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Abstract 21 

• Background: A cell exhibits a variety of responses to internal and external cues. These responses 22 

are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single 23 

cell. In the past twenty years, many groups worked on reconstructing the topological structure of GRNs 24 

from large-scale gene expression data using a variety of inference algorithms. Insights gained about 25 

participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a 26 

widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear 27 

and non-linear) between any number of variables (n-dimensions). However, the use of MI with 28 

continuous data (for example, normalized fluorescence intensity measurement of gene expression 29 

levels) is sensitive to data size, correlation strength and underlying distributions, and often requires 30 

laborious and, at times, ad hoc optimization.  31 

• Results: In this work, we first show that estimating MI of a bi- and tri-variate Gaussian 32 

distribution using k-nearest neighbor (kNN) MI estimation results in significant error reduction as 33 

compared to commonly used methods based on fixed binning. Second, we demonstrate that 34 

implementing the MI-based kNN Kraskov-Stoögbauer-Grassberger (KSG) algorithm leads to a significant 35 

improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of 36 

Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference 37 

algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with 38 

the KSG-MI estimator, outperforms commonly used methods.  39 

• Conclusions: Using three canonical datasets containing 15 synthetic networks, the newly 40 

developed method for GRN reconstruction - which combines CMIA, and the KSG-MI estimator - achieves 41 

an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This 42 

new method will enable researchers to discover new gene interactions or choose gene candidates for 43 

experimental validations. 44 
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• Keywords: Gene regulatory network inference, mutual information, k-nearest neighbor 45 

 46 

Background 47 

Most cells in a multicellular organism contain the same genome, yet they can differentiate into 48 

different cell types and adapt to different environmental conditions [1]. These responses to internal and 49 

external cues are possible due to the presence of an elaborate gene regulatory network (GRN). A GRN is 50 

the genome’s “flowchart“ for various biological processes such as sensing, development, and 51 

metabolism, enabling the cell to follow specific instructions upon an internal or external stimulation. 52 

Understanding how genomic flowcharts are organized brings the potential to remediate dysfunctional 53 

ones [2] and design new ones for synthetic biology [3].  54 

Advances in large-scale gene expression data collected from omic-level microarrays and RNA-55 

seq experiments allow the construction of basic networks by clustering co-expressed genes using 56 

statistical correlation metrics such as covariance and threshold to determine the statistical significance 57 

[4]. Another common practice is to monitor the expression of multiple genes in response to 58 

perturbations and then infer the relationship between these genes [5]. Currently, there are several 59 

classes of methods to infer GRNs from expression data, such as the Bayesian networks method, the 60 

statistical/information theory method, and ordinary differential equations (ODEs) (see excellent reviews 61 

[6-8]).  62 

Originally introduced for communication systems by Shannon in the late 40s [9], mutual 63 

information (MI) was quickly adopted by other disciplines as a statistical tool to evaluate the 64 

dependence between variables. Unlike the abovementioned traditional correlation methods like 65 

covariance, MI can detect linear and non-linear relationship between variables and can be applied to 66 

test the dependence between any number of variables (n-dimensions).  67 
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 Over the last twenty years, researchers have implemented many methods employing MI to 68 

reconstruct GRNs, such as Relevance Networks [10]; ARACNE (Algorithm for the Reconstruction of 69 

Accurate Cellular Networks, [11]); and CLR (Context Likelihood of Relatedness, [12]). Using MI with two 70 

variables (i.e. genes) is straightforward, but due to the positive and symmetric nature of two-way MI 71 

[13], MI with only two variables cannot distinguish between direct and indirect regulation, coregulation, 72 

or logical gate-type interactions [14, 15]. To overcome these issues, a few groups have used different 73 

three-dimensional MI measures in inference algorithms [14, 16, 17] (for a comprehensive list of 74 

methods, see Mousavian et al. [18]). Importantly, in most methods using MI, continuous input (i.e., 75 

normalized fluorescence intensity data for gene expression) needs to be discretized first to build 76 

probability density functions (PDF). This practice is known to be sensitive to data size, correlation 77 

strength and underlying distributions [19]. 78 

In general, the simplest and most computationally inexpensive method to discretize continuous 79 

data is fixed (width) binning (FB) (Fig. 1A}, where a histogram with a fixed number of bins (or bin width) 80 

determined by certain statistical rules is used to model the PDF. For finite data size, FB generally under- 81 

or over-estimates MI (Fig. S1A). Over the years, researchers developed different methods to mitigate 82 

bin number sensitivity and to better estimate (or correct the bias in) MI, especially for data of small 83 

sizes. These methods correct either the entropies {Miller-Madow [20]) or the probability distribution by 84 

adaptive partitioning (AP) [21], k-Nearest Neighbor (kNN) [22] (Fig. 1B), kernel density estimator (KDE) 85 

[14] and/or B-spline functions, in which data points are divided into fractions between a predefined 86 

number of adjacent bins [23]. Unfortunately, all these methods make assumptions on the density 87 

distribution and require adjustment of parameters by the user for different scenarios except for kNN, 88 

which is shown to be accurate and robust across different values of k [19, 22]. However, kNN is rarely 89 

used due to the higher computational costs it entailed [24] or the limited improvement for two variables 90 

(2d) in downstream analysis. 91 
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 The problem of accurately estimating the correlation between genes has only worsened in this 92 

new era of single cell transcriptome studies, as data is larger yet sparser, often with non-Gaussian 93 

distributions. In this work, we focus on two subjects: (a) Improving MI estimation – we present an 94 

implementation of a three-way MI estimator based on kNN, which addresses large errors in estimating 95 

MI measures for three variables (3d). (b) Improving GRN inference – we present CMIA (Conditional 96 

Mutual Information Augmentation), a novel inference algorithm inspired by Synergy-Augmented CLR 97 

(SA-CLR) [17]. By testing various mutual information estimators against the ground truth solved from an 98 

analytical solution and comparing their performance using in silico GRN benchmarking data, we find that 99 

kNN-based three-way MI estimator Kraskov-Stoögbauer-Grassberger (KSG) improves the performance 100 

of common GRN inference methods. Together with the inference algorithm, CMIA, it outperforms other 101 

commonly used GRN reconstruction methods in the field.  102 

  103 

Results 104 

Benchmark MI estimations of a Gaussian distribution 105 

 To evaluate the performance of different mutual information (MI) estimators on continuous 106 

data, we calculated their deviations from the true underlying value by defining a percent error:  107 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  
|𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙_𝑀𝐼 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙_𝑀𝐼
× 100% 108 

 In most biologically relevant cases, one does not know what the true MI value is, because one 109 

does not know the probability distributions of the variables we are concerned with. Nevertheless, the 110 

true underlying value of MI of a few distributions such as Gaussian distribution can be analytically 111 

calculated. Therefore, to allow quantitative comparisons between different MI estimators, we used the 112 

analytical solution of Shannon’s entropy for a Gaussian distribution (see Additional file 1) to calculate 113 
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the MI by entropy summation (Table 1). We then compared all methods of different data sizes (100, 1K, 114 

10K,  referring to the number of different conditions/perturbations/time points of individual genes) and 115 

different correlation strengths (0.3, 0.6, 0.9) between two or three variables (number of genes, 2d or 3d) 116 

drawn from a Gaussian distribution with a mean at zero and a variance of one (the absolute values of 117 

mean and variance are not important in the calculation as the final solution only contains correlation, 118 

see Additional file 1). For two-way MI (two variables, or 2d), we compared the following MI estimators: 119 

(i) Maximum Likelihood (ML, given by Shannon, Table 1), (ii) Miller-Madow correction (MM, see 120 

Additional file 1), (iii) Kozachenko-Leonenko (KL) [25], and (iv) KSG (Fig. 2A). The first two methods use 121 

FB to discretize the continuous data, and in general the best number of bins changes depending on the 122 

data size and correlation between variables (Additional file 2: Fig. S1A). As a priori the correlation 123 

strength is unknown, for the number of bins we used the common practice √𝑁, where N equals the 124 

number of data points, and the result was rounded down to align with methods in the next section. The 125 

latter two methods both use kNN, and we found that any selection of k resulted in good alignment with 126 

the analytical solution (see Additional file 2: Fig. S1B). We chose the third nearest-neighbor (k=3) as 127 

recommended by Kraskov et al [22] because a k value of 3 resulted in a good trade-off between 128 

precision and computational cost. As shown in Fig. 2, in all cases the two kNN-based MI estimators 129 

performed well similarly and outperformed the fixed-binning methods judged by the percentage error.  130 

 While two-way MI estimators were studied extensively [22, 26], to our knowledge, no 131 

benchmark was done on MI with three or more variables. We repeated the same methodology 132 

described above but this time for the 3d Total Correlation (TC) (Fig. 2B, Additional file 2: Fig. S1C-D). 133 

Similar to the 2d case, kNN-based MI estimators KL3 and KSG3 outperformed the other methods. We 134 

also examined the other three-way MI quantities, three-way MI (MI3), Interaction Information (II), 135 

Conditional Mutual Information (CMI) (see Additional file 2: Fig. S2-4) and obtained similar results. We 136 

also explored whether a higher kNN value, for example k=10, further improved accuracy. We found that 137 
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a higher k value (k=10) does not improve the accuracy dramatically compared to that in k=3 (Additional 138 

file 2: Fig. S5,6), but it did reduce the variance for small correlations (r=0.3).  139 

In Silico GRN Inference performance enhancement 140 

Next, we aim to investigate whether the high precision of MI estimation based on kNN for bi- 141 

and tri-variate Gaussian distributions also translates to a high performance in inferring GRN structure 142 

compared to other MI estimation methods described above. 143 

To compare the performance of different MI estimators and inference algorithms, we used a 144 

total of 15 different synthetic networks: ten synthetic networks from the DREAM3 (Dialogue for Reverse 145 

Engineering Assessments and Methods) competition [27] with 50 and 100 genes, respectively, and five 146 

networks from DREAM4 with 100 genes. The networks were extracted from documented regulation 147 

databases of E. coli and S. cerevisiae [28]. We used the software GeneNetWeaver 3.1.2b [29] with 148 

default settings to generate simulated expression data for each network and performed ten replicates to 149 

include the variance in expression data due to stochastic molecular noise. Furthermore, to comply with 150 

the majority of available experimental data, we only used the simulated steady state data (Wild type, 151 

knockouts, dual-knockouts, knockdowns, multifactorial perturbation) accumulating to 170, 169 and 201 152 

conditions in the 50 gene synthetic networks for E.coli 1, E.coli 2 and Yeast1/2/3 respectively, 341, 322 153 

and 401 conditions in the DREAM3 100 gene synthetic networks for E.coli 1, E.coli 2 and Yeast1/2/3 154 

respectively, and 393, 401 conditions in the DREAM4 100 gene networks. We then ran the expression 155 

data through our custom Python 3.8 code pipeline to calculate the area under precision-recall curve 156 

(AUPR) for each replicate.  157 

In Fig. 3 we show sorted boxplots of the AUPR values (y-axis) comparing six combinations of 158 

three inference algorithms (Relevance Networks, RL; Context-Likelihood-Relatedness, CLR; and our  159 

Conditional-Mutual-Information-Augmentation, CMIA) and two MI estimators (ML, fixed bin-based; KSG, 160 

kNN-based), for five networks with 50 genes (Fig. 3A), five networks of 100 genes from DREAM3 (Fig. 161 
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3B), and five networks of 100 genes from DREAM4 (Fig. 3C). In all cases, the kNN-based KSG as the MI 162 

estimator improves the performance of the inference algorithms. The improvement is more significant 163 

for CMIA, which uses three-way MI calculations, and corroborate the higher percent error we found 164 

when estimating TC (Fig. 2B).  165 

   166 

In Silico GRN Inference performance comparison 167 

 To verify whether the performance enhancement introduced by kNN-based MI estimators is 168 

general for other GRN inference algorithms, we further extended our benchmark to twenty-four 169 

different combinations of the four MI estimators (discrete bin-based ML and MM, and kNN-based KL, 170 

and KSG) with six inference algorithms described in the Methods section (RL, CLR, ARACNE, SA-CLR, 171 

CMIA, CMI2rt) and compared them to the field gold standard combination {(ML, CLR)} (Fig. 4). To 172 

compare the performance differences quantitatively, we calculated the change in AUPR for each 173 

replicate relative to the field’s gold standard combination of CLR inference algorithm with ML for MI 174 

calculations. In Fig. 4 we show the top nine combinations, omitting ARACNE and CMI2rt among the 175 

inference algorithms, and KL from the MI estimators because of their poor performance. We also 176 

omitted SA-CLR due to its similarity to CLR and CMIA (see full data in Additional file 3: Table S1). The 177 

combination of {KSG,CMIA} gave the best median score in the combined networks inspected under each 178 

category. It showed a median improvement of 16% and 24% for networks of 50 and 100 genes from 179 

DREAM3, respectively (Fig. 4A, B), and 34% improvements for networks of 100 genes from DREAM4 180 

(Fig. 4C). Furthermore, replacing the MI estimator from ML to KSG in the case of the gold standard 181 

({ML,CLR}} can lead to significant improvement in GRN reconstruction performance, with median 182 

increase in AUPR of 8-18%.  183 

   184 

 185 
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In Silico GRN Inference performance of different organisms 186 

 Next, we examined the performance of these different algorithms with regards to different 187 

biological organisms, as E. coli and S. cerevisiae have distinct distributions of different network motifs 188 

(Additional file 2: Fig. S7), which may lead to different performance in network inference. For example, 189 

the fan-out motif, where one gene regulates two (or more) target genes, is more abundant in E. coli, 190 

while the cascade motif, where a gene regulates a second gene that in turn regulates a third gene, is 191 

more abundant in S. cerevisiae [7, 30]. In both cases, the three participating genes exhibit some degree 192 

of correlation, yet not all are directly connected. The 10 networks from DREAM3 were divided into four 193 

E. coli networks (Fig. 5A, C-F) and six S. cerevisiae networks (Fig. 5B, Additional file 2: Fig. S8). For the 194 

combined E. coli networks (Fig. 5A), KSG greatly improved the performance of both RL and CMIA 195 

algorithms but showed only a modest 6% improvement in performance for CLR. For the combined E. coli 196 

networks, {KSG,CMIA} achieved a median improvement of 20%, but was second best to {MM,CLR}. The 197 

performance comparison of the individual E. coli networks (Fig. 5C-F) showed that {KSG,CMIA} was the 198 

best performer on three out of four networks. Furthermore, replacing ML with KSG when combined 199 

with CLR improved the performance by 10-15% except in the case of DREAM3 Ecoli2-Size100 (Fig. 5F).  200 

In the S. cerevisiae networks, again KSG improved all algorithms, and most significantly CMIA, and 201 

showed a median improvement of 18%. Several replicates did not show any performance improvement, 202 

indicating the significance of stochasticity even though all kinetic parameters for each network were 203 

identical. 204 

In summary, out of 24 combinations of MI estimators and inference algorithms, the combination 205 

{KSG,CMIA} yielded the best median score in 13 out of the 15 networks inspected (except networks 206 

DREAM3 Yeast1-Size50 & Ecoli2-Size100, Fig. 5C-F, Additional file 2: Fig. S8 and S9). Therefore, we 207 

conclude that using kNN-based KSG to calculate MI improved the performances of the inference 208 

algorithms evaluated in most cases. 209 
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Computational cost 210 

Computational cost is a major concern when applying kNN-based methods. We measured the 211 

time required to calculate all the two- and three-way interactions in a 50 gene network (1125 pairs and 212 

19600 triplets, respectively, after taking symmetry into account) with different data size [100, 250, 500, 213 

1000] for three MI estimation methods: FB-ML, kNN-KL and kNN-KSG. The code for the three estimators 214 

was written in Python 3.8, used built-in functions from Numpy v1.19 and Scipy v1.5, and was run on a 215 

single core of a desktop [Intel Xeon E5-1620 @ 3.6 GHz]. As seen in Fig. 6 FB-ML was the fastest, as 216 

histogram-type calculations have been optimized in Python over the years. FB-ML was also insensitive to 217 

data size (in the tested range). While the python-based KSG implementation was most computationally 218 

heavy, the time was tractable (under 400 s even for the largest data size (1000) and 3d calculation). The 219 

speed could be further boosted by rewriting the code in C/C++, similar to what was done by Meyer et al. 220 

[31] and Sales et al. [24]. Furthermore, the KD-Tree class of algorithms [32], which was in the main core 221 

of this work’s implementation, could greatly benefit from multiple cores or parallel processing. After 222 

building the initial tree, distance calculation between neighbors can proceed in parallel, offering 4-to-16 223 

fold improvement in speed on a current personal computer, depending on the number of available 224 

cores.  225 

 226 

Discussion 227 

To date, a plethora of discretization methods, MI estimators, and inference algorithms exist in 228 

the literature to reconstruct GRNs. Some common methods are available in the R/Bioconductor package 229 

minet [31] and in Julia language [33]. In fact, as different methods have certain advantages depending 230 

on the investigated scenario and constraints, it is advantageous to consider and compare the 231 

performance of different combinations of multiple methods [34]. 232 
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kNN-based MI estimator for date discretization/density estimation outperforms fixed-bin-based 233 

estimations 234 

 Here, we demonstrate that the MI estimator KSG based on kNN yields smaller errors compared 235 

to other MI estimation methods using discretized fixed bins in the case of a bi- and tri-variate Gaussian 236 

distribution. KSG proves to be robust against different data sizes and correlations as well as the k 237 

parameter used, unlike FB methods where the parameter used (number of bins) has a large effect on 238 

accuracy of the MI estimator. In principle, one can achieve smaller errors using MI based on discretized 239 

bins by choosing a different bin number other than the rule of thumb √𝑁, for correlations smaller than 240 

0.9. However, a priori one does not know the correlation strength. In fact, estimating the correlation 241 

strength is what one tries to achieve when using MI. We also note that the gene expression profiles of 242 

different synthetic networks and real experimental systems could be better described by distributions 243 

other than Gaussian. Fortunately, the analytical solution to the mutual information of a few of these 244 

distributions can be calculated [35] and will be explored in future work.  245 

Note that in this work we did not compare the performance of another frequently used binning 246 

method, adaptive partitioning, which is computationally faster than kNN for large data sets. In brief, 247 

adaptive partitioning is a general term referring to three methods that divide the data uniformly 248 

between the bins. The first method is equal frequency in which the bin size varies to allow for equal 249 

number of data points in each bin. The second method is equiprobable partitioning [21, in which data is 250 

ranked and partitioned in the middle, and Pearson chi-square test is used to determine the number of 251 

sub-partitions, where the significance level of the chi-square test can be tuned (1%-5%) according to the 252 

size of the data. This method works well for 1d data, but it has some ambiguity when implemented in 253 

higher dimensions in that data points must be ranked according to one of the axes (or more in >2d), and 254 

there are no appropriate rules to rank multidimensional data points. The third method is Bayesian 255 
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blocks [36], which uses a Bayesian statistics approach to attempt to find the optimal number of bins and 256 

their sizes by maximizing a fitness function that depends on those two parameters. While this is a 257 

seemingly promising approach, it is unclear how to implement such a method beyond 1D. Because of 258 

these reasons, we did not include this binning method in the comparison. 259 

Another previously used method in the literature is KDE [14], but it is the most computationally 260 

costly and requires large data sets. It approximates the data distribution using a predefined known 261 

distribution (i.e., a Gaussian) with user-defined smoothing parameters. This practice can be problematic 262 

because in most cases the underlying data distribution is unknown, and experimental data is much 263 

sparser than required to achieve results similar to other, simpler methods, such as FB. 264 

kNN-based MI estimator KSG in combination with CMIA achieves the highest accuracy but may subject 265 

to data stochasticity 266 

 It is clear from Fig. 3 and 4 that the combination of kSG-based MI estimation and inference 267 

algorithm CMIA achieved the highest precision and recall when reconstructing an unknown network. 268 

Yet, this combination also showed a large variation in the performance enhancement. As shown in Fig. 269 

4,5A-B, we observed that when KSG was combined with CLR or CMIA, a few replicates did not show any 270 

performance improvement, or even had a decreased performance indicated by the negative %ΔAUPR 271 

value, as indicated by the bottom whisker of the boxplot.  272 

To investigate the source of this variation in the ensemble network plots we inspected different 273 

combinations of MI estimators, inference algorithms, data size used, and individual networks (Fig. 5C-F, 274 

Additional file 2: Fig. S8). We found that higher k values (up to k – 15) did not affect the variability in the 275 

AUPR results (Additional file 2: Fig. S10). However, MI calculation done by KSG exhibited large variations 276 

in performance when smaller data size was used as that in the case of 50 gene networks. For example, 277 

in Fig. 5C,E, KSG showed a performance enhancement in the range of ~ 25-35% for the three different 278 

inference algorithms, but the variability was reduced by half when ML instead of KSG was used. This was 279 
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also shown in the large variance calculated for KSG for a Gaussian distribution (Additional file 2: Fig. S1D, 280 

left column). This observation indicates that KSG is more sensitive to stochasticity (intrinsic noise) when 281 

data size is smaller than a few hundred points. Our choice of algorithm KSG-1 over KSG-2 (see methods) 282 

was intended to keep a low statistical error and thus, low variability. However, using total correlation 283 

and two-way mutual information to calculate other measures, such as interaction information (Table 1), 284 

can lead to higher errors as the systematic errors might not cancel out as we have demonstrated in this 285 

work. Additionally, when using KSG, we set negative values of total correlation and two-way mutual 286 

information to zero (due to statistical fluctuations at low correlation values) prior to calculating the 287 

other 3d MI quantities. This practice does not change the results for pairs or triplets with highly positive 288 

MI values, but in some cases could lead to increased errors as gene pairs with low MI would be ranked 289 

differently. 290 

 We note that two networks (DREAM3 Yeast1-Size50 & E.coli2-Size100) out of the 15 networks 291 

investigated showed no performance enhancement when using {KSG, CMIA} compared to the Gold 292 

Standard {ML, CLR} (Fig. 5F, Additional file 2: Fig. S8). It is unclear why the performance did not improve 293 

in these two cases based on the largely similar statistics of different motifs of the ten networks from 294 

DREAM3 (Additional file 3: Table S3). It could be due to a specific sub-structure of this network, but 295 

further analysis is needed.  296 

Another important result we observed (Fig. 4, 5) is that the combination {MM,CLR} achieved 297 

higher AUPR for all replicates over {ML,CLR}. This is probably due to the size of the data used, as MM 298 

was developed to correct the bias in MI estimation for small data sets. We thus suggest using this 299 

combination as the new gold standard of the field when working with similar data sizes and when fixed-300 

binning for data discretization is preferred. 301 

 302 
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Conclusions 303 

In summary, we have shown that the kNN-based KSG MI estimator improves the performance of 304 

inference algorithms, especially ones that use three-way MI calculations. This result corroborates our 305 

observations in comparing MI calculations against the analytical solution of two-way MI of a bi-variate 306 

Gaussian distribution and the total correlation of a tri-variate Gaussian distribution. Furthermore, the 307 

combination of CMIA and KSG give the overall best performance, and hence should be preferred when 308 

precision and recall are more important than speed when reconstructing a GRN. Looking forward, the 309 

goal of complete reconstruction of GRNs may require new inference algorithms and probably MI in 310 

more than three dimensions.  311 

 312 

Methods 313 

Calculate mutual information of multiple variables 314 

In Table 1, we summarize the formalism for calculating MI. Shannon’s entropy is the basic 315 

building block of MI and represents the randomness of a variable: the more random it is, the more 316 

uniformly it is distributed, which gives a higher entropy. For our purposes, X, Y, or Z is a vector (x1, x2, …, 317 

xn), (y1, y2, …, yn) or (z1, z2, …, zn) representing a specific gene’s expression profile (data x, y or z) under 318 

different conditions/perturbations (n steady-states) or as a function of time (n time points). Two-way MI 319 

is defined as the shared (or redundant) information between the two variables X and Y {Table 1} and can 320 

be visualized by a Venn diagram {Table 1 right column}.  321 

While MI for two variables (genes or dimensions) is readily understood, for three variables or 322 

more, new measures arise including Total correlation (TC), Three-way MI (MI3), Interaction Information 323 

(II) and Conditional MI (CMI) (Table 1). Unfortunately, the term ‘three-way MI’ has been used loosely in 324 

the literature to refer to all four of these measures, and because they represent distinct aspects of 325 
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statistical dependence, in the context of GRN reconstruction, this can lead to different realizations. 326 

Unlike other MI quantities, Interaction-Information is hard to visualize using a Venn diagram, as it can 327 

have both positive and negative values. It is common to regard negative II as “Redundancy”, the shared 328 

information between all variables, and positive II as “Synergy”. Synergy can be interpreted as new 329 

information gained on the dependence between two variables {X,Y} when considering the contribution 330 

of a third variable {Z} on either {X} or {Y} v.s. without considering it, or mathematically: II=CMI(X;Y|Z)-331 

MI(X;Y). 332 

 333 

Table 1: Mutual Information formalism 334 

TERM SYMBOL FORMULA VENN DIAGRAMS 

Shannon’s entropy of X H(X) 
− ∑ 𝑝(𝑥)

𝑥

log 𝑝(𝑥) 

 

Joint entropy of X & Y H(X,Y) 
− ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦𝑥

log 𝑝(𝑥, 𝑦) 

 

Joint entropy of X,Y & Z H(X,Y,Z) 
− ∑ ∑ ∑ 𝑝(𝑥, 𝑦, 𝑧)

𝑧𝑦𝑥

𝑙𝑜𝑔 𝑝(𝑥, 𝑦, 𝑧) 

 

Two-way Mutual Information MI(X;Y) H(X) + H(Y) – H(X,Y) 
 

Total Correlation TC(X,Y,Z) H(X) + H(Y) + H(Z) – H(X,Y,Z) 
 

Three-way MI MI3((X,Y);Z) TC – MI(X;Y) 
 

Interaction Information II(X,Y,Z) TC – MI(X;Y) – MI(X;Z) – MI(Y;Z) 
 

Conditional MI CMI(X;Y|Z) TC – MI(X;Z) – MI(Y;Z) 
 

 335 

 To calculate the marginal and joint entropies of two variables (X and Y), we first need to know 336 

the probability of each data point. For discrete data, we can approach the underlying probability p(x) by 337 

H(X)

H(Y) H(X)

H(Z)

H(Y)H(X)
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calculating the frequency (𝑓𝑥 =
𝑁𝑥

𝑁𝑇𝑜𝑡
) where Nx is the number of data points with value x, and NTot is the 338 

total sample size. For the continuous data case, the calculation is more complex. Although Shannon 339 

extended his theory for continuous data by replacing the summation with integrals, it is common 340 

practice in the field to discretize the data first so one can work with the discrete formalism (Table 1). 341 

The simplest discretization method is to use fixed (width) binning (FB) (Fig. 1A), but the optimal binning 342 

choice depends on the shape of the distribution and data size. For normally distributed data, the rule of 343 

thumb is to use the square-root of the data size as the number of bins.  344 

 345 

k-nearest-neighbor (kNN) – Other than evaluating the probability densities to calculate mutual 346 

information, Kozachenko and Leonenko (KL) calculated the marginal and joint entropies (and the MI by 347 

summation) from the mean distance to the kth-nearest neighbor [25]. To minimize errors when 348 

combining entropies of different dimensions, Kraskov et al. calculate the MI directly [22]. KSG developed 349 

two algorithms, I(1) and I(2) (hereafter, KSG-1 and KSG-2), to minimize errors when estimating MI 350 

compared to previous methods. We chose KSG-1 (defined below as MI_KSG) as it gives slightly smaller 351 

statistical error (dispersion). Note that although KSG-1 gives relatively larger systematic errors than KSG-352 

2, these systematic errors do not change the ranking of the output values (from high to low), which is 353 

what we use in downstream analysis. An additional note is that using kNN can lead to negative values 354 

for mutual information, which contradicts Shannon’s theorem. Negative values are caused by statistic 355 

fluctuations when there is no correlation between variables. Therefore, in such a situation, we set 356 

negative values to zero (except for Interaction Information, where it is meaningful). To calculate MI 357 

using the KSG method, we use the following formulas: 358 
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 359 

 360 

 361 

Where ψ(x) is the digamma function, N is the number of data points, ni is the number of points xj whose 362 

distance from xi is less than ε(i)/2, and ε(i)/2 is the distance from ui=(xi,yi,zi) to its kth neighbor, as 363 

illustrated in Fig. 1(a) of [22] 364 

 365 

In Silico GRN Inference comparison: 366 

MI calculations are used to infer interactions between genes to reconstruct the underlying GRN 367 

structure. To test the performance of different methods, we followed the methodology of the in silico 368 

network inference challenges of the Dialogue for Reverse Engineering Assessments and Methods 369 

(DREAM) competitions DREAM3/4 [27] as depicted in Fig. S11. 370 

 371 

1. Simulating gene expression data – we used GeneNetWeaver [29] to generate steady-state and time-372 

series gene expression datasets for realistic in silico networks of sizes of 50, and 100 genes 373 

containing various experimental conditions (knockouts, knockdowns, multifactorial perturbation, 374 

etc.). GeneNetWeaver uses a thermodynamic model to quantify mRNA transcription and regulation 375 

with added molecular and experimental noise.  376 

2. Discretizing/density estimation - To handle the continuous expression data, we chose either: 377 

a. Density estimation by fixed bin. We used the common practice sqrt(n), where n = number of 378 

data points (in our case, different experimental conditions), as the number of bins. 379 

b. Density estimation by k-Nearest Neighbor (kNN). We chose k=3 as a good compromise 380 

between precision and computation cost as discussed in the previous section. 381 

𝑀𝐼𝐾𝑆𝐺(𝑋;𝑌)=𝜓(𝑘)+〈𝜓(𝑛𝑥+1)+𝜓(𝑛𝑦+1)〉+𝜓(𝑁) 

𝑇𝐶𝐾𝑆𝐺(𝑋;𝑌;𝑍)=𝜓(𝑘)+2∙𝜓(𝑁)−〈𝜓(𝑛𝑥)+𝜓(𝑛𝑦)+𝜓(𝑛𝑧)〉 
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3. Mutual Information estimation - Depending on our previous selection, we chose between several MI 382 

estimators: 383 

a. For the fixed-bin discretizing method, we used either Shannon’s formula (also referred to as 384 

Maximum Likelihood, ML) or Miller-Madow (MM) estimator. 385 

b. For kNN we used either KL or KSG formulas for MI. 386 

4. GRN inference algorithms – We used popular algorithms in the field that use either only two-way MI 387 

or both two- and three-way MI to infer undirected network structure by sorting predicted 388 

interacting gene pairs from most probable to least probable. Each algorithm starts with a MI matrix 389 

containing calculation for all possible pairs (some use all possible triplets) and applies different rules 390 

to filter results and sort the gene pairs (see summary below). We used the same MI matrices for a 391 

fair comparison between the inference algorithms. The following algorithms were used in our 392 

comparison: 393 

a. Relevance Network (RL) – Gene pairs are sorted according to their MI(X;Y) value from highest to 394 

lowest, and a threshold applied to truncate non-significant results [10]. We didn’t set a 395 

threshold to maximize AUPR (see below). 396 

b. Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) – Same as RL with the 397 

addition of Data Processing Inequality (DPI), which means for every three genes MI is calculated 398 

for each pair and the pair with the lowest MI is removed if the difference is larger than some 399 

threshold [11]. In our implementation, we set the threshold to zero, so we always removed the 400 

lowest interacting pair. On the other extreme, where we kept all the pairs, ARACNE is the same 401 

as RL. 402 

c. Context Likelihood of Relatedness (CLR) – Background correction is performed by calculating Z-403 

score for the MI of each gene interacting with all other genes, and then gene pairs are sorted by 404 
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their mutual Z-score [12]. We didn’t use B-spline smoothing in the density estimation step in 405 

accordance with the implementation in the R-package Minet [31].  406 

d. Synergy Augmented CLR (SA-CLR) – Same as CLR, with the difference that now the highest 407 

Interaction-Information term is added to MI prior to performing the background correction [17] 408 

e. Conditional Mutual Information Augmentation (CMIA) – Similar to SA-CLR but we used 409 

conditional mutual information instead of interaction-information. 410 

f. Luo et al. MI3 (hereafter CMI2rt) – We assumed two regulators for each target gene, and for 411 

each target gene we searched for the best {R1,R2} pair that maximizes: 412 

CMI(T;R1|R2)+CMI(T;R2|R1) [14] 413 

5. GRN performance evaluation - To evaluate the performance of common algorithms in the field, we 414 

used known (true) synthetic networks and counted the number of true and false positives (TP and 415 

FP respectively) predictions as well as true and false negative (TN and FN respectively) (Fig. S12). 416 

This allowed us to plot precision (Precision = TP/(TP+FP)) v. s. recall (Recall = TP/(TP+FN)) and 417 

calculate the area under precision-recall curve (AUPR). As biological networks are sparse on edges, 418 

AUPR is considered a better metric than AUROC (area under the receiver operating characteristic 419 

curve, which is the false positive rate FPR = FP/(FP+TN v.s. recall) as mentioned elsewhere [37].  420 

 421 

List of abbreviations 422 

GRN: Gene regulatory network 423 

ODE: Ordinary differential equations 424 

MI: Mutual information 425 

PDF: Probability density functions 426 

FB: Fixed (width) binning 427 

AP: Adaptive partitioning 428 
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kNN: k-nearest neighbor 429 

KDE: Kernel density estimator 430 

CLR: Context likelihood of relatedness 431 

CMIA: Conditional mutual information augmentation 432 

KSG: Kraskov-Stoögbauer-Grassberger 433 

RL: Relevance networks 434 

ARACNE: Algorithm for the Reconstruction of Accurate Cellular Networks 435 

SA-CLR: Synergy-Augmented CLR 436 

ML: Maximum likelihood 437 

MM: Miller-Madow  438 

KL: Kozachenko-Leonenko 439 

TC: Total correlation 440 

MI3: Three-way MI 441 

II: Interaction information 442 

CMI: Conditional mutual information 443 

DREAM: Dialogue for reverse engineering assessments and methods 444 

AUPR: Area under precision-recall curve 445 

CMI2rt: Luo et al. inference algorithm named MI3 446 

DPI: Data Processing Inequality 447 

 448 

 449 

 450 
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Figures 594 

Figure 1-Illustration of two methods to evaluate distribution: (A) Fixed width binning, and (B) k-Nearest-Neighbor (k=1). Data 595 

points are shown as blue circles, bin edges are shown in black, and distances to k=1 neighbor as the radius of dashed red circles. 596 

Figure 2–Percent error of different mutual information estimators for multivariate gaussian distribution. Each boxplot 597 

represents 100 replicates, with columns representing sample size = {100,1K,10K}, and rows the correlation = {0.3,0.6,0.9}. (A) 598 

Percent error (y-axis) for two-way mutual information (MI2) was compared for 3 different methods: ML_Sq=Maximum 599 

Likelihood (Shannon’s MI) with fixed width binning (number of bins is determined by square-root), MM_Sq=Miller-Madow 600 

formula for MI with square-root for the number of bins, KSG3 =KSG formula for kNN-MI with k=3; (B) same methods compared 601 

for total correlation (TC). 602 

Figure 3-AUPR values for different combinations of MI estimator (ML or KSG) and GRN inference algorithm (RL, CLR or CMIA). 603 

(A): Sorted boxplots showing networks of size 50 from DREAM3, (B): Networks of size 100 from DREAM3, (C): Networks of size 604 

100 from DREAM4. For the different network sizes each boxplot represents 50 networks (5 different networks X 10 replicates).  605 

Figure 4- AUPR difference of combinations of MI estimators and inference algorithms relative to the gold standard {ML,CLR]. 606 

(A): Sorted boxplots showing comparison for Network size of 50 from DREAM3, (B): and size of 100 from DREAM3, (C): size of 607 

100 from DREAM4. Each boxplot represents 50 networks (5 different networks X 10 replicates). A complete list of tested GRN 608 

inference algo & MI estimators can be found in Additional file 2 Table S1 609 

Figure 5-Performance comparison of GRN reconstruction for different in silico networks modeled from E. coli & Yeast. x-axis 610 

shows different combinations of [MI estimator, inference algo], y-axis shows percentage AUPR difference (increase or decrease) 611 

relative to the gold standard combination [ML,CLR]. (A): Sorted boxplots of the combined four E.coli networks from DREAM3. 612 

Each boxplot represents 40 networks (4 different networks X 10 replicates). (B) same as (A) but for the six Yeast networks. (C)-613 

(F): Sorted boxplots of the 4 different E.coli networks from DREAM3. Each boxplot represents 10 replicates. A complete list of 614 

tested MI estimators & GRN inference algo can be found in Additional file 2 Table S2 615 

Figure 6-Computation time vs. different data sizes for a network of 50 genes. (A) The calculation is performed over 1125 pairs 616 

for data sizes of [100, 250, 500, 1000]. (B) The calculation is performed over 19600 triplets for data sizes as in the left panel 617 

 618 
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Supplementary information 619 

Additional file 1: Supplementary information Appendix 1-2 620 

Appendix S1: Analytical solution for a multivariate Gaussian distribution  621 

Appendix S2: Miller-Madow correction to Shannon’s entropy  622 

Additional file 2: Supplementary figures S1-10 623 

Figure S1: 100 replicates of two-way mutual information (MI2) & total correlation (TC) for multivariate 624 

gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}. 625 

Figure S2 -S4: boxplots of percent error of three different mutual information estimators for 100 626 

replicates of tri-variate gaussian dist. 627 

Figure S5: boxplots of percent error of two-way mutual information calculated based on kNN methods 628 

for 100 replicates of bi-variate gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}. 629 

Figure S6: boxplots of percent error of Total Correlation calculated based on kNN methods for 100 630 

replicates of tri-variate gaussian dist. 631 

Figure S7: Common 3-node network motifs 632 

Figure S8: Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the gold 633 

standard combination [ML,CLR] for different combinations of MI estimator and GRN inference algorithm 634 

for the 6 different Yeast networks from DREAM3. 635 

Figure S9: Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the gold 636 

standard combination [ML,CLR] for different combinations of MI estimator and GRN inference algorithm 637 

for the 5 different networks of 100 genes from DREAM4. 638 

Figure S10: Area Under Precision-Recall curve (AUPR) vs. different number of bins or k-neighbors. 639 
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Figure S11: The different steps for evaluating GRN inference performance. 640 

Figure S12: A schematic GRN inference example. The true network contains 10 genes (a.k.a. nodes), and 641 

11 interactions (or edges). The prediction algorithm correctly predicted 6 times (True positive), missed 5 642 

interactions (False negative), and predicted 2 interactions that did not exist (False positive). 643 

 644 

Additional file 3: Supplementary information table S1-3 645 

Table S1: Median AUPR values for different combinations of MI estimator and GRN inference algorithm 646 

for different network sizes 647 

Table S2: Median AUPR values for different combinations of MI estimator and GRN inference algorithm 648 

for different organisms 649 

Table S3: Characteristics of the 10 synthetic networks from DREAM3 and statistics of the different 3-650 

node network motifs extracted.  651 

 652 
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