameter of 0.1. Recombination
292 occurred at a uniform rate of $r = 5 \times 10^{-7}$ across the chromosome. After 80,000 generations
293 ($16N_e$ generations), we simulated an instantaneous change in the recombination rate,
294 multiplying r by λ , giving $r = \lambda 5 \times 10^{-7}$. We simulated cases with $\lambda = 0.1, 1.0$ and 10.0 .
295 Simulated populations were sampled every 2,500 generations after the recombination rate
296 changed and we performed 200 replicates for each set of parameters tested. Note that these
297 simulations were not designed to be particularly realistic, but to provide clear cut patterns to
298 test the theoretical predictions.

299
300 The second set of simulations was designed to examine how patterns of π versus r varied over
301 time when recombination rates evolved at fine and/or broad scales. For these simulations, we
302 modelled chromosomes that were 10 Mbp long. Neutral mutations occurred at random across
303 the length of the sequence at a rate of 5×10^{-7} (such that expected nucleotide diversity was
304 0.01). Deleterious mutations occurred at random across the length of the sequence at a rate of

305 5×10^{-8} with semi-dominant fitness effects drawn from a gamma distribution with a mean (\bar{s})
306 of -0.1 and a shape parameter of 0.1. The deleterious mutation rate was chosen so that 10% of
307 the genome was subject to purifying selection. Populations evolved under background selection
308 for 80,000 generations (i.e. $16N_e$ generation). In generation 80,000 there was instantaneous
309 evolution of the recombination landscape after which we recorded the tree-sequence of the
310 population every 5,000 generations for a further 40,000 generations. We incorporated two
311 models of recombination rate variation and evolution of the recombination map:

312 • We modelled recombination rate evolution at broad scales by rearrangement of the
313 recombination landscape. Recombination rates vary across the genome (Stapley et al.
314 2017). For example, recombination rates vary by a factor of 3 across chromosome 1 in
315 mice. In these simulations, recombination varied from $r = 2.08 \times 10^{-7}$ to $r =$
316 6.24×10^{-7} across the simulated chromosome (Figure S4A). When the recombination
317 landscape evolved, we reversed the order of recombination rates across the genome
318 (Figure S4A).

319 • We modelled evolution of the recombination map by the movement of hotspots.
320 Recombination occurred at a uniform rate of $r = 6 \times 10^{-8}$ except in 5 Kbp hotspots
321 where it occurred at a rate of $r = 6 \times 10^{-6}$. At the beginning of a simulation, a Poisson
322 number of hotspots was sampled with an expectation of 120. Hotspots were placed at
323 random across the simulated chromosome. When the recombination landscape evolved,
324 we resampled the locations of hotspots (Figure S4B).

325 In both cases, rates were chosen such that the total map length was similar to one that
326 recombined at a constant rate of $4N_e r = 0.008$, the value reported for wild mice (Booker et al.
327 2017). For both models of recombination rate map evolution, we performed 20 simulation
328 replicates, giving a total of 200 Mbp worth of simulated data, similar to the length of
329 chromosome 1 in mice.

330

331 For all simulations, we used the tree sequence recording option in *SLiM* and neutral mutations
332 were added to the resulting tree-sequences at a rate of 5×10^{-7} using *PySLiM* and *msprime*
333 (Haller et al. 2019; Kelleher et al. 2016). Nucleotide diversity (π) was calculated in windows of
334 varying size using sci-kit-allel. We used the program *PyRho* (Spence and Song 2019) to estimate
335 recombination rates from samples of 10 diploid individuals from 20 replicate simulations.
336 Spearman's ρ between π and r was calculated using R. All figures were made using ggplot2. All
337 simulation scripts and analysis and plotting scripts are deposited at
338 https://github.com/TBooker/BGS_RecombinationRateEvolution.

339 Acknowledgements

340 Thanks to Nadia Singh and Judith Mank for the invitation to present this work at vSMBE 2021.
341 Thanks to Michael Whitlock, Brian Charlesworth and Mikey Kartje for helpful discussions. TRB
342 was funded by a Bioinformatics Fellowship awarded by the Biodiversity Research Centre at the
343 University of British Columbia. BAP was supported by NIH R35 GM139412.

344

345 **References**

346 Auton, Adam, et al. "Genetic recombination is targeted towards gene promoter regions in
347 dogs." *PLoS genetics* 9.12 (2013): e1003984.

348 Baker, Zachary, Molly Schumer, Yuki Haba, Lisa Bashkirova, Chris Holland, Gil G. Rosenthal, and
349 Molly Przeworski. 2017. "Repeated losses of *PRDM9*-directed recombination despite the
350 conservation of *PRDM9* across vertebrates." *eLife* 6

351 Baudat, F, J Buard, C Grey, A Fledel-Alon, C Ober, M Przeworski, G Coop, and B de Massy. 2010.
352 "*PRDM9* Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice."
353 *Science* 327 (5967): 836–40.

354 Booker, T R, R W Ness, and P D Keightley. 2017. "The recombination landscape in wild house
355 mice inferred using population genomic data." *Genetics* 207 (1): 297–309.

356 Brick, Kevin, et al. "Genetic recombination is directed away from functional genomic elements
357 in mice." *Nature* 485.7400 (2012): 642-645.

358 Buffalo, Vince. 2021. "Quantifying the Relationship Between Genetic Diversity and Population
359 Size Suggests Natural Selection Cannot Explain Lewontin's Paradox." *eLife* 10 (August): e67509

360 Cai, James J., et al. "Pervasive hitchhiking at coding and regulatory sites in humans." *PLoS
361 genetics* 5.1 (2009): e1000336.

362 Campos, J L, L Zhao, and B Charlesworth. 2017. "Estimating the parameters of background
363 selection and selective sweeps in *Drosophila* in the presence of gene conversion." *Proceedings
364 of the National Academy of Sciences* 114 (24): E4762–E4771.

365 Charlesworth, B. 2009. "Fundamental concepts in genetics: effective population size and
366 patterns of molecular evolution and variation." *Nat Rev Genet* 10 (3): 195–205.

367 Charlesworth, B, M T Morgan, and D Charlesworth. 1993. "The effect of deleterious mutations
368 on neutral molecular variation." *Genetics* 134: 1289–1303.

369 Chmátl, Lukáš, Sofia I. Gabriel, George P. Mitsainas, Jessica Martínez-Vargas, Jacint Ventura,
370 Jeremy B. Searle, Richard M. Schultz, and Michael A. Lampson. 2014. "Centromere Strength
371 Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice." *Current
372 Biology* 24 (19): 2295–2300.

373 Cicconardi, Francesco, James J Lewis, Simon H Martin, Robert D Reed, Charles G Danko, and
374 Stephen H Montgomery. 2021. "Chromosome Fusion Affects Genetic Diversity and Evolutionary
375 Turnover of Functional Loci but Consistently Depends on Chromosome Size." *Molecular Biology
376 and Evolution* 38 (10): 4449–62.

377 Comeron, Josep M. 2017. "Background selection as null hypothesis in population genomics:
378 insights and challenges from *Drosophila* studies." *Philos Trans R Soc Lond B Biol Sci* 372 (1736).

379 Cox, Allison, Cheryl L. Ackert-Bicknell, Beth L. Dumont, Yueming Ding, Jordana Tzenova Bell,
380 Gudrun A. Brockmann, Jon E. Wergedal, et al. 2009. "A New Standard Genetic Map for the
381 Laboratory Mouse." *Genetics* 182 (4): 1335–44.

382 Cutter, A D, and B A Payseur. 2013. "Genomic signatures of selection at linked sites: unifying
383 the disparity among species." *Nat Rev Genet* 14 (4): 262–74.

384 Cvijović, Ivana, Benjamin H Good, and Michael M Desai. 2018. "The Effect of Strong Purifying
385 Selection on Genetic Diversity." *Genetics* 209 (4): 1235–78.

386 Damas, Joana, Jaebum Kim, Marta Farré, Darren K. Griffin, and Denis M. Larkin. 2018.
387 "Reconstruction of Avian Ancestral Karyotypes Reveals Differences in the Evolutionary History
388 of Macro- and Microchromosomes." *Genome Biology* 19 (1): 155.

389 DeGiorgio, Michael, Christian D. Huber, Melissa J. Hubisz, Ines Hellmann, and Rasmus Nielsen.
390 2016. "SweepFinder 2: increased sensitivity, robustness and flexibility." *Bioinformatics* 32 (12):
391 1895–7.

392 Dumont, Beth L., and Bret A. Payseur. "Evolution of the genomic recombination rate in murid
393 rodents." *Genetics* 187.3 (2011): 643-657.

394 Dumont, Beth L., et al. "Extensive recombination rate variation in the house mouse species
395 complex inferred from genetic linkage maps." *Genome research* 21.1 (2011): 114-125.

396 Dumont, Beth L. "Variation and evolution of the meiotic requirement for crossing over in
397 mammals." *Genetics* 205.1 (2017): 155-168.

398 Eyre-Walker, Adam, and Peter D. Keightley. "The distribution of fitness effects of new
399 mutations." *Nature Reviews Genetics* 8.8 (2007): 610-618.

400 Flowers, Jonathan M., Jeanmaire Molina, Samara Rubinstein, Pu Huang, Barbara A. Schaal, and
401 Michael D. Purugganan. 2011. "Natural Selection in Gene-Dense Regions Shapes the Genomic
402 Pattern of Polymorphism in Wild and Domesticated Rice." *Molecular Biology and Evolution* 29
403 (2): 675–87.

404 Good, Benjamin H., Aleksandra M. Walczak, Richard A. Neher, and Michael M. Desai. 2014.
405 "Genetic Diversity in the Interference Selection Limit." *PLoS Genetics* 10 (3).

406 Gray, Melissa M., Daniel Wegmann, Ryan J. Haasl, Michael A. White, Sofia I. Gabriel, Jeremy B.
407 Searle, Richard J. Cuthbert, Peter G. Ryan, and Bret A. Payseur. 2014. "Demographic History of a

408 Recent Invasion of House Mice on the Isolated Island of Gough." *Molecular Ecology* 23 (8):
409 1923–39.

410 Haller, Benjamin C, Jared Galloway, Jerome Kelleher, Philipp W Messer, and Peter L Ralph.
411 2019. "Tree-sequence recording in SLiM opens new horizons for forward-time simulation of
412 whole genomes." *Molecular Ecology Resources* 19 (2): 552–66.

413 Haller, Benjamin C, and Philipp W Messer. 2019. "SLiM 3: Forward Genetic Simulations Beyond
414 the Wright-Fisher Model." *Molecular Biology and Evolution* 36 (3): 632–37.

415 Hudson, R R, and N L Kaplan. 1995. "Deleterious background selection with recombination."
416 Journal Article. *Genetics* 141: 1605–17.

417 Jensen-Seaman, Michael I., et al. "Comparative recombination rates in the rat, mouse, and
418 human genomes." *Genome research* 14.4 (2004): 528-538.

419 Johri, Parul, Brian Charlesworth, and Jeffrey D. Jensen. 2020. "Toward an evolutionarily
420 appropriate null model: Jointly inferring demography and purifying selection." *Genetics* 215 (1):
421 173–92.

422 Kartje, Michael E., Peicheng Jing, and Bret A. Payseur. 2020. "Weak Correlation between
423 Nucleotide Variation and Recombination Rate across the House Mouse Genome." *Genome
424 Biology and Evolution* 12 (4): 293–99.

425 Kelleher, Jerome, Alison M Etheridge, and Gilean McVean. 2016. "Efficient Coalescent
426 Simulation and Genealogical Analysis for Large Sample Sizes." *PLOS Computational Biology* 12
427 (5): e1004842.

428 Leffler, E M, K Bullaughey, D R Matute, W K Meyer, L Segurel, A Venkat, P Andolfatto, and M
429 Przeworski. 2012. "Revisiting an old riddle: what determines genetic diversity levels within
430 species?" *PLoS Biology* 10 (9): e1001388.

431 Nordborg, M. 1997. "Structured coalescent processes on different time scales." *Genetics* 146
432 (4): 1501–14.

433 Nordborg, M, B Charlesworth, and D Charlesworth. 1996. "The effect of recombination on
434 background selection." Journal Article. *Genetical Research* 67: 159–74.

435 Oliver, P L, L Goodstadt, J J Bayes, Z Birtle, K C Roach, N Phadnis, S A Beatson, G Lunter, H S
436 Malik, and C P Ponting. 2009. "Accelerated evolution of the *Prdm9* speciation gene across
437 diverse metazoan taxa." *PLoS Genetics* 5 (12): e1000753.

438 Paigen, K, J P Szatkiewicz, K Sawyer, N Leahy, E D Parvanov, S H Ng, J H Graber, K W Broman,
439 and P M Petkov. 2008. "The recombinational anatomy of a mouse chromosome." *PLoS Genetics*
440 4 (7): e1000119.

441 Pardo-Manuel de Villena, Fernando, and Carmen Sapienza. "Recombination is proportional to
442 the number of chromosome arms in mammals." *Mammalian Genome* 12.4 (2001): 318-322.

443 Peterson, April L., and Bret A. Payseur. "Sex-specific variation in the genome-wide
444 recombination rate." *Genetics* 217.1 (2021): 1-11.

445 Pool, J E, and R Nielsen. 2009. "Correction for Pool and Nielsen (2007)." *Evolution* 63 (6): 1671–
446 1.

447 Segura, Joana, et al. "Evolution of recombination in eutherian mammals: insights into
448 mechanisms that affect recombination rates and crossover interference." *Proceedings of the
449 Royal Society B: Biological Sciences* 280.1771 (2013): 20131945.

450 Singhal, Sonal, Ellen M. Leffler, Keerthi Sannareddy, Isaac Turner, Oliver Venn, Daniel M.
451 Hooper, Alva I. Strand, et al. 2015. "Stable recombination hotspots in birds." *Journal Article.*
452 *Science* 350 (6263): 928–32.

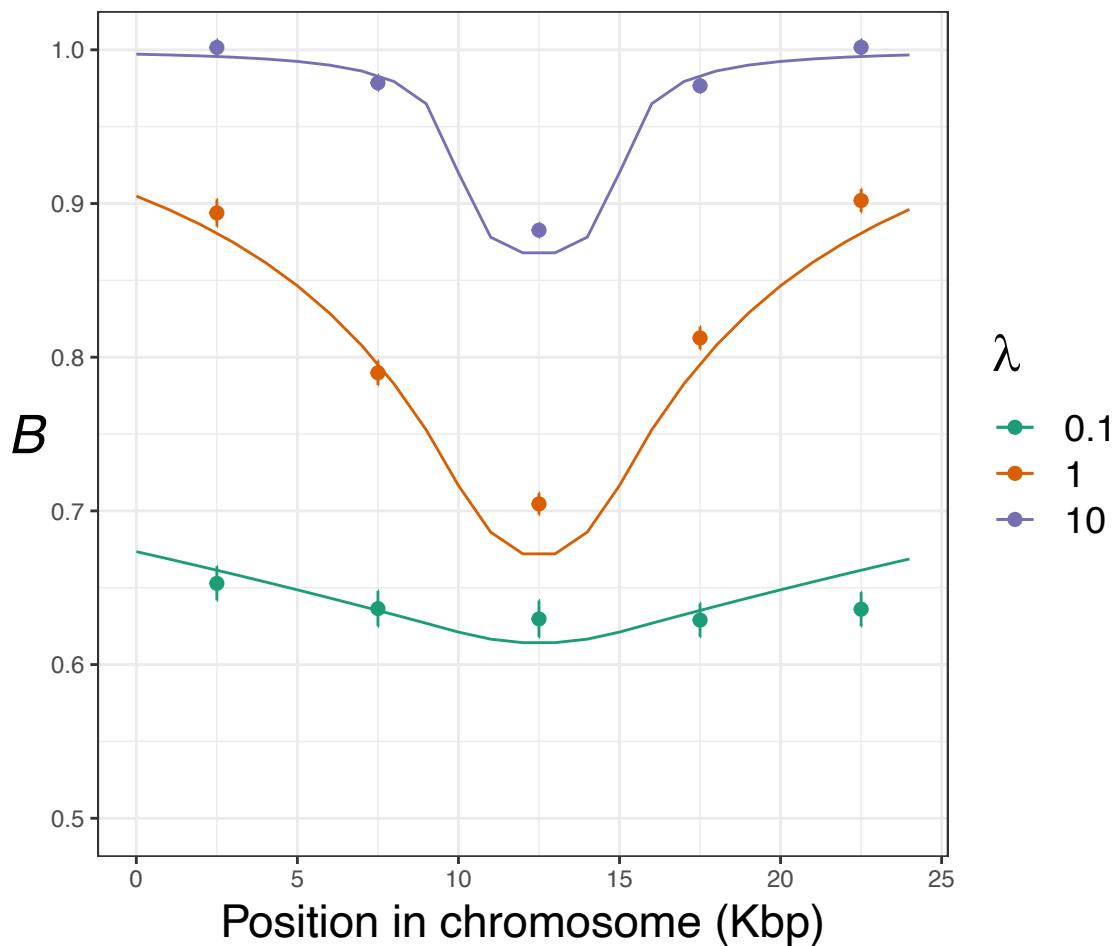
453 Smagulova, F, K Brick, P Yongmei, R D Camerini-Otero, and G V Petukhova. 2016. "The
454 evolutionary turnover of recombination hotspots contributes to speciation in mice." *Journal
455 Article. Genes & Development* 30: 277–80.

456 Smukowski Heil, C S, C Ellison, M Dubin, and M A Noor. 2015. "Recombining without Hotspots:
457 A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of
458 *Drosophila*." *Genome Biology and Evolution* 7 (10): 2829–42.

459 Spence, Jeffrey P., and Yun S. Song. 2019. "Inference and analysis of population-specific fine-
460 scale recombination maps across 26 diverse human populations." *Science Advances* 5 (10).

461 Stapley, Jessica, Philine G. D. Feulner, Susan E. Johnston, Anna W. Santure, and Carole M.
462 Smadja. 2017. "Variation in Recombination Frequency and Distribution Across Eukaryotes:
463 Patterns and Processes." *Philosophical Transactions of the Royal Society B: Biological Sciences*
464 372 (1736): 20160455.

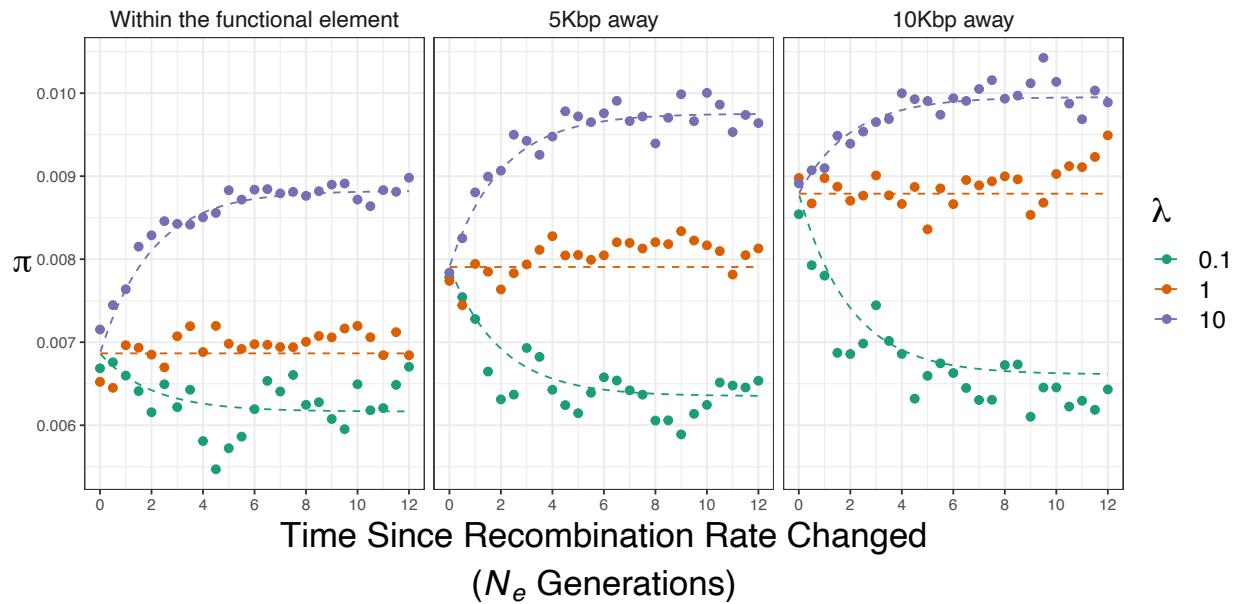
465 Sun, Hequan, Beth A. Rowan, Pádraic J. Flood, Ronny Brandt, Janina Fuss, Angela M. Hancock,
466 Richard W. Michelmore, Bruno Huettel, and Korbinian Schneeberger. 2019. "Linked-read
467 sequencing of gametes allows efficient genome-wide analysis of meiotic recombination."
468 *Nature Communications* 10 (1): 1–9.


469 Thybert, David, Maša Roller, Fábio C. P. Navarro, Ian Fiddes, Ian Streeter, Christine Feig, David
470 Martin-Galvez, et al. 2018. "Repeat associated mechanisms of genome evolution and function
471 revealed by the *Mus caroli* and *Mus pahari* genomes." *Genome Research* 28 (4): 448–59.

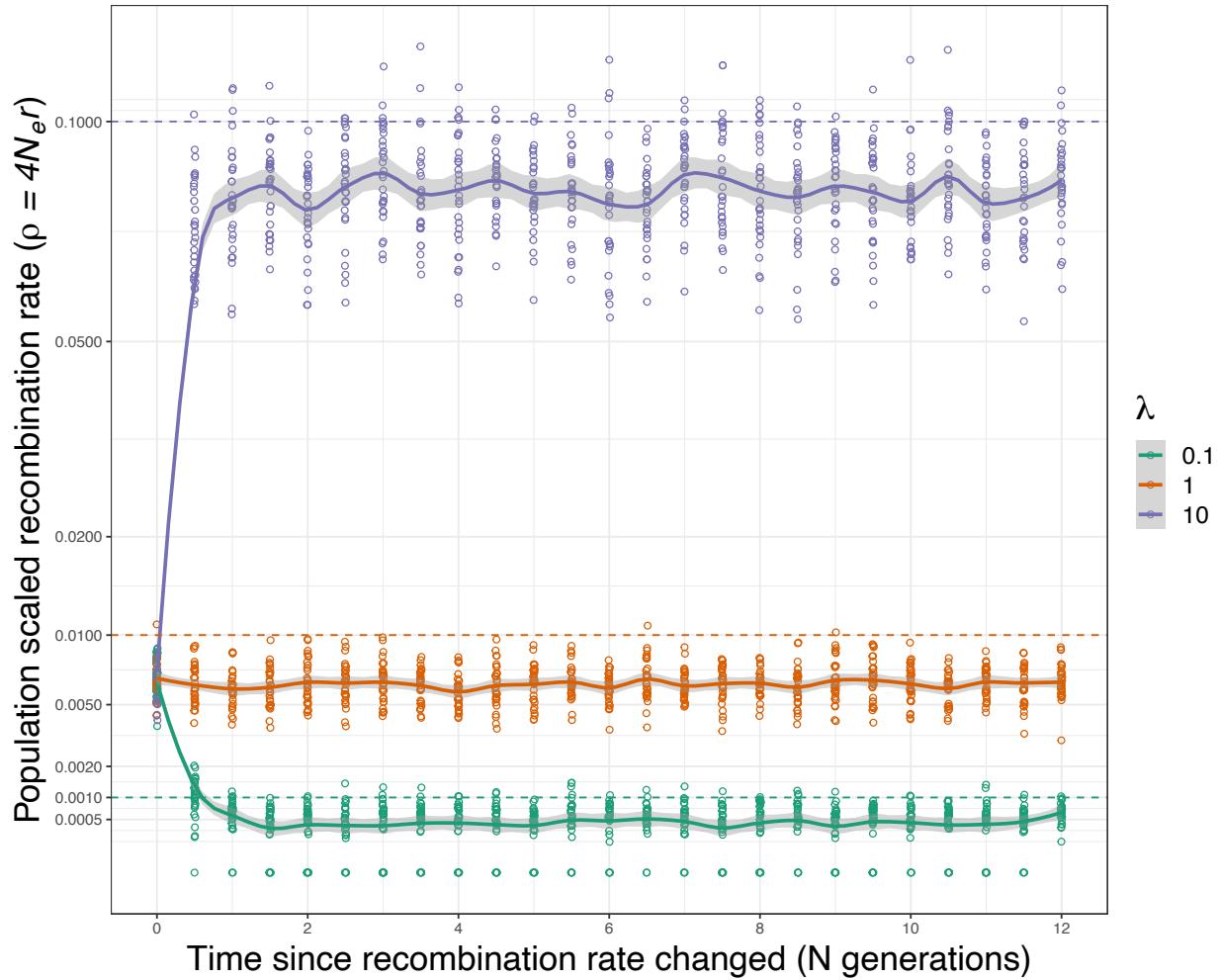
472 Vara, Covadonga, Andreu Paytuví-Gallart, Yasmina Cuartero, Lucía Álvarez-González, Laia
473 Marín-Gual, Francisca Garcia, Beatriu Florit-Sabater, et al. 2021. "The impact of chromosomal
474 fusions on 3D genome folding and recombination in the germ line." *Nature Communications*
475 2021 12:1 12 (1): 1–17.

476 Wang, Richard J., et al. "Recombination rate variation in mice from an isolated
477 island." *Molecular ecology* 26.2 (2017): 457-470.

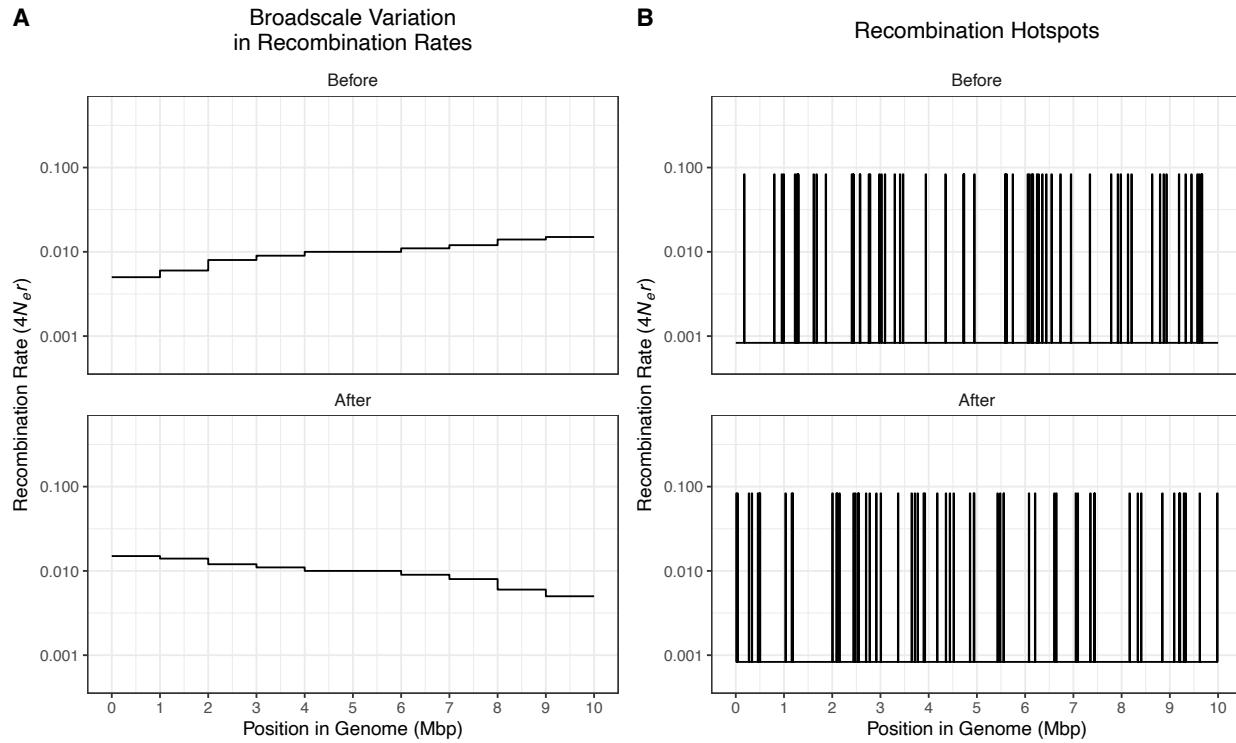
478


479 **Supplementary Material**

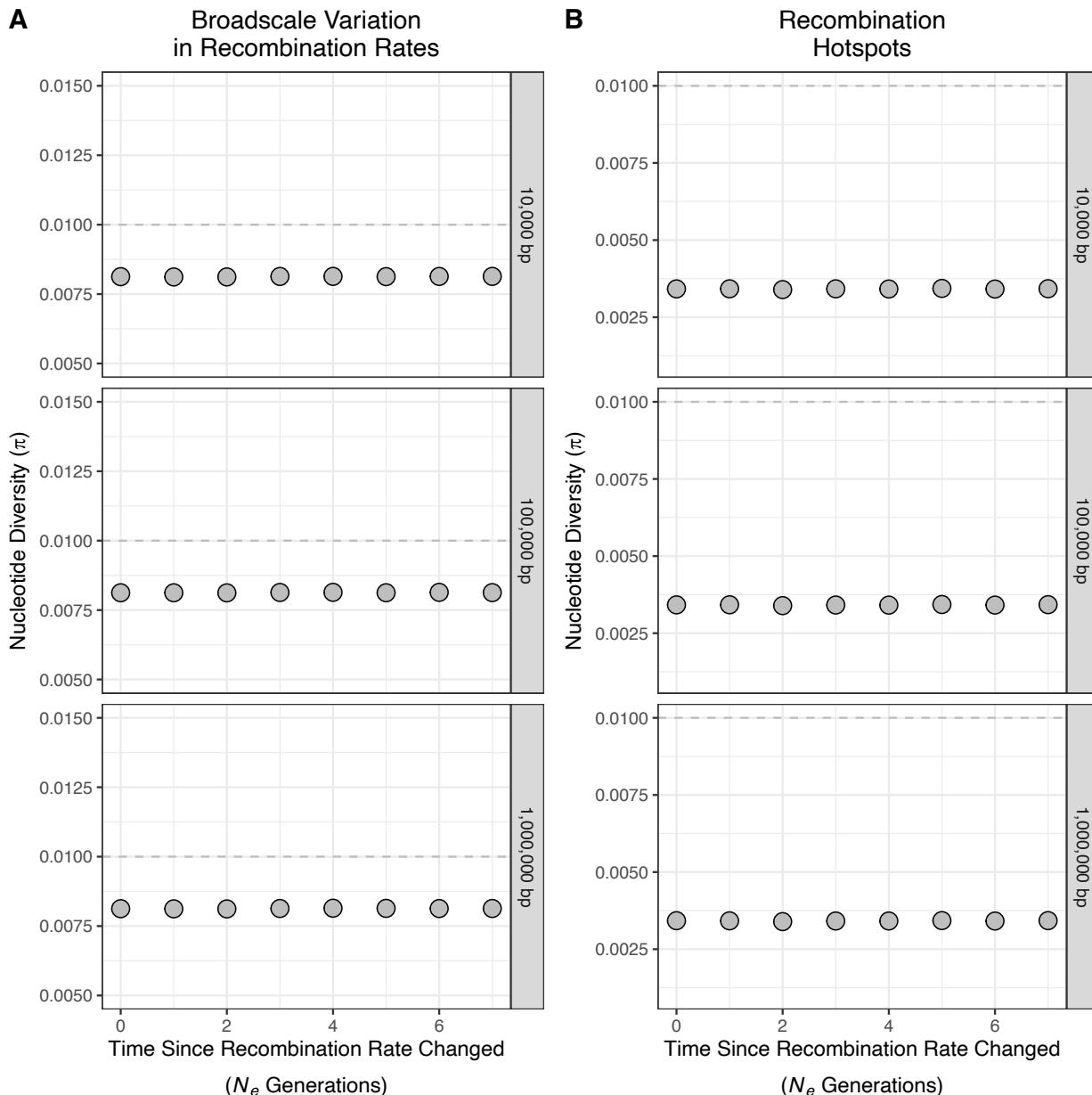
480

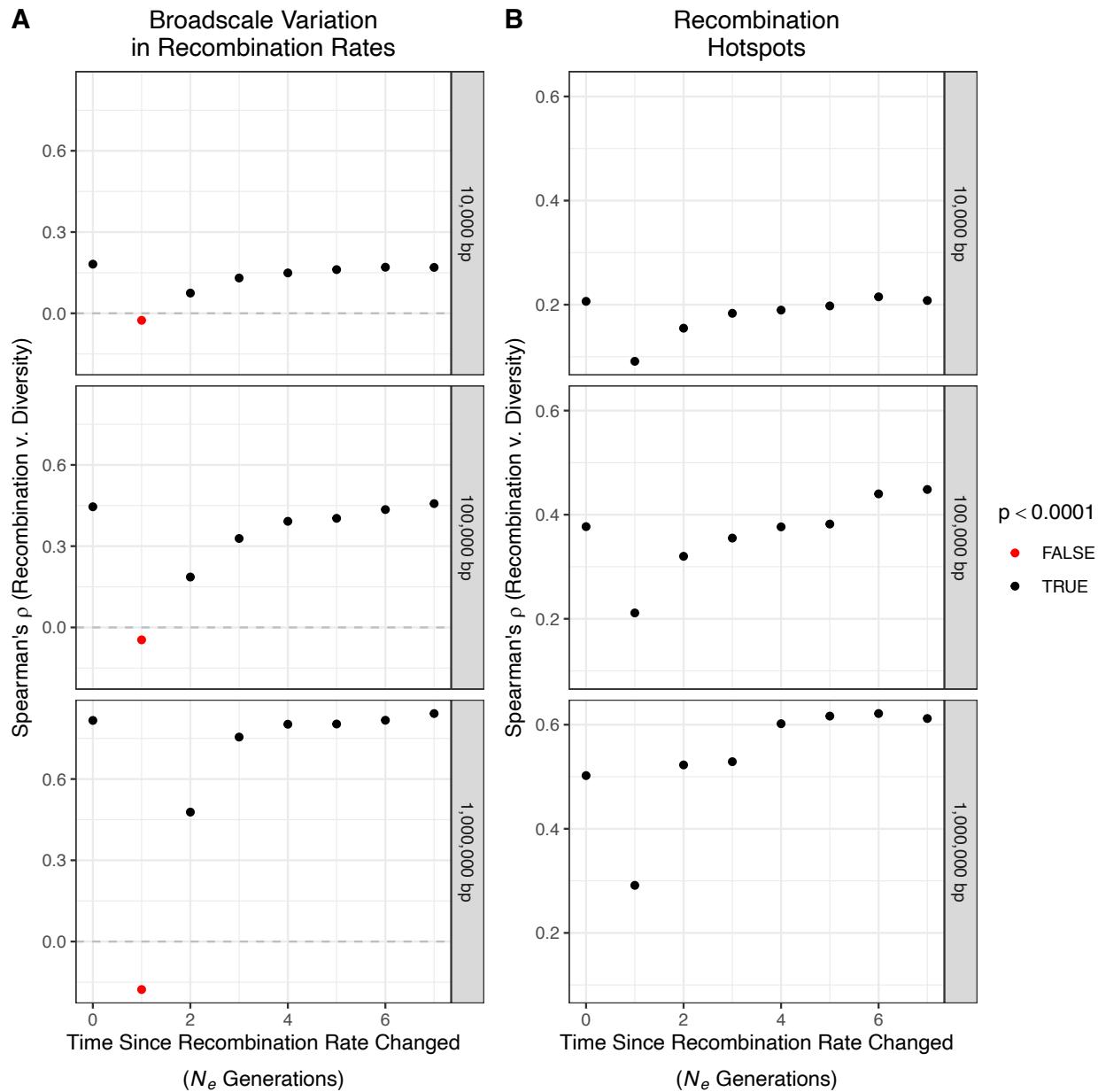

481 **Figure S1.** The effects of background selection across simulated chromosomes. B was calculated
482 for simulated data by comparing observed π to the neutral expectation of $4N_e\mu = 0.01$. The
483 lines show the theoretical expectation calculated using formulae from Nordborg et al (1996).

484


485

486 **Figure S2.** The effects of background selection across simulated chromosomes. B was calculated
487 for simulated data by comparing observed π to the neutral expectation of $4N_e\mu = 0.01$. The
488 lines show the theoretical expectation calculated using Equation 1 and formulae from Nordborg
489 et al (1996). The labels on the top of each panel indicate the location in the simulated data
490 being analysed.




491

492 **Figure S3.** Recombination rates inferred using PyRho after an instantaneous change in the
493 recombination rate. Dashed horizontal lines indicate the true recombination rate for the three
494 cases. Smoothed lines with shaded ribbon indicate the fit and error of a LOESS regression.
495 Recombination rates were estimated for 30 simulation replicates for each time point and value
496 of λ .

498 **Figure S4.** The recombination rate maps used in the simulations modelling BGS across the
499 genome. The upper and lower panels show the recombination rate landscape before and after
500 it evolved in simulations, respectively. A) Evolution of the recombination rate at the Mbp scale.
501 B) Evolution of the recombination rate at the scale of recombination hotspots.

