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Abstract

Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities
affecting the lungs, the pancreas, the luminal digestive system and beyond. In our
previous genome-wide association studies (GWAS), we genotyped ~8,000 CF samples
using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis
Genome Project (CFGP) performed deep (~30x) whole genome sequencing (WGS) of
5,095 samples to better understand the genetic mechanisms underlying clinical
heterogeneity among CF patients. For mixtures of GWAS array and WGS data,
genotype imputation has proven effective in increasing effective sample size. Therefore,
we first performed imputation for the ~8,000 CF samples with GWAS array genotype
using the TOPMed freeze 8 reference panel. Our results demonstrate that TOPMed can
provide high-quality imputation for CF patients, boosting genomic coverage from ~0.3 -
4.2 million genotyped markers to ~11 - 43 million well-imputed markers, and significantly
improving Polygenic Risk Score (PRS) prediction accuracy. Furthermore, we built a CF-
specific CFGP reference panel based on WGS data of CF patients. We demonstrate
that despite having ~3% the sample size of TOPMed, our CFGP reference panel can
still outperform TOPMed when imputing some CF disease-causing variants, likely due
to allele and haplotype differences between CF patients and general populations. We
anticipate our imputed data for 4,656 samples without WGS data will benefit our
subsequent genetic association studies, and the CFGP reference panel built from CF
WGS samples will benefit other investigators studying CF.
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84 Introduction
85
86  Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in
87 the cystic fibrosis transmembrane conductance regulatory (CFTR) gene. CF affects the
88 lungs, pancreas, and other organs, but the major cause of morbidity and mortality is
89  progressive obstructive lung disease and lung injury due to inflammation and infection.
90 We previously have conducted genome-wide association studies (GWAS) for CF and
91 related traits’™, where we genotyped ~8,000 CF samples at approximately half a million
92 common genetic variants, imputed up to 8.5 million markers using haplotypes combined
93 from the 1000 Genomes Project and deep (~30X) sequence from 101 Canadian CF
94  patients as reference, and evaluated association between each genotyped or imputed
95 marker and CF or related traits.
96
97 Recently, our Cystic Fibrosis Genome Project (CFGP) generated high-coverage (~30X)
98 whole genome sequence (WGS) data for 5,095 CF samples. Together with our previous
99 GWAS efforts, we have 1,880 CF samples with WGS data alone, 4,656 samples with
100 GWAS data alone, and 3,215 patients with both WGS (3,215 samples) and GWAS data
101 (3,314 samples, due to sample duplicates/triplicates). In this work, we set out to ask two
102 questions. First, would the latest imputation reference panel from the NHLBI Trans-
103  Omics for Precision Medicine (TOPMed) project aid imputation among CF patients?
104 TOPMed has demonstrated its value in further boosting imputation quality and rescuing
105 lower frequency and rare variants due to its large sample size representing diverse
106  ancestries>®. We hypothesize that CF patients may similarly benefit from the TOPMed
107 imputation reference panel. Second, is there any value in building a CF-specific
108 reference panel based on WGS data from CF patients? For example, the CF-causing
109 3bp deletion ¢.1521 1523delCTT [p.Phe508del; legacy name: F508del] in CFTR has a
110 frequency of 69.7% among CF patients (CFTR2) but merely 0.8-1.0% in general
111  populations across continental groups (Bravo). We hypothesize that a CF-specific
112  reference panel may better recover CF associated regions, even though the TOPMed
113  sample size (n=97,256) is ~20X that in CFGP (n=5,095), given the presumably more
114  drastic allele and haplotype pattern differences at CF related loci. For the second
115  question, Panjwani et al’ showed the value of including CF patients in imputation
116 reference panel, where they included haplotypes from a much smaller set (n=101) of CF
117  patients. Systematic comparisons with larger sample sizes are still lacking.
118
119 In this manuscript, we first performed imputation of different CF datasets starting from
120  array genotype only, leveraging the TOPMed freeze 8 reference panel. We then
121  systematically evaluated the imputed data using the WGS data as the working truth.
122 Evaluations included quantifying the number of well-imputed variants, assessing the
123  true imputation quality, gauging heterozygous concordance for extremely rare variants,
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124  and evaluating imputation quality for the CFTR F508del variant in comparison with

125  previous work’. We then constructed a reduced-CFGP reference panel to evaluate if the
126  WGS data of CF patients would provide additional insights beyond TOPMed-based

127  imputation. Finally, we constructed PRS for KNoORMA, a lung function measurement, to
128 assess the impact of imputation on PRS construction.

129

130 In this paper, we refer to observed genotypes derived from WGS data as “true

131  genotypes”, though in reality genotype calls from WGS data are not 100% accurate. We
132 use “true R2” (Method) to refer to the squared Pearson correlation between imputed
133 dosages and “true genotypes” from WGS data, and use “Rsq” output from imputation
134  software to denote the estimated imputation quality. Note that the calculation of “true R2”
135 entails “true genotypes” which we do not have in typical imputation while Rsq is

136 available whenever imputation is performed.

137

138

139 Results

140

141 Imputation with TOPMed freeze 8 reference panel and quality evaluation

142

143  To answer how the TOPMed reference panel would aid imputation in CF, we imputed
144 7,970 CF samples with genotyping array data, leveraging the imputation reference

145  panel built from 97,256 deeply-sequenced human genomes in the TOPMed project.
146  These 7,970 samples were genotyped using various commercial genotyping platforms
147  directly examining 263,660 - 4,389,087 variants, in various projects including the CF
148  Twin and Sibling Study, the CF-related Diabetes (CFRD) Study, the Gene Modifier

149  Study (GMS), and the GMS CF Liver Disease Study'™. For a subset of 2,933 samples
150 with WGS data from the CFGP, we then assessed the imputation quality by comparing
151 imputed dosages to observed genotypes in the WGS data, with the latter treated as the
152  gold-standard.

153

154  We focused on two metrics in our imputation quality evaluation: the number of well-
155 imputed variants and average imputation quality for these well-imputed variants. We
156 first assessed the numbers of well-imputed variants by minor allele frequency (MAF)
157  separately for the seven GWAS arrays. We applied post-imputation quality filtering,

158  based on estimate R? (or Rsq), using two different thresholds (Rsq >= 0.3 or Rsq >= 0.8
159  with the latter being the more stringent/aggressive filtering). Both thresholds are

160  commonly adopted for post-imputation quality filtering®°. Using the TOPMed reference
161 panel, we obtained 11,156,390 - 43,095,581 well-imputed variants (Rsq >= 0.8)

162 including 2,533,058 - 33,399,492 low frequency or rare variants (LFRV; MAF <= 0.5%)
163 (Table 1). For example, for the 3,840 samples genotyped with the lllumina 610-Quad
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164 array, we observed 43,095,581 well-imputed (Rsq >= 0.8) variants with 33,399,492

165 being LFRV.

166

167  We then calculated the average imputation quality for these well-imputed variants.

168  Specifically, we calculated true R? by comparing imputed dosages with WGS data which
169 again serves as the “gold standard” (Methods). We evaluated two GWAS arrays with
170 the largest sample sizes, lllumina 610-Quad and 660W-set1, to obtain a more stable
171 imputation quality estimate for LFRV, and took chromosome 20 as an example. For
172  samples genotyped with the 610-Quad array and 660W-setl, 1,992 and 941,

173  respectively, also had WGS performed in the CFGP. Based on these 1,992 and 941
174  samples, we observed that average true R? values for variants across all MAF

175 categories are greater than 0.93, indicating that imputed dosages recover >93%

176 information in the true genotypes (Table 2).

177

178 We also gauged heterozygous concordance for extremely rare variants (defined as

179  minor allele count, MAC, <10). Even for those extremely rare variants, the average

180 heterozygous concordances are greater than 0.97 (Table 3), indicating that the

181 TOPMed reference panel can impute those rare variants well. We specifically checked
182 imputation quality for the CFTR F508del variant on chromosome 7 that, as

183 aforementioned, has a drastic allele frequency difference between CF patients (69.7%)
184  and general populations (0.8%). The estimated R*s for 610-Quad and 660W-setl

185 arrays are 0.89 and 0.93 respectively; and the true R*s are 0.83 and 0.87, suggesting
186 that the imputation quality for this variant is rather decent, rescuing 83% and 87% of the
187 information content. However, TOPMed reference panel tends to call the homozygote
188 deletion genotype (1/1) as heterozygotes (0/1) (Figure 1), showing there is still room for
189 improvement.

190

191 Comparing with other imputation reference panels, we found the TOPMed reference
192 panel provides much enhanced genome coverage. For example, for 610-Quad and
193 660W-setl panels, TOPMed resulted in a 2.1-3.0x increase (Table S2) in genome

194  coverage for LFRV compared with previous imputation using the Haplotype Reference
195  Consortium (HRC) reference panel’. Overall, TOPMed-based imputation in CF patients
196 s of satisfying quality, suggesting the value of TOPMed imputation reference panel for
197 CF patients.

198

199

200 Evidences showing value of constructing CFGP reference panel

201

202  Although publicly available genotype imputation reference panels from general

203  populations (e.g. TOPMed freeze 8 reference panel) perform reasonably well for CF
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204  patients, we hypothesize that we may attain even better imputation quality for CFTR or
205 other CF-associated loci by leveraging haplotype and linkage disequilibrium information
206 among CF patients given rather drastic allele and haplotype differences in these regions
207  between CF patients and general populations.

208

209 We performed Fisher’s exact test for each overlapped variant between CF WGS and
210 TOPMed to compare the allele frequency difference between CF patients and general
211  populations of >13,000 TOPMed participants of European ancestry from the TOP-LD
212  project™, since over 95% of our CF patients are primarily of European ancestry. We
213 found that CFTR gene and the region nearby is significantly enriched (p-value < 2.2e-16,
214  Table S3) with variants with differential allele frequency (defined by Fisher’s exact test
215 p-value < 2.5e-8 after Bonferroni correction) compared to other variants on

216 chromosome 7. Previous work has also shown the benefit of cohort-specific reference
217  panels’*? including a study specifically targeted for CF patients’. With our WGS data
218  with >5,000 samples, it is highly warranted to re-evaluate the utility of a CF-specific

219 reference panel. To save some samples with WGS data for imputation quality

220 evaluation, we constructed a reduced CFGP reference panel built from WGS data of
221 2,850 samples to impute another 1,992 unrelated samples to assess the value of a

222  cohort-specific imputation reference panel.

223

224  Imputation with reduced CFGP reference panel and quality evaluation

225

226  For the 1,992 samples, we compared their imputed data from the reduced CFGP

227  reference panel (n=2,850) with that from the TOPMed freeze 8 reference panel

228 (n=97,256). Note that TOPMed reference sample size is >34X that of the reduced

229 CFGP reference. Not surprisingly, across all variants on chromosome 7 imputed by both
230 reference panels, TOPMed clearly outperforms the reduced CFGP reference panel

231 (Figure 2A), but the advantage becomes less pronounced when restricted only to the
232 CFTR region (Figure 2B). Among the 544 CFTR variants, 138 are better imputed using
233  the reduced CFGP reference panel, where 11/138 are highly damaging (CADD phred
234  score'® > 20). This 8% (11/138) of highly damaging variants implies an 8X enrichment,
235 because genome-wide we expect 1% of variants to be highly damaging based on the
236  definition of CADD phred score where a score of 20 means among the 1% most

237 damaging.

238

239  Most of the CFTR variants that are much better imputed using the reduced CFGP

240 reference panel are much rarer in TOPMed freeze 8 than among CF patients,

241  explaining why the CF-specific reference panel leads to better performance. For

242  example, for variant rs1244070394 (chr7:117480621:T:C, [GRCh38]), among the

243 132,345 TOPMed freeze 8 samples, we observe a MAC = 3 (MAF = 1.1e-5); while the
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244  MAC in our much smaller CFGP WGS samples (n = 5,095) is larger than that of

245 TOPMed freeze 8: specifically MAC = 6, MAF = 5.9e-4. Although rare, some of these
246  variants play important functional roles, with a few examples listed in Table 4. For

247  instance, rs77284892 (chr7:117509047:G:T, [GRCh38], c.178G>A, p.Glu60Lys; legacy
248 name E60K), with a MAF = 2.1e-3 in CFGP and MAF = 1.1e-5 in TOPMed freeze 8, has
249 a CADD phred score of 38 (meaning the variant is among the 0.016% most deleterious
250 variants in the human genome), is a stop-gain variant, and is classified as a CF-causing
251 variant according to CFTR2. For the CFTR F508del variant, although the reduced

252  CFGP imputation shows slightly larger bias than TOPMed imputation, it has a shorter
253 tail and smaller variance, and is more consistent with true genotypes (Figure 1). The
254  squared Pearson correlation between WGS true genotypes and reduced CFGP imputed
255 dosages is 0.93, while that for TOPMed imputed dosages is 0.83. The long tail

256  distribution of TOPMed imputed dosages for 1/1 homozygotes (i.e., homozygote

257 deletion genotype) impedes its performance.

258

259 We also broke down these variants by functional categories (simply coding and non-
260 coding) to see whether the reduced CFGP reference panel performs better for

261 functionally important variants. Due to the small number of coding variants, we didn’t
262  further split the coding category. As expected, the reduced CFGP reference panel

263  performs better for coding variants than non-coding variants, but less well compared to
264 TOPMed (Table S5). However, the x? test shows variants that were better imputed with
265 reduced CFGP is significantly enriched with coding variants (p = 5.5e-3, OR = 2.61). We
266  also found the reduced CFGP reference panel performs better for less common variants
267 compared to common variants, but TOPMed still outperforms the reduced CFGP for the
268  vast majority due to the large sample size difference (Table S6).

269

270  We then systematically compared the performances of the two reference panels across
271 the whole genome to see whether the reduced CFGP reference panel performs better in
272  any genome regions other than the CFTR region on chromosome 7. Specifically, we
273 calculated the difference of reduced CFGP imputed true R2 and TOPMed imputed true
274  R2 (the former minus the latter) for each variant, and then summarized variant level true
275 R2 difference at 1MB non-overlapping region level. We used two statistics for region-
276 level summary: mean true R2 difference of variants (d) and the proportion of variants
277  whose true R2 difference is greater than 0 (p) indicating that reduced CFGP performs
278  better than TOPMed, in the corresponding 1MB region. To increase stability, we only
279 considered regions harboring over 100 variants for evaluations. For the whole genome,
280 d <-0.2 and p < 8% for most of the 1MB regions (Figure 3). As a positive control, for
281 the CFTR region, d ranges from -0.2 to -0.13, and p ranges from 12% to 20%, with each
282  statistic falling in the 1% of its distribution. Interestingly, some other regions show even
283  stronger evidence that the relative (to TOPMed) performance of the reduced CFGP
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reference panel is substantially better than genome-average, including the 60-66 MB
region on chromosome 9 (d ranges from -0.17 to -0.09, p ranges from 28% to 33%), 19-
23 MB region on chromosome 15 (d ranges from -0.06 to -0.03, p ranges from 21% to
29%), as well as the HLA region (d ranges from -0.15 to -0.10, p ranges from 11% to
18%) (Table S7). We currently do not fully understand why the relative performance of
reduced-CFGP reference panel over TOPMed in these regions are better than genome-
average. The regions do not seem to colocalize with known GWAS loci because these
outlier regions we identified are not close to reported GWAS signals and regions
harboring known GWAS variants do not show large d or p compared to genome-
average. The region-level summary statistics are tabulated in Table S7 for other
researchers to further investigate.

This proof-of-concept experiment showcases the value of a CF-specific reference panel
for imputing data for CF patients, particularly in some specific regions (e.g. the CFTR
region), on top of the state-of-the-art TOPMed reference panel. Thus, we constructed a
CFGP reference panel using the full set of 5,095 WGS samples in the CFGP. We
anticipate this CFGP reference panel to be valuable for other investigators studying CF
but having only array density genotype data instead of WGS data.

Imputation improves PRS performance

We further constructed polygenic risk scores (PRS) for KNoRMA™ to assess whether
imputation, particularly TOPMed-based imputation, would help construct a PRS with
higher prediction accuracy. KNoRMA is a quantitative lung trait of FEV1 data over 3
years adjusted for survival®* measuring lung function, and is one of the main focused
traits in the CFGP consortium. PRS are usually constructed as weighted summation of
genetic markers, where the weights are derived from GWAS in independent training
samples. Here, we hypothesize that imputation would improve PRS performance, either
by imputing target samples where PRS formula is applied to, or by imputing training
samples where GWAS is performed to construct the PRS formula. We performed two
experiments to mimic two realistic scenarios: (1) whether imputation is performed in the
target cohorts where PRS is applied to (Figure 4A); (2) whether imputation is performed
in the discovery cohorts where the PRS is constructed (Figure 4B). In the second
scenario, we have some samples WGSed and others only genotyped with some
genotyping array to start with. We then compared the accuracy of PRS constructed with
or without imputation.

To test the benefit of imputation for PRS target cohorts, we applied the same PRS to
the 1992 samples for whom we have 610-Quad array, TOPMed-based imputation and
reduced CFGP based imputation (both starting from 610-Quad array), and WGS data
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324 available. The PRS was constructed based on GWAS summary statistics from meta-
325 analysis of samples independent of the 1992 test samples (Figure 4A, Methods

326  Section A). Four different marker sets (genotype array data only, TOPMed imputed
327 data with Rsq > 0.3, reduced CFGP imputed data with Rsq > 0.3 and WGS data) were
328 adopted for the application of PRS. We performed a grid search over MAF and p-value
329 threshold (Methods) and reported the best one (largest correlation with true KNoRMA
330 values after adjusting for age, sex, study, and first 6 PCs) to compare the four different
331 marker sets. We found that with TOPMed imputation, we can nearly achieve the same
332 performance as WGS (Table S4). The PRS correlation improves by 37.2% with

333 TOPMed imputation compared to genotype array data only, while only 0.99% inferior to
334 WGS data. The reduced CFGP imputed data also performs satisfactorily, especially
335 considering the much smaller reference panel size. It improves the PRS correlation by
336 32.1% compared to genotype array data only, while only 4.7% inferior to WGS data.
337

338 To evaluate the benefit of imputation in PRS discovery/construction cohorts, we took
339 UW samples (n=1397) with only WGS data as the target cohort, and applied three

340 different sets of PRSs (Figure 4B). The three different sets of PRSs differ by the marker
341 density in the same discovery cohorts consisting of 6,112 samples independent of the
342  UW samples (Figure 4B, Methods Section B). Specifically, the first set of PRS was
343  constructed based on association summary statistics from meta-analyzing 3,041

344  patients with array data and 3,071 patients with WGS data (Figure 4B (a)). The second
345 and the third sets were constructed similarly, only replacing the 3,041 patients from

346  array data to TOPMed-imputed (Figure 4B (b)) or CFGP-imputed data (Figure 4B (c)).
347  We similarly compared the best PRS searched over different MAF and p-value

348 threshold grids under the three different sets of GWAS summary statistics, finding the
349 TOPMed-imputation-aided PRS results in 71.2% higher correlation, while the CFGP-
350 imputation-aided PRS results in only 9.0% higher correlation, compared to that without
351 imputation (Table 5). We further performed two-sample t-test to compare the KNoRMA
352 values of samples from top and bottom 5% of predicted PRS, to test the power of the
353 three PRS sets in stratifying patients in terms of lung function gauged by KNoRMA

354  values. We found significant difference in KNoRMA value for patients from two extreme
355 tails predicted by the imputation-aided PRS (p-value = 0.038 for TOPMed-based

356 imputation and p-value = 0.0065 for CFGP-based imputation), while no significant

357 difference in the PRS without imputation counterpart (p-value = 0.712) (Table 5).

358

359

360 Discussions
361

362 In summary, even for patients affected with a Mendelian disease as CF, TOPMed
363 reference panel leads to satisfactory genome-wide imputation quality, and better PRS
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364 prediction accuracy. We further demonstrate the value of a CF-specific reference panel,
365 which can outperform TOPMed for some variants due to better match with target (also
366 CF) samples in terms of allele and haplotype frequencies. Although at 1Mb region level,
367 a CF-specific reference panel never outperformed TOPMed reference panel, in some
368 regions, it offers substantially more complementary information to TOPMed. These

369 regions include the CFTR region harboring the gene causing this Mendelian diseases,
370 and several other genome regions including HLA. Our CFGP reference panel consisting
371 of >10,000 haplotypes developed from WGS data from CF patients should benefit other
372  investigators in their genetic studies of CF.

373

374  We note that the value demonstrated in our experiments with reduced CFGP reference
375 panel is not simply due to samples from the same recruitment sites between references
376 and targets. The 1,992 samples as targets were from three different studies (CGS, GMS,
377 TSS), and the 2,850 samples as reference were from four different studies, including an
378 independent study, EPIC, in addition to the three studies. In order to show that the

379 performance of disease-specific CF panel is not due to overlapping of samples from the
380 same recruitment sites, we additionally performed imputation for the same 1,992 target
381 samples using EPIC-only samples as reference. In this case, samples in targets and
382 references are from completely independent recruitment sites. We then plotted the

383  histograms of imputation quality difference between different reference panels and

384 found most of the variants exhibit highly similar qualities and the EPIC-only reference
385 panel similarly leads to a larger proportion of variants around CFTR better imputed than
386 when using TOPMed as the reference (Figure S2 c,d). These results demonstrate that
387 the benefit is not simply due to overlapping of samples from the same recruitment sites,
388  but the similarity of genomes in CF patients. Furthermore, our study would not only

389  benefit the CF community, but also provide a genotype imputation protocol for other
390 Mendelian diseases. With more WGS data in production, future investigators studying
391 other Mendelian diseases could further explore benefits of disease-specific imputation
392 reference panels.

393

394  Since cohort-specific reference panel provides better match in terms of allele and

395 haplotype frequencies, while TOPMed reference panel benefits from its much larger
396 sample size, future work can further explore strategies to combine the two reference
397 panels. Directly combining different reference panels is largely infeasible due to different
398 marker densities and restricted access to individual-level haplotypes. An alternative

399 approach is to combine two or more sets of imputed results using “meta-imputation”,
400  which outputs a consensus imputed dataset by calculating weighted sum of single-

401 reference imputed results, such as implemented in MetaMinimac2. Another direction is
402  to perform marker-level selection of reference panels, where the issue is that we cannot
403  easily quantify the relative performance of reference panels without true genotypes. In
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404  our study, we found the state-of-the-art imputation quality estimation metric, Rsq output
405 by minimac, tends to favor the TOPMed reference panel, even when the true quality
406  from reduced CFGP reference panel is much better than that from TOPMed. For

407 example, for the last variant in Table 4, rs893051013 (chr7:117656113:C:T, [GRCh38]),
408  selection of reference panel based on Rsq would strongly favor TOPMed (Rsq is 0.80,
409  much higher than 0.29 from the reduced CFGP), but in reality the reduced CFGP

410 performed much better: true R2 achieved 0.94, much better than TOPMed resulting in a
411 true R2 of only 0.5. Future research should explore imputation quality metric that either
412  more accurately reflect true quality or at least comparable across reference panels.

413

414  Besides providing further enhanced imputation reference panels, WGS is also valuable
415  in many other aspects, including enabling the study of variants other SNPs and more
416  comprehensively identifying disease causing variants. As one example, for the 281

417 disease causing variants reported by CFTR2 that can be mapped to GRCh38 positions,
418 CFGP WGS data covered 137 of them, while only 35 were well-imputed by TOPMed,
419 demonstrating the value of generating WGS data for the CF community. Although 25.5%
420 (35/137) is not ideal, imputation substantially enhances over genotyping array with 1-10
421  of these 137 variants directly genotyped, or over earlier imputation references panels
422  (e.g., with 1000 Genomes reference, 15 out of the 137 variants can be well imputed).
423  Therefore, before WGS data is available for every CF patient, imputation using

424  TOPMed or CFGP reference panel provides a substantial boost.

425

426

427 Methods

428

429 Genotype array data and pre-imputation quality control (QC)

430

431 There are in total 7,988 samples genotyped on seven different arrays before QC (Table
432  S1). Note that there are some duplicates/triplicates, thus the 7,988 samples represent <
433 7,988 unique patients. We will not get into the patient level in this paper. since one

434  patient can contribute to more than one samples, either through recruitment by more
435 than one study site, or by being genotyped more than once. All the imputation metrics
436  reported were calculated at sample level.

437  We performed both sample- and variant- level QC prior to imputation. We removed

438 samples with genotype missing rate > 10% using plink v.1.90. 18 samples in the arrays
439  were excluded due to this low call rate criterion. We further removed unexpected alleles
440 (e.g., N), monomorphic sites, ambiguous SNPs (A/T or C/G SNPs) and then lifted over
441  from hgl9 to hg38. The final numbers of QC+ variants in each GWAS array ranged from
442 263,660 to 3,379,381 (Table S1).
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443 TOPMed imputation

444  We first performed strand flipping according to our reference panel (TOPMed Freeze 8)
445  to improve imputation accuracy. Ambiguous SNPs (i.e., A/T or C/G SNPs) had already
446  been dropped in the pre-imputation QC step above. For non-ambiguous SNPs, the

447  alleles in our cohort were flipped if they appear in minus strand, when compared to the
448 reference panel (for example, the alleles in our cohort are A/G, while they are T/C or
449  CI/T in the reference panel). We used the TOPMed Imputation Server

450  (https://imputation.biodatacatalyst.nhlbi.nih.gov/#!) for phasing (via eagle'®) and

451  imputation (via minimac4), using the TOPMed freeze 8 as the reference panel. This
452  reference panel, built from 97,256 deeply sequenced human genomes, contains

453 308,107,085 genetic variants. After imputation, we retained only variants with imputation
454  quality (Rsq or estimated R2) = 0.3.

455
456  True imputation quality metric (trueR2)

457  We calculated the true imputation quality metric (true R2, the squared Pearson

458  correlation between imputed dosages and true genotypes with the latter coded as 0, 1
459 and 2) to evaluate our imputation quality. The true genotypes were derived from the

460 CFGP WGS data. We first intersected our imputed variants with WGS PASS variants by
461  MAF bins (here, “true” MAF as defined by genotypes derived from WGS data). Then,
462  we extracted the genotypes for overlapped samples between GWAS and WGS to

463 evaluate the concordance. Our evaluation was restricted only to samples with QC+ data
464  from GWAS and WGS. Duplicate samples were also dropped. Finally, the squared

465  Pearson correlation was calculated for each variant, which is the true R2. Note that this
466 true R2is different from estimated R2 or Rsq above in that estimated R2 or Rsq is part
467  of the imputation output and is obtained in the absence of true genotypes. By contrast,
468 true R2 can only be calculated when the true genotypes are available, which is not

469 realistic except for evaluation purposes because if we had true genotypes, we would not
470 have bothered with imputation.

471

472  Imputation based on a Reduced CFGP Reference Panel

473

474  As a proof-of-concept experiment, we constructed a reduced CFGP imputation

475  reference panel using WGS data of 2,850 samples from the CF Genome Project

476  (CFGP). Such reference construction has been commonly adopted, particularly when

477  target samples (i.e., samples to be imputed) do not match well with those in standard

478  imputation reference panels. We started with QC+ WGS data and performed phasing

479  using eagle™ with default parameters to generate the reduced CFGP reference panel.

12
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480

481  Using our self-constructed reduced CFGP reference panel, we imputed chromosome 7,
482 where CFTR, the CF causing gene, is located, in 1,992 samples , independent of the
483 2,850 samples contributing the reduced CFGP reference panel. These 1,992 samples
484  have WGS data and have also previously been genotyped on the 610-Quad array with
485 30,853 QC+ GWAS markers on chromosome 7. We assessed the relatedness between
486  this target sample of 1,992 samples and the 2,850 samples in the reduce CFGP

487  reference panel using plink --genome. Distribution of the PI_HAT is shown in (Figure
488  S1) with the maximum PI_HAT < 0.1. With the low level of relatedness between target
489  and reference, we proceeded with imputation in the target sample using minimac4®
490  with default parameters and compared the imputed dosages with true genotypes

491  derived from their WGS data.

492

493  To evaluate the value of the CFGP reference panel in comparison to commonly used
494  imputation reference panels, we also compared the performance of the CFGP reference
495  panel relative to the state-of-the-art TOPMed freeze8 reference panel.

496

497  Construction of a CFGP reference panel

498

499  Similar to the reduced CFGP reference panel, the CFGP reference panel was

500 constructed from CFGP WGS data. Different from the reduced CFGP reference where a
501 subset of 2,850 samples were used, the CFGP reference was built from all 5,095

502 samples in CFGP. We similarly started with QC+ WGS and constructed the CFGP

503 reference by phasing with eagle with default parameters.

504

505 Generating genome-wide association statistics for PRS construction

506

507 GWAS were performed separately for different subsets of samples using the EMMAX
508  test implemented in EPACTS v3.3.0%, which accounts for genetic relatedness via a
509 mixed model approach. Specifically, the model adjusts for a kinship matrix that was

510 calculated using genotyped variants with missing rate < 1% and MAF > 1%. When

511 performing the association testing, we restricted to variants with MAF > 0.1% and

512 imputation Rsq > 0.3 when running EPACTS to improve model stability. In each subset
513 GWAS analysis, we adjusted for age, sex, study and first 6 PCs. We then used

514 METAL'® for meta-analysis to enhance the discovery sample size for improved power.
515

516  We note that the PRS construction seems complicated. The primary reason is the

517 complicated data structure we have (several different genotype array datasets, and the
518 mixture of array data, imputed data with two different reference panels, and WGS data).
519 The idea in the section is rather straightforward: since PRS construction involves both

13
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training samples (where GWAS are performed and weights for PRS are derived) and
independent target samples (where PRS formula is applied to and evaluated), we
hypothesize that imputation in either target samples (Figure 4A) or training samples
(Figure 4B) would improve the PRS performance in target samples. Figure 4A is the
scenario where the only difference is the genetics data of target samples used when
applying the PRS formula. We used array- only genotypes, TOPMed imputed data,
CFGP imputed data and or WGS data in target samples, and evaluated the PRS
calculated with the four different types of genetics data. Figure 4B is the scenario where
the only difference is the genetics data of (part of the) training samples used when
performing GWAS and to derive variant-specific weights forconstructing the PRS
formula. We used array array-only genotypes, TOPMed imputed data, and or CFGP
imputed data in (part of the) training samples when deriving the PRS weights. We say
“part of the” training samples because for all three settings in Figure 4B, we used WGS
for the 3,071 samples with WGS data.

Section A. For experiments where the 1992 610-Quad samples with both array and
WGS data are used as target samples, the discovery cohorts include the following four
sets of 5,417 samples, all independent of the target 1992 samples: (1) 610-Quad
samples (n=1551, TOPMed imputed); (2) FR.660K samples (n=928, TOPMed imputed);
(3) 660W-setl samples (n=562, TOPMed imputed); and (4) WGS samples (n=2376,
WGS data).

Section B. For experiments where the 1397 UW samples with WGS data are used as
target, the discovery cohorts include the following four sets of sample, similarly all
independent of the target 1397 UW samples (1) 610-Quad samples (n=1551, genotyped
or TOPMed/CFGP imputed); (2) FR.660K samples (n=928, genotyped or
TOPMed/CFGP imputed); and (3) 660W-setl samples (n=562, genotyped or
TOPMed/CFGP imputed); and (4) WGS samples other than UW (n=3071, WGS data).
The summary statistics without imputation refers to (1)-(3) with array genotype + (4)
when conducting associations (Figure 3B (a)),, the summary statistics with TOPMed
imputation refers to (1)-(3) with TOPMed imputed data + (4) when conducting
associations (Figure 3B (b)), and the summary statistics with CFGP imputed refers (1)-
(3) with CFGP imputed data + (4) when conducting associations (Figure 3B (c)).

PRS construction
We constructed PRS with the common P+T method performed with plink v1.90. We

performed a grid-search over different MAF (20.1%, 20.5%, =21%, =5%) and p-value
thresholds (=1, <0.5, <0.1, £0.05, <0.01, <be-3, <le-3, <be-4, <le-4, <5e-5, <le-5)
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559 combinations to determine the best performance under each different target or

560 discovery marker sets. For chromosome X, males were coded as O or 2.
561

562

563

564 \Web resources

565

566 1. TOPMed imputation server: https://imputation.biodatacatalyst.nhlbi.nih.gov/#!
567 2. Eagle: https://alkesgroup.broadinstitute.org/Eagle/

568 3. Minimac4: https://genome.sph.umich.edu/wiki/Minimac4
569 4. Bravo: https://bravo.sph.umich.edu/freeze8/hg38/

570 5. CFTR2: https://cftr2.org

571 6. plink v1.90: https://www.cog-genomics.org/plink/1.9/
572 7. EPACTS: https://genome.sph.umich.edu/wiki/EPACTS
573 8. TOP-LD: http://topld.genetics.unc.edu/topld/index.php
574 9. MetaMinimac2: https://github.com/yukt/MetaMinimac2
575

576
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613 Figures

614
615

616 Figure 1. Imputation concordance for F508del using TOPMed and reduced CFGP
617 reference panels. The true R2 for TOPMed and reduced CFGP imputed results are
618 0.835 and 0.926, and the sum of squared error for TOPMed and reduced CFGP are

619 117.58 and 82.42, respectively. The main reason that TOPMed is slightly worse is that it

620 tends to under-estimate the deletion frequency.
621
622
623

624 Figure 2. Histograms of differences between reduced CFGP true R2 and TOPMed
625 true R2to compare the imputation quality of the two reference panels.

626 (A) For overall chr7. Almost all variants are located to the left half, which means

627 TOPMed is predominantly better than the reduced CFGP reference panel.

628 (B) For CFTR region only. The advantage of TOPMed reference panel over reduced

629 CFGP becomes less pronounced.
630
631
632
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Figure 3. Histograms of mean true R2 difference and proportion of variants better
imputed by reduced CFGP than TOPMed, across 2872 1Mb non-overlapping
regions. We calculated the true R2 difference of the two reference panels using
reduced-CFGP true R2 minus TOPMed true R2 for each variant, and then summarized
variant level true R2 difference at 1Mb region level using the two statistics.

Figure 4. lllustration of impact of imputation on PRS construction. A. Imputation
performed in target cohorts. We started with four independent discovery cohorts (I-llI
are TOPMed imputed data, IV is WGS data), performed association analysis for each
subset separately and then meta-analyzed the association results. The meta-GWAS
summary statistics was then used to construct PRS using the P+T method. The
constructed PRS was applied to the same 1992 target samples but with four different
marker densities (in yellow highlight): array genotype, TOPMed imputed, Reduced-
CFGP imputed or WGS data to compare the benefit of imputation in target cohort. B.
Imputation performed in discovery cohorts. We started with the same first three
discovery cohorts as in A but adopted three different marker sets (again in yellow
highlight), as well as a fourth independent WGS cohort. We then performed association
analysis and meta-analysis for each marker set, and constructed three different PRSs

using the three different meta-GWAS summary statistics. The three PRSs were then

applied to the same cohort to compare the performances.

Tables

Table 1. Numbers of well-imputed variants by different MAF categories for the seven GWAS arrays (genome

wide)

llumina Number [ Number of | Number Number Number (%)° | Number (%) | Number

Panel® of samples- | (%)° of (%)” of of SNPs Rsq | of SNPs Rsq | (%)° of
sample by-site® SNPs Rsgz | SNPSRsq | >08& 0.8 & SNPs Rsg2
S 0.3 20.8 MAF<0.5% | MAF<5% | 0.8&

MAF>=5%
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300K 144 17,603,215 | 12,248,616 | 3,897,584 6,738,025 5,510,591
(5.73%) (3.99%) (1.31%) (2.24%) (88.02%)
370K 145 FIGMC 14,471,514 | 11,156,390 | 2,533,058 5,519,937 5,636,453
1,300 (4.71%) (3.63%) (0.85%) (1.83%) (90.49%)
660K 1,011 30,661,930 | 20,830,921 | 11,883,847 | 15,138,988 | 5,691,933
(9.99%) (6.79%) (4.01%) (5.03%) (93.95%)
610-Quad 3,840 | CGS1,533; | 58,672,809 | 43,095,581 |33,399,492 | 37,276,108 | 5,819,473
GMS 1467; | (19.12%) | (14.04%) | (11.26%) (12.39%) (96.22%)
TSS 840
660W-setl | 2,012 |CGS342; |43,832,169 |34,503,481 |24,694,173 | 28,669,926 | 5,833,555
GMS 808; | (14.28%) | (11.24%) | (8.33%) (9.53%) (96.33%)
TSS 862;
660W-set2 | 444 TSS 444 | 23,814,328 |20,792,798 | 10,176,358 | 14,916,691 | 5,876,107
(7.76%) (6.77%) (3.43%) (4.96%) (96.98%)
omnis 374 CGS 73; 20,774,826 | 18,862,492 | 10,530,015 | 14,053,383 | 4,809,109
GMS 170 | (6.83%) (6.20%) (3.55%) (4.68%) (97.65%)
TSS 131;

& Corvol et al 2015 reference
b Percentage taken over total number of imputed variants from TOPMed freeze 8 reference panel
¢ Percentage taken over imputed variants with MAF < 0.5%
Percentage taken over imputed variants with MAF < 5%

° Percentage taken over imputed variants with MAF >= 5%

Table 2. True R” for the two arrays with the largest sample sizes (chr20)

llumina panel | MAC/MAF Number of Mean true Median true Total number
non-NA-R2 R2 R2 of variants
variants*

610-Quad MAC < 10 311,625 0.93 1.00 377,397
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(n=1992) MAF < 0.5% 440,489 0.93 1.00 508,198
MAF < 0.5%- 85,270 0.93 0.96 85,278
5%
MAF > 5% 120,991 0.98 1.00 120,998
660W-setl MAC < 10 229,286 0.96 1.00 299,329
(n=941)
MAF < 0.5% 356,643 0.95 1.00 430,073
MAF < 0.5%- 85,195 0.94 0.97 85,201
5%
MAF > 5% 121,013 0.98 1.00 121,019

Abbreviations are as follows: MAC, minor allele count; MAF, minor allele frequency.
*NA true R? emerged due to being monomorphic (either true or imputed). Some variants may be

monomorphic in the 1992 subset but not in the 3840 samples. The Pearson correlation between a
constant and a vector is not defined.

Table 3. Heterozygous concordance for extremely rare variants (chr20)
[llumina panel Number of | Number of | Mean het Median het | Total
samples non-NA het | concordant | concordant | number of
concordant | (freq) (freq) variants
variants
610-Quad 1992 212,759 0.98 1.00 296,088
660W-setl 941 289,811 0.97 1.00 374,166

Table 4. Examples of variants that are much better imputed with reduced CFGP.

Variant (hg38)

chr7:1174806
21:T:C

chr7:1175090
47:G:T?

chr7:1175594
71:T:C?

chr7:1175877
38:G:A?

chr7:1176561
13:C:T

rsiDs

rs1244070394

rs77284892

rs139573311

rs76713772

rs893051013
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CFGP true R | 0.9934 0.9968 0.9703 0.9837 0.9423

TOPMed true | 0.5490 0.3333 2.52e-7 0.7799 0.5010

R2

CF5095 AC 6 21 8 115 21

CF5095 AF 5.89%e-4 2.06e-3 7.85e-4 0.0113 2.06e-3

TOPMed8 AC |3 3 2 20 6

TOPMed8 AF | 1.13e-5 1.13e-5 7.56e-6 7.56e-5 2.27e-5

CADD phred 0.809 38 25.8 29.1 1.097

score

VEP intron stop gain missense splice acceptor | intron

annotation

CF-disease No Yes Yes Yes No

causing”

CFTR mutation | ¢.53+474T>C | c.178G>A €.1400T>C €.1585-1G>A | ¢.3963+3182C
p.Glu60Lys p.Leud67Pro >T

Abbreviations are as follows: AC, allele count; AF, allele frequency.

®The middle three variants have very high CADD phred scores and are disease causing variants, but

their TOPMed imputation qualities are not satisfying. It shows the value of our CF-specific reference

panel.

® According to cftr2.org
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Table 5. PRS performance when applied to UW samples.

without TOPMed CFGP
imputation | imputation | imputation
Correlation between PRS and KNoRMA 0.0455 0.0779 0.0496
p-value for the correlation 0.1191 0.0075 0.0890
Two-sample t-test p-value comparing 5% extreme tails 0.7121 0.0380 0.0065
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Two PRS formulae were applied to the 1397 UW samples. As detailed in Supplementary Method
Section B, both PRS formulae were constructed from the same 6,112 patients, but one without
imputation and the other aided with imputation. Two-sample t-test p-value: performed two-sample t-
test of the true KNoRMA values for samples with the top and bottom 5% PRS scores, either based on
the PRS formula without imputation, or the TOPMed/CFGP-based imputation-aided one to assess the
distinctive power of the two PRSs in separating samples in terms of their KNORMA scores. Our results
show that the imputation-aided PRS results in better prediction (reflected by higher and more
significant correlation with KNoRMA) and better distinctive ability to stratify patients.
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