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Abstract (word count 150)

Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in
microbiome assembly remain largely elusive. Here, 16S amplicon and metagenomic features of
the rhizosphere microbiome were mapped as quantitative traits of a recombinant inbred line
population of a cross between wild and domesticated tomato. Gene content analysis of prioritized
tomato QTLs suggested a genetic basis for differential recruitment of various rhizobacterial
lineages, including a Streptomyces-associated 6.31-Mbp region harboring tomato domestication
sweeps and encoding, among others, the iron regulator FIT and the aquaporin SITIP2.3. Within
metagenome-assembled genomes of the rhizobacterial lineages Streptomyces and Cellvibrio, we
identified microbial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose,
and vitamins, whose genetic variation associated with either modern or wild tomato QTLs.
Integrating ‘microbiomics’ and quantitative plant genetics pinpointed putative plant and reciprocal
microbial traits underlying microbiome assembly, thereby providing the first step towards plant-
microbiome breeding programs.

1. Main

Root and shoot microbiomes are fundamental to plant growth and plant tolerance to (a)biotic stress
factors. The outcome of these beneficial interactions is the emergence of specific microbiome-
associated phenotypes (MAPs)?, such as drought resilience?, disease resistance®, development* and
heterosis (i.e. hybrid vigor)®. The microbes inhabiting the surface or internal tissues of plant roots
are selectively nurtured by diverse plant-derived compounds in the form of primary and secondary
metabolites®’. Microbes reciprocate by supporting plant growth and producing metabolites that
mediate processes such as nutrient acquisition and pathogen suppression®°. Developing a blueprint
of the genetic architecture for this ‘chemical dialogue’ and how these interactions lead to specific
MAPs is a one of the key focal points in current plant microbiome research. The promise is that
these genomic and chemical blueprints can be integrated into microbiome breeding programs for
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a new generation of crops that can rely, in part, on specific members of the microbiome for stress
protection, enhanced growth and higher yields®©.

Selective breeding for yield-related traits has left a considerable impact on the taxonomic
and functional composition of modern crop microbiomes''2, Wild plant relatives represent a
‘living library’ of diverse genetic traits that may have been lost during domestication'®. For
example, recombinant inbred lines (RILs) of crosses between wild tomato relatives and modern
tomato cultivars have been used to identify genetic loci controlling important agronomic traits,
including tolerance to abiotic* and biotic stress'®, as well as nutritional quality and flavor
profilest®. To date, microbiome traits are not yet considered for breeding purposes, except for
specific quantitative MAPs such as the number of nodules in legume-rhizobia symbioses’.
However, technological advances in sequencing now make it feasible to treat microbiomes as
quantitative traits for selection. This approach has been adopted for the phyllosphere microbiome
and, recently, for the Arabidopsis and sorghum rhizosphere microbiomes'®!°. For most plant
species, however, investigations leveraging diverse plant populations to map microbiome
Quantitative Trait Loci (QTL) are still at their infancy?>!%18 In these recent studies, the
microbiomes were characterized by amplicon sequencing to detect loci involved in alpha and beta
diversity as well as individual OTU abundances?'. These studies provide strong evidence that
microbiome recruitment has a genetic component, but the functional nature of the corresponding
plant-microbe interactions cannot be elucidated from amplicon data. Hence, functional genomic
features of the microbiome as well as intraspecific diversity within microbial species have not yet
been taken into account?.

Here, we used both amplicon and shotgun metagenome sequencing to generate taxonomic
as well as functional microbiome features as quantitative traits. Using an extensive recombinant
inbred line (RIL) population of a cross between modern Solanum lycopersicum var. Moneymaker
and wild Solanum pimpinellifolium?3, we were able to identify reciprocal associations between
specific plant and microbiome traits and to infer putative mechanisms for rhizosphere microbiome
assembly. While both wild and modern alleles were identified, the large number of QTLs linked
to modern alleles suggests that domestication has had a significant impact on rhizosphere
microbiome assembly. The plant traits identified were related to growth, stress, amino acid
metabolism, iron and water acquisition, hormonal responses, and terpene biosynthesis, whereas
the microbial traits were related to metabolism of plant cell wall polysaccharides, vitamins, sulfur,
and iron. Furthermore, we show that amplicon-based approaches allow detection of QTLs for rarer
microbial taxa, whereas shotgun metagenomics allowed mapping to smaller and thus more defined
plant genomic regions. Together, these results demonstrate the power of an integrated approach to
disentangle and prioritize specific genomic regions and genes in both plants and microbes
associated with microbiome assembly.

2. Results

2.1 Baseline analyses of the tomato Recombinant Inbred Line population

Prior to detailed metagenome analyses of the microbiome of the tomato RIL population, we first
investigated whether QTLs previously identified in the same RIL population under sterile in vitro
conditions could be replicated in our experiment conducted under greenhouse conditions with a
commercial tomato greenhouse soil (Figure 1A and B, Supplemental table 1)%*. We identified
QTLs for Shoot Dry Weight (SDW) coinciding with a QTL identified previously on chr9.
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Similarly, we identified QTLs for Rhizosphere Mass (RM), defined here as a the total mass of the
roots with tightly adhering soil, which coincide with root trait QTLs previously identified for
lateral root number, fresh and dry shoot weight, lateral root density per branched zone and total
root size (Figure 1B)?. An analysis of variance (ANOVA) yielded significant variation in SDW
based on the additivity of alleles linked to SDW (zero, one or two alleles) (F(2, 186) = 16.02, p =
3.76 e-07) (Figure 1C and 1D). A post hoc Tukey test further demonstrated significant differences
between all pairwise comparisons (p < 0.05). For RM, an ANOVA yielded a significant difference
(F(2, 186) = 16.02, p = 3.76 e-07); a post hoc Tukey test demonstrated a statistically significant
difference only between presence of either one or two alleles (p < 0.05), but did not support
additivity (p = 0.15) (Figure 1E and 1F). Collectively, our results confirm and extend earlier work
conducted on the same tomato RIL population in vitro®, providing a solid basis for QTL mapping
of taxonomic and genomic features of the rhizosphere microbiome.
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Figure 1: ldentification of shoot dry weight (SDW) and rhizosphere mass (RM) QTLs in the recombinant inbred line (RIL)
population of tomato. (a) QTLs identified for SDW on chromosome 9 position 63.63719184 and on chromosome 2 position
42.7291229, coinciding with a QTL identified previously (chromosome 9 position 62.897108) by Khan et al 2012. (b) QTL of RM
on chromosome 5 position 62.00574891, and chromosome 9 position 62.71397636, which coincide with root trait QTLs previously
identified by Khan et al 2012 for lateral root number chromosome 5 position 53.4-86.1, and several on chromosome 9, including
fresh and dry shoot weight, (chromosome 9 position 81.3-95.3), lateral root density per branched zone (chromosome 9 position
33.8-88.7), and total root size (chromosome 9 position 39.4-75.1). (c) Scatter plots showing the distribution of SDW measurements
on chromosome 2 position 42.7291229 and chromosome 9 position 63.63719184 for both modern (AA) and wild (BB) tomato
alleles. (d) Significant additivity of tomato alleles for shoot dry weight (p < 0.05); n of 42, 80 and 70 for tomato plants containing
neither allele (labeled zero), either BB allele on chromosome 2, or AA on chromosome 9 (labeled one), or both AA and BB alleles
(labeled two), respectively. (e) Scatter plots showing the distribution of RM measurements on chromosome 5 (pos 62.00574891),
and chromosome 9 (pos 62.71397636) for both modern (AA) and wild (BB) alleles. (f) No additivity of alleles was observed for
RM.
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97 2.2 Taxonomic microbiome features as quantitative traits

98 To investigate molecular features of the microbiome as quantitative traits, we conducted 16S
99  amplicon sequencing of 225 rhizosphere samples, including unplanted bulk soil, parental tomato

100 genotypes, and all 96 RIL accessions in duplicate (Supplemental table 2-5, BioProject 1D
101 PRJINA787039). We observed a separation between the microbiomes of rhizosphere and bulk soil,
102  between the microbiomes of the two parental tomato genotypes and the RIL accession
103  microbiomes (Figure 2A). To limit multiple testing and to focus on common microbiome features
104  with sufficient coverage across all accessions, we prioritized the rhizosphere-enriched amplicon
105  sequence variants (ASVs) to those present in 50% or more of the RIL accessions (Figure 2B). A
106  QTL analysis with these prioritized ASVs was run with R/qtl2%® using a high-density tomato
107  genotype map?, harvest date, post-harvest total bulk soil mass, RM, number of leaves at harvest
108 and SDW as co-variates.
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Figure 2: PCoA analysis of the 16S rRNA amplicon data obtained for the microbiomes of bulk soil and the rhizosphere of modern
and wild tomatoes and their recombinant inbred line (RIL) population. (a) PCoA analysis of amplicon sequence variants (ASVs)
demonstrating a separation between the bulk soil and rhizosphere microbiomes. The rhizosphere microbiome of the 96 RIL
accessions distributed around those of the wild and modern rhizosphere microbiomes. Separation between the two replicate RIL
populations was not observed. (b) To limit multiple testing, a QTL analysis was conducted only on ASVs that were observed in
more than 50% of the RIL accessions.
109
110 We identified 48 QTL peaks, across 45 distinct loci, significantly associated with 33 ASVs
111 (Supplemental table 6). Our logarithm of the odds (LOD) thresholds for significance had been
112 determined by pooled permutations from all ASVs to attain a genome-wide threshold of P 0.05
113  (LOD 3.35) and P 0.2 (LOD 2.64). Of the significant QTLs, 16 were more abundant in a wild
114  tomato allele and 32 in a modern tomatos allele. The QTLs on chromosomes 11, 10, 8 and 2 were
115 all linked to ‘modern’ alleles; the sole QTL on chromosome 7 was linked to a ‘wild’ tomato allele.
116  All other chromosomes contained a mix of QTLs linked to either modern or wild alleles (Figure
117  3A). While many rhizobacterial lineages were linked to a single QTL (14 taxa out of 25), others
118  were linked to two or more QTLs (7 and 4 taxa, respectively) (Figure 3B). Of the lineages with
119  multiple QTLs, most were linked only to modern tomato alleles. One salient exception was
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120  Methylophilaceae, with increased abundance linked to a total of 9 QTLs, from both wild and
121 modern alleles, and distributed across chromosomes 3 (modern, x2), 4 (modern), 7 (wild), 11
122 (modern x2) and 12 (wild x3) (Figure 3D). Another salient feature of the QTL analysis was the
123 hotspot for microbiome assembly identified on chromosome 11, including ASVs from
124  Adhaeribacter, Caulobacter, Devosia, Rhizobiaceae, Massilia and Methylophilaceae (Figure 3D).
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Figure 3: Association between 16S rRNA amplicon sequence variants (ASVs) and tomato QTLs (a) A color-coded summary of the
number of 16S rRNA QTLs identified per chromosome of wild and modern tomato alleles. (b) A summary of the number of 16S
rRNA QTLs linked to bacterial taxonomies, with the chromosome number of each QTL represented within each square. The
presence and absence of dark borders around each square are used to indicate a QTL linked to higher abundance for a wild allele
and modern allele, respectively. (c) Effect size for four rhizobacterial lineages with 3 or more QTLs. (d) Hierarchical network
depicting the 16S rRNA QTLs identified in this study. From top to bottom: the first row represents tomato chromosomes (Chr),
which are linked to specific ASVs in the next row, which taxonomically belong to different families and classes of bacteria in
subsequent rows. The size of the chromosome nodes is weighted by the number of outbound edges. The ASV, family, and class node
sizes are weighted by the number of in-bound edges. A complex network emerges, whereby the abundance of individual ASVs, at
different taxonomic levels, is determined by a network of interactions of multiple tomato alleles from both modern and wild origin.

125 The effect size of the 48 QTLs on ASV relative abundance ranged from 1.3 to 17%, with
126  an average effect size of approximately 5%, comparable to the effects seen for SDW and RM
127  (Figure 1C and E). The largest effect was a single modern QTL for an ASV in the genus
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128  Qipengyuania (17%), and a second modern QTL in Edaphobaculum (10%). No statistical
129  difference was found between modern and wild alleles on their effect size (p = 0.78, two-tailed t-
130 test). For those lineages with sufficient representation at the class level (Bacteroidia,
131  Alphaproteobacteria, and Gammaproteobacteria), there was no statistically significant difference
132 between effect size (F(3, 16) = 0.072, p = 0.974). However, an ANOVA on the positive effect size
133  at genus level demonstrated significant differences between lineages (F(3, 16) = 12.94, p = 1.15
134  e-04). A post hoc Tukey test demonstrated QTLs for Massilia with a larger positive effect size
135  than other lineages with sufficient sample size for comparison (Figure 3C). Together, the amplicon
136  analysis provided a broad picture, suggesting that microbiome assembly is a complex trait
137  governed by a combination of multiple loci, some being ASV specific, some being pleiotropic to
138 different ASVs and with heterogenous effect sizes (Figure 3D). While positive effects were
139 identified linked to both wild and modern alleles, the large number of QTLs linked to modern
140 alleles, suggests domestication has had a significant impact on rhizosphere microbiome assembly.
141

142 2.3 Functional microbiome features as quantitative traits

143 To understand the functional traits associated with rhizosphere microbiome assembly, we
144  generated shotgun metagenomes for each accession in the tomato RIL population (96 total), as
145  well as six samples of the modern tomato parent, five samples of the wild tomato parent and seven
146  bulk soil samples (BioProject ID PRINA789467). After pre-processing, assembly, back-mapping,
147  CSS normalization and binning, QTL mapping was conducted for the rhizosphere enriched contig
148  and bin abundances. Binning was done using Metabat2 (version 2:2.15)?" and genomic quality of
149  the output was evaluated by CheckM?® (Supplemental Table 7). The bins and assembled contigs
150 larger than 10kb can be found on Open Science Framework (https://osf.io/f45ek/). All contigs of
151  10kb and larger were taxonomically assigned using Kraken® (Supplemental Table 8). With nearly
152 40 million contigs being assembled, we took numerous prioritization steps to reduce the effects of
153  multiple testing. Only rhizosphere-enriched contigs larger than 10kb and with a rhizosphere
154  enrichment greater than 4-fold were selected resulting in 1249 contigs. Only bins with greater than
155  90% completion and less than 5% contamination were mapped (33 out of 588 bins). As with the
156  ASVs, harvest date, bulk soil mass, rhizosphere mass (RM), number of leaves at harvest, and SDW
157  were used as co-variates in QTL mapping (supplemental table 11 and 12, respectively).

158 We identified 7 significant bin QTLs (LOD > 3.40, P < 0.05) (Supplemental table 9)
159 including Streptomyces bin 72 associated with a modern allele on tomato chromosomes 6 and 11.
160  For the contigs, a total of 717 QTLs at 26 unique positions on chromosomes 1, 4, 5, 6, 9 and 11
161  were identified (Supplemental table 10), corresponding to 476 metagenomic contigs from 10
162  different genera (LOD > 3.47, P < 0.05). The largest number of contig QTLs belonged to the
163  Streptomyces, Cellvibrio and Sphingopyxis lineages (Figure 4A). The Streptomyces contigs
164  mapped to QTLs on tomato chromosomes 4 (46 contigs, wild tomato), 6 (190 contigs, modern
165 tomato) and 11 (257 contigs, modern tomato), with a subset of contigs mapping to two or all three
166  of these positions (Figure 4B). These findings corroborate and expand upon the Streptomyces QTL
167 identified on chromosome 6 using our 16S amplicon data, as well as that of the bin QTLs identified
168  on chromosomes 6 and 11. The Cellvibrio contigs mapped to chromosome 1 (42 contigs, wild)
169  and chromosome 9 (94 contigs, wild), again corroborating the findings from our 16S amplicon
170  analysis described above. In contrast, the Sphingopyxis QTLs identified on chromosome 5 (24
171  contigs, wild) and 9 (49 contigs, modern) did not correspond to the QTLs identified on
172  chromosomes 8 and 3 in the 16S amplicon analysis. Interestingly, 4 contigs for Devosia also
173 corroborated the results of the 16S QTL analysis. The effect sizes ranged from 9 to 21 % and were
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174  significantly different (F(14, 702) = 530.9 p < 2e-16) between QTL and lineages (Figure 4C).
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Figure 4: Association between metagenomic contigs of the rhizosphere microbiome and tomato QTLs (a) A color coded summary
of the number of contig QTLs identified per chromosome to wild and modern alleles. (b) A summary of the number of contig QTLs
found by taxonomies, with the chromosome of each QTL represented within each square. The presence and absence of dark borders
around each square are used to indicate a QTL linked to higher abundance for a wild allele and modern allele, respectively. (c)
The effect sizes for each lineage were significantly different as indicated by letters (F(14, 702) = 530.9 p < 2e-16) (d) A
hierarchically structured network depicting the contig QTLs identified in this study. From top to bottom are the tomato
chromosomes (Chr), which are associated with specific metagenomic contigs and taxonomically linked to different families and
classes of bacteria. The size of the chromosome nodes is weighted by the number of outbound edges. The ASV, family, and class
node sizes are weighted by the number of in-bound edges. (€) Comparison between the size of the QTL regions identified based on
16S amplicon data and based on metageonomic contigs. The 95% confidence interval of contig QTLs was significantly smaller
than the 95% confidence interval of 16S rRNA QTLs (two-sided t.test, p = 3.32E-09).

175  Interestingly, as with the 16S amplicon analysis, some of the highest LOD scores were for contigs
176  belonging to Devosia. Also, the effect size of the Sphingopyxis contigs was large (x 20% on
177  average), above 15% for Cellvibrio, and approximately 10% for Streptomyces. The average QTL
178  region was 51.59 Mbps for the 16S amplicon sequences and 26.64 Mbps for the metagenomic
179  contigs (two-sided t.test, p = 3.32E-09) (Figure 4E). A more striking contrast was observed in the
180 difference between the median size of amplicon and contig QTL regions which were 58.56 Mbp
181 and only 6.47 Mbp, respectively. In summary, while many more taxa were identified in the
182  amplicon-based QTL analysis, the metagenome-based QTL analysis provided QTLs with much
183  smaller confidence intervals (Figure 4E).
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184 2.4 Amplicon-based bulk segregant analysis of Streptomyces and Cellvibrio abundance

185  The two most abundant rhizosphere taxa with replicated patterns for amplicon and metagenome-
186 based QTLs were Streptomyces and Cellvibrio. Therefore, we sought to provide additional
187  independent support for these QTLs using a bulk segregant analysis of an independent population
188  of parental and RIL genotypes (Supplemental_Table_11). In particular, we tested the previously
189 identified amplicon-based QTLs associated with higher Cellvibrio abundance at markers 464 and
190 3142 on chromosomes 1 and 9, respectively with higher Streptomyces abundance at marker 2274
191  on chromosome 6 (Figure 5). In each case, ANOVA showed a statistical difference between
192  genotypes and bulk soil, respectively (F(4, 396) = 21.56, p = 4.16 e-16), (F(4, 396) = 18.43, p =
193 6.68e-14), (F(4, 396) = 8.423, p = 1.57 e-06). A post hoc Tukey test supported the conclusion that
194  wild allele at markers 464 and 3142 on chromosomes 1 and 9, respectively, are indeed associated
195  with increased abundance Cellvibrio (p = 3.913 e-04, and p = 0.08 respectively), while the modern
196 allele at markers 2274 on chromosome 6 was significantly associated with increased abundance of
197  Streptomyces (p = 1.152 e-04).
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Figure 5: Validation of Cellvibrio and Streptomyces 16S rRNA QTLs with bulk segregant analysis in an independent experiment
with modern, wild and 77 RIL accessions (see Supplemental table 13). The number of replicates for each treatment is detailed in
the top row of each panel. The number of replicates within the RIL population are represented by either an A (modern) or B (wild)
allele, which depends on the marker in question. The row below represents the statistical group based on Tukey’s HSD; a different
letter indicates a statistically significant difference. (a) The relative abundances of Cellvibrio 16S rRNA in bulk soil, modern, wild,
and RIL accessions at SNP marker position 464 on chromosome 1. At this position, 32 and 45 RIL accessions with modern and
wild alleles were used (130 and 177 samples with biological replication respectively). (b) Similarly, for SNP marker 3142 on
chromosome 9, there were a total of 35 and 42 RIL accessions with modern and wild alleles, (143 and 164 samples with biological
replication respectively). (c) The relative abundances of Streptomyces 16S rRNA and sequences in bulk soil, modern, wild, and
RIL accessions at SNP marker 2274 on chromosome 6. There was a total of 42 and 35 RIL accessions with modern and wild
alleles, (166 and 141 samples with biological replication, respectively).

198

199 2.5 Host genetics and rhizosphere microbiome assembly

200 A subset of 5 regions consistent across both the amplicon and metagenome-based analyses were
201  prioritized with an average size of 2.68 Mbps (Supplemental Table 12). These included positions
202  on chromosome 1 (positions 87.36 - 90.49 Mbps), chromosome 9 (pos 62.03 — 63.32 Mbps),
203  chromosome 5 (pos 61.54 — 63.38), chromosome 6 (pos 33.99 — 40.3 Mbps) and chromosome 11
204  (pos 53.06 - 53.89 Mbps). In total, 1359 genes were identified in these regions. Potential candidate
205  genes with root-specific transcriptional patterns, defined as a 4 fold increase in the roots compared
206 to leaf samples, were further prioritized using a publicly available RNAseq dataset*°. Based on
207  this analysis, a subset of 192 root specific genes were identified (Supplemental table 13). A total


https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473370; this version posted December 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

208  of 98 root specific genes were linked to Streptomyces on chromosome 6 (84 genes) and 11 (14
209  genes) (Figure 6). Intriguingly, 61 of these genes were found in regions previously identified to be
210  subjected to selective sweeps related to tomato domestication as well as to subsequent sweeps
211  related to improvements in fruit quality®*(Supplemental Figure 1).

212 Two of the most salient genes in this list included genes with high transcription in the roots;
213 an aquaporin and a Fer-like iron deficiency-induced transcription factor (FIT). The aquaporin
214  (SITIP2.3) is one of eleven tonoplast intrinsic proteins in the tomato genome®? and has the highest
215 fold change in the roots compared to all other organs®. The FIT gene is a bHLH transcriptional
216  regulator controlling iron homeostasis in tomato®*3>, Other genes of interest on chromosome 6
217  include a glycine rich protein, a receptor like kinase known to be upregulated during drought3®,
218 alcohol dehydrogenase, numerous phosphatases, expansins, ethylene-responsive transcription
219  factors, gibberellin receptors, aminocyclopropane-1-carboxylate oxidase (ACO), an enzyme
220 involved in the last step of ethylene biosynthesis, and finally, alpha-humulene and (-)-(E)-beta-
221  caryophyllene, a known tomato terpene and signaling molecule in tomato®”8 and also acting as a
222  volatile in microbiome assembly®®. Root specific genes involved in carbohydrate, protein and
223 amino metabolism were also identified, including trypsin-alpha amylase inhibitor, prolyl 4-
224 hydroxylase, polygalacturonase, trehalose phosphatase, glycogenin, xyloglucan fucosyltransferase
225 and a metallocarboxypeptidase inhibitor, spermidine synthase, acetolactate synthases, alanine
226  aminotransferase, and an amino acid permease. On chromosome 11, a ferrodoxin, an aluminum
227  activated malate transporter® and a cluster of various acetyltransferases and a sulfotransferase
228  were identified.
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Figure 6: Prioritized regions of the Streptomyces-associated QTLs on tomato chromosomes 6 and 11 overlaying previously
published data® on root-specific gene expression and genetic sweeps due to domestication3! (in red). Within each region, the logz
ratio gene expression patterns from leaf and root materials were calculated and those with a logz greater than 2, as delineated by
the dotted line, were further prioritized. The logz root transcript abundances are depicted by the size of the bubble. a) The 6.31
Mbp region on chromosome 6, position 33.99-40.3 Mbps. Abbreviations of highlighted genes: LOB - LOB domain protein 4,
20GDD - 2-Oxoglutarate-dependent dioxygenases, FIT - FIT (Fer-like iron deficiency-induced transcription factor), Spermidine
- Spermidine synthase, AD - Alcohol dehydrogenase 2, ALS - Acetolactate synthase, ACO - 1-aminocyclopropane-1-carboxylate
oxidase, Polygalacturonase, AHL - AT-hook motif nuclear-localized protein, Trehalose-P - Trehalose 6-phosphate phosphatase,
Aquaporin - Tonoplast intrinsic protein 23 / Aquaporin, GPR TomR2 - Glycine-rich protein TomR2, P - Acid phosphatase (x3). b)
The 0.83 Mbp region on chromosome 11, position 53.06-54.89 Mbps. Abbreviations of highlighted genes: ABC-2 - ABC-2 type
transporter, Acyl — Acyltransferase (x4), Sulfo — Sulfotransferase, ALMT- Aluminum-activated malate transporter.

229 A total of 57 root specific genes were identified in the QTL regions on chromosome 1 and
230  9linked to Cellvibrio. These include a cytochrome p450 involved in coumarin synthesis, numerous
231  extensins, phosphatases, respiratory burst oxidase-like protein, iron chelator nicotianamine
232 synthase**2 and on chromosome 11 phenazine biosynthesis. On chromosome 5, 37 root specific
233 genes were identified including multiple peroxidases, glutamine synthetase, rhamnogalacturonate
234 lyase, pectinesterase, metacaspase and trehalose-phosphatase. Furthermore, numerous ethylene
235  responsive transcription factors and receptor like kinases were observed. The QTL on chromosome
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236 1 contains genome-wide sweeps related to the initial tomato domestication and subsequent
237  improvements of fruit quality traits, suggesting that one or both of these events was linked to a
238  decreased abundance of root-associated Cellvibrio.

239 2.6 llluminating metagenomic traits in Cellvibrio and Streptomyces

240 To further investigate the potential functional importance of the 476 rhizosphere-enriched
241  metagenomic contigs mapped as QTLs, we performed a deeper analysis into their functional gene
242  content (Supplemental Table 14-16). An antiSMASH* analysis identified 30 biosynthetic gene
243  clusters (BGCs) across these contigs. These BGCs largely originated from contigs taxonomically
244  assigned to Cellvibrio and Streptomyces. They included several gene clusters potentially
245  associated with root colonization, such as two melanin BGCs (c00216, NODE_5919; c00255,
246  NODE_7250) from Streptomyces (which have been positively associated with colonization*#) and
247  aCellvibrio aryl polyene BGC (c00185, NODE_4941), which is thought to protect bacteria against
248  reactive oxygen species generated during immune responses of the host plant*®. The contigs also
249  contained gene clusters potentially beneficial to the host, such as BGCs encoding iron-scavenging
250 siderophores, which have been associated with disease suppression in tomato“®; specifically,
251  homologues of coelichelin and desferrioxamine BGCs from streptomycetes were found (c00269,
252 NODE_7969 and c00122, NODE_3362), three lucA/lucC-like putative siderophore synthetase
253  gene clusters (c00106, NODE_2973; c00041, NODE_1131; c00238, NODE_6661), as well as a
254 Cellvibrio NRPS-PKS gene cluster (c00001, NODE_101) most likely encoding the production of
255  asiderophore based on the presence of a TonB-dependent siderophore receptor-encoding gene as
256 well as a putative tauD-like siderophore amino acid PB-hydroxylase-encoding gene*’. The
257  Cellvibrio contigs also contain several genes relevant for carbohydrate catabolism. For example,
258  homologs of xyl31a (B2R_23365) and bgl35a (B2R_06825-06826) were detected (with 78%, 79%
259 and 65% amino acid identity, respectively), genes that have been shown to be responsible for
260 utilization of the abundant plant cell wall polysaccharide xyloglucan in Cellvibrio japonicus*. In
261 addition, a possible homologue of the B-glucosidase gene bgl3D*° (B2R_26663), involved in
262  xyloglucan utilization, was also identified, having high similarity to bgl3D from Cellvibrio
263  japonicus (64% amino acid identity). Also, putative cellulose-hydrolizing enzymes were detected,
264  such as a homologue (B2R_21082) of the cellobiohydrolase cel6A from Cellvibrio japonicus®®
265 encoded in a complex locus of nine carbohydrate-acting enzymes annotated on this contig
266 (NODE_5090) by DBCAN>®! (Supplemental Table 14). Collectively, these results point to a
267  possible role of microbial traits related to iron acquisition and metabolism of plant polysaccharides
268  in tomato rhizosphere microbiome assembly.

269

270  Contigs of the metagenome-assembled genome (MAG) associated with Streptomyces ASV5 (the
271  key taxon associated with tomato QTLs described above) contained a multitude of functional genes
272  potentially relevant for host-microbe interactions. Taxonomically, the ASV5 MAG was most
273  closely related to a clade of streptomycetes that includes type strains of species such as arenae,
274  flavovariabilis, variegatus, and chartreusis. To understand how tomato might differentially recruit
275  ASV5 streptomycetes, we analyzed the MAG for genes and gene clusters potentially involved in
276  colonization. Intriguingly, we found contigs to be rich in genes associated with plant cell wall
277  degradation. In particular, we identified a family 6 glycosyl hydrolases (B2R_10154) of which the
278  glycosyl hydrolase domain has 84% amino acid identity to that of the SACTE_0237 protein that
279  was recently shown to be essential for the high cellulolytic activity of Streptomyces sp. SirexAA-
280 E°L Additionally, we detected a homologue (82% amino acid identity) of Streptomyces reticuli
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281  avicelase, a well-studied cellulase enzyme that degrades cellulose into cellobiose®? (B2R_29198).
282  Larger gene clusters associated with degradation of plant cell wall materials were also found.
283  These included an 8-kb gene cluster coding for multiple pectate lyases and pectinesterases
284  (B2R_31553-31558), and an 8-kb gene cluster encoding a family 43 glycosyl hydrolase, a pectate
285 lyase L, a rhamnogalacturonan acetylesterase RhgT, a GDSL-like lipase/acylhydrolase, a family
286 53 glycosyl hydrolase, and an endoglucanase A (B2R_15915-15920). Together, these findings
287  suggest that ASV5 Streptomyces has the capacity to effectively process complex organic materials
288  shed by plant roots during growth. These results are in line with a recent study on plant-associated
289  streptomycetes that indicated that their colonization success appears to be associated with the
290 ability to utilize complex organic material of plant roots®3.

291

292  Root exudates also play a key role in recruitment of microbes. Prominent sugar components of
293  tomato root exudates are glucose, but also xylose and fructose>*. The Streptomyces MAG contains
294  xylA and xylB genes (B2R_19014, B2R_19013) and a putative xyl[FGH import system
295 (B2R_29274, B2R_23438, B2R_23439) facilitating xylose catabolization. Similarly, a frcBCA
296  import system was identified in the genome (B2R_17966- B2R_17968) as well as a glucose
297  permease (B2R_32780) with 91,5% amino acid identity to glcP1 SCO5578 of Streptomyces
298  coelicolor A3(2)%. Other genes putatively involved in root exudate catabolism were also found in
299  the ASV5 MAG, such as sarcosine oxidase (SoxBAG, B2R_20550- 20551 and B2R_21105), which
300 has been shown to be upregulated in the presence of root exudates of various plants®6-57,

301

302  Insummary, the Cellvibrio and Streptomyces contigs encoded a range of functions that likely allow
303  them to profit from tomato root exudates as well as complex organic material shed from growing
304  tomato roots. How these plant traits differ between wild and domesticated tomatoes and if/how
305 these influence differential colonization of roots of wild and domesticated tomato lines by these
306  two bacterial lineages will require detailed comparative metabolomic analyses of the root exudates
307  of both tomato lines as well as isolation of the corresponding Cellvibrio and Streptomyces ASVs,
308 analysis of their substrate utilization spectrum followed by site-directed mutagenesis of the
309 candidate genes, root colonization assays and in situ localization studies.

310 2.7 Genomic structure in Cellvibrio and Streptomyces provides insights into adaptations for
311  differential recruitment.

312  Bacterial populations often contain significant genomic heterogeneity. This heterogeneity may be
313  associated with differential recruitment through altered nutrient preferences or host colonization
314  mechanisms. The use of metagenomics enabled us to investigate the population structure within
315 each rhizobacterial lineage and identify intraspecific differences. To do so, we first identified a
316  unique set of 697,731 microbiome SNPs in a subset of parental and bulk metagenomes using
317 InStrain®. A set of 15,026 SNPs enriched in either the wild or modern tomato rhizosphere were
318  selected and the abundance of each allele at each SNP was calculated. Using these abundances,
319  QTL mapping was performed using R/qtl2 as described in the methods. A total of 3,357 QTL
320  peaks were identified (LOD > 3.01, P < 0.05), to 1229 independent loci. A total of 1,354 QTL
321  peaks were more abundantly associated to a modern, and 2,001 to a wild plant allele, derived from
322 2,898 unique SNPs, and corresponding to 810 and 1,068 unique rhizobacterial genes respectively
323  (Supplemental Table 17).


https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473370; this version posted December 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We investigated the 103 Streptomyces SNP QTLs at 94 unique positions within annotated
genes whose mapping coincided with the previously identified Streptomyces contig QTLs to
chromosomes 4, 6 and 11 (Supplemental Table 17). Numerous SNPs were associated with a higher
abundance to the modern tomato alleles on chromosome 6 and 11. In particular, alpha-
galactosidase (B2R_16136) and arabinose import (B2R_29105) had the highest LOD and smallest
overlapping confidence intervals with chromosomes 6 and 11 (Figure 7). Indeed, many SNPs in
genes involved in the degradation of xylan®, one of the most dominant non-cellulosic
polysaccharides in plant cell-walls®®, as well as carbohydrate and protein metabolism were linked
to chromosomes 6 and 11, including xyloglucanase Xgh74A (B2R_10589), alpha-xylosidase
(B2R_23763), endo-1,4-beta-xylanase (B2R_20609), extracellular exo-alpha-L-
arabinofuranosidase (B2R_20608), multiple protease HtpX (B2R_19218), cutinase (B2R_19356),
and putative ABC transporter substrate-binding protein YesO (B2R_09821) which has been
implicated in the transport of plant cell wall pectin-derived oligosaccharides®®. A Streptomyces
SNP in acetolactate synthase (B2R_28001) was linked to chromosome 6 where a plant acetolactate
synthase was located. Similarly, multiple SNPs in Streptomyces genes involved in putrescine
transportation (B2R_25489) were linked to chromosomes 6 and 11, which contain genes for
spermine synthase, suggesting a possible metabolic cross-feeding from plant to microbe. A
majority of these SNPs were synonymous. However, some were non-synonymous, including the
histidine decarboxylase SNP (B2R_16511) mapping to both chromosomes 6 and 11 (Figure 7).
Streptomyces SNPs that were more abundantly associated with the wild tomato allele on
chromosome 4 included an antibiotic resistance gene (daunorubicin/doxorubicin, B2R_28992) and
maltooligosyl trehalose synthase (B2R_07820) among others.
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346

347 Similarly, we investigated the 324 Cellvibrio SNP QTLs within annotated genes whose
348  mapping coincided with the previously identified Cellvibrio contig QTLs to chr. 1 and 9. Again,
349  numerous SNV QTLs were identified in genes were related to sugar catabolism, including a gene
350 encoding an extracellular exo-alpha-(1->5)-L-arabinofuranosidase (B2R_16093), fructose import
351 FruK (B2R_22268), a cellulase/esterase-encoding celE homologue (B2R_11067), and genes
352 involved in malate (B2R _18213), mannonate (B2R_14081), xyloglucan (B2R_10668) and
353  xylulose (B2R_22179) metabolism. Furthermore, many additional SNP QTL were identified in
354  genes related to vitamin and cofactor metabolism as well as sulfur and iron metabolism. In
355  particular, these included genes for a phosphoadenosine phosphosulfate reductase (B2R_15720),
356  vitamin B12 transporter BtuB (10 different genes, see Supplemental Table 17), a siroheme
357 synthase (B2R_24033), a pyridoxal phosphate homeostasis protein (B2R_17481), a heme
358  chaperone HemW (B2R_12751), a hemin transport system permease protein HmuU (B2R_09175),
359 a Fe(2+) transporter FeoB (B2R_19968), a biotin synthase (B2R_30007), a catecholate
360  siderophore receptor Fiu (B2R_17486), and a Fe(3+) dicitrate transport ATP-binding protein Fec
361 (B2R_09176) (Supplemental Table 17). Taken together, this analysis suggests that a shotgun
362  metagenomic approach integrated with quantitative plant genetics can be instrumental in a high-
363  throughput manner to discover the reciprocal genetic links between plant and microbial
364  metabolisms, such as those identified here for polysaccharides, trehalose, iron, vitamin, amino
365  acid, and polyamine metabolism.

366 3. Discussion

367  Breeding for microbiome-assisted crops is a complex phenomenon encompassing ecological,
368 evolutionary, and cultural processes. What constitutes a desirable trait for selection is context-
369 dependent and differs between societies, crops and locations®®. As society grapples with modern
370 challenges such as a rapidly changing environment, water scarcity and land degradation, it is
371  becoming increasingly clear that a new era of trait selection is needed with increased focus on
372  sustainability and microbiome interactions®?-5, In this regard, it is also time to reckon with the
373  consequences of historic yield-centric trait selection and accompanying genomic sweeps®,
374  especially with regards to plant-microbe interactions. Current approaches to investigating the
375  genomic architecture determining microbiome assembly rely primarily on mutational studies in
376  known genes and pathways. More recently, studies leveraging the natural variation within plant
377  populations have been used to conduct GWA and QTL of the leaf®2° and rhizosphere!®. To date,
378  the microbiome has been primarily characterized through amplicon sequencing, thereby providing
379 limited functional resolution of microbiome structure. Increasing the resolution of phenotyping of
380 quantitative traits has been shown to improve the precision and detection of QTLs®. Thus,
381 integrating microbial genomics into microbiome QTL analysis plays dual purpose; increasing the
382  ecological resolution with which microbial traits may be mapped, and second, affording the
383 identification of the reciprocal microbial adaptations that drive plant-microbe interactions. In this
384 investigation, we addressed these challenges by integrating amplicon and shotgun metagenome
385  sequencing to identify microbiome QTLS.

386 One major difference between the amplicon and contig QTL analysis is the number of
387 lineages for which QTLs were identified. In this regard, amplicon-based sequencing provided a
388  broader picture and was able to capture QTLs of both abundant and relatively rare rhizobacterial
389 lineages. In contrast, the majority of contig QTLs mapped to the most predominant lineages, yet
390 failed to identify QTLs for more rare lineages. Nevertheless, besides the fact that the shotgun-
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391  based approach provided functional insights into the associated bacterial taxa, the size of the 95%
392  confidence interval of the QTL region was significantly smaller using contig QTLs, with a median
393  size of just 6.47 Mbp compared to 58.56 Mbp for the amplicon-based QTL regions. Furthermore,
394  for Streptomyces, the number of unique QTLs identified was greater in the contig-based approach.
395 Thus, we identified a trade-off between amplicon and shotgun-based technologies, whereby
396 amplicon sequencing provides a deeper view into broad community structure, whereas shotgun-
397  based approaches provided a more nuanced picture. In particular, the smaller regions identified by
398  our contig-based metagenome mapping provided considerably more functional insights as it
399 enabled us to analyze the genomic content contained in the regions linked to Cellvibrio and
400  Streptomyces.

401 The increased QTL mapping resolution provided by shotgun-based phenotyping of the
402  microbiome combined with SNP analysis provided a novel approach to leverage both the host
403  diversity of the RIL and the natural microbiome population diversity to disentangle the reciprocal
404  genomic adaptions between plants and natural microbiomes. For example, understanding the
405  driving forces driving the abundances of rhizospheric Streptomyces is of increasing interest and
406  has been linked to both iron® and water limitations®3. Here, we pinpointed the genetic basis for
407  these interactions among the short list of highly expressed root-specific tomato genes linked
408  positively to Streptomyces abundance including both aquaporin and FIT. More specifically, the
409 aquaporin (SITIP2.3) has the highest fold change in the roots of all tonoplast intrinsic proteins in
410  the tomato genome3?33, while the FIT gene has been shown to largely control iron homeostasis in
411  tomato®+%,

412 In addition to these high priority genes, many other key genes were identified in these
413  regions. Those previously shown to contribute to microbiome assembly included 1-
414  aminocyclopropane-1-carboxylate oxidase, which plays a central role in plant regulation of various
415  processes including bacterial colonization and root elongation® and alpha-humulene/(-)-(E)-beta-
416  caryophyllene synthase, a terpene known to modify microbiome structure®. In addition, numerous
417  genes related to growth, development and cell wall loosening”™ known to be involved in microbial
418  colonization’ and aluminum-activated malate transporter, which has been linked to microbiome
419  mediated abiotic stress tolerance?.

420 The historic impact of domestication on genomic regions linked to microbiome assembly
421 is also apparent (Figure 6, Supplemental Table 14, and Supplemental Figure 1). However, the
422  processes and consequences of these sweeps, and possible subsequent recombination events on
423  microbiome assembly remain unclear. In particular, the discontinuity of sweeps in microbiome
424  QTL regions suggests that evolutionary pressure for recombination of key (microbiome
425  associated) traits, such as iron homeostasis and water transport, may have acted against selective
426  sweeps. The results obtained here provide the means to illuminate such complex eco-evolutionary
427  questions, forming the basis of integrating the microbiome into the classic genotype by
428  environment model of host phenotype'®.

429 From the microbial perspective, the increased resolution in QTL analysis afforded by our
430  shotgun-based approach also provided a window into the host-specific bacterial adaptations to wild
431 and modern alleles. In particular, the SNP QTL analysis demonstrated that genes related to the
432  degradation of various plant-associated polysaccharides in Streptomyces were highly associated
433  with various modern tomato alleles. It should be further noted, that many other functions were
434  identified in both plant and microbe, such as trehalose metabolism, polyamine metabolism and
435  acetolactate synthase, suggesting either a direct link through cross-feeding’? or signaling’®, or
436  perhaps shared ecological pressures. While the microbial adaptations related to polysaccharides’,
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437  vitamins™ and iron metabolism?-8 are well documented in relation to plant colonization, here we
438  demonstrate for the first time that the reciprocal adaptations that drive plant-microbe interactions
439 can be investigated simultaneously to uncover their genetic architecture in both host and
440  microbiome.

441 4. Methods

442 4.1 Greenhouse and Lab work

443  4.1.1 Recombinant inbred line population

444 100 lines of an F8 recombinant inbred line (RIL) population derived from the parental lines
445  Solanum lycopersicum cv. Moneymaker (Modern) and Solanum pimpinellifolium L. accession
446  CGN14498 (Wild) were used?. A high density map produced from this population was used to
447  map QTLs?,

448  4.1.2 Growth conditions for RIL

449  The soil was collected in June 2017 from a tomato greenhouse in South-Holland, The Netherlands
450  (51°57°47°N 4°12’16”E). The soil was sieved, air dried, and stored at room temperature until use
451  in 2019. Before the beginning of the experiment, soil moisture was adjusted to 20% water by
452  volume using deionized water. All soil was homogenized by thorough mixing and allowed to sit,
453  covered by a breathable cloth, in the greenhouse for one week prior to potting. The soil was then
454 homogenized once again and then potted. Each pot was weighed to ensure all pots were 1759+0.5
455  (wet weight). Duplicate pots for each accession were planted, as well as 6 replicates of each
456  modern and wild parental accession, and 8 bulk soil pots that were left unseeded. Each replicate
457  was prepared simultaneously. Planting was done separately representing biological replicates.
458

459 In each pot, 3 seeds were planted in a triangular pattern to ensure the germination success for all
460 pots. The first seedling to emerge in each pot was retained and others were removed after
461  germination. All pots were randomly distributed in trays containing approximately 10 plants.
462  Throughout growth, careful attention was given to randomize the distribution of plants. First, tray
463  location and orientation with relation to each other were randomized on a nearly daily basis. In
464  addition, the distribution of plants within trays was randomized three times during growth. All pots
465  were kept covered until germination, which was scored daily. After germination, plants were
466  visually monitored and watered at the same rates. To minimize the impact of environmental
467  differences between pots on microbiome composition, the watering regime for all plants was
468  standardized and leaks from the bottom of the pot and overflows were completely prevented. To
469  achieve this, a minimal volume (2.5 mL to 5.0 mL) of water was used at each watering. This
470  strategy was successful as washout was never observed. Moisture content was measured by
471  weighing the pots at the middle and end of the experiment to ensure all pots had similar moisture
472  contents.

473  4.1.3 Harvesting and processing of plant materials

474 All plants had between 5-7 true leaves at harvest (Supplemental Table 1). Plants were gently
475  removed from the pot and roots and were vigorously shaken. Soil that remained attached to the
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476  roots after this stage was considered the rhizosphere. The remaining bulk soil and rhizosphere
477  (plus roots) fractions were weighed. The root and attached rhizosphere fraction were treated with
478 4 mL of lifeguard, vortexed and sonicated. Roots were then removed. The remaining rhizosphere
479  sample was then stored in LifeGuard Soil Preservation Solution (Qiagen) at -20 °C until DNA
480  extraction.

481 The dry weight of shoots was measured after drying at 60°C. The dry weight of the bulk
482  soil was measured after storing at room temperature in open paper bags for 1 month. The DNA
483  was extracted using the DNeasy PowerSoil extraction kit (Qiagen). The protocol was optimized
484  forthe soil in the following manner: each sample was vortexed and then a volume of approximately
485 1.5 mL was transferred into 2 mL tubes. This subsample was centrifuged at 10,0009 for 30 seconds
486  such that a pellet was formed. The supernatant was removed, and a new subsample was transferred,
487  and centrifuged until the total volume of the original sample, without sand, had been transferred
488  to the 2 mL tubes. The resulting pellet was recalcitrant to disruption through bead beating, and
489  therefore was physically disrupted by a pipette tip before proceeding with DNA extraction
490 protocol. In test samples, DNA extractions from the sand fraction yielding no, or marginal levels
491  of DNA.

492 4.2 Amplicon and shotgun metagenomics analysis

493  4.2.1 rRNA amplicon sequence processing

494  All DNA was sent to BaseClear (Leiden, The Netherlands) for both 16S and 18S 300 bp paired-
495  endamplicon sequencing (MiSeq platform). MiSeq primers targeted the VV3-V4 region of Bacteria:
496 341F CCTACGGGNGGCWGCAG, 805R GACTACHVGGGTATCTAATCC. In  total,
497 20,542,135 16S read pairs over 225 samples were generated. The raw reads were processed using
498 the DADAZ2 workflow (v1.14.1) to produce amplicon sequence variants (ASV) and to assign
499  taxonomy’®. ASVs tagged as non-bacterial, chloroplast, or mitochondria were removed. Next,
500 ASV counts were normalized using the cumulative sum scaling (CSS) and filtered based on the
501 effective sample size using the metagenomeSeq package (v1.28.2)"". Differential abundances
502  between rhizosphere and bulk soil were determined using the eBayes function from the limma
503 package. Enriched rhizosphere ASVs with a greater than log(2) fold change in abundance were
504  analyzed based on their presence and absence, standard deviation and mean values. Using these
505  statistics, stochastic ASVs (<50% of samples) were removed from further analysis.

506  4.2.2 Metagenomics analysis

507  For the one set of replicates for each accession, paired-end sequence read libraries were generated
508 in the length of 150 bp per read on NovaSeq paired-end platform by BaseClear B.V.
509 Demultiplexing was performed before the following analysis. It is computationally expensive to
510 assemble the 114 read libraries all at once. Therefore, a strategy of (merging) partial assemblies
511 was undertaken. Two assemblers were used to create the assembled contigs, namely SPAdes
512  (version 3.13.2)’® and MEGAHIT (version 1.2.9)7°. Assembly quality was assessed by running
513  MultiQC (version 1.8)% with Quast Module®!(Supplemental Figure 2). First, 6 modern parents, 5
514  wild parents and 1 bulk soil sample were co-assembled via SPAdes with the metagenomic mode
515 and parameter of -k 21,33,55,99, generating the first assembly (Al). Subsequently, a second
516 assembly (A2) was done using the unmapped reads from the remaining metagenomes using
517  MEGAHIT with the parameter of --k-list 27,33,55,77,99. The third assembly (A3) was performed
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518 similarly as A2, however included the unmapped reads, ambiguously mapped reads, and mapped
519  reads with a low mapping quality score (MapQ < 20) (Supplemental Table 18). Read mapping was
520 done with BWA-MEM with default settings®? and SAMtools was used to convert resulting SAM
521 files into sorted and indexed BAM files (version 1.10). Extraction of these reads were conducted
522 by samtools bam2fq. Redundancy between assemblies was evaluated by alignment to Al via
523  nucmer package of MUMmer with --maxmatch option (version:4.0.0)83,

524

525 Firstly, 111.5 Gbp of reads from the parental samples were assembled, labelled as Al and
526 yielded a total assembly length of 8.6 Gbp with the largest contig of 933.0 kilobase pairs (Kbp).
527  After aligning the reads from RIL samples to Al, unmapped reads, ambiguously mapped reads,
528 and mapped reads with a low mapping quality score (MapQ < 20) were retrieved and assembled,
529 vyielding the second and third assembly (A2 and A3). Specifically, A2 stemmed from solely the
530 unmapped reads while A3 included the ambiguously mapped reads and mapped reads with MapQ
531 <20 in addition to the unmapped reads. A2 and A3 produced a total assembly length of 9.6 Gbp
532 and 14.0 Gbp, with the largest contig of 56.2 Kbp and 86.3 Kbp respectively. There were 1.2, 2.0
533 and 2.8 million contigs with the length over 1 Kb for A1, A2 and A3 respectively. In particular,
534 912 contigs in Al were greater or equal to 50 Kbp whereas 1 or 2 such large contigs were
535  successfully assembled in A2 or A3. The detailed assembly statistics is given in Supplemental
536  Table 18 and the numbers of contigs with different ranges of length for each assembly are
537  presented in Supplemental Figure 2.

538

539 The sequence similarities of the contigs in each assembly (> 1 Kbp) were compared using
540  the nucmer package in MUMer. No contigs in A2 were reported to share an overlapped region
541  with Al, therefore contigs in Al and A2 could be merged directly. When A3 was aligned to Al,
942  1.1% of'the total length (> 1 Kbp) of A3 was reported to be overlapped with A1, however, only 18
543  contigs from A3 were 100% identical to regions in larger contigs in Al. The sensitivity of filtering
544  the overlapping contigs was evaluated by a benchmarking test using a random RIL sample to
545  calculate the mapping rates (Supplemental Figure 3). 83.4% reads were mapped to A1+A3 at
546  MapQ > 20 without filtering. Excluding the contigs from A3 that were completely and identically
547  covered by Al, the mapping rate was nearly the same as the one without filtering. Nevertheless,
548  the removal of all aligned contigs in A3 resulted in a slight drop of mapping rate to 82.6%. To
549  conclude, the final assembly was determined as A1+A3 with the 18 redundant contigs from A3
550  removed.

551

552 To assess the overall assembly quality and quantify the abundance of contigs among all
553  samples, metagenomic reads were mapped to Al, A1+A2 and A1+A3 (deduplicated) respectively.
554  Afterwards, the mapping rates were calculated for the mapped reads with MapQ > 20 in each
555 sample. As shown in Supplemental Figure 4, approximately 70% reads among rhizosphere
556  samples could be mapped to Al, while the mapping rates were 55% to 65% in the bulk soil
557  samples. With the unmapped reads assembled and added to Al, the mapping rates for A1+A2
558 increased by 10%. The read recruitment was further improved by assembling and adding
559  ambiguously mapped reads and mapped reads with low MapQ in the final assembly (A1+A3). Al
560 aswell as de-replicated A3 were merged to acquire the final assembly. All the ‘contigs’ mentioned
561  below are referring to the contigs in this final assembly.
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562  4.2.3 Binning of metagenomic contigs

563  Metabat2 (version 2:2.15)%* was used for assigning the contigs into genomic bins. Based on tetra-
564  nucleotide frequency and abundance scores, 588 genomic genomics bins were generated.
565  Afterwards, genomic quality of those genomes was evaluated by CheckM (version: 1.1.1)% with
566  the command “checkm linage wf” (Supplemental Table 9). The 33 genomes displaying the
567  completeness larger than 90% and contamination smaller than 5% were used for further study as
568  quantitative traits.

569  4.2.4 Making phenotype files based on contig depth

570  Read counts for each position on the assembled contigs were acquired using bedtools genomecov
571  (version: 2.29.2)8. A custom Python script was applied to calculate the average depth (defined as
572  the number of total mapped reads divided by contig length) and coverage (defined as the number
573  of covered base pairs divided by contig length) of every contig. Furthermore, the average
574  abundance of contigs assigned into a bin was calculated for the high-quality genomic bins detected
575 by CheckM%,

576  4.2.5 Feature selection

577  Average depths of the contigs were first normalized using the cumulative sum scaling (CSS) and
578 filtered based on the effective sample size using metagenomeSeq package (v1.28.2)"". Differential
579  abundance analysis was performed by moderated t-tests between groups using the makeContrasts
580 and eBayes commands retrieved from the R package Limma (v.3.22.7)%. Obtained P-values were
581 adjusted using the Benjamini—Hochberg correction method. Differences in the abundance of
582  contigs between groups were considered significant when adjusted P-values were lower than 0.01
583  (Supplemental Table 19).

584

585 In either comparison, the contigs that were significantly enriched in the rhizosphere were
586 gathered and regarded as the statistically rhizosphere-enriched contigs after removing the
587  replicated ones. To perform QTL analysis for the abundance of these enriched rhizosphere contigs,
588 only the contigs with biological meanings were kept, i.e. the log (2) fold-change of mean values
589  for the normalized abundances of RIL and bulk samples should be greater than 2, and the contig
590  should be in enough depth with at least the mean value of a group larger than 1. This selection step
591 resulted in 1249 rhizosphere-enriched contigs in the end. The statistics of the filtered normalized
592  abundance were further inspected based on the presence and absence of contigs, standard deviation
593  and mean values of the counts.

594  4.2.6 Taxonomic and functional annotation of the metagenome

595  Taxonomic classifications were assigned to the contigs in the final assembly using Kraken2
596  (version: 2.0.8)?° based on exact k-mer matches. A custom Kraken2 database was built to contain
597  RefSeq complete genomes/proteins of archaea, bacteria, viral, fungi and protozoa. Univec_Core
598  wasalso included in the custom database (20200308). Using the Kraken2 standard output, a python
599  script based on TaxonKit®” was utilized to add full taxonomic names to each contig in the format
600 of tab-delimited table. 76.22% of the contigs > 1kb were classified. Among the contigs > 10kb, up
601 to 99.44% contigs were classified. Prokaryotic microbial genes were predicted by Prodigal
602  (version: 2.6.3)% with metagenomics mode. 10,246,55 genes were predicted from contigs > 1kb
603  (Supplemental _Table 8). Open reading frames (ORFs) on contigs >10kb were annotated by
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604  prokka (v1.14.5) and the Streptomyces ASV5 bin (MAG.72) was further annotated by DRAM
605  (v1.2.0) integrating UniRef, Pfam, doCAN and KEGG databases®’.

606  4.2.7 Single Nucleotide Variant analysis

607  To investigate strain level QTLs, we mapped Single Nucleotide Variants (SNV) identified using
608 inStrain on the 1249 contig enriched genomes. A total of 555,382 and 535,432 SNPs were
609 identified in the modern and wild parental metagenomes respectively. Of these, 162,299 and
610 142,349 SNPs were unique to each dataset respectively, as they either contained only reference
611 alleles or did not exceed the inStrain SNP calling thresholds. For each unique SNP locus, coverage
612 in the other dataset was determined using SAMtools depth after read filtering with settings
613 comparable to inStrain, and was considered identical to the reference allele frequency. Including
614  the unique SNPs, this resulted in a final set of 697,731 SNPs. To select SNPs that showed
615  differential reference allele frequencies between MM and P, first the difference in reference allele
616  frequency (MM — P) was calculated per SNP. From the distribution of all SNPs, the 95%
617  confidence interval (Cl) was determined to select the 5% (30,911) most different SNPs
618  (Supplemental Figure 5). SNPs were further selected using a Fisher’s exact test based on the allele
619 read count differences between MM and P. P-values were sorted, and a final selection of 15,026
620 differentially abundant SNPs distributed over 1,037 contigs was obtained using a Benjamini-
621  Hochberg false discovery rate (FDR) correction of 0.01. SNV allele read counts were extracted
622  from the RIL dataset using the pysam Python package after filtering with settings comparable to
623  inStrain.

624  4.2.8 Quantitative Trait Locus Analysis

625 The QTL analysis linking selected amplicon, contig, bin, and SNV features with plant loci was
626  performed using the R package R/qtl225. Pseudomarkers were added to the genetic map to increase
627  resolution, with a step distance of 1 Mbp between the markers and pseudomarkers. Plant genome
628  probabilities were calculated using the genetic map with pseudomarkers, plant loci cross data and
629  error probability of 1E-4. Plant locus kinship matrix was calculated as proportion of shared alleles
630 using conditional allele probabilities of all plant chromosomes, which were calculated from the
631 plant genome probabilities. A genome scan using a single-QTL model using a linear mixed model
632  was performed on the SNP allele read counts as phenotypes, plant genotype probabilities as input
633 variables and as covariates the number of leaves, harvest day, rhizosphere soil weight (g), soil
634  starting weight (g) and plant dry weight (g). The logio likelihood (LOD) score was determined for
635 each plant locus SNP allele combination. A permutation test was performed with 1000
636  permutations to assess the distribution of the LOD scores. The 95% quantile was used as threshold
637  for the selection of LOD peaks, as well as a P = 0.95 Bayes credible interval probability.

638 4.3 Independent validation of QTLs through bulk segregant analysis

639 To validate the QTLs, 33 Solanum lycopersicum cv. Moneymaker (Modern), 30 Solanum
640  pimpinellifolium L. accession CGN14498, and 77 RIL accessions (with replicates of 4 each) were
641 grown and their microbiomes characterized through 16S sequencing. Parental lines and RIL
642  accessions were germinated in pots filled with 300 g agricultural soil. For each accession, were
643  planted with six plants per replicate pot. The plants were arranged randomly in the growth chamber
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644  (25°C, 16h daylight) and watered every day. Bulk soil samples without plants were used as controls
645 (N =31).

646

647  Rhizospheric soil was collected according to standard methods®. In order to synchronize the
648  developmental stage, the plants were harvested after 21 days, or when the 3 trifoliate leaf was
649 reached. The soil loosely attached to the roots was removed and the entire root system was
650 transferred to a 15 mL tube containing 5 mL LifeGuard Soil Preservation Solution (MoBio
651 Laboratories). The tubes were vigorously vortexed and sonicated. Subsequently, the roots were
652 removed and at least 1 g (wet weight) of rhizospheric soil was recovered per sample for RNA
653  extraction. For the bulk soil samples, approximately 1 g of soil was collected and mixed with 5
654  mL of LifeGuard solution.

655

656  To extract rhizospheric DNA, PowerSoil Total DNA/RNA Isolation Kit (MoBio Laboratories,
657 Inc., USA) was used in accordance with manufacturer’s instruction. Rhizospheric DNA was
658  obtained using RNA PoweSoil DNA Elution Accessory Kit (MoBio Laboratories, Inc. USA). The
659  quantity and quality of the obtained DNA was checked by ND1000 spectrophotometer (NanoDrop
660  Technologies, Wilmington, DE, USA) and Qubit 2.0 fluorometer (ThermoFisher Scientific, USA).
661  DNA samples were stored at -20°C until further use.

662

663  The extracted samples were used for amplification and sequencing of the 16S rRNA, targeting the
664  variable V3-V4 (Forward Primer= 5’CCTACGGGNGGCWGCAG-3’ Reverse Primer= 5’-
665 GACTACHVGGGTATACTAATCC-3’) resulting in amplicons of approximately ~460 bp. Dual
666 indices and Illumina sequencing adapters using the Nextera XT Index Kit were attached to the V3—
667 V4 amplicons. Subsequently, library quantification, normalization and pooling were performed
668 and MiSeq v3 reagent kits were used to finally load the samples for MiSeq sequencing. For more
669 info please refer to the guidelines of Illumina MiSeq System. The RDP extension to PANDASeq,
670 named Assembler®?, was used to merge paired-end reads with a minimum overlap of 10 bp and at
671 leastaPhred score of 25. Primer sequences were removed from the per sample FASTQ files using
672  Flexbar version 2.5%,

673 5. Data availability

674  The sequencing data generated in this study are available under ID BioProject ID PRINA787039
675  (16S amplicons) and PRINA789467 (shotgun metagenomics). Bacterial ASV reference

676  sequences, and metagenome assembled genomes are available at https://osf.io/f45ek/.

677

678 6. Code availability
679  The code used in the analysis can be found at https://osf.io/f45ek/.
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