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Abstract 
 
Working memory enables incorporation of recent experience into subsequent decision-making. This 
processing recruits both prefrontal cortex and hippocampus, where neurons encode task cues, rules and 
outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. 
Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, 
we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-
match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct 
mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5Hz rhythmic 
modulation; CA1-mPFC assemblies re-emerged during choice episodes, but were not 4-5Hz modulated. 
Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained 
mPFC encoding; pharmacological disruption of CA1-mPFC assembly rhythmicity impaired task performance. 
Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC 
subpopulations and the dynamics of physiologically distinct, distributed cell assemblies. 
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Introduction 
Working memory’s capacity to integrate prior experience into context-dependent choice is a cornerstone of 
adaptive decision-making1. Delayed non-match to sample (DNMTS) paradigms hinge on such memory-
guided decisions and are subserved by interactions between executive and mnemonic hub regions including 
the prefrontal cortex (PFC) and hippocampus2,3. PFC principal neuron spike rates during delayed response 
tasks encode diverse features of sample identity and task rules in both non-human primates4–8 and rodents9–

15, with sustained PFC principal neuron firing offering an intuitive neural correlate of working memory 
maintenance during task delay phases16,17,26–32,18–25. However, as analyses have extended from individual 
neurons to simultaneously recorded cortical populations, other informative features of PFC ensemble 
dynamics have emerged33–35. 
 
Sequentially active, task-informative neurons in PFC and interrelated regions can span the behavioral 
progression from sample to choice24,36–39, and recent models invoke dynamic changes to the information 
coded by individual neurons and subpopulations across sample, delay and response epochs20,37,48,40–47. Thus 
subsets of transiently active neurons not classically selective for individual task features can contribute to 
DNMTS performance35,49–53. Here, we test whether and how these complex neural dynamics within the PFC 
– which have been characterized primarily in primates – reflect its interactions with hippocampus, using 
simultaneous hippocampal-PFC recordings in rats. 
 
Hippocampal CA1/CA3 single unit activity during DNMTS-related tasks in both macaque54 and rat11,55 show 
dissociable sample, delay and choice correlates, potentially reflecting interactions with PFC. Indeed, 
simultaneous recordings from rodent PFC and hippocampus reveal co-varying network activity associated 
with 5-10Hz ‘theta’ frequency coherence across the two regions during route choice on mazes56–59 and 
spatially-guided object memory retrieval60. However, the precise timing and nature of the network physiology 
driving these interactions remains equivocal, as do the relationships between single neuron and population-
level contributions to information encoding and retrieval across the hippocampal-PFC axis. For example, how 
are hippocampal representations integrated into PFC dynamics during both cue sampling and subsequent 
choice? Do different oscillatory interactions with hippocampus disambiguate the cognitive contexts of sample 
and choice?  
 
We examined the dynamic contributions of hippocampal and PFC populations to information encoding during 
the DNMTS task. Specifically, we tested the hypotheses that: (1) Correlated groups of neurons distributed 
across hippocampus and PFC form assemblies that contribute to the representation of cue information during 
sample encoding and recall; (2) Dissociable subsets of PFC neurons (less directly modulated by 
hippocampus) maintain cue information during the working memory delay; and (3) At least one of these 
population signatures should fail to encode, maintain or transfer information during errors, culminating in an 
incorrect choice. 
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Results 
 
Dissociable dCA1 and mPFC population dynamics reflect differential contributions to information encoding, 
maintenance, and recall during the DNMTS task  
 
Six rats were trained on the DNMTS task (Fig. 1A and S1A) and chronically implanted with tetrodes (Fig. 
1B, Fig. S1C-F) to record simultaneous spiking activity from dorsal CA1 and prelimbic medial PFC (mPFC); 
data are presented from the final two DNMTS sessions after criterion had been achieved (Methods). 31±5 
mPFC and 30±5 dCA1 (mean±SEM) well-isolated putative principal neurons with mean firing rates >0.5Hz 
were analyzed from each animal per session. 
 
Every trial began with a sample phase initiated by light-cued presentation of either the right or left lever. 
Following sample press, the lever was retracted and rats turned and waited at a food pellet receptacle in the 
opposite wall; a tone then signalled the end of a 4, 8 or 16s delay, varying randomly from trial to trial to 
discourage mediating behavior. The choice phase was initiated by nose-poking inside the receptacle to 
release presentation of the two levers on the opposite wall. Correct choice was rewarded according to a non-
match rule. 
 
Rats made significantly more errors on 16s delay trials than trials with shorter delays (Fig. 1C,  N=12, 2 
sessions from 6 rats, ANOVA, F(2,36) = 42.4, p<0.001, Tukey-Kramer post-hoc test for delays p<0.001): all 
rats performed the DNMTS task significantly better than chance on 4s and 8s delay trials in both of two 
consecutive test sessions (p<0.05, binomial tests for each rat’s performance), whereas only three rats 
achieved above-chance performance at 16s delay in the latter of the two sessions. Response latencies did 
not differ systematically across 4, 8 or 16s delay trials, or correct vs. error trials (Fig. S1B), indicating that 
inaccurate performance on 16s delay trials was unlikely to stem from failure to engage with the task. 
 
To quantify the time-varying encoding of cue location by single units, we used Student’s t-statistic as a 
measure of discrimination between left- vs. right-cue firing rates, tracking in 50ms bins how much information 
about the sample lever identity was carried by each neuron’s trial-averaged activity in dCA1 (Fig. 1D, top) 
and mPFC (Fig. 1D, bottom). For dCA1 units, discrimination tended to peak around sample and choice lever 
presentations. The activity of mPFC units was less bound to the sample and choice lever presses, and tiled 
the entire delay period in sequential, overlapping fashion (Fig. 1D, bottom right panel and Fig. S1H-J). 
Indeed, whilst dCA1 units showed significantly stronger peak cue location encoding than mPFC units during 
the sample and choice-preparatory periods (Fig. 1E, top, peak t-score, dCA1 vs. mPFC units;  3.49±0.23 vs. 
2.72±0.08, t(463)=3.52, p=0.00048, t-test, N= 223, 242 units from 12 sessions), single units from the two 
areas were indistinguishable in the durations over which they encoded cue location more than expected by 
chance (Fig. 1E, bottom, duration of encoding, dCA1 vs. mPFC units; 2.24±0.19s vs. 1.99±0.16s; t(463) = 
1.38, p=0.17, t-test, N= 223, 242 units from 12 sessions). Very few mPFC units showed persistent lever-
selective delay firing (approximately 85% units showed significant decoding for <6s, Fig. 1E, bottom).  
 
We next quantified how joint activity of simultaneously recorded populations of single units within each area 
carried task-relevant information using a linear discriminant classifier (Fig. 1F). Independently for each 
session, we used leave one out cross-validation (LOOCV) to predict lever identity for each 50ms time bin. To 
compare between animals, random subsets of equalized unit numbers and trial counts were drawn between 
conditions, ruling out dimensionality confounds in classifier performance. 
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Figure 1:  
Differential contributions of dCA1 and mPFC neurons and populations to performance in the DNMTS working 
memory task 

 
A DNMTS task Schematic. 
Solid/dashed lines indicate periods of 
instructed/free-paced behavior. 
Incorrect choices led to a time-out 
before the subsequent trial. Below: 
Contingencies leading to Correct (left) 
and Error outcomes. B Schematic of 
chronic recording configuration.  
C Performance of rats on 4s, 8s and 
16s delay trials. Black dotted/solid lines 
link individual trials from at/above 
chance sessions, red dotted line 
indicates chance level.  
D Left: Z-scored mean firing single 
units rates ±5s relative to Sample and 
Choice lever presses for preferred 
(higher peak firing rate) cue locations. 
Units from each brain area are sorted 
by times of peak discrimination of cue 
location. Right: time-resolved t-scores 
between cue location-specific firing 
rates. Grey regions mask periods of 
insignificant cue location discrimination 
(p<0.05, vs. Bootstrapped 95% CIs). 
Single units shown aggregated from all 
sessions. E Distributions of peak 
strength (top) and duration (bottom) of 
cue location encoding by dCA1 and 
mPFC single units. Shaded regions 
indicate mean±SEM of distributions 
across sessions. 
F Leave-one-out decoding of cue 

location from firing rates of single units in 50ms bins. Shaded curves indicate mean±SEM decoding across 
animals with matched trial and unit counts randomly sampled from available data. Grey shaded bars above 
indicate times of cue decoding periods significantly different from chance (cue-shuffled data). Blue/Red bars 
show times of significantly stronger cue decoding from mPFC/dCA1 units (p<0.05, bootstrap permutation test 
between the two conditions n=12 sessions).  
G Cross-validated decoding of cue location from dCA1 and mPFC units on error trials: Performance of 
regularised linear decoder trained on correct trials and tested on correct (black) and error (red) trials. 
Mean±SEM performance across recording sessions shown. Black bars indicate times of significant drops in 
cross-validated decoding performance (Bootstrap permutation test, Bonferroni-corrected p<0.05). 
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Joint activity of simultaneously recorded dCA1 units showed strong but transient read-out of sample identity, 
peaking around the lever-presses but dropping to chance decoding performance during the delay period (Fig. 
1F, red traces). Meanwhile, the discrimination around sample and choice lever presentation was less 
pronounced in mPFC populations, which instead maintained a stronger representation of sample identity 
than dCA1 populations throughout the delay and post-choice evaluation period (Fig. 1F, blue traces). These 
findings are in good agreement with recent comparisons between task coding dynamics in hippocampal and 
frontal cortical populations in primates61,62. 
 
Which features of the dCA1 and mPFC population activity are essential to the correct execution of the 
DNMTS task? Previous studies have approached this question by inducing forced errors with lesioning or 
inactivation of the hippocampal-frontal network (O’Neill et al., 2013; Spellman et al., 2015), but less is known 
about the system’s dynamics during spontaneous, unforced errors. Since 16s delay trials challenged the 
working memory limits of rats, we quantified which aspects of the sequential contributions of dCA1 and mPFC 
populations failed during incorrect choices. 
 
Decoders trained on correct trials and tested on error trials demonstrated that decoding of sample lever 
identity from hippocampal populations was intact (Fig. 1G): on error trials the, two conditions were 
indistinguishable around the Sample lever press and dCA1 continued to represent the wrong (same) lever 
on approach to the Choice lever press. Thus, even as the rats re-visited the Sample  lever, hippocampal 
representations remained faithful. In the mPFC however, sample representation on error trials began to 
decay immediately after the Sample lever press, such that incorrect choices could be predicted approximately 
2s earlier in the delay period than from dCA1 activity (black bars in Fig. 1G indicate significantly error-
predicting periods). 
 
 
mPFC population dynamics support coding that spans the DNMTS delay phase 

 
What ensemble mechanisms might underlie the sustained coding of cue identity by mPFC populations during 
the delay period on correct trials? We examined data on a trial-by-trial basis to find associations between 
mPFC population dynamics and DNMTS accuracy (Fig. 2), comparing LOOCV decoding across delay 
lengths and correct vs. error outcomes. Subsets of the different trial types were drawn at random to allow 
matching of trial numbers across conditions (accounting for fewer available correct trials on longer delays). 
 
On 4s and 8s delay trials, during which all rats performed above chance in both recording sessions (Fig. 1B), 
delay period decoder results were significantly better than chance performance (bootstraps with shuffled trial 
labels) for the entire delay period duration in the majority of recording sessions (indicated by grey shading in 
Fig. 2A). For 16s delay trials, we split recording sessions by whether animals’ behavioural performance was 
at, or significantly better than chance performance, (light and solid blue curves in Fig. 2A). Here, whereas 
correct outcome 16s delay trials from above-chance sessions showed decoder performance that was above 
chance for the majority of the delay period (albeit variable due to the small subset of three above-chance 
sessions), mPFC population decoding from correct trials from chance-performance behavioural sessions 
fluctuated around chance levels from shortly after sample lever press. Thus, even though all trials examined 
corresponded to “correct” outcomes, faithful decoding of cue identity from mPFC populations demanded that 
rats were not guessing their choices, implicating faithful cue representation by mPFC populations in 
successful task performance. 
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Figure 2: 
Maintenance of cue location by a stabilizing population code in mPFC underlies correct performance in the 
DNMTS task 

 
 
A Time-resolved decoding of cue location 
from mPFC single unit populations on correct 
trials for sessions above (solid blue) and 
below (light blue) chance performance (50%, 
dotted line). Fraction of above-chance 
performing sessions with decoding greater 
than 95% of cue location-shuffled bootstrap 
decoding distribution are shown as grey 
shaded bars above the curves. Mean±SEM 
decoding performance from 12 sessions (all 
above chance performance for 4,8s delays, 
nine at chance for 16s delay trials). 
B Cross-temporal decoding of cue location 
from populations of mPFC single units during 
the delay period: Cross-validated regularised 
linear decoders trained and tested at different 
points during the delay period (±5s) White 
lines indicate bounding box of delay period. 
Green and black markers indicate Sample 
press and end-of-delay tone, respectively. 
White arrow along diagonal indicates training 
and testing at the same time point (using 
different withheld trials for testing), providing 
curves shown in A. Bounded regions show 
significant (p<0.05) decoding relative to cue-
shuffled bootstrap distribution. 
C Cross-temporal cue decoding performance 
of mPFC unit population recordings on 
correct 16s delay trials from at-chance 
sessions (top) and on errors on above-
chance (bottom). Statistics as for B. Right: 
Subtraction of above-chance session 
decoding from below-chance sessions (top) 
and correct from error trials (bottom). 
Bounded regions indicate significant 
differences between conditions (bootstrap 
permutation test, p<0.05). 
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Thus on correct trials, a delay-spanning coding scheme is implemented in mPFC during the working memory 
period of the DNMTS task, despite individual neurons firing only transiently (Fig. 1D); what form does this 
scheme take? One possibility is that firing rates across neurons evolve in fixed proportions relative to one 
another, such that a decoder trained on population firing rates at the start of the delay successfully predicts 
left vs. right sample lever identity using firing rates from the end of the delay, and vice versa. Alternatively, a 
dynamic code implemented by the mPFC population may mean decoding results are only transiently valid 
around the time of the training data. We compared evidence for these two hypothetical schemes by 
constructing decoders using population firing rate vectors from each 50ms segment of the delay period and 
systematically ‘sliding’ the test data across the entire delay period (Fig. 2B, method reviewed in Meyers et 
al., 2008). These results form cross-temporal decoders on symmetrical axes, on which the diagonal (white 
arrows in Fig. 2B) represents training and testing performed at matching time-points. We trained and 
evaluated separate decoders for each recording session; results in Fig. 2B summarise mean performance 
across sessions. 
 
For 4s and 8s delay trials, decoders trained and tested at any pair of times during the delay period were 
similarly effective, generating symmetrical regions of significant decoding extending throughout the delay 
(filling the white bounding boxes in Fig. 2B). However analysis of 16s delay trials from sessions with above-
chance behaviour, revealed that mPFC populations encode the cue identity dynamically during the extended 
delay period. Significant off-diagonal decoding was observed during the first 8s of delay, but decoders trained 
on firing rates at the start of the delay were no longer successful when tested on firing rates from after 8s; 
whereas decoders trained at 8s or later successfully recovered cue identity until the end of the delay. 
 
This sustained representation was seen neither in dCA1 (Fig. S2), nor in decoding results from sessions with 
at-chance behavioural performance (Fig. 2C). Instead, despite an initial early-delay period of transient 
decoding comparable in strength to the above-chance sessions (as in Fig. 2B), cross-temporal decoding did 
not outlast approximately 2s. These results link cue encoding in mPFC populations to successful DNMTS 
task performance. Consistent with this, the sustained mPFC population code evident during correct 16s trials 
was not established during error trials (Fig. 2C, lower panels). 
 
 
A subset of neurons with distinct rhythmic firing signatures form joint dCA1-mPFC cell assemblies recruited 

during sample and choice events of the DNMTS task 

 
Thus far, our results demonstrate that dCA1 neurons are particularly informative during encoding (sample) 
and recall (choice), whereas mPFC populations are critically involved in delay phases, through the transient 
contributions of individual mPFC neurons to sustained population coding. Correct activation of the dCA1-
mPFC pathway is essential for performance of spatial working memory tasks64–66, but given the dissociable 
encoding of task-related information in dCA1 and mPFC populations, when and how is information shared 
between the two regions during delayed responding? 
 
We used factor analysis (FA)67,68 to detect coordinated activity among units from mPFC only, dCA1 only, or 
jointly from mPFC and dCA1 (Fig. 3, Fig. S3, Methods). In contrast to Principal Component Analysis (PCA) 
which detects variance-maximizing dimensions, FA is a model-based statistical tool that explicitly captures 
correlations between variables through a set of independent factors. FA has thus been shown to outperform 
PCA for the present purposes69. Recorded units were assigned to the same cell assembly when they 
significantly loaded on the same latent factor (Fig. 3B-C), which captured correlated firing rate activities within 
the population of neurons (Fig. 3D). Time-varying factor scores associated with each extracted factor in the  
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Figure 3:  
A latent factor analysis model detects correlated inter-regional dCA1-mPFC cell assemblies 

 
A Schematic illustration of the FA–
based cell assembly detection 
method, decomposing parallel 
recordings from N single units into 
time-varying activation scores of p 
(p<N) factor scores. 
B Models selection steps involved 
in FA–based cell assembly 
detection.  
C Inter-area cell assembly 
detected from parallel dCA1-mPFC 
recording. Example loading of 
single units to the five detected 
latent factors (cell assemblies). 
Grey circles indicate units with 
insignificant loading strengths to 
the factors (shaded columns 
indicate p<0.01 vs. shuffled 
bootstrap distributions). 
D Example spike train raster from 
units in C. Below: Factor activation 
scores of the detected cell 
assemblies spanning dCA1 and 
mPFC (within-area assemblies not 
shown) during four successive 
trials in the DNMTS task. Colour 
annotation on spike trains indicates 
times of significant activation 
(bootstrap p<0.01, vs factor model 
calculated from shuffled spike 
rates) for each detected inter-area 
assembly. 
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FA model (Fig. 3B) measure assembly activation strength, as exemplified by significant event-locked 
activation of inter-area assemblies binding dCA1 and mPFC units during the DNMTS task (Fig. 3D,4A, further 
examples in Fig. S4A).  
 
Units from both dCA1 and mPFC that participated in cell assemblies spanning the two regions (Fig. 3D, Fig. 
4A) showed 4-5Hz rhythmic modulation in the autocorrelation of their spike trains (Fig. 4B). dCA1-mPFC 
single unit pairs drawn from assemblies showed coherent spike train modulation at 4-5Hz, which was weaker 
for pairs drawn from different cell assemblies, and weaker again for pairs of units not detected as cell 
assembly members using FA (Fig. 4C: average 3.5-5.5Hz coherence across dCA1-mPFC cell pairs, F(2,27) 
= 50.0 p<0.0001, Tukey-Kramer post-hoc tests for assembly membership p<0.05, N = 2 sessions from each 
6 animals, also see Fig. S4B). Coherent 4-5Hz spike train modulation was also weaker for pairs drawn from 
within-area cell assemblies in dCA1, and essentially absent between pairs from mPFC. This indicates that 
“non-assembly” units were physiologically distinct from their assembly counterparts. The 4-5Hz assembly 
motif was specific to the task period, since the spectral signature was absent from spike trains recorded 
during one hour rest periods flanking DNMTS sessions (Fig. S4C). 
 
Are the ‘Sample’ and ‘Choice’ events of task context parsed by the patterned firing of the assembly member 
units? Rhythmic 4-5Hz co-modulation between dCA1-mPFC unit pairs was prominent only during the 4s 
preceding sample lever presses (Fig. 4D, Fig. S4D). This dynamic signature of dCA1-mPFC assembly 
activity therefore timestamped the DNMTS sample phase, and is consistent with evidence that optogenetic 
silencing of hippocampal-prefrontal interactions is particularly disruptive during the sample phase of delayed 
responding on a T-maze64. 
 
In contrast, cross-correlations between dCA1-mPFC assembly member pairs preceding choice lever presses 
were not 4-5Hz modulated, but tended to reflect mPFC spiking leading dCA1 spiking on a longer, 400ms 
timescale (Fig. 4D, bottom right panel), consistent with previous studies of decision-making60,70,71. Context-
dependent shifts in signal 4-5Hz modulation and flow direction between hippocampus and frontal cortex can 
therefore serve to disambiguate the transition from sample to choice phases of DNMTS. 
 
We further explored this hypothesis by examining when individual assemblies were most active during 
sample or choice events. Fig. 4E summarizes the activity profiles of within-area (gold) and inter-area (purple) 
cell assemblies during the task, demonstrating comparable activation during sample presentation but 
diverging activation levels during delay and choice events. We restricted the assemblies to those whose 
factor scores showed significant activity (bootstrapped p<0.05 compared to assemblies composed from time-
shuffled neural spike trains, Fig. 4B) in the 4s preceding lever presses, and split them into either significantly 
“sample-active” or “choice-active" based on the time of their strongest average activations (Fig. 4F, Fig. 
S4D). 
 
A significant majority of within-dCA1 and dCA1-mPFC assemblies were sample-active (dCA1: 13 Sample-
active vs. 5 choice-active; dCA1-mPFC: 20 Sample-active vs. 6 choice-active detected assemblies, one-
sample t-test vs. an even Sample/Choice split for within-animal averages; mPFC: T(6)=-2.61, p=0.08, dCA1: 
T(6)=-2.53, p=0.13, dCA1-mPFC: T(6)=-6.72, p<0.01, Fig. 4F). In contrast, both classes of sample and 
choice activity were approximately equally represented in within-mPFC assemblies (9 Sample-active vs. 10 
choice-active detected assemblies). This was explained neither by skewed unit counts across areas in our 
recordings nor over-representation of one area’s contribution to the FA assembly models (Fig. S4E,F). 
Finally, restricting analysis of rhythmic dCA1-mPFC unit pair interactions to sample-active assemblies 
amplified the 4-5Hz rhythmic coordination (Fig. 4G). The coherent modulation of spike trains by this 
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fingerprint “Sample" rhythm Figure 4: A subset of neurons with distinct rhythmic firing signatures form dCA1-
mPFC-spanning cell assemblies which are active around the lever press events. 

 
A Spike trains of units comprising 
Assembly 1 (red annotation in Figure 
3 C,D) highlighted to show firing of 
dCA1 and mPFC (red and blue, 
respectively) units during significant 
assembly activation times. 
B Left: Rate-normalized spike-time 
auto-correlation functions 
(mean±SEM across units) for non- 
assembly units, members of within-
area and inter dCA1-mPFC cell 
assemblies for each area. Right: 
Modulation index of spike train 
autocorrelation functions. 
C Inter-area spike train coherence 
between dCA1-mPFC unit pairs 
within, across and outside cell 
assemblies (mean±SEM of dCA1-
mPFC pairs across sessions shown). 
Grey shaded region indicates 
frequency range used for statistical 
comparison of rhythmic modulation 
(asterisks). 
D Pairwise dCA1-mPFC spike train 
cross-correlogram (top: 20ms bins, 
bottom: 100ms bins) for spikes fired 
by units in the 4s preceding Sample 
(left) and Choice (right) lever press 
events. Average across all pairs 
shown (mean±SEM across recording 
sessions) for within (purple) and 
across (white) assembly pairs. 

Random sampling of spikes (100 draws per cell pair) was used to match firing rate offsets between cells. 
E Standardized activation patterns (factor score activity) of different classes of cell assembly detected across 
all 12 recording sessions (mean±SEM across sessions), aligned to Sample and Choice lever press events. 
Assemblies were sorted by peak activity time and categories as either “Sample-active” or “Choice-active (Left 
and Right columns, respectively) based on strongest activation. Dashed lines are mean assembly activities 
for each class. 
F Fractions of cell assembly categorized as Sample- and Choice- active for each assembly type detected in 
the 12 recording sessions. 0 and 1 indicate assemblies were most strongly activated during the Sample and 
Choice phases respectively. Asterisk indicates that dCA1-mPFC assemblies were significantly biased 
towards more Sample-active. 
G Rhythmic 4-5Hz dCA1-mPFC spike correlations (as in D) were specific to pairs of units from Sample-active 
assemblies and were strongest for inter-regional pairs drawn from the same cell assembly. 
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was attenuated between parallel but independent dCA1-mPFC assemblies, and was absent in the activities 
of Sample assemblies during the choice-preparatory period. 
 
These assembly analyses reveal sparse subsets of single units that cohere task-dependently into assemblies 
spanning dCA1 and mPFC, and are hallmarked by a physiological signature of 4-5Hz coordination. As such, 
the inter-area cell assemblies are uniquely positioned to orchestrate dCA1-mPFC interactions and 
information transfer. 
 
Having uncovered dissociations between coding of dCA1 and mPFC populations, and task phase-dependent 
activation of 4-5Hz modulated dCA1-mPFC joint assemblies, we sought to map the activities of these 
subpopulations of neurons onto component processes of working memory underlying DNMTS task 
performance. Times at which the intra-CA1, intra-mPFC and dCA1-mPFC classes of assembly-participating 
units provided significant cue encoding during the task showed no clear segregation at the single cell level 
(Fig. 5A).  However, multivariate population decoding from units belonging to these different assembly types 
demonstrated dynamic, fluctuating contributions of each neuronal class during the DNMTS task (Fig. 5B, 
S5). For example, mPFC inter-area assembly members (purple traces in Fig. 5B, S5) showed strong sample 
representation, while non-members (i.e. mPFC units less correlated with either dCA1 or other mPFC units) 
showed strong encoding during the delay. 
 
Figure 5:  
Assembly membership-dependent differences in the statistics of cue encoding during the DNMTS task are 
not visible at the single neuron level but orchestrate dynamic contributions by neural populations. 

 
A Discrimination of cue location by firing rates of individual dCA1 and mPFC single units, sorted by assembly 
membership type and time of peak discrimination. Black bars indicate time of significant decoding (t-test, 
Bonferroni-p<0.05, bootstrapped confidence limit).  
B Population-level discrimination of cue location by firing rates differs by class of assembly membership. 
Curves show cross-validated multivariate decoding for units participating in different assembly types 
(mean±SEM across recording sessions). Coloured lines indicate 5%, 95% bootstrap CIs of decoding from 
shuffled trial labels (mean across session shown). Below: Grey shading indicates fraction of recording 
sessions with decoding exceeding 95% CI at each time-point. Above: best performing group providing 
significant decoding from >60% sessions, winner-take-all. 
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These analyses demonstrate a dynamic modulation in the representation of cue information by cells forming 
assemblies that cannot be detected in the activities of individual member neurons. In particular, changes in 
the pattern of interaction across brain areas hallmarks parsing of the cognitive contexts of encoding, 
maintenance and recall lever presses during the task. 
 
Incorrect choices are associated with intact sample encoding in hippocampus but impaired transfer of cue 

information to mPFC and collapse of intra-mPFC dynamics. 

 
The distributed and dynamic mechanisms supporting successful completion of the DNMTS task offer multiple 
potential vulnerabilities to disruption, culminating in erroneous choices. We therefore quantified which 
features of coordinated population activity were altered on error trials. 
 
The average activation profiles of within-dCA1 or sample-active within-mPFC assemblies were unaffected 
on error trials (Fig. 6A, top), whereas choice-active, within-mPFC assembly activation was significantly 
weakened in the period leading up to the choice lever press (gold vs. red traces in Fig. 6A, third row). No 
differences were observed in average activation strengths of inter-area dCA1-mPFC assemblies preceding 
the incorrect Choice lever presses, but activation was significantly stronger immediately afterwards (purple 
vs. red traces in  Fig. 6A, bottom), suggesting coordinated inter-area firing in error feedback signalling, as 
has been reported for this pathway in primates61. 
 
Because, on correct trials, cue encoding by dCA1-mPFC assemblies showed two distinct modes of correlated 
interaction during Sample and Choice periods (Fig. 4E-G), we wondered whether the rhythmic firing before 
Sample and mPFC-driven correlations before Choice times (Grey boxes in Fig. 6B) would be specifically 
affected on errors (Fig. 6B). Indeed, we observed significantly weaker 5Hz correlated firing between inter-
area pairs from the same assembly during the Sample-preparatory period (Fig. 6C), and a reverse in lag of 
peak correlation, such that dCA1 led mPFC firing in the Choice-preparatory period on error trials instead of 
mPFC leading dCA1 as in correct trials (Fig. 6D, t(250)=2.21, p=0.0274, paired t-test).  
 
Given these disrupted rhythmic and directional interactions during unforced errors, we tested whether 
pharmacological impairment of working memory performance also associated with changes in CA1-mPFC 
4-5Hz synchrony. On separate recording days, we systemically injected rats with the synthetic cannabinoid 
CP44940, previously reported to impair working memory performance72. We observed strong effects of the 
drug on animals’ performance in the DNMTS task (Fig. 6E,F). Compared to control sessions in which all six 
rats performed above chance on four- and eight-second delay trials (asterisks in Fig. 6E), CP55940 reduced 
performance to chance in half of the animals. We observed significant Drug- and Delay- dependent effects 
and a Drug x Delay interaction on performance (Fig. 6F, repeated-measures two-way ANOVA; Drug: 
F(1,5)=915, p<0.001, Delay: F(1,5)=1850, p<0.001, DrugXDelay: F(1,5)=899, p<0.001). Post-hoc tests 
(Tukey-Kramer p<0.05) indicated that CP55940 significantly reduced performance on the shortest, 4s and 
8s delays trials. No changes in trial omission rates (Normalized to mean Control rates: Control: 100±20%, 
CP55940: 140±30% F(2,21)=0.74,p=0.49) or systematic effects on behavioural latencies (data not shown) 
were observed across different conditions, suggesting that the drug did not affect the animals’ engagement 
in the task. 
 
We examined CP55940’s effects on rhythmic cross-correlations between dCA1-mPFC cell assembly 
member neurons during sample encoding (Fig. 6G). Compared to control sessions, the magnitude of 4-5Hz 
power in spike train cross-correlations when considering all within-assembly pairs was significantly reduced 
under CP55940 (Fig. 6H, Z=3.6, p=0.0032, n=252,78 dCA1-mPFC unit pairs from N=6,2 animals for Control, 
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Figure 6: Incorrect choices are associated with intact sample encoding by dCA1 networks but reduced 4Hz 
dCA1-mPFC assembly synchrony, leading to a collapse of intra-mPFC dynamics and impaired dCA1-mPFC 
synchronization on recall. 

 
A  Average Z-scored activity of 
different classes of within- and 
inter-area cell assemblies on 
correct (gold/purple) and error (red) 
trials. Mean±SEM across all pairs 
shown. Grey dashed lines indicate 
mean activity. Black bars: times of 
significant changes on error trials 
(Bonferroni-corrected bootstrap 
p<0.05, permutation test). Grey 
boxes indicate regions used for 
spike train cross-correlations in 
C,D. B Inter-area correlation 
between dCA1-mPFC cell pairs 
from the same assembly on correct 
(purple) and error (red) trials. 
Details as Fig. 4D, average of 251 
pairs from 10 sessions shown. C 
Power spectrum of 20ms-binned 
cross-correlations in 4s preceding 
Sample in B, black bars indicate 
frequencies with significant change 
in power between correct and error 
trials (Bonferroni-corrected 
bootstrap p<0.05, permutation 
test). D Balance of dCA1- to mPFC 
driven correlation in 100ms-binned 
spike times from the 4s preceding 
Choice was significantly reversed 
on error trials. E Rats administered 
CP55940 performed worse in the 
DNMTS task. Bar indicates the 
fraction of trials of each outcome 

for each individual rat, sorted from left by best-performing animal on Control sessions. Asterisks below 
indicate whether the rats performed at- or above-chance for each delay length. F Group data from N=6 rats 
demonstrating significant impairment in task performance on 4s and 8s delay trials on CP55940 recording 
sessions. G Rhythmic 4-5Hz spike-train cross-correlations for within-assembly dCA1-mPFC unit pairs during 
cue sampling was strongly attenuated in rats administered CP55940. Left: rate-normalized cross-correlations 
(method as Fig. 4D). Right: power spectra of cross-correlograms. H Strength of rhythmic 4-5Hz dCA1-mPFC 
correlation between unit pairs (average power in spectrum between 3.5-5.5Hz), normalized by group mean 
on control days. Dots are individual animals, black lines link animals between control and CP55940 sessions. 
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CP55940 sessions, respectively). Because dCA1-mPFC cell assemblies were detected in only two CP55940 
sessions (although this did not represent a significant reduction in the number of dCA1-mPFC assemblies 
from control conditions: fraction of sessions with detected assemblies Control: 3/6, CP55940: 2/6, 𝜒 2(1) = 
0.343,p=0.560, similar results for numbers of parallel detected assemblies: Fig. S6A), we also considered 
the distributions of peak 5Hz spike train correlations between all possible dCA1-mPFC unit pairs (Fig. S6B). 
The strongest modulated dCA1-mPFC pairs demonstrated a significant reduction under CP55940 
(Komogorov-Smirnov test, D = 0.0047, p<0.001, n  = 11686, 3212 pairs from N= 6,6 sessions, respectively). 
This is consistent with the observation that 4-5Hz correlated modulations are strongest between inter-area 
cell-assembly member pairs in control conditions during cue-sampling (Fig. 4) and that these are affected by 
cannabinoid administration. 
 
Thus, as with naturally occurring unforced errors in DNMTS performance, biasing animals’ behaviour with 
psychoactive compounds known to affect working memory also implicates rhythmic hippocampal-prefrontal 
network population coordination during working memory loading in later incorrect choice-making. 
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Discussion 
 
The temporal structure of the operant DNMTS task disambiguates mnemonic and decision-making 
processes, which overlap in space and time during the maze-based tasks commonly employed in rodent 
studies of working memory. Simultaneous dCA1-mPFC recordings, allied with the temporal structure of the 
operant DNMTS task, unveiled several principal features of dCA1 and mPFC information processing. 
Encoding of trial-specific cue information during Sample is strongest in dCA1 and integrated into mPFC 
processing by virtue of joint dCA1-mPFC assemblies, bound by a common 4-5Hz rhythmic modulation. 
Separable mPFC populations then maintain sample information through sequential delay-spanning 
dynamics; on error trials this coding degrades, despite accurate encoding in dCA1. Finally, dCA1 and mPFC 
concurrently encode choice information, led by mPFC and no longer contingent upon the rhythmic 
assemblies recruited during Sample. 
 
These differential dCA1 and mPFC coding patterns corroborate previous lesion studies in rodents73–75, 
population recordings in non-human primates62 and human imaging studies highlighting hippocampal 
activation during encoding of working memory76–79.  However, we also resolved a physiologically distinct 
subset of dCA1 and mPFC neurons critical for trial-specific loading of cue identity into working memory, 
coactive as inter-regional assemblies with sub-50ms timescales. 
 
Activation of dCA1-mPFC assemblies occurred during the DNMTS sample phase analogous to the “sample” 
run on a T-maze, when optogenetic silencing of CA1 projections to mPFC preferentially impairs task 
performance64. These coordinated activities reflect hippocampal-prefrontal interactions during loading of 
working memory, with the tendency of dCA1 encoding to precede mPFC encoding consistent with 
hippocampal-to-prefrontal anatomy80–82 and functional connectivity60.  Conversely, delay-coding mPFC 
subpopulations may partner with mediodorsal thalamus, since optogenetic disruption of mPFC activity83 or 
silencing mPFC input from mediodorsal thalamus during the delay phase of short-term memory tasks impairs 
maintenance of information24. Based on recent evidence that individual mPFC pyramidal neurons receive 
convergent input from both ventral CA1 and mediodorsal thalamus84, which neurons are recruited during 
sample vs. delay may therefore rather reflect dynamic configuration of assemblies via interneuron-mediated 
tuning of excitability and synaptic plasticity85. 
 
Rhythmic coordination of dCA1-mPFC assembly members is reminiscent of a 4Hz rhythm reported during 
working memory processing in rats86, coordinating activity across hippocampus, ventral tegmental area and 
mPFC during delayed responding on a T-maze. In the DNMTS task, we pinpoint its emergence during the 
sample phase and specificity to the units forming inter-regional dCA1-mPFC assemblies, evident both in 
spike cross-correlograms and in their intrinsic auto-correlated firing. In contrast, 4-5Hz dCA1-mPFC 
assembly modulation was absent around memory-guided DNMTS choice lever presses, showing that 
hippocampal-prefrontal dynamics are reconfigured from sample to choice, reflecting mPFC-led control of 
memory retrieval55.  
 
The cross-temporal coding analyses in Figure 2 evidence sustained coding despite transient activities of 
individual mPFC neurons. This delay coding was neither evident in dCA1, nor associated with sustained 
activation of dCA1 or mPFC synchronous assemblies; it is most likely, therefore, to derive from sequential 
activation of mPFC units and/or assemblies47, or potentially from assemblies more widely distributed across 
PFC than our tetrode recordings could sample. Whatever its basis, sustained mPFC coding during the 
DNMTS delay phase collapsed during errors, and on 16s delay trials during sessions in which rats performed 
at these trials at chance levels. In fact, rats may resort to guessing on both correct and error trials during 
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chance performance sessions, though consistent 
nose-poke and lever-press latencies across trials 
and sessions indicate that motivation and 
certainty/expectancy remained stable.  
 
On error trials, the dCA1 population code maintains 
a faithful representation of cue identity, and 
activation strengths of cell assemblies linking dCA1 
and mPFC are comparable to correct trials during 
both Sample and Choice epochs. However, transient 
Sample-specific rhythmic interactions are weaker, 
as are the network dynamics in mPFC that maintain 
cue identity encoding during the delay, preventing 
the formation of a stable population code for working 
memory. Although with the current dataset we 
cannot dissect causal contributions of individual 
signatures of errors, such sequential events could 
lead to the disorganised activation of choice dCA1-
mPFC cell assemblies we observe preceding 
incorrect choices. 
Disrupted hippocampal-prefrontal connectivity 
impact working memory performance58,64–66,72,73,87 
and is implicated in the pathophysiology of 
schizophrenia88,89. Here, we systematically disrupted 
rhythmic dCA1-mPFC sample assembly activation 
through systemic activation of CB1 receptors by 
CP55940. Correspondingly, delay-dependent task 
error-making was exacerbated, potentially via 
combined effects on cortical glutamatergic 
transmission90 and hippocampal ensembles91.  
Thus, whether arising spontaneously or induced by 
CP55940, interruptions to population coordination 
either during initiation of dCA1-mPFC encoding 
during the sample phase or intra-mPFC processing 
during the maintenance phase associate with 
impaired delay-dependant performance on error 
trials, leading to incorrect choices. In conclusion 
(schematized in Fig. 7), our data confirm why both 
mPFC and dCA1 – as well as intact connectivity 
between them – have been ascribed crucial roles in 
spatial working memory. The temporally defined set 
of cognitive steps timestamped by rhythmic 
assembly dynamics establishes a framework that 
can now be tested in combination with circuit tracing 
and/or imaging strategies relating assembly 
configurations to the connectivity of participating 
neurons and their neuromodulation. 
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Figure 7: Schematic of main findings 
 
Lines indicate cell assembly motifs within and 
between brain regions, triangle outline width 
represents strength of cue encoding by individual 
neurons and cell assemblies of each type, for different 
phases of the task. Arrows indicate task information 
flow; either rhythmic (dotted) or directional (shaded). 
Red crosses highlight physiological mechanisms of 
information encoding observed to collapse on error 
trials. 
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Methods 
 
Electrode implantation 

All procedures were conducted in accordance with the UK Animals Scientific Procedures Act (1986) and with 
the approval of the University of Bristol Ethics Committee. Eight adult (300–400g) male Long–Evans rats 
(Harlan UK) were implanted with 16 extracellular tetrode recording electrodes: 8 over right medial prefrontal 
cortex (+3.2 mm, +0.6 mm from bregma) and 8 over the right dorsal hippocampus (−4.0 mm, +2.5 mm from 
bregma) under sodium pentobarbital recovery anaesthesia. During 7–12 days following surgery the 
independently moveable tetrodes were lowered into prelimbic cortex (∼2–3 mm ventral) and the principal cell 
layer of the dCA1 92, guided by the characteristic burst mode of single-unit firing and the presence of large-
amplitude sharp-wave ripple events in the local field potential. Extracellular action potentials (sampled at 32 
kHz and filtered between 0.6–6 kHz) together with local field potentials (sampled at 2 kHz and filtered 
between 0.1–475 Hz) were recorded differentially (Digital Lynx, Neuralynx) using local references, which 
were targeted to superficial prefrontal cortex and the white matter overlying the hippocampus. Two screws 
placed in the skull overlying the cerebellum were used as ground connections. Final tetrode tip positions 
were verified histologically by identifying sites of electrolytic lesions in 50um stained sections of 
formaldehyde-perfused brain. 
 
Behavioral training 

Subjects were food-restricted to no less than 85% of their free-feeding weight and trained in a DNMTS 
operant task (Fig. 1). We used an operant chamber (Med-Associates, Vermont, USA), which consisted of 
two retractable levers facing a food pellet dispenser on the opposite wall, with a cue light above each 
component and a tone generator placed above the pellet dispenser. Side and top walls of the chamber were 
transparent to enable view of distal spatial cues in the recording room. Metal components of the chamber 
were grounded to the amplifier to electrically shield the recordings, which were carried to the data acquisition 
system via tethers suspended through a hole in the centre of the box ceiling. The task was programmed and 
operated in K-Limbic software (D. Fuller, Conclusive Marketing Ltd.) on a separate computer. Subjects were 
initially conditioned to press a lever to obtain pellet reward before being trained in DNMTS task with pseudo-
random delays (random combination of equal number of target left and right lever trails at each delay 
arranged into blocks of 10 trials) of 4,8, 16s. Error and missed trials were followed by all cue lights off for an 
extra 10s of inter-trial interval. There were 150 trials in each session (50 x 3 delays). Sessions with less than 
67% of trials completed were excluded from further analysis. 
 
Single unit clustering 

Single units were isolated off-line using automated clustering software (KlustaKwik 1.7; K. Harris), followed 
by verification and manual refinement in MClust 3.5 (A.D. Redish); unit inclusion criteria were set to isolation 
distance >10.0 and L-ratio <0.35, with <2% of spikes within 2ms inter-spike interval (Suppl.  Fig. 1). Putative 
pyramidal cells were classified based on the spike width, waveform and mean firing rate. A total of 156 (min. 
115, max. 194) putative principal cells in dCA1 (mean of 34 units per subject) and 168 (min. 152, max. 201) 
putative pyramidal cells in mPFC (mean of 33 units per subject) were isolated in each recording session. 
 
Statistical analysis methods 

Where appropriate following normality testing (Kolmogorov-Smirnov test, p>0.05), parametric statistical 
comparisons were performed. Unless otherwise specified, results are quoted as Mean ± Standard Error of 
the Mean (SEM). To equalize statistical power on multivariate statistical analyses, all comparisons across 
delay lengths and different recording sessions were calculated on repeated jack-knife draws of random 
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subsets of matched numbers of trials. Similarly, non-parametric bootstrapping was performed through 
calculating statistics on distributions of shuffled data (e.g. for decoding analyses described below, by 
randomly permuting trial labels 1000 times). Results were considered significant if the observed value 
exceeded the 95th percentile of the bootstrap distribution. Two bootstrap resampled distributions were 
considered significantly different if their <5% and >95% tails did not overlap. Where two time series were 
compared (e.g. Fig. 1F,G), bootstrapped p–values were adjusted using Bonferroni correction for number of 
time bins.  
 
Spike train analysis 

Only units with an average firing rate of at least 0.1 Hz were included in all subsequent analyses, but no 
further selection of units was performed. All decoding analyses, to be described further below, were 
performed on kernel density estimates of the instantaneous spiking rate. Separate kernel density estimates 
(KDE) for each unit i were obtained by convolving spike trains with Gaussian functions (‘kernels’), where the 
optimal kernel width s2 was determined through unbiased cross-validation 93. For Gaussian kernels, closed-
form expressions for the unbiased cross-validation error (CVE) can be obtained, and numerical iteration of 
the CVE procedure is not necessary 93. Loosely, one may think of the unbiased cross-validation procedure 
as leaving out each spike in turn, and evaluating the likelihood of its actual position from the spike density 
estimate obtained based on all other spikes in the series. Thus, the optimal bandwidth estimated will depend 
on predictable temporal structure in the spike trains, not just their rate (see also Shimazaki and Shinomoto, 
2010). KDEs provide a statistically more robust (less variable) estimate of the true underlying spike density, 
compared to e.g. histograms or binarized spike series, but decoding results did not crucially depend on this 
pre-processing step. 
Single units were considered significantly sensitive to behavioural events if their normalized (z-scored) firing 
rate deflection in a 2 second window after the event exceeded ±3x the standard deviation of the baseline 
firing rate (500ms window preceding the event). 
 
Neural Decoding 

For single unit decoding (e.g. Fig. 2A), for each time bin m and unit i single unit rates vim were collected into 
two sets according to whether mÎC1 or mÎC2, the two sets of time bins associated with one (C1) or the 
other (C2) cue stimulus. The common t-statistic (as also employed in Student’s two-sample t-test) is a 
measure of discrimination among these two sets, as it divides the difference in means by the pooled standard 
deviation (c.f. Durstewitz et al., 2010). For the average number of trials collected here (~54), values of 
approximately t > 1.67 would indicate significant discrimination at the p<0.05 level. 
 
Leave-one-out cross-validation analysis (e.g. Fig. 1F) was performed for the multivariate linear discriminant 
classifiers used for decoding (e.g. Hastie et al., 2011), with regularized covariance matrix as specified below. 
This used, for each time bin t the two sets of population vectors associated with the two stimulus classes 
(see above), with one population vector (and thus trial) left out from the fitting. Prediction performance was 
evaluated on the left-out trial, and this was repeated for each trial in turn, yielding the cross-validation error 
(CVE) as the relative number of incorrectly classified (out-of-sample) prediction trials. For testing differences 
in CVE between mPFC and dCA1 populations, for each data set the number of mPFC and dCA1 units 
(variables) used for decoding was exactly equalized to rule out any potential confounds due to population 
size. This was done by fixing the number K of units used to the smaller of the two populations, mPFC or 
dCA1, and then randomly drawing K units with replacement from the larger of the two populations 10 times 
and averaging the obtained CVE values. Differences in relative proportions of correct cue predictions, CP = 
1-CVE Î [0, 1], between mPFC and dCA1 were statistically tested by averaging CP across all 12 data sets 
and using the beta distribution. Specifically, at each time point t the smaller of the two values CPmPFC and 
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CPdCA1 was used for the reference distribution, and it was checked whether the larger of the two significantly 
(p<0.05) escaped this reference distribution given the average number of trials recorded.  
To compare decoding performance on correct and error trials (e.g. Fig. 1G), classifiers trained on correct 
trials were additionally challenged to predict the cue identity of error trials in a similar manner as above. 
 
To evaluate the stability of the population code for cue location during the delay period we used cross-
temporal decoding methods inspired by Stokes et al. (2013), and Parthasarathy et al. (2017). Briefly, we 
performed leave-one-out cross-validated decoding of cue location from multi- single unit firing rates as 
described above using separate training and testing sets offset by sequential 50ms increments. The 
performance of the decoder at each combination of [train,test] time points is thus the percentage of test trials 
in which the decoder could correctly identify the cue location when trained using trials at a given time point.  
 To equalize size of training sets across combinations of delay lengths and recording sessions, cross-
temporal decoding analysis was performed on random draws of eight trials from each of left and right cue 
conditions, repeated 500 times. Thus the total cross-validation size for each decoder was 5000 random 
resamples per [train,test] time combination. Mean performance across runs is reported in the colormaps 
shown in (e.g.) Fig. 2B. Significant decoding at each [train,test] point was calculated against distributions 
(p<0.05) from 1000 bootstrap draws created by shuffling labels. For visualization, a 250ms Gaussian 
smoothing kernel was applied after significance testing across both training and testing dimensions. 
 

To further corroborate the classification results, we also used a parametric test statistic (Fig. S5): Vectors 
vm=(v1m...vpm)T of all unit activities were collected into two sets corresponding to stimulus conditions as above, 
and contrasted by Hotelling’s T2 statistic, a multivariate generalization of the univariate two-sample t-statistic 
which relates differences in cue specific mean vectors to the pooled covariance matrix of the data 67. 
Hotelling’s T2, scaled by the appropriate degrees of freedom, is approximately F-distributed which can be 
used to construct parametric confidence bands.  
 
In the present case, the number of recorded units often reaches or even exceeds the number of trials, causing 
singularity and over-fitting issues with the covariance matrix. One standard statistical remedy is 
regularization, where the covariance matrix Σ is moved toward the identity, Σ!"# = Σ + 𝜆𝑰 , with regularization 
parameter 𝜆 (set to 0.05 here, without any attempt to optimize this parameter; Hastie et al., 2011).  
 
 
FA model for cell assembly detection 

 
Extraction of cell assemblies was based on Factor Analysis68. This model-based statistical tool is designed 
to extract correlations between variables. It assumes that observation vectors vi,t are given by a (linear) 
mixing of uncorrelated latent variables (factors) zi,t, plus common mean μi and measurement noise εi,t,  
 
Vi,t = μi + Γzi,t + ε,  εi,t ~ N(0,Ψ), zi,t~ N(0,I), Ψ = diag[ s1

2,…, sN
2]. 

 

Parameters are commonly estimated through maximum-likelihood. Unlike principal component analysis 
(PCA) which detects variance-maximizing directions, FA attempts to capture all the correlations among the 
observed variables through the mixing of uncorrelated factors (e.g. Krzanowski, 2000). It is thus more 
appropriate for assembly detection than PCA, as has been demonstrated before69,97.  
Inputs to FA were the kernel density estimated instantaneous firing rate vectors cm=(cim) which collected 
spike rates cim for each unit i at time m binned at 50ms in columns, excised from time periods from cue 
presentation -5s to choice lever press +5s, combined from all trials.  
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Each of the 12 recorded data sets was treated separately, with simultaneously recorded mPFC only, dCA1 
only, or concatenated mPFC and dCA1 units submitted for assembly analysis.  
The likelihood-ratio statistic for FA models of increasing complexity (i.e. increasing number of factors) in 
conjunction with confidence bands obtained from trial-shuffled data can be used to determine the number of 
putative assemblies (i.e. significant factors) present (Fig. 3B). While, in principle, likelihood-ratio based 
parametric F-scores could be used to determine whether adding another factor to the model still significantly 
improves the fit, here we relied on H0 distributions generated from trial permutation bootstraps to account for 
the time series (and thus potentially dependent) nature of the data. Specifically, if ci

(k) = (ci1
(k)… ciM

(k)) denotes 
the set of firing rates for unit i on trial k, for each unit separately the assignments of these sets to trials k were 
randomly shuffled. Thus, all autocorrelations and the firing rate structure across a trial were preserved for 
each unit i in the bootstrap data, while cross-dependencies between units were destroyed. These 
bootstrapped data sets (total of 500) were used both to determine the number of significant factors, i.e. those 
for which the LLR ranged within the 1% upper confidence limit of the bootstrap data, as well as significant 
factor loadings (the correlations of the units with the factors): Only units for which a factor loading exceeded 
1% of the bootstrap range were assigned to the respective assembly. For each factor, the factor score (the 
value zlm on factor l in time bin m) quantifies the degree to which the respective assembly is activated. Local 
cell assemblies forming subsets of joint area assemblies were assumed as part of the larger assembly. 
Assembly detection by FA was confirmed using another method based on Independent Component Analysis 
98. Assembly units were determined using IC weight threshold of 2.5 S.D. for every spike train in the analysis. 
As done for the FA based analysis, neuronal assemblies, defined as groups of three or more single units that 
consistently co-activated within a 50ms time window, were thus detected in dCA1, mPFC, and across dCA1 
and mPFC. Despite this quite different methodological approach, sets of assemblies detected by ICA were 
highly similar to those detected by FA as quantified through the measure of overlap  O=|AÇB|/|AÈB|Î [0,1] 
between pairs of sets as defined further above. For each assembly set detected by ICA, the corresponding 
assembly set with highest similarity to it as detected by FA was first determined, and the average across O 
from all these ICA x FA pairs then calculated for each data set. Overall, across all data sets, there was an 
84% average agreement between FA and ICA assemblies (Fig. S3). 
 
Pharmacology 
CP55940 (Tocris) was diluted in a vehicle solution (10% ethanol, 10% cremophor, 80% saline) before the 
experimental session. Drug solutions were administered I.P. at the injection volume of 0.1ml/100g of animal 
body weight to a final concentration of 0.30 mgkg−1. Subjects were tested at 30min post-injection. 
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Supplementary figures 
 
Figure S1: Details of training, recordings and single unit physiology during DNMTS task. 
 
A Behavioral performance of rats in DNMTS training is expressed as choice accuracy across subsequent 
sessions of the training (left) and as average number of sessions required to reach criterion performance at 
different stages of training: early (right). Arrows mark the two sessions used in the analysis of each stage 
(early, intermediate, trained). Data from the ”trained” days is analysed in this study. 
B Cue-Sample, Delay-Nosepoke, Nosepoke-Choice latencies averaged across animals and recording 
sessions. Asterisks at upper right corner indicate significant difference between conditions (Kruskal-Wallis 
ANOVA: 𝜒$(5,1751)=3.69/16.29/16.53, p>0.05/p<0.01/p<0.01, respectively). Bars/asterisks indicate 
significant differences between specific combinations of delay and outcome conditions (Tukey-Kramer post-
hoc test, p<0.05). 
C Coronal sections show example locations of tetrode recording sites (red circles mark the site of electrolytic 
lesions) in the prelimbic cortex (mPFC) and in the pyramidal cell layer of the CA1 subfield in dorsal 
hippocampus (CA1), matched to a corresponding rat brain atlas schematic (from Paxinos 2008). The lower 
panels summarize lesion sites across all six rats. 
D Extracellular action potential spikes recorded across an entire session were clustered into separate single 
units (colored dots), plotted here as waveform energy recorded on two channels of one mPFC tetrode. The 
properties of the cluster in red circle are presented in E and F. 
E Mean waveforms recorded on color-coded channels of the tetrode (top left) show consistent relative peak 
amplitudes (top right). Distribution of inter-spike intervals (ISI) below show no spikes detected in the <2ms 
refractory period.  
F Spike peak amplitudes of the same unit recorded on the color-coded four tetrode channels remain stable 
across the recording session. 
G Multi-trial firing raster from one example mPFC (top) and dCA1 (bottom) single units. Spike rasters with 
continuous firing rates aligned to the Sample and Choice lever presses +/-5s, with a variable portion of the 
delay period excised depending on delay length. Trials are sorted by correct and error outcomes (black and 
grey ticks) as well as left and right trial type, and finally by nose-poke latency. Solid areas indicate mean +/-
SEM firing rates on correct trials, dotted lines show mean firing rate on error trials. Black bars above epochs 
show significant separation of Left/Right trial responses, from the trial-averaged firing rates (t-score, in 50ms 
non-overlapping increments, Bonferroni-corrected).  
H Mean firing rates of mPFC units (preferred cue direction, correct trials, all units across sessions combined) 
during the delay period sorted by time of peak firing on 4s delay trials, sort order maintained for 8,16s delay 
trials. Colored stripes on Left indicate assembly membership class (See Figures 3,4). 
I Firing rate correlation matrices (Ia: peak correlation and Ib: time-lag at peak) for data shown in H. Heat-map 
shows mean correlation across trials, note strong non-zero lagged correlations. 
J Sequential contributions of individual mPFC single units to maintaining population-level encoding of cue 
location during working memory delay. Single recording session shown. Units are shown sorted by center-
of-mass of significant decoding (bootstrapped Bonferroni p<0.05) on 4s delay trials. Sort times maintained 
across longer delay lengths. Colourmap as for figure 1D. 
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Figure S2: Transient cue encoding in dCA1 population lacks a stable code 
 
A-B:  Encoding of cue information during the delay. Legends as for figure 2 but decoding from populations 
of dCA1 single units. 
 
Figure S3: Validation of assemblies detected with the FA against PCA-ICA based methods.  
 
Total number of assemblies detected (black bars – the first for FA, second for ICA), proportion of units that 
participated in assemblies detected by both FA and ICA relative to all units recorded (grey), and proportion 
of unit overlap between matched FA and ICA assembly pairs (red) are summarized for the two sessions of 
each rat. A measure of overlap between a pair of assembly sets A and B was formally defined as 
O=|AÇB|/|AÈB|Î [0,1], i.e. the cardinality of the intersection divided by the cardinality of the union. On 
average there was 84% overlap between units detected by the FA and ICA methods, with similar numbers 
for total counts and unit proportions involved. 
  
Figure S4: Further details regarding physiology of dCA1-mPFC cell assemblies 
 
A Cell assemblies link single units conveying similar information. Example activities of one simultaneously 
recorded cell assembly from each of dCA1 and mPFC, and one inter-regional cell assembly, along with the 
firing activities of their member units. Shaded Blue/Purple lines indicate mean±SEM Factor Scores (cell 
assembly activity) on Left/Right trials, aligned to the lever press events. Thin lines represent mean firing rates 
of the member units of each assembly on Left/Right trials. Note the similar cue-selective activity and firing 
profiles of assemblies and member cells. Black bars indicate times when average Left and Right cue-related 
cell assembly activity differed between cues (p<0.05, bootstrap permutation test). 
B Averaged cross-correlograms of dCA1 (left) and mPFC (right) cell pairs drawn from either assemblies 
spanning the two regions (CA1-PFC, black), assemblies contained within one region (‘intra’ blue) or non-
assembly neurons (cyan) from all recording sessions. Assembly pairs are more correlated than non-assembly 
pairs (black/blue vs. cyan), but 4-5Hz rhythmicity is specific to the CA1-mPFC co-assemblies (black vs. 
blue/cyan). 
C Power spectral densities of spike time autocorrelations for units of each area sorted by assembly 
membership category. Curves show mean±SEM spectra, Spikes are drawn from either the task period (red), 
or 1h pre- and post-task rest periods (grey, teal). For both dCA1 and mPFC units, the 4-5Hz oscillation was 
specific to the task period and, in mPFC, to cross-regional assembly members. 
D Units from both regions are equally represented in our recordings: Histogram across sessions of ratios 
between single unit counts in multi-area recordings [(#𝑢𝑛𝑖𝑡𝑠%&'( − #𝑢𝑛𝑖𝑡𝑠)(*+)/(#𝑢𝑛𝑖𝑡𝑠%&'( + #𝑢𝑛𝑖𝑡𝑠)(*+)]. 
Ratio distribution was not significantly different from a normal distribution (Kolmogorov-Smirnoff test). Blue 
symbols indicate median ± inter-quartile range. 
E Inter-area cell assemblies are equally contributed by dCA1 and mPFC single units.  
F Ratio distribution was not significantly different from a normal distribution with mean=0.5. (Kolmogorov-
Smirnoff test). Blue symbols indicate median ± inter-quartile range. 
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Figure S5: Evolution of cue discrimination during the DNMTS task by populations of dCA1 and mPFC units 
is determined by cell assembly membership participation 
 
Time-aligned multivariate cue discrimination (regularized F-scores) of populations of each type of units for 
each event in the DNMTS task. Shaded regions indicate mean±SEM F-scores for units of each membership 
classification, from the 12 recording sessions (see methods for details). 
 
Figure S6: Further details of physiology of dCA1-mPFC cell assemblies in rats under influence of CP55940 
 
A Numbers of detected parallel dCA1-mPFC cell assemblies in recordings of each condition (cumulative 
distributions).  
B Strength of 4-5Hz dCA1-mPFC spike train modulation during Sample phase (average power between 3.5-
5.5Hz in spectrum of cross-correlation) for all inter-regional cell pairs, irrespective of cell assembly 
membership class. Shaded regions indicate mean±SEM of distributions across sessions (See main text for 
statistics). 
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