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Abstract

e Background: A cell exhibits a variety of responses to internal and external cues. These responses
are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single
cell. In the past twenty years, many groups worked on reconstructing the topological structure of GRNs
from large-scale gene expression data using a variety of inference algorithms. Insights gained about
participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (Ml) is a
widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear
and non-linear) between any number of variables (n-dimensions). However, the use of Ml with
continuous data (for example, normalized fluorescence intensity measurement of gene expression
levels) is sensitive to data size, correlation strength and underlying distributions, and often requires
laborious and, at times, ad hoc optimization.

e Results: In this work, we first show that estimating Ml of a bi- and tri-variate Gaussian
distribution using k-nearest neighbor (kNN) Ml estimation results in significant error reduction as
compared to commonly used methods based on fixed binning. Second, we demonstrate that
implementing the Ml-based kNN Kraskov-Stodgbauer-Grassberger (KSG) algorithm leads to a significant
improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of
Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference
algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with
the KSG-MI estimator, outperforms commonly used methods.

e Conclusions: Using three canonical datasets containing 15 synthetic networks, the newly
developed method for GRN reconstruction - which combines CMIA, and the KSG-MI estimator - achieves
an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This
new method will enable researchers to discover new gene interactions or choose gene candidates for

experimental validations.
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e Keywords: Gene regulatory network inference, mutual information, k-nearest neighbor

Background

Most cells in a multicellular organism contain the same genome, yet they can differentiate into
different cell types and adapt to different environmental conditions [1]. These responses to internal and
external cues are possible due to the presence of an elaborate gene regulatory network (GRN). A GRN is
the genome’s “flowchart” for various biological processes such as sensing, development, and
metabolism, enabling the cell to follow specific instructions upon an internal or external stimulation.
Understanding how genomic flowcharts are organized brings the potential to remediate dysfunctional
ones [2] and design new ones for synthetic biology [3].

Advances in large-scale gene expression data collected from omic-level microarrays and RNA-
seq experiments allow the construction of basic networks by clustering co-expressed genes using
statistical correlation metrics such as covariance and threshold to determine the statistical significance
[4]. Another common practice is to monitor the expression of multiple genes in response to
perturbations and then infer the relationship between these genes [5]. Currently, there are several
classes of methods to infer GRNs from expression data, such as the Bayesian networks method, the
statistical/information theory method, and ordinary differential equations (ODEs) (see excellent reviews
[6-8]).

Originally introduced for communication systems by Shannon in the late 40s [9], mutual
information (MI) was quickly adopted by other disciplines as a statistical tool to evaluate the
dependence between variables. Unlike the abovementioned traditional correlation methods like
covariance, Ml can detect linear and non-linear relationship between variables and can be applied to

test the dependence between any number of variables (n-dimensions).
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Over the last twenty years, researchers have implemented many methods employing Ml to
reconstruct GRNs, such as Relevance Networks [10]; ARACNE (Algorithm for the Reconstruction of
Accurate Cellular Networks, [11]); and CLR (Context Likelihood of Relatedness, [12]). Using MI with two
variables (i.e. genes) is straightforward, but due to the positive and symmetric nature of two-way Ml
[13], MI with only two variables cannot distinguish between direct and indirect regulation, coregulation,
or logical gate-type interactions [14, 15]. To overcome these issues, a few groups have used different
three-dimensional MI measures in inference algorithms [14, 16, 17] (for a comprehensive list of
methods, see Mousavian et al. [18]). Importantly, in most methods using MI, continuous input (i.e.,
normalized fluorescence intensity data for gene expression) needs to be discretized first to build
probability density functions (PDF). This practice is known to be sensitive to data size, correlation
strength and underlying distributions [19].

In general, the simplest and most computationally inexpensive method to discretize continuous
data is fixed (width) binning (FB) (Fig. 1A}, where a histogram with a fixed number of bins (or bin width)
determined by certain statistical rules is used to model the PDF. For finite data size, FB generally under-
or over-estimates Ml (Fig. S1A). Over the years, researchers developed different methods to mitigate
bin number sensitivity and to better estimate (or correct the bias in) MI, especially for data of small
sizes. These methods correct either the entropies {Miller-Madow [20]) or the probability distribution by
adaptive partitioning (AP) [21], k-Nearest Neighbor (kNN) [22] (Fig. 1B), kernel density estimator (KDE)
[14] and/or B-spline functions, in which data points are divided into fractions between a predefined
number of adjacent bins [23]. Unfortunately, all these methods make assumptions on the density
distribution and require adjustment of parameters by the user for different scenarios except for kNN,
which is shown to be accurate and robust across different values of k [19, 22]. However, kNN is rarely
used due to the higher computational costs it entailed [24] or the limited improvement for two variables

(2d) in downstream analysis.
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92 The problem of accurately estimating the correlation between genes has only worsened in this

93 new era of single cell transcriptome studies, as data is larger yet sparser, often with non-Gaussian

94  distributions. In this work, we focus on two subjects: (a) Improving Ml estimation — we present an

95 implementation of a three-way Ml estimator based on kNN, which addresses large errors in estimating

96 MI measures for three variables (3d). (b) Improving GRN inference — we present CMIA (Conditional

97 Mutual Information Augmentation), a novel inference algorithm inspired by Synergy-Augmented CLR

98 (SA-CLR) [17]. By testing various mutual information estimators against the ground truth solved from an

99 analytical solution and comparing their performance using in silico GRN benchmarking data, we find that
100  kNN-based three-way Ml estimator Kraskov-Stodgbauer-Grassberger (KSG) improves the performance
101  of common GRN inference methods. Together with the inference algorithm, CMIA, it outperforms other
102  commonly used GRN reconstruction methods in the field.

103

104 Results

105 Benchmark Ml estimations of a Gaussian distribution

106 To evaluate the performance of different mutual information (MlI) estimators on continuous

107  data, we calculated their deviations from the true underlying value by defining a percent error:

108 . |Analytical_MI — Estimated| 100%
= X
percent error Analytical_MI ’

109 In most biologically relevant cases, one does not know what the true Ml value is, because one
110  does not know the probability distributions of the variables we are concerned with. Nevertheless, the
111  true underlying value of Ml of a few distributions such as Gaussian distribution can be analytically

112  calculated. Therefore, to allow quantitative comparisons between different Ml estimators, we used the

113  analytical solution of Shannon’s entropy for a Gaussian distribution (see Additional file 1) to calculate
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114  the Ml by entropy summation (Table 1). We then compared all methods of different data sizes (100, 1K,
115 10K, referring to the number of different conditions/perturbations/time points of individual genes) and
116 different correlation strengths (0.3, 0.6, 0.9) between two or three variables (number of genes, 2d or 3d)
117 drawn from a Gaussian distribution with a mean at zero and a variance of one (the absolute values of
118 mean and variance are not important in the calculation as the final solution only contains correlation,
119 see Additional file 1). For two-way MI (two variables, or 2d), we compared the following Ml estimators:
120 (i) Maximum Likelihood (ML, given by Shannon, Table 1), (ii) Miller-Madow correction (MM, see

121  Additional file 1), (iii) Kozachenko-Leonenko (KL) [25], and (iv) KSG (Fig. 2A). The first two methods use
122 FB to discretize the continuous data, and in general the best number of bins changes depending on the
123  data size and correlation between variables (Additional file 2: Fig. S1A). As a priori the correlation

124 strength is unknown, for the number of bins we used the common practice VN, where N equals the
125 number of data points, and the result was rounded down to align with methods in the next section. The
126  latter two methods both use kNN, and we found that any selection of k resulted in good alignment with
127  the analytical solution (see Additional file 2: Fig. S1B). We chose the third nearest-neighbor (k=3) as
128 recommended by Kraskov et al [22] because a k value of 3 resulted in a good trade-off between

129  precision and computational cost. As shown in Fig. 2, in all cases the two kNN-based Ml estimators

130  performed well similarly and outperformed the fixed-binning methods judged by the percentage error.

131 While two-way Ml estimators were studied extensively [22, 26], to our knowledge, no

132 benchmark was done on Ml with three or more variables. We repeated the same methodology

133 described above but this time for the 3d Total Correlation (TC) (Fig. 2B, Additional file 2: Fig. S1C-D).
134 Similar to the 2d case, kNN-based Ml estimators KL3 and KSG3 outperformed the other methods. We
135  also examined the other three-way Ml quantities, three-way MI (MI3), Interaction Information (ll),
136 Conditional Mutual Information (CMI) (see Additional file 2: Fig. $2-4) and obtained similar results. We

137  also explored whether a higher kNN value, for example k=10, further improved accuracy. We found that
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138  a higher k value (k=10) does not improve the accuracy dramatically compared to that in k=3 (Additional

139 file 2: Fig. S5,6), but it did reduce the variance for small correlations (r=0.3).

140 In Silico GRN Inference performance enhancement

141 Next, we aim to investigate whether the high precision of Ml estimation based on kNN for bi-
142  and tri-variate Gaussian distributions also translates to a high performance in inferring GRN structure
143  compared to other Ml estimation methods described above.

144 To compare the performance of different M| estimators and inference algorithms, we used a
145 total of 15 different synthetic networks: ten synthetic networks from the DREAM3 (Dialogue for Reverse
146 Engineering Assessments and Methods) competition [27] with 50 and 100 genes, respectively, and five
147  networks from DREAMA4 with 100 genes. The networks were extracted from documented regulation

148 databases of E. coli and S. cerevisiae [28]. We used the software GeneNetWeaver 3.1.2b [29] with

149  default settings to generate simulated expression data for each network and performed ten replicates to
150 include the variance in expression data due to stochastic molecular noise. Furthermore, to comply with
151  the majority of available experimental data, we only used the simulated steady state data (Wild type,
152 knockouts, dual-knockouts, knockdowns, multifactorial perturbation) accumulating to 170, 169 and 201
153 conditions in the 50 gene synthetic networks for E.coli 1, E.coli 2 and Yeast1/2/3 respectively, 341, 322
154  and 401 conditions in the DREAM3 100 gene synthetic networks for E.coli 1, E.coli 2 and Yeast1/2/3

155 respectively, and 393, 401 conditions in the DREAM4 100 gene networks. We then ran the expression
156  data through our custom Python 3.8 code pipeline to calculate the area under precision-recall curve

157  (AUPR) for each replicate.

158 In Fig. 3 we show sorted boxplots of the AUPR values (y-axis) comparing six combinations of

159 three inference algorithms (Relevance Networks, RL; Context-Likelihood-Relatedness, CLR; and our

160 Conditional-Mutual-Information-Augmentation, CMIA) and two Ml estimators (ML, fixed bin-based; KSG,

161 kNN-based), for five networks with 50 genes (Fig. 3A), five networks of 100 genes from DREAM3 (Fig.
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162 3B), and five networks of 100 genes from DREAM4 (Fig. 3C). In all cases, the kNN-based KSG as the Ml
163  estimator improves the performance of the inference algorithms. The improvement is more significant
164  for CMIA, which uses three-way Ml calculations, and corroborate the higher percent error we found
165  when estimating TC (Fig. 2B).

166

167 In Silico GRN Inference performance comparison

168 To verify whether the performance enhancement introduced by kNN-based Ml estimators is
169  general for other GRN inference algorithms, we further extended our benchmark to twenty-four

170 different combinations of the four Ml estimators (discrete bin-based ML and MM, and kNN-based KL,
171 and KSG) with six inference algorithms described in the Methods section (RL, CLR, ARACNE, SA-CLR,
172 CMIA, CMI2rt) and compared them to the field gold standard combination {(ML, CLR)} (Fig. 4). To
173  compare the performance differences quantitatively, we calculated the change in AUPR for each

174  replicate relative to the field’s gold standard combination of CLR inference algorithm with ML for Ml
175  calculations. In Fig. 4 we show the top nine combinations, omitting ARACNE and CMI2rt among the
176  inference algorithms, and KL from the Ml estimators because of their poor performance. We also
177  omitted SA-CLR due to its similarity to CLR and CMIA (see full data in Additional file 3: Table S1). The
178  combination of {KSG,CMIA} gave the best median score in the combined networks inspected under each
179  category. It showed a median improvement of 16% and 24% for networks of 50 and 100 genes from
180 DREAMS3, respectively (Fig. 4A, B), and 34% improvements for networks of 100 genes from DREAM4
181 (Fig. 4C). Furthermore, replacing the Ml estimator from ML to KSG in the case of the gold standard
182 ({ML,CLR}} can lead to significant improvement in GRN reconstruction performance, with median
183  increase in AUPR of 8-18%.

184

185
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186 In Silico GRN Inference performance of different organisms

187 Next, we examined the performance of these different algorithms with regards to different

188  biological organisms, as E. coli and S. cerevisiae have distinct distributions of different network motifs
189 (Additional file 2: Fig. S7), which may lead to different performance in network inference. For example,
190 the fan-out motif, where one gene regulates two (or more) target genes, is more abundant in E. coli,
191 while the cascade motif, where a gene regulates a second gene that in turn regulates a third gene, is
192 more abundant in S. cerevisiae [7, 30]. In both cases, the three participating genes exhibit some degree
193 of correlation, yet not all are directly connected. The 10 networks from DREAM3 were divided into four
194  E. coli networks (Fig. 5A, C-F) and six S. cerevisiae networks (Fig. 5B, Additional file 2: Fig. S8). For the
195  combined E. coli networks (Fig. 5A), KSG greatly improved the performance of both RL and CMIA

196  algorithms but showed only a modest 6% improvement in performance for CLR. For the combined E. coli
197 networks, {KSG,CMIA} achieved a median improvement of 20%, but was second best to {MM,CLR}. The
198  performance comparison of the individual E. coli networks (Fig. 5C-F) showed that {KSG,CMIA} was the
199  best performer on three out of four networks. Furthermore, replacing ML with KSG when combined
200  with CLR improved the performance by 10-15% except in the case of DREAM3 Ecoli2-Size100 (Fig. 5F).
201 In the S. cerevisiae networks, again KSG improved all algorithms, and most significantly CMIA, and

202  showed a median improvement of 18%. Several replicates did not show any performance improvement,
203 indicating the significance of stochasticity even though all kinetic parameters for each network were
204  identical.

205 In summary, out of 24 combinations of Ml estimators and inference algorithms, the combination
206  {KSG,CMIA} yielded the best median score in 13 out of the 15 networks inspected (except networks

207 DREAM3 Yeast1-Size50 & Ecoli2-Size100, Fig. 5C-F, Additional file 2: Fig. S8 and S9). Therefore, we

208 conclude that using kNN-based KSG to calculate Ml improved the performances of the inference

209  algorithms evaluated in most cases.
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210 Computational cost

211 Computational cost is a major concern when applying kNN-based methods. We measured the
212 time required to calculate all the two- and three-way interactions in a 50 gene network (1125 pairs and
213 19600 triplets, respectively, after taking symmetry into account) with different data size [100, 250, 500,
214 1000] for three Ml estimation methods: FB-ML, kNN-KL and kNN-KSG. The code for the three estimators
215 was written in Python 3.8, used built-in functions from Numpy v1.19 and Scipy v1.5, and was run on a
216  single core of a desktop [Intel Xeon E5-1620 @ 3.6 GHz]. As seen in Fig. 6 FB-ML was the fastest, as

217  histogram-type calculations have been optimized in Python over the years. FB-ML was also insensitive to
218  data size (in the tested range). While the python-based KSG implementation was most computationally
219  heavy, the time was tractable (under 400 s even for the largest data size (1000) and 3d calculation). The
220  speed could be further boosted by rewriting the code in C/C++, similar to what was done by Meyer et al.
221 [31] and Sales et al. [24]. Furthermore, the KD-Tree class of algorithms [32], which was in the main core
222 of this work’s implementation, could greatly benefit from multiple cores or parallel processing. After
223 building the initial tree, distance calculation between neighbors can proceed in parallel, offering 4-to-16
224  fold improvement in speed on a current personal computer, depending on the number of available

225 cores.

226

227 Discussion

228 To date, a plethora of discretization methods, Ml estimators, and inference algorithms exist in
229  the literature to reconstruct GRNs. Some common methods are available in the R/Bioconductor package
230 minet [31] and in Julia language [33]. In fact, as different methods have certain advantages depending
231 on the investigated scenario and constraints, it is advantageous to consider and compare the

232 performance of different combinations of multiple methods [34].
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233 kNN-based Ml estimator for date discretization/density estimation outperforms fixed-bin-based

234 estimations

235 Here, we demonstrate that the Ml estimator KSG based on kNN yields smaller errors compared
236  to other Ml estimation methods using discretized fixed bins in the case of a bi- and tri-variate Gaussian
237  distribution. KSG proves to be robust against different data sizes and correlations as well as the k

238 parameter used, unlike FB methods where the parameter used (number of bins) has a large effect on
239 accuracy of the Ml estimator. In principle, one can achieve smaller errors using Ml based on discretized
240 bins by choosing a different bin number other than the rule of thumb +/N, for correlations smaller than
241  0.9. However, a priori one does not know the correlation strength. In fact, estimating the correlation
242  strength is what one tries to achieve when using MI. We also note that the gene expression profiles of
243 different synthetic networks and real experimental systems could be better described by distributions
244  other than Gaussian. Fortunately, the analytical solution to the mutual information of a few of these

245 distributions can be calculated [35] and will be explored in future work.

246 Note that in this work we did not compare the performance of another frequently used binning
247 method, adaptive partitioning, which is computationally faster than kNN for large data sets. In brief,
248  adaptive partitioning is a general term referring to three methods that divide the data uniformly

249  between the bins. The first method is equal frequency in which the bin size varies to allow for equal

250  number of data points in each bin. The second method is equiprobable partitioning [21, in which data is
251 ranked and partitioned in the middle, and Pearson chi-square test is used to determine the number of
252 sub-partitions, where the significance level of the chi-square test can be tuned (1%-5%) according to the
253 size of the data. This method works well for 1d data, but it has some ambiguity when implemented in
254 higher dimensions in that data points must be ranked according to one of the axes (or more in >2d), and

255 there are no appropriate rules to rank multidimensional data points. The third method is Bayesian
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256  blocks [36], which uses a Bayesian statistics approach to attempt to find the optimal number of bins and
257  their sizes by maximizing a fitness function that depends on those two parameters. While this is a
258  seemingly promising approach, it is unclear how to implement such a method beyond 1D. Because of

259  these reasons, we did not include this binning method in the comparison.

260 Another previously used method in the literature is KDE [14], but it is the most computationally
261  costly and requires large data sets. It approximates the data distribution using a predefined known
262 distribution (i.e., a Gaussian) with user-defined smoothing parameters. This practice can be problematic
263 because in most cases the underlying data distribution is unknown, and experimental data is much

264 sparser than required to achieve results similar to other, simpler methods, such as FB.

265 kNN-based Ml estimator KSG in combination with CMIA achieves the highest accuracy but may subject

266 to data stochasticity

267 It is clear from Fig. 3 and 4 that the combination of kSG-based Ml estimation and inference

268 algorithm CMIA achieved the highest precision and recall when reconstructing an unknown network.
269  Yet, this combination also showed a large variation in the performance enhancement. As shown in Fig.
270 4,5A-B, we observed that when KSG was combined with CLR or CMIA, a few replicates did not show any
271 performance improvement, or even had a decreased performance indicated by the negative %AAUPR
272  value, as indicated by the bottom whisker of the boxplot.

273 To investigate the source of this variation in the ensemble network plots we inspected different
274 combinations of Ml estimators, inference algorithms, data size used, and individual networks (Fig. 5C-F,
275  Additional file 2: Fig. $8). We found that higher k values (up to k — 15) did not affect the variability in the
276  AUPR results (Additional file 2: Fig. S10). However, Ml calculation done by KSG exhibited large variations
277  in performance when smaller data size was used as that in the case of 50 gene networks. For example,
278  in Fig. 5C,E, KSG showed a performance enhancement in the range of ~ 25-35% for the three different

279  inference algorithms, but the variability was reduced by half when ML instead of KSG was used. This was
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also shown in the large variance calculated for KSG for a Gaussian distribution (Additional file 2: Fig. S1D,
left column). This observation indicates that KSG is more sensitive to stochasticity (intrinsic noise) when
data size is smaller than a few hundred points. Our choice of algorithm KSG-1 over KSG-2 (see methods)
was intended to keep a low statistical error and thus, low variability. However, using total correlation
and two-way mutual information to calculate other measures, such as interaction information (Table 1),
can lead to higher errors as the systematic errors might not cancel out as we have demonstrated in this
work. Additionally, when using KSG, we set negative values of total correlation and two-way mutual
information to zero (due to statistical fluctuations at low correlation values) prior to calculating the
other 3d MI quantities. This practice does not change the results for pairs or triplets with highly positive
Ml values, but in some cases could lead to increased errors as gene pairs with low Ml would be ranked

differently.

We note that two networks (DREAM3 Yeast1-Size50 & E.coli2-Size100) out of the 15 networks
investigated showed no performance enhancement when using {KSG, CMIA} compared to the Gold
Standard {ML, CLR} (Fig. 5F, Additional file 2: Fig. S8). It is unclear why the performance did not improve
in these two cases based on the largely similar statistics of different motifs of the ten networks from
DREAM3 (Additional file 3: Table S3). It could be due to a specific sub-structure of this network, but

further analysis is needed.

Another important result we observed (Fig. 4, 5) is that the combination {MM,CLR} achieved
higher AUPR for all replicates over {ML,CLR}. This is probably due to the size of the data used, as MM
was developed to correct the bias in Ml estimation for small data sets. We thus suggest using this
combination as the new gold standard of the field when working with similar data sizes and when fixed-

binning for data discretization is preferred.
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303 Conclusions

304 In summary, we have shown that the kNN-based KSG MI estimator improves the performance of
305 inference algorithms, especially ones that use three-way Ml calculations. This result corroborates our
306  observations in comparing Ml calculations against the analytical solution of two-way Ml of a bi-variate
307 Gaussian distribution and the total correlation of a tri-variate Gaussian distribution. Furthermore, the
308 combination of CMIA and KSG give the overall best performance, and hence should be preferred when
309  precision and recall are more important than speed when reconstructing a GRN. Looking forward, the
310 goal of complete reconstruction of GRNs may require new inference algorithms and probably Ml in

311 more than three dimensions.

312

313  Methods

314 Calculate mutual information of multiple variables

315 In Table 1, we summarize the formalism for calculating MI. Shannon’s entropy is the basic

316  building block of Ml and represents the randomness of a variable: the more random it is, the more

317 uniformly it is distributed, which gives a higher entropy. For our purposes, X, Y, or Z is a vector (x3, Xz, ...,
318  xa), (V1, V2 ..., Yn) OF (24, 25, ..., Zn) representing a specific gene’s expression profile (data x, y or z) under
319  different conditions/perturbations (n steady-states) or as a function of time (n time points). Two-way Ml
320 is defined as the shared (or redundant) information between the two variables X and Y {Table 1} and can
321 be visualized by a Venn diagram {Table 1 right column}.

322 While Ml for two variables (genes or dimensions) is readily understood, for three variables or
323 more, new measures arise including Total correlation (TC), Three-way MI (MI3), Interaction Information
324 (1) and Conditional Ml (CMI) (Table 1). Unfortunately, the term ‘three-way MI’ has been used loosely in

325  the literature to refer to all four of these measures, and because they represent distinct aspects of
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326 statistical dependence, in the context of GRN reconstruction, this can lead to different realizations.

327 Unlike other MI quantities, Interaction-Information is hard to visualize using a Venn diagram, as it can
328  have both positive and negative values. It is common to regard negative Il as “Redundancy”, the shared
329 information between all variables, and positive Il as “Synergy”. Synergy can be interpreted as new

330 information gained on the dependence between two variables {X,Y} when considering the contribution
331 of a third variable {Z} on either {X} or {Y} v.s. without considering it, or mathematically: I=CMI(X;Y|Z)-
332 MI(X;Y).

333

334  Table 1: Mutual Information formalism

TERM SYMBOL FORMULA VENN DIAGRAMS

Shannon’s entropy of X H(X) — Z p(x)logp(x) @
X

Joint entropy of X & Y H(X,Y) _ Z Z p(x,7) logp(x, y) @
- @

Joint entropy of X,Y & Z H(X,Y,2) _ Z Z Z p(x,y,2) log p(%,,2) @‘m
x y z

Two-way Mutual Information  MI(X;Y) H(X) + H(Y) = H(X,Y) @

Total Correlation TC(X,Y,2) H(X) + H(Y) + H(Z) — H(X,Y,Z2) A +<-‘:>’.<w/

Three-way MI MI3((X,Y);Z) TC-MI(X;Y) Q_Q
=A

Interaction Information 11(X,Y,2) TC - MI(X;Y) — MI(X;Z) — MI(Y;Z)
Conditional Ml CMI(X;Y]|Z) TC-MI(X;Z) — MI(Y;Z)
335
336 To calculate the marginal and joint entropies of two variables (X and Y), we first need to know

337  the probability of each data point. For discrete data, we can approach the underlying probability p(x) by
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N,
338  calculating the frequency (f, = ——) where Ny is the number of data points with value x, and N, is the
* N
Tot

339  total sample size. For the continuous data case, the calculation is more complex. Although Shannon

340 extended his theory for continuous data by replacing the summation with integrals, it is common

341 practice in the field to discretize the data first so one can work with the discrete formalism (Table 1).
342  The simplest discretization method is to use fixed (width) binning (FB) (Fig. 1A), but the optimal binning
343  choice depends on the shape of the distribution and data size. For normally distributed data, the rule of

344  thumb is to use the square-root of the data size as the number of bins.

345

346  k-nearest-neighbor (KkNN) — Other than evaluating the probability densities to calculate mutual

347  information, Kozachenko and Leonenko (KL) calculated the marginal and joint entropies (and the Ml by
348  summation) from the mean distance to the kth-nearest neighbor [25]. To minimize errors when

349 combining entropies of different dimensions, Kraskov et al. calculate the Ml directly [22]. KSG developed
350  two algorithms, I and I? (hereafter, KSG-1 and KSG-2), to minimize errors when estimating M|

351  compared to previous methods. We chose KSG-1 (defined below as MI_KSG) as it gives slightly smaller
352  statistical error (dispersion). Note that although KSG-1 gives relatively larger systematic errors than KSG-
353 2, these systematic errors do not change the ranking of the output values (from high to low), which is
354  what we use in downstream analysis. An additional note is that using kNN can lead to negative values
355  for mutual information, which contradicts Shannon’s theorem. Negative values are caused by statistic
356 fluctuations when there is no correlation between variables. Therefore, in such a situation, we set

357  negative values to zero (except for Interaction Information, where it is meaningful). To calculate Ml

358  using the KSG method, we use the following formulas:
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Mg sc(X;Y) = (R)Hp(ny+ 1)+ (ny+1))+p(N)
359

360 TCxsc(XY;2) =1 (k) +2-P(N) = (ny) +1(ny )+ (n2))

361

362  Where Y(x) is the digamma function, N is the number of data points, n; is the number of points x; whose
363  distance from x; is less than £(i)/2, and €(i)/2 is the distance from ui=(x;,y;,z) to its kth neighbor, as

364 illustrated in Fig. 1(a) of [22]

365

366 In Silico GRN Inference comparison:

367 Ml calculations are used to infer interactions between genes to reconstruct the underlying GRN

368 structure. To test the performance of different methods, we followed the methodology of the in silico
369 network inference challenges of the Dialogue for Reverse Engineering Assessments and Methods
370  (DREAM) competitions DREAM3/4 [27] as depicted in Fig. S11.

371

372 1. Simulating gene expression data — we used GeneNetWeaver [29] to generate steady-state and time-

373 series gene expression datasets for realistic in silico networks of sizes of 50, and 100 genes

374 containing various experimental conditions (knockouts, knockdowns, multifactorial perturbation,
375 etc.). GeneNetWeaver uses a thermodynamic model to quantify mRNA transcription and regulation
376 with added molecular and experimental noise.

377 2. Discretizing/density estimation - To handle the continuous expression data, we chose either:

378 a. Density estimation by fixed bin. We used the common practice sqrt(n), where n = number of
379 data points (in our case, different experimental conditions), as the number of bins.
380 b. Density estimation by k-Nearest Neighbor (kNN). We chose k=3 as a good compromise

381 between precision and computation cost as discussed in the previous section.
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382 3. Mutual Information estimation - Depending on our previous selection, we chose between several Ml

383 estimators:

384 a. For the fixed-bin discretizing method, we used either Shannon’s formula (also referred to as
385 Maximum Likelihood, ML) or Miller-Madow (MM) estimator.

386 b. For kNN we used either KL or KSG formulas for MI.

387 4. GRN.inference algorithms — We used popular algorithms in the field that use either only two-way Ml

388 or both two- and three-way Ml to infer undirected network structure by sorting predicted

389 interacting gene pairs from most probable to least probable. Each algorithm starts with a MI matrix
390 containing calculation for all possible pairs (some use all possible triplets) and applies different rules
391 to filter results and sort the gene pairs (see summary below). We used the same MI matrices for a
392 fair comparison between the inference algorithms. The following algorithms were used in our

393 comparison:

394 a. Relevance Network (RL) — Gene pairs are sorted according to their MI(X;Y) value from highest to
395 lowest, and a threshold applied to truncate non-significant results [10]. We didn’t set a

396 threshold to maximize AUPR (see below).

397 b. Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) — Same as RL with the
398 addition of Data Processing Inequality (DPI), which means for every three genes Ml is calculated
399 for each pair and the pair with the lowest Ml is removed if the difference is larger than some
400 threshold [11]. In our implementation, we set the threshold to zero, so we always removed the
401 lowest interacting pair. On the other extreme, where we kept all the pairs, ARACNE is the same
402 as RL.

403 c. Context Likelihood of Relatedness (CLR) — Background correction is performed by calculating Z-

404 score for the Ml of each gene interacting with all other genes, and then gene pairs are sorted by
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405 their mutual Z-score [12]. We didn’t use B-spline smoothing in the density estimation step in
406 accordance with the implementation in the R-package Minet [31].

407 d. Synergy Augmented CLR (SA-CLR) — Same as CLR, with the difference that now the highest

408 Interaction-Information term is added to Ml prior to performing the background correction [17]
409 e. Conditional Mutual Information Augmentation (CMIA) — Similar to SA-CLR but we used

410 conditional mutual information instead of interaction-information.

411 f. Luo et al. MI3 (hereafter CMI2rt) — We assumed two regulators for each target gene, and for
412 each target gene we searched for the best {R1,R2} pair that maximizes:

413 CMI(T;R1|R2)+CMI(T;R2|R1) [14]

414 5. GRN performance evaluation - To evaluate the performance of common algorithms in the field, we

415 used known (true) synthetic networks and counted the number of true and false positives (TP and
416 FP respectively) predictions as well as true and false negative (TN and FN respectively) (Fig. S12).
417 This allowed us to plot precision (Precision = TP/(TP+FP)) v. s. recall (Recall = TP/(TP+FN)) and

418 calculate the area under precision-recall curve (AUPR). As biological networks are sparse on edges,
419 AUPR is considered a better metric than AUROC (area under the receiver operating characteristic
420 curve, which is the false positive rate FPR = FP/(FP+TN v.s. recall) as mentioned elsewhere [37].
421

422 List of abbreviations

423  GRN: Gene regulatory network

424 ODE: Ordinary differential equations
425  MI: Mutual information

426  PDF: Probability density functions
427 FB: Fixed (width) binning

428  AP: Adaptive partitioning
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429  kNN: k-nearest neighbor

430  KDE: Kernel density estimator

431  CLR: Context likelihood of relatedness

432 CMIA: Conditional mutual information augmentation

433 KSG: Kraskov-Stoogbauer-Grassberger

434  RL: Relevance networks

435 ARACNE: Algorithm for the Reconstruction of Accurate Cellular Networks
436  SA-CLR: Synergy-Augmented CLR

437  ML: Maximum likelihood

438  MM: Miller-Madow

439  KL: Kozachenko-Leonenko

440  TC: Total correlation

441 MI3: Three-way Ml

442 II: Interaction information

443  CMI: Conditional mutual information

444  DREAM: Dialogue for reverse engineering assessments and methods
445  AUPR: Area under precision-recall curve

446  CMI2rt: Luo et al. inference algorithm named MI3

447 DPI: Data Processing Inequality

448

449

450
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Figures

Figure 1-lllustration of two methods to evaluate distribution: (A) Fixed width binning, and (B) k-Nearest-Neighbor (k=1). Data

points are shown as blue circles, bin edges are shown in black, and distances to k=1 neighbor as the radius of dashed red circles.

Figure 2—Percent error of different mutual information estimators for multivariate gaussian distribution. Each boxplot
represents 100 replicates, with columns representing sample size = {100,1K,10K}, and rows the correlation = {0.3,0.6,0.9}. (A)
Percent error (y-axis) for two-way mutual information (MI2) was compared for 3 different methods: ML_Sq=Maximum
Likelihood (Shannon’s Ml) with fixed width binning (number of bins is determined by square-root), MM_Sq=Miller-Madow
formula for Ml with square-root for the number of bins, KSG3 =KSG formula for kNN-MI with k=3; (B) same methods compared

for total correlation (TC).

Figure 3-AUPR values for different combinations of Ml estimator (ML or KSG) and GRN inference algorithm (RL, CLR or CMIA).
(A): Sorted boxplots showing networks of size 50 from DREAM3, (B): Networks of size 100 from DREAM3, (C): Networks of size

100 from DREAMA. For the different network sizes each boxplot represents 50 networks (5 different networks X 10 replicates).

Figure 4- AUPR difference of combinations of Ml estimators and inference algorithms relative to the gold standard {ML,CLR].
(A): Sorted boxplots showing comparison for Network size of 50 from DREAM3, (B): and size of 100 from DREAMS3, (C): size of
100 from DREAMA4. Each boxplot represents 50 networks (5 different networks X 10 replicates). A complete list of tested GRN

inference algo & Ml estimators can be found in Additional file 2 Table S1

Figure 5-Performance comparison of GRN reconstruction for different in silico networks modeled from E. coli & Yeast. x-axis
shows different combinations of [MI estimator, inference algo], y-axis shows percentage AUPR difference (increase or decrease)
relative to the gold standard combination [ML,CLR]. (A): Sorted boxplots of the combined four E.coli networks from DREAM3.
Each boxplot represents 40 networks (4 different networks X 10 replicates). (B) same as (A) but for the six Yeast networks. (C)-
(F): Sorted boxplots of the 4 different E.coli networks from DREAM3. Each boxplot represents 10 replicates. A complete list of

tested Ml estimators & GRN inference algo can be found in Additional file 2 Table S2

Figure 6-Computation time vs. different data sizes for a network of 50 genes. (A) The calculation is performed over 1125 pairs

for data sizes of [100, 250, 500, 1000]. (B) The calculation is performed over 19600 triplets for data sizes as in the left panel
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620  Additional file 1: Supplementary information Appendix 1-2

621 Appendix S1: Analytical solution for a multivariate Gaussian distribution
622  Appendix S2: Miller-Madow correction to Shannon’s entropy

623  Additional file 2: Supplementary figures S1-10

624 Figure S1: 100 replicates of two-way mutual information (MI2) & total correlation (TC) for multivariate

625 gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}.

626  Figure S2-S4: boxplots of percent error of three different mutual information estimators for 100

627  replicates of tri-variate gaussian dist.

628  Figure S5: boxplots of percent error of two-way mutual information calculated based on kNN methods

629  for 100 replicates of bi-variate gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}.

630  Figure S6: boxplots of percent error of Total Correlation calculated based on kNN methods for 100

631  replicates of tri-variate gaussian dist.
632 Figure S7: Common 3-node network motifs

633 Figure S8: Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the gold
634  standard combination [ML,CLR] for different combinations of Ml estimator and GRN inference algorithm

635  for the 6 different Yeast networks from DREAM3.

636  Figure S9: Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the gold
637  standard combination [ML,CLR] for different combinations of Ml estimator and GRN inference algorithm

638  for the 5 different networks of 100 genes from DREAMA.

639  Figure S10: Area Under Precision-Recall curve (AUPR) vs. different number of bins or k-neighbors.
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640  Figure S11: The different steps for evaluating GRN inference performance.

641 Figure S12: A schematic GRN inference example. The true network contains 10 genes (a.k.a. nodes), and
642 11 interactions (or edges). The prediction algorithm correctly predicted 6 times (True positive), missed 5

643 interactions (False negative), and predicted 2 interactions that did not exist (False positive).

644

645  Additional file 3: Supplementary information table S1-3

646  Table S1: Median AUPR values for different combinations of Ml estimator and GRN inference algorithm

647 for different network sizes

648  Table S2: Median AUPR values for different combinations of Ml estimator and GRN inference algorithm

649  for different organisms

650  Table S3: Characteristics of the 10 synthetic networks from DREAM3 and statistics of the different 3-

651 node network motifs extracted.
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