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Abstract 10	

Background selection (BGS), the effect that purifying selection exerts on sites linked to 11	

deleterious alleles, is expected to be ubiquitous across eukaryotic genomes. The effects of BGS 12	

reflect the interplay of the rates and fitness effects of deleterious mutations with 13	

recombination. A fundamental assumption of BGS models is that recombination rates are 14	

invariant over time. However, in some lineages recombination rates evolve rapidly, violating 15	

this central assumption. Here, we investigate how recombination rate evolution affects genetic 16	

variation under BGS. We show that recombination rate evolution modifies the effects of BGS in 17	

a manner similar to a localised change in the effective population size, potentially leading to an 18	

underestimation of the genome-wide effects of selection. Furthermore, we find evidence that 19	

recombination rate evolution in the ancestors of modern house mice may have impacted 20	

inferences of the genome-wide effects of selection in that species.  21	
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Introduction 22	

Different modes of selection (e.g. positive, purifying and balancing) all affect genetic variation 23	

at sites linked to the actual targets of selection (reviewed in Charlesworth 2009). In the case of 24	

purifying selection, the removal of deleterious mutations causes linked neutral variants to be 25	

lost along with them through a process referred to as background selection (BGS; Charlesworth 26	

et al. 1993). Of the mutations that affect fitness in natural populations, the vast majority are 27	

likely deleterious with a comparatively small proportion of beneficial mutations (Eyre-Walker 28	

and Keightley 2007). For those reasons, it has been proposed that BGS is ubiquitous across 29	

eukaryotic genomes and should be incorporated into null models for population genomics 30	

(Comeron 2017; Johri et al. 2020). Indeed, recent studies have used BGS to set baseline 31	

patterns for identifying the locations and effects of positively selected mutations (DeGiorgio et 32	

al. 2016; Campos et al. 2017) and understanding Lewontin’s paradox of genetic diversity 33	

(Buffalo 2021). Interpreting genome-wide patterns of genetic diversity in terms of BGS, 34	

however, requires accurate estimates of population genetic parameters, particularly 35	

recombination rates. 36	

In many species, the recombination rate per base pair (𝑟) varies across the genome both 37	

between and within chromosomes (Stapley et al. 2017). For example, in the house mouse (Mus 38	

musculus) the average 𝑟 for chromosome 19 (the shortest chromosome) is around 60% higher 39	

than for chromosome 1 (the longest chromosome)(Cox et al. 2009). The requirement of at least 40	

one cross-over per chromosome per meiosis in mammals causes shorter chromosomes to 41	

recombine at a higher average rate than longer ones (Pardo-Manuel et al. 2001; Segura et al. 42	
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2013; Dumont 2017). Local recombination rates can vary substantially across chromosomes as 43	

well and in some cases this variation is predicted by gross features of chromosome architecture 44	

such as the locations of centromeres and telomeres (Paigen et al. 2008). Actual recombination 45	

events in mice are typically restricted to narrow windows of the genome (on the order of 1-5 46	

Kbp), referred to as hotspots (Paigen et al. 2008). The positions of recombination hotspots in 47	

mice, and in some other vertebrates, are determined by the binding of a protein encoded by 48	

the PRDM9 gene to specific DNA motifs (Baudat et al. 2010; Baker et al. 2017), although 49	

hotspots are still observed in PRDM9 knockout lines and dogs, which lack a functional copy of 50	

PRDM9 (Brick et al. 2012; Auton et al. 2013). 51	

Estimates of 𝑟 can be obtained empirically by examining the inheritance of genetic markers 52	

through controlled crosses or through pedigrees, or by comparing an individual’s genome to 53	

that of its gametes (e.g. Sun et al. 2019). Both methods reconstruct recombination events over 54	

one or a few generations, and thus provide estimates of 𝑟 for contemporary populations. 55	

Alternatively, estimates of 𝑟 can be obtained indirectly by analysing patterns of linkage 56	

disequilibrium across the genome (e.g. Spence and Song 2019), in which case estimates reflect 57	

both recent and ancestral recombination events. Whether recombination rates are estimated 58	

from marker transmission or population genetics, using such estimates when analysing of 59	

variation across the genome in terms of BGS implicitly assumes that the recombination 60	

landscape has not changed over the time in which patterns of diversity have been established. 61	

However, recombination rate landscapes can evolve very rapidly in some lineages. For example, 62	

due to the relationship between chromosome size and average 𝑟, changes in chromosome 63	

length (i.e. karyotype evolution) may induce changes in 𝑟. The lineage leading to Mus musculus 64	
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(2n=40) has experienced large chromosomal rearrangements since it shared a common 65	

ancestor with Mus pahari (2n=48) 3-5 million years ago (Thybert et al. 2018). Moreover, 66	

different populations of Mus musculus domesticus harbouring different karyotypes exhibit 67	

different genomic landscapes of recombination (Vara et al. 2021). Chromosomal fusions can 68	

exhibit meiotic drive (Chmátal et al. 2014) so new karyotypes may spread to fixation very 69	

rapidly. Even mice with the same karyotype vary in regional recombination rate across 70	

substantial proportions of the genome (Dumont et al. 2011; Wang et al 2017) and in total 71	

number of crossovers (Dumont and Payseur 2011; Peterson and Payseur 2021), both within and 72	

between subspecies. There is also evidence that PRDM9, the gene that encodes the protein 73	

that dictates the locations of recombination events, has undergone recurrent bouts of positive 74	

selection in mice (Oliver et al. 2009) and natural populations of M. musculus spp. possess 75	

various PRDM9 alleles corresponding to different suites of recombination hotspots (Smagulova 76	

et al. 2016). Overall, there is clear evidence from mice that recombination rates can evolve on 77	

broad and fine scales. 78	

Changes in the recombination rate over time may influence patterns of genetic variation across 79	

the genome (Comeron 2017). For example, chromosomal fusions would decrease 80	

recombination rates experienced by individual nucleotides in the fused chromosomes, and thus 81	

increase the effects of BGS and other processes mediated by recombination. Consistent with 82	

this, Cicconardi et al. (2021) found evidence suggesting that chromosomes that underwent 83	

fusions in the ancestors of extant Heliconius butterfly species now exhibit reduced 84	

recombination rates and 𝜋 presumably due to amplified BGS effects. Following evolution of the 85	

recombination rate landscape there will be a lag period wherein patterns of genetic variation 86	
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more closely reflect ancestral recombination rates than derived rates. Over time, as new 87	

deleterious mutations arise and cause BGS, patterns of genetic variation will come to reflect 88	

derived recombination rates. Depending on the extent and rate of recombination rate 89	

evolution, population genomic analysis of lineages that are still within the lag period may be 90	

obscured. In this paper, we examine how patterns of neutral genetic variation under BGS 91	

respond to evolution of the recombination rate and describe how this could affect and have 92	

affected analyses that are used to identify the effects of selection on a genome-wide scale.  93	
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Results 94	

Background selection under evolving recombination rates 95	

The effects of BGS reflect the interplay of purifying selection and recombination (Nordborg et 96	

al. 1996), so changes to the recombination rate will influence the effects of BGS. An increase in 97	

the recombination rate between neutral sites and sites subject to purifying selection will 98	

decrease the effect of BGS and vice versa for a decrease in the recombination rate. At a neutral 99	

locus 𝜈, coalescence times under BGS (𝑇!"#,%) are shorter than those expected under neutrality 100	

(𝑇&'()*+,)(Nordborg et al. 1996) and the effect of BGS is often expressed as 𝐵% =101	

𝑇!"#,%/𝑇&'()*+,  (e.g. Nordborg et al. 1996). Consider a population that underwent a change in 102	

the recombination rate such that 𝜈 experiences a BGS effect of 𝐵%-  under the derived 103	

recombination rate regime. Even with instantaneous changes in the recombination rate, 104	

genetic variation at 𝜈 would not reflect 𝐵%-  immediately, as there would be a lag period after 105	

recombination rate change wherein coalescence times (and patterns of genetic variation) 106	

would more closely reflect 𝐵%. 107	

Under strong purifying selection, BGS resembles a localised reduction in the effective 108	

population size, so the period of lag after a change in the recombination rate may resemble the 109	

change in coalescence times following a change in the population size. If the recombination 110	

rate changed at time 𝑡 in the past (measured in 2𝑁' generations), then BGS under the new 111	

recombination rate can described with: 112	

𝐵%,) = 𝐵%(1 + (
!!
!!"
− 1)𝑒.)).       [1] 113	
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We obtained Equation 1 by modifying an expression that describes coalescence times after an 114	

instantaneous change in the population size from Johri et al. (2020). Note that Pool and Nielsen 115	

(2009) provided similar expressions to those given by Johri et al. (2020). 116	

 117	

Figure 1. The effect of background selection on nucleotide diversity (π) over time after 118	
recombination rates change by a factor 𝜆. The dashed lines were calculated using Equation 1 119	
and formulae from Nordborg et al (1996). Points indicate the mean from 100 replicate 120	
simulations. Nucleotide diversity was calculated for neutral sites 10,000bp away from sites 121	
subject to purifying selection.  122	

We modelled deleterious mutations occurring in a single functional element (e.g. a protein 123	

coding exon) and examined 𝜋 for neutral mutations in and around this region after an 124	

instantaeous change in the recombination rate (Figure S1). π gradually departs from the 125	

expectations based on the ancestral recombination rate over 4Ne generations, when it finally 126	

aligns to the derived recombination rate (Figure 1,S2).  Up to ~2Ne generations after a change in 127	

the recombination rate, 𝜋 more closely resembled the expectation under the ancestral 128	
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recombination rate than it did the derived rate (Figure 1, S2). After around 4𝑁' generations, 129	

coalescence times closely reflected those expected under BGS given the derived recombination 130	

rate, as measured by 𝜋 (Figure 1, S2). When deleterious mutations have nearly neutral 131	

deleterious effects, Equation 1 may not predict changes in nucleotide diversity particularly well 132	

because in such cases BGS does not resemble a simple reduction in 𝑁' (Good et al. 2014; 133	

Cvijović et al. 2018). 134	

In the case of a population that has recently undergone shifts in the recombination rate 135	

landscape (i.e. less than 2Ne generations ago), estimates of 𝑟 from such a population would 136	

likely reflect contemporary recombination rates regardless of how they were obtained. 137	

Estimates of 𝑟 from patterns of marker inheritance in crosses or pedigrees always reflect 138	

contemporary rates and population genetic estimates (i.e. obtained from patterns of LD) can 139	

reflect contemporary recombination rates within 0.5Ne generations of a change in r (Figure S3). 140	

Depending on the extent and nature of recombination rate evolution, population genomic 141	

analyses that compare features of genetic variation to estimates of 𝑟 could lead to an 142	

underestimation of the effects of BGS (and other forms of selection) on patterns of genetic 143	

variation. 144	

Patterns of genetic variation after evolution of the recombination 145	

landscape 146	

To demonstrate how population genomic analyses may be affected by changes in 𝑟, we 147	

simulated two scenarios of BGS under evolving recombination rates. In the first, the broadscale 148	
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landscape of 𝑟 was rearranged (Figure S4A). In the second, the locations of recombination 149	

hotspots were shifted, as if a new PRDM9 allele had fixed in a population (Figure S4B). In both 150	

scenarios, deleterious mutations occurred at random across the genome generating 151	

widespread BGS such that there was a positive correlation between 𝜋 and 𝑟 at equilibrium 152	

(Figure 2). For the sake of our analyses have assumed that recombination rate is invariant 153	

among individuals, even as heritable variation in recombination rates has been reported in 154	

several species (reviewed in Stapley et al. 2017).  155	

 156	

Figure 2. Spearman’s correlation between nucleotide diversity (𝜋) and recombination rate (𝑟) 157	
over time after recombination rates evolve. Panel A shows results for a broad-scale shift in the 158	
recombination landscape and panel B shows results for recombination rate evolution by the 159	
movement of hotspots. Results are shown for 10 Kbp analysis windows.  160	

A positive correlation between 𝜋 and 𝑟 is a hallmark of widespread selection across a genome 161	

(Cutter and Payseur 2013), but evolution of the recombination rate may obscure this pattern. In 162	

both the scenarios we simulated, changes in r did not influence the average nucleotide diversity 163	

across simulated chromosomes (Figure S5), because under the models of recombination rate 164	
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evolution we implemented the average map length was constant over time. However, before 165	

the change in the recombination rate, there was a positive correlation between π and r in both 166	

scenarios that was detectable when examining 10Kbp, 100Kbp and 1Mbp analysis windows 167	

(Figure 2,S6). Following changes in the recombination rate landscape under the model of 168	

broadscale recombination rate variation, the correlation between π and r was either absent or 169	

misleading (Figure 2A, S6A). Under the model of recombination hotspot evolution, the 170	

correlation between π and r was weakened by change in the landscape of hotspots (Figure 2B). 171	

In both cases we simulated, a positive correlation between π and derived r was restored to 172	

levels similar to what had been observed before the recombination maps changed after about 173	

4Ne generations (Figure 2, S6). Figure 2 shows results for 10,000bp analysis windows, but 174	

similar results were found when examining larger windows (Figure S5).  175	

Rapid recombination rate evolution in house mice 176	

Rapid evolution of recombination rates in Mus musculus may have influenced our ability to 177	

identify the effects of selection across that species’ genome. Kartje et al. (2020) recently 178	

demonstrated that natural populations of M. m. domesticus exhibit a very weak correlation 179	

between π and r (when examining analysis windows of various widths) and concluded that 180	

selection at linked sites exerted only modest effects on genetic variation throughout the 181	

genome. This is notable because wild mice are thought to have large effective population sizes 182	

for mammals (Leffler et al. 2012) and genome-wide effect of selection is thought to be more 183	

pronounced in species with large Ne (Cutter and Payseur 2013). As discussed in the 184	

Introduction, there is evidence that mice have undergone rapid evolution of the recombination 185	
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rate. For example, around 3-5 MYA the lineage leading to M. musculus experienced a burst of 186	

karyotype evolution (Thybert et al. 2018). If that burst of karyotype evolution affected 187	

recombination rates and ancestral mouse populations were very large, then contemporary 188	

mice may still be within the lag period described by Equation 1. Patterns of genetic diversity in 189	

mice may still be adjusting to historical changes in the recombination rate, and we may see a 190	

stronger correlation between π and r in genomic regions that have not undergone dramatic 191	

changes in the recombination rate. 192	

Using an alignment of genomes from closely related species, Thybert et al. (2018) distinguished 193	

chromosomes in the M. musculus genome that have or have not undergone dramatic 194	

rearrangements in the last 5 million years from those that have not. We re-analysed data from 195	

Kartje et al. (2020) and found that the correlation between 𝜋 and 𝑟 is stronger and more 196	

significant on chromosomes that have not undergone largescale rearrangements in the last 3-5 197	

million years (Table 1) for M. m. domesticus individuals from France and Germany. This pattern 198	

holds when looking at analysis windows of 5 Kbp and 1 Mbp (Table 1). No substantial 199	

correlations were found for mice from Gough Island in any comparison. M. m. domesticus are 200	

believed to have colonised Gough Island in the 19th century and to have experienced a severe 201	

population bottleneck (Gray et al. 2014), a demographic history that could have further 202	

obscured the correlation between nucleotide diversity and recombination rate in that 203	

population. 204	

  205	
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Table 1. The correlation between nucleotide diversity (π) and recombination rate (r) for three 206	
populations of house mice (Mus musculus domesticus) calculated from all autosomes, 207	
conserved chromosomes that exhibit no syntenic breaks between M. musculus and M. pahari 208	
and chromosomes that experienced large scale rearrangements as identified by Thybert et al. 209	
(2018). Correlations with p-values less than 0.01 are highlighted in bold text. 210	

Window 
Size Population 

Whole Genome Conserved Chromosomes Rearranged Chromosomes 

Spearman’s ρ p-value Spearman’s ρ p-value Spearman’s ρ p-value 

5Kbp Gough Island 0.007 67 4.28 × 10-5 0.008 80 0.0102 0.004 86 0.0302 

5Kbp France 0.004 08 0.0295 0.0403 6.10 × 10-32 −0.0107 1.76 × 10-6 

5Kbp Germany 0.007 52 6.05 ×  10-5 0.0152 9.63 × 10-6 0.003 86 0.0849 

1Mbp Gough Island 0.0536 0.009 46 0.0588 0.124 0.0437 0.0748 

1Mbp France 0.0450 0.0294 0.135 0.000 400 0.009 99 0.684 

1Mbp Germany 0.0535 0.009 53 0.0775 0.0428 0.0426 0.0828 

 211	

Discussion 212	

Evolution of the recombination rate will influence the effects of selection at linked sites (e.g.  213	

BGS and selective sweeps) and thus influence patterns of genetic variability. Estimates of the 214	

recombination rate made from contemporary populations may not adequately predict genetic 215	

variability up to 2Ne generations following evolution of the recombination rate landscape 216	

(Figure 1, 2). Our re-analysis of the Kartje et al. (2020) data suggests that mice are still within 217	

the lag period after evolution of the recombination rate, such that 𝜋 in M. m. domesticus does 218	

not fully reflect contemporary recombination rates in Mus musculus. In contrast, the ancestors 219	

of Heliconius butterflies also underwent large-scale karyotype evolution, but gross patterns of 𝜋 220	

versus chromosome length in those species suggest that patterns of variation have largely re-221	

equilibrated after changes in 𝑟 (Cicconardi et al. 2021).  222	
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While our re-analysis of the data from Kartje et al. (2020) suggests that recombination rate 223	

evolution in the ancestors of mice obscures the evidence for natural selection across the 224	

genome, the overall correlations between π and r were still fairly weak on the conserved 225	

chromosomes (Table 1). The largest rank correlation coefficient we found was 0.135 for the 226	

sample of M. m. domesticus from France (1Mbp windows; Table 1). By contrast, Spearman’s 227	

rank correlation between nucleotide diversity and recombination rate in humans has been 228	

reported to be 0.219 for 400 Kbp analysis windows (Cai et al. 2009). The variance in 229	

recombination rates across the M. musculus genome is less than a half that which has been 230	

reported for humans (Jensen-Seaman et al. 2004), so perhaps the effects of BGS across the 231	

genome are more homogenous in M. musculus than they are in humans, contributing to the 232	

weak correlations between π and r shown in Table 1. Beyond the pulse of karyotype evolution 233	

reported by Thybert et al. (2018), there is clear evidence of recent and likely ongoing evolution 234	

of the recombination rate in M. musculus (see Introduction), which may further obscure 235	

genome-wide evidence for the effects of natural selection. For example, there is strong 236	

evidence that the landscape of recombination hotspots in the M. musculus genome has evolved 237	

rapidly among sub-species and populations (Smagulova et al. 2015). Our simulations suggest 238	

that even a single change to the locations of hotspots can substantially weaken the correlation 239	

between π and r (Figure 2, S6). Of course, there are reasons why species may not exhibit a 240	

strong positive correlation between 𝜋 and 𝑟 that have nothing to do with recombination rate 241	

evolution (Cutter and Payseur 2013). For example, wild and domesticated rice (Oryza spp.) 242	

exhibit negative correlations between 𝜋 and 𝑟, but in those species there is a strong positive 243	

correlation between the density of functional sites (i.e. sites subject to purifying selection) and 244	
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the recombination rate (Flowers et al. 2011). In such a case, the effects of BGS are primarily 245	

occurring in regions of high recombination.  246	

This short paper should add to the growing appreciation of recombination as an evolutionarily 247	

labile trait. As pointed out by Comeron (2017) and Smukowski Heil et al. (2015), information on 248	

recombination rates in outgroup species is an important covariate when performing population 249	

genomic analyses. In some lineages, recombination rates may evolve very slowly. Birds, for 250	

example, have highly conserved karyotypes and in some cases highly conserved recombination 251	

landscapes (Damas et al. 2018; Singhal et al. 2015). Evolution of the recombination rate is 252	

another of the many possible reasons why one might not be able to adequately identify the 253	

effects of BGS (or natural selection more broadly) from population genomic data (See reviews 254	

by Cutter and Payseur 2013 and Comeron 2017), but conservation of recombination landscapes 255	

will likely make comparative population genomics more straightforward. 256	

Methods 257	

Model 258	

Background selection has been modelled as the reduction in effective population size (𝑁') at a 259	

neutral site due to the removal of linked deleterious variants. The effects of background 260	

selection are often expressed as 𝐵 = &#
&$

, where 𝑁' is the effective population size and 𝑁/ is the 261	

expected population size under strict neutrality. In a non-recombining genome, 𝐵 is 262	

proportional to the ratio of the deleterious mutation rate to the strength of selection acting on 263	
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harmful mutations (Charlesworth et al. 1993). For a neutral site present on a recombining 264	

chromosome, the effects of background selection depend on the density of functional sites (i.e. 265	

those that can mutate to deleterious alleles), the strength of selection at functional sites, the 266	

mutation rate at functional sites and the recombination rate between the neutral site and the 267	

functional sites (Hudson and Kaplan 1995; Nordborg et al. 1996; Nordborg 1997). For a neutral 268	

locus 𝜈 linked to 𝑥 functional sites, the reduction in 𝑁'  has been described with the following 269	

equation: 270	

𝐵% =
𝑁'
𝑁/

= 𝑒𝑥𝑝[−7
𝑢0

𝑡(1 + (1 − 𝑡)𝑟0,1/𝑡)20

] 271	

where 𝑢0 is the deleterious mutation rate at functional site 𝑥, 𝑡 is the heterozygous fitness 272	

effect of a deleterious mutation (i.e. 0.5𝑠 in the case of semi-dominance) and 𝑟0,% is the 273	

recombination map distance between the neutral locus and functional site 𝑥. In the above 274	

equation, deleterious mutations have fixed effects, but it is straightforward to incorporate a 275	

distribution of fitness effects (Nordborg et al. 1996). The above equation holds when selection 276	

is sufficiently strong such that random drift does not overwhelm selection (𝑁'𝑠 > 1) (Good et 277	

al. 2014). 278	

 279	

Simulations 280	

We simulated BGS under recombination rate evolution using two types of simulations in SLiM 281	

v3.2 (Haller and Messer 2019). We simulated diploid populations of 𝑁'  = 5,000 individuals. In all 282	
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cases, we scaled mutation, recombination and the strength of selection to approximate 283	

evolution in a large population.  284	

 285	

The first set of simulations was designed to examine how long it takes for patterns of neutral 286	

diversity under BGS to equilibrate after the recombination rate evolves. In these simulations, 287	

the genome was 25 Kbp long with a 5 Kbp functional element in the centre. Mutations occurred 288	

in the functional element at rate 𝜇 = 5 × 10.3 and had semi-dominant fitness effects with a 289	

fixed selection coefficient of 𝑠 = −0.01. We also simulated cases with varying fitness effects 290	

using a gamma distribution with mean (𝑠) of -0.1 and a shape parameter of 0.1. Recombination 291	

occurred at a uniform rate of 𝑟 = 5 × 10.3 across the chromosome. After 80,000 generations 292	

(16Ne generations) , we simulated an instantaneous change in the recombination rate, 293	

multiplying 𝑟 by 𝜆, giving 𝑟 = 𝜆5 × 10.3. We simulated cases with 𝜆 = 0.1, 1.0 and 10.0. 294	

Simulated populations were sampled every 2,500 generations after the recombination rate 295	

changed and we performed 200 replicates for each set of parameters tested. Note that these 296	

simulations were not designed to be particularly realistic, but to provide clear cut patterns to 297	

test the theoretical predictions. 298	

 299	

The second set of simulations was designed to examine how patterns of 𝜋 versus 𝑟 varied over 300	

time when recombination rates evolved at fine and/or broad scales. For these simulations, we 301	

modelled chromosomes that were 10 Mbp long. Neutral mutations occurred at random across 302	

the length of the sequence at a rate of 5 × 10.3 (such that expected nucleotide diversity was 303	

0.01). Deleterious mutations occurred at random across the length of the sequence at a rate of 304	
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5 × 10.4 with semi-dominant fitness effects drawn from a gamma distribution with a mean (𝑠) 305	

of -0.1 and a shape parameter of 0.1. The deleterious mutation rate was chosen so that 10% of 306	

the genome was subject to purifying selection. Populations evolved under background selection 307	

for 80,000 generations (i.e. 16𝑁'  generation). In generation 80,000 there was instantaneous 308	

evolution of the recombination landscape after which we recorded the tree-sequence of the 309	

population every 5,000 generations for a further 40,000 generations. We incorporated two 310	

models of recombination rate variation and evolution of the recombination map: 311	

• We modelled recombination rate evolution at broad scales by rearrangement of the 312	

recombination landscape. Recombination rates vary across the genome (Stapley et al. 313	

2017). For example, recombination rates vary by a factor of 3 across chromosome 1 in 314	

mice. In these simulations, recombination varied from 𝑟 = 2.08 × 10.3 to 𝑟 =315	

6.24 × 10.3 across the simulated chromosome (Figure S4A). When the recombination 316	

landscape evolved, we reversed the order of recombination rates across the genome 317	

(Figure S4A). 318	

• We modelled evolution of the recombination map by the movement of hotspots. 319	

Recombination occurred at a uniform rate of 𝑟 = 6 × 10.4 except in 5 Kbp hotspots 320	

where it occurred at a rate of 𝑟 = 6 × 10.5. At the beginning of a simulation, a Poisson 321	

number of hotspots was sampled with an expectation of 120. Hotspots were placed at 322	

random across the simulated chromosome. When the recombination landscape evolved, 323	

we resampled the locations of hotspots (Figure S4B). 324	
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In both cases, rates were chosen such that the total map length was similar to one that 325	

recombined at a constant rate of 4𝑁'𝑟 = 0.008, the value reported for wild mice (Booker et al. 326	

2017). For both models of recombination rate map evolution, we performed 20 simulation 327	

replicates, giving a total of 200 Mbp worth of simulated data, similar to the length of 328	

chromosome 1 in mice.  329	

 330	

For all simulations, we used the tree sequence recording option in SLiM and neutral mutations 331	

were added to the resulting tree-sequences at a rate of 5 × 10.3 using PySLiM and msprime 332	

(Haller et al. 2019; Kelleher et al. 2016). Nucleotide diversity (𝜋) was calculated in windows of 333	

varying size using sci-kit-allel. We used the program PyRho (Spence and Song 2019) to estimate 334	

recombination rates from samples of 10 diploid individuals from 20 replicate simulations. 335	

Spearman’s 𝜌 between 𝜋 and 𝑟 was calculated using R. All figures were made using ggplot2. All 336	

simulation scripts and analysis and plotting scripts are deposited at 337	

https://github.com/TBooker/BGS_RecombinationRateEvolution. 338	
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Supplementary Material 479	

 480	

Figure S1. The effects of background selection across simulated chromosomes. B was calculated 481	
for simulated data by comparing observed 𝜋 to the neutral expectation of 4𝑁'𝜇 = 0.01. The 482	
lines show the theoretical expectation calculated using formulae from Nordborg et al (1996). 483	
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 484	

 485	

Figure S2. The effects of background selection across simulated chromosomes. B was calculated 486	
for simulated data by comparing observed 𝜋 to the neutral expectation of 4𝑁'𝜇 = 0.01. The 487	
lines show the theoretical expectation calculated using Equation 1 and formulae from Nordborg 488	
et al (1996). The labels on the top of each panel indicate the location in the simulated data 489	
being analysed. 490	
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 491	

Figure S3. Recombination rates inferred using PyRho after an instantaneous change in the 492	
recombination rate. Dashed horizontal lines indicate the true recombination rate for the three 493	
cases. Smoothed lines with shaded ribbon indicate the fit and error of a LOESS regression. 494	
Recombination rates were estimated for 30 simulation replicates for each time point and value 495	
of λ. 496	
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 497	

Figure S4. The recombination rate maps used in the simulations modelling BGS across the 498	
genome. The upper and lower panels show the recombination rate landscape before and after 499	
it evolved in simulations, respectively. A) Evolution of the recombination rate at the Mbp scale. 500	
B) Evolution of the recombination rate at the scale of recombination hotspots. 501	
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 502	

Figure S5. Nucleotide diversity (π) over time after evolution of the recombination landscape. 503	
Panel A) shows results for the model of broadscale recombination rate evolution. Panel B) 504	
shows the results for the model of recombination hotspot evolution. The dashed horizontal 505	
grey line indicates the null expectation of 4Neμ = 0.01. In both panels, the text in the grey strips 506	
to the right of each cell indicates the size of analysis windows used. 507	
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 509	

Figure S6. The correlation between nucleotide diversity and recombination rate over time after 510	
evolution of the recombination landscape. Panel A) shows results for the model of broadscale 511	
recombination rate evolution. Panel B) shows the results for the model of recombination 512	
hotspot evolution. In both panels, the text in the grey strips to the right of each cell indicates 513	
the size of analysis windows used. 514	
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