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Abstract

Working memory enables incorporation of recent experience into subsequent decision-making. This
processing recruits both prefrontal cortex and hippocampus, where neurons encode task cues, rules and
outcomes. However, precisely which information is carried when, and by which neurons, remains unclear.
Using population decoding of activity in rat medial prefrontal cortex (mMPFC) and dorsal hippocampal CA1,
we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-
match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct
mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5Hz rhythmic
modulation; CA1-mPFC assemblies re-emerged during choice episodes, but were not 4-5Hz modulated.
Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained
mPFC encoding; pharmacological disruption of CA1-mPFC assembly rhythmicity impaired task performance.
Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC
subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.
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Introduction

Working memory’s capacity to integrate prior experience into context-dependent choice is a cornerstone of
adaptive decision-making'. Delayed non-match to sample (DNMTS) paradigms hinge on such memory-
guided decisions and are subserved by interactions between executive and mnemonic hub regions including
the prefrontal cortex (PFC) and hippocampus?®. PFC principal neuron spike rates during delayed response
tasks encode diverse features of sample identity and task rules in both non-human primates*® and rodents®-
' with sustained PFC principal neuron firing offering an intuitive neural correlate of working memory
maintenance during task delay phases'®'?63218-25 However, as analyses have extended from individual
neurons to simultaneously recorded cortical populations, other informative features of PFC ensemble
dynamics have emerged®°.

Sequentially active, task-informative neurons in PFC and interrelated regions can span the behavioral
progression from sample to choice®**° and recent models invoke dynamic changes to the information
coded by individual neurons and subpopulations across sample, delay and response epochs?:37484047 Thys
subsets of transiently active neurons not classically selective for individual task features can contribute to
DNMTS performance®“°-%3 Here, we test whether and how these complex neural dynamics within the PFC
— which have been characterized primarily in primates — reflect its interactions with hippocampus, using
simultaneous hippocampal-PFC recordings in rats.

Hippocampal CA1/CA3 single unit activity during DNMTS-related tasks in both macaque® and rat'"*® show
dissociable sample, delay and choice correlates, potentially reflecting interactions with PFC. Indeed,
simultaneous recordings from rodent PFC and hippocampus reveal co-varying network activity associated
with 5-10Hz ‘theta’ frequency coherence across the two regions during route choice on mazes®*>° and
spatially-guided object memory retrieval®. However, the precise timing and nature of the network physiology
driving these interactions remains equivocal, as do the relationships between single neuron and population-
level contributions to information encoding and retrieval across the hippocampal-PFC axis. For example, how
are hippocampal representations integrated into PFC dynamics during both cue sampling and subsequent
choice? Do different oscillatory interactions with hippocampus disambiguate the cognitive contexts of sample
and choice?

We examined the dynamic contributions of hippocampal and PFC populations to information encoding during
the DNMTS task. Specifically, we tested the hypotheses that: (1) Correlated groups of neurons distributed
across hippocampus and PFC form assemblies that contribute to the representation of cue information during
sample encoding and recall; (2) Dissociable subsets of PFC neurons (less directly modulated by
hippocampus) maintain cue information during the working memory delay; and (3) At least one of these
population signatures should fail to encode, maintain or transfer information during errors, culminating in an
incorrect choice.
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Results

Dissociable dCA1 and mPFC population dynamics reflect differential contributions to information encoding,
maintenance, and recall during the DNMTS task

Six rats were trained on the DNMTS task (Fig. 1A and S1A) and chronically implanted with tetrodes (Fig.
1B, Fig. S1C-F) to record simultaneous spiking activity from dorsal CA1 and prelimbic medial PFC (mPFC);
data are presented from the final two DNMTS sessions after criterion had been achieved (Methods). 315
mPFC and 3015 dCA1 (meantSEM) well-isolated putative principal neurons with mean firing rates >0.5Hz
were analyzed from each animal per session.

Every trial began with a sample phase initiated by light-cued presentation of either the right or left lever.
Following sample press, the lever was retracted and rats turned and waited at a food pellet receptacle in the
opposite wall; a tone then signalled the end of a 4, 8 or 16s delay, varying randomly from trial to trial to
discourage mediating behavior. The choice phase was initiated by nose-poking inside the receptacle to
release presentation of the two levers on the opposite wall. Correct choice was rewarded according to a non-
match rule.

Rats made significantly more errors on 16s delay trials than trials with shorter delays (Fig. 1C, N=12, 2
sessions from 6 rats, ANOVA, F(2,36) = 42.4, p<0.001, Tukey-Kramer post-hoc test for delays p<0.001): all
rats performed the DNMTS task significantly better than chance on 4s and 8s delay trials in both of two
consecutive test sessions (p<0.05, binomial tests for each rat's performance), whereas only three rats
achieved above-chance performance at 16s delay in the latter of the two sessions. Response latencies did
not differ systematically across 4, 8 or 16s delay trials, or correct vs. error trials (Fig. S1B), indicating that
inaccurate performance on 16s delay trials was unlikely to stem from failure to engage with the task.

To quantify the time-varying encoding of cue location by single units, we used Student’s t-statistic as a
measure of discrimination between left- vs. right-cue firing rates, tracking in 50ms bins how much information
about the sample lever identity was carried by each neuron’s trial-averaged activity in dCA1 (Fig. 1D, top)
and mPFC (Fig. 1D, bottom). For dCA1 units, discrimination tended to peak around sample and choice lever
presentations. The activity of mPFC units was less bound to the sample and choice lever presses, and tiled
the entire delay period in sequential, overlapping fashion (Fig. 1D, bottom right panel and Fig. S1H-J).
Indeed, whilst dCA1 units showed significantly stronger peak cue location encoding than mPFC units during
the sample and choice-preparatory periods (Fig. 1E, top, peak t-score, dCA1 vs. mPFC units; 3.49+0.23 vs.
2.72+0.08, t(463)=3.52, p=0.00048, t-test, N= 223, 242 units from 12 sessions), single units from the two
areas were indistinguishable in the durations over which they encoded cue location more than expected by
chance (Fig. 1E, bottom, duration of encoding, dCA1 vs. mPFC units; 2.24+0.19s vs. 1.99+0.16s; t(463) =
1.38, p=0.17, t-test, N= 223, 242 units from 12 sessions). Very few mPFC units showed persistent lever-
selective delay firing (approximately 85% units showed significant decoding for <6s, Fig. 1E, bottom).

We next quantified how joint activity of simultaneously recorded populations of single units within each area
carried task-relevant information using a linear discriminant classifier (Fig. 1F). Independently for each
session, we used leave one out cross-validation (LOOCV) to predict lever identity for each 50ms time bin. To
compare between animals, random subsets of equalized unit numbers and trial counts were drawn between
conditions, ruling out dimensionality confounds in classifier performance.
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Figure 1:

Differential contributions of dCA1 and mPFC neurons and populations to performance in the DNMTS working
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Joint activity of simultaneously recorded dCA1 units showed strong but transient read-out of sample identity,
peaking around the lever-presses but dropping to chance decoding performance during the delay period (Fig.
1F, red traces). Meanwhile, the discrimination around sample and choice lever presentation was less
pronounced in mPFC populations, which instead maintained a stronger representation of sample identity
than dCA1 populations throughout the delay and post-choice evaluation period (Fig. 1F, blue traces). These
findings are in good agreement with recent comparisons between task coding dynamics in hippocampal and
frontal cortical populations in primates®'%?,

Which features of the dCA1 and mPFC population activity are essential to the correct execution of the
DNMTS task? Previous studies have approached this question by inducing forced errors with lesioning or
inactivation of the hippocampal-frontal network (O’Neill et al., 2013; Spellman et al., 2015), but less is known
about the system’s dynamics during spontaneous, unforced errors. Since 16s delay trials challenged the
working memory limits of rats, we quantified which aspects of the sequential contributions of dCA1 and mPFC
populations failed during incorrect choices.

Decoders trained on correct trials and tested on error trials demonstrated that decoding of sample lever
identity from hippocampal populations was intact (Fig. 1G): on error trials the, two conditions were
indistinguishable around the Sample lever press and dCA1 continued to represent the wrong (same) lever
on approach to the Choice lever press. Thus, even as the rats re-visited the Sample lever, hippocampal
representations remained faithful. In the mPFC however, sample representation on error trials began to
decay immediately after the Sample lever press, such that incorrect choices could be predicted approximately
2s earlier in the delay period than from dCA1 activity (black bars in Fig. 1G indicate significantly error-
predicting periods).

mPFC population dynamics support coding that spans the DNMTS delay phase

What ensemble mechanisms might underlie the sustained coding of cue identity by mPFC populations during
the delay period on correct trials? We examined data on a trial-by-trial basis to find associations between
mPFC population dynamics and DNMTS accuracy (Fig. 2), comparing LOOCV decoding across delay
lengths and correct vs. error outcomes. Subsets of the different trial types were drawn at random to allow
matching of trial numbers across conditions (accounting for fewer available correct trials on longer delays).

On 4s and 8s delay trials, during which all rats performed above chance in both recording sessions (Fig. 1B),
delay period decoder results were significantly better than chance performance (bootstraps with shuffled trial
labels) for the entire delay period duration in the majority of recording sessions (indicated by grey shading in
Fig. 2A). For 16s delay trials, we split recording sessions by whether animals’ behavioural performance was
at, or significantly better than chance performance, (light and solid blue curves in Fig. 2A). Here, whereas
correct outcome 16s delay trials from above-chance sessions showed decoder performance that was above
chance for the majority of the delay period (albeit variable due to the small subset of three above-chance
sessions), mPFC population decoding from correct trials from chance-performance behavioural sessions
fluctuated around chance levels from shortly after sample lever press. Thus, even though all trials examined
corresponded to “correct” outcomes, faithful decoding of cue identity from mPFC populations demanded that
rats were not guessing their choices, implicating faithful cue representation by mPFC populations in
successful task performance.



Figure 2:

Maintenance of cue location by a stabilizing population code in mPFC underlies correct performance in the

DNMTS task
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Thus on correct trials, a delay-spanning coding scheme is implemented in mPFC during the working memory
period of the DNMTS task, despite individual neurons firing only transiently (Fig. 1D); what form does this
scheme take? One possibility is that firing rates across neurons evolve in fixed proportions relative to one
another, such that a decoder trained on population firing rates at the start of the delay successfully predicts
left vs. right sample lever identity using firing rates from the end of the delay, and vice versa. Alternatively, a
dynamic code implemented by the mPFC population may mean decoding results are only transiently valid
around the time of the training data. We compared evidence for these two hypothetical schemes by
constructing decoders using population firing rate vectors from each 50ms segment of the delay period and
systematically ‘sliding’ the test data across the entire delay period (Fig. 2B, method reviewed in Meyers et
al., 2008). These results form cross-temporal decoders on symmetrical axes, on which the diagonal (white
arrows in Fig. 2B) represents training and testing performed at matching time-points. We trained and
evaluated separate decoders for each recording session; results in Fig. 2B summarise mean performance
across sessions.

For 4s and 8s delay trials, decoders trained and tested at any pair of times during the delay period were
similarly effective, generating symmetrical regions of significant decoding extending throughout the delay
(filling the white bounding boxes in Fig. 2B). However analysis of 16s delay trials from sessions with above-
chance behaviour, revealed that mPFC populations encode the cue identity dynamically during the extended
delay period. Significant off-diagonal decoding was observed during the first 8s of delay, but decoders trained
on firing rates at the start of the delay were no longer successful when tested on firing rates from after 8s;
whereas decoders trained at 8s or later successfully recovered cue identity until the end of the delay.

This sustained representation was seen neither in dCA1 (Fig. S$2), nor in decoding results from sessions with
at-chance behavioural performance (Fig. 2C). Instead, despite an initial early-delay period of transient
decoding comparable in strength to the above-chance sessions (as in Fig. 2B), cross-temporal decoding did
not outlast approximately 2s. These results link cue encoding in mPFC populations to successful DNMTS
task performance. Consistent with this, the sustained mPFC population code evident during correct 16s trials
was not established during error trials (Fig. 2C, lower panels).

A subset of neurons with distinct rhythmic firing signatures form joint dCA1-mPFC cell assemblies recruited

during sample and choice events of the DNMTS task

Thus far, our results demonstrate that dCA1 neurons are particularly informative during encoding (sample)
and recall (choice), whereas mPFC populations are critically involved in delay phases, through the transient
contributions of individual mPFC neurons to sustained population coding. Correct activation of the dCA1-
mPFC pathway is essential for performance of spatial working memory tasks®°®, but given the dissociable
encoding of task-related information in dCA1 and mPFC populations, when and how is information shared
between the two regions during delayed responding?

We used factor analysis (FA)*"® to detect coordinated activity among units from mPFC only, dCA1 only, or
jointly from mPFC and dCA1 (Fig. 3, Fig. S3, Methods). In contrast to Principal Component Analysis (PCA)
which detects variance-maximizing dimensions, FA is a model-based statistical tool that explicitly captures
correlations between variables through a set of independent factors. FA has thus been shown to outperform
PCA for the present purposes®. Recorded units were assigned to the same cell assembly when they
significantly loaded on the same latent factor (Fig. 3B-C), which captured correlated firing rate activities within
the population of neurons (Fig. 3D). Time-varying factor scores associated with each extracted factor in the

8



Figure 3:

A latent factor analysis model detects correlated inter-regional dCA1-mPFC cell assemblies
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FA model (Fig. 3B) measure assembly activation strength, as exemplified by significant event-locked
activation of inter-area assemblies binding dCA1 and mPFC units during the DNMTS task (Fig. 3D,4A, further
examples in Fig. S4A).

Units from both dCA1 and mPFC that participated in cell assemblies spanning the two regions (Fig. 3D, Fig.
4A) showed 4-5Hz rhythmic modulation in the autocorrelation of their spike trains (Fig. 4B). dCA1-mPFC
single unit pairs drawn from assemblies showed coherent spike train modulation at 4-5Hz, which was weaker
for pairs drawn from different cell assemblies, and weaker again for pairs of units not detected as cell
assembly members using FA (Fig. 4C: average 3.5-5.5Hz coherence across dCA1-mPFC cell pairs, F(2,27)
= 50.0 p<0.0001, Tukey-Kramer post-hoc tests for assembly membership p<0.05, N = 2 sessions from each
6 animals, also see Fig. S4B). Coherent 4-5Hz spike train modulation was also weaker for pairs drawn from
within-area cell assemblies in dCA1, and essentially absent between pairs from mPFC. This indicates that
“non-assembly” units were physiologically distinct from their assembly counterparts. The 4-5Hz assembly
motif was specific to the task period, since the spectral signature was absent from spike trains recorded
during one hour rest periods flanking DNMTS sessions (Fig. S4C).

Are the ‘Sample’ and ‘Choice’ events of task context parsed by the patterned firing of the assembly member
units? Rhythmic 4-5Hz co-modulation between dCA1-mPFC unit pairs was prominent only during the 4s
preceding sample lever presses (Fig. 4D, Fig. S4D). This dynamic signature of dCA1-mPFC assembly
activity therefore timestamped the DNMTS sample phase, and is consistent with evidence that optogenetic
silencing of hippocampal-prefrontal interactions is particularly disruptive during the sample phase of delayed
responding on a T-maze®.

In contrast, cross-correlations between dCA1-mPFC assembly member pairs preceding choice lever presses
were not 4-5Hz modulated, but tended to reflect mPFC spiking leading dCA1 spiking on a longer, 400ms
timescale (Fig. 4D, bottom right panel), consistent with previous studies of decision-making®’®"". Context-
dependent shifts in signal 4-5Hz modulation and flow direction between hippocampus and frontal cortex can
therefore serve to disambiguate the transition from sample to choice phases of DNMTS.

We further explored this hypothesis by examining when individual assemblies were most active during
sample or choice events. Fig. 4E summarizes the activity profiles of within-area (gold) and inter-area (purple)
cell assemblies during the task, demonstrating comparable activation during sample presentation but
diverging activation levels during delay and choice events. We restricted the assemblies to those whose
factor scores showed significant activity (bootstrapped p<0.05 compared to assemblies composed from time-
shuffled neural spike trains, Fig. 4B) in the 4s preceding lever presses, and split them into either significantly
“sample-active” or “choice-active" based on the time of their strongest average activations (Fig. 4F, Fig.
S4D).

A significant majority of within-dCA1 and dCA1-mPFC assemblies were sample-active (dCA1: 13 Sample-
active vs. 5 choice-active; dCA1-mPFC: 20 Sample-active vs. 6 choice-active detected assemblies, one-
sample t-test vs. an even Sample/Choice split for within-animal averages; mPFC: T(6)=-2.61, p=0.08, dCA1:
T(6)=-2.53, p=0.13, dCA1-mPFC: T(6)=-6.72, p<0.01, Fig. 4F). In contrast, both classes of sample and
choice activity were approximately equally represented in within-mPFC assemblies (9 Sample-active vs. 10
choice-active detected assemblies). This was explained neither by skewed unit counts across areas in our
recordings nor over-representation of one area’s contribution to the FA assembly models (Fig. S4E,F).
Finally, restricting analysis of rhythmic dCA1-mPFC unit pair interactions to sample-active assemblies
amplified the 4-5Hz rhythmic coordination (Fig. 4G). The coherent modulation of spike trains by this
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fingerprint “Sample" rhythm_Figure 4: A subset of neurons with distinct rhythmic firing signatures form dCA1-
mPFC-spanning cell assemblies which are active around the lever press events.
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B Left: Rate-normalized spike-time
auto-correlation functions
(meantSEM across units) for non-
assembly units, members of within-
area and inter dCA1-mPFC cell
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Modulation index of spike train
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C Inter-area spike train coherence
between dCA1-mPFC unit pairs
within, across and outside cell
assemblies (meantSEM of dCA1-
mPFC pairs across sessions shown).
Grey shaded region indicates
frequency range used for statistical
comparison of rhythmic modulation
(asterisks).

D Pairwise dCA1-mPFC spike train
cross-correlogram (top: 20ms bins,
bottom: 100ms bins) for spikes fired
by units in the 4s preceding Sample
(left) and Choice (right) lever press
events. Average across all pairs
shown (mean+SEM across recording
sessions) for within (purple) and
across (white) assembly pairs.

Random sampling of spikes (100 draws per cell pair) was used to match firing rate offsets between cells.

E Standardized activation patterns (factor score activity) of different classes of cell assembly detected across
all 12 recording sessions (mean+SEM across sessions), aligned to Sample and Choice lever press events.
Assemblies were sorted by peak activity time and categories as either “Sample-active” or “Choice-active (Left
and Right columns, respectively) based on strongest activation. Dashed lines are mean assembly activities

for each class.

F Fractions of cell assembly categorized as Sample- and Choice- active for each assembly type detected in
the 12 recording sessions. 0 and 1 indicate assemblies were most strongly activated during the Sample and
Choice phases respectively. Asterisk indicates that dCA1-mPFC assemblies were significantly biased

towards more Sample-active.

G Rhythmic 4-5Hz dCA1-mPFC spike correlations (as in D) were specific to pairs of units from Sample-active
assemblies and were strongest for inter-regional pairs drawn from the same cell assembly.
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was attenuated between parallel but independent dCA1-mPFC assemblies, and was absent in the activities
of Sample assemblies during the choice-preparatory period.

These assembly analyses reveal sparse subsets of single units that cohere task-dependently into assemblies
spanning dCA1 and mPFC, and are hallmarked by a physiological signature of 4-5Hz coordination. As such,
the inter-area cell assemblies are uniquely positioned to orchestrate dCA1-mPFC interactions and
information transfer.

Having uncovered dissociations between coding of dCA1 and mPFC populations, and task phase-dependent
activation of 4-5Hz modulated dCA1-mPFC joint assemblies, we sought to map the activities of these
subpopulations of neurons onto component processes of working memory underlying DNMTS task
performance. Times at which the intra-CA1, intra-mPFC and dCA1-mPFC classes of assembly-participating
units provided significant cue encoding during the task showed no clear segregation at the single cell level
(Fig. 5A). However, multivariate population decoding from units belonging to these different assembly types
demonstrated dynamic, fluctuating contributions of each neuronal class during the DNMTS task (Fig. 5B,
S5). For example, mPFC inter-area assembly members (purple traces in Fig. 5B, S5) showed strong sample
representation, while non-members (i.e. mPFC units less correlated with either dCA1 or other mPFC units)
showed strong encoding during the delay.

Figure 5:
Assembly membership-dependent differences in the statistics of cue encoding during the DNMTS task are

not visible at the single neuron level but orchestrate dynamic contributions by neural populations.
A B

dCAT units - mPFC units dCA1 units mPFC units
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A Discrimination of cue location by firing rates of individual dCA1 and mPFC single units, sorted by assembly
membership type and time of peak discrimination. Black bars indicate time of significant decoding (t-test,
Bonferroni-p<0.05, bootstrapped confidence limit).

B Population-level discrimination of cue location by firing rates differs by class of assembly membership.
Curves show cross-validated multivariate decoding for units participating in different assembly types
(mean+SEM across recording sessions). Coloured lines indicate 5%, 95% bootstrap Cls of decoding from
shuffled trial labels (mean across session shown). Below: Grey shading indicates fraction of recording
sessions with decoding exceeding 95% CI at each time-point. Above: best performing group providing
significant decoding from >60% sessions, winner-take-all.
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These analyses demonstrate a dynamic modulation in the representation of cue information by cells forming
assemblies that cannot be detected in the activities of individual member neurons. In particular, changes in
the pattern of interaction across brain areas hallmarks parsing of the cognitive contexts of encoding,
maintenance and recall lever presses during the task.

Incorrect choices are associated with intact sample encoding in hippocampus but impaired transfer of cue

information to mPFC and collapse of intra-mPFC dynamics.

The distributed and dynamic mechanisms supporting successful completion of the DNMTS task offer multiple
potential vulnerabilities to disruption, culminating in erroneous choices. We therefore quantified which
features of coordinated population activity were altered on error trials.

The average activation profiles of within-dCA1 or sample-active within-mPFC assemblies were unaffected
on error trials (Fig. 6A, top), whereas choice-active, within-mPFC assembly activation was significantly
weakened in the period leading up to the choice lever press (gold vs. red traces in Fig. 6A, third row). No
differences were observed in average activation strengths of inter-area dCA1-mPFC assemblies preceding
the incorrect Choice lever presses, but activation was significantly stronger immediately afterwards (purple
vs. red traces in Fig. 6A, bottom), suggesting coordinated inter-area firing in error feedback signalling, as
has been reported for this pathway in primates®’.

Because, on correct trials, cue encoding by dCA1-mPFC assemblies showed two distinct modes of correlated
interaction during Sample and Choice periods (Fig. 4E-G), we wondered whether the rhythmic firing before
Sample and mPFC-driven correlations before Choice times (Grey boxes in Fig. 6B) would be specifically
affected on errors (Fig. 6B). Indeed, we observed significantly weaker 5Hz correlated firing between inter-
area pairs from the same assembly during the Sample-preparatory period (Fig. 6C), and a reverse in lag of
peak correlation, such that dCA1 led mPFC firing in the Choice-preparatory period on error trials instead of
mPFC leading dCA1 as in correct trials (Fig. 6D, 1(250)=2.21, p=0.0274, paired t-test).

Given these disrupted rhythmic and directional interactions during unforced errors, we tested whether
pharmacological impairment of working memory performance also associated with changes in CA1-mPFC
4-5Hz synchrony. On separate recording days, we systemically injected rats with the synthetic cannabinoid
CP44940, previously reported to impair working memory performance’. We observed strong effects of the
drug on animals’ performance in the DNMTS task (Fig. 6E,F). Compared to control sessions in which all six
rats performed above chance on four- and eight-second delay trials (asterisks in Fig. 6E), CP55940 reduced
performance to chance in half of the animals. We observed significant Drug- and Delay- dependent effects
and a Drug x Delay interaction on performance (Fig. 6F, repeated-measures two-way ANOVA; Drug:
F(1,5)=915, p<0.001, Delay: F(1,5)=1850, p<0.001, DrugXDelay: F(1,5)=899, p<0.001). Post-hoc tests
(Tukey-Kramer p<0.05) indicated that CP55940 significantly reduced performance on the shortest, 4s and
8s delays trials. No changes in trial omission rates (Normalized to mean Control rates: Control: 100£20%,
CP55940: 140+30% F(2,21)=0.74,p=0.49) or systematic effects on behavioural latencies (data not shown)
were observed across different conditions, suggesting that the drug did not affect the animals’ engagement
in the task.

We examined CP55940’s effects on rhythmic cross-correlations between dCA1-mPFC cell assembly
member neurons during sample encoding (Fig. 6G). Compared to control sessions, the magnitude of 4-5Hz
power in spike train cross-correlations when considering all within-assembly pairs was significantly reduced
under CP55940 (Fig. 6H, Z=3.6, p=0.0032, n=252,78 dCA1-mPFC unit pairs from N=6,2 animals for Control,
13



Figure 6: Incorrect choices are associated with intact sample encoding by dCA1 networks but reduced 4Hz

dCA1-mPFC assembly synchrony, leading to a collapse of intra-mPFC dynamics and impaired dCA1-mPFC

synchronization on recall.
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for each individual rat, sorted from left by best-performing animal on Control sessions. Asterisks below
indicate whether the rats performed at- or above-chance for each delay length. F Group data from N=6 rats
demonstrating significant impairment in task performance on 4s and 8s delay trials on CP55940 recording
sessions. G Rhythmic 4-5Hz spike-train cross-correlations for within-assembly dCA1-mPFC unit pairs during
cue sampling was strongly attenuated in rats administered CP55940. Left: rate-normalized cross-correlations
(method as Fig. 4D). Right: power spectra of cross-correlograms. H Strength of rhythmic 4-5Hz dCA1-mPFC
correlation between unit pairs (average power in spectrum between 3.5-5.5Hz), normalized by group mean
on control days. Dots are individual animals, black lines link animals between control and CP55940 sessions.
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CP55940 sessions, respectively). Because dCA1-mPFC cell assemblies were detected in only two CP55940
sessions (although this did not represent a significant reduction in the number of dCA1-mPFC assemblies
from control conditions: fraction of sessions with detected assemblies Control: 3/6, CP55940: 2/6, y %(1) =
0.343,p=0.560, similar results for numbers of parallel detected assemblies: Fig. S6A), we also considered
the distributions of peak 5Hz spike train correlations between all possible dCA1-mPFC unit pairs (Fig. S6B).
The strongest modulated dCA1-mPFC pairs demonstrated a significant reduction under CP55940
(Komogorov-Smirnov test, D = 0.0047, p<0.001, n = 11686, 3212 pairs from N= 6,6 sessions, respectively).
This is consistent with the observation that 4-5Hz correlated modulations are strongest between inter-area
cell-assembly member pairs in control conditions during cue-sampling (Fig. 4) and that these are affected by
cannabinoid administration.

Thus, as with naturally occurring unforced errors in DNMTS performance, biasing animals’ behaviour with

psychoactive compounds known to affect working memory also implicates rhythmic hippocampal-prefrontal
network population coordination during working memory loading in later incorrect choice-making.
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Discussion

The temporal structure of the operant DNMTS task disambiguates mnemonic and decision-making
processes, which overlap in space and time during the maze-based tasks commonly employed in rodent
studies of working memory. Simultaneous dCA1-mPFC recordings, allied with the temporal structure of the
operant DNMTS task, unveiled several principal features of dCA1 and mPFC information processing.
Encoding of trial-specific cue information during Sample is strongest in dCA1 and integrated into mPFC
processing by virtue of joint dCA1-mPFC assemblies, bound by a common 4-5Hz rhythmic modulation.
Separable mPFC populations then maintain sample information through sequential delay-spanning
dynamics; on error trials this coding degrades, despite accurate encoding in dCA1. Finally, dCA1 and mPFC
concurrently encode choice information, led by mPFC and no longer contingent upon the rhythmic
assemblies recruited during Sample.

These differential dCA1 and mPFC coding patterns corroborate previous lesion studies in rodents™"°,
population recordings in non-human primates®® and human imaging studies highlighting hippocampal
activation during encoding of working memory’®7°. However, we also resolved a physiologically distinct
subset of dCA1 and mPFC neurons critical for trial-specific loading of cue identity into working memory,
coactive as inter-regional assemblies with sub-50ms timescales.

Activation of dCA1-mPFC assemblies occurred during the DNMTS sample phase analogous to the “sample”
run on a T-maze, when optogenetic silencing of CA1 projections to mPFC preferentially impairs task
performance®. These coordinated activities reflect hippocampal-prefrontal interactions during loading of
working memory, with the tendency of dCA1 encoding to precede mPFC encoding consistent with
hippocampal-to-prefrontal anatomy®-%2 and functional connectivity®®. Conversely, delay-coding mPFC
subpopulations may partner with mediodorsal thalamus, since optogenetic disruption of mPFC activity®® or
silencing mPFC input from mediodorsal thalamus during the delay phase of short-term memory tasks impairs
maintenance of information®*. Based on recent evidence that individual mPFC pyramidal neurons receive
convergent input from both ventral CA1 and mediodorsal thalamus®*, which neurons are recruited during
sample vs. delay may therefore rather reflect dynamic configuration of assemblies via interneuron-mediated
tuning of excitability and synaptic plasticity®®.

Rhythmic coordination of dCA1-mPFC assembly members is reminiscent of a 4Hz rhythm reported during
working memory processing in rats®®, coordinating activity across hippocampus, ventral tegmental area and
mPFC during delayed responding on a T-maze. In the DNMTS task, we pinpoint its emergence during the
sample phase and specificity to the units forming inter-regional dCA1-mPFC assemblies, evident both in
spike cross-correlograms and in their intrinsic auto-correlated firing. In contrast, 4-5Hz dCA1-mPFC
assembly modulation was absent around memory-guided DNMTS choice lever presses, showing that
hippocampal-prefrontal dynamics are reconfigured from sample to choice, reflecting mPFC-led control of
memory retrieval®.

The cross-temporal coding analyses in Figure 2 evidence sustained coding despite transient activities of
individual mPFC neurons. This delay coding was neither evident in dCA1, nor associated with sustained
activation of dCA1 or mPFC synchronous assemblies; it is most likely, therefore, to derive from sequential
activation of mPFC units and/or assemblies*’, or potentially from assemblies more widely distributed across
PFC than our tetrode recordings could sample. Whatever its basis, sustained mPFC coding during the
DNMTS delay phase collapsed during errors, and on 16s delay trials during sessions in which rats performed
at these trials at chance levels. In fact, rats may resort to guessing on both correct and error trials during
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Figure 7: Schematic of main findings

Lines indicate cell assembly motifs within and
between brain regions, triangle outline width
represents strength of cue encoding by individual
neurons and cell assemblies of each type, for different
phases of the task. Arrows indicate task information
flow; either rhythmic (dotted) or directional (shaded).
Red crosses highlight physiological mechanisms of
information encoding observed to collapse on error
trials.
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chance performance sessions, though consistent
nose-poke and lever-press latencies across trials
and sessions indicate that motivation and
certainty/expectancy remained stable.

On error trials, the dCA1 population code maintains
a faithful representation of cue identity, and
activation strengths of cell assemblies linking dCA1
and mPFC are comparable to correct trials during
both Sample and Choice epochs. However, transient
Sample-specific rhythmic interactions are weaker,
as are the network dynamics in mPFC that maintain
cue identity encoding during the delay, preventing
the formation of a stable population code for working
memory. Although with the current dataset we
cannot dissect causal contributions of individual
signatures of errors, such sequential events could
lead to the disorganised activation of choice dCA1-

mPFC cell assemblies we observe preceding
incorrect choices.
Disrupted  hippocampal-prefrontal  connectivity

impact working memory performance® 6466727387

and is implicated in the pathophysiology of
schizophrenia®*®°. Here, we systematically disrupted
rhythmic dCA1-mPFC sample assembly activation
through systemic activation of CB1 receptors by
CP55940. Correspondingly, delay-dependent task
error-making was exacerbated, potentially via
combined effects on cortical glutamatergic
transmission®® and hippocampal ensembles®’.
Thus, whether arising spontaneously or induced by
CP55940, interruptions to population coordination
either during initiation of dCA1-mPFC encoding
during the sample phase or intra-mPFC processing
during the maintenance phase associate with
impaired delay-dependant performance on error
trials, leading to incorrect choices. In conclusion
(schematized in Fig. 7), our data confirm why both
mPFC and dCA1 — as well as intact connectivity
between them — have been ascribed crucial roles in
spatial working memory. The temporally defined set
of cognitive steps timestamped by rhythmic
assembly dynamics establishes a framework that
can now be tested in combination with circuit tracing
and/or imaging strategies relating assembly
configurations to the connectivity of participating
neurons and their neuromodulation.
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Methods

Electrode implantation

All procedures were conducted in accordance with the UK Animals Scientific Procedures Act (1986) and with
the approval of the University of Bristol Ethics Committee. Eight adult (300—-400g) male Long—Evans rats
(Harlan UK) were implanted with 16 extracellular tetrode recording electrodes: 8 over right medial prefrontal
cortex (+3.2 mm, +0.6 mm from bregma) and 8 over the right dorsal hippocampus (-4.0 mm, +2.5 mm from
bregma) under sodium pentobarbital recovery anaesthesia. During 7-12 days following surgery the
independently moveable tetrodes were lowered into prelimbic cortex (~2—3 mm ventral) and the principal cell
layer of the dCA1 %, guided by the characteristic burst mode of single-unit firing and the presence of large-
amplitude sharp-wave ripple events in the local field potential. Extracellular action potentials (sampled at 32
kHz and filtered between 0.6-6 kHz) together with local field potentials (sampled at 2 kHz and filtered
between 0.1-475 Hz) were recorded differentially (Digital Lynx, Neuralynx) using local references, which
were targeted to superficial prefrontal cortex and the white matter overlying the hippocampus. Two screws
placed in the skull overlying the cerebellum were used as ground connections. Final tetrode tip positions
were verified histologically by identifying sites of electrolytic lesions in 50um stained sections of
formaldehyde-perfused brain.

Behavioral training

Subjects were food-restricted to no less than 85% of their free-feeding weight and trained in a DNMTS
operant task (Fig. 1). We used an operant chamber (Med-Associates, Vermont, USA), which consisted of
two retractable levers facing a food pellet dispenser on the opposite wall, with a cue light above each
component and a tone generator placed above the pellet dispenser. Side and top walls of the chamber were
transparent to enable view of distal spatial cues in the recording room. Metal components of the chamber
were grounded to the amplifier to electrically shield the recordings, which were carried to the data acquisition
system via tethers suspended through a hole in the centre of the box ceiling. The task was programmed and
operated in K-Limbic software (D. Fuller, Conclusive Marketing Ltd.) on a separate computer. Subjects were
initially conditioned to press a lever to obtain pellet reward before being trained in DNMTS task with pseudo-
random delays (random combination of equal number of target left and right lever trails at each delay
arranged into blocks of 10 trials) of 4,8, 16s. Error and missed trials were followed by all cue lights off for an
extra 10s of inter-trial interval. There were 150 trials in each session (50 x 3 delays). Sessions with less than
67% of trials completed were excluded from further analysis.

Single unit clustering

Single units were isolated off-line using automated clustering software (KlustakKwik 1.7; K. Harris), followed
by verification and manual refinement in MClust 3.5 (A.D. Redish); unit inclusion criteria were set to isolation
distance >10.0 and L-ratio <0.35, with <2% of spikes within 2ms inter-spike interval (Suppl. Fig. 1). Putative
pyramidal cells were classified based on the spike width, waveform and mean firing rate. A total of 156 (min.
115, max. 194) putative principal cells in dCA1 (mean of 34 units per subject) and 168 (min. 152, max. 201)
putative pyramidal cells in mPFC (mean of 33 units per subject) were isolated in each recording session.

Statistical analysis methods

Where appropriate following normality testing (Kolmogorov-Smirnov test, p>0.05), parametric statistical
comparisons were performed. Unless otherwise specified, results are quoted as Mean = Standard Error of
the Mean (SEM). To equalize statistical power on multivariate statistical analyses, all comparisons across
delay lengths and different recording sessions were calculated on repeated jack-knife draws of random
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subsets of matched numbers of trials. Similarly, non-parametric bootstrapping was performed through
calculating statistics on distributions of shuffled data (e.g. for decoding analyses described below, by
randomly permuting trial labels 1000 times). Results were considered significant if the observed value
exceeded the 95" percentile of the bootstrap distribution. Two bootstrap resampled distributions were
considered significantly different if their <56% and >95% tails did not overlap. Where two time series were
compared (e.g. Fig. 1F,G), bootstrapped p—values were adjusted using Bonferroni correction for number of
time bins.

Spike train analysis

Only units with an average firing rate of at least 0.1 Hz were included in all subsequent analyses, but no
further selection of units was performed. All decoding analyses, to be described further below, were
performed on kernel density estimates of the instantaneous spiking rate. Separate kernel density estimates
(KDE) for each unit i were obtained by convolving spike trains with Gaussian functions (‘kernels’), where the
optimal kernel width ¢* was determined through unbiased cross-validation ®. For Gaussian kernels, closed-
form expressions for the unbiased cross-validation error (CVE) can be obtained, and numerical iteration of
the CVE procedure is not necessary . Loosely, one may think of the unbiased cross-validation procedure
as leaving out each spike in turn, and evaluating the likelihood of its actual position from the spike density
estimate obtained based on all other spikes in the series. Thus, the optimal bandwidth estimated will depend
on predictable temporal structure in the spike trains, not just their rate (see also Shimazaki and Shinomoto,
2010). KDEs provide a statistically more robust (less variable) estimate of the true underlying spike density,
compared to e.g. histograms or binarized spike series, but decoding results did not crucially depend on this
pre-processing step.

Single units were considered significantly sensitive to behavioural events if their normalized (z-scored) firing
rate deflection in a 2 second window after the event exceeded +3x the standard deviation of the baseline
firing rate (500ms window preceding the event).

Neural Decoding

For single unit decoding (e.g. Fig. 2A), for each time bin m and unit i single unit rates v, were collected into
two sets according to whether meC1 or meC2, the two sets of time bins associated with one (C1) or the
other (C2) cue stimulus. The common t-statistic (as also employed in Student’s two-sample t-test) is a
measure of discrimination among these two sets, as it divides the difference in means by the pooled standard
deviation (c.f. Durstewitz et al., 2010). For the average number of trials collected here (~54), values of
approximately t > 1.67 would indicate significant discrimination at the p<0.05 level.

Leave-one-out cross-validation analysis (e.g. Fig. 1F) was performed for the multivariate linear discriminant
classifiers used for decoding (e.g. Hastie et al., 2011), with regularized covariance matrix as specified below.
This used, for each time bin t the two sets of population vectors associated with the two stimulus classes
(see above), with one population vector (and thus trial) left out from the fitting. Prediction performance was
evaluated on the left-out trial, and this was repeated for each trial in turn, yielding the cross-validation error
(CVE) as the relative number of incorrectly classified (out-of-sample) prediction trials. For testing differences
in CVE between mPFC and dCA1 populations, for each data set the number of mPFC and dCA1 units
(variables) used for decoding was exactly equalized to rule out any potential confounds due to population
size. This was done by fixing the number K of units used to the smaller of the two populations, mPFC or
dCA1, and then randomly drawing K units with replacement from the larger of the two populations 10 times
and averaging the obtained CVE values. Differences in relative proportions of correct cue predictions, CP =
1-CVE € [0, 1], between mPFC and dCA1 were statistically tested by averaging CP across all 12 data sets

and using the beta distribution. Specifically, at each time point t the smaller of the two values CPnprc and
23



CP4ca1 was used for the reference distribution, and it was checked whether the larger of the two significantly
(p<0.05) escaped this reference distribution given the average number of trials recorded.

To compare decoding performance on correct and error trials (e.g. Fig. 1G), classifiers trained on correct
trials were additionally challenged to predict the cue identity of error trials in a similar manner as above.

To evaluate the stability of the population code for cue location during the delay period we used cross-
temporal decoding methods inspired by Stokes et al. (2013), and Parthasarathy et al. (2017). Briefly, we
performed leave-one-out cross-validated decoding of cue location from multi- single unit firing rates as
described above using separate training and testing sets offset by sequential 50ms increments. The
performance of the decoder at each combination of [train,test] time points is thus the percentage of test trials
in which the decoder could correctly identify the cue location when trained using trials at a given time point.
To equalize size of training sets across combinations of delay lengths and recording sessions, cross-
temporal decoding analysis was performed on random draws of eight trials from each of left and right cue
conditions, repeated 500 times. Thus the total cross-validation size for each decoder was 5000 random
resamples per [train,test] time combination. Mean performance across runs is reported in the colormaps
shown in (e.g.) Fig. 2B. Significant decoding at each [train,test] point was calculated against distributions
(p<0.05) from 1000 bootstrap draws created by shuffling labels. For visualization, a 250ms Gaussian
smoothing kernel was applied after significance testing across both training and testing dimensions.

To further corroborate the classification results, we also used a parametric test statistic (Fig. S5): Vectors
vm=(V1m...Vpm)" Of all unit activities were collected into two sets corresponding to stimulus conditions as above,
and contrasted by Hotelling’s T? statistic, a multivariate generalization of the univariate two-sample t-statistic
which relates differences in cue specific mean vectors to the pooled covariance matrix of the data .
Hotelling’s T?, scaled by the appropriate degrees of freedom, is approximately F-distributed which can be
used to construct parametric confidence bands.

In the present case, the number of recorded units often reaches or even exceeds the number of trials, causing
singularity and over-fitting issues with the covariance matrix. One standard statistical remedy is
regularization, where the covariance matrix X is moved toward the identity, Z,.., = £ + AI , with regularization

parameter A (set to 0.05 here, without any attempt to optimize this parameter; Hastie et al., 2011).

FA model for cell assembly detection

Extraction of cell assemblies was based on Factor Analysis®®. This model-based statistical tool is designed
to extract correlations between variables. It assumes that observation vectors vit are given by a (linear)
mixing of uncorrelated latent variables (factors) zit, plus common mean pi and measurement noise &i,

Vit = Mi t Mz + ¢, Eit~ N(O,tP), Zit~ N(O,l), Y= diag[ 612,..., GNZ].

Parameters are commonly estimated through maximume-likelihood. Unlike principal component analysis
(PCA) which detects variance-maximizing directions, FA attempts to capture all the correlations among the
observed variables through the mixing of uncorrelated factors (e.g. Krzanowski, 2000). It is thus more
appropriate for assembly detection than PCA, as has been demonstrated before®®®’.

Inputs to FA were the kernel density estimated instantaneous firing rate vectors cm=(cim) Which collected
spike rates cim for each unit i at time m binned at 50ms in columns, excised from time periods from cue
presentation -5s to choice lever press +5s, combined from all trials.
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Each of the 12 recorded data sets was treated separately, with simultaneously recorded mPFC only, dCA1
only, or concatenated mPFC and dCA1 units submitted for assembly analysis.

The likelihood-ratio statistic for FA models of increasing complexity (i.e. increasing number of factors) in
conjunction with confidence bands obtained from trial-shuffled data can be used to determine the number of
putative assemblies (i.e. significant factors) present (Fig. 3B). While, in principle, likelihood-ratio based
parametric F-scores could be used to determine whether adding another factor to the model still significantly
improves the fit, here we relied on Ho distributions generated from trial permutation bootstraps to account for
the time series (and thus potentially dependent) nature of the data. Specifically, if ¢:® = (ci1®... cu™®) denotes
the set of firing rates for unit j on trial k, for each unit separately the assignments of these sets to trials k were
randomly shuffled. Thus, all autocorrelations and the firing rate structure across a trial were preserved for
each unit i in the bootstrap data, while cross-dependencies between units were destroyed. These
bootstrapped data sets (total of 500) were used both to determine the number of significant factors, i.e. those
for which the LLR ranged within the 1% upper confidence limit of the bootstrap data, as well as significant
factor loadings (the correlations of the units with the factors): Only units for which a factor loading exceeded
1% of the bootstrap range were assigned to the respective assembly. For each factor, the factor score (the
value z» on factor / in time bin m) quantifies the degree to which the respective assembly is activated. Local
cell assemblies forming subsets of joint area assemblies were assumed as part of the larger assembly.
Assembly detection by FA was confirmed using another method based on Independent Component Analysis
%_ Assembly units were determined using IC weight threshold of 2.5 S.D. for every spike train in the analysis.
As done for the FA based analysis, neuronal assemblies, defined as groups of three or more single units that
consistently co-activated within a 50ms time window, were thus detected in dCA1, mPFC, and across dCA1
and mPFC. Despite this quite different methodological approach, sets of assemblies detected by ICA were
highly similar to those detected by FA as quantified through the measure of overlap O=|AnB|/|AUB|e [0,1]
between pairs of sets as defined further above. For each assembly set detected by ICA, the corresponding
assembly set with highest similarity to it as detected by FA was first determined, and the average across O
from all these ICA x FA pairs then calculated for each data set. Overall, across all data sets, there was an
84% average agreement between FA and ICA assemblies (Fig. S3).

Pharmacology
CP55940 (Tocris) was diluted in a vehicle solution (10% ethanol, 10% cremophor, 80% saline) before the

experimental session. Drug solutions were administered |.P. at the injection volume of 0.1ml/100g of animal
body weight to a final concentration of 0.30 mgkg™'. Subjects were tested at 30min post-injection.
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Supplementary figures

Figure S1: Details of training, recordings and single unit physiology during DNMTS task.

A Behavioral performance of rats in DNMTS training is expressed as choice accuracy across subsequent
sessions of the training (left) and as average number of sessions required to reach criterion performance at
different stages of training: early (right). Arrows mark the two sessions used in the analysis of each stage
(early, intermediate, trained). Data from the "trained” days is analysed in this study.

B Cue-Sample, Delay-Nosepoke, Nosepoke-Choice latencies averaged across animals and recording
sessions. Asterisks at upper right corner indicate significant difference between conditions (Kruskal-Wallis
ANOVA: x?(5,1751)=3.69/16.29/16.53, p>0.05/p<0.01/p<0.01, respectively). Bars/asterisks indicate
significant differences between specific combinations of delay and outcome conditions (Tukey-Kramer post-
hoc test, p<0.05).

C Coronal sections show example locations of tetrode recording sites (red circles mark the site of electrolytic
lesions) in the prelimbic cortex (MPFC) and in the pyramidal cell layer of the CA1 subfield in dorsal
hippocampus (CA1), matched to a corresponding rat brain atlas schematic (from Paxinos 2008). The lower
panels summarize lesion sites across all six rats.

D Extracellular action potential spikes recorded across an entire session were clustered into separate single
units (colored dots), plotted here as waveform energy recorded on two channels of one mPFC tetrode. The
properties of the cluster in red circle are presented in E and F.

E Mean waveforms recorded on color-coded channels of the tetrode (top left) show consistent relative peak
amplitudes (top right). Distribution of inter-spike intervals (ISI) below show no spikes detected in the <2ms
refractory period.

F Spike peak amplitudes of the same unit recorded on the color-coded four tetrode channels remain stable
across the recording session.

G Multi-trial firing raster from one example mPFC (top) and dCA1 (bottom) single units. Spike rasters with
continuous firing rates aligned to the Sample and Choice lever presses +/-5s, with a variable portion of the
delay period excised depending on delay length. Trials are sorted by correct and error outcomes (black and
grey ticks) as well as left and right trial type, and finally by nose-poke latency. Solid areas indicate mean +/-
SEM firing rates on correct trials, dotted lines show mean firing rate on error trials. Black bars above epochs
show significant separation of Left/Right trial responses, from the trial-averaged firing rates (t-score, in 50ms
non-overlapping increments, Bonferroni-corrected).

H Mean firing rates of mPFC units (preferred cue direction, correct trials, all units across sessions combined)
during the delay period sorted by time of peak firing on 4s delay trials, sort order maintained for 8,16s delay
trials. Colored stripes on Left indicate assembly membership class (See Figures 3,4).

| Firing rate correlation matrices (la: peak correlation and Ib: time-lag at peak) for data shown in H. Heat-map
shows mean correlation across trials, note strong non-zero lagged correlations.

J Sequential contributions of individual mPFC single units to maintaining population-level encoding of cue
location during working memory delay. Single recording session shown. Units are shown sorted by center-
of-mass of significant decoding (bootstrapped Bonferroni p<0.05) on 4s delay trials. Sort times maintained
across longer delay lengths. Colourmap as for figure 1D.
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Figure S2: Transient cue encoding in dCA1 population lacks a stable code

A-B: Encoding of cue information during the delay. Legends as for figure 2 but decoding from populations
of dCA1 single units.

Figure S3: Validation of assemblies detected with the FA against PCA-ICA based methods.

Total number of assemblies detected (black bars — the first for FA, second for ICA), proportion of units that
participated in assemblies detected by both FA and ICA relative to all units recorded (grey), and proportion
of unit overlap between matched FA and ICA assembly pairs (red) are summarized for the two sessions of
each rat. A measure of overlap between a pair of assembly sets A and B was formally defined as
O=|AnB|/|AuUB|e [0,1], i.e. the cardinality of the intersection divided by the cardinality of the union. On
average there was 84% overlap between units detected by the FA and ICA methods, with similar numbers
for total counts and unit proportions involved.

Figure S4: Further details regarding physiology of dCA1-mPFC cell assemblies

A Cell assemblies link single units conveying similar information. Example activities of one simultaneously
recorded cell assembly from each of dCA1 and mPFC, and one inter-regional cell assembly, along with the
firing activities of their member units. Shaded Blue/Purple lines indicate mean+SEM Factor Scores (cell
assembly activity) on Left/Right trials, aligned to the lever press events. Thin lines represent mean firing rates
of the member units of each assembly on Left/Right trials. Note the similar cue-selective activity and firing
profiles of assemblies and member cells. Black bars indicate times when average Left and Right cue-related
cell assembly activity differed between cues (p<0.05, bootstrap permutation test).

B Averaged cross-correlograms of dCA1 (left) and mPFC (right) cell pairs drawn from either assemblies
spanning the two regions (CA1-PFC, black), assemblies contained within one region (‘intra’ blue) or non-
assembly neurons (cyan) from all recording sessions. Assembly pairs are more correlated than non-assembly
pairs (black/blue vs. cyan), but 4-5Hz rhythmicity is specific to the CA1-mPFC co-assemblies (black vs.
blue/cyan).

C Power spectral densities of spike time autocorrelations for units of each area sorted by assembly
membership category. Curves show meantSEM spectra, Spikes are drawn from either the task period (red),
or 1h pre- and post-task rest periods (grey, teal). For both dCA1 and mPFC units, the 4-5Hz oscillation was
specific to the task period and, in mPFC, to cross-regional assembly members.

D Units from both regions are equally represented in our recordings: Histogram across sessions of ratios
between single unit counts in multi-area recordings [(H#units,,prc — #unitsgcaq1)/(Hunitsy,pre + #unitsgcar)]-
Ratio distribution was not significantly different from a normal distribution (Kolmogorov-Smirnoff test). Blue
symbols indicate median * inter-quartile range.

E Inter-area cell assemblies are equally contributed by dCA1 and mPFC single units.

F Ratio distribution was not significantly different from a normal distribution with mean=0.5. (Kolmogorov-
Smirnoff test). Blue symbols indicate median + inter-quartile range.

27



Figure S5: Evolution of cue discrimination during the DNMTS task by populations of dCA1 and mPFC units
is determined by cell assembly membership participation

Time-aligned multivariate cue discrimination (regularized F-scores) of populations of each type of units for
each event in the DNMTS task. Shaded regions indicate mean+SEM F-scores for units of each membership
classification, from the 12 recording sessions (see methods for details).

Figure S6: Further details of physiology of dCA1-mPFC cell assemblies in rats under influence of CP55940

A Numbers of detected parallel dCA1-mPFC cell assemblies in recordings of each condition (cumulative
distributions).

B Strength of 4-5Hz dCA1-mPFC spike train modulation during Sample phase (average power between 3.5-
5.5Hz in spectrum of cross-correlation) for all inter-regional cell pairs, irrespective of cell assembly
membership class. Shaded regions indicate mean+SEM of distributions across sessions (See main text for
statistics).
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Figure S2 — relating to Figure 2
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Figure S3 — relating to Figure 3
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Figure S4 — relating to Figure 4
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Figure S5 — relating to Figure 5
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Figure S6 — relating to Figure 6
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