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Abstract 58 

 59 
Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities 60 
affecting the lungs, the pancreas, the luminal digestive system and beyond. In our 61 

previous genome-wide association studies (GWAS), we genotyped ~8,000 CF samples 62 
using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis 63 
Genome Project (CFGP) performed deep (~30x) whole genome sequencing (WGS) of 64 
5,095 samples to better understand the genetic mechanisms underlying clinical 65 
heterogeneity among CF patients. For mixtures of GWAS array and WGS data, 66 
genotype imputation has proven effective in increasing effective sample size. Therefore, 67 

we first performed imputation for the ~8,000 CF samples with GWAS array genotype 68 
using the TOPMed freeze 8 reference panel. Our results demonstrate that TOPMed can 69 
provide high-quality imputation for CF patients, boosting genomic coverage from ~0.3 - 70 
4.2 million genotyped markers to ~11 - 43 million well-imputed markers, and significantly 71 
improving Polygenic Risk Score (PRS) prediction accuracy. Furthermore, we built a CF-72 
specific CFGP reference panel based on WGS data of CF patients. We demonstrate 73 

that despite having ~3% the sample size of TOPMed, our CFGP reference panel can 74 
still outperform TOPMed when imputing some CF disease-causing variants, likely due 75 
to allele and haplotype differences between CF patients and general populations. We 76 
anticipate our imputed data for 4,656 samples without WGS data will benefit our 77 
subsequent genetic association studies, and the CFGP reference panel built from CF 78 
WGS samples will benefit other investigators studying CF.  79 
 80 
 81 
 82 
 83 
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Introduction 84 
 85 
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in 86 
the cystic fibrosis transmembrane conductance regulatory (CFTR) gene. CF affects the 87 
lungs, pancreas, and other organs, but the major cause of morbidity and mortality is 88 
progressive obstructive lung disease and lung injury due to inflammation and infection. 89 
We previously have conducted genome-wide association studies (GWAS) for CF and 90 
related traits1–4, where we genotyped ~8,000 CF samples at approximately half a million 91 

common genetic variants, imputed up to 8.5 million markers using haplotypes combined 92 
from the 1000 Genomes Project and deep (~30X) sequence from 101 Canadian CF 93 
patients as reference, and evaluated association between each genotyped or imputed 94 
marker and CF or related traits. 95 
 96 
Recently, our Cystic Fibrosis Genome Project (CFGP) generated high-coverage (~30X) 97 

whole genome sequence (WGS) data for 5,095 CF samples. Together with our previous 98 
GWAS efforts, we have 1,880 CF samples with WGS data alone, 4,656 samples with 99 
GWAS data alone, and 3,215 patients with both WGS (3,215 samples) and GWAS data 100 
(3,314 samples, due to sample duplicates/triplicates). In this work, we set out to ask two 101 
questions. First, would the latest imputation reference panel from the NHLBI Trans-102 
Omics for Precision Medicine (TOPMed) project aid imputation among CF patients? 103 

TOPMed has demonstrated its value in further boosting imputation quality and rescuing 104 
lower frequency and rare variants due to its large sample size representing diverse 105 
ancestries5,6. We hypothesize that CF patients may similarly benefit from the TOPMed 106 
imputation reference panel. Second, is there any value in building a CF-specific 107 
reference panel based on WGS data from CF patients? For example, the CF-causing 108 
3bp deletion c.1521_1523delCTT [p.Phe508del; legacy name: F508del] in CFTR has a 109 
frequency of 69.7% among CF patients (CFTR2) but merely 0.8-1.0% in general 110 

populations across continental groups (Bravo). We hypothesize that a CF-specific 111 
reference panel may better recover CF associated regions, even though the TOPMed 112 
sample size (n=97,256) is ~20X that in CFGP (n=5,095), given the presumably more 113 
drastic allele and haplotype pattern differences at CF related loci. For the second 114 
question, Panjwani et al7 showed the value of including CF patients in imputation 115 
reference panel, where they included haplotypes from a much smaller set (n=101) of CF 116 

patients. Systematic comparisons with larger sample sizes are still lacking. 117 
 118 
In this manuscript, we first performed imputation of different CF datasets starting from 119 
array genotype only, leveraging the TOPMed freeze 8 reference panel. We then 120 
systematically evaluated the imputed data using the WGS data as the working truth. 121 
Evaluations included quantifying the number of well-imputed variants, assessing the 122 

true imputation quality, gauging heterozygous concordance for extremely rare variants, 123 
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and evaluating imputation quality for the CFTR F508del variant in comparison with 124 
previous work7. We then constructed a reduced-CFGP reference panel to evaluate if the 125 
WGS data of CF patients would provide additional insights beyond TOPMed-based 126 
imputation. Finally, we constructed PRS for KNoRMA, a lung function measurement, to 127 

assess the impact of imputation on PRS construction.  128 
 129 
In this paper, we refer to observed genotypes derived from WGS data as “true 130 
genotypes”, though in reality genotype calls from WGS data are not 100% accurate. We 131 
use “true R2” (Method) to refer to the squared Pearson correlation between imputed 132 

dosages and “true genotypes” from WGS data, and use “Rsq” output from imputation 133 

software to denote the estimated imputation quality. Note that the calculation of “true R2” 134 
entails “true genotypes” which we do not have in typical imputation while Rsq is 135 
available whenever imputation is performed.  136 
 137 
 138 

Results 139 
 140 
Imputation with TOPMed freeze 8 reference panel and quality evaluation 141 
 142 

To answer how the TOPMed reference panel would aid imputation in CF, we imputed 143 

7,970 CF samples with genotyping array data, leveraging the imputation reference 144 
panel built from 97,256 deeply-sequenced human genomes in the TOPMed project. 145 
These 7,970 samples were genotyped using various commercial genotyping platforms 146 
directly examining 263,660 - 4,389,087 variants, in various projects including the CF 147 
Twin and Sibling Study, the CF-related Diabetes (CFRD) Study, the Gene Modifier 148 
Study (GMS), and the GMS CF Liver Disease Study1–4. For a subset of 2,933 samples 149 
with WGS data from the CFGP, we then assessed the imputation quality by comparing 150 

imputed dosages to observed genotypes in the WGS data, with the latter treated as the 151 
gold-standard.  152 
 153 
We focused on two metrics in our imputation quality evaluation: the number of well-154 
imputed variants and average imputation quality for these well-imputed variants. We 155 
first assessed the numbers of well-imputed variants by minor allele frequency (MAF) 156 

separately for the seven GWAS arrays. We applied post-imputation quality filtering, 157 
based on estimate R2

 (or Rsq), using two different thresholds (Rsq >= 0.3 or Rsq >= 0.8 158 
with the latter being the more stringent/aggressive filtering). Both thresholds are 159 
commonly adopted for post-imputation quality filtering8–10. Using the TOPMed reference 160 
panel, we obtained 11,156,390 - 43,095,581 well-imputed variants (Rsq >= 0.8) 161 
including 2,533,058 - 33,399,492 low frequency or rare variants (LFRV; MAF <= 0.5%) 162 
(Table 1). For example, for the 3,840 samples genotyped with the Illumina 610-Quad 163 
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array, we observed 43,095,581 well-imputed (Rsq >= 0.8) variants with 33,399,492 164 
being LFRV.  165 
 166 
We then calculated the average imputation quality for these well-imputed variants. 167 

Specifically, we calculated true R2 by comparing imputed dosages with WGS data which 168 
again serves as the “gold standard” (Methods). We evaluated two GWAS arrays with 169 

the largest sample sizes, Illumina 610-Quad and 660W-set1, to obtain a more stable 170 
imputation quality estimate for LFRV, and took chromosome 20 as an example. For 171 
samples genotyped with the 610-Quad array and 660W-set1, 1,992 and 941, 172 
respectively, also had WGS performed in the CFGP. Based on these 1,992 and 941 173 

samples, we observed that average true R2 values for variants across all MAF 174 
categories are greater than 0.93, indicating that imputed dosages recover >93% 175 
information in the true genotypes (Table 2).  176 

 177 
We also gauged heterozygous concordance for extremely rare variants (defined as 178 
minor allele count, MAC, <10). Even for those extremely rare variants, the average 179 
heterozygous concordances are greater than 0.97 (Table 3), indicating that the 180 

TOPMed reference panel can impute those rare variants well. We specifically checked 181 
imputation quality for the CFTR F508del variant on chromosome 7 that, as 182 
aforementioned, has a drastic allele frequency difference between CF patients (69.7%) 183 
and general populations (0.8%). The estimated R2’s for 610-Quad and 660W-set1 184 
arrays are 0.89 and 0.93 respectively; and the true R2’s are 0.83 and 0.87, suggesting 185 

that the imputation quality for this variant is rather decent, rescuing 83% and 87% of the 186 
information content. However, TOPMed reference panel tends to call the homozygote 187 
deletion genotype (1/1) as heterozygotes (0/1) (Figure 1), showing there is still room for 188 

improvement.  189 
 190 
Comparing with other imputation reference panels, we found the TOPMed reference 191 
panel provides much enhanced genome coverage. For example, for 610-Quad and 192 
660W-set1 panels, TOPMed resulted in a 2.1-3.0x increase (Table S2) in genome 193 

coverage for LFRV compared with previous imputation using the Haplotype Reference 194 
Consortium (HRC) reference panel7. Overall, TOPMed-based imputation in CF patients 195 
is of satisfying quality, suggesting the value of TOPMed imputation reference panel for 196 
CF patients.  197 
 198 

 199 
Evidences showing value of constructing CFGP reference panel 200 

 201 
Although publicly available genotype imputation reference panels from general 202 
populations (e.g. TOPMed freeze 8 reference panel) perform reasonably well for CF 203 
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patients, we hypothesize that we may attain even better imputation quality for CFTR or 204 
other CF-associated loci by leveraging haplotype and linkage disequilibrium information 205 
among CF patients given rather drastic allele and haplotype differences in these regions 206 
between CF patients and general populations.  207 

 208 
We performed Fisher’s exact test for each overlapped variant between CF WGS and 209 
TOPMed to compare the allele frequency difference between CF patients and general 210 
populations of >13,000 TOPMed participants of European ancestry from the TOP-LD 211 
project19, since over 95% of our CF patients are primarily of European ancestry. We 212 
found that CFTR gene and the region nearby is significantly enriched (p-value < 2.2e-16, 213 
Table S3) with variants with differential allele frequency (defined by Fisher’s exact test 214 

p-value < 2.5e-8 after Bonferroni correction) compared to other variants on 215 
chromosome 7. Previous work has also shown the benefit of cohort-specific reference 216 
panels11,12, including a study specifically targeted for CF patients7. With our WGS data 217 
with >5,000 samples, it is highly warranted to re-evaluate the utility of a CF-specific 218 
reference panel. To save some samples with WGS data for imputation quality 219 

evaluation, we constructed a reduced CFGP reference panel built from WGS data of 220 
2,850 samples to impute another 1,992 unrelated samples to assess the value of a 221 
cohort-specific imputation reference panel.  222 
 223 
Imputation with reduced CFGP reference panel and quality evaluation 224 
 225 

For the 1,992 samples, we compared their imputed data from the reduced CFGP 226 
reference panel (n=2,850) with that from the TOPMed freeze 8 reference panel 227 
(n=97,256). Note that TOPMed reference sample size is >34X that of the reduced 228 
CFGP reference. Not surprisingly, across all variants on chromosome 7 imputed by both 229 
reference panels, TOPMed clearly outperforms the reduced CFGP reference panel 230 
(Figure 2A), but the advantage becomes less pronounced when restricted only to the 231 
CFTR region (Figure 2B). Among the 544 CFTR variants, 138 are better imputed using 232 

the reduced CFGP reference panel, where 11/138 are highly damaging (CADD phred 233 
score13 > 20). This 8% (11/138) of highly damaging variants implies an 8X enrichment, 234 
because genome-wide we expect 1% of variants to be highly damaging based on the 235 
definition of CADD phred score where a score of 20 means among the 1% most 236 
damaging.  237 
 238 

Most of the CFTR variants that are much better imputed using the reduced CFGP 239 
reference panel are much rarer in TOPMed freeze 8 than among CF patients, 240 
explaining why the CF-specific reference panel leads to better performance. For 241 
example, for variant rs1244070394 (chr7:117480621:T:C, [GRCh38]), among the 242 
132,345 TOPMed freeze 8 samples, we observe a MAC = 3 (MAF = 1.1e-5); while the 243 
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MAC in our much smaller CFGP WGS samples (n = 5,095) is larger than that of 244 
TOPMed freeze 8: specifically MAC = 6, MAF = 5.9e-4. Although rare, some of these 245 
variants play important functional roles, with a few examples listed in Table 4. For 246 

instance, rs77284892 (chr7:117509047:G:T, [GRCh38], c.178G>A, p.Glu60Lys; legacy 247 

name E60K), with a MAF = 2.1e-3 in CFGP and MAF = 1.1e-5 in TOPMed freeze 8, has 248 
a CADD phred score of 38 (meaning the variant is among the 0.016% most deleterious 249 
variants in the human genome), is a stop-gain variant, and is classified as a CF-causing 250 
variant according to CFTR2. For the CFTR F508del variant, although the reduced 251 
CFGP imputation shows slightly larger bias than TOPMed imputation, it has a shorter 252 
tail and smaller variance, and is more consistent with true genotypes (Figure 1). The 253 

squared Pearson correlation between WGS true genotypes and reduced CFGP imputed 254 
dosages is 0.93, while that for TOPMed imputed dosages is 0.83. The long tail 255 
distribution of TOPMed imputed dosages for 1/1 homozygotes (i.e., homozygote 256 
deletion genotype) impedes its performance.  257 
 258 
We also broke down these variants by functional categories (simply coding and non-259 

coding) to see whether the reduced CFGP reference panel performs better for 260 
functionally important variants. Due to the small number of coding variants, we didn’t 261 
further split the coding category. As expected, the reduced CFGP reference panel 262 
performs better for coding variants than non-coding variants, but less well compared to 263 
TOPMed (Table S5). However, the �� test shows variants that were better imputed with 264 

reduced CFGP is significantly enriched with coding variants (p = 5.5e-3, OR = 2.61). We 265 
also found the reduced CFGP reference panel performs better for less common variants 266 
compared to common variants, but TOPMed still outperforms the reduced CFGP for the 267 
vast majority due to the large sample size difference (Table S6). 268 
 269 
We then systematically compared the performances of the two reference panels across 270 
the whole genome to see whether the reduced CFGP reference panel performs better in 271 

any genome regions other than the CFTR region on chromosome 7. Specifically, we 272 
calculated the difference of reduced CFGP imputed true R2 and TOPMed imputed true 273 
R2 (the former minus the latter) for each variant, and then summarized variant level true 274 
R2 difference at 1MB non-overlapping region level. We used two statistics for region-275 

level summary: mean true R2 difference of variants (��) and the proportion of variants 276 

whose true R2 difference is greater than 0 (�) indicating that reduced CFGP performs 277 

better than TOPMed, in the corresponding 1MB region. To increase stability, we only 278 
considered regions harboring over 100 variants for evaluations. For the whole genome, 279 

�� < -0.2 and � < 8% for most of the 1MB regions (Figure 3). As a positive control, for 280 

the CFTR region, �� ranges from -0.2 to -0.13, and � ranges from 12% to 20%, with each 281 

statistic falling in the 1% of its distribution. Interestingly, some other regions show even 282 
stronger evidence that the relative (to TOPMed) performance of the reduced CFGP 283 
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reference panel is substantially better than genome-average, including the 60-66 MB 284 

region on chromosome 9 (�� ranges from -0.17 to -0.09, � ranges from 28% to 33%), 19-285 

23 MB region on chromosome 15 (�� ranges from -0.06 to -0.03, � ranges from 21% to 286 

29%), as well as the HLA region (�� ranges from -0.15 to -0.10, � ranges from 11% to 287 

18%) (Table S7). We currently do not fully understand why the relative performance of 288 

reduced-CFGP reference panel over TOPMed in these regions are better than genome-289 
average. The regions do not seem to colocalize with known GWAS loci because these 290 
outlier regions we identified are not close to reported GWAS signals and regions 291 

harboring known GWAS variants do not show large �� or � compared to genome-292 

average. The region-level summary statistics are tabulated in Table S7 for other 293 

researchers to further investigate. 294 
 295 
This proof-of-concept experiment showcases the value of a CF-specific reference panel 296 
for imputing data for CF patients, particularly in some specific regions (e.g. the CFTR 297 

region), on top of the state-of-the-art TOPMed reference panel. Thus, we constructed a 298 
CFGP reference panel using the full set of 5,095 WGS samples in the CFGP. We 299 
anticipate this CFGP reference panel to be valuable for other investigators studying CF 300 
but having only array density genotype data instead of WGS data.  301 
 302 
Imputation improves PRS performance 303 

 304 
We further constructed polygenic risk scores (PRS) for KNoRMA14 to assess whether 305 
imputation, particularly TOPMed-based imputation, would help construct a PRS with 306 
higher prediction accuracy. KNoRMA is a quantitative lung trait of FEV1 data over 3 307 
years adjusted for survival14 measuring lung function, and is one of the main focused 308 
traits in the CFGP consortium. PRS are usually constructed as weighted summation of 309 
genetic markers, where the weights are derived from GWAS in independent training 310 

samples. Here, we hypothesize that imputation would improve PRS performance, either 311 
by imputing target samples where PRS formula is applied to, or by imputing training 312 
samples where GWAS is performed to construct the PRS formula. We performed two 313 
experiments to mimic two realistic scenarios: (1) whether imputation is performed in the 314 
target cohorts where PRS is applied to (Figure 4A); (2) whether imputation is performed 315 
in the discovery cohorts where the PRS is constructed (Figure 4B). In the second 316 

scenario, we have some samples WGSed and others only genotyped with some 317 
genotyping array to start with. We then compared the accuracy of PRS constructed with 318 
or without imputation.  319 
 320 
To test the benefit of imputation for PRS target cohorts, we applied the same PRS to 321 
the 1992 samples for whom we have 610-Quad array, TOPMed-based imputation and 322 

reduced CFGP based imputation (both starting from 610-Quad array), and WGS data 323 
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available. The PRS was constructed based on GWAS summary statistics from meta-324 
analysis of samples independent of the 1992 test samples (Figure 4A, Methods 325 
Section A). Four different marker sets (genotype array data only, TOPMed imputed 326 

data with Rsq > 0.3, reduced CFGP imputed data with Rsq > 0.3 and WGS data) were 327 

adopted for the application of PRS. We performed a grid search over MAF and p-value 328 
threshold (Methods) and reported the best one (largest correlation with true KNoRMA 329 

values after adjusting for age, sex, study, and first 6 PCs) to compare the four different 330 
marker sets. We found that with TOPMed imputation, we can nearly achieve the same 331 
performance as WGS (Table S4). The PRS correlation improves by 37.2% with 332 

TOPMed imputation compared to genotype array data only, while only 0.99% inferior to 333 

WGS data. The reduced CFGP imputed data also performs satisfactorily, especially 334 
considering the much smaller reference panel size. It improves the PRS correlation by 335 
32.1% compared to genotype array data only, while only 4.7% inferior to WGS data. 336 
 337 
To evaluate the benefit of imputation in PRS discovery/construction cohorts, we took 338 
UW samples (n=1397) with only WGS data as the target cohort, and applied three 339 
different sets of PRSs (Figure 4B). The three different sets of PRSs differ by the marker 340 

density in the same discovery cohorts consisting of 6,112 samples independent of the 341 
UW samples (Figure 4B, Methods Section B). Specifically, the first set of PRS was 342 

constructed based on association summary statistics from meta-analyzing 3,041 343 
patients with array data and 3,071 patients with WGS data (Figure 4B (a)). The second 344 

and the third sets were constructed similarly, only replacing the 3,041 patients from 345 
array data to TOPMed-imputed (Figure 4B (b)) or CFGP-imputed data (Figure 4B (c)). 346 

We similarly compared the best PRS searched over different MAF and p-value 347 
threshold grids under the three different sets of GWAS summary statistics, finding the 348 
TOPMed-imputation-aided PRS results in 71.2% higher correlation, while the CFGP-349 
imputation-aided PRS results in only 9.0% higher correlation, compared to that without 350 
imputation (Table 5). We further performed two-sample t-test to compare the KNoRMA 351 

values of samples from top and bottom 5% of predicted PRS, to test the power of the 352 

three PRS sets in stratifying patients in terms of lung function gauged by KNoRMA 353 
values. We found significant difference in KNoRMA value for patients from two extreme 354 
tails predicted by the imputation-aided PRS (p-value = 0.038 for TOPMed-based 355 
imputation and p-value = 0.0065 for CFGP-based imputation), while no significant 356 
difference in the PRS without imputation counterpart (p-value = 0.712) (Table 5).  357 

 358 

 359 

Discussions 360 

 361 
In summary, even for patients affected with a Mendelian disease as CF, TOPMed 362 
reference panel leads to satisfactory genome-wide imputation quality, and better PRS 363 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473535doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

prediction accuracy. We further demonstrate the value of a CF-specific reference panel, 364 
which can outperform TOPMed for some variants due to better match with target (also 365 
CF) samples in terms of allele and haplotype frequencies. Although at 1Mb region level, 366 
a CF-specific reference panel never outperformed TOPMed reference panel, in some 367 

regions, it offers substantially more complementary information to TOPMed. These 368 
regions include the CFTR region harboring the gene causing this Mendelian diseases, 369 
and several other genome regions including HLA. Our CFGP reference panel consisting 370 
of >10,000 haplotypes developed from WGS data from CF patients should benefit other 371 
investigators in their genetic studies of CF.  372 
 373 

We note that the value demonstrated in our experiments with reduced CFGP reference 374 
panel is not simply due to samples from the same recruitment sites between references 375 
and targets. The 1,992 samples as targets were from three different studies (CGS, GMS, 376 
TSS), and the 2,850 samples as reference were from four different studies, including an 377 
independent study, EPIC, in addition to the three studies. In order to show that the 378 
performance of disease-specific CF panel is not due to overlapping of samples from the 379 

same recruitment sites, we additionally performed imputation for the same 1,992 target 380 
samples using EPIC-only samples as reference. In this case, samples in targets and 381 
references are from completely independent recruitment sites. We then plotted the 382 
histograms of imputation quality difference between different reference panels and 383 
found most of the variants exhibit highly similar qualities and the EPIC-only reference 384 
panel similarly leads to a larger proportion of variants around CFTR better imputed than 385 
when using TOPMed as the reference (Figure S2 c,d). These results demonstrate that 386 

the benefit is not simply due to overlapping of samples from the same recruitment sites, 387 
but the similarity of genomes in CF patients. Furthermore, our study would not only 388 
benefit the CF community, but also provide a genotype imputation protocol for other 389 
Mendelian diseases. With more WGS data in production, future investigators studying 390 
other Mendelian diseases could further explore benefits of disease-specific imputation 391 
reference panels. 392 

 393 
Since cohort-specific reference panel provides better match in terms of allele and 394 
haplotype frequencies, while TOPMed reference panel benefits from its much larger 395 
sample size, future work can further explore strategies to combine the two reference 396 
panels. Directly combining different reference panels is largely infeasible due to different 397 
marker densities and restricted access to individual-level haplotypes. An alternative 398 

approach is to combine two or more sets of imputed results using “meta-imputation”, 399 
which outputs a consensus imputed dataset  by calculating weighted sum of single-400 
reference imputed results, such as implemented in MetaMinimac2. Another direction is 401 
to perform marker-level selection of reference panels, where the issue is that we cannot 402 
easily quantify the relative performance of reference panels without true genotypes. In 403 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473535doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

our study, we found the state-of-the-art imputation quality estimation metric, Rsq output 404 
by minimac, tends to favor the TOPMed reference panel, even when the true quality 405 
from reduced CFGP reference panel is much better than that from TOPMed. For 406 
example, for the last variant in Table 4, rs893051013 (chr7:117656113:C:T, [GRCh38]), 407 

selection of reference panel based on Rsq would strongly favor TOPMed (Rsq is 0.80, 408 
much higher than 0.29 from the reduced CFGP), but in reality the reduced CFGP 409 
performed much better: true R2 achieved 0.94, much better than TOPMed resulting in a 410 
true R2 of only 0.5. Future research should explore imputation quality metric that either 411 
more accurately reflect true quality or at least comparable across reference panels. 412 
 413 

Besides providing further enhanced imputation reference panels, WGS is also valuable 414 
in many other aspects, including enabling the study of variants other SNPs and more 415 
comprehensively identifying disease causing variants. As one example, for the 281 416 
disease causing variants reported by CFTR2 that can be mapped to GRCh38 positions, 417 
CFGP WGS data covered 137 of them, while only 35 were well-imputed by TOPMed, 418 
demonstrating the value of generating WGS data for the CF community. Although 25.5% 419 

(35/137) is not ideal, imputation substantially enhances over genotyping array with 1-10 420 
of these 137 variants directly genotyped, or over earlier imputation references panels 421 
(e.g., with 1000 Genomes reference, 15 out of the 137 variants can be well imputed). 422 
Therefore, before WGS data is available for every CF patient, imputation using 423 
TOPMed or CFGP reference panel provides a substantial boost.  424 
 425 

 426 

Methods 427 

 428 
Genotype array data and pre-imputation quality control (QC) 429 
 430 
There are in total 7,988 samples genotyped on seven different arrays before QC (Table 431 
S1). Note that there are some duplicates/triplicates, thus the 7,988 samples represent < 432 

7,988 unique patients. We will not get into the patient level in this paper. since one 433 
patient can contribute to more than one samples, either through recruitment by more 434 

than one study site, or by being genotyped more than once. All the imputation metrics 435 
reported were calculated at sample level.  436 

We performed both sample- and variant- level QC prior to imputation. We removed 437 

samples with genotype missing rate > 10% using plink v.1.90. 18 samples in the arrays 438 
were excluded due to this low call rate criterion. We further removed unexpected alleles 439 
(e.g., N), monomorphic sites, ambiguous SNPs (A/T or C/G SNPs) and then lifted over 440 
from hg19 to hg38. The final numbers of QC+ variants in each GWAS array ranged from 441 
263,660 to 3,379,381 (Table S1). 442 
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TOPMed imputation 443 

We first performed strand flipping according to our reference panel (TOPMed Freeze 8) 444 
to improve imputation accuracy. Ambiguous SNPs (i.e., A/T or C/G SNPs) had already 445 
been dropped in the pre-imputation QC step above. For non-ambiguous SNPs, the 446 

alleles in our cohort were flipped if they appear in minus strand, when compared to the 447 
reference panel (for example, the alleles in our cohort are A/G, while they are T/C or 448 
C/T in the reference panel). We used the TOPMed Imputation Server 449 
(https://imputation.biodatacatalyst.nhlbi.nih.gov/#!) for phasing (via eagle15) and 450 
imputation (via minimac416), using the TOPMed freeze 8 as the reference panel. This 451 
reference panel, built from 97,256 deeply sequenced human genomes, contains 452 

308,107,085 genetic variants. After imputation, we retained only variants with imputation 453 
quality (Rsq or estimated R2) ≥ 0.3. 454 

 455 
True imputation quality metric (trueR2) 456 

We calculated the true imputation quality metric (true R2, the squared Pearson 457 

correlation between imputed dosages and true genotypes with the latter coded as 0, 1 458 
and 2) to evaluate our imputation quality. The true genotypes were derived from the 459 
CFGP WGS data. We first intersected our imputed variants with WGS PASS variants by 460 
MAF bins (here, “true” MAF as defined by genotypes derived from WGS data). Then, 461 
we extracted the genotypes for overlapped samples between GWAS and WGS to 462 

evaluate the concordance. Our evaluation was restricted only to samples with QC+ data 463 
from GWAS and WGS. Duplicate samples were also dropped. Finally, the squared 464 
Pearson correlation was calculated for each variant, which is the true R2. Note that this 465 
true R2 is different from estimated R2 or Rsq above in that estimated R2 or Rsq is part 466 
of the imputation output and is obtained in the absence of true genotypes. By contrast, 467 
true R2 can only be calculated when the true genotypes are available, which is not 468 
realistic except for evaluation purposes because if we had true genotypes, we would not 469 
have bothered with imputation. 470 

 471 
Imputation based on a Reduced CFGP Reference Panel 472 

 473 

As a proof-of-concept experiment, we constructed a reduced CFGP imputation 474 
reference panel using WGS data of 2,850 samples from the CF Genome Project 475 

(CFGP). Such reference construction has been commonly adopted, particularly when 476 
target samples (i.e., samples to be imputed) do not match well with those in standard 477 
imputation reference panels. We started with QC+ WGS data and performed phasing 478 
using eagle15 with default parameters to generate the reduced CFGP reference panel.  479 
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 480 
Using our self-constructed reduced CFGP reference panel, we imputed chromosome 7, 481 
where CFTR, the CF causing gene, is located, in 1,992 samples , independent of the 482 
2,850 samples contributing the reduced CFGP reference panel. These 1,992 samples 483 

have WGS data and have also previously been genotyped on the 610-Quad array with 484 
30,853 QC+ GWAS markers on chromosome 7. We assessed the relatedness between 485 
this target sample of 1,992 samples and the 2,850 samples in the reduce CFGP 486 
reference panel using plink --genome. Distribution of the PI_HAT  is shown in (Figure 487 
S1) with the maximum PI_HAT < 0.1. With the low level of relatedness between target 488 

and reference, we proceeded with imputation in the target sample using minimac416 489 

with default parameters and compared the imputed dosages with true genotypes 490 
derived from their WGS data.  491 
 492 
To evaluate the value of the CFGP reference panel in comparison to commonly used 493 
imputation reference panels, we also compared the performance of the CFGP reference 494 
panel relative to the state-of-the-art TOPMed freeze8 reference panel. 495 

 496 
Construction of a CFGP reference panel 497 
 498 

Similar to the reduced CFGP reference panel, the CFGP reference panel was 499 
constructed from CFGP WGS data. Different from the reduced CFGP reference where a 500 
subset of 2,850 samples were used, the CFGP reference was built from all 5,095 501 

samples in CFGP. We similarly started with QC+ WGS and constructed the CFGP 502 
reference by phasing with eagle with default parameters.  503 
 504 
Generating genome-wide association statistics for PRS construction 505 

 506 

GWAS were performed separately for different subsets of samples using the EMMAX 507 
test implemented in EPACTS v3.3.017, which accounts for genetic relatedness via a 508 
mixed model approach. Specifically, the model adjusts for a kinship matrix that was 509 
calculated using genotyped variants with missing rate < 1% and MAF > 1%. When 510 
performing the association testing, we restricted to variants with MAF > 0.1% and 511 
imputation Rsq > 0.3 when running EPACTS to improve model stability. In each subset 512 

GWAS analysis, we adjusted for age, sex, study and first 6 PCs. We then used 513 
METAL18 for meta-analysis to enhance the discovery sample size for improved power.  514 
 515 
We note that the PRS construction seems complicated. The primary reason is the 516 
complicated data structure we have (several different genotype array datasets, and the 517 
mixture of array data, imputed data with two different reference panels, and WGS data). 518 

The idea in the section is rather straightforward: since PRS construction involves both 519 
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training samples (where GWAS are performed and weights for PRS are derived) and 520 
independent target samples (where PRS formula is applied to and evaluated), we 521 
hypothesize that imputation in either target samples (Figure 4A) or training samples 522 
(Figure 4B) would improve the PRS performance in target samples. Figure 4A is the 523 

scenario where the only difference is the genetics data of target samples used when 524 
applying the PRS formula. We used array- only genotypes, TOPMed imputed data, 525 
CFGP imputed data and or WGS data in target samples, and evaluated the PRS 526 
calculated with the four different types of genetics data. Figure 4B is the scenario where 527 
the only difference is the genetics data of (part of the) training samples used when 528 
performing GWAS and to derive variant-specific weights forconstructing  the PRS 529 

formula. We used array array-only genotypes, TOPMed imputed data, and or CFGP 530 
imputed data in (part of the) training samples when deriving the PRS weights. We say 531 
“part of the” training samples because for all three settings in Figure 4B, we used WGS 532 

for the 3,071 samples with WGS data. 533 
 534 
Section A. For experiments where the 1992 610-Quad samples with both array and 535 

WGS data are used as target samples, the discovery cohorts include the following four 536 
sets of 5,417 samples, all independent of the target 1992 samples: (1) 610-Quad 537 
samples (n=1551, TOPMed imputed); (2) FR.660K samples (n=928, TOPMed imputed); 538 
(3) 660W-set1 samples (n=562, TOPMed imputed); and (4) WGS samples (n=2376, 539 
WGS data).  540 
 541 
Section B. For experiments where the 1397 UW samples with WGS data are used as 542 

target, the discovery cohorts include the following four sets of sample, similarly all 543 
independent of the target 1397 UW samples (1) 610-Quad samples (n=1551, genotyped 544 
or TOPMed/CFGP imputed); (2) FR.660K samples (n=928, genotyped or 545 
TOPMed/CFGP imputed); and (3) 660W-set1 samples (n=562, genotyped or 546 
TOPMed/CFGP imputed); and (4) WGS samples other than UW (n=3071, WGS data). 547 
The summary statistics without imputation refers to (1)-(3) with array genotype + (4) 548 
when conducting associations (Figure 3B (a)),, the summary statistics with TOPMed 549 

imputation refers to (1)-(3) with TOPMed imputed data + (4) when conducting 550 
associations (Figure 3B (b)), and the summary statistics with CFGP imputed refers (1)-551 
(3) with CFGP imputed data + (4) when conducting associations (Figure 3B (c)). 552 

 553 
PRS construction 554 

 555 
We constructed PRS with the common P+T method performed with plink v1.90. We 556 
performed a grid-search over different MAF (≥0.1%, ≥0.5%, ≥1%, ≥5%) and p-value 557 
thresholds (≤1, ≤0.5, ≤0.1, ≤0.05, ≤0.01, ≤5e-3, ≤1e-3, ≤5e-4, ≤1e-4, ≤5e-5, ≤1e-5) 558 
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combinations to determine the best performance under each different target or 559 
discovery marker sets. For chromosome X, males were coded as 0 or 2. 560 
 561 
 562 
 563 

Web resources 564 

 565 

1. TOPMed imputation server: https://imputation.biodatacatalyst.nhlbi.nih.gov/#! 566 
2. Eagle: https://alkesgroup.broadinstitute.org/Eagle/ 567 
3. Minimac4: https://genome.sph.umich.edu/wiki/Minimac4 568 

4. Bravo: https://bravo.sph.umich.edu/freeze8/hg38/ 569 
5. CFTR2: https://cftr2.org 570 
6. plink v1.90: https://www.cog-genomics.org/plink/1.9/  571 
7. EPACTS: https://genome.sph.umich.edu/wiki/EPACTS  572 
8. TOP-LD: http://topld.genetics.unc.edu/topld/index.php  573 
9. MetaMinimac2: https://github.com/yukt/MetaMinimac2 574 
 575 
 576 
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 611 

 612 

Figures 613 
 614 
 615 
Figure 1. Imputation concordance for F508del using TOPMed and reduced CFGP 616 
reference panels. The true R2 for TOPMed and reduced CFGP imputed results are 617 

0.835 and 0.926, and the sum of squared error for TOPMed and reduced CFGP are 618 
117.58 and 82.42, respectively. The main reason that TOPMed is slightly worse is that it 619 

tends to under-estimate the deletion frequency. 620 
 621 
 622 
 623 
Figure 2. Histograms of differences between reduced CFGP true R2 and TOPMed 624 
true R2 to compare the imputation quality of the two reference panels.  625 

(A) For overall chr7. Almost all variants are located to the left half, which means 626 

TOPMed is predominantly better than the reduced CFGP reference panel.  627 
(B) For CFTR region only. The advantage of TOPMed reference panel over reduced 628 
CFGP becomes less pronounced. 629 
 630 
 631 
 632 
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Figure 3. Histograms of mean true R2 difference and proportion of variants better 633 
imputed by reduced CFGP than TOPMed, across 2872 1Mb non-overlapping 634 
regions. We calculated the true R2 difference of the two reference panels using 635 

reduced-CFGP true R2 minus TOPMed true R2 for each variant, and then summarized 636 

variant level true R2 difference at 1Mb region level using the two statistics.  637 
 638 
 639 
 640 
Figure 4. Illustration of impact of imputation on PRS construction. A. Imputation 641 
performed in target cohorts. We started with four independent discovery cohorts (I-III 642 

are TOPMed imputed data, IV is WGS data), performed association analysis for each 643 
subset separately and then meta-analyzed the association results. The meta-GWAS 644 
summary statistics was then used to construct PRS using the P+T method. The 645 
constructed PRS was applied to the same 1992 target samples but with four different 646 
marker densities (in yellow highlight): array genotype, TOPMed imputed, Reduced-647 
CFGP imputed or WGS data to compare the benefit of imputation in target cohort. B. 648 
Imputation performed in discovery cohorts. We started with the same first three 649 

discovery cohorts as in A but adopted three different marker sets (again in yellow 650 
highlight), as well as a fourth independent WGS cohort. We then performed association 651 
analysis and meta-analysis for each marker set, and constructed three different PRSs 652 
using the three different meta-GWAS summary statistics. The three PRSs were then 653 
applied to the same cohort to compare the performances.  654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 

Tables 664 

 665 

 666 

Table 1. Numbers of well-imputed variants by different MAF categories for the seven GWAS arrays (genome 
wide) 

Illumina 
Panela 

Number 
of 
sample
sa 

Number of 
samples-
by-sitea 

Number 
(%)b  of 

SNPs Rsq≥

0.3 

Number 
(%)b of 
SNPs Rsq

≥0.8 

Number (%)c 
of SNPs Rsq

≥0.8 & 

MAF<0.5% 

Number (%)d  
of SNPs Rsq

≥0.8 & 

MAF<5% 

Number 
(%)e  of 

SNPs Rsq≥

0.8 & 
MAF>=5% 
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300K 144 

FrGMC 
1,300 

17,603,215 
(5.73%) 

12,248,616 
(3.99%) 

3,897,584 
(1.31%) 

6,738,025 
(2.24%) 

5,510,591 
(88.02%) 

370K 145 14,471,514 
(4.71%) 

11,156,390 
(3.63%) 

2,533,058 
(0.85%) 

5,519,937 
(1.83%) 

5,636,453 
(90.49%) 

660K 1,011 30,661,930 
(9.99%) 

20,830,921 
(6.79%) 

11,883,847 
(4.01%) 

15,138,988 
(5.03%) 

5,691,933 
(93.95%) 

610-Quad 3,840 CGS 1,533; 
GMS 1467; 
TSS 840 

58,672,809 
(19.12%) 

43,095,581 
(14.04%) 

33,399,492 
(11.26%) 

37,276,108 
(12.39%) 

5,819,473 
(96.22%) 

660W-set1 2,012 CGS 342; 
GMS 808; 
TSS 862;  

43,832,169 
(14.28%) 

34,503,481 
(11.24%) 

24,694,173 
(8.33%) 

28,669,926 
(9.53%) 

5,833,555 
(96.33%) 

660W-set2 444 TSS 444 23,814,328 
(7.76%) 

20,792,798 
(6.77%) 

10,176,358 
(3.43%) 

14,916,691 
(4.96%) 

5,876,107 
(96.98%) 

Omni5 374 CGS 73; 
GMS 170 
TSS 131; 

20,774,826 
(6.83%) 

18,862,492 
(6.20%) 

10,530,015 
(3.55%) 

14,053,383 
(4.68%) 

4,809,109 
(97.65%) 

a Corvol et al 2015 reference 
b Percentage taken over total number of imputed variants from TOPMed freeze 8 reference panel 
c Percentage taken over imputed variants with MAF < 0.5% 
d Percentage taken over imputed variants with MAF < 5% 
e Percentage taken over imputed variants with MAF >= 5% 

 667 
 668 
 669 
 670 
 671 
 672 

 673 
 674 

 675 

Table 2. True R2 for the two arrays with the largest sample sizes (chr20) 

Illumina panel MAC/MAF Number of 
non-NA-R2 
variants* 

Mean true 
R2 

Median true 
R2 

Total number 
of variants 

610-Quad MAC < 10 311,625 0.93 1.00 377,397 
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(n=1992) MAF < 0.5% 440,489 0.93 1.00 508,198 

MAF < 0.5%-
5% 

85,270 0.93 0.96 85,278 

MAF > 5% 120,991 0.98 1.00 120,998 

660W-set1 
(n=941) 

MAC < 10 229,286 0.96 1.00 299,329 

MAF < 0.5% 356,643 0.95 1.00 430,073 

MAF < 0.5%-
5% 

85,195 0.94 0.97 85,201 

MAF > 5% 121,013 0.98 1.00 121,019 

Abbreviations are as follows: MAC, minor allele count; MAF, minor allele frequency. 
*NA true R2 emerged due to being monomorphic (either true or imputed). Some variants may be 
monomorphic in the 1992 subset but not in the 3840 samples. The Pearson correlation between a 
constant and a vector is not defined. 

 676 

 677 

 678 

Table 3. Heterozygous concordance for extremely rare variants (chr20) 

Illumina panel Number of 
samples 

Number of 
non-NA het 
concordant 
variants 

Mean het 
concordant 
(freq) 

Median het 
concordant 
(freq) 

Total 
number of 
variants 

610-Quad 1992 212,759 0.98 1.00 296,088 

660W-set1 941 289,811 0.97 1.00 374,166 

 679 

 680 

 681 

 682 

 683 

Table 4. Examples of variants that are much better imputed with reduced CFGP. 

Variant (hg38) chr7:1174806
21:T:C 

chr7:1175090
47:G:Ta 

chr7:1175594
71:T:Ca 

chr7:1175877
38:G:Aa 

chr7:1176561
13:C:T 

rsIDs rs1244070394 rs77284892 rs139573311 rs76713772 rs893051013 
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CFGP true R2 0.9934 0.9968 0.9703 0.9837 0.9423 

TOPMed true 
R2 

0.5490 0.3333 2.52e-7 0.7799 0.5010 

CF5095 AC 6 21 8 115 21 

CF5095 AF 5.89e-4 2.06e-3 7.85e-4 0.0113 2.06e-3 

TOPMed8 AC 3 3 2 20 6 

TOPMed8 AF 1.13e-5 1.13e-5 7.56e-6 7.56e-5 2.27e-5 

CADD phred 
score 

0.809 38 25.8 29.1 1.097 

VEP 
annotation 

intron stop gain missense splice acceptor intron 

CF-disease 
causingb 

No Yes Yes Yes No 

CFTR mutation c.53+474T>C c.178G>A 
p.Glu60Lys 

c.1400T>C 
p.Leu467Pro 

c.1585-1G>A c.3963+3182C
>T 

Abbreviations are as follows: AC, allele count; AF, allele frequency. 
a The middle three variants have very high CADD phred scores and are disease causing variants, but 
their TOPMed imputation qualities are not satisfying. It shows the value of our CF-specific reference 
panel. 
b According to cftr2.org 
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 695 
 696 
Table 5. PRS performance when applied to UW samples. 

 without 
imputation 

TOPMed 
imputation 

CFGP 
imputation 

Correlation between PRS and KNoRMA 0.0455 0.0779 0.0496 
p-value for the correlation 0.1191 0.0075 0.0890 
Two-sample t-test p-value comparing 5% extreme tails  0.7121 0.0380 0.0065 
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Two PRS formulae were applied to the 1397 UW samples. As detailed in Supplementary Method 
Section B, both PRS formulae were constructed from the same 6,112 patients, but one without 
imputation and the other aided with imputation.  Two-sample t-test p-value: performed two-sample t-
test of the true KNoRMA values for samples with the top and bottom 5% PRS scores, either based on 
the PRS formula without imputation, or the TOPMed/CFGP-based imputation-aided one to assess the 
distinctive power of the two PRSs in separating samples in terms of their KNoRMA scores. Our results 
show that the imputation-aided PRS results in better prediction (reflected by higher and more 
significant correlation with KNoRMA) and better distinctive ability to stratify patients. 
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