

1

2

3 Gene regulation network inference using k-nearest neighbor-based mutual information 4 estimation- Revisiting an old DREAM

5 Lior I. Shachaf^{1*}, Elijah Roberts^{1,2}, Patrick Cahan³, Jie Xiao⁴

6 ¹. Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218,
7 USA

⁸ ². Current address: 10x Genomics, 6230 Stoneridge Mall Road, Pleasanton, CA 94588-3260, USA

⁹ ³. Institute for Cell Engineering, Department of Biomedical Engineering, Department of Molecular

10 Biology and Genetics, Johns Hopkins School of Medicine, 733 N. Broadway, Baltimore, MD 21205, U. S.
11 A.

12 . Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe
13 Street, WBSB 708, Baltimore, MD, 21205

14 *To whom correspondence should be addressed to: shachaflior@jhu.edu

15

16

17

19

21 Abstract

22 • **Background:** A cell exhibits a variety of responses to internal and external cues. These responses
23 are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single
24 cell. In the past twenty years, many groups worked on reconstructing the topological structure of GRNs
25 from large-scale gene expression data using a variety of inference algorithms. Insights gained about
26 participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a
27 widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear
28 and non-linear) between any number of variables (n -dimensions). However, the use of MI with
29 continuous data (for example, normalized fluorescence intensity measurement of gene expression
30 levels) is sensitive to data size, correlation strength and underlying distributions, and often requires
31 laborious and, at times, *ad hoc* optimization.

32 • **Results:** In this work, we first show that estimating MI of a bi- and tri-variate Gaussian
33 distribution using k -nearest neighbor (kNN) MI estimation results in significant error reduction as
34 compared to commonly used methods based on fixed binning. Second, we demonstrate that
35 implementing the MI-based kNN Kraskov-Stoögbauer-Grassberger (KSG) algorithm leads to a significant
36 improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of
37 Relatedness (CLR). Finally, through extensive *in-silico* benchmarking we show that a new inference
38 algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with
39 the KSG-MI estimator, outperforms commonly used methods.

40 • **Conclusions:** Using three canonical datasets containing 15 synthetic networks, the newly
41 developed method for GRN reconstruction - which combines CMIA, and the KSG-MI estimator - achieves
42 an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This
43 new method will enable researchers to discover new gene interactions or choose gene candidates for
44 experimental validations.

45 • **Keywords:** Gene regulatory network inference, mutual information, k-nearest neighbor

46

47 **Background**

48 Most cells in a multicellular organism contain the same genome, yet they can differentiate into
49 different cell types and adapt to different environmental conditions [1]. These responses to internal and
50 external cues are possible due to the presence of an elaborate gene regulatory network (GRN). A GRN is
51 the genome's "flowchart" for various biological processes such as sensing, development, and
52 metabolism, enabling the cell to follow specific instructions upon an internal or external stimulation.
53 Understanding how genomic flowcharts are organized brings the potential to remediate dysfunctional
54 ones [2] and design new ones for synthetic biology [3].

55 Advances in large-scale gene expression data collected from omic-level microarrays and RNA-
56 seq experiments allow the construction of basic networks by clustering co-expressed genes using
57 statistical correlation metrics such as covariance and threshold to determine the statistical significance
58 [4]. Another common practice is to monitor the expression of multiple genes in response to
59 perturbations and then infer the relationship between these genes [5]. Currently, there are several
60 classes of methods to infer GRNs from expression data, such as the Bayesian networks method, the
61 statistical/information theory method, and ordinary differential equations (ODEs) (see excellent reviews
62 [6-8]).

63 Originally introduced for communication systems by Shannon in the late 40s [9], mutual
64 information (MI) was quickly adopted by other disciplines as a statistical tool to evaluate the
65 dependence between variables. Unlike the abovementioned traditional correlation methods like
66 covariance, MI can detect linear and non-linear relationship between variables and can be applied to
67 test the dependence between any number of variables (n-dimensions).

68 Over the last twenty years, researchers have implemented many methods employing MI to
69 reconstruct GRNs, such as Relevance Networks [10]; ARACNE (Algorithm for the Reconstruction of
70 Accurate Cellular Networks, [11]); and CLR (Context Likelihood of Relatedness, [12]). Using MI with two
71 variables (*i.e.* genes) is straightforward, but due to the positive and symmetric nature of two-way MI
72 [13], MI with only two variables cannot distinguish between direct and indirect regulation, coregulation,
73 or logical gate-type interactions [14, 15]. To overcome these issues, a few groups have used different
74 three-dimensional MI measures in inference algorithms [14, 16, 17] (for a comprehensive list of
75 methods, see Mousavian *et al.* [18]). Importantly, in most methods using MI, continuous input (*i.e.*,
76 normalized fluorescence intensity data for gene expression) needs to be discretized first to build
77 probability density functions (PDF). This practice is known to be sensitive to data size, correlation
78 strength and underlying distributions [19].

79 In general, the simplest and most computationally inexpensive method to discretize continuous
80 data is fixed (width) binning (FB) (**Fig. 1A**}, where a histogram with a fixed number of bins (or bin width)
81 determined by certain statistical rules is used to model the PDF. For finite data size, FB generally under-
82 or over-estimates MI (**Fig. S1A**). Over the years, researchers developed different methods to mitigate
83 bin number sensitivity and to better estimate (or correct the bias in) MI, especially for data of small
84 sizes. These methods correct either the entropies {Miller-Madow [20]} or the probability distribution by
85 adaptive partitioning (AP) [21], k-Nearest Neighbor (kNN) [22] (**Fig. 1B**), kernel density estimator (KDE)
86 [14] and/or B-spline functions, in which data points are divided into fractions between a predefined
87 number of adjacent bins [23]. Unfortunately, all these methods make assumptions on the density
88 distribution and require adjustment of parameters by the user for different scenarios except for kNN,
89 which is shown to be accurate and robust across different values of k [19, 22]. However, kNN is rarely
90 used due to the higher computational costs it entailed [24] or the limited improvement for two variables
91 (2d) in downstream analysis.

92 The problem of accurately estimating the correlation between genes has only worsened in this
93 new era of single cell transcriptome studies, as data is larger yet sparser, often with non-Gaussian
94 distributions. In this work, we focus on two subjects: (a) Improving MI estimation – we present an
95 implementation of a three-way MI estimator based on kNN, which addresses large errors in estimating
96 MI measures for three variables (3d). (b) Improving GRN inference – we present CMIA (Conditional
97 Mutual Information Augmentation), a novel inference algorithm inspired by Synergy-Augmented CLR
98 (SA-CLR) [17]. By testing various mutual information estimators against the ground truth solved from an
99 analytical solution and comparing their performance using *in silico* GRN benchmarking data, we find that
100 kNN-based three-way MI estimator Kraskov-Stoögbauer-Grassberger (KSG) improves the performance
101 of common GRN inference methods. Together with the inference algorithm, CMIA, it outperforms other
102 commonly used GRN reconstruction methods in the field.

103

104 **Results**

105 Benchmark MI estimations of a Gaussian distribution

106 To evaluate the performance of different mutual information (MI) estimators on continuous
107 data, we calculated their deviations from the true underlying value by defining a percent error:

$$108 percent\ error = \frac{|Analytical_MI - Estimated|}{Analytical_MI} \times 100\%$$

109 In most biologically relevant cases, one does not know what the true MI value is, because one
110 does not know the probability distributions of the variables we are concerned with. Nevertheless, the
111 true underlying value of MI of a few distributions such as Gaussian distribution can be analytically
112 calculated. Therefore, to allow quantitative comparisons between different MI estimators, we used the
113 analytical solution of Shannon's entropy for a Gaussian distribution (see Additional file 1) to calculate

114 the MI by entropy summation (**Table 1**). We then compared all methods of different data sizes (100, 1K,
115 10K, referring to the number of different conditions/perturbations/time points of individual genes) and
116 different correlation strengths (0.3, 0.6, 0.9) between two or three variables (number of genes, 2d or 3d)
117 drawn from a Gaussian distribution with a mean at zero and a variance of one (the absolute values of
118 mean and variance are not important in the calculation as the final solution only contains correlation,
119 see Additional file 1). For two-way MI (two variables, or 2d), we compared the following MI estimators:
120 (i) Maximum Likelihood (ML, given by Shannon, Table 1), (ii) Miller-Madow correction (MM, see
121 Additional file 1), (iii) Kozachenko-Leonenko (KL) [25], and (iv) KSG (**Fig. 2A**). The first two methods use
122 FB to discretize the continuous data, and in general the best number of bins changes depending on the
123 data size and correlation between variables (Additional file 2: **Fig. S1A**). As *a priori* the correlation
124 strength is unknown, for the number of bins we used the common practice \sqrt{N} , where N equals the
125 number of data points, and the result was rounded down to align with methods in the next section. The
126 latter two methods both use kNN, and we found that any selection of k resulted in good alignment with
127 the analytical solution (see Additional file 2: **Fig. S1B**). We chose the third nearest-neighbor ($k=3$) as
128 recommended by Kraskov et al [22] because a k value of 3 resulted in a good trade-off between
129 precision and computational cost. As shown in **Fig. 2**, in all cases the two kNN-based MI estimators
130 performed well similarly and outperformed the fixed-binning methods judged by the percentage error.

131 While two-way MI estimators were studied extensively [22, 26], to our knowledge, no
132 benchmark was done on MI with three or more variables. We repeated the same methodology
133 described above but this time for the 3d Total Correlation (TC) (**Fig. 2B**, Additional file 2: **Fig. S1C-D**).
134 Similar to the 2d case, kNN-based MI estimators KL3 and KSG3 outperformed the other methods. We
135 also examined the other three-way MI quantities, three-way MI (MI3), Interaction Information (II),
136 Conditional Mutual Information (CMI) (see Additional file 2: **Fig. S2-4**) and obtained similar results. We
137 also explored whether a higher kNN value, for example $k=10$, further improved accuracy. We found that

138 a higher k value (k=10) does not improve the accuracy dramatically compared to that in k=3 (Additional
139 file 2: **Fig. S5,6**), but it did reduce the variance for small correlations ($r=0.3$).

140 *In Silico* GRN Inference performance enhancement

141 Next, we aim to investigate whether the high precision of MI estimation based on kNN for bi-
142 and tri-variate Gaussian distributions also translates to a high performance in inferring GRN structure
143 compared to other MI estimation methods described above.

144 To compare the performance of different MI estimators and inference algorithms, we used a
145 total of 15 different synthetic networks: ten synthetic networks from the DREAM3 (Dialogue for Reverse
146 Engineering Assessments and Methods) competition [27] with 50 and 100 genes, respectively, and five
147 networks from DREAM4 with 100 genes. The networks were extracted from documented regulation
148 databases of *E. coli* and *S. cerevisiae* [28]. We used the software GeneNetWeaver 3.1.2b [29] with
149 default settings to generate simulated expression data for each network and performed ten replicates to
150 include the variance in expression data due to stochastic molecular noise. Furthermore, to comply with
151 the majority of available experimental data, we only used the simulated steady state data (Wild type,
152 knockouts, dual-knockouts, knockdowns, multifactorial perturbation) accumulating to 170, 169 and 201
153 conditions in the 50 gene synthetic networks for *E.coli* 1, *E.coli* 2 and Yeast1/2/3 respectively, 341, 322
154 and 401 conditions in the DREAM3 100 gene synthetic networks for *E.coli* 1, *E.coli* 2 and Yeast1/2/3
155 respectively, and 393, 401 conditions in the DREAM4 100 gene networks. We then ran the expression
156 data through our custom Python 3.8 code pipeline to calculate the area under precision-recall curve
157 (AUPR) for each replicate.

158 In **Fig. 3** we show sorted boxplots of the AUPR values (y-axis) comparing six combinations of
159 three inference algorithms (Relevance Networks, RL; Context-Likelihood-Relatedness, CLR; and our
160 Conditional-Mutual-Information-Augmentation, CMIA) and two MI estimators (ML, fixed bin-based; KSG,
161 kNN-based), for five networks with 50 genes (**Fig. 3A**), five networks of 100 genes from DREAM3 (**Fig.**

162 **3B**), and five networks of 100 genes from DREAM4 (**Fig. 3C**). In all cases, the kNN-based KSG as the MI
163 estimator improves the performance of the inference algorithms. The improvement is more significant
164 for CMIA, which uses three-way MI calculations, and corroborate the higher percent error we found
165 when estimating TC (**Fig. 2B**).

166

167 *In Silico* GRN Inference performance comparison

168 To verify whether the performance enhancement introduced by kNN-based MI estimators is
169 general for other GRN inference algorithms, we further extended our benchmark to twenty-four
170 different combinations of the four MI estimators (discrete bin-based ML and MM, and kNN-based KL,
171 and KSG) with six inference algorithms described in the Methods section (RL, CLR, ARACNE, SA-CLR,
172 CMIA, CMI2rt) and compared them to the field gold standard combination $\{(ML, CLR)\}$ (**Fig. 4**). To
173 compare the performance differences quantitatively, we calculated the change in AUPR for each
174 replicate relative to the field's gold standard combination of CLR inference algorithm with ML for MI
175 calculations. In **Fig. 4** we show the top nine combinations, omitting ARACNE and CMI2rt among the
176 inference algorithms, and KL from the MI estimators because of their poor performance. We also
177 omitted SA-CLR due to its similarity to CLR and CMIA (see full data in Additional file 3: Table S1). The
178 combination of $\{KSG, CMIA\}$ gave the best median score in the combined networks inspected under each
179 category. It showed a median improvement of 16% and 24% for networks of 50 and 100 genes from
180 DREAM3, respectively (**Fig. 4A, B**), and 34% improvements for networks of 100 genes from DREAM4
181 (**Fig. 4C**). Furthermore, replacing the MI estimator from ML to KSG in the case of the gold standard
182 $\{(ML, CLR)\}$ can lead to significant improvement in GRN reconstruction performance, with median
183 increase in AUPR of 8-18%.

184

185

186 *In Silico* GRN Inference performance of different organisms

187 Next, we examined the performance of these different algorithms with regards to different
188 biological organisms, as *E. coli* and *S. cerevisiae* have distinct distributions of different network motifs
189 (Additional file 2: **Fig. S7**), which may lead to different performance in network inference. For example,
190 the fan-out motif, where one gene regulates two (or more) target genes, is more abundant in *E. coli*,
191 while the cascade motif, where a gene regulates a second gene that in turn regulates a third gene, is
192 more abundant in *S. cerevisiae* [7, 30]. In both cases, the three participating genes exhibit some degree
193 of correlation, yet not all are directly connected. The 10 networks from DREAM3 were divided into four
194 *E. coli* networks (**Fig. 5A, C-F**) and six *S. cerevisiae* networks (**Fig. 5B**, Additional file 2: **Fig. S8**). For the
195 combined *E. coli* networks (**Fig. 5A**), KSG greatly improved the performance of both RL and CMIA
196 algorithms but showed only a modest 6% improvement in performance for CLR. For the combined *E. coli*
197 networks, {KSG,CMIA} achieved a median improvement of 20%, but was second best to {MM,CLR}. The
198 performance comparison of the individual *E. coli* networks (**Fig. 5C-F**) showed that {KSG,CMIA} was the
199 best performer on three out of four networks. Furthermore, replacing ML with KSG when combined
200 with CLR improved the performance by 10-15% except in the case of DREAM3 Ecoli2-Size100 (**Fig. 5F**).
201 In the *S. cerevisiae* networks, again KSG improved all algorithms, and most significantly CMIA, and
202 showed a median improvement of 18%. Several replicates did not show any performance improvement,
203 indicating the significance of stochasticity even though all kinetic parameters for each network were
204 identical.

205 In summary, out of 24 combinations of MI estimators and inference algorithms, the combination
206 {KSG,CMIA} yielded the best median score in 13 out of the 15 networks inspected (except networks
207 DREAM3 Yeast1-Size50 & Ecoli2-Size100, **Fig. 5C-F**, Additional file 2: **Fig. S8 and S9**). Therefore, we
208 conclude that using kNN-based KSG to calculate MI improved the performances of the inference
209 algorithms evaluated in most cases.

210 Computational cost

211 Computational cost is a major concern when applying kNN-based methods. We measured the
212 time required to calculate all the two- and three-way interactions in a 50 gene network (1125 pairs and
213 19600 triplets, respectively, after taking symmetry into account) with different data size [100, 250, 500,
214 1000] for three MI estimation methods: FB-ML, kNN-KL and kNN-KSG. The code for the three estimators
215 was written in Python 3.8, used built-in functions from Numpy v1.19 and Scipy v1.5, and was run on a
216 single core of a desktop [Intel Xeon E5-1620 @ 3.6 GHz]. As seen in **Fig. 6** FB-ML was the fastest, as
217 histogram-type calculations have been optimized in Python over the years. FB-ML was also insensitive to
218 data size (in the tested range). While the python-based KSG implementation was most computationally
219 heavy, the time was tractable (under 400 s even for the largest data size (1000) and 3d calculation). The
220 speed could be further boosted by rewriting the code in C/C++, similar to what was done by Meyer et al.
221 [31] and Sales et al. [24]. Furthermore, the KD-Tree class of algorithms [32], which was in the main core
222 of this work's implementation, could greatly benefit from multiple cores or parallel processing. After
223 building the initial tree, distance calculation between neighbors can proceed in parallel, offering 4-to-16
224 fold improvement in speed on a current personal computer, depending on the number of available
225 cores.

226

227 **Discussion**

228 To date, a plethora of discretization methods, MI estimators, and inference algorithms exist in
229 the literature to reconstruct GRNs. Some common methods are available in the R/Bioconductor package
230 *minet* [31] and in Julia language [33]. In fact, as different methods have certain advantages depending
231 on the investigated scenario and constraints, it is advantageous to consider and compare the
232 performance of different combinations of multiple methods [34].

233 kNN-based MI estimator for date discretization/density estimation outperforms fixed-bin-based
234 estimations

235 Here, we demonstrate that the MI estimator KSG based on kNN yields smaller errors compared
236 to other MI estimation methods using discretized fixed bins in the case of a bi- and tri-variate Gaussian
237 distribution. KSG proves to be robust against different data sizes and correlations as well as the k
238 parameter used, unlike FB methods where the parameter used (number of bins) has a large effect on
239 accuracy of the MI estimator. In principle, one can achieve smaller errors using MI based on discretized
240 bins by choosing a different bin number other than the rule of thumb \sqrt{N} , for correlations smaller than
241 0.9. However, *a priori* one does not know the correlation strength. In fact, estimating the correlation
242 strength is what one tries to achieve when using MI. We also note that the gene expression profiles of
243 different synthetic networks and real experimental systems could be better described by distributions
244 other than Gaussian. Fortunately, the analytical solution to the mutual information of a few of these
245 distributions can be calculated [35] and will be explored in future work.

246 Note that in this work we did not compare the performance of another frequently used binning
247 method, adaptive partitioning, which is computationally faster than kNN for large data sets. In brief,
248 adaptive partitioning is a general term referring to three methods that divide the data uniformly
249 between the bins. The first method is equal frequency in which the bin size varies to allow for equal
250 number of data points in each bin. The second method is equiprobable partitioning [21, in which data is
251 ranked and partitioned in the middle, and Pearson chi-square test is used to determine the number of
252 sub-partitions, where the significance level of the chi-square test can be tuned (1%-5%) according to the
253 size of the data. This method works well for 1d data, but it has some ambiguity when implemented in
254 higher dimensions in that data points must be ranked according to one of the axes (or more in >2d), and
255 there are no appropriate rules to rank multidimensional data points. The third method is Bayesian

256 blocks [36], which uses a Bayesian statistics approach to attempt to find the optimal number of bins and
257 their sizes by maximizing a fitness function that depends on those two parameters. While this is a
258 seemingly promising approach, it is unclear how to implement such a method beyond 1D. Because of
259 these reasons, we did not include this binning method in the comparison.

260 Another previously used method in the literature is KDE [14], but it is the most computationally
261 costly and requires large data sets. It approximates the data distribution using a predefined known
262 distribution (i.e., a Gaussian) with user-defined smoothing parameters. This practice can be problematic
263 because in most cases the underlying data distribution is unknown, and experimental data is much
264 sparser than required to achieve results similar to other, simpler methods, such as FB.

265 kNN-based MI estimator KSG in combination with CMIA achieves the highest accuracy but may subject
266 to data stochasticity

267 It is clear from **Fig. 3** and **4** that the combination of kSG-based MI estimation and inference
268 algorithm CMIA achieved the highest precision and recall when reconstructing an unknown network.
269 Yet, this combination also showed a large variation in the performance enhancement. As shown in **Fig.**
270 **4,5A-B**, we observed that when KSG was combined with CLR or CMIA, a few replicates did not show any
271 performance improvement, or even had a decreased performance indicated by the negative %ΔAUPR
272 value, as indicated by the bottom whisker of the boxplot.

273 To investigate the source of this variation in the ensemble network plots we inspected different
274 combinations of MI estimators, inference algorithms, data size used, and individual networks (**Fig. 5C-F**,
275 Additional file 2: **Fig. S8**). We found that higher k values (up to k – 15) did not affect the variability in the
276 AUPR results (Additional file 2: **Fig. S10**). However, MI calculation done by KSG exhibited large variations
277 in performance when smaller data size was used as that in the case of 50 gene networks. For example,
278 in **Fig. 5C,E**, KSG showed a performance enhancement in the range of ~ 25-35% for the three different
279 inference algorithms, but the variability was reduced by half when ML instead of KSG was used. This was

280 also shown in the large variance calculated for KSG for a Gaussian distribution (Additional file 2: **Fig. S1D**,
281 **left column**). This observation indicates that KSG is more sensitive to stochasticity (intrinsic noise) when
282 data size is smaller than a few hundred points. Our choice of algorithm KSG-1 over KSG-2 (see methods)
283 was intended to keep a low statistical error and thus, low variability. However, using total correlation
284 and two-way mutual information to calculate other measures, such as interaction information (**Table 1**),
285 can lead to higher errors as the systematic errors might not cancel out as we have demonstrated in this
286 work. Additionally, when using KSG, we set negative values of total correlation and two-way mutual
287 information to zero (due to statistical fluctuations at low correlation values) prior to calculating the
288 other 3d MI quantities. This practice does not change the results for pairs or triplets with highly positive
289 MI values, but in some cases could lead to increased errors as gene pairs with low MI would be ranked
290 differently.

291 We note that two networks (DREAM3 Yeast1-Size50 & *E.coli*2-Size100) out of the 15 networks
292 investigated showed no performance enhancement when using {KSG, CMIA} compared to the Gold
293 Standard {ML, CLR} (**Fig. 5F**, Additional file 2: **Fig. S8**). It is unclear why the performance did not improve
294 in these two cases based on the largely similar statistics of different motifs of the ten networks from
295 DREAM3 (Additional file 3: **Table S3**). It could be due to a specific sub-structure of this network, but
296 further analysis is needed.

297 Another important result we observed (**Fig. 4, 5**) is that the combination {MM,CLR} achieved
298 higher AUPR for all replicates over {ML,CLR}. This is probably due to the size of the data used, as MM
299 was developed to correct the bias in MI estimation for small data sets. We thus suggest using this
300 combination as the new gold standard of the field when working with similar data sizes and when fixed-
301 binning for data discretization is preferred.

302

303 **Conclusions**

304 In summary, we have shown that the kNN-based KSG MI estimator improves the performance of
305 inference algorithms, especially ones that use three-way MI calculations. This result corroborates our
306 observations in comparing MI calculations against the analytical solution of two-way MI of a bi-variate
307 Gaussian distribution and the total correlation of a tri-variate Gaussian distribution. Furthermore, the
308 combination of CMIA and KSG give the overall best performance, and hence should be preferred when
309 precision and recall are more important than speed when reconstructing a GRN. Looking forward, the
310 goal of complete reconstruction of GRNs may require new inference algorithms and probably MI in
311 more than three dimensions.

312

313 **Methods**

314 Calculate mutual information of multiple variables

315 In **Table 1**, we summarize the formalism for calculating MI. Shannon's entropy is the basic
316 building block of MI and represents the randomness of a variable: the more random it is, the more
317 uniformly it is distributed, which gives a higher entropy. For our purposes, X, Y, or Z is a vector $(x_1, x_2, \dots,$
318 $x_n)$, (y_1, y_2, \dots, y_n) or (z_1, z_2, \dots, z_n) representing a specific gene's expression profile (data x, y or z) under
319 different conditions/perturbations (n steady-states) or as a function of time (n time points). Two-way MI
320 is defined as the shared (or redundant) information between the two variables X and Y {Table 1} and can
321 be visualized by a Venn diagram {**Table 1 right column**}.

322 While MI for two variables (genes or dimensions) is readily understood, for three variables or
323 more, new measures arise including Total correlation (TC), Three-way MI (MI3), Interaction Information
324 (II) and Conditional MI (CMI) (**Table 1**). Unfortunately, the term 'three-way MI' has been used loosely in
325 the literature to refer to all four of these measures, and because they represent distinct aspects of

326 statistical dependence, in the context of GRN reconstruction, this can lead to different realizations.
 327 Unlike other MI quantities, Interaction-Information is hard to visualize using a Venn diagram, as it can
 328 have both positive and negative values. It is common to regard negative II as “Redundancy”, the shared
 329 information between all variables, and positive II as “Synergy”. Synergy can be interpreted as new
 330 information gained on the dependence between two variables {X,Y} when considering the contribution
 331 of a third variable {Z} on either {X} or {Y} v.s. without considering it, or mathematically: $II = CMI(X;Y|Z) -$
 332 $MI(X;Y)$.

333

334 *Table 1: Mutual Information formalism*

TERM	SYMBOL	FORMULA	VENN DIAGRAMS
Shannon's entropy of X	$H(X)$	$-\sum_x p(x) \log p(x)$	
Joint entropy of X & Y	$H(X,Y)$	$-\sum_x \sum_y p(x,y) \log p(x,y)$	
Joint entropy of X,Y & Z	$H(X,Y,Z)$	$-\sum_x \sum_y \sum_z p(x,y,z) \log p(x,y,z)$	
Two-way Mutual Information	$MI(X;Y)$	$H(X) + H(Y) - H(X,Y)$	
Total Correlation	$TC(X,Y,Z)$	$H(X) + H(Y) + H(Z) - H(X,Y,Z)$	
Three-way MI	$MI3((X,Y);Z)$	$TC - MI(X;Y)$	
Interaction Information	$II(X,Y,Z)$	$TC - MI(X;Y) - MI(X;Z) - MI(Y;Z)$	
Conditional MI	$CMI(X;Y Z)$	$TC - MI(X;Z) - MI(Y;Z)$	

335

336 To calculate the marginal and joint entropies of two variables (X and Y), we first need to know
 337 the probability of each data point. For discrete data, we can approach the underlying probability $p(x)$ by

338 calculating the frequency ($f_x = \frac{N_x}{N_{Tot}}$) where N_x is the number of data points with value x , and N_{Tot} is the
339 total sample size. For the continuous data case, the calculation is more complex. Although Shannon
340 extended his theory for continuous data by replacing the summation with integrals, it is common
341 practice in the field to discretize the data first so one can work with the discrete formalism (**Table 1**).
342 The simplest discretization method is to use **fixed (width) binning (FB)** (**Fig. 1A**), but the optimal binning
343 choice depends on the shape of the distribution and data size. For normally distributed data, the rule of
344 thumb is to use the square-root of the data size as the number of bins.

345
346 **k-nearest-neighbor (kNN)** – Other than evaluating the probability densities to calculate mutual
347 information, Kozachenko and Leonenko (KL) calculated the marginal and joint entropies (and the MI by
348 summation) from the mean distance to the k th-nearest neighbor [25]. To minimize errors when
349 combining entropies of different dimensions, Kraskov et al. calculate the MI directly [22]. KSG developed
350 two algorithms, $I^{(1)}$ and $I^{(2)}$ (hereafter, KSG-1 and KSG-2), to minimize errors when estimating MI
351 compared to previous methods. We chose KSG-1 (defined below as MI_KSG) as it gives slightly smaller
352 statistical error (dispersion). Note that although KSG-1 gives relatively larger systematic errors than KSG-
353 2, these systematic errors do not change the ranking of the output values (from high to low), which is
354 what we use in downstream analysis. An additional note is that using kNN can lead to negative values
355 for mutual information, which contradicts Shannon's theorem. Negative values are caused by statistic
356 fluctuations when there is no correlation between variables. Therefore, in such a situation, we set
357 negative values to zero (except for Interaction Information, where it is meaningful). To calculate MI
358 using the KSG method, we use the following formulas:

359 $MI_{KSG}(X;Y) = \psi(k) + (\psi(n_x+1) + \psi(n_y+1)) + \psi(N)$

360 $TC_{KSG}(X;Y;Z) = \psi(k) + 2 \cdot \psi(N) - (\psi(n_x) + \psi(n_y) + \psi(n_z))$

361

362 Where $\psi(x)$ is the digamma function, N is the number of data points, n_i is the number of points x_i whose
363 distance from x_i is less than $\varepsilon(i)/2$, and $\varepsilon(i)/2$ is the distance from $u_i = (x_i, y_i, z_i)$ to its k th neighbor, as
364 illustrated in Fig. 1(a) of [22]

365

366 In Silico GRN Inference comparison:

367 MI calculations are used to infer interactions between genes to reconstruct the underlying GRN
368 structure. To test the performance of different methods, we followed the methodology of the *in silico*
369 network inference challenges of the **Dialogue for Reverse Engineering Assessments and Methods**
370 (DREAM) competitions DREAM3/4 [27] as depicted in **Fig. S11**.

371

372 1. Simulating gene expression data – we used GeneNetWeaver [29] to generate steady-state and time-
373 series gene expression datasets for realistic *in silico* networks of sizes of 50, and 100 genes
374 containing various experimental conditions (knockouts, knockdowns, multifactorial perturbation,
375 etc.). GeneNetWeaver uses a thermodynamic model to quantify mRNA transcription and regulation
376 with added molecular and experimental noise.

377 2. Discretizing/density estimation - To handle the continuous expression data, we chose either:
378 a. Density estimation by fixed bin. We used the common practice $\text{sqrt}(n)$, where n = number of
379 data points (in our case, different experimental conditions), as the number of bins.
380 b. Density estimation by k-Nearest Neighbor (kNN). We chose $k=3$ as a good compromise
381 between precision and computation cost as discussed in the previous section.

382 3. Mutual Information estimation - Depending on our previous selection, we chose between several MI
383 estimators:

384 a. For the fixed-bin discretizing method, we used either Shannon's formula (also referred to as
385 *Maximum Likelihood*, ML) or *Miller-Madow* (MM) estimator.

386 b. For kNN we used either KL or KSG formulas for MI.

387 4. GRN inference algorithms – We used popular algorithms in the field that use either only two-way MI
388 or both two- and three-way MI to infer undirected network structure by sorting predicted
389 interacting gene pairs from most probable to least probable. Each algorithm starts with a MI matrix
390 containing calculation for all possible pairs (some use all possible triplets) and applies different rules
391 to filter results and sort the gene pairs (see summary below). We used the same MI matrices for a
392 fair comparison between the inference algorithms. The following algorithms were used in our
393 comparison:

394 a. Relevance Network (RL) – Gene pairs are sorted according to their MI($X;Y$) value from highest to
395 lowest, and a threshold applied to truncate non-significant results [10]. We didn't set a
396 threshold to maximize AUPR (see below).

397 b. Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) – Same as RL with the
398 addition of Data Processing Inequality (DPI), which means for every three genes MI is calculated
399 for each pair and the pair with the lowest MI is removed if the difference is larger than some
400 threshold [11]. In our implementation, we set the threshold to zero, so we always removed the
401 lowest interacting pair. On the other extreme, where we kept all the pairs, ARACNE is the same
402 as RL.

403 c. Context Likelihood of Relatedness (CLR) – Background correction is performed by calculating Z-
404 score for the MI of each gene interacting with all other genes, and then gene pairs are sorted by

405 their mutual Z-score [12]. We didn't use B-spline smoothing in the density estimation step in
406 accordance with the implementation in the R-package *Minet* [31].

407 d. Synergy Augmented CLR (SA-CLR) – Same as CLR, with the difference that now the highest
408 Interaction-Information term is added to MI prior to performing the background correction [17].

409 e. Conditional Mutual Information Augmentation (CMIA) – Similar to SA-CLR but we used
410 conditional mutual information instead of interaction-information.

411 f. Luo et al. MI3 (hereafter CMI2rt) – We assumed two regulators for each target gene, and for
412 each target gene we searched for the best {R1,R2} pair that maximizes:
413
$$\text{CMI}(\text{T};\text{R1}|\text{R2}) + \text{CMI}(\text{T};\text{R2}|\text{R1})$$
 [14]

414 5. **GRN performance evaluation** - To evaluate the performance of common algorithms in the field, we
415 used known (true) synthetic networks and counted the number of true and false positives (TP and
416 FP respectively) predictions as well as true and false negative (TN and FN respectively) (**Fig. S12**).
417 This allowed us to plot precision (Precision = TP/(TP+FP)) v. s. recall (Recall = TP/(TP+FN)) and
418 calculate the area under precision-recall curve (AUPR). As biological networks are sparse on edges,
419 AUPR is considered a better metric than AUROC (area under the receiver operating characteristic
420 curve, which is the false positive rate FPR = FP/(FP+TN v.s. recall) as mentioned elsewhere [37].

422 List of abbreviations

- 423 **GRN:** Gene regulatory network
- 424 **ODE:** Ordinary differential equati
- 425 **MI:** Mutual information
- 426 **PDF:** Probability density functions
- 427 **FB:** Fixed (width) binning
- 428 **AP:** Adaptive partitioning

429 **kNN**: k-nearest neighbor

430 **KDE**: Kernel density estimator

431 **CLR**: Context likelihood of relatedness

432 **CMIA**: Conditional mutual information augmentation

433 **KSG**: Kraskov-Stoögbauer-Grassberger

434 **RL**: Relevance networks

435 **ARACNE**: Algorithm for the Reconstruction of Accurate Cellular Networks

436 **SA-CLR**: Synergy-Augmented CLR

437 **ML**: Maximum likelihood

438 **MM**: Miller-Madow

439 **KL**: Kozachenko-Leonenko

440 **TC**: Total correlation

441 **MI3**: Three-way MI

442 **II**: Interaction information

443 **CMI**: Conditional mutual information

444 **DREAM**: Dialogue for reverse engineering assessments and methods

445 **AUPR**: Area under precision-recall curve

446 **CMI2rt**: Luo et al. inference algorithm named MI3

447 **DPI**: Data Processing Inequality

448

449

450

451 **Declarations**

452 ***Availability of data and materials***

453 The software GeneNetWeaver used to generate the datasets in the current study is

454 available in the GitHub repository, <https://github.com/tschaffter/genenetweaver>

455 The code and scripts used for analysis and to generate the plots in the current study are

456 available in the GitHub repository, https://github.com/XiaoLabJHU/GRN_Inference

457 The GRN inference pipeline implemented here is modular, one can use specific functions

458 to calculate MI quantities based on kNN and integrate the output matrix into a different

459 inference algorithm than the ones implemented in this work.

460 ***Competing interests***

461 The authors declare that they have no competing interests.

462 ***Funding***

463 L.S., J.X.& E.R. were supported in part by NSF (MCB1817551), a Johns Hopkins Discovery

464 Award (J.X.), a Hamilton Innovation Research Award (J.X.). P.C. is supported by the

465 National Institutes of Health under grant R35GM124725.

466

467

468 ***Authors' contributions***

469 LS, ER and JX have conceived the study. LS implemented the code to analyze and
470 interpret the data. JX and PC contributed to the interpretation of data. LS have drafted
471 the work. JX and PC have substantially revised the manuscript. All authors read and
472 approved the final manuscript.

473 ***Acknowledgements***

474 Basilio Cieza Huaman for discussion and comments and Miriam Asnes for providing
475 technical writing review.

476 **References**

- 477 1) Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular
478 Biology of the Cell. In *Molecular Biology of the Cell*. W.W. Norton & Company.
479 <https://doi.org/10.1201/9780203833445>
- 480 2) Cordero, D., Solé, X., Crous-Bou, M., Sanz-Pamplona, R., Paré-Brunet, L., Guinó, E.,
481 Olivares, D., Berenguer, A., Santos, C., Salazar, R., Biondo, S., & Moreno, V. (2014).
482 Large differences in global transcriptional regulatory programs of normal and tumor
483 colon cells. *BMC Cancer*, 14(1), 1–13. <https://doi.org/10.1186/1471-2407-14-708>/TABLES/4
- 484 3) Bashor, C. J., & Collins, J. J. (2018). Understanding Biological Regulation Through
485 Synthetic Biology. *Annual Review of Biophysics*, 47, 399–423.
486 <https://doi.org/10.1146/ANNUREV-BIOPHYS-070816-033903>

487 4) Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and
488 display of genome-wide expression patterns. *Proceedings of the National Academy of
489 Sciences*, 95(25).

490 5) Courcelle, J., Khodursky, A., Peter, B., Brown, P. O., & Hanawalt, P. C. (2001).
491 Comparative Gene Expression Profiles Following UV Exposure in Wild-Type and SOS-
492 Deficient *Escherichia coli*. *Genetics*, 158(1), 41–64.
493 <https://doi.org/10.1093/GENETICS/158.1.41>

494 6) Bansal, M., Belcastro, V., Ambesi-Impiombato, A., & Di Bernardo, D. (2007). How to
495 infer gene networks from expression profiles. *Molecular Systems Biology*, 3(78), 1–10.
496 <https://doi.org/10.1038/msb4100120>

497 7) Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D., & Stolovitzky, G.
498 (2010). Revealing strengths and weaknesses of methods for gene network inference.
499 *Proceedings of the National Academy of Sciences of the United States of America*,
500 107(14), 6286–6291. <https://doi.org/10.1073/pnas.0913357107>

501 8) Maetschke, S. R., Madhamshettiar, P. B., Davis, M. J., & Ragan, M. A. (2014).
502 Supervised, semi-supervised and unsupervised inference of gene regulatory networks.
503 *Briefings in Bioinformatics*, 15(2), 195–211. <https://doi.org/10.1093/bib/bbt034>

504 9) Shannon, C. E. (1948). A Mathematical Theory of Communication. *Bell System
505 Technical Journal*, 27(4), 623–656. <https://doi.org/10.1002/j.1538-7305.1948.tb00917.x>

506 10) Butte, A. J., & Kohane, I. S. (2000). Mutual information relevance networks: functional
507 genomic clustering using pairwise entropy measurements. *Pacific Symposium on
508 Biocomputing. Pacific Symposium on Biocomputing*, 426, 418–429.
509 https://doi.org/10.1142/9789814447331_0040

510 11) Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., &
511 Califano, A. (2006). ARACNE: An algorithm for the reconstruction of gene regulatory
512 networks in a mammalian cellular context. *BMC Bioinformatics*, 7(SUPPL.1), 1–15.
513 <https://doi.org/10.1186/1471-2105-7-S1-S7>

514 12) Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., ...
515 Gardner, T. S. (2007). Large-scale mapping and validation of Escherichia coli
516 transcriptional regulation from a compendium of expression profiles. *PLoS Biology*, 5(1),
517 0054–0066. <https://doi.org/10.1371/journal.pbio.0050008>

518 13) Cover, T. M., & Thomas, J. A. (2005). Elements of Information Theory. In *Elements of*
519 *Information Theory*. John Wiley and Sons. <https://doi.org/10.1002/047174882X>

520 14) Luo, W., Hankenson, K. D., & Woolf, P. J. (2008). Learning transcriptional regulatory
521 networks from high throughput gene expression data using continuous three-way mutual
522 information. *BMC Bioinformatics*, 9, 1–15. <https://doi.org/10.1186/1471-2105-9-467>

523 15) Timme, N., Alford, W., Flecker, B., & Beggs, J. M. (2014). Synergy, redundancy, and
524 multivariate information measures: An experimentalist's perspective. *Journal of*
525 *Computational Neuroscience*, 36(2), 119–140. <https://doi.org/10.1007/s10827-013-0458-4>

527 16) Liang, K.-C., & Wang, X. (2008). Gene Regulatory Network Reconstruction Using
528 Conditional Mutual Information. *EURASIP Journal on Bioinformatics and Systems*
529 *Biology*, 2008, 1–14. <https://doi.org/10.1155/2008/253894>

530 17) Watkinson, J., Liang, K.-C., Wang, X., Zheng, T., & Anastassiou, D. (2009). Inference of
531 regulatory gene interactions from expression data using three-way mutual information.

532 *Annals of the New York Academy of Sciences*, 1158, 302–313.

533 <https://doi.org/10.1111/j.1749-6632.2008.03757.x>

534 18) Mousavian, Z., Kavousi, K., & Masoudi-Nejad, A. (2016). Information theory in systems

535 biology. Part I: Gene regulatory and metabolic networks. *Seminars in Cell and*

536 *Developmental Biology*, 51, 3–13. <https://doi.org/10.1016/j.semcd.2015.12.007>

537 19) Ross, B. C. (2014). Mutual information between discrete and continuous data sets. *PLoS*

538 *ONE*, 9(2). <https://doi.org/10.1371/journal.pone.0087357>

539 20) Miller, G.A. (1955). Note on the bias of information estimates. *Information Theory in*

540 *Psychology; Problems and Methods*, II-B, 95–100

541 21) Darbellay, G. A., & Vajda, I. (1999). Estimation of the information by an adaptive

542 partitioning of the observation space. *IEEE Transactions on Information Theory*, 45(4),

543 1315–1321. <https://doi.org/10.1109/18.761290>

544 22) Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.

545 *Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary*

546 *Topics*, 69(6), 16. <https://doi.org/10.1103/PhysRevE.69.066138>

547 23) Daub, C. O., Steuer, R., Selbig, J., & Kloska, S. (2004). *Estimating mutual information*

548 *using B-spline functions – an improved similarity measure for analysing gene expression*

549 *data*. 12, 1–12. <https://doi.org/10.1186/1471-2105-5-118>

550 24) Sales, G., & Romualdi, C. (2011). Parmigene-a parallel R package for mutual

551 information estimation and gene network reconstruction. *Bioinformatics*, 27(13), 1876–

552 1877. <https://doi.org/10.1093/bioinformatics/btr274>

553 25) L. F. Kozachenko and N. N. Leonenko, *Probl. Inf. Transm.* 23, 95 (1987).

554 26) Kurths, J., Daub, C. O., Weise, J., Selbig, J., & Steuer. (2002). The mutual information:
555 detecting and evaluating dependencies between variables. *Bioinformatics*, 18 Suppl 2(2),
556 S231-40. https://doi.org/10.1093/bioinformatics/18.suppl_2.S231

557 27) Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X.,
558 ... Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology models:
559 The DREAM3 challenges. *PLoS ONE*, 5(2).
560 <https://doi.org/10.1371/journal.pone.0009202>

561 28) Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in
562 silico gene networks for performance assessment of reverse engineering methods.
563 *Journal of Computational Biology*, 16(2), 229–239.
564 <https://doi.org/10.1089/cmb.2008.09TT>

565 29) Schaffter, T., Marbach, D., & Floreano, D. (2011). GeneNetWeaver: In silico benchmark
566 generation and performance profiling of network inference methods. *Bioinformatics*,
567 27(16), 2263–2270. <https://doi.org/10.1093/bioinformatics/btr373>

568 30) Alon, U. (2006). An introduction to systems biology: Design principles of biological
569 circuits. In *An Introduction to Systems Biology: Design Principles of Biological Circuits*.

570 31) Meyer, P. E., Lafitte, F., & Bontempi, G. (2008). Minet: A r/bioconductor package for
571 inferring large transcriptional networks using mutual information. *BMC Bioinformatics*,
572 9, 1–10. <https://doi.org/10.1186/1471-2105-9-461>

573 32) Scipy spatial algorithms.
574 <https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html>. Accessed
575 28 October 2021.

576 33) Chan, T. E., Stumpf, M. P. H., & Babtie, A. C. (2017). Gene Regulatory Network
577 Inference from Single-Cell Data Using Multivariate Information Measures. *Cell Systems*,
578 5(3), 251-267.e3. <https://doi.org/10.1016/j.cels.2017.08.014>

579 34) Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M.,
580 Allison, K. R., Kellis, M., Collins, J. J., Aderhold, A., Stolovitzky, G., Bonneau, R.,
581 Chen, Y., Cordero, F., Crane, M., Dondelinger, F., Drton, M., Esposito, R., Foygel, R.,
582 ... Zimmer, R. (2012). Wisdom of crowds for robust gene network inference. *Nature
583 Methods*, 9(8), 796–804. <https://doi.org/10.1038/nmeth.2016>

584 35) Darbellay, G. A., & Vajda, I. (2000). Entropy expressions for multivariate continuous
585 distributions. *IEEE Transactions on Information Theory*, 46(2), 709–712.
586 <https://doi.org/10.1109/18.825848>

587 36) Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. (2013). Studies in astronomical
588 time series analysis. VI. Bayesian block representations. *Astrophysical Journal*, 764(2).
589 <https://doi.org/10.1088/0004-637X/764/2/167>

590 37) Murphy, K. P. (2012). Machine learning: a probabilistic perspective (adaptive
591 computation and machine learning series). In *Mit Press. ISBN* (Vol. 621485037).
592

593

594 **Figures**

595 *Figure 1-Illustration of two methods to evaluate distribution: (A) Fixed width binning, and (B) k-Nearest-Neighbor (k=1). Data*
596 *points are shown as blue circles, bin edges are shown in black, and distances to k=1 neighbor as the radius of dashed red circles.*

597 *Figure 2-Percent error of different mutual information estimators for multivariate gaussian distribution. Each boxplot*
598 *represents 100 replicates, with columns representing sample size = {100,1K,10K}, and rows the correlation = {0.3,0.6,0.9}. (A)*
599 *Percent error (y-axis) for two-way mutual information (MI2) was compared for 3 different methods: ML_Sq=Maximum*
600 *Likelihood (Shannon's MI) with fixed width binning (number of bins is determined by square-root), MM_Sq=Miller-Madow*
601 *formula for MI with square-root for the number of bins, KSG3 =KSG formula for kNN-MI with k=3; (B) same methods compared*
602 *for total correlation (TC).*

603 *Figure 3-AUPR values for different combinations of MI estimator (ML or KSG) and GRN inference algorithm (RL, CLR or CMIA).*
604 *(A): Sorted boxplots showing networks of size 50 from DREAM3, (B): Networks of size 100 from DREAM3, (C): Networks of size*
605 *100 from DREAM4. For the different network sizes each boxplot represents 50 networks (5 different networks X 10 replicates).*

606 *Figure 4- AUPR difference of combinations of MI estimators and inference algorithms relative to the gold standard {ML,CLR}.*
607 *(A): Sorted boxplots showing comparison for Network size of 50 from DREAM3, (B): and size of 100 from DREAM3, (C): size of*
608 *100 from DREAM4. Each boxplot represents 50 networks (5 different networks X 10 replicates). A complete list of tested GRN*
609 *inference algo & MI estimators can be found in Additional file 2 Table S1*

610 *Figure 5-Performance comparison of GRN reconstruction for different in silico networks modeled from E. coli & Yeast. x-axis*
611 *shows different combinations of [MI estimator, inference algo], y-axis shows percentage AUPR difference (increase or decrease)*
612 *relative to the gold standard combination [ML,CLR]. (A): Sorted boxplots of the combined four E.coli networks from DREAM3.*
613 *Each boxplot represents 40 networks (4 different networks X 10 replicates). (B) same as (A) but for the six Yeast networks. (C)-*
614 *(F): Sorted boxplots of the 4 different E.coli networks from DREAM3. Each boxplot represents 10 replicates. A complete list of*
615 *tested MI estimators & GRN inference algo can be found in Additional file 2 Table S2*

616 *Figure 6-Computation time vs. different data sizes for a network of 50 genes. (A) The calculation is performed over 1125 pairs*
617 *for data sizes of [100, 250, 500, 1000]. (B) The calculation is performed over 19600 triplets for data sizes as in the left panel*

618

619 **Supplementary information**

620 **Additional file 1: Supplementary information Appendix 1-2**

621 **Appendix S1:** Analytical solution for a multivariate Gaussian distribution

622 **Appendix S2:** Miller-Madow correction to Shannon's entropy

623 **Additional file 2: Supplementary figures S1-10**

624 **Figure S1:** 100 replicates of two-way mutual information (MI2) & total correlation (TC) for multivariate
625 gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}.

626 **Figure S2-S4:** boxplots of percent error of three different mutual information estimators for 100
627 replicates of tri-variate gaussian dist.

628 **Figure S5:** boxplots of percent error of two-way mutual information calculated based on kNN methods
629 for 100 replicates of bi-variate gaussian dist. With sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}.

630 **Figure S6:** boxplots of percent error of Total Correlation calculated based on kNN methods for 100
631 replicates of tri-variate gaussian dist.

632 **Figure S7:** Common 3-node network motifs

633 **Figure S8:** *Sorted boxplots of* percentage AUPR difference (increase or decrease) relative to the gold
634 standard combination [ML,CLR] *for different combinations of MI estimator and GRN inference algorithm*
635 *for the 6 different Yeast networks from DREAM3.*

636 **Figure S9:** *Sorted boxplots of* percentage AUPR difference (increase or decrease) relative to the gold
637 standard combination [ML,CLR] *for different combinations of MI estimator and GRN inference algorithm*
638 *for the 5 different networks of 100 genes from DREAM4.*

639 **Figure S10:** Area Under Precision-Recall curve (AUPR) vs. different number of bins or k-neighbors.

640 **Figure S11:** The different steps for evaluating GRN inference performance.

641 **Figure S12:** A schematic GRN inference example. The true network contains 10 genes (a.k.a. nodes), and
642 11 interactions (or edges). The prediction algorithm correctly predicted 6 times (True positive), missed 5
643 interactions (False negative), and predicted 2 interactions that did not exist (False positive).

644

645 **Additional file 3: Supplementary information table S1-3**

646 **Table S1:** Median AUPR values for different combinations of MI estimator and GRN inference algorithm
647 for different network sizes

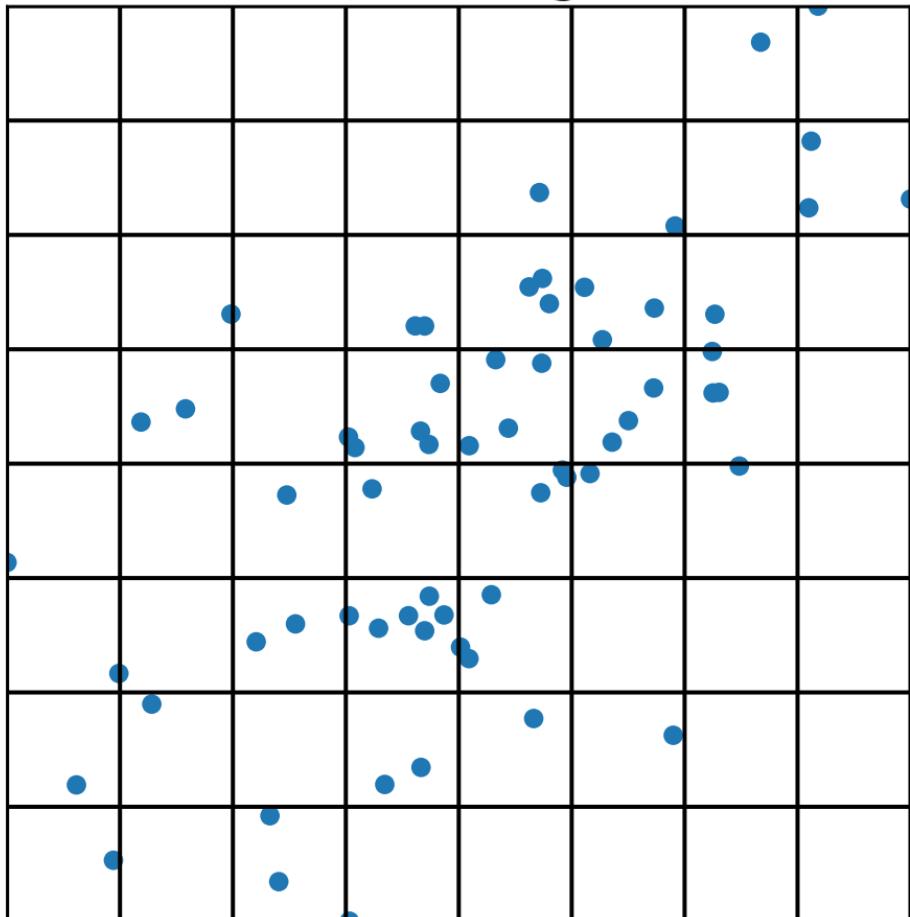
648 **Table S2:** Median AUPR values for different combinations of MI estimator and GRN inference algorithm
649 for different organisms

650 **Table S3:** Characteristics of the 10 synthetic networks from DREAM3 and statistics of the different 3-
651 node network motifs extracted.

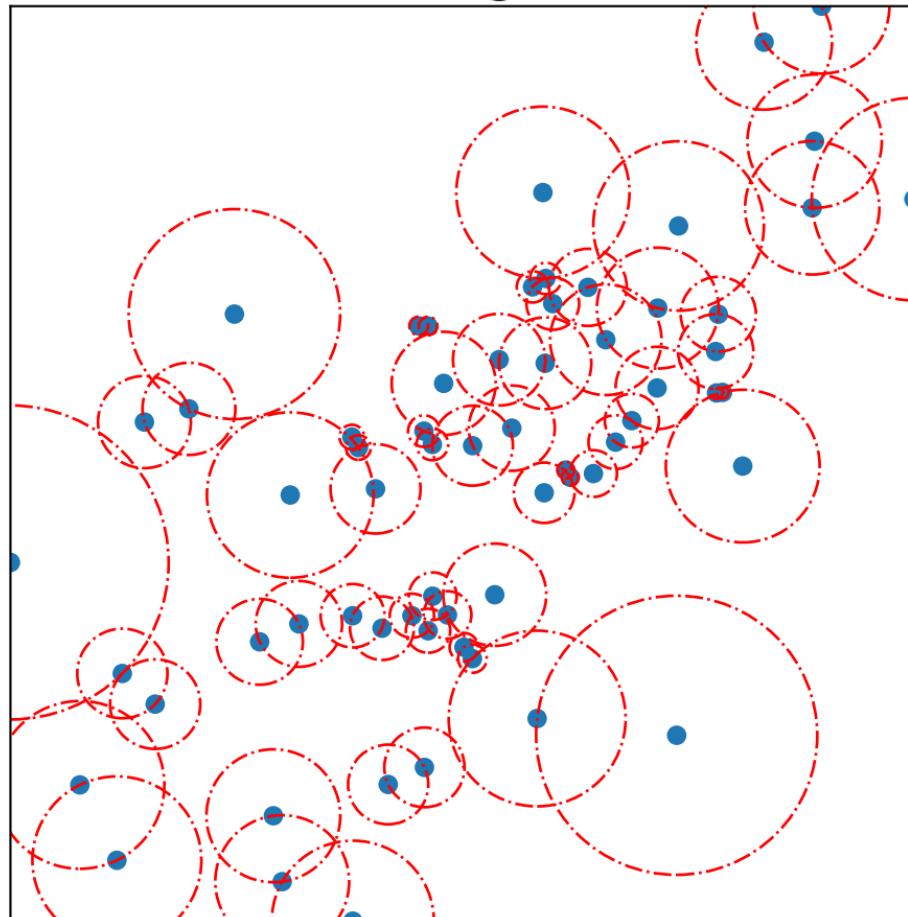
652

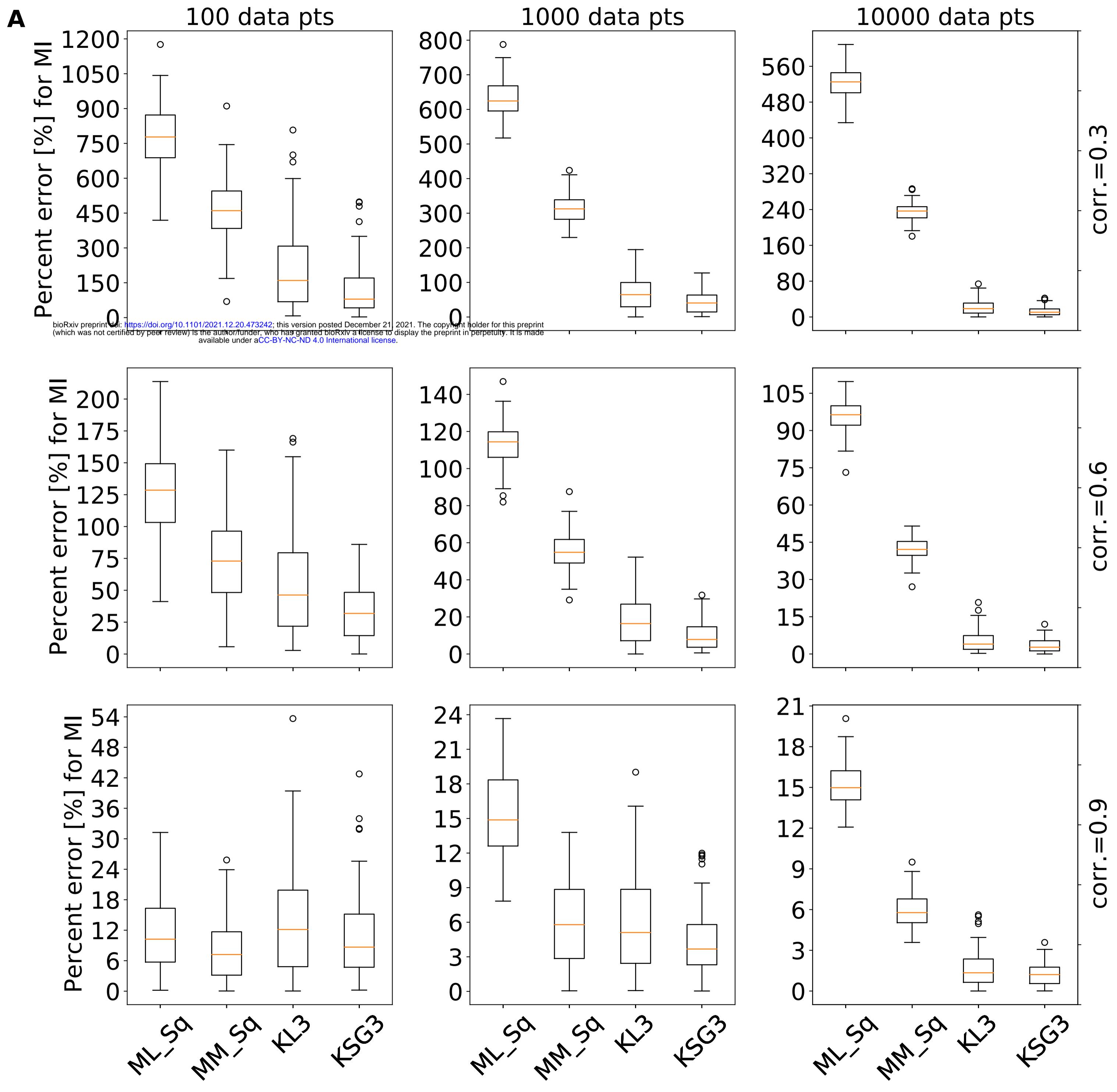
653

A Fixed width binning (#bins=8)



B k-Nearest Neighbor (k=1)





B