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Abstract

Background selection (BGS), the effect that purifying selection exerts on sites linked to
deleterious alleles, is expected to be ubiquitous across eukaryotic genomes. The effects of BGS
reflect the interplay of the rates and fitness effects of deleterious mutations with
recombination. A fundamental assumption of BGS models is that recombination rates are
invariant over time. However, in some lineages recombination rates evolve rapidly, violating
this central assumption. Here, we investigate how recombination rate evolution affects genetic
variation under BGS. We show that recombination rate evolution modifies the effects of BGS in
a manner similar to a localised change in the effective population size, potentially leading to an
underestimation of the genome-wide effects of selection. Furthermore, we find evidence that
recombination rate evolution in the ancestors of modern house mice may have impacted

inferences of the genome-wide effects of selection in that species.
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Introduction

Different modes of selection (e.g. positive, purifying and balancing) all affect genetic variation
at sites linked to the actual targets of selection (reviewed in Charlesworth 2009). In the case of
purifying selection, the removal of deleterious mutations causes linked neutral variants to be
lost along with them through a process referred to as background selection (BGS; Charlesworth
et al. 1993). Of the mutations that affect fitness in natural populations, the vast majority are
likely deleterious with a comparatively small proportion of beneficial mutations (Eyre-Walker
and Keightley 2007). For those reasons, it has been proposed that BGS is ubiquitous across
eukaryotic genomes and should be incorporated into null models for population genomics
(Comeron 2017; Johri et al. 2020). Indeed, recent studies have used BGS to set baseline
patterns for identifying the locations and effects of positively selected mutations (DeGiorgio et
al. 2016; Campos et al. 2017) and understanding Lewontin’s paradox of genetic diversity
(Buffalo 2021). Interpreting genome-wide patterns of genetic diversity in terms of BGS,
however, requires accurate estimates of population genetic parameters, particularly

recombination rates.

In many species, the recombination rate per base pair (r) varies across the genome both
between and within chromosomes (Stapley et al. 2017). For example, in the house mouse (Mus
musculus) the average r for chromosome 19 (the shortest chromosome) is around 60% higher
than for chromosome 1 (the longest chromosome)(Cox et al. 2009). The requirement of at least
one cross-over per chromosome per meiosis in mammals causes shorter chromosomes to

recombine at a higher average rate than longer ones (Pardo-Manuel et al. 2001; Segura et al.


https://doi.org/10.1101/2021.12.20.473549
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473549; this version posted December 21, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

available under aCC-BY-NC 4.0 International license.

2013; Dumont 2017). Local recombination rates can vary substantially across chromosomes as
well and in some cases this variation is predicted by gross features of chromosome architecture
such as the locations of centromeres and telomeres (Paigen et al. 2008). Actual recombination
events in mice are typically restricted to narrow windows of the genome (on the order of 1-5
Kbp), referred to as hotspots (Paigen et al. 2008). The positions of recombination hotspots in
mice, and in some other vertebrates, are determined by the binding of a protein encoded by
the PRDM9 gene to specific DNA motifs (Baudat et al. 2010; Baker et al. 2017), although
hotspots are still observed in PRDM9 knockout lines and dogs, which lack a functional copy of

PRDM9 (Brick et al. 2012; Auton et al. 2013).

Estimates of r can be obtained empirically by examining the inheritance of genetic markers
through controlled crosses or through pedigrees, or by comparing an individual’s genome to
that of its gametes (e.g. Sun et al. 2019). Both methods reconstruct recombination events over
one or a few generations, and thus provide estimates of r for contemporary populations.
Alternatively, estimates of r can be obtained indirectly by analysing patterns of linkage
disequilibrium across the genome (e.g. Spence and Song 2019), in which case estimates reflect
both recent and ancestral recombination events. Whether recombination rates are estimated
from marker transmission or population genetics, using such estimates when analysing of
variation across the genome in terms of BGS implicitly assumes that the recombination
landscape has not changed over the time in which patterns of diversity have been established.
However, recombination rate landscapes can evolve very rapidly in some lineages. For example,
due to the relationship between chromosome size and average r, changes in chromosome

length (i.e. karyotype evolution) may induce changes in r. The lineage leading to Mus musculus
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(2n=40) has experienced large chromosomal rearrangements since it shared a common
ancestor with Mus pahari (2n=48) 3-5 million years ago (Thybert et al. 2018). Moreover,
different populations of Mus musculus domesticus harbouring different karyotypes exhibit
different genomic landscapes of recombination (Vara et al. 2021). Chromosomal fusions can
exhibit meiotic drive (Chmatal et al. 2014) so new karyotypes may spread to fixation very
rapidly. Even mice with the same karyotype vary in regional recombination rate across
substantial proportions of the genome (Dumont et al. 2011; Wang et al 2017) and in total
number of crossovers (Dumont and Payseur 2011; Peterson and Payseur 2021), both within and
between subspecies. There is also evidence that PRDM9, the gene that encodes the protein
that dictates the locations of recombination events, has undergone recurrent bouts of positive
selection in mice (Oliver et al. 2009) and natural populations of M. musculus spp. possess
various PRDM9 alleles corresponding to different suites of recombination hotspots (Smagulova
et al. 2016). Overall, there is clear evidence from mice that recombination rates can evolve on

broad and fine scales.

Changes in the recombination rate over time may influence patterns of genetic variation across
the genome (Comeron 2017). For example, chromosomal fusions would decrease
recombination rates experienced by individual nucleotides in the fused chromosomes, and thus
increase the effects of BGS and other processes mediated by recombination. Consistent with
this, Cicconardi et al. (2021) found evidence suggesting that chromosomes that underwent
fusions in the ancestors of extant Heliconius butterfly species now exhibit reduced
recombination rates and  presumably due to amplified BGS effects. Following evolution of the

recombination rate landscape there will be a lag period wherein patterns of genetic variation
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more closely reflect ancestral recombination rates than derived rates. Over time, as new
deleterious mutations arise and cause BGS, patterns of genetic variation will come to reflect
derived recombination rates. Depending on the extent and rate of recombination rate
evolution, population genomic analysis of lineages that are still within the lag period may be
obscured. In this paper, we examine how patterns of neutral genetic variation under BGS
respond to evolution of the recombination rate and describe how this could affect and have

affected analyses that are used to identify the effects of selection on a genome-wide scale.
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94 Results

95 Background selection under evolving recombination rates

96 The effects of BGS reflect the interplay of purifying selection and recombination (Nordborg et
97  al. 1996), so changes to the recombination rate will influence the effects of BGS. An increase in
98 the recombination rate between neutral sites and sites subject to purifying selection will
99  decrease the effect of BGS and vice versa for a decrease in the recombination rate. At a neutral
100  locus v, coalescence times under BGS (T45) are shorter than those expected under neutrality
101  (Tyeytrar)(Nordborg et al. 1996) and the effect of BGS is often expressed as B, =
102 Tggsv/Tneutrar (€.8. Nordborg et al. 1996). Consider a population that underwent a change in
103  the recombination rate such that v experiences a BGS effect of B;, under the derived
104  recombination rate regime. Even with instantaneous changes in the recombination rate,
105  genetic variation at v would not reflect B, immediately, as there would be a lag period after
106  recombination rate change wherein coalescence times (and patterns of genetic variation)

107  would more closely reflect B,,.

108  Under strong purifying selection, BGS resembles a localised reduction in the effective

109 population size, so the period of lag after a change in the recombination rate may resemble the
110  change in coalescence times following a change in the population size. If the recombination
111  rate changed at time t in the past (measured in 2N, generations), then BGS under the new

112 recombination rate can described with:

113 Bye = By(1+ (Zr—1e™). [1]
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We obtained Equation 1 by modifying an expression that describes coalescence times after an

instantaneous change in the population size from Johri et al. (2020). Note that Pool and Nielsen

(2009) provided similar expressions to those given by Johri et al. (2020).
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- 0.1
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Figure 1. The effect of background selection on nucleotide diversity (1) over time after
recombination rates change by a factor A. The dashed lines were calculated using Equation 1
and formulae from Nordborg et al (1996). Points indicate the mean from 100 replicate
simulations. Nucleotide diversity was calculated for neutral sites 10,000bp away from sites
subject to purifying selection.

We modelled deleterious mutations occurring in a single functional element (e.g. a protein

coding exon) and examined 1 for neutral mutations in and around this region after an

instantaeous change in the recombination rate (Figure S1). i gradually departs from the

expectations based on the ancestral recombination rate over 4Ne generations, when it finally

aligns to the derived recombination rate (Figure 1,52). Up to ~2N. generations after a change in

the recombination rate, ™ more closely resembled the expectation under the ancestral
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recombination rate than it did the derived rate (Figure 1, S2). After around 4N, generations,
coalescence times closely reflected those expected under BGS given the derived recombination
rate, as measured by 7 (Figure 1, S2). When deleterious mutations have nearly neutral
deleterious effects, Equation 1 may not predict changes in nucleotide diversity particularly well
because in such cases BGS does not resemble a simple reduction in N, (Good et al. 2014;

Cvijovi¢ et al. 2018).

In the case of a population that has recently undergone shifts in the recombination rate
landscape (i.e. less than 2N, generations ago), estimates of r from such a population would
likely reflect contemporary recombination rates regardless of how they were obtained.
Estimates of r from patterns of marker inheritance in crosses or pedigrees always reflect
contemporary rates and population genetic estimates (i.e. obtained from patterns of LD) can
reflect contemporary recombination rates within 0.5N. generations of a change in r (Figure S3).
Depending on the extent and nature of recombination rate evolution, population genomic
analyses that compare features of genetic variation to estimates of r could lead to an
underestimation of the effects of BGS (and other forms of selection) on patterns of genetic

variation.
Patterns of genetic variation after evolution of the recombination

landscape

To demonstrate how population genomic analyses may be affected by changes in r, we

simulated two scenarios of BGS under evolving recombination rates. In the first, the broadscale
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149 landscape of r was rearranged (Figure S4A). In the second, the locations of recombination
150 hotspots were shifted, as if a new PRDM9 allele had fixed in a population (Figure S4B). In both
151  scenarios, deleterious mutations occurred at random across the genome generating

152  widespread BGS such that there was a positive correlation between  and r at equilibrium
153  (Figure 2). For the sake of our analyses have assumed that recombination rate is invariant
154 among individuals, even as heritable variation in recombination rates has been reported in

155  several species (reviewed in Stapley et al. 2017).

>
w

Broadscale Variation Recombination
in Recombination Rates Hotspots

0.4+ 0.4+

0.2 0.24 ® + ® . ® °

. p < 0.0001

e FALSE
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Spearman's p (Recombination v. Diversity)
L ]
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Time Since Recombination Rate Changed Time Since Recombination Rate Changed

(N¢ Generations) (N¢ Generations)

156

157  Figure 2. Spearman’s correlation between nucleotide diversity () and recombination rate (r)
158  over time after recombination rates evolve. Panel A shows results for a broad-scale shift in the
159 recombination landscape and panel B shows results for recombination rate evolution by the
160 movement of hotspots. Results are shown for 10 Kbp analysis windows.

161 A positive correlation between m and r is a hallmark of widespread selection across a genome
162  (Cutter and Payseur 2013), but evolution of the recombination rate may obscure this pattern. In
163  both the scenarios we simulated, changes in r did not influence the average nucleotide diversity

164  across simulated chromosomes (Figure S5), because under the models of recombination rate

10
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evolution we implemented the average map length was constant over time. However, before
the change in the recombination rate, there was a positive correlation between mand r in both
scenarios that was detectable when examining 10Kbp, 100Kbp and 1Mbp analysis windows
(Figure 2,56). Following changes in the recombination rate landscape under the model of
broadscale recombination rate variation, the correlation between it and r was either absent or
misleading (Figure 2A, S6A). Under the model of recombination hotspot evolution, the
correlation between 1 and r was weakened by change in the landscape of hotspots (Figure 2B).
In both cases we simulated, a positive correlation between 1 and derived r was restored to
levels similar to what had been observed before the recombination maps changed after about
4N, generations (Figure 2, S6). Figure 2 shows results for 10,000bp analysis windows, but

similar results were found when examining larger windows (Figure S5).

Rapid recombination rate evolution in house mice

Rapid evolution of recombination rates in Mus musculus may have influenced our ability to
identify the effects of selection across that species’ genome. Kartje et al. (2020) recently
demonstrated that natural populations of M. m. domesticus exhibit a very weak correlation
between mt and r (when examining analysis windows of various widths) and concluded that
selection at linked sites exerted only modest effects on genetic variation throughout the
genome. This is notable because wild mice are thought to have large effective population sizes
for mammals (Leffler et al. 2012) and genome-wide effect of selection is thought to be more
pronounced in species with large N (Cutter and Payseur 2013). As discussed in the

Introduction, there is evidence that mice have undergone rapid evolution of the recombination

11
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rate. For example, around 3-5 MYA the lineage leading to M. musculus experienced a burst of
karyotype evolution (Thybert et al. 2018). If that burst of karyotype evolution affected
recombination rates and ancestral mouse populations were very large, then contemporary
mice may still be within the lag period described by Equation 1. Patterns of genetic diversity in
mice may still be adjusting to historical changes in the recombination rate, and we may see a
stronger correlation between it and r in genomic regions that have not undergone dramatic

changes in the recombination rate.

Using an alignment of genomes from closely related species, Thybert et al. (2018) distinguished
chromosomes in the M. musculus genome that have or have not undergone dramatic
rearrangements in the last 5 million years from those that have not. We re-analysed data from
Kartje et al. (2020) and found that the correlation between m and r is stronger and more
significant on chromosomes that have not undergone largescale rearrangements in the last 3-5
million years (Table 1) for M. m. domesticus individuals from France and Germany. This pattern
holds when looking at analysis windows of 5 Kbp and 1 Mbp (Table 1). No substantial
correlations were found for mice from Gough Island in any comparison. M. m. domesticus are
believed to have colonised Gough Island in the 19th century and to have experienced a severe
population bottleneck (Gray et al. 2014), a demographic history that could have further
obscured the correlation between nucleotide diversity and recombination rate in that

population.

12
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Table 1. The correlation between nucleotide diversity (rr) and recombination rate (r) for three
populations of house mice (Mus musculus domesticus) calculated from all autosomes,
conserved chromosomes that exhibit no syntenic breaks between M. musculus and M. pahari
and chromosomes that experienced large scale rearrangements as identified by Thybert et al.
(2018). Correlations with p-values less than 0.01 are highlighted in bold text.

. Whole Genome Conserved Chromosomes Rearranged Chromosomes
Window .
Size Population
Spearman’s p p-value Spearman’s p p-value Spearman’s p p-value
5Kbp Gough Island 0.007 67 4.28 x105 0.008 80 0.0102 0.004 86 0.0302
5Kbp France 0.004 08 0.0295 0.0403 6.10 x10-32 -0.0107 1.76 x10-6
5Kbp Germany 0.007 52 6.05 x 105 0.0152 9.63 x106 0.003 86 0.0849
1Mbp Gough Island 0.0536 0.009 46 0.0588 0.124 0.0437 0.0748
1Mbp France 0.0450 0.0294 0.135 0.000 400 0.00999 0.684
1Mbp Germany 0.0535 0.009 53 0.0775 0.0428 0.0426 0.0828
Discussion

Evolution of the recombination rate will influence the effects of selection at linked sites (e.g.
BGS and selective sweeps) and thus influence patterns of genetic variability. Estimates of the
recombination rate made from contemporary populations may not adequately predict genetic
variability up to 2N, generations following evolution of the recombination rate landscape
(Figure 1, 2). Our re-analysis of the Kartje et al. (2020) data suggests that mice are still within
the lag period after evolution of the recombination rate, such that = in M. m. domesticus does
not fully reflect contemporary recombination rates in Mus musculus. In contrast, the ancestors
of Heliconius butterflies also underwent large-scale karyotype evolution, but gross patterns of
versus chromosome length in those species suggest that patterns of variation have largely re-

equilibrated after changes in r (Cicconardi et al. 2021).

13
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While our re-analysis of the data from Kartje et al. (2020) suggests that recombination rate
evolution in the ancestors of mice obscures the evidence for natural selection across the
genome, the overall correlations between it and r were still fairly weak on the conserved
chromosomes (Table 1). The largest rank correlation coefficient we found was 0.135 for the
sample of M. m. domesticus from France (1Mbp windows; Table 1). By contrast, Spearman’s
rank correlation between nucleotide diversity and recombination rate in humans has been
reported to be 0.219 for 400 Kbp analysis windows (Cai et al. 2009). The variance in
recombination rates across the M. musculus genome is less than a half that which has been
reported for humans (Jensen-Seaman et al. 2004), so perhaps the effects of BGS across the
genome are more homogenous in M. musculus than they are in humans, contributing to the
weak correlations between 1t and r shown in Table 1. Beyond the pulse of karyotype evolution
reported by Thybert et al. (2018), there is clear evidence of recent and likely ongoing evolution
of the recombination rate in M. musculus (see Introduction), which may further obscure
genome-wide evidence for the effects of natural selection. For example, there is strong
evidence that the landscape of recombination hotspots in the M. musculus genome has evolved
rapidly among sub-species and populations (Smagulova et al. 2015). Our simulations suggest
that even a single change to the locations of hotspots can substantially weaken the correlation
between it and r (Figure 2, S6). Of course, there are reasons why species may not exhibit a
strong positive correlation between m and r that have nothing to do with recombination rate
evolution (Cutter and Payseur 2013). For example, wild and domesticated rice (Oryza spp.)
exhibit negative correlations between i and r, but in those species there is a strong positive

correlation between the density of functional sites (i.e. sites subject to purifying selection) and

14
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the recombination rate (Flowers et al. 2011). In such a case, the effects of BGS are primarily

occurring in regions of high recombination.

This short paper should add to the growing appreciation of recombination as an evolutionarily
labile trait. As pointed out by Comeron (2017) and Smukowski Heil et al. (2015), information on
recombination rates in outgroup species is an important covariate when performing population
genomic analyses. In some lineages, recombination rates may evolve very slowly. Birds, for
example, have highly conserved karyotypes and in some cases highly conserved recombination
landscapes (Damas et al. 2018; Singhal et al. 2015). Evolution of the recombination rate is
another of the many possible reasons why one might not be able to adequately identify the
effects of BGS (or natural selection more broadly) from population genomic data (See reviews
by Cutter and Payseur 2013 and Comeron 2017), but conservation of recombination landscapes

will likely make comparative population genomics more straightforward.

Methods

Model

Background selection has been modelled as the reduction in effective population size (N, ) at a

neutral site due to the removal of linked deleterious variants. The effects of background

. N, . . . . .
selection are often expressed as B = N—e, where N, is the effective population size and N, is the
0

expected population size under strict neutrality. In a non-recombining genome, B is

proportional to the ratio of the deleterious mutation rate to the strength of selection acting on

15
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harmful mutations (Charlesworth et al. 1993). For a neutral site present on a recombining
chromosome, the effects of background selection depend on the density of functional sites (i.e.
those that can mutate to deleterious alleles), the strength of selection at functional sites, the
mutation rate at functional sites and the recombination rate between the neutral site and the
functional sites (Hudson and Kaplan 1995; Nordborg et al. 1996; Nordborg 1997). For a neutral
locus v linked to x functional sites, the reduction in N, has been described with the following

equation:

N, _ Uy
B=8 exp[—z t(1+ (1— t)rx,v/t)z]

X

where u, is the deleterious mutation rate at functional site x, t is the heterozygous fitness
effect of a deleterious mutation (i.e. 0.5s in the case of semi-dominance) and 7, is the
recombination map distance between the neutral locus and functional site x. In the above
equation, deleterious mutations have fixed effects, but it is straightforward to incorporate a
distribution of fitness effects (Nordborg et al. 1996). The above equation holds when selection
is sufficiently strong such that random drift does not overwhelm selection (N.s > 1) (Good et

al. 2014).
Simulations

We simulated BGS under recombination rate evolution using two types of simulations in SLiM

v3.2 (Haller and Messer 2019). We simulated diploid populations of N, = 5,000 individuals. In all
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283  cases, we scaled mutation, recombination and the strength of selection to approximate

284  evolution in a large population.

285

286  The first set of simulations was designed to examine how long it takes for patterns of neutral
287  diversity under BGS to equilibrate after the recombination rate evolves. In these simulations,
288 the genome was 25 Kbp long with a 5 Kbp functional element in the centre. Mutations occurred
289  inthe functional element at rate 4 = 5 X 10~7 and had semi-dominant fitness effects with a
290 fixed selection coefficient of s = —0.01. We also simulated cases with varying fitness effects
291  using a gamma distribution with mean (s) of -0.1 and a shape parameter of 0.1. Recombination
292  occurred at a uniform rate of r = 5 X 10~7 across the chromosome. After 80,000 generations
293  (16N. generations), we simulated an instantaneous change in the recombination rate,

294  multiplying r by A, givingr = A5 x 1077, We simulated cases with A = 0.1, 1.0 and 10.0.

295  Simulated populations were sampled every 2,500 generations after the recombination rate
296  changed and we performed 200 replicates for each set of parameters tested. Note that these
297  simulations were not designed to be particularly realistic, but to provide clear cut patterns to

298  test the theoretical predictions.

299

300 The second set of simulations was designed to examine how patterns of m versus r varied over
301 time when recombination rates evolved at fine and/or broad scales. For these simulations, we
302  modelled chromosomes that were 10 Mbp long. Neutral mutations occurred at random across
303 thelength of the sequence at a rate of 5 X 10~ (such that expected nucleotide diversity was

304  0.01). Deleterious mutations occurred at random across the length of the sequence at a rate of

17
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5 X 1078 with semi-dominant fitness effects drawn from a gamma distribution with a mean (s)
of -0.1 and a shape parameter of 0.1. The deleterious mutation rate was chosen so that 10% of
the genome was subject to purifying selection. Populations evolved under background selection
for 80,000 generations (i.e. 16N, generation). In generation 80,000 there was instantaneous
evolution of the recombination landscape after which we recorded the tree-sequence of the
population every 5,000 generations for a further 40,000 generations. We incorporated two

models of recombination rate variation and evolution of the recombination map:

e  We modelled recombination rate evolution at broad scales by rearrangement of the
recombination landscape. Recombination rates vary across the genome (Stapley et al.
2017). For example, recombination rates vary by a factor of 3 across chromosome 1 in
mice. In these simulations, recombination varied fromr = 2.08 X 10~ tor =
6.24 x 1077 across the simulated chromosome (Figure S4A). When the recombination
landscape evolved, we reversed the order of recombination rates across the genome

(Figure S4A).

e  We modelled evolution of the recombination map by the movement of hotspots.
Recombination occurred at a uniform rate of r = 6 X 10~8 except in 5 Kbp hotspots
where it occurred at a rate of r = 6 X 107°. At the beginning of a simulation, a Poisson
number of hotspots was sampled with an expectation of 120. Hotspots were placed at
random across the simulated chromosome. When the recombination landscape evolved,

we resampled the locations of hotspots (Figure S4B).
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In both cases, rates were chosen such that the total map length was similar to one that
recombined at a constant rate of 4N,r = 0.008, the value reported for wild mice (Booker et al.
2017). For both models of recombination rate map evolution, we performed 20 simulation
replicates, giving a total of 200 Mbp worth of simulated data, similar to the length of

chromosome 1 in mice.

For all simulations, we used the tree sequence recording option in SLiM and neutral mutations
were added to the resulting tree-sequences at a rate of 5 X 10~7 using PySLiM and msprime
(Haller et al. 2019; Kelleher et al. 2016). Nucleotide diversity () was calculated in windows of
varying size using sci-kit-allel. We used the program PyRho (Spence and Song 2019) to estimate
recombination rates from samples of 10 diploid individuals from 20 replicate simulations.
Spearman’s p between m and r was calculated using R. All figures were made using ggplot2. All
simulation scripts and analysis and plotting scripts are deposited at

https://github.com/TBooker/BGS_RecombinationRateEvolution.
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481  Figure S1. The effects of background selection across simulated chromosomes. B was calculated
482  for simulated data by comparing observed m to the neutral expectation of 4N,u = 0.01. The
483 lines show the theoretical expectation calculated using formulae from Nordborg et al (1996).
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486  Figure S2. The effects of background selection across simulated chromosomes. B was calculated
487  for simulated data by comparing observed m to the neutral expectation of 4N, u = 0.01. The
488 lines show the theoretical expectation calculated using Equation 1 and formulae from Nordborg
489  etal (1996). The labels on the top of each panel indicate the location in the simulated data

490 being analysed.
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Figure S3. Recombination rates inferred using PyRho after an instantaneous change in the
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502

503  Figure S5. Nucleotide diversity (rt) over time after evolution of the recombination landscape.
504  Panel A) shows results for the model of broadscale recombination rate evolution. Panel B)

505 shows the results for the model of recombination hotspot evolution. The dashed horizontal
506 grey line indicates the null expectation of 4N.u = 0.01. In both panels, the text in the grey strips
507 to the right of each cell indicates the size of analysis windows used.
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509

510  Figure S6. The correlation between nucleotide diversity and recombination rate over time after
511 evolution of the recombination landscape. Panel A) shows results for the model of broadscale
512 recombination rate evolution. Panel B) shows the results for the model of recombination

513  hotspot evolution. In both panels, the text in the grey strips to the right of each cell indicates
514  the size of analysis windows used.
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