bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473523; this version posted December 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Conjunctival epithelial cells resist productive SARS-CoV-2 infection
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Abstract: 175 words

Although tropism of SARS-CoV-2 for respiratory tract epithelial cells is well established, an open
question is whether the conjunctival epithelium is also a target for SARS-CoV-2. Conjunctival epithelial
cells, which express viral entry receptors ACE2 and TMPRSS2, constitute the largest exposed
epithelium of the ocular surface tissue, and may represent a relevant viral entry route. To address this
guestion, we generated an organotypic air-liquid-interface model of conjunctival epithelium,
composed of progenitor, basal and superficial epithelial cells and fibroblasts, which could be
maintained successfully up to day 75 of differentiation. Using single-cell RNA Seq, with complementary
imaging and virological assays, we observed that while all conjunctival cell types were permissive to
SARS-CoV-2 genome expression, a productive infection did not ensue. The early innate immune
response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and
paracrine NF-KB activity, without activation of antiviral interferon signalling. Collectively, these data
enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential

implications for the design of preventive strategies and conjunctival transplants.

Introduction

Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory
syndrome coronavirus (SARS-CoV-2). Since its emergence in late 2019, 270,510,989 infections and
5,324,329 deaths have been reported up to 13™ December 2021 (WHO, 2021). It is well established
that cells of the nasal and respiratory epithelium are the principal targets for SARS-CoV-2 (Sridhar and
Nicholls, 2021). This tropism is a central factor in transmission and pathogenesis of COVID-19. Viral
tropism for other cell types has also been reported, including neurones (Ramani et al., 2020, Song et
al., 2021) and gut epithelial cells (Lamers et al., 2020), likely contributing to other aspects of COVID-
19 pathogenesis. The ocular surface is a defined route of entry of several viral pathogens (Belser et
al., 2013, Chu and Pavan-Langston, 1979). An important unresolved question is whether SARS-CoV-2
is similarly capable of infecting cells of the eye surface. Beyond the obvious importance of this
guestion to our understanding of viral pathogenesis, it has implications for the use of personal

protective equipment (PPE), such as visors or other forms of eye protection, in healthcare settings.

Host cell receptor expression is a major determinant of viral tropism. The SARS-CoV-2 spike protein

binds angiotensin-converting enzyme 2 (ACE2) enabling viral entry; spike-mediated membrane fusion
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is facilitated by the host transmembrane protease serine type 2 (TMPRSS2) (Hoffmann et al., 2020).
Work from our group and others has demonstrated expression of key entry receptors by cells of the
ocular surface (Collin et al., 2021b), suggesting that the eye may be a plausible route of viral entry.
The ocular surface comprises superficial conjunctiva, limbal and corneal epithelium and associated
glands. Together with the tear film, these cell types form the first line of defence against infection of
the eye (Fleiszig et al., 2002). Evidence for ocular tropism of SARS-CoV-2 remains inconclusive, as
recently reviewed (Armstrong et al., 2021). Clinical reports suggest SARS-CoV-2 can be detected in
tears and/or conjunctival swabs from COVID-19 patients, although the percentage of patients with
detectable viral RNA was low (0-5.3%) (Zhong et al., 2021, Seah et al., 2020). Clinical syndromes of
ocular infection (e.g., conjunctivitis, keratoconjunctivitis, etc) are also infrequently reported
(Armstrong et al., 2021) in patient cohorts, although they are noted in case reports (Ozturker, 2021,
Scalinci and Trovato Battagliola, 2020). Consistent with the relatively low frequency of detection of
SARS-CoV-2 in clinical ocular specimens, a post-mortem study identified SARS-CoV-2 RNA in ~ 13% of
132 post-mortem ocular tissues from 33 infected patients (Sawant et al., 2021). Conversely, in another
post-mortem study, viral protein was detected by immunofluorescence analysis in 3/3 patient ocular
tissues analysed, with positive staining found mainly in the limbus, and the central cornea exhibiting
very low levels of viral detection (Eriksen et al., 2021). The ocular route appears to be a bona fide
route of SARS-CoV-2 transmission in studies of rhesus macaques and Syrian golden hamsters (Imai et
al., 2020, Deng et al., 2020, Hoagland et al., 2021). Ocular inoculation with SARS-CoV-2 resulted in a
mild lung infection in these models, however evidence for direct infection of the ocular surface was
not sought (Deng et al., 2020). Notably, the nasolacrimal duct connects the ocular surface to the nasal
mucosa, providing indirect access to nasal mucosal tissues from virus inoculated at the ocular surface;

thus, ocular transmission does not necessarily imply permissiveness of the ocular surface.

Other studies have directly assessed the capacity of human ocular cells or tissues to support
experimental infection in vitro. Miner and colleagues reported that human corneal cultures were
resistant to SARS-CoV-2 infection (Miner et al., 2020). This resistance was not mediated by an innate
antiviral type Il interferon (IFN) response, as was the case for other viruses studied, suggesting
alternate mechanism(s) of SARS-CoV-2 restriction. In compatible findings using cultured corneal,
limbal, scleral, iris, retinal and choroid cells from healthy cadaveric human donor eyes, alongside an
induced pluripotent stem cell organoid system, Erikson and colleagues identified limbal cells to be
more permissive than corneal cells to SARS-CoV-2 infection (Eriksen et al., 2021). Consistent with this,
Sasamoto and colleagues showed that limbal cells express high levels of ACE2 and TMPRSS2 (Sasamoto
et al.,, 2021). The main limitation of the studies described above was that the conjunctiva, which

occupies the largest ocular surface area and contains cells expressing ACE2 and TMPRSS2 (Collin et al.,
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2021b), was not investigated. To our knowledge, one recent study has assessed the permissiveness of
conjunctival cells. In this study, Singh et al dissected conjunctival cells and infected them under
submerged culture conditions (Singh et al., 2021). They reported detection of viral RNA expression
alongside expression of innate inflammatory mediators, suggestive of infection. They also detected
spike protein in the superficial conjunctiva of patients that had succumbed to COVID-19. In cultures,
the expression of viral protein declined rapidly from 24 to 72 hours post-infection, suggesting that
conjunctival cells may be unable to sustain infection. However the capacity of these cells to support a
productive infection, via assembly of nascent viral particles or release of infectious virus, and the
responses of individual conjunctival cell subtypes (e.g. superficial or basal conjunctival epithelial cells
and epithelial progenitor cells) were not formally assessed. Further studies are required to determine

whether the conjunctiva is a permissive tissue and might act as an entry portal for SARS-CoV-2.

Currently there are limited in vitro cellular models available for modelling the human conjunctiva.
Garica-Posadas et al. developed two three-dimensional fibrin scaffolds on which they could seed
human conjunctival epithelial cells (Garcia-Posadas et al., 2017). These models maintained their
epithelial-like properties for 14 days before epithelial mesenchymal transition began, resulting in loss
of MUCSAC expression by day fourteen. A slightly different approach was taken by Chung et al. to
generate a multi-layered construct replicating the conjunctiva (Chung et al., 2007), comprised of a 6-
8 layered epithelium with a high proportion of goblet cells. These constructs were characterised by
the secretions of the membrane bound MUC1, MUC4 and MUC16 and the secreted MUC5AC between
1-3 weeks of culture. The relative limitation was that replicative senescence was reached after 3 weeks
and cells started to detach from the construct. An alternative model was developed to generate
progenitor cells for use in transplantation. Conjunctival epithelial cells derived from patients were
grown at the air-liquid interface (ALl) and after two weeks of differentiation expression of MUC5AC,
KRT3, KRT19 and KRT12 could be detected by immunofluorescence analysis (Jeon et al., 2013). This
tissue was used for transplantation in animal models and consequently longevity of the culture

remains to be assessed.

To overcome these issues and address definitively the permissiveness of conjunctival epithelium to
SARS-CoV-2, we describe the generation and full characterisation of an ALl organotypic conjunctival
epithelial model, composed of progenitor, basal and superficial epithelial cells and fibroblasts. Using
single cell RNA-Seq, with complementary imaging and virological assays, we define the cellular
permissiveness of various epithelial cell types in the conjuctiva and determine the cell type specific

innate immune response to SARS-CoV-2 infection.
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Results

Generation and characterisation of the ALl conjunctival epithelium model

SARS-CoV-2 entry factors ACE2 and TMPRSS2 are co-expressed at the highest level in the superficial
conjunctival epithelium, which led us to hypothesise that ocular surface epithelium may provide an
entry portal for the virus (Collin et al., 2021b, Sungnak et al., 2020). To test this hypothesis, we
developed a protocol to generate an ALl conjunctival epithelium model, containing several epithelial
cell types akin to human conjunctiva in vivo. To this end, epithelial progenitor cells from the perilimbal
conjunctival epithelium were ex vivo expanded on mitotically inactivated 3T3 feeder cells (Spurr-
Michaud and Gipson, 2013) (Figure 1A) and then matured at an air-liquid interface (ALl) to induce
differentiation. Conjunctival epithelium shares similar characteristics to airway epithelial cells (Chung
et al., 2007), hence similar culture conditions that promote the development of an upper airway ALI
model were applied during ALl differentiation as outlined in the methods section and Figure 1A

(Djidrovski et al., 2021).

Samples were acquired at day 0, 15, 30 and 50 of differentiation and analysed by quantitative RT-PCR
for expression of several markers characterising epithelial progenitors and conjunctival basal
epithelium (TP63), conjunctival epithelium (KRT13, S100A9), superficial (KRT7, MUC4) and basal
conjunctival epithelium (KRT6A) (Figure 1B). This analysis showed the persistence of epithelial
progenitor cell marker TP63 throughout the differentiation period and a significant increase in the
expression of KRT13 and S100A9 from day O to day 15 (Figure 1C), indicating the onset of
differentiation towards conjunctival epithelium. Notably, the expression of KRT6A and KRT7 was
increased from day 0 to day 15 of differentiation, indicating specification to both basal and superficial
conjunctival lineages respectively. The expression of superficial conjunctival epithelial markers (KRT7,
MUC4) was maintained during the differentiation process, while those of basal conjunctival epithelium
(KRT6A) declined, suggesting that the culture conditions were more permissive for the development
of superficial conjunctival epithelium. The expression of ACE2 and TMPRSS2 increased significantly
during the first 15 days of differentiation at ALl and was maintained at similar levels to the uncultured
conjunctival tissue (Figure 1C). These findings are consistent with reports of increased ACE2
expression by respiratory epithelial cells during maturation at ALl (Sungnak et al., 2020), and were
corroborated by immunofluorescence (IF) analysis, showing co-expression of ACE2 and TMPRSS2, as
well as abundant expression of KRT13, and superficial conjunctival epithelium markers KRT4 and KRT7

at both day 15 and day 30 of differentiation (Figure 1D, Figure 2A). Importantly, we were able to
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detect expression of MUCSAC, indicating the presence of goblet cells in our ALl conjunctival epithelium

culture model (Figure 1D, Figure 2A).

Single cell RNA-Seq analysis of day 30 ALl samples obtained from three different donors was
performed revealing the presence of a predominant superficial conjunctival epithelial cluster
comprising 55.4% of the total cells analysed (Figure 2B) as well three other smaller clusters defined as
basal conjunctival epithelium, epithelial progenitors and fibroblasts (comprising 19.2%, 24.7% and
0.8% of the total cells analysed respectively) based on highly expressed markers (Table S1). Notably,
the expression of ACE2 was highest in the superficial conjunctival epithelium (Figure 2B), whilst
TMPRSS2 was expressed at high level in the superficial but also some basal conjunctival epithelial cells.
In total, 26% of cells co-expressed ACE2 and TMPRSS2. To assess the representativeness of the ALl
conjunctival model, we correlated expression of the top 2000 highly variable genes between each
organoid cell type and the twenty-one-adult cornea-conjunctival single cell RNA-Seq clusters reported
earlier this year by our group (Collin et al., 2021a). The strongest correlations were observed between
the ALl superficial conjunctival epithelial cells to superficial conjunctival epithelium in vivo (correlation
coefficient 0.67) and ALI basal conjunctival epithelial cells to basal conjunctival epithelium in vivo

(correlation coefficient 0.58).

Immunofluorescence analysis at day 75 of differentiation revealed the presence of a multi-layered
epithelium, characterised by predominant apical expression of the superficial conjunctival markers
KRT7 and KRT4 and widespread expression of MUC4 (Figure S1A). Single cell RNA-Seq (Table S1) at
this later time point revealed the presence of similar cell clusters to day 30 as well as superficial cell
expression of ACE2 and broader expression of TMPRSS2 (Figure S1B). By immunofluorescence
analysis, cells co-expressing both ACE2 and TMPRSS2 were found both on the apical layer and inside

the ALI cultures (Figure S1A): those comprised 36% of the total cells analysed by single cell RNA-seq.

Transmission electron microscopy (TEM) analysis demonstrated the presence of tight junctions
between the epithelial cells and apical microvilli on the surface. Electron dense glycocalyx was
detected on the surface of microvilli, indicating the formation of a barrier between the cells on the
apical surface and the surroundings (Figure S2). Both microvilli and glycocalyx are found on the surface
of the conjunctiva and are believed to provide the framework that supports and bind tears, mucus,

and immunoglobulins, that have the common function of protecting the eye (Nichols et al., 1983).

Together these findings demonstrate the establishment of the ALI conjunctival epithelium comprised

of epithelial progenitors, fibroblasts, basal and superficial conjunctival cells, which express the typical
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conjunctival specific mucins and show the ultrastructural features of normal conjunctival epithelial
tissue in humans. Importantly, these findings validate the suitability of the human conjunctival

epithelium ALI model for modelling SARS-CoV-2 infection.

Conjunctival epithelial ALl organotypic cultures are permissive to SARS-CoV-2 genome expression, but

are resistant to productive infection

To assess the permissiveness of conjunctival epithelial and progenitor cells to infection, conjunctival
ALl organotypic cultures were inoculated with a clinical isolate of SARS-CoV-2
(BetaCoV/England/2/2020, multiplicity of infection [MOI]=0.5) at the apical surface for 2 hours,
inoculum was removed, and infection was assessed regularly for 72 hours post-infection (hpi).
Expression of SARS-CoV-2 nucleocapsid (N) gene and subgenomic N RNA, were detected in cell lysates
from 2-72 hpi, suggesting permissiveness to SARS-CoV-2 entry and genome replication. However,
there was no significant increase in viral RNA expression over time (Figure 3A, B), in contrast to nasal
epithelial ALl cultures (Hatton et al., 2021), suggesting a relative resistance to productive replication.
Consistent with this, SARS-CoV-2 subgenomic N RNA abundance at 72 hpi was at least two orders of
magnitude lower than in nasal epithelium ALl cultures infected at a similar MOI (0.1) (Figure S3B).
Consequently, although SARS-CoV-2 spike protein (S) was detected by western blot at 72 hpi, the
expression was substantially lower than infected nasal epithelium ALl cultures (Figure 3C).
Immunofluorescence analyses at 48 hpi corroborated expression of S protein in conjunctival epithelial
cell types, including the mucin secreting cells (Figure 3E). These findings suggested that conjunctival
cells did not support productive infection. To address this, we measured the release of infectious
particles by plaque assays on superficial washes over time. This analysis showed a continuous decline
in infectious particle detection from 2 to 72 hpi, indicating that the conjunctival epithelium ALI cultures
did not support productive infection (Figure 3D). Consistent with these findings, we were unable to
identify virion-like structures by TEM analysis at 48 hpi. Together, these data demonstrate that, whilst
conjunctival epithelial cells are permissive to SARS-CoV-2 entry and genome replication, they are
unable to support productive infection, extending recent findings in an alternative conjunctival model

(Singh et al., 2021).

Transcriptional response of conjunctival epithelial cells to SARS-CoV-2 infection
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To further assess SARS-CoV-2 cell-type specific tropism, we performed scRNA-Seq at 24 hpi, which
represents an early stage in the infection process and a peak of viral gene expression. 15,821 cell
transcriptomes from three infected and three uninfected ALl organotypic cultures were integrated
and analysed. This analysis defined four major clusters, namely superficial conjunctival epithelium
(59.4%), basal conjunctival epithelium (14.3%), epithelial progenitors (25.4%) and fibroblasts (0.9%)
(Figure 4A, Table S2). To assess relative cell type permissiveness to SARS-CoV-2 infection, viral gene
expression was investigated. This analysis showed viral transcripts in all cell types, albeit at low
percentage (Figure 4B, C). Notably fibroblasts displayed the highest permissiveness with 14.6% of total
fibroblasts expressing any viral transcript(s), followed by superficial epithelium (9.6%), basal
epithelium (9.2%) and conjunctival epithelial progenitors (8.2%, Figure 4D). This was lower than nasal
epithelial cells, where viral transcripts were detected in 25-80% of individual cell types (Hatton et al.,
2021) by scRNA-seq. Together these data suggest that SARS-CoV-2 is capable of infecting superficial,
basal and conjunctival epithelial progenitor cells, but at low efficiency, consistent with our previous

findings.

Given these findings, we next sought to assess the cell-type specific host cell response to SARS-CoV-2
infection, hypothesising that a more robust innate immune response may account for the reduced
permissiveness of conjunctival epithelial cells to SARS-CoV-2. We performed differential gene
expression (DE) analysis for each cell type (adjusted p < 0.05), defining three experimental conditions:
SARS-CoV-2 infected (as defined by detectable expression of at least one viral gene), SARS-CoV-2
exposed but uninfected (bystander cells) and unexposed (mock-infected cells). Differential gene
expression analysis of SARS-CoV-2 infected to mock cells (Table S3), revealed the significant
upregulation of several chemokines (CXCL1, CXCL6, CXCL3, CXCL5, CXCL8, CXCL2, CXCL17) in the
superficial conjunctival epithelium (Figure 4E) and to a lesser extent in the conjunctival epithelial
progenitors (CXCL5, CXCL17, CXCL10, CXCL3, CXCL6, CXCL2, CXCL1, CXCL8), corroborating recent
findings reported by Eriksen et al in SARS-CoV-2 infected scleral cells (2021). Importantly, several
additional TNF and IL1 regulated genes (C3, CD55, CCL5, CD47) were upregulated in infected epithelial
progenitors, consistent with the predicted activation of various pattern recognition pathways and NF-
KB dependent signalling pathways by Ingenuity Pathway Analysis (IPA) (Table S4, Figure 5A). Similarly,
TNF and IL1 regulated genes were observed in SARS-CoV-2 infected superficial conjunctival epithelial
cells (Table S4, Figure 5B) alongside the upregulation of /L6, indicative of a robust NF-kB response in
both cell types. To confirm this, ALl cultures were pre-incubated with the IKK inhibitor, BI605906 (10
uM), which blocks NF-kB activation, prior to SARS-CoV-2 infection. This significantly reduced the

expression of CXCL8 and TNF (Figure S4B), confirming their NF-kB-dependence, yet had no impact on
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expression of SARS-CoV-2 nucleocapsid (N) gene at 24 hpi (Figure S4A), suggesting that NF-kB did not

substantially impact on viral genome expression under these conditions.

Given the prominence of NF-kB driven transcription in infected cells, we undertook gene-set
enrichment analysis of NF-kB target genes, finding expression was upregulated in infected cells
compared to mock or bystander cells (Figure 6A). Notably, there was no widespread induction of
antiviral IFN signalling, identified by expression of interferon stimulated genes (ISGs) (Figure 6B).
Indeed, there was downregulation of certain ISGs, including IFI6 (also known as IFI-6-16) and IFI27-like
(also known as ISG12) in superficial conjunctival epithelial cells (Tables $3, S5), indicating evasion of
an IFN response in infected cells by SARS-CoV-2. Significantly enriched signaling pathways and
biological processes in conjunctival superficial and epithelial progenitor cells, included EIF2 stress,
glucocorticoid receptor signalling, the coronavirus pathogenesis pathway, complement system,
mitochondrial dysfunction and oxidative phosphorylation (Figure S5), corroborating recent findings

reported by the comprehensive human-SARS-CoV-2 interactome (Kumar et al., 2020).

A more muted transcriptional response to SARS-CoV-2 infection was observed in basal conjunctival
cells and fibroblasts with only 19 and 1 differentially expressed genes being identified respectively
apart from the viral transcripts (Table $3). One chemokine, CXCL1, was upregulated when the infected
basal conjunctival epithelial cells were compared to mock infected cells, indicating a similar NF-kB
response to the epithelial progenitors and superficial conjunctival cells, albeit reduced in terms of
repertoire of target gene expression (Figure 6A). In addition, MT1X, a gene involved in oxidative stress
response, was also upregulated (Table S3), corroborating reported links between COVID-19 and

dysregulation of oxidative stress marker genes (Saheb Sharif-Askari et al., 2021).

A notable feature of SARS-CoV-2 infected epithelial progenitor cells was the upregulation of markers
expressed in the superficial conjunctival epithelial cells (PSCA, PIGR) and downregulation of basal
epithelial markers (KRT6A, KRT6B) (Table S3), indicating a propensity to differentiate in response to
infection, which has not been reported previously and needs to be investigated further. Notably,
SPRR3, a cornified envelope gene, was significantly upregulated in infected conjunctival epithelial
progenitors, whilst KRT17 was upregulated in the superficial conjunctival epithelial cells (Table S3). An
increase in expression of genes involved in keratinization has been reported in the tears collected from
COVID-19 patients (Mastropasqua et al., 2021). These findings are interesting and suggest a potential
molecular pathomechanism underlying the keratoconjunctivitis reported in some of the COVID-19

patients (Loffredo et al., 2021, Al-Namaeh, 2021, Ozturker, 2021).
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Robust paracrine signalling in response to SARS-CoV-2 infection

We next asked whether there was evidence of a paracrine immune signalling response to SARS-CoV-
2 in uninfected bystander cells, which are exposed to factors produced by SARS-CoV-2 infected cells
but are not themselves infected. The analyses of bystander versus mock-infected cells revealed sev-
eral DE genes in the conjunctival epithelial progenitors, superficial and basal cells (Table S5), sugges-
tive of a robust paracrine response. In general, this response mirrored that of infected cells, in that it
was dominated by NF-KB signalling, without evidence of induction of a paracrine antiviral IFN re-
sponse. Several chemokines were upregulated in bystander conjunctival superficial epithelial and pro-
genitor cells (Figure 4E), consistent with predicted activation of upstream regulators including IL1 and
TNF (Figure 7A, B, Table S5). These data indicate that SARS-CoV-2 infection triggers proinflammatory
NF-kB signalling in bystander conjunctival superficial epithelial and progenitor cells, corroborated by
activation of NF-kB target genes in bystander versus mock infected cells (Figure 6A). Assessment of
context specific interferon stimulated gene (ISG) expression identified no evidence of induction of an

IFN response in either infected or bystander conjunctival cell types (Figure 6B).

Similarly to infected conjunctival epithelial progenitor cells, bystander epithelial progenitors also
demonstrated an upregulation of genes expressed predominantly in the superficial conjunctival epi-
thelium (e.g., PIGR, PSCA, LYPD2, AGR2) and downregulation of genes expressed in the basal conjunc-
tival epithelium (KRT6A, KRT6B etc), indicating a propensity of bystander epithelial progenitor cells to
differentiate towards superficial conjunctival epithelium upon exposure to factors produced by in-
fected cells. Expression of genes involved in keratinisation (SPRR3 in conjunctival epithelial progeni-
tors and KRT17 in the superficial and basal conjunctival epithelium, Table S5) was also observed in
bystander cells, indicative of a wider keratinisation occurring in the conjunctival epithelium upon

SARS-CoV-2 infection.

Notably, in both superficial and basal conjunctival epithelial cells, there was some evidence of sup-
pression of paracrine type | and Il IFN signalling (Figure 7B, C), extending recently published findings
(Xia et al., 2020, Park and lwasaki, 2020, Fung et al., 2021, Decker, 2021), suggestive of viral evasion
of IFN signalling in bystander cells. It is not clear whether this is due to a paracrine effect of SARS-CoV-
2 itself, or an indirect consequence of other host signals, such as TNF, which is recognised to suppress

IFN responses in certain contexts (Banchereau et al., 2004). In addition, paracrine activation of epi-
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dermal growth factor receptor (EGFR) was predicted in both cell types (Figure 7B, C). EGFR is ex-
pressed in the plasma membrane of corneal and conjunctival epithelial layers: its expression decreases
as cells differentiate. Stimulation with EGF accelerates wound healing, while application of EGFR in-
hibitors as anti-cancer therapies results in increased risk of corneal erosions (Peterson and Ceresa,
2021). Together, these data suggest an initiation of a “wound like response” in bystander basal and

superficial conjunctival epithelial cells.

In both infected and bystander basal and superficial conjunctival epithelial cells, activation of
glucocorticoid receptor signalling was also predicted by IPA analyses (Figures 5, 7). Glucocorticoids
(GCs) are steroids produced and released by the adrenal gland in response to stress (Sulaiman et al.,
2018). Topical administration of GCs is used to manage inflammatory insults in the ocular surface,
including allergic conjunctivitis and post-surgical inflammation (Friedlaender, 1998). It is thought that
GCs supress the expression of pro-inflammatory cytokines, induce the expression of mitochondrial
reactive oxygen species and increase apoptosis of human corneal epithelial cells (Ryu et al., 2017).
Other findings suggest that GCs receptor activation increases the expression of ocular surface mucins,
which may comprise a novel mechanism underlying the therapeutic benefits of GCs in ocular surface
inflammatory diseases besides the well-documented anti-inflammatory effects (Taniguchi et al.,
2017)1The co-enrichment of pro- (NF-kB) and anti-inflammatory (GCs) pathways suggests a well-
balanced response of conjunctival epithelial cells to infections, avoiding hyperproduction of

inflammatory cytokines, which merits further investigations.

Cell type specific transcriptional differences between the bystander and SARS-Cov-2 infected cells

Finally, we compared DE host genes between infected and bystander cells to gain additional insight
into the host-virus interaction within infected cells. In superficial epithelial cells, we identified four
significantly DE genes, two C-X-C Motif Chemokine Ligand (CXCL5 and CXCL6), Solute Carrier Family 26
Member 4 (SLC26A4) and Solute Carrier Family 40 Member 1 (SCL40A1) (Figure S6A-D). CXCL5 and
CXCL6 are neutrophil attracting chemokines, produced by lung epithelial cells in response to SARS-
CoV-2 infection (Vabret et al., 2020). The CXCL concentration in body fluids has been shown to
correlate with the severity of the disease and thus put forward as a useful biomarker for predicting
neutrophil infiltration. Accordingly, CXCL5 knockout in the mouse decreases lung inflammation
without diminishing SARS-CoV-2 viral clearance, suggesting CXCL5 as potential target for

controlling/restricting damage in epithelial tissues (Liang et al., 2020). The product of the SCL40A1
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gene, Ferroportin, is an iron exporter protein. Thus an increase in ferroportin expression could deplete
intracellular iron and suppress viral replication (Liu et al., 2020). Ferroportin is expressed in
enterocytes, macrophages and hepatocytes and our recently published scRNA-Seq data also indicates
a high expression in the superficial conjunctival epithelium (Collin et al., 2021a). Iron is required for a
range of biological processes necessary for viral replication, including nucleic acid replication and ATP
synthesis. Since SCL40A1 is upregulated only in infected cells and not in bystander cells (Figure S6C),
intracellular iron depletion may be a novel strategy employed by conjunctival epithelial cells to combat
SARS-COV-2 infection. In basal conjunctival epithelial cells, FGD6 (FYVE, RhoGEF And PH Domain
Containing 6) (Table S7) was significantly upregulated in infected but not bystander cells (Figure S6E).
FGD6 is expressed in the basal conjunctival epithelium in vivo (Collin et al., 2021a), however there is
not much knowledge of the role it may play in this tissue. A recent preprint identifies FDG6 as one of
the top DE genes in infected Calu-3 and Vero E6 cells and in the Ad5-hACE2-sensitized mouse model
of SARS-CoV-2 infection (Ghandikota et al., 2021). It will be thus of interest to explore further its
involvement/function in SARS-CoV-2 infection in basal conjunctival epithelium. In fibroblasts,
U2AF1L4 (U2 Small Nuclear RNA Auxiliary Factor 1 Like 4), RGP1 (RAB6A GEF Complex Partner 1) and
TRIM16L (Tripartite Motif Containing 16 Like) expression was increased when SARS-CoV-2 infected
were compared to bystander cells (Table S7). U2AF1L4 was recently identified as an interacting
protein for nucleocapsid N protein (Chen et al., 2021), whilst RGP1 (Figure S6F) was one of the top
hits in the screen for SARS-CoV-2 essential host factors and pathways required to mediate infection
(Schneider et al., 2021). Their upregulation in SARS-CoV-2 infected fibroblasts deserves further

investigation. In epithelial progenitors there were no significant DE genes specific for infected cells.

Discussion

The human ocular epithelium is continuously exposed to infectious droplets and contaminated fom-
ites. Of the three segments that comprise the ocular surface epithelium, corneal epithelium has been
shown to be resistant to SARS-CoV-2 infection (Miner et al., 2020), whilst the adjacent limbal epithe-
lium, which harbours the corneal epithelial stem cells, expresses ACE2 and TMPRSS2 at high levels and
appears permissive to viral infection (Eriksen et al., 2021). Yet few studies have addressed the permis-
siveness of the conjunctival epithelium, the largest exposed component of the human ocular surface.
A recent study showed that conjunctival epithelium could be infected with SARS-CoV-2, however the

ability of this tissue to sustain productive replication, which is highly relevant to its place as a potential
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entry route for the virus, and the response of individual conjunctival epithelial cell types to infection,

remain unresolved (Singh et al., 2021).

Conjunctival and corneal organ cultures and cultured epithelial monolayers have traditionally been
used to examine the capacity of virus infection and replication in the human ocular surface. The ex
vivo organ cultures are limited in numbers and the monolayer cultures do not capture the involvement
of ocular surface mucins or the various cell type interactions, which are necessary for understanding
the innate immune response in viral infection dynamics. The ALl organotypic conjunctival model re-
ported in this study overcomes these limitations, as it can be generated in large numbers and com-
prises all the key conjunctival cell types, including mucin secreting cells, which play an important role
in the ocular surface defence against viruses (Mantelli and Arglieso, 2008). Importantly, glycocalyx, a
layer of glycolipids and glycoproteins, forming a barrier between the apical surface of the ALI model
and the surrounding was observed, mimicking the native barrier of conjunctival epithelium. Con-
sistent with our previous single-cell studies showing expression of relevant entry receptors ACE2 and
TMPRSS2, in approximately 6.6% of conjunctival epithelial cells ex vivo (Collin et al., 2021b), SARS-
CoV-2 infection in this ALl conjunctival epithelium model indicated broad but relatively low tropism of
SARS-COV-2 for the various cell types (epithelial progenitors, basal and superficial conjunctival epithe-
lium, fibroblasts). Importantly, our data showed no evidence of productive replication in the conjunc-
tival epithelium, consistent with recent findings in the corneal epithelium (Miner et al., 2020). Reasons
for this post-entry restriction in different ocular surface cell types remain to be defined, but contrast
with permissiveness of the conjunctival epithelium to other respiratory viruses (Belser et al., 2012).
These data are consistent with the apparently paradoxical detection of SARS-CoV-2 nucleic acid or
protein in post-mortem tissue samples but the relatively infrequent detection of viral RNA in tears or
conjunctival swabs of patients with COVID-19. These data are also consistent with the low incidence
of conjunctivitis in patients with SARS-CoV-2 confirmed infection and indicate a low risk of SARS-CoV-

2 transmission from a conjunctival transplantation.

Using single cell RNA-Seq analysis, we observed an increase in proinflammatory cytokine expression
(e.g. CXC8, CXCL6, CXCL1 etc.) in SARS-CoV-2 infected conjunctival superficial cells and epithelial
progenitors, and to a lesser extent in basal epithelial cells. Proinflammatory cytokine expression is
driven by the nuclear factor kappa B (NF-kB) signaling pathway, a family of transcription factors,
consisting of RelA, RelB, NF-kB1 NF-kB2 and c-Rel homo/heterodimers with RelA or RelB. These are
present in the cytoplasm along with inhibitory proteins that are known as inhibitors of NF-kB (IkBs).
Virus infection can activate the multi-subunit IkB kinase (IKK) complex, which leads to phosphorylation

of IkBs, resulting in nuclear translocation of NF-kB and activation of a plethora of genes in volved in
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inflammation, immunity, cell proliferation and apoptosis (Oeckinghaus and Ghosh, 2009). A very
recent study has shown that ORF3a, ORF7a and N proteins of SARS-CoV-2 act as NF-kB activators, with
ORF7a being the most potent NF-kB inducer and proinflammatory cytokine producer (Su et al., 2021).
Multiple pieces of evidence point to activation of NF-kB in ocular surface cells upon infection with
adenovirus (Rajaiya et al., 2009), influenza A viruses (Belser et al., 2011), and respiratory syncytial virus
(RSV) (Bitko et al., 2004). Together these data indicate that the NF-kB activation we and others (Eriksen
et al., 2021) have observed is not specific to SARS-CoV-2, but is a general response to viral infection at
the ocular surface (Lan et al., 2012). This NF-kB response was also observed in uninfected bystander
cells, suggestive of paracrine signalling. Our hypothesis is that this response is due to secretion of
proinflammatory cytokines in the infected cells which activate NF-kB signalling in an autocrine
manner, but also cause its activation in the bystander cells in a paracrine manner. While
proinflammatory cytokines play a critical role in the defence against viruses and other pathogens in
general, their hypersecretion can cause tissue damage (Tak and Firestein, 2001). However, we found
no evidence that this response was an important determinant of viral permissiveness, since there was
no enhancement of infection in the context of NF-kB blockade. Many studies have shown high level
of cytokines in COVID-19 patients, with the phenomenon named as cytokine storm (Lange et al., 2021).
Glucocorticoids have an inhibitory action on the NF-kB pathway and are often used to reduce the
cytokine feedback on NF-kB activity (Ling and Kumar, 2012). It is worth noting that glucocorticoid
receptor signalling pathway was amongst the most enriched signalling pathway in the infected and
bystander conjunctival epithelial cells. Together these findings, may indicate a balanced cytokine
production in response to SARS-COV-2 infection, which is sufficient to activate the host immune

response without causing cytokine storm and excessive tissue damage.

A growing body of evidence indicates that similarly to other viruses, SARS-CoV-2 has evolved
mechanisms for evading and/or delaying the antiviral effects of type | and Il IFNs response (Blanco-
Melo et al., 2020). Our single cell RNA-Seq analysis showed no induction of ISGs in neither infected
nor bystander cells, suggesting that IFN signalling does not play a role in conjunctival epithelial defence
against SARS-CoV-2 infection, at least in the early stages of infection. Furthermore, the expression of
two IFN induced genes, ISG15 and RSAD2 was not increased up to 72 hpi (data not shown), indicating
that this was not simply due to delayed induction, as has been reported in other epithelial cell types

(Hatton et al., 2021).

In addition, this analysis also revealed upregulation of superficial conjunctival epithelium marker
expression as well as downregulation of basal conjunctival epithelial markers in the infected and

bystander conjunctival epithelial progenitors and basal conjunctival epithelium. This may be in part

14


https://doi.org/10.1101/2021.12.20.473523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473523; this version posted December 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

an attempt to preserve the progenitor and proliferating cell pool, by inducing differentiation of
infected cells and those exposed to paracrine signals from the former. Finally, the single cell RNA-Seq
analysis also showed upregulation of genes involved in cornification (SPRR3), which have also been
reported in analysis of tears from patients with COVID-19 (Sopp and Sharda, 2021). These findings
may also explain rare reports of keratoconjunctivitis in association with SARS-CoV-2 infection.
Together these data suggest that SARS-CoV-2 may be associated with dysregulated ocular
keratinization, a serious and potentially debilitating problem that is difficult to manage

pharmacologically.

In conclusion the data presented herein show that conjunctival epithelium is permissive to SARS-CoV-
2 infection, but without evidence of productive viral replication. This study was performed in
organotypic models derived from three different patients, with single cell RNA-Seq data obtained from
the peak infection interval. Future work should assess changes in transcriptome of each conjunctival
cell type in frequent intervals after infection and in a larger number of donors to get deeper insights

into the refractory nature of these cell to viral propagation.

Materials and Methods
Human tissue donation

Adult human eyes from three female donors of 52, 78, and 80 years old were donated for research
following informed consent. All tissue was provided by NHS Blood and Transplant Tissue and Eye
Services or the Newcastle NHS Trust following ethical approval (18/YH/04/20). Human tissue was
handled according to the tenets of the Declaration of Helsinki and informed consent was obtained for
research use of all human tissue from the next of kin of all deceased donors, or patient themselves,

who were undergoing exenteration procedures.

Epithelial progenitor cell expansion

Human conjunctival epithelial cell expansion was performed using methods described previously for
limbal epithelial cell expansion (Collin et al., 2021a). In brief, perilimbal conjunctival tissue was minced
into small fragments (~ 1mm?) and treated with 0.05% trypsin-EDTA solution (Thermo Fisher Scientific,
USA) for 20 minutes at 37°C. The resulting cell suspension was removed from the conjunctival pieces

and epithelial medium was added to this suspension to inactivate the trypsin solution. This procedure
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was repeated three times. The pooled cell suspension was centrifuged for 3 minutes at 1000 rpm in
Heraeus Megafuge 16R Centrifuge (Thermo Fisher Scientific, USA), the supernatant removed and the
remaining cell pellet re-suspended in epithelial medium containing 3:1 mixture of low-glucose
DMEM:F12 supplemented with fetal calf serum 10%, penicillin/streptomycin 1% (all Thermo Fisher
Scientific, USA), hydrocortisone 0.4 ug/ml, insulin 5ug/ml, triiodothyronine 1.4 ng/ml, adenine 24
pug/ml, cholera toxin 8.4 ng/ml and EGF 10 ng/ml (all Sigma-Aldrich, UK). Cells were counted and
assessed for viability using trypan blue exclusion and a haemocytometer. 30,000 viable conjunctival
epithelial cells were added to one 9.6 cm? tissue culture well containing the mitotically inactivated 373
fibroblasts and placed in a tissue culture incubator at 37°C with a humidified atmosphere containing
5% CO;. The medium was exchanged on the third culture day and every other day thereafter. Several
days after, cell colonies with typical epithelial progenitor morphology started to appear and were
cultured until they became sub-confluent. Following this 3T3 feeder cells were detached and removed
using 0.02% EDTA (Lonza, Switzerland), sub-confluent primary cultures were dissociated with 0.5%
trypsin-EDTA (Santa Cruz, USA) to single cell suspension and passaged at a density of 6 x 10° cells/cm?.
For serial propagation, cells were passaged and cultured as above, always at the stage of sub-

confluence, until they reached passage 3.

Generation of ALI conjunctival and nasal organotypic culture model

ALl differentiation of epithelial progenitor cells was performed using a method developed for
differentiation of lung epithelial basal cells described by Dvijodrski et al. (2021). 250,000 epithelial
progenitor cells were detached from feeders as described above and seeded onto matrigel coated 24
well inserts (ThinCerts™, Greiner Bio-one) and fed apically and basally with BEGM Bronchial Epithelial
Cell Growth Medium Bullet Kit (Lonza) supplemented with 10uM Y26732 (Sigma Aldrich) and
incubated for 48-72 hours until confluent. Once confluent, the apical medium was removed, and the
cells were basally with PneumaCult media (StemCell Technologies) for up to 75 days. The nasal

organotypic culture model was performed as described in Hatton et al., 2021.

Infection of conjunctival ALl cultures with SARS-CoV-2

A clinical isolate from Public Health England of SARS-CoV-2 (BetaCoV/England/2/2020) virus was
propagated once in Vero E6 cells. The same viral stock was used for all experiments. As SARS-CoV-2 is
a Hazard Group 3 pathogen (Advisory Committee on Dangerous Pathogens, UK), all infection

experiments were performed in a dedicated Containment Level 3 (CL3) facility by trained personnel.
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Infections of conjunctival ALl cultures were performed at day 30 of differentiation as previously
described (Hatton et al., 2021). In brief the virus was diluted in DMEM (ThermoFisher Scientific) to
achieve a multiplicity of infection (MOI) of 0.5 and added to the apical side. After 2 hours of incubation,
the virus containing medium was removed and the cells were fed basally with PneumaCult media.
DMEM was used as inoculum for mock infections. A similar procedure was carried out for the infection
of nasal ALl epithelial cultures, described in Hatton et al., 2021. The apical washes were collected in

1x phosphate-buffer solution (1xPBS) at 2, 6, 24, 48 and 72 hpi for plaque assays.

Plaque Assays

Vero E6 cells were seeded onto a 24-well plate at a density of 200,000 cells per well and incubated at
37°C and 5% CO2 overnight. Apical washes collected from ALI infections were thawed and serially
diluted in DMEM with 1% FCS (Gibco), then added to cells and incubated for 2 hours before discarding
and adding a 2.4% (w/v) microcrystalline cellulose and 2% FCS (mixed 1:1) overlay (Sigma-Aldrich). The
assay was incubated at 37°C and 5% CO2 for 70 hours then fixed in 4% PFA for 1 hour. Plates were
rinsed in tap water, stained with 0.25% crystal violet for 10 minutes and plaque were counted to

calculate plague forming units per ml.

Quantitative RT-PCR

RNA was extracted using TRIzol™ reagent (ThermoFisher Scientific), according to the manufacturer's
instructions, and cDNA was generated using GoScript Reverse Transcription System following the
manufacturers protocol (Promega). Viral RNA was detected using the CDC 2019-Novel Coronavirus
Real-Time RT-PCR Diagnostic Panel as per Centre for Disease and Control’s optimised protocol
(Integrated DNA Technologies ) for use with Go-Taq 1-step RT-gPCR Master Mix (Promega). Gene
expression profile and SARS-CoV-2 N subgenomic RNA expression were determined with a standard
gPCR cycle (50°C for 2 minutes, 95°C for 10 minutes, then 40 cycles of 95°C for 15 seconds, 60°C for 1
minute) using Go-Taq qPCR Master Mix (Promega) on a QuantStudio™ 7 Flex Real Time PCR System
(ThermoFisher Scientific). Primer sequences can be found in Table S8. Data was interpreted using the

ACT method.

Statistical Analysis
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Statistical analysis was done using GraphPad Prism (version 9.0.0 121). Data was analysed with
Ordinary one-way ANOVA using Tukey’s multiple comparisons test unless otherwise indicated. Graphs
are presented as mean + SEM and are in Log10 format. * p < 0.05 ** p < 0.01 *** p < 0.001 **** p <

0.0001 ns — not significant.

Transmission Electron Microscopy (TEM)

Infected and mock samples were fixed overnight at 4°C in 2% glutaraldehyde (TAAB Lab Equipment)
with 0.1 M sodium cacodylate (pH 7.4). The samples were then secondary fixed in 1% osmium
tetroxide (Agar Scientific). Dehydration of samples was achieved with graded acetone (25, 50, 75,
100%) for 30 minutes each. Samples were impregnated with resin at the same graded concentrations
up to 75% for 60 minutes each. A final incubation with 100% resin (minimum of 3 changes) for 24
hours at 60°C concluded the embedding process. Sections were taken at 70nm using a MT-XL
ultramicrotome and mounted on a pioloform-filmed copper grid. Samples were stained in 2% aqueous
uranyl acetate and lead citrate (Leica) and imaged on a Hitachi HT7800 transmission electron
microscope. Representative micrographs were captured using an EMSIS Xarosa CMOS Camera with

Radius software (version 2.1, EMSIS, Germany).

Immunofluorescence analysis (IF)

Inserts were fixed in 4% PFA for 1 hour and washed three times in 1xPBS. Two protocols were used to
prepare tissue for staining. For apical side staining only, ThinCerts™ were divided into four pieces and
mounted on SuperFrost Plus™ slides before staining. For apical and basal staining ThinCerts™ were
halved and embedded in OCT (Cellpath) then frozen at -20°C. Blocks were sectioned at 10um on a
Leica CM1860 cryostat to expose both the apical and basal sides of the tissue. Cryosections were dried,
washed three times in 1xPBS and blocking solution was applied (10% donkey serum, 0.3% Triton-X in
PBS) for 1 hour at room temperature. Primary antibodies (Table S9) were applied overnight at 4°C.
Slides were washed three times with 1xPBS and secondary antibodies (Table $9) were applied for 1
hour at room temperature. AlexaFluora 488 and 546 (ThermoFisher Scientific) were used at 2ug/ml.
Hoescht 33342 was added for 10 minutes and slides were washed three times in 1xPBS before
mounted with VectaShield (Vector Laboratories). All slides were imaged with an Axioimager Z2
microscope using the Apotome 2 system. Images were taken as Z-stacks and presented as maximum

intensity projections (MIPs). Image acquisition was captured through Zen software.

18


https://doi.org/10.1101/2021.12.20.473523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473523; this version posted December 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Western Blotting

Lysis buffer (150mM sodium chloride, 1.0% NP-40 or Triton X-100, 0.5% sodium deoxycholate, 0.1%
SDS (sodium dodecyl sulfate), 50mM Tris, pH 8.0)) was applied directly to the apical surface of ALI
cultures and cells were removed by gentle scrapping. Protein concentration was determined by BCA
Assay (ThermoFisher Scientific). NUPAGE™ reducing agent and LDS sample buffer (ThermoFisher
Scientific) were added directly and lysates were heated at 70°C for 10 minutes. 15ug of protein were
ran on a Novex™ Bolt 4-12% bis-tris mini gel with NUPAGE™ 1x MES SDS running buffer (ThermoFisher
Scientific). 5ul of PageRuler™ Plus Prestained Protein Ladder (ThermoFisher Scientific) was used as a
size guide. Proteins were transferred onto PVDF iBLOT 2 Transfer Stacks according to manufacturer’s
instructions (ThermoFisher Scientific). Membranes were blocked in 5% non-fat milk with 0.1% tween
in PBS (PBS-T). Primary antibody combinations were incubated overnight at 4°C. Membranes were
washed in 1xPBS-T and membranes were incubated in secondary antibodies for 1 hour at room
temperature. Membranes were washed again in 1xPBS-T and developed with SuperSignal West pico
PLUS chemiluminescent substrate (ThermoFisher Scientific) according to manufacturer’s instructions

and imaged on an Amersham Imager 600.

Single Cell (sc) RNA-Seq sample processing

Single cell RNA-Seq was performed on cells harvested 24 hours post infection. ALl cultures were
washed apically and basally in 1xPBS and dissociated in 100ul 0.025% Trypsin-EDTA (ThermoFisher
Scientific) for 15 minutes at 37°C. Trypsin-EDTA was neutralised, and cells were counted on a
haemocytometer to get an optimum concentration of 1000 cells per microliter. Suspensions were
centrifuged at 400g for 3 minutes and resuspended in 0.04%BSA/PBS solution. For scRNA-Seq cells
were captured and libraries generated using the Chromium Single Cell 3’ Library & Gel Bead Kit, version
3.1 (10x Genomics). scRNA-Seq libraries were sequenced to 50,000 reads per cell on an lllumina

NovaSeq 6000.

SCRNA-Seq analysis

The sequencing data was aligned to human reference genome (GRCh38) and the Sars_CoV_2
reference (Ensembl ASM985889v3) using CellRanger Version 3.0.1. The Seurat R library was used for
the downstream analysis. The filtered_feature_bc_matrix were imported into R and QC filtering
applied. The thresholds were applied to the data were a minimum counts per cell of 2000, minimum

genes per cell of 500 and maximum percentage mitochondria of 20%. The DoubletFinder package
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(McGinnis et al., 2019) was used to find and remove doublets. We performed two integrated analyses
of the data. Firstly, the mock samples were combined to study the clustering profiles without infection
and secondly the mock and exposed cells were integrated together. Seurat (Butler et al., 2018) was
used to normalise the data and the first 2000 highly variable genes, identified through vst selection
were chosen for the clustering analysis. The gene expression values were then scaled and the number
of counts, number of genes and percentage of mitochondria reads per cell were regressed. A PCA
dimension reduction was applied using the selected highly variable genes. This was followed by
Harmony (Korsunsky et al., 2019) batch correction where batch was set to sample ID. We then
constructed a shared nearest-neighbour graph using the first 10 components of the harmony
embeddings. Clusters within the graph using a range of resolutions from 0.2 — 2.2. We chose a
resolution of 2.2 which over-clustered the data then applied the FindAllMarkers function and
annotated the clusters based on the expression of marker genes as either superficial conjunctival
epithelium, conjunctival epithelial progenitors, basal conjunctival epithelium or fibroblasts. The
exposed cells were then classified into infected and bystander and differential expression was
performed with the following contrasts: infected vs mock; bystander vs mock; and infected vs
bystander. ISG and NFKB target gene scores were generated using the AddModuleScore, which
calculates the average expression for each group. The ISG gene list was taken from a published IFN-
treated nasal cell dataset (Ziegler et al., 2020), while the NF-KB target gene list was obtained from an
online resource (BostonUniversity, 2021). UMAP dimension reduction was performed and the DimPlot
and FeaturePlot functions were used to visualise the clusters and expression of genes in individual
cells and the DotPlot function was used to visualise the expression of genes within cell types and

conditions.
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The Paper Explained:

Problem: Respiratory viruses including SARS-CoV-2, responsible for the COVID-19 pandemic, enter via
the respiratory tract epithelium, however they can also use the eye surface as an additional entry
point. The conjunctiva has a large unexposed surface area with mucus producing cells. Clinical reports
have shown that some of COVID-19 patients suffer from conjunctivitis in the early stages of infection.
To date it is not fully established if the conjunctiva can be used as an additional entry and propagation

portal for SARS-CoV-2.

Results: To assess whether conjunctiva can be infected by SARS-CoV-2, we generated an in vitro model
by culturing human conjunctival cells under special conditions, which promote cell differentiation and
layer stratification through air-liquid contact. In this manuscript, we show that the ex vivo model con-
tains all cells found in the native conjunctiva and moreover expresses the two key viral entry factors,
ACE2 and TMPRSS2. Infection of the model with SARS-CoV-2 shows that while all conjunctival cells can

be infected with the virus, new viral particles that are necessary for propagation cannot be generated.
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Importantly, the conjunctival cells responded to viral infection by upregulating a key signalling path-

way, NF-kB, which is often the first line of defence upon viral infection of eye cells.

Impact: Our data indicate that the risk of SARS-CoV-2 transmission from a conjunctival organ trans-
plant is low. The lack of viral propagation in conjunctiva should also be informative on provision of

protective personal equipment used by medical staff and carers of COVID-19 patients.

Data availability

The Single cell RNA-Seq data datasets produced in this study are under submission at the Gene Ex-

pression Omnibus (GEO).

Figure Legends

Figure 1: Generation and characterisation of the ALI conjunctival organotypic culture model. A)
Schematic summary showing the key steps involved in generation of the ALl conjunctival organotypic
culture model. B) RNA expression of progenitor, basal and superficial epithelial cell markers in specific
cell types in the human adult cornea and conjunctiva. Single cell RNA-Seq data from Collin et al.
(2021a) were used for this analysis. Raw expression values were normalised, log transformed and
summarised. The size of the dots indicates the proportion of cells, while the colour indicates the mean
expression. C) Quantitative RT-PCR analysis showing expression of progenitor and basal epithelial
marker (TP63), basal and superficial epithelial cell markers (KRT6A, KRT13, KRT7, S100A9, MUC4) and
SARS-CoV-2 entry factors (ACE2 and TMPRSS2) in ALl conjunctival organotypic culture model and
primary conjunctival tissue. Data shown as mean + SEM, n=3-14 experimental repeats in three
different donors, * p < 0.05, ** p < 0.01, *** p < 0.001, one way ANOVA with Tukey’s multiple
comparisons. D) Immunofluorescence analysis showing expression of conjunctival epithelial marker
(KRT13), superficial conjunctival epithelial marker (KRT4, KRT7), goblet cell marker (MUC5AC), mucin
producing cells (MUC4) and SARS-CoV-2 entry factors (ACE2, TMPRSS2) in day 15 ALl conjunctival
organotypic culture models (representative of repeat experiments in three different donor

conjunctival ALl cultures). Hoe- Hoescht.

Figure 2. Characterisation of ALI conjunctival organotypic culture model at day 30 of differentiation

by immunofluorescence and single cell RNA-Seq. A) Immunofluorescence analysis showing co-
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expression of ACE2 and TMPRSS2 in the superficial layer of the ALl conjunctival organotypic model.
KRT7 and KRT4 were predominantly located in the superficial layer, while MUC4 was detected
throughout (representative of repeat experiments in three different donor conjunctival ALl cultures).
Hoe- Hoescht. B) UMAP visualisation of scRNA-Seq data from conjunctival ALl cultures (8,202 cells
from three different donors) showing the presence of epithelial progenitors (EP), superficial (CjS) and
basal conjunctival epithelium (CjB) and fibroblasts (Fib). Expression of progenitor and basal epithelial
marker TP63, superficial conjunctival marker KRT4, fibroblast and progenitor marker COL1A1, and
SARS-CoV-2 entry factors, ACE2 and TMPRSS2 are shown as superimposed single gene expression plots
on the UMAP.

Figure 3. SARS-CoV-2 infection of day 30 human ALI conjunctival organotypic culture. A, B) Quanti-
tative RT-PCR expression of nucleocapsid (N) gene (normalised to the housekeeper RNASEP) and sub-
genomic N RNA (normalised to GAPDH) from 0-72 hpi. Data shown as mean + SEM, n=3-7 experimental
repeats, 3 different donors; * p < 0.05, ** p < 0.01, *** p < 0.001, one way ANOVA with Dunnett’s
multiple comparisons to 0 hpi. C) Representative western blot showing the expression of SARS-CoV-2
spike (S, shown by *) and cleaved S2 protein expression (shown by **) in the nasal and conjunctival
ALl organotypic culture models. GAPDH was used as loading control (representative of repeat experi-
ment in 3 donors). D) Release of infectious viral particles was determined by plaque assay using apical
washings from 2-72 hpi. Data shown as mean + SEM, n=2-5, 3 different donors, * p < 0.05, ** p < 0.01,
one way ANOVA with Dunnett’s multiple comparisons to 2 hpi. E) Immunofluorescence analysis show-
ing the presence of infected cells marked by ACE2 and S co-expression. A few mucin secreting cells are
also infected by SARS-CoV-2 as shown by co-expression of MUC4 and MUC5AC with S (white arrows).
A panel of mock infected cells is shown on the right-hand side panel, white arrows indicate MUC5AC

secreting cells (representative of repeat experiment in 3 donors). Hoe- Hoescht.

Figure 4. Single cell RNA-Seq analyses at 24 hpi reveal broad but low tropism of SARS-CoV-2 in the
ALI conjunctival organotypic culture model. A) UMAP visualisation of scRNA-Seq data from mock and
infected conjunctival ALI cultures (15,821 cells from three different donors, mock and SARS-CoV-2
infected) showing the presence of epithelial progenitors (EP), superficial (CjS) and basal conjunctival
epithelium (CjB) and fibroblasts (Fib). B,C) Expression of S and N transcripts shown as superimposed
single gene expression plots on the UMAP. D) Relative proportion of infected cell types (epithelial
progenitors (EP), superficial (CjS) and basal conjunctival epithelium (CjB) and fibroblasts (Fib)) based

on expression of any viral transcript. E) Dot plot demonstrating expression of key chemokine marker
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upregulated in response to SARS-CoV-2 infection in all cell types with intensity demonstrated by colour

and size of the dot representing the proportion of cells expressing the marker.

Figure 5. Representative network analysis of predicted regulators in the SARS-CoV-2 infected cells
in the epithelial progenitors (A) and superficial cells (B). Differentially expressed genes between in-
fected and mock cells within the epithelial progenitors and superficial conjunctiva epithelium cluster
were generated using the Seurat FindMarkers function. IPA Upstream Regulator Analysis was used to
predict upstream transcriptional regulators from this gene list, using the Ingenuity® Knowledge Base

to create mechanistic networks.

Figure 6. NF-kB target (A) and IFN stimulated gene (ISG) expression (B) in infected, bystander and
mock in the epithelial progenitors, superficial and basal conjunctival epithelium and fibroblasts.
Gene set scores greater than zero suggest expression levels higher than background gene expression.
The bottom and the top of the boxes correspond to the 25th (Q1) and 75th (Q3) percentiles, and the
internal band is the 50th percentile (median). The plot whisker minimum is calculated as Q1- 1.5 x IQR
and the maximum as Q3 +1.5 x IQR. IQR= interquartile range. Outside points correspond to potential

outliers.

Figure 7. Representative network analysis of predicted regulators in the bystander cells in the epi-
thelial progenitors (A), superficial (B) and basal epithelial cells (C). Differentially expressed genes
between bystander and mock infected cells within the conjunctival epithelial progenitors, and super-
ficial and basal conjunctiva epithelium cluster were generated using the Seurat FindMarkers function.
IPA Upstream Regulator Analysis was used to predict upstream transcriptional regulators from this

gene list, using the Ingenuity® Knowledge Base to create mechanistic networks.

Supplementary Information

Figure S1. Characterisation of ALI conjunctival organotypic culture model at day 75 of differentiation
by immunofluorescence and single cell RNA-Seq. A) Immunofluorescence analysis showing co-
expression of ACE2 and TMPRSS2 (white arrow) in the superficial layer of the ALl conjunctival
organotypic model. KRT7, KRT4 and MUC5AC were predominantly located in the superficial layer,

while MUC4 was detected throughout (representative of repeat experiments in three different donor
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conjunctival ALl cultures). Hoe- Hoescht. B) UMAP visualisation of scRNA-Seq data from conjunctival
ALl cultures (534 cells from one donor) showing the presence of epithelial progenitors (EP), superficial
(CjS) and basal conjunctival epithelium (CjB) and fibroblasts (Fib). Expression of SARS-CoV-2 entry

factors, ACE2 and TMPRSS2 are shown as superimposed single gene expression plots on the UMAP.

Figure S2. Transmission electron microscopy analysis of ALl conjunctival organotypic culture at day
30. A) Numerous apical microvilli are present on the surface of epithelial cells (arrows) indicating cell
polarisation. B) Fluffy ocular surface-like electron dense glycocalyx (arrows) on surface of microvilli.

C) Clear tight junctions (arrow) between cells. A-C: representative of repeat experiments in 3 donors.

Figure S3. SARS-CoV-2 infection of human nasal ALl organotypic culture. A, B) Quantitative RT-PCR
expression of nucleocapsid (N) gene (normalised to the housekeeper RNASEP) and subgenomic N RNA
(normalised to GAPDH) of human nasal ALl organotypic cultures, MOI=0.1. Data shown as mean *

SEM, n=3-4 donors, * p< 0.05 unpaired T-test.

Figure S4. The impact of NF-kB activation on proinflammatory gene expression following SARS-CoV-
2 infection of the ALI conjunctival model. A) Quantitative RT-PCR expression of nucleocapsid (N) gene
(normalised to the housekeeper RNASEP) at 24 hpi. Data shown as mean + SEM, n=2 experimental
repeats from one donor. The NF-kB inhibitor was diluted in DMSO, hence a DMSO control was
included. B) Quantitative RT-PCR expression of CXCL8 and TNFa at 24 hpi. Data shown as mean + SEM,
n=3 experimental repeats from one donor. * p < 0.05, ** p<0.01, *** p<0.001, **** p <0.0001, one

way ANOVA with Tukey’s multiple comparisons.

Figure S5. Significantly enriched signaling pathways and biological processes in infected conjunctival
superficial and basal and epithelial progenitor cells versus respective mock conditions predicted by
the IPA. The dotted lines show a p value of 0.05 and 0.01. Epithelial progenitors (EP), superficial (CjS)

and basal conjunctival epithelium (CjB).

Figure S6. Transcriptional differences between SARS-CoV-2 infected and bystander cells. Expression
of genes significantly changes between infected and bystander cells in superficial conjunctival

epithelium (A-D), basal conjunctival epithelium (E) and fibroblasts (F) shown as violin plots.
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Table S1. A full list of highly and differentially expressed genes between the clusters identified in the

ALl conjunctival organotypic culture at day 30 and 75 of differentiation.

Table S2. A full list of highly and differentially expressed genes between the clusters identified in the

SARS-CoV-2 infected and mock ALI conjunctival organotypic culture at day 30 of differentiation.

Table S3. A list of differentially expressed genes (p adjust< 0.05) between infected and mock condition

in all cell types.

Table S4. List of significant regulators of gene expression in the infected cells (versus mock) in all cell

types.

Table S5. A list of differentially expressed genes (p adjust< 0.05) between bystander and mock

condition in all cell types.

Table S6. List of significant regulators of gene expression in the bystander cells (versus mock) in all cell

types.

Table S7. A list of differentially expressed genes (p adjust< 0.05) between infected and bystander in

all cell types.

Table S8. List of oligonucleotides used in the quantitative RT-PCR analyses.

Table S9. A list of antibodies used in this study.
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