

1 **Antiviral RNAi response against the insect-specific Agua Salud  
2 alphavirus**

3 Mine Altinli<sup>1§</sup>, Mayke Leggewie<sup>1§</sup>, Marlis Badusche<sup>1</sup>, Rashwita Gyanwali<sup>1</sup>, Christina Scherer<sup>1</sup>, Jonny Schulze<sup>1</sup>,  
4 Vattipally B. Sreenu<sup>2</sup>, Marvin Fegebank<sup>1</sup>, Bernhard Zibrat<sup>1</sup>, Janina Fuss<sup>3</sup>, Sandra Junglen<sup>4</sup>, Esther Schnettler<sup>1,5\*</sup>

5

6 <sup>1</sup>Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, and German Centre for Infection  
7 Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany

8 <sup>2</sup>MRC-University of Glasgow-Centre for virus Research, Glasgow, UK

9 <sup>3</sup>Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany

10 <sup>4</sup>Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin,  
11 Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany

12 <sup>5</sup>University Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, 20148 Hamburg, Germany

13

14

15 <sup>§</sup> contributed equally to the work

16 \* Correspondence: [schnettler@bni.de](mailto:schnettler@bni.de)

17

18

19 **Abstract:**

20

21 Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year.  
22 In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in  
23 the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot

24 replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The  
25 alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this  
26 genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus,  
27 Agua-Salud alphavirus (ASALV), with its mosquito host.

28 RNAi is one of the essential antiviral responses against arboviruses, although there is little knowledge  
29 on the interactions of RNAi with ISVs. Through knock-down of transcripts of the different key RNAi  
30 pathway (siRNA, miRNA and piRNA) proteins, we show the antiviral role of *Ago2* (siRNA), *Ago1*  
31 (miRNA), and *Piwi4* proteins against ASALV in *Aedes aegypti* derived cells. ASALV replication  
32 increased in *Dicer2* and *Ago2* knock-out cells, confirming the antiviral role of the siRNA pathway. In  
33 infected cells, mainly ASALV-specific siRNAs are produced while piRNAs, with the characteristic  
34 nucleotide bias resulting from ping-pong amplification, are only produced in *Dicer2* knock-out cells.  
35 Taken together, ASALV interactions with the mosquito RNAi response differs from arthropod-borne  
36 alphaviruses in some aspects, although they also share some commonalities. Further research is  
37 needed to understand whether the identified differences can be generalised to other insect-specific  
38 alphaviruses.

39

## 40 Introduction

41

42 Mosquitoes are efficient vectors for many medically important arthropod-borne viruses (arboviruses)  
43 from several RNA virus families such as *Flaviviridae*, *Togaviridae*, *Bunyavirales*, *Reoviridae*, and  
44 *Rhabdoviridae* (Weaver & Reisen, 2010). Arboviruses have a complex life cycle consisting of  
45 replication in both vertebrate and invertebrate hosts. In the last decade, many viruses that are restricted  
46 to invertebrate hosts (*i.e.* that cannot replicate in vertebrate hosts) have also been discovered (Atoni et  
47 al., 2019). These viruses, generally termed insect-specific viruses (ISVs), have been discovered from  
48 all major arbovirus families. They are considered promising for many applications, from vaccine  
49 development to arbovirus transmission control tools (Agboli et al., 2019). Nevertheless, our knowledge

50 of many important aspects of ISV biology is limited, such as their interactions with the vector species  
51 they infect (Altinli et al., 2021).

52

53 Arboviruses establish asymptomatic persistent infections in mosquito vectors which are attributed to  
54 the efficiency of the mosquito innate immune system. As a part of the mosquito innate immune  
55 system, RNA interference (RNAi) pathways play a major role in regulating arbovirus infections  
56 (Donald et al., 2012; Leggewie & Schnettler, 2018). There are three RNAi pathways in mosquitoes:  
57 micro (mi)RNA, small interfering (si)RNA and P-element induced wimpy testis (PIWI)-interacting  
58 (pi)RNA pathways (Donald et al., 2012; Leggewie & Schnettler, 2018). The siRNA pathway is  
59 triggered by double-stranded (ds)RNA and categorised as exogenous or endogenous depending on the  
60 origin of the dsRNA. Among these, the exogenous (exo-)siRNA pathway is considered the primary  
61 antiviral defence mechanism for mosquitoes and other insects (Bronkhorst & Van Rij, 2014; Leggewie  
62 & Schnettler, 2018). The exo-siRNA pathway can be induced by dsRNA derived either from viral  
63 replication or RNA secondary structures, which are cut by *Dicer2* (*Dcr2*) into virus-derived siRNAs  
64 (vsiRNA), that are 21 nucleotides in length (Donald et al., 2012; Leggewie & Schnettler, 2018). These  
65 vsiRNAs are then incorporated into the RNA-induced silencing complex (RISC), specifically to the  
66 *Argonaute2* (*Ago2*) protein, and guide the complex to target complementary viral RNA for subsequent  
67 cleavage; resulting in the inhibition of virus replication. vsiRNAs specific to arboviruses are produced  
68 during infection by all major arboviruses, proving an interaction with the exo-siRNA pathway (Liu et  
69 al., 2019). Furthermore, knock-down or knock-out of key players involved in the exo-siRNA pathway,  
70 *Dcr2* and *Ago2* proteins, led to an increase in replication of all tested arboviruses, supporting the  
71 antiviral role of these proteins and the exo-siRNA pathway against arboviruses in mosquitoes (Liu et  
72 al., 2019; Scherer et al., 2021).

73 The miRNA pathway is known to regulate gene expressions of endogenous transcripts in various  
74 organisms, including mosquitoes. The miRNA pathway starts by cleaving primary miRNAs into  
75 precursor (pre-)miRNA molecules in the nucleus. After exportation into the cytoplasm, pre-miRNA is  
76 cut to miRNA/miRNA\* duplexes of 21-22nt in size by *Dicer1*. miRNAs then guide miRISC (RISC

77 complex associated with the miRNA pathway), including the *Ago1* protein, to degrade and/ or inhibit  
78 translation of (partially) complementary single-stranded (ss)RNAs (Asgari, 2014, 2015). However, our  
79 knowledge of the antiviral role of the miRNA pathway in mosquito-virus interactions is limited.

80 Arbovirus specific piRNAs of 25-29 nts length have also been reported in infected mosquitoes and  
81 mosquito-derived cells (Miesen et al., 2016; Varjak, Leggewie, et al., 2018). In *Aedes aegypti*-derived  
82 cells, virus-derived piRNA (vpiRNA) biogenesis is *Piwi5/6* (depending on the investigated virus) and  
83 *Ago3* dependent for Sindbis, Chikungunya and Dengue viruses (Miesen et al., 2015, 2016; Varjak,  
84 Dietrich, et al., 2018). The transcripts are bound by *Ago3* (sense) and *Piwi5/6* (antisense) and  
85 processed in the ping-pong amplification cycle. Resultant vpiRNAs have either a bias for uridine at  
86 position one or adenine at position 10 in the antisense and sense sequences, respectively (U1, A10)  
87 and a complementary region of 10 nucleotides (Miesen et al., 2015, 2016). In contrast, another Piwi  
88 protein, *Piwi4*, does not directly bind vpiRNAs of viral or transposon origin (Miesen et al., 2015) but  
89 preferentially binds antisense piRNAs derived from endogenous viral elements (EVEs). These EVEs  
90 can be integrated into the mosquito genome during RNA virus infection and act as an “adaptive  
91 immune response” combined with the produced vpiRNAs and *Piwi4* (Tassetto et al., 2019). The  
92 knock-down of *Piwi4* transcripts resulted in increased virus titer supporting its antiviral role. In  
93 contrast, the knock-down of piRNA pathway proteins did not have a strong antiviral role against the  
94 tested arboviruses so far (Schnettler et al., 2013; Varjak, Donald, et al., 2017; Varjak, Leggewie, et al.,  
95 2018; Varjak, Maringer, et al., 2017a); except for Rift Valley Fever virus (Dietrich, Jansen, et al.,  
96 2017). *Piwi4* has been shown to interact with proteins of the piRNA and siRNA pathways; however,  
97 its antiviral activity against an arthropod-borne alphavirus is independent of *Dcr2* activity in the Aag2  
98 cells (Varjak, Maringer, et al., 2017a).

99 Compared to arboviruses, ISV interactions with the mosquito RNAi pathways are less studied. Studies  
100 on ISVs mainly focused on detection of virus specific small RNAs in persistently infected cell lines.  
101 Here, the production of vsiRNAs and, in some cases, vpiRNAs were detected for different families,  
102 including *Flaviviridae*, *Birnaviridae* and *Phenuiviridae* (Agboli et al., 2019; Frangeul et al., 2020;  
103 Öhlund et al., 2021) Our knowledge on RNAi-ISV interactions is further limited for insect-specific

104 alphaviruses, as no persistently infected cell lines is known and (Blitvich & Firth, 2015; Bolling et al.,  
105 2015) only four insect-specific alphaviruses have been identified in mosquitoes so far: Eilat virus  
106 (EILV), Tai Forest alphavirus (TALV), Mwinilunga alphavirus (MWAIV) and Agua-Salud Alphavirus  
107 (ASALV) (Hermanns et al., 2017, 2020; Nasar et al., 2012; Torii et al., 2018). So far, only the latter  
108 has been studied for its interactions with the RNAi response (Hermanns et al., 2020). Indeed, ASALV  
109 infection in *Aedes albopictus*-derived cells induces the production of vsiRNAs, but lack the production  
110 of vpiRNAs. Moreover, it is unknown whether the siRNA pathway acts antiviral against ASALV.

111 In addition to the mosquitoes' ability to control virus replication through the RNAi pathways, viruses  
112 can also suppress the RNAi response. Indeed, some ISVs such as Culex Y virus and Mosinovirus, are  
113 known to interfere with the RNAi response (Fareh et al., 2018; Schuster et al., 2014; van Cleef et al.,  
114 2014) by encoding a RNAi suppressor protein. However, it is not known whether this is the case for  
115 insect-specific alphaviruses.

116 Here, we investigated the interactions of ASALV with the mosquito RNAi pathways in detail. We  
117 show the antiviral role of the exo-siRNA pathway against ASALV by using *Ae. aegypti* derived *Dcr2*  
118 and *Ago2* knock-out cell lines. ASALV-specific siRNAs were still produced in the absence of *Ago2*  
119 but decreased in the *Dcr2* knock-out cell line. ASALV triggered vpiRNA production through the ping-  
120 pong production pathway only in *Dcr2* knock-out cells. By knocking down additional key RNAi  
121 transcripts, we further show the involvement of *Ago1*, *Ago2* and *Piwi4* as antiviral against ASALV in  
122 *Ae. aegypti* derived cells.

123

## 124 Methods

125

### 126 Cell lines

127 Aag2-AF5 (ECACC 19022601) is a single-cell clone of *Aedes aegypti* derived Aag2 cells. Aag2-AF319  
128 (ECACC 19022602) is a *Dcr2* knock-out (KO) cell line derived from AF5 cells (Varjak, Maringer, et al.,

129 2017b), and AF525 is an *Ago2* knock-out cell line also derived from AF5 cells (Scherer et al., 2021).

130 *Aedes albopictus* derived C6/36 cells were used for virus production.

131 All cell lines were kept in Leibovitz's L15 Medium (ThermoFisher Scientific) supplemented with

132 10 % tryptose phosphate broth (Gibco Life Technologies), 10 % fetal bovine serum (ThermoFisher

133 Scientific), and 1 % penicillin-streptomycin (ThermoFisher Scientific). All cell lines were grown at

134 28 °C.

135 **ASALV stock**

136 Previously isolated and plaque purified ASALV was used for all experiments (Hermanns et al., 2020).

137 Virus stocks were produced by inoculating C6/36 cells. The supernatant was harvested upon

138 observation of morphological changes and was cleared from cell debris by centrifugation. For TCID50

139 virus quantification,  $4 \times 10^4$  C6/36 cells/ per well were seeded in 96-well plates 2 hours before

140 infection. Serial dilutions were performed in L15 complete media.

141 **dsRNA synthesis**

142 Primers specific to *Ae. aegypti Ago1, Ago2, Ago3, Piwi4, Piwi5, Piwi6* (Schnettler et al., 2013) and

143 LacZ (*Aedes*-T7-BGal F/R) (Carissimo et al., 2015) flanked by T7 RNA polymerase promoter

144 sequences were used to amplify gene-specific fragments. Amplified fragments were validated by

145 Sanger sequencing. PCR products were used for *in vitro* transcription and subsequent column-based

146 purification using the MEGAscript RNAi kit (Thermo Fisher Scientific) according to the

147 manufacturer's instructions.

148 **Growth kinetics**

149  $4 \times 10^5$  AF5 cells per well were seeded in 12-well plates a day prior to infection and kept at 28 °C

150 overnight. Cells were infected with ASALV at a multiplicity of infection (MOI) of 0.1. After 1 hour of

151 incubation, the infectious medium was replaced with 1 ml of fresh L15 with supplements. Samples

152 were taken at different time points (0, 24, 48, 72 hours post-infection (hpi)). Infection and negative

153 controls were performed in triplicates, and three independent experiments were performed. The

154 amount of viral RNA in the supernatant was quantified using RNA isolated from supernatant samples

155 with TRIzol LS (Invitrogen) according to manufacturer's protocol. QuantiTect SYBR Green qRT-  
156 PCR one-step kit (Qiagen) was used to quantify ASALV with previously established primers  
157 (Hermanns et al., 2020). Samples were run in technical triplicates. An in-run calibrator and an external  
158 standard curve were used to perform an absolute quantification using Roche Light Cycler 480 II.

159 *ASALV infection in knock-out cells and small RNA sequencing*

160  $3 \times 10^5$  cells/well (AF5, AF525, AF319) were seeded in 24-well plates and infected with ASALV at  
161 MOI 0.5 the following day. Total RNA of infected cells was isolated at 48 hpi with Trizol according to  
162 manufacturer's protocol using glycogen as a carrier. QuantiTect SYBR Green qRT-PCR one-step kit  
163 (Qiagen) was used to quantify ASALV with previously established primers (Hermanns et al., 2020).  
164 ASALV RNA fold change was calculated using the  $2^{-\Delta\Delta CT}$  method with Ribosomal protein S7 RNA  
165 as the housekeeping gene and AF5 cells as the control group.

166 To investigate the production of ASALV specific small RNAs in AF5, AF525 and AF319 cells,  
167  $8 \times 10^5$  cells were seeded in a 6-well plate and infected with ASALV (MOI 1). Total RNA was isolated  
168 at 48 hpi with TRIzol (Ambion), according to manufacturer's protocol with glycogen as a carrier.  
169 Small RNAs of 1  $\mu$ g total RNA were sequenced using BGISEQ-500 at BGI Tech (Hong Kong, China)  
170 as previously described (Scherer et al. 2021). For one of the AF525 samples (Figure S1), total RNA  
171 was sequenced at IKMB (Kiel, Germany), using 100 ng total RNA for library preparation with the  
172 NEXTFLEX® Small RNA-Seq Kit v3 (PerkinElmer Inc., Waltham, MA, USA), followed by library  
173 sequencing on one lane NovaSeq6000 SP v1.0 (2x50bp). Data analyses were performed as previously  
174 described (Varjak, Dietrich, et al., 2018). The ASALV genome sequence was used as template  
175 (MK959115). Small RNA sequencing data is available in the NCBI Sequence Read Archive under  
176 BioProject ID PRJNA725665.

177 *Knock-down experiments*

178  $2.5 \times 10^5$  AF5 cells/well were seeded in 24-well plates the day before transfection with 200 ng of  
179 gene-specific dsRNAs or control dsRNA (dsLacZ) per well, and transfected using 1  $\mu$ l of Dharmafect2

180 reagent (GE Dhamacon). For siRNA knock-downs in knock-out cells, 20 nM of either *Piwi4* specific  
181 siRNAs or control siRNA (Horizon Discovery) was transfected using 2  $\mu$ l Dhamafect2 reagent (GE  
182 Dhamacon), as previously described (Varjak, Maringer, et al., 2017a). The following day, ASALV  
183 infection (MOI 0.5) was performed. At 48 hpi, total RNA was isolated from cells using TRIzol  
184 (Ambion). cDNA of 1.5  $\mu$ g RNA was produced using M-MLV reverse transcriptase (Promega) and  
185 Oligo(dT)15 primers (ThermoFisher Scientific) according to the manufacturer's protocol. SYBR  
186 Green quantitative RT-PCR for mRNA targets was performed using gene-specific primers (Table S1)  
187 and Ribosomal protein S7 RNA as the housekeeping gene transcript. Results were analysed using the  
188  $2^{-\Delta\Delta CT}$  method with LacZ dsRNA samples as control. All qPCR reactions were performed in  
189 technical triplicates.

190 RNA silencing suppressor assay

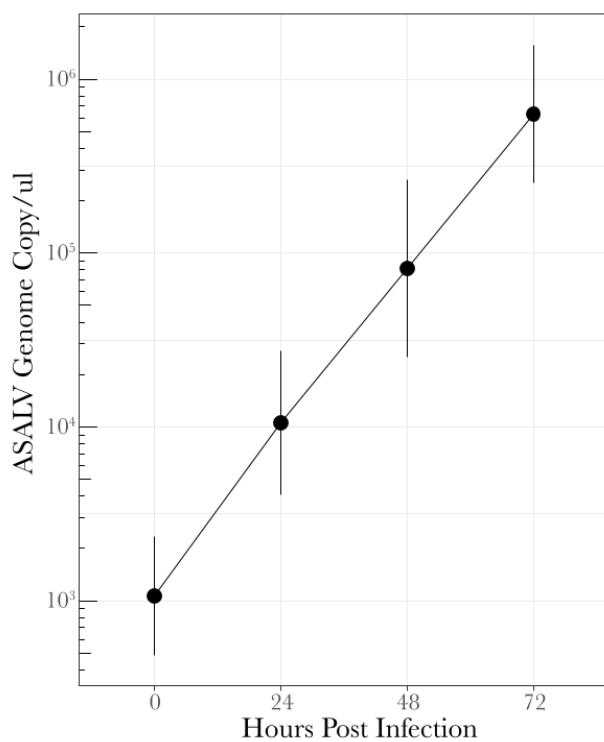
191 To assess whether the presence of ASALV in cells could suppress the RNA silencing response, AF5  
192 cells were seeded in 24-well plates ( $1.8 \times 10^5$  cell/well) one day prior to ASALV infection (MOI 10).  
193 The day following the infection, cells (ASALV or mock infected) were transfected with Firefly and  
194 Renilla luciferase expression constructs, pIZ-Fluc and pAcIE1-Rluc (Ongus, Roode, Pleij, Vlak, & van  
195 Oers, 2006; Varjak, Maringer, et al., 2017), and either 0.5 ng dsRNA (either dsFluc or dsLacZ as a  
196 negative control) or 0.1 ng siRNA (either siFluc or siHyg as a negative control) using 1  $\mu$ l of  
197 Dhamafect2. 24 hours post transfection, the cells were lysed and luciferase was measured with the  
198 Dual luciferase assay (Dual Luciferase Reporter Assay system, Promega) according to manufacturers  
199 protocol on a Glomax luminometer.

200

201 Statistical analyses

202 R (version 3.5.2) was used for statistical analyses. First, normality (Shapiro Wilk test) and variance (F-  
203 test) of the data were tested. The student's t-test was used for normally distributed homoscedastic data,  
204 or the Welch t-test was used for normally distributed heteroscedastic data.  $p < 0.05$  was considered as  
205 statistically significant.

206


207 **Results**

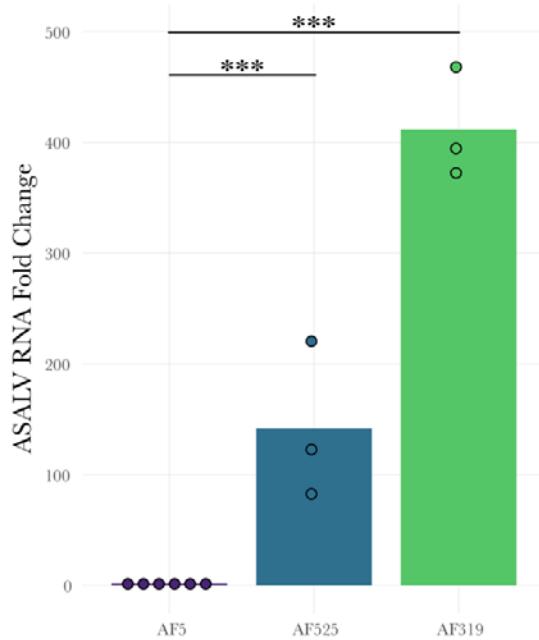
208

209 **ASALV efficiently replicates in AF5 cells**

210 The successful replication of ASALV has been previously shown in *Ae. albopictus* derived C6/36 and  
211 U4.4 cells (Hermanns et al., 2020). To verify that ASALV could replicate in *Ae. aegypti* derived AF5  
212 cells; a cumulative growth curve was performed by collecting supernatant every 24 hours until  
213 72 hours post-infection (hpi). The growth curves showed that ASALV efficiently replicates in AF5  
214 cells (Figure 1) without any visible cytopathic effect.

215




216

217 **Figure 1: Growth Kinetics of ASALV in *Aedes aegypti* derived AF5 cells.** AF5 cells were infected with ASALV with  
218 an MOI of 0.1. The supernatant was collected at different time points (0, 24, 48 and 72 hpi), and ASALV RNA was  
219 quantified by qRT-PCR. The average of three independent replicates (performed in triplicates) is shown with SEM.

220

221 **ASALV replication increases in *Dcr2* (AF319) and *Ago2* (AF525) knock-out cells**

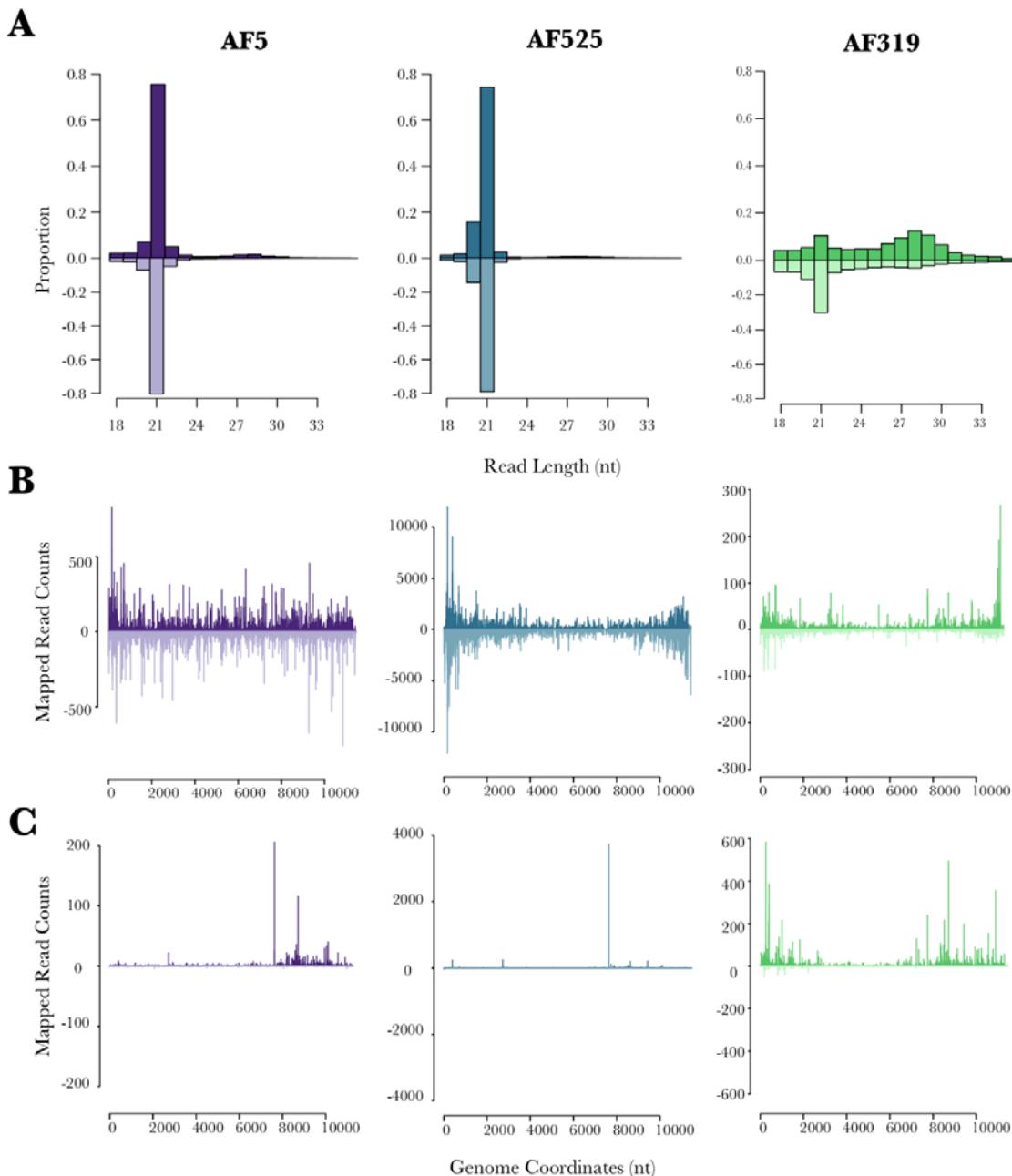
222 To investigate the effect of the siRNA pathway on ASALV replication, *Dcr2* (AF319) and *Ago2*  
223 (AF525) knock-out (KO) cells and control AF5 cells were infected with ASALV (MOI 0.5). ASALV  
224 RNA fold change in the KO cells compared to AF5 cells at 48 hpi was quantified by qPCR. ASALV  
225 RNA increased significantly in AF525 ( $t = 5.2385$ ,  $df = 7$ ,  $p = 0.001$ ) and AF319 cells ( $t = 21.654$ ,  $df =$   
226 7,  $p < 0.001$ , Figure 2) compared to AF5 control cells.



227

228 **Figure 2: Increased ASALV replication in *Dcr2* (AF319) and *Ago2* (AF525) *Ae. aegypti* derived knock-out cells.**  
229 AF319, AF525 and AF5 cells were infected with ASALV (MOI 0.5). ASALV RNA fold change in infected cells was  
230 quantified at 48 hpi, using the  $2^{-\Delta\Delta CT}$  method with Ribosomal protein S7 RNA as housekeeping gene and AF5 cells as  
231 control. Three independent replicates were performed for AF525, and AF319 cells ( $n=3$ ) and AF5 controls were repeated for  
232 each group ( $n=6$ ). Bar plots represent the mean of the replicates that were performed (\*\*\*:  $p < 0.001$ ).  
233

234 **piRNA-sized small RNAs with ping-pong characteristics are only produced in *Dcr2* KO cells**

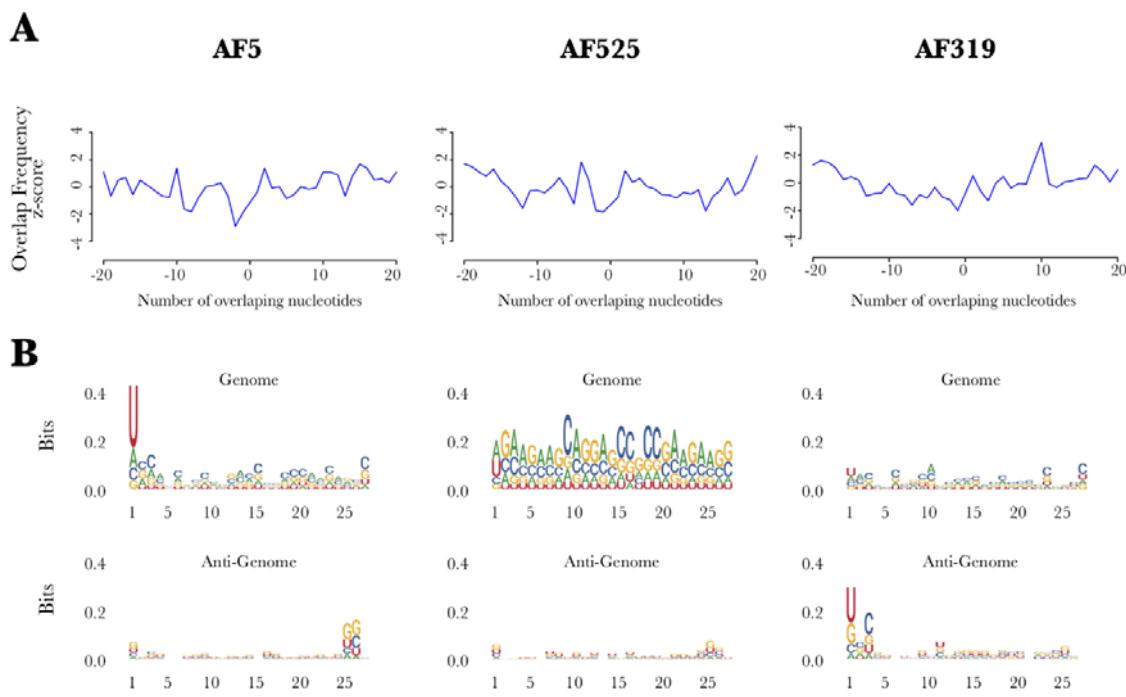

235 To investigate the production of ASALV-specific small RNAs in the different cells, small RNA  
236 sequencing of ASALV infected cells was performed in *Ae. aegypti*-derived AF5, AF319 and AF525  
237 cells. Cells were infected with ASALV (MOI 0.5), and total RNA was isolated at 48 hpi, followed by  
238 small RNA sequencing and bioinformatics analysis. Two independent replicates per cell line were  
239 performed, resulting in similar findings (Table 1 Figure 3, Figure S1-S2).

240 **Table 1: Total and ASALV-specific small RNA reads in *Ae. aegypti* derived AF5, AF525(Ago2 KO) and AF319 (Dcr2**  
241 **KO) cells**

| Cell line         | Total reads |                |                   | ASALV-specific reads |                                                        |                                                           |
|-------------------|-------------|----------------|-------------------|----------------------|--------------------------------------------------------|-----------------------------------------------------------|
|                   | Total       | 21 nts<br>rpm* | 27-28 nts<br>rpm* | Total                | Proportion of<br>21 nts to<br>ASALV-<br>specific reads | Proportion of<br>27-28 nts<br>to ASALV-<br>specific reads |
| AF5 (Figure 3)    | 28,193,638  | 9,996          | 215               | 361,122              | 0.780                                                  | 0.017                                                     |
| AF5 (Figure S1)   | 28,129,604  | 2,581          | 113               | 97,986               | 0.741                                                  | 0.033                                                     |
| AF525 (Figure 3)  | 22,393,006  | 147,349        | 1,308             | 4,284,285            | 0.770                                                  | 0.007                                                     |
| AF525 (Figure S1) | 70,276,976  | 108,396        | 490               | 12,543,700           | 0.607                                                  | 0.003                                                     |
| AF319 (Figure 3)  | 27,567,645  | 1,234          | 1,859             | 254,288              | 0.134                                                  | 0.202                                                     |
| AF319 (Figure S1) | 28,463,344  | 1,713          | 2,148             | 284,136              | 0.172                                                  | 0.215                                                     |

242 \*rpm= reads per million

243




244

245 **Figure 3: ASALV-specific small RNA production in *Ae. aegypti* derived AF5, AF319 (*Dcr2* KO) and AF525 (*Ago2* 246 **KO**).** Cells were infected with ASALV (MOI 0.5). Total RNA was isolated at 48 hpi from the cells, small RNAs (18-40 nt) 247 were sequenced and mapped to the ASALV genome (sense, positive numbers) and antigenome (antisense, negative 248 numbers). **A.** Distribution of the small RNA lengths. Y-axis shows the proportion of small RNAs of a given length to total 249 ASALV-specific small RNA reads. **B.** Mapping of 21nts and **C.** 27nts small RNAs across the ASALV genome and 250 antigenome. The figure is a representative result of two independent experiments.

251

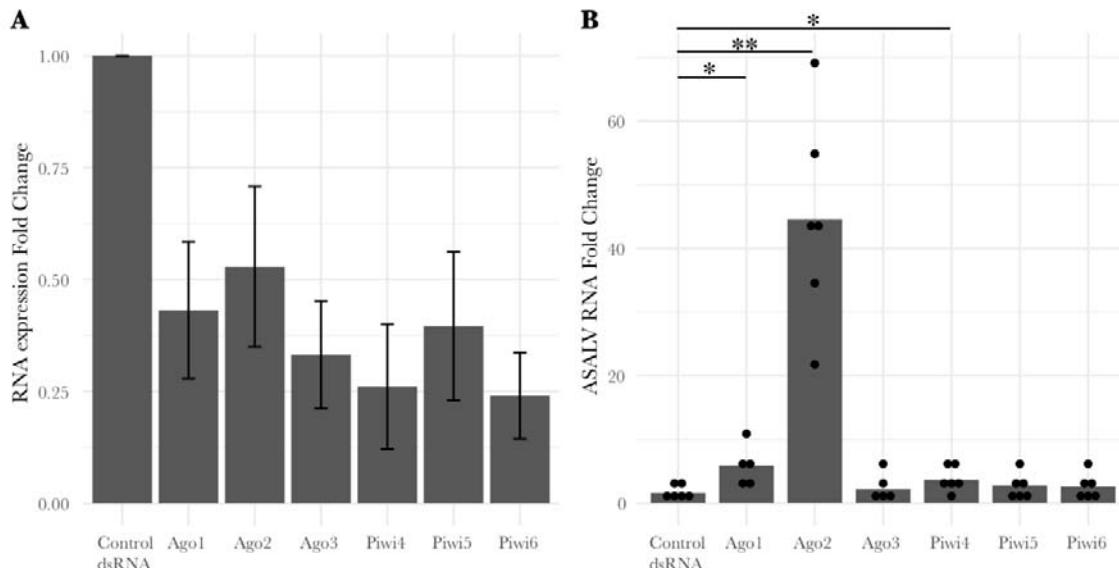
252 In AF5 cells, ASALV-specific siRNAs (Figure 3A) are produced and mapped across the genome  
253 (sense) and antigenome (antisense, Figure 3B), similar to the results previously observed in U4.4 cells  
254 (Hermanns et al., 2020). Similarly, in Ago2 KO AF525 cells, the majority of ASALV-specific small  
255 RNAs are 21 nts long vsiRNAs (Figure 3A). They also map across the whole genome and antigenome,  
256 although with a bias to the 5' and 3' end (Figure 3B); which is not observed in AF5 cells. In Dcr2 KO  
257 AF319, ASALV-specific siRNAs are strongly decreased, and a majority of them map to the 3' end of  
258 the ASALV genome.



259  
260 **Figure 4: Characterization of ASALV specific 25-29 nts long small RNAs in *Ae. aegypti*-derived AF5, AF319 (*Dcr2*  
261 *KO*) and AF525 (*Ago2 KO*). A. Overlap frequency of sense and antisense 25-29 nts long ASALV- specific small RNAs was  
262 calculated. B. Logo sequence plots show the sequence bias in various positions of 27 nts (as representative of vpiRNAs) long  
263 ASALV-specific small RNAs for genomic (upper panel) and antigenomic (lower panel) small RNAs. The figure is a  
264 representative result of two independent experiments.**

265  
266 piRNA-sized small RNAs were observed at a low concentration in both AF5 and AF525 cells (Figure  
267 3A-C) and did not show the “ping-pong” amplification characteristics (Figure 4). In contrast, AF319  
268 cells produce ASALV-specific piRNA-sized small RNAs (Figure 3A-C) with the ping-pong  
269 amplification characteristics (Figure 4). Antisense and sense piRNA-sized small RNAs showed a clear

270 10 nucleotides overlap. Adenine was the most frequent nucleotide on the 10th position of the sense  
271 piRNA-sized small RNA sequence, although the bias was not very strong. In antisense piRNA-sized  
272 small RNA sequences, uridine was the most frequent nucleotide at the first position (Figure 4).


273 In all cells, piRNA-sized small RNAs were mapped around the subgenomic promoter and 5' end of  
274 the subgenomic RNA, encoding for the capsid protein, similar to vpiRNAs produced by arthropod-  
275 borne alphaviruses (Miesen et al., 2015; Schnettler et al., 2013). However, in AF319 cells, some  
276 piRNA-sized small RNAs map also to the 5` of the genome (Figure 4C).

277 Taken together, vsiRNAs are the main small RNA species produced against ASALV infection under  
278 normal circumstances. In the absence of *Dcr2*, ASALV can induce piRNA-sized small RNAs with  
279 sequence characteristics indicative of the ping-pong amplification pathway.

280 **siRNA pathway, miRNA pathway and *Piwi4* are involved in the antiviral RNAi response against  
281 ASALV**

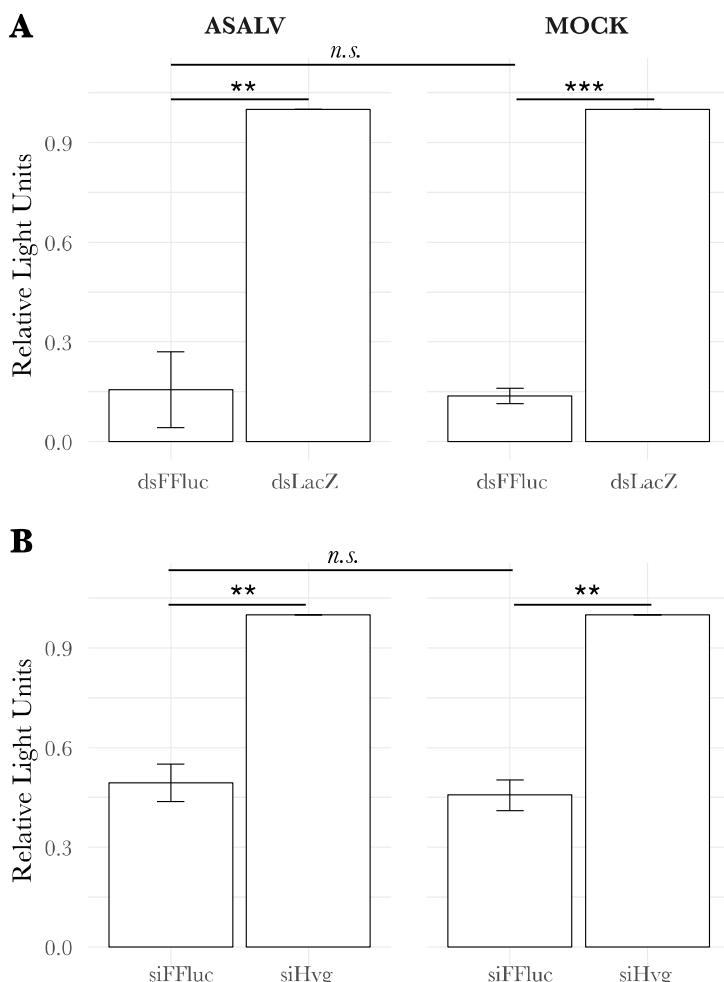
282 Increased ASALV infection in the knock-out cell lines supports the involvement of the siRNA  
283 pathway in the antiviral defense against ASALV. To investigate the involvement of the other RNAi  
284 pathway proteins against ASALV in *Ae. aegypti*-derived AF5 cells, transcripts of different RNAi  
285 proteins were silenced by transfecting cells with sequence-specific dsRNAs (*Ago1*, *Ago2*, *Ago3*,  
286 *Piwi4*, *Piwi5*, *Piwi6*), prior to ASALV infection (MOI 0.5, Figure 5A).

287 Successful silencing was verified (Figure 5A), and viral RNA was quantified in the cells at 48 hpi and  
288 compared to control cells (transfected with dsRNA specific to LacZ). Viral replication increased  
289 significantly in cells where *Ago1* ( $t = 2.817$ ,  $df = 4.665$ ,  $p = 0.040$ ), *Ago2* ( $t = 6.437$ ,  $df = 5.039$ ,  $p =$   
290  $0.001$ ) or *Piwi4* ( $t = 2.628$ ,  $df = 8.543$ ,  $p = 0.029$ ) transcripts were silenced (Figure 5B). The ASALV  
291 RNA fold change was more pronounced in *Ago2* silenced cells than in *Ago1* and *Piwi4* silenced cells  
292 (Table S2). Furthermore, when *Piwi4* the silencing was conducted using *Piwi4* siRNAs, instead of  
293 dsRNAs, ASALV replication increased although this increase was not significant (Figure S3).



294

295 **Figure 5: Ago1, Ago2 and Piwi4 silencing increases ASALV replication in *Ae. aegypti* derived AF5 cells.** Cells were  
296 transfected either with gene-specific dsRNAs or control dsRNA (LacZ-specific). The following day, cells were infected with  
297 ASALV (MOI 0.5), and total RNA was isolated 48 h post-infection. **A.** mRNA targets were quantified using gene-specific  
298 primers and Ribosomal protein S7 RNA as housekeeping transcript.  $2^{-\Delta\Delta CT}$  of mRNA targets was calculated with the mean  
299 normalised RNA expression of a given transcript in the control cells, within the same replicate, as control. The resulting  
300 mean fold change and standard error of the mean are shown. **B.** ASALV RNA was quantified using ASALV specific primers  
301 and Ribosomal protein S7 RNA as housekeeping transcript. ASALV RNA fold change was calculated using  $2^{-\Delta\Delta CT}$  method  
302 with the mean of normalised expression of ASALV RNA, of all replicates, in the control cells as control. Bar plots represent  
303 the mean fold change for each group calculated. At least five independent replicates were performed. (\*: p=<0.05, \*\*:  
304 p<0.01).


305

### 306 No RNAi suppressor effect of ASALV was detected in AF5 cells

307 Several insect viruses have been reported to encode proteins that interfere with the antiviral RNAi  
308 pathway, named viral suppressors of RNAi (VSR). VSRs can interfere at different steps of the RNAi  
309 pathways by interacting with key molecules (e.g. dsRNA or siRNAs) or proteins (e.g. Ago2, Dcr2),  
310 mostly of the exo-siRNA pathway. To determine if ASALV can suppress the exo-siRNA response in  
311 mosquito-derived cells, a previously used luciferase-based RNAi suppressor assay was performed  
312 (Ongus et al., 2006; Varjak, Maringer, et al., 2017). AF5 cells were either infected with ASALV (MOI  
313 10) or mock-infected. After 24 hpi, cells were co-transfected with Firefly and *Renilla* luciferase  
314 (internal control) expression constructs as well as dsRNA (FFluc or LacZ as control) or siRNA  
315 (siFFluc, siHyg as control) to induce silencing. Luciferase activity was measured 24 hpi and sequence-  
316 specific silencing of Firefly luciferase in ASALV or mock-infected cells were compared.

317 Relative luciferase activity was significantly reduced in cells transfected with FFluc dsRNA compared  
318 to controls in both ASALV ( $t = -12.785$ ,  $df = 2$ ,  $p = 0.006$ ; Figure 6A) and mock-infected cells ( $t = -$   
319  $65.212$ ,  $df = 2$ ,  $p < 0.001$ ; Figure 6A). Similarly, luciferase expression was significantly silenced when  
320 ASALV-infected ( $t = -15.469$ ,  $df = 2$ ,  $p = 0.004$ ) or mock -infected cells ( $t = -20.322$ ,  $df = 2$ ,  $p = 0.002$ )  
321 were transfected with siFFluc compared to control siHyg transfection (Figure 6B). No difference in  
322 silencing of luciferase could be observed between mock or ASALV infected cells whether the  
323 silencing was induced by dsRNA ( $t = 0.281$ ,  $df = 2.160$ ,  $p = 0.803$ ; Figure6A) or siRNA ( $t = 0.881$ ,  $df$   
324  $= 4$ ,  $p = 0.428$ ; Figure 6B). Hence in our experimental setting, we did not detect any significant RNAi  
325 suppressor activity of ASALV in AF5 cells.

326



327

328 **Figure 6: No RNAi suppressor effect of ASALV was detected in AF5 cells.** AF5 cells are either mock-infected (cell

329 culture media) or infected with ASALV (MOI 10). Following, cells were transfected with Firefly (FFluc) and *Renilla*  
330 luciferase (*Rluc*) expression constructs and either with 0.5 ng dsRNA (**A**) or 0.1 ng siRNA (**B**). Luciferase was measured  
331 using the Dual luciferase assay and FFluc expression was normalised to *Rluc* as an internal control (relative light units).  
332 FFluc/*Rluc* expression in the dsRNA(dsFluc) or siRNA(siFluc) transfected cells were normalised to control transfected cells  
333 (dsLacZ or siHyg). The mean of three independent experiments in triplicates are shown with SEM (\*\*\*: p<0.001, \*\*: p<0.01,  
334 n.s.: not significant).

335

## 336 Discussion

337

338 RNA interference (RNAi) is an important antiviral response in insects, including mosquitoes. The  
339 interaction between the mosquito RNAi pathways and a variety of viruses can be identified by  
340 detecting virus-specific small RNAs and increased viral infection in case of silencing of key proteins  
341 of the different RNAi pathways. RNAi has been shown to act antiviral in mosquitoes against all tested  
342 viruses so far, although differences regarding the importance of specific pathways or proteins have  
343 been reported (Liu et al., 2019). Our knowledge about the antiviral RNAi response in mosquitoes  
344 comes from arbovirus studies, although mosquitoes often harbour insect-specific viruses (ISVs). Small  
345 RNAs specific to a variety of ISVs were found in infected cells and mosquitoes. However, the  
346 antiviral role of the RNAi pathway against ISVs is not known (Agboli et al., 2019). Here we identified  
347 the antiviral function of the mosquito RNAi pathways against an insect-specific alphavirus for the first  
348 time.

349 The only previous study investigating an RNAi response specific to an insect-specific alphavirus  
350 showed the production of ASALV-specific 21 nts vsiRNAs in *Ae. albopictus* derived (U4.4) cells;  
351 although no vpiRNAs was observed (Hermanns et al., 2020). Our results confirm this previously  
352 reported lack of ASALV-specific piRNA production in *Ae. aegypti*-derived RNAi competent AF5  
353 cells (Figure 4). In contrast, arthropod-borne alphaviruses induce both vsiRNAs and vpiRNAs *in vitro*  
354 in *Ae. aegypti* and *Ae. albopictus*-derived cell lines, as well as in mosquitoes (Cirimotich et al., 2009;  
355 Goic et al., 2016; Morazzani et al., 2012; Schnettler et al., 2013; Siu et al., 2011a; Vodovar et al.,  
356 2012). Despite the difference in the small RNAs that are produced during infection, the mapping of

357 ASALV specific siRNAs (both in AF5 and U4.4 cells) was very similar to the mapping of arthropod-  
358 borne alphaviruses. Both map along the genome and antigenome, more or less equally with some cold  
359 and hot spots (Morazzani et al., 2012; Schnettler et al., 2013; Siu et al., 2011b). This suggests that  
360 similar to arthropod-borne alphaviruses, ASALV also mainly induces vsiRNA production through  
361 dsRNA replicative intermediates.

362 ASALV replication is increased in both *Ago2* silenced (Figure 5B, Table S2) and *Ago2* or *Dcr2*  
363 knock-out cells (Figure 2); highlighting the antiviral role of the exo-siRNA pathway against ASALV.  
364 Similarly, silencing or knock-out of *Ago2* or *Dcr2* induced an increase in infection of tested arthropod-  
365 borne alphaviruses (Campbell et al., 2008; Schnettler et al., 2013; Sucupira et al., 2020; Varjak,  
366 Dietrich, et al., 2018; Varjak, Donald, et al., 2017). Furthermore, similar results have been found for  
367 arboviruses belonging to other virus families or orders (Liu et al., 2019), except for ZIKV, where no  
368 antiviral activity was reported for *Ago2* (Scherer et al., 2021; Varjak, Donald, et al., 2017). For the  
369 arthropod-borne alphavirus SFV, the magnitude of increase in infection was similar in *Dcr2* and *Ago2*  
370 knock-out cells (Scherer et al., 2021). In contrast, for ASALV, the differences between *Ago2* and *Dcr2*  
371 knock-out cells suggest an additional role of *Dcr2* in the antiviral response against ASALV  
372 independent of *Ago2*. For instance, *Dcr2* can detect viral RNA and induce an antiviral protein, Vago,  
373 which activates the Jak-STAT pathway leading to an antiviral effect in *Culex quinquefasciatus* (Hsu)-  
374 derived cells (Paradkar et al., 2012, 2014). Notably, however, Vago does not seem to be induced in  
375 infected *Ae. aegypti*-derived Aag2 cells (Russell et al., 2021). Alternatively, this increased antiviral  
376 effect of *Dcr2* against ASALV might be linked to another yet unknown antiviral pathway related to  
377 *Dcr2* activity.

378 ASALV-specific piRNA-sized small RNAs with ping-pong amplification characteristics were  
379 produced only in *Dcr2* knock-out cells. Previous reports have also shown an increase of SFV-specific  
380 vpiRNAs in cells lacking the *Dcr2* protein (Varjak, Maringer, et al., 2017b). It is possible that the  
381 increase in the vpiRNA production is a result of (i) the increased viral replication due to the lack of the  
382 antiviral *Dcr2* protein, (ii) the high concentration of ASALV RNA in the cytoplasm that is not cut into  
383 vsiRNAs or (iii) a combination of both. Although ASALV replication was increased in *Ago2* knock-

384 out cells, no ping-pong specific vpiRNAs were detected. While this could mean that increased viral  
385 replication is not solely sufficient for ASALV specific vpiRNA production, it has to be noted that the  
386 increase in ASALV replication in *Ago2* knock-out cells was still lower compared to *Dcr2* knock-out  
387 cells. Therefore, it could be that the increased ASALV RNA concentration in *Ago2* KO cells is not  
388 sufficient to trigger vpiRNA production, in contrast to *Dcr2* KO cells. In addition, it is likely that in  
389 *Dcr2* knock-out cells specifically, the amount of viral dsRNA molecules would increase. As the  
390 precise trigger for vpiRNA production in mosquitoes is not yet known, it could be that the  
391 concentration of ASALV dsRNA in *Dcr2* knock-out cells could play a role in triggering vpiRNA  
392 production. On the other hand, the putative essential proteins for the biogenesis of vpiRNAs, *Piwi5*  
393 and *Ago3*, were not antiviral against ASALV (Figure 5B), consistent with findings from arthropod-  
394 borne alphaviruses(Miesen et al., 2015; Varjak, Dietrich, et al., 2018; Varjak, Donald, et al., 2017).  
  
395 Silencing of *Piwi4* resulted in a small but significant increase in ASALV replication as it has  
396 previously been shown for other arboviruses, including alphaviruses (Dietrich, Shi, et al., 2017; Varjak,  
397 Maringer, et al., 2017b). The general antiviral role of *Piwi4* is still not clear. *Piwi4* is not required for  
398 the production of SFV- or SINV- specific vpiRNAs, but it has recently been shown to bind DENV-  
399 specific piRNAs derived from viral cDNA in infected *Ae. aegypti* (Tassetto et al., 2019). While an  
400 interaction between *Piwi4* and piRNA as well as siRNA pathway proteins, including *Dcr2*, has  
401 previously been shown, *Piwi4* antiviral activity is independent of *Dcr2* in SFV infected cells (Joosten  
402 et al., 2021; Varjak, Maringer, et al., 2017a). To check this for ASALV, we silenced *Piwi4* by adding  
403 siRNAs, both in *Dcr2* competent and knock-out cell lines. While the silencing of *Piwi4* through  
404 siRNA increased ASALV replication, the increase was not significant in either of the cell lines (Figure  
405 S3). If this is due to the slightly lower silencing efficiency with siRNAs compared to dsRNA is not  
406 known. Hence it was not possible to conclude whether the effect of *Piwi4* is *Dcr2* independent.  
  
407 Our results suggest an antiviral effect of *Ago1*, which is primarily involved in the miRNA pathway  
408 (Figure 5). Although the mosquito miRNA response has been shown to interact with viruses through  
409 either mosquito or virus-encoded miRNAs (Leggewie & Schnettler, 2018), silencing of *Ago1* has not  
410 resulted in changes of arboviral alphavirus replication (Keene et al., 2004; McFarlane et al., 2014;

411 Schnettler et al., 2013). Similar increases in virus infection upon *Ago1* silencing have been reported  
412 for midge-borne orthobunyaviruses in *Ae. aegypti* derived cells in contrast to mosquito-borne  
413 orthobunyaviruses (Dietrich, Shi, et al., 2017). Additional experiments are needed to determine if the  
414 difference in *Ago1* activity against arthropod-borne alphaviruses compared to insect-specific  
415 alphaviruses can be generalised.

416 Many viruses infecting insects encode proteins to suppress the RNAi pathway, such as Flock House  
417 Virus or Culex Y virus (O’Neal et al., 2014). Several arboviruses, such as Dengue and West Nile  
418 Virus, have also been shown to interfere with the RNAi response by employing competitive substrates  
419 for *Dcr2* derived from their nucleic acids (O’Neal et al., 2014). Furthermore, recent work has identified  
420 the non-structural protein NS2A of flaviviruses as a potent suppressor of RNAi (Qiu et al., 2020). In  
421 our experimental system, we did not observe any RNAi suppressor activity of ASALV.

422 ISVs belonging to some of the arbovirus families and orders, such as *Bunyavirales* (Marklewitz et al.,  
423 2015) and *Flaviviridae* (Cook et al., 2019), are thought to be ancestral to arboviruses, suggesting that  
424 dual-host (invertebrate-vertebrate) tropism evolved from invertebrate specific viruses. As not many  
425 insect-specific alphaviruses have been discovered so far, it is difficult to identify whether insect-  
426 specific viruses or the arthropod-borne alphaviruses are the ancestors in the alphavirus genus (Halbach  
427 et al., 2017). Nevertheless, like other insect-specific alphaviruses so far, ASALV is basal to the  
428 Western Equine encephalitis virus complex clade, suggesting arthropod-borne alphaviruses in this  
429 clade could have evolved from an ancestral insect-specific virus (Halbach et al., 2017; Hermanns et  
430 al., 2020). It is also possible that the changes in the mosquito-virus interactions drive their evolution  
431 resulting in their ability to transmit to vertebrates. In this context, differences between arboviral and  
432 insect-specific alphaviruses’ interaction with mosquito RNAi pathways could be one of the reasons  
433 why ISVs were restricted to invertebrate hosts. In contrast to arthropod-borne alphaviruses studied so  
434 far, we showed that ASALV specific vpiRNAs are not produced in *Dcr2* competent cells, and *Ago1*  
435 was antiviral against ASALV. However, to be able to generalise this observation to other insect-  
436 specific alphaviruses, more studies describing their interactions with mosquito hosts are needed.  
437 Further studies taking both the persistent nature of ISVs and the tissue-specificity of the RNAi

438 response into account could determine whether the interactions of insect-specific alphaviruses with the  
439 RNAi pathways restrict ISVs to their mosquito hosts.

## 440 Funding

441

442 This research was supported by the Deutsche Forschungszentrum für Infektionsforschung (DZIF) and  
443 the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for  
444 Agriculture and Food (BLE), grant numbers 2819113919.

445 The funders had no role in the design of the study, in the collection, analyses, or interpretation of data,  
446 in the writing of the manuscript, or in the decision to publish the results.

447

## 448 References

449

450 Agboli, E., Leggewie, M., Altinli, M., & Schnettler, E. (2019). Mosquito-Specific Viruses—Transmission  
451 and Interaction. *Viruses*, 11(9), 873. <https://doi.org/10.3390/v11090873>

452 Altinli, M., Schnettler, E., & Sicard, M. (2021). Symbiotic Interactions Between Mosquitoes and  
453 Mosquito Viruses. *Frontiers in Cellular and Infection Microbiology*, 11(August), 1–14.  
454 <https://doi.org/10.3389/fcimb.2021.694020>

455 Asgari, S. (2014). Role of microRNAs in vrbovirus/vector interactions. *Viruses*, 6(9), 3514–3534.  
456 <https://doi.org/10.3390/v6093514>

457 Asgari, S. (2015). Regulatory role of cellular and viral microRNAs in insect-virus interactions. *Current  
458 Opinion in Insect Science*, 8, 104–110. <https://doi.org/10.1016/j.cois.2014.12.008>

459 Atoni, E., Zhao, L., Karungu, S., Obanda, V., Agwanda, B., Xia, H., & Yuan, Z. (2019). The discovery and  
460 global distribution of novel mosquito-associated viruses in the last decade (2007-2017). *Reviews  
461 in Medical Virology*, 29(6). <https://doi.org/10.1002/rmv.2079>

462 Blitvich, B. J., & Firth, A. E. (2015). Insect-specific flaviviruses: A systematic review of their discovery,  
463 host range, mode of transmission, superinfection exclusion potential and genomic organization.  
464 In *Viruses* (Vol. 7, Issue 4, pp. 1927–1959). <https://doi.org/10.3390/v7041927>

465 Bolling, B., Weaver, S., Tesh, R., & Vasilakis, N. (2015). Insect-Specific Virus Discovery: Significance for  
466 the Arbovirus Community. *Viruses*, 7(9), 4911–4928. <https://doi.org/10.3390/v7092851>

467 Bronkhorst, A. W., & Van Rij, R. P. (2014). The long and short of antiviral defense: Small RNA-based  
468 immunity in insects. *Current Opinion in Virology*, 7(1), 19–28.  
469 <https://doi.org/10.1016/j.coviro.2014.03.010>

470 Campbell, C. L., Keene, K. M., Brackney, D. E., Olson, K. E., Blair, C. D., Wilusz, J., & Foy, B. D. (2008).  
471 *Aedes aegypti* uses RNA interference in defense against Sindbis virus infection. *BMC  
472 Microbiology*, 8, 1–12. <https://doi.org/10.1186/1471-2180-8-47>

473 Carissimo, G., Pondeville, E., McFarlane, M., Dietrich, I., Mitri, C., Bischoff, E., Antoniewski, C.,  
474 Bourgouin, C., Failloux, A.-B., Kohl, A., & Vernick, K. D. (2015). Antiviral immunity of *Anopheles*  
475 *gambiae* is highly compartmentalized, with distinct roles for RNA interference and gut  
476 microbiota. *Proceedings of the National Academy of Sciences*, 112(2), E176–E185.  
477 <https://doi.org/10.1073/pnas.1412984112>

478 Cirimotich, C. M., Scott, J. C., Phillips, A. T., Geiss, B. J., & Olson, K. E. (2009). Suppression of RNA  
479 interference increases alphavirus replication and virus-associated mortality in *Aedes aegypti*  
480 mosquitoes. *BMC Microbiology*, 9, 1–13. <https://doi.org/10.1186/1471-2180-9-49>

481 Cook, S., Moureau, G., Kitchen, A., Gould, E. A., Lamballerie, X. De, Holmes, E. C., & Harbach, R. E.  
482 (2019). *Molecular evolution of the insect-specific flaviviruses*. *May*, 223–234.  
483 <https://doi.org/10.1099/vir.0.036525-0>

484 Dietrich, I., Jansen, S., Fall, G., Lorenzen, S., Rudolf, M., Huber, K., Heitmann, A., Schicht, S., Elliott, R.  
485 M., Diallo, M., Sall, A. A., & Failloux, A. (2017). RNA Interference Restricts Rift Valley. *MSphere*,  
486 2(3), 1–17. <https://doi.org/10.1128/mSphere.00090-17>

487 Dietrich, I., Shi, X., McFarlane, M., Watson, M., Blomström, A. L., Skelton, J. K., Kohl, A., Elliott, R. M.,  
488 & Schnettler, E. (2017). The Antiviral RNAi Response in Vector and Non-vector Cells against  
489 Orthobunyaviruses. *PLoS Neglected Tropical Diseases*, 11(1), 1–18.  
490 <https://doi.org/10.1371/journal.pntd.0005272>

491 Donald, C. L., Kohl, A., & Schnettler, E. (2012). New insights into control of arbovirus replication and  
492 spread by insect RNA interference pathways. *Insects*, 3(2), 511–531.  
493 <https://doi.org/10.3390/insects3020511>

494 Fareh, M., van Lopik, J., Katechis, I., Bronkhorst, A. W., Haagsma, A. C., van Rij, R. P., & Joo, C. (2018).  
495 Viral suppressors of RNAi employ a rapid screening mode to discriminate viral RNA from cellular  
496 small RNA. *Nucleic Acids Research*, 46(6), 3187–3197. <https://doi.org/10.1093/nar/gkx1316>

497 Frangeul, L., Blanc, H., Saleh, M. C., & Suzuki, Y. (2020). Differential small RNA responses against co-  
498 infecting insect-specific viruses in *aedes albopictus* mosquitoes. *Viruses*, 12(4).  
499 <https://doi.org/10.3390/v12040468>

500 Goic, B., Stapleford, K. A., Frangeul, L., Doucet, A. J., Gausson, V., Blanc, H., Schemmel-Jofre, N.,  
501 Cristofari, G., Lambrechts, L., Vignuzzi, M., & Saleh, M.-C. (2016). Virus-derived DNA drives  
502 mosquito vector tolerance to arboviral infection. *Nature Communications*, 7(1), 12410.  
503 <https://doi.org/10.1038/ncomms12410>

504 Halbach, R., Junglen, S., & van Rij, R. P. (2017). Mosquito-specific and mosquito-borne viruses:  
505 evolution, infection, and host defense. *Current Opinion in Insect Science*, 22, 16–27.  
506 <https://doi.org/10.1016/j.cois.2017.05.004>

507 Hermanns, K., Marklewitz, M., Zirkel, F., Overheul, G. J., Page, R. A., Loaiza, J. R., Drost, C., Van Rij,  
508 R. P., & Junglen, S. (2020). Agua salud alphavirus defines a novel lineage of insect-specific  
509 alphaviruses discovered in the New World. *Journal of General Virology*, 101(1), 96–104.  
510 <https://doi.org/10.1099/JGV.0.001344>

511 Hermanns, K., Zirkel, F., Kopp, A., Marklewitz, M., Rwege, I. B., Estrada, A., Gillespie, T. R., Drost,  
512 C., & Junglen, S. (2017). Discovery of a novel alphavirus related to Eilat virus. *Journal of General*  
513 *Virology*, 98(1), 43–49. <https://doi.org/10.1099/jgv.0.000694>

514 Joosten, J., Taşköprü, E., Jansen, P. W. T. C., Pennings, B., Vermeulen, M., & van Rij, R. P. (2021). PIWI  
515 proteomics identifies Atari and Pasilla as piRNA biogenesis factors in *Aedes* mosquitoes. *Cell Reports*, 35(5). <https://doi.org/10.1016/j.celrep.2021.109073>

517 Keene, K. M., Foy, B. D., Sanchez-Vargas, I., Beaty, B. J., Blair, C. D., & Olson, K. E. (2004). RNA  
518 interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus;  
519 Togaviridae) infection of *Anopheles gambiae*. *Proceedings of the National Academy of Sciences*,  
520 101(49), 17240–17245. <https://doi.org/10.1073/pnas.0406983101>

521 Leggewie, M., & Schnettler, E. (2018). RNAi-mediated antiviral immunity in insects and their possible  
522 application. *Current Opinion in Virology*, 32, 108–114.  
523 <https://doi.org/10.1016/j.coviro.2018.10.004>

524 Liu, J., Swevers, L., Koliopoulou, A., & Smagghe, G. (2019). Arboviruses and the challenge to establish  
525 systemic and persistent infections in competent mosquito vectors: The interaction with the  
526 RNAi mechanism. *Frontiers in Physiology*, 10(JUL), 1–29.  
527 <https://doi.org/10.3389/fphys.2019.00890>

528 Marklewitz, M., Zirkel, F., Kurth, A., Drost, C., & Junglen, S. (2015). Evolutionary and phenotypic  
529 analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family.  
530 *Proceedings of the National Academy of Sciences*, 112(24), 7536–7541.  
531 <https://doi.org/10.1073/pnas.1502036112>

532 McFarlane, M., Arias-Goeta, C., Martin, E., O'Hara, Z., Lulla, A., Mousson, L., Rainey, S. M., Misbah, S.,  
533 Schnettler, E., Donald, C. L., Merits, A., Kohl, A., & Failloux, A. B. (2014). Characterization of  
534 *Aedes aegypti* Innate-Immune Pathways that Limit Chikungunya Virus Replication. *PLoS Neglected Tropical Diseases*, 8(7). <https://doi.org/10.1371/journal.pntd.0002994>

536 Miesen, P., Girardi, E., & Van Rij, R. P. (2015). Distinct sets of PIWI proteins produce arbovirus and  
537 transposon-derived piRNAs in *Aedes aegypti* mosquito cells. *Nucleic Acids Research*, 43(13),  
538 6545–6556. <https://doi.org/10.1093/nar/gkv590>

539 Miesen, P., Joosten, J., & van Rij, R. P. (2016). PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector  
540 Mosquitoes. *PLoS Pathogens*, 12(12), 1–17. <https://doi.org/10.1371/journal.ppat.1006017>

541 Morazzani, E. M., Wiley, M. R., Murreddu, M. G., Adelman, Z. N., & Myles, K. M. (2012). Production of  
542 virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. *PLoS Pathogens*, 8(1). <https://doi.org/10.1371/journal.ppat.1002470>

544 Nasar, F., Palacios, G., Gorchakov, R. V., Guzman, H., Da Rosa, A. P. T., Savji, N., Popov, V. L., Sherman,  
545 M. B., Lipkin, W. I., Tesh, R. B., & Weaver, S. C. (2012). Eilat virus, a unique alphavirus with host  
546 range restricted to insects by RNA replication. *Proceedings of the National Academy of Sciences*,  
547 109(36), 14622–14627. <https://doi.org/10.1073/pnas.1204787109>

548 Öhlund, P., Hayer, J., Hesson, J. C., & Blomström, A.-L. (2021). Small RNA Response to Infection of the  
549 Insect-Specific Lammi Virus and Hanko Virus in an *Aedes albopictus* Cell Line. *Viruses*, 13(11),  
550 2181. <https://doi.org/10.3390/v13112181>

551 O'Neal, S. T., Samuel, G. H., Adelman, Z. N., & Myles, K. M. (2014). Mosquito-borne viruses and  
552 suppressors of invertebrate antiviral RNA silencing. *Viruses*, 6(11), 4314–4331.  
553 <https://doi.org/10.3390/v6114314>

554 Ongus, J. R., Roode, E. C., Pleij, C. W. A., Vlak, J. M., & van Oers, M. M. (2006a). The 5' non-translated  
555 region of *Varroa destructor* virus 1 (genus Iflavirus): Structure prediction and IRES activity in

556 Lymantria dispar cells. *Journal of General Virology*, 87(11), 3397–3407.  
557 <https://doi.org/10.1099/vir.0.82122-0>

558 Ongus, J. R., Roode, E. C., Pleij, C. W. A., Vlak, J. M., & van Oers, M. M. (2006b). The 5' non-translated  
559 region of Varroa destructor virus 1 (genus Iflavivirus): Structure prediction and IRES activity in  
560 Lymantria dispar cells. *Journal of General Virology*, 87(11), 3397–3407.  
561 <https://doi.org/10.1099/vir.0.82122-0>

562 Paradkar, P. N., Duchemin, J. B., Voysey, R., & Walker, P. J. (2014). Dicer-2-Dependent Activation of  
563 Culex Vago Occurs via the TRAF-Rel2 Signaling Pathway. *PLoS Neglected Tropical Diseases*, 8(4).  
564 <https://doi.org/10.1371/journal.pntd.0002823>

565 Paradkar, P. N., Trinidad, L., Voysey, R., Duchemin, J. B., & Walker, P. J. (2012). Secreted Vago  
566 restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway.  
567 *Proceedings of the National Academy of Sciences of the United States of America*, 109(46),  
568 18915–18920. <https://doi.org/10.1073/pnas.1205231109>

569 Qiu, Y., Xu, Y., Wang, M., Miao, M., Zhou, H., Xu, J., Kong, J., Zheng, D., Li, R., Zhang, R., Guo, Y., Li, X.,  
570 Cui, J., Qin, C., & Zhou, X. (2020). Flavivirus induces and antagonizes antiviral RNA interference  
571 in both mammals and mosquitoes. *Science Advances*, 6(6).  
572 <https://doi.org/10.1126/SCIADV.AAX7989>

573 Russell, T. A., Ayaz, A., Davidson, A. D., Fernandez-Sesma, A., & Maringer, K. (2021). Imd pathway-  
574 specific immune assays reveal NF-κB stimulation by viral RNA PAMPs in Aedes aegypti Aag2  
575 cells. *PLOS Neglected Tropical Diseases*, 15(2), e0008524.  
576 <https://doi.org/10.1371/JOURNAL.PNTD.0008524>

577 Scherer, C., Knowles, J., Sreenu, V. B., Fredericks, A. C., Fuss, J., Maringer, K., Fernandez-Sesma, A.,  
578 Merits, A., Varjak, M., Kohl, A., & Schnettler, E. (2021). An aedes aegypti-derived ago2 knockout  
579 cell line to investigate arbovirus infections. *Viruses*, 13(6), 1–19.  
580 <https://doi.org/10.3390/v13061066>

581 Schnettler, E., Donald, C. L., Human, S., Watson, M., Siu, R. W. C., McFarlane, M., Fazakerley, J. K.,  
582 Kohl, A., & Fragkoudis, R. (2013). Knockdown of piRNA pathway proteins results in enhanced  
583 semliki forest virus production in mosquito cells. *Journal of General Virology*, 94(PART7), 1680–  
584 1689. <https://doi.org/10.1099/vir.0.053850-0>

585 Schuster, S., Zirkel, F., Kurth, A., Cleef, K. W. R. van, Drost, C., Rij, R. P. van, & Junglen, S. (2014). A  
586 Unique Nodavirus with Novel Features: Mosinovirus Expresses Two Subgenomic RNAs, a Capsid  
587 Gene of Unknown Origin, and a Suppressor of the Antiviral RNA Interference Pathway. *Journal  
588 of Virology*, 88(22), 13447. <https://doi.org/10.1128/JVI.02144-14>

589 Siu, R. W. C., Fragkoudis, R., Simmonds, P., Donald, C. L., Chase-Topping, M. E., Barry, G., Attarzadeh-  
590 Yazdi, G., Rodriguez-Andres, J., Nash, A. A., Merits, A., Fazakerley, J. K., & Kohl, A. (2011a).  
591 Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito  
592 Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small  
593 Interfering RNAs. *Journal of Virology*, 85(6), 2907–2917. <https://doi.org/10.1128/jvi.02052-10>

594 Siu, R. W. C., Fragkoudis, R., Simmonds, P., Donald, C. L., Chase-Topping, M. E., Barry, G., Attarzadeh-  
595 Yazdi, G., Rodriguez-Andres, J., Nash, A. A., Merits, A., Fazakerley, J. K., & Kohl, A. (2011b).  
596 Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito  
597 Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small  
598 Interfering RNAs. *Journal of Virology*, 85(6), 2907–2917. <https://doi.org/10.1128/jvi.02052-10>

599 Sucupira, P. H. F., Ferreira, Á. G. A., Leite, T. H. J. F., de Mendonça, S. F., Ferreira, F. V., Rezende, F. O.,  
600 Marques, J. T., & Moreira, L. A. (2020). The rnai pathway is important to control mayaro virus  
601 infection in aedes aegypti but not for wolbachia-mediated protection. *Viruses*, 12(8), 1–14.  
602 <https://doi.org/10.3390/v12080871>

603 Tassetto, M., Kunitomi, M., Whitfield, Z. J., Dolan, P. T., Sánchez-Vargas, I., Garcia-Knight, M., Ribiero,  
604 I., Chen, T., Olson, K. E., & Andino, R. (2019). Control of RNA viruses in mosquito cells through  
605 the acquisition of vDNA and endogenous viral elements. *ELife*, 8, 1–29.  
606 <https://doi.org/10.7554/eLife.41244>

607 Torii, S., Orba, Y., Hang'ombe, B. M., Mweene, A. S., Wada, Y., Anindita, P. D., Phongphaew, W., Qiu,  
608 Y., Kajihara, M., Mori-Kajihara, A., Eto, Y., Harima, H., Sasaki, M., Carr, M., Hall, W. W., Eshita, Y.,  
609 Abe, T., & Sawa, H. (2018). Discovery of Mwinilunga alphavirus: A novel alphavirus in Culex  
610 mosquitoes in Zambia. *Virus Research*, 250, 31–36.  
611 <https://doi.org/10.1016/j.virusres.2018.04.005>

612 van Cleef, K. W. R., van Mierlo, J. T., Miesen, P., Overheul, G. J., Fros, J. J., Schuster, S., Markleowitz,  
613 M., Pijlman, G. P., Junglen, S., & van Rij, R. P. (2014). Mosquito and *Drosophila*  
614 entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. *Nucleic Acids Research*, 42(13),  
615 8732–8744. <https://doi.org/10.1093/nar/gku528>

616 Varjak, M., Dietrich, I., Sreenu, V. B., Till, B. E., Merits, A., Kohl, A., & Schnettler, E. (2018). Spindle-E  
617 acts antivirally against alphaviruses in mosquito cells. *Viruses*, 10(2).  
618 <https://doi.org/10.3390/v10020088>

619 Varjak, M., Donald, C. L., Mottram, T. J., Sreenu, V. B., Merits, A., Maringer, K., Schnettler, E., & Kohl,  
620 A. (2017). Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.  
621 *PLoS Neglected Tropical Diseases*, 11(10), 1–18. <https://doi.org/10.1371/journal.pntd.0006010>

622 Varjak, M., Leggewie, M., & Schnettler, E. (2018). The antiviral piRNA response in mosquitoes?  
623 *Journal of General Virology*, 1551–1562. <https://doi.org/10.1099/jgv.0.001157>

624 Varjak, M., Maringer, K., Watson, M., Sreenu, V. B., Fredericks, A. C., Pondeville, E., Donald, C. L.,  
625 Sterk, J., Kean, J., Vazeille, M., Failloux, A., Kohl, A., & Schnettler, E. (2017a). Aedes aegypti  
626 Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. *MSphere*, 2(3), e00144-17.  
627 <https://doi.org/10.1128/mSphere.00144-17>

628 Varjak, M., Maringer, K., Watson, M., Sreenu, V. B., Fredericks, A. C., Pondeville, E., Donald, C. L.,  
629 Sterk, J., Kean, J., Vazeille, M., Failloux, A., Kohl, A., & Schnettler, E. (2017b). Aedes aegypti  
630 Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. *MSphere*, 2(3), e00144-17.  
631 <https://doi.org/10.1128/mSphere.00144-17>

632 Vodovar, N., Bronkhorst, A. W., van Cleef, K. W. R., Miesen, P., Blanc, H., van Rij, R. P., & Saleh, M. C.  
633 (2012). Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. *PLoS ONE*,  
634 7(1). <https://doi.org/10.1371/journal.pone.0030861>

635 Weaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. *Antiviral Research*, 85(2),  
636 328–345. <https://doi.org/10.1016/j.antiviral.2009.10.008>

637