

1 **Oxytocin Signaling Regulates the Homeostatic Response to Cold**
2 **Stress in Poikilothermic Vertebrates**

3 Adi Segev-Hadar^{1,5}, Shani Krispin^{1,2,5}, Anouk M. Olthof³, Katery C. Hyatt³, Liran
4 Haller¹, Assaf Barki¹, Tali Nitzan¹, Gil Levkowitz⁴, Rahul N. Kanadia³, Avner
5 Cnaani¹, Jakob Biran^{1*}

6

7 ¹Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural
8 Research Organization, Rishon LeTsiyon, Israel

9 ²Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel

10 ³Physiology and Neurobiology Department, University of Connecticut, Storrs, CT
11 06269, USA

12 ⁴Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26,
13 Rehovot, 7610001, Israel

14 ⁵These authors contributed equally to this work

15

16

17

18

19 * Correspondence should be addressed to

20 J.B. jakob@volcani.agri.gov.il

21

22

23

24

25 **Keywords:** poikilotherm, oxytocin, cold stress, homeostasis, hypothalamus, life
26 history, evolution, thermoregulation

27

28

29

30

31 **Abstract**

32 When exposed to low temperature, homeothermic vertebrates maintain internal body
33 temperature by activating thermogenesis and by altered metabolism, synchronized by
34 neuroendocrine responses. Although such physiological responses also occur in
35 poikilothermic vertebrates, the prevailing notion is that their reactions are passive.
36 Here, we explored molecular hypothalamic and physiological responses to cold stress
37 in the tropical poikilotherm Nile tilapia (*Oreochromis niloticus*). We show that cold
38 exposed tilapia exhibit complex homeostatic responses, including increased
39 hypothalamic oxytocin, plasma glucose and cortisol concomitant with reduced plasma
40 lactate and metabolic rate. Pharmacological or genetic blockage of oxytocin signaling
41 further affected metabolic rate in two cold-exposed poikilothermic models. This
42 indicates that oxytocin, a known thermoregulator in homeotherms, actively regulates
43 temperature-related homeostasis in poikilotherms. Overall, our findings show that the
44 brain of poikilotherms actively responds to cold temperature by regulating metabolic
45 physiology. Moreover, we identify oxytocin signaling as an adaptive and
46 evolutionarily conserved metabolic regulator of temperature-related homeostasis.

47

48

49

50

51

52

53

54

55

56

57 **Introduction**

58 The notion of physiological homeostasis was conceived more than 140 years ago on
59 the basis of equilibrium thermodynamics. The homeostatic view postulates that while
60 biological systems are unstable by nature, they are regulated to maintain a dynamic
61 equilibrium¹⁻³. For example, temperature-related homeostasis is achieved in
62 homeotherms through physiological and central mechanisms, such as metabolic heat
63 generation. By contrast, in poikilotherms, commonly termed "cold-blooded" animals,
64 it is achieved through behavioral modification, such as heat seeking behaviors in
65 responses to cold stress⁴. Nevertheless, poikilotherms exposed to environmental
66 extremes of cold temperatures experience a stressful metabolic challenge, which
67 elicits physiological responses required to maintain cellular homeostasis. Moreover,
68 heat seeking may not resolve the homeostatic needs of tropical poikilotherms under
69 unpredictable extreme cold events, which occur frequently due to global climate
70 change^{5,6}.

71 Because poikilotherms cannot generate heat, it is expected that evolutionary pressure
72 would lead their cells and tissues to develop responsive mechanisms to temperature
73 alterations in order to maintain functionality and fitness under suboptimal conditions⁷.
74 Indeed, previous studies have reported various responses to low temperature,
75 including modified glucose or lipid metabolism^{6,8-11}, altered gene expression and
76 alternative splicing^{10,12-14}, and endocrine and immune system activity^{15,16}, which may
77 vary according to the tissue and species. This suggests that the homeostatic response
78 to cold stress in poikilotherms involves multiple physiological pathways and is more
79 complex than currently perceived.

80 In vertebrates, the homeostatic activity of various organs and tissues is orchestrated
81 by the brain hypothalamic region. The hypothalamus integrates sensory input from the
82 internal and external environments and secretes regulatory neuropeptides and
83 monoamines, which continually fine-tune physiological functions and maintain body
84 homeostasis^{17,18}. Several studies have demonstrated the thermoregulatory roles of
85 hypothalamus in homeotherms^{19,20}.

86 Bony fish (Class *Osteichthyes*), which comprise the largest group of vertebrates²¹, are
87 poikilothermic^{6,13}. As such, they have developed various strategies to survive in
88 extreme cold waters, like hibernation and plasma antifreeze proteins. Yet, these

89 strategies are utilized mainly by species inhabiting low-temperature environments,
90 which encounter these conditions routinely throughout their life history²². In the last
91 century, tropical fish species are increasingly exposed to extreme cold events due to
92 several factors. First, climate change leads to increased weather events of extreme
93 heat but also of extreme cold⁵. Second, the continuous expansion of the aquaculture
94 industry leads to culture of tropical species in subtropical climates^{23,24}. Third,
95 aquaculture escapees, fish introductions for recreational angling and migration from
96 saturated ecosystems result in species invasion into new ecosystems and ecological
97 niches^{23,25,26}. Exposure of a tropical fish to cold conditions would challenge its
98 homeostasis and generate physiological stress. Yet, some species manage to survive
99 exposure to cold temperatures and even thrive in climates that include cold seasons,
100 which differ from their ecological life history. Understanding the central regulation of
101 these homeostatic processes is important for ecological conservation and aquaculture,
102 and may shed much needed light on the evolutionary origins of physiological
103 thermoregulation in poikilothermic organisms.

104 Nile tilapia (*Oreochromis niloticus*) is one of the most important cultured fish
105 worldwide. Originating from Africa, it is now cultured in more than 85 countries.
106 With high reproductive rate, aggressive behavior, and a wide range of feeding
107 sources, tilapia escapees have successfully invaded many ecosystems, including in
108 sub-optimal climates^{27,28}. Although some physiological and molecular homeostatic
109 responses of tilapias to cold stress have been demonstrated^{6,9,11,12,15}, the general
110 metabolic relevance and hypothalamic regulation of these processes in poikilothermic
111 fish remain mainly unexplored. In the present study, we examined the influence of
112 cold exposure on Nile tilapia metabolism. As previously demonstrated in other piscine
113 species²⁹, we found a direct correlation between temperature and resting (standard)
114 metabolic rate (RMR), as well as alterations in stress-related metabolic parameters
115 upon exposure to extreme cold. In search of a central regulatory pathway that controls
116 these physiological responses, we performed transcriptome analysis of Nile tilapia
117 hypothalamus. Results showed that oxytocin (Oxt), a key regulator of core
118 temperature in homeothermic mammals³⁰, is markedly elevated upon exposure to
119 extreme cold. Indeed, analysis of metabolic responses using pharmacological Oxt-
120 receptor antagonist (ORA)^{31,32} in tilapia or genetic perturbation of Oxt signaling in
121 zebrafish (*Danio rerio*) showed an Oxt-dependent decline in RMR during extreme

122 cold exposure. These findings indicate that Oxt signaling is involved in the central
123 thermoregulation of the physiological response to cold in poikilotherms, a function
124 that was leveraged by homeotherms later in evolution. More broadly, our findings
125 suggest that neuroendocrine pathways can modulate poikilothermic adaptiveness to
126 climate change within physiological boundaries.

127

128 **Results**

129 *Physiological response to cold stress*

130 Survival temperatures of poikilothermic species are strongly correlated with their
131 geographical distribution³³, as reflected by the limited geographical expansion of Nile
132 tilapia to tropical and subtropical areas^{23,34}. Therefore, we utilized this fish as our
133 model for studying regulation of homeostatic response to cold stress in poikilothermic
134 vertebrates. To characterize the effects of cold temperature exposure on RMR and
135 physiology of Nile tilapia, we analyzed the fish metabolic rate while reducing water
136 temperature from 25°C to 14°C, at a rate of -1°C/h, followed by plasma analysis for
137 major stress indicators and metabolic parameters (**Fig. 1**). This analysis showed direct
138 correlation between temperature and RMR in Nile tilapia (**Fig. 1a-c**). In agreement
139 with previous findings^{11,15,35}, plasma cortisol and glucose levels significantly
140 increased upon cold exposure, supporting a physiological stress response (**Fig. 1d-e**).
141 Plasma lactate levels significantly decreased, which was also expected considering the
142 reduction in RMR (**Fig. 1f**). These results are in line with cold-induced
143 gluconeogenesis, which has previously been demonstrated by us and others^{6,9}. No
144 significant changes were found in plasma levels of total protein, triglycerides or
145 growth hormone (**Fig. 1g-i**).

146 *Central pathways involved in the response to cold stress*

147 In vertebrates, homeostatic functions are orchestrated by the hypothalamus, which
148 serves as the central sensory and regulatory hub of peripheral body systems^{17,36,37}.
149 During an adaptive response, the hypothalamus generates a quiescent reaction to a
150 strong metabolic challenge, while maintaining low physiological noise from other
151 affected systems³. Hence, a reduction in the environmental temperature should induce
152 a hypothalamic response that would change physiological and endocrine parameters,

153 such as plasma levels of lactate, glucose and cortisol. To determine whether such
154 homeostatic regulation occurs in fish hypothalamus, we dissected midbrains of Nile
155 tilapia to include the diencephalon and optic tectum, which encompass all
156 hypothalamic nuclei^{38,39} (**Fig. 2a**). Isolated midbrains from cold-exposed and
157 normothermic fish were subsequently assessed for changes in gene expression levels
158 by transcriptome analysis. First, the accuracy of midbrain dissections was confirmed
159 by the expression of known hypothalamic neuroendocrine markers of the various
160 hypothalamic regions, including *avp* (LOC100708704), *tac1*, *gal* (*galn*), *pomc*
161 (*pomca*), *agrp* (LOC100691312), *trh*, *crh* (*crhb*) and others. Results showed that the
162 expression of these genes was not significantly altered in the hypothalamus of cold-
163 exposed Nile tilapia, compared to the controls (**Supp. Fig. 1**), confirming the integrity
164 and uniformity of the hypothalamic dissections in both groups.

165 Next, we interrogated gene expression changes in the hypothalamus of cold-exposed
166 Nile tilapia, using IsoDE2⁴⁰. We found that 927 genes were significantly upregulated
167 upon cold exposure, whereas 1971 genes were significantly downregulated (>2-fold
168 change, P<0.01) (**Fig. 2b; Supp. Table 1**). To understand the biological processes
169 that were affected by the differentially expressed genes, we next performed functional
170 annotation analysis. Submission of the 911 downregulated genes that were expressed
171 above 1 TPM (transcripts per million) in the control to g:Profiler⁴¹ yielded seven
172 significant GO terms, which included broad functions such as “receptor signaling
173 activity” and “peptide receptor activity” (**Table 1**). This suggested a generalized
174 suppression of signaling pathways in Nile tilapia hypothalamus upon cold exposure.
175 The 485 upregulated genes that were expressed above 1 TPM in the cold-exposed fish
176 were significantly enriched for 21 GO terms (**Table 2**). These included the cellular
177 component hemoglobin complex, apoptotic processes and cell death, as well as
178 circadian rhythm pathways such as “circadian regulation of gene expression” and
179 “rhythmic process”, suggesting that cold exposure affects the circadian rhythm of Nile
180 tilapia (**Table 2**).

181 As expected by the altered metabolic rate, analysis of the most highly expressed
182 upregulated genes revealed the presence of several genes encoding hemoglobin
183 subunits, suggesting that the adaptive response of cold-exposed Nile tilapia may
184 require increased brain oxygenation (**Fig. 2c**). While the general suppression of genes
185 related to signaling pathways seems to support the concept of reduced metabolic

186 responsiveness in cold-exposed poikilotherms²², we discovered that *oxt*, the gene
187 encoding OXT neuropeptide, was significantly upregulated in the hypothalamus of
188 Nile tilapia upon cold exposure (**Fig. 2c**). Similar analysis of the most highly
189 expressed downregulated genes revealed suppression of several factors involved in
190 the regulation of mRNA expression and processing (**Fig. 2d**). Our transcriptomic
191 analysis was further validated by real-time PCR quantification of cold-induced (**Supp.**
192 **Fig. 2**) and cold-suppressed (**Supp. Fig. 3**) mRNAs. These results support differential
193 gene activation or suppression according to their involvement in specific cellular and
194 physiological functions. Furthermore, the exceptional responsiveness of *oxt*
195 expression to cold exposure suggests that OXT signaling is involved in the central
196 regulation of the homeostatic response to cold stress in poikilotherms.

197 *OXT signaling reduces metabolism in poikilotherms under extreme cold conditions*

198 The homeostatic response of homeothermic mammals to cold stress involves
199 hypothalamic activation of OXT-neurons, which in turn elicit energy expenditure and
200 thermogenesis to maintain core temperature^{42,43}. However, in poikilothermic fishes
201 low temperatures usually suppress feeding⁴⁴ and, therefore, increased energetic
202 expenditure may exhaust the energy storage of the animal and thereby risk its
203 survival. Thus, we next aimed to determine whether the observed increase in *oxt*
204 expression is related to poikilotherm thermoregulation through OXT signaling, or
205 merely a result of globally altered regulation of gene expression. For this purpose, we
206 used the OXT receptor-specific antagonist (ORA) L-368,899, which was shown to
207 block OXT pathway from fish to mammals^{31,32}. Nile tilapia were injected
208 intraperitoneally with 1 mg/kg BW ORA and analyzed for their metabolic rate.
209 Results showed that ORA significantly suppressed the cold-driven reduction in
210 metabolic rate, an effect that was not detected in ORA-injected fish maintained in
211 normothermy (**Fig. 3a-b**). Importantly, the effectiveness of ORA was seen only down
212 to ~19°C, suggesting that oxytocinergic regulation is only effective within the life
213 history-shaped metabolic constraints of the species. This finding was accompanied by
214 a significant reduction of plasma cortisol in ORA-treated fish exposed to cold stress
215 (**Fig. 3c**). ORA did not affect plasma levels of glucose or lactate, supporting
216 temperature-related metabolic rate regulation by OXT through modulation of
217 physiological stress response.

218 The timeframe of the experiment was dictated by the previously reported
219 pharmacokinetics of L-368,899³². Therefore, although ORA did not affect glucose
220 and lactate levels (**Fig. 3d** and **Fig. 3e**, respectively), we could not exclude the
221 involvement of OXT in gluconeogenesis and lactate metabolism, as these effects may
222 require prolonged activation. ORA probably led to increased *oxt* expression due to
223 activation of a feedback loop aimed to regain OXT receptor (OXTR) activity.
224 Interestingly, this effect was more robust under normothermic conditions (**Fig. 3f**).
225 Real-time PCR analysis of mRNAs which were also used for transcriptome validation
226 showed that their expression was either unchanged or affected mainly by the change
227 in temperature, rather than by ORA treatment (**Fig. 3g** and **Supp. Fig. 4**). The second
228 most downregulated gene in response to cold, *anserinase (ansn)* (**Fig. 2d**), is an
229 orthologue of the homeothermic carnosinase enzyme unique to poikilothermic
230 vertebrates^{45,46}. Interestingly, ORA significantly induced *ansn* mRNA expression
231 (**Fig. 3h**). These catabolic enzymes and their anserine/carnosine substrates have been
232 associated with cognitive functioning, neurovascular activity and physiological
233 homeostasis of histidine-containing dipeptides⁴⁵⁻⁴⁷. This further supports the specific
234 activity of OXT in homeostatic regulation of tilapia's metabolic response to cold
235 stress.

236 *Evolutionary conservation of OXT signaling in temperature-related homeostasis*
237 Our findings in Nile tilapia suggested that OXT signaling is a central regulatory
238 pathway for temperature-related metabolic homeostasis in poikilotherms. To expand
239 the evolutionary relevance of our findings, we used zebrafish (*Danio rerio*) as a
240 complementary species. Although both species belong to the class of ray-finned fish
241 (*Actinopterygii*), they are separated by over 300 million years of evolution⁴⁸.
242 Furthermore, while Nile tilapia originate from Africa, zebrafish originate from the
243 Indian subcontinent and naturally experience a wider temperature range, making it
244 more resilient to temperature extremes⁹. Thus, we used *oxt* and *oxtr* knockout (*oxt*^{-/-}
245 and *oxtr*^{-/-}, respectively) zebrafish germlines^{49,50} to analyze the involvement of OXT
246 signaling in the central regulation of temperature-related metabolism in a distant
247 poikilothermic species (**Fig. 4a**). Our analysis demonstrated that under normothermic
248 but not under extreme cold conditions, *oxtr*^{-/-} and, to a lesser extent, *oxt*^{-/-} mutant
249 zebrafish display significantly reduced RMR (**Fig. 4b**). This finding suggests that
250 OXT signaling is involved in maintaining basal metabolic functions in zebrafish. In

251 view of the suppressed baseline RMR in *oxt*^{-/-} and *oxtr*^{-/-}, the possible link between
252 OXT signaling and zebrafish RMR during cold exposure was analyzed by subtracting
253 the baseline RMR from the average RMR in each temperature (**Fig. 4c**). A direct
254 correlation was found between reduced water temperature and zebrafish RMR; yet,
255 this RMR suppression was faster in wild-type (WT) than in *oxt*^{-/-} and *oxtr*^{-/-} mutants
256 (**Fig. 4c**). These findings support OXT signaling as a key pathway in the regulation of
257 zebrafish baseline metabolic maintenance and cold-induced homeostatic adaptation.

258

259 Discussion

260 Homeostasis is a fundamental dogma in physiology. It states that environmental
261 perturbations elicit physiological responses in the organism, which strive to regain
262 stability and maintain fitness^{1,3}. While the central and physiological responses of
263 homeotherms to cold stress have been extensively studied, research of low
264 temperature-related homeostasis in poikilothermic vertebrates has been narrowed to
265 heat seeking behaviors, antifreeze protein production or hibernation^{4,22}. Nevertheless,
266 several studies demonstrated that active physiological and central modifications occur
267 in poikilothermic fish exposed to cold stress^{9,10,12,13}. Because the vertebrate
268 hypothalamus serves as the homeostatic regulator of many physiological processes, its
269 active response to extreme cold should support a thermoregulatory function.
270 However, central pathways orchestrating such homeostatic responses have yet been
271 identified⁷. Our current findings provide pioneering evidence for a central
272 neuroendocrine regulation of metabolic rate in a poikilothermic vertebrate under cold
273 stress conditions. We show that extreme cold exposure elicits a physiological stress
274 response, which is accompanied by transcriptional upregulation of *oxt* in the
275 midbrain-hypothalamic compartment. Next, we used an OXTR-specific antagonist
276 and genetic KO models to demonstrate that OXT signaling regulates both metabolic
277 rate and homeostatic physiology in cold-exposed poikilothermic vertebrates.
278 Importantly, these data can also expand our understanding of the ecological impacts
279 of globally increased incidences of extreme weather events and of invasive fish
280 species, inadvertently introduced by the constantly expanding global aquaculture.
281 Acute cold exposure was shown to induce stress parameters including increased levels
282 of plasma cortisol and catecholamines from fish to human^{11,15,51}. However, while

283 mammals exposed to extreme cold exhibit induction of energetic expenditure^{4,51}, data
284 by us and others²² show that rapid cold exposure in fish leads to reduced metabolic
285 rate. As cold exposure suppresses feeding and activity in poikilothermic fish^{44,52},
286 reduction in energetic expenditure is clearly beneficial for its fitness and survival
287 under these conditions. Therefore, although these endocrine responses are widely
288 conserved throughout evolution, their physiological manifestations should still differ
289 according to the physiological constraints of the species and its life history.

290 The responses of poikilothermic fish to sharp declines in environmental temperatures
291 were generalized to behavioral thermoregulation or cessation of physiological
292 activity, whereas adaptive physiological mechanisms were considered only in polar or
293 endothermic fish species²². Nevertheless, despite the expected RMR reduction in
294 cold-exposed Nile tilapia, our data support an active homeostatic adaptation to the
295 new conditions within the physiological boundaries of a tropical poikilotherm. This is
296 well reflected by the increased levels of plasma cortisol, which is a known regulator
297 of stress-related adaptation affecting multiple metabolic pathways⁵³. Furthermore,
298 cortisol was previously shown to significantly increase gluconeogenesis from lactate
299 in the liver of several fish species⁵³, which can explain why lactate levels remained
300 low although glucose levels increased in cold-exposed fish. These data support a more
301 active and complex homeostatic response to extreme cold than previously assumed.

302 Carbohydrate homeostasis is mainly performed in the liver⁵⁴, corticosteroids are
303 regulated by interrenal chromaffin cells of fish or adrenal cortex in mammals¹⁷, and
304 catecholamine homeostasis involves synthesis in the autonomic nervous system and
305 adrenal medulla and may also affect glucose homeostasis^{55,56}. If these physiological
306 changes are to increase the animal's fitness, they must be synchronized with signals
307 from the internal and external environments. While previous works have analyzed
308 whole-brain transcriptomes^{9,12,13}, our analysis focused in the vertebrates central
309 homeostatic center, the hypothalamus³⁶. Hence, in our search for a central regulator of
310 the homeostatic response to cold stress in the poikilothermic Nile tilapia, we
311 performed transcriptome analysis of the midbrain-hypothalamic compartment. The
312 results suggested increased expression of genes involved in oxygen transport, cellular
313 apoptosis and circadian rhythm pathways and suppressed expression of genes
314 involved in pathways of peptide-related receptor signaling. This generally supports
315 our initial hypothesis that poikilotherms exhibit active regulation of cold-driven

316 homeostatic responses. Furthermore, the general suppression of peptide-related
317 signaling is in line with our finding that cold exposure strongly affected midbrain *oxt*
318 expression, suggesting that OXT is involved in the central regulation of the
319 homeostatic response to cold stress. OXT is a known homeostasis-controlling
320 neuropeptide involved in the regulation of metabolic physiology, behavioral and
321 neuroendocrine stress responses and was recently suggested as a mediator of
322 interactions between these homeostatic functions^{30,57}. Additionally, OXT peptide
323 sequence is evolutionarily conserved from worms to humans and so are some of its
324 functions⁵⁸. OXT and its cognate receptor are known regulators of mammalian core
325 temperature by activation of physiological heat generation pathways^{30,42}. OXT and
326 OXTR mutant mice displayed impaired thermoregulation^{42,59} and their central
327 recovery was sufficient to restore this function^{43,60}, further supporting a direct
328 involvement of OXT in temperature-related homeostasis. Nonetheless, to our
329 knowledge, the role of OXT in temperature-related metabolic homeostasis of
330 poikilothermic vertebrates has not yet been elucidated.

331 Strikingly, administration of ORA suppressed the temperature-dependent reduction in
332 standard metabolic rate of cold-exposed tilapia. In addition, ORA affected plasma
333 cortisol and central expression of specific mRNAs, supporting OXT signaling as an
334 active and specific modulatory pathway of cold-related metabolic rate and physiology
335 in a poikilothermic vertebrate model. These findings suggest that extreme cold
336 exposure induce oxytocinergic signaling in the hypothalamus in order to suppress
337 general energetic expenditure. Aiming to gain an evolutionary perspective of our
338 findings, we analyzed our recently generated *oxt*^{-/-}⁴⁹ and *oxtr*^{-/-}⁵⁰ zebrafish lines under
339 similar temperature challenge. Both mutant lines exhibited lower RMR under
340 normothermy, suggesting that OXT signaling has an important role in maintaining
341 general metabolism in the animal. This is in agreement with previous findings that
342 mouse *Oxt*^{-/-} and *Oxtr*^{-/-} models demonstrate imbalanced energetic consumption
343 versus expenditure⁴². Nonetheless, as seen in tilapia, mutant zebrafish exposed to
344 extreme cold displayed lower RMR reduction rate compared to WT zebrafish.

345 In light of our current findings, we suggest that OXT signaling is a key regulator of
346 low temperature-related metabolism in poikilothermic vertebrates. Moreover, we
347 propose that instead of passive metabolism in poikilothermic vertebrates exposed to
348 low temperatures²², there is an adaptive regulation of metabolic homeostasis, within

349 physiological constrains. Therefore, while oxytocinergic signaling in homeotherms
350 provoke internal heat production to maintain activity in cold environments, it actively
351 suppresses energetic expenditure in cold exposed poikilotherms aiming to preserve
352 energetic storage under low activity conditions. This notion should be incorporated
353 into predictive modeling for aquaculture and invasive potential when considering
354 introduction of non-native poikilotherms^{23,25,28}, taking into account their homeostatic
355 range in addition to their life history ecosystem. The relatively high amenability of
356 aquaculture species to genome editing and rapid industry growth⁶¹ suggest that these
357 considerations should also be applied to genome-edited lines intended for aquaculture
358 in their native ecosystems. It was recently suggested that global temperature extremes
359 may risk more than 60% of piscine species, mainly by affecting embryonal and
360 reproductive life stages⁶². The high importance of OXT signaling to the embryonal
361 development of hypothalamo-neurohypophyseal system⁶³ and regulation of
362 reproductive functions and behaviors were previously demonstrated from
363 invertebrates to humans⁵⁸. Thus, we suggest OXT as an evolutionarily conserved key
364 neuroendocrine regulator of thermo-metabolic homeostasis in animals.

365

366

367

368 **Materials and Methods**

369 **Animals**

370 The experiments were approved by the Agricultural Research Organization
371 Committee for Ethics in Using Experimental Animals (approval number: 806/18 IL).
372 Nile tilapia males (body weight, 80 ± 15 g) were raised in cylindrical 250-liter tanks (n
373 = 8 fish/tank). Temperature was maintained at 24–26°C. Ammonia and nitrite levels
374 were monitored. Fish were fed twice daily ad libitum with commercial tilapia feeds
375 (Zemach Feed Mills™, Israel). Zebrafish (body weight, 0.49 ± 0.12 g) were maintained
376 under standard procedures as previously described⁶⁴. Briefly, all genotypes were bred
377 and reared at 28.5°C under 14 h/10 h light/dark cycle. Embryos were raised at 28.5°C
378 in 30% Danieau's medium supplemented with 0.01 mg/L methylene blue. Fish were
379 deprived of food for 24 h prior to metabolic measurements to avoid digestion-related
380 oxygen consumption.

381

382 **Metabolic rate analysis**

383 The effect of gradual temperature decline on RMR was measured using an
384 intermittent-flow respirometry system (Loligo Systems, Viborg, Denmark). Tilapia
385 system included eight 1L acrylic cylindrical chambers that were equally allocated to
386 control or cold exposure groups. Chambers were placed in a thermally regulated water
387 tank with separated compartments of 77 L each. Temperature of control group was
388 maintained at 26°C (±0.5 °C) using a standard heating element, while temperature of
389 treatment group was regulated using a refrigerated/heated bath circulator (Arctic
390 Series A25, ThermoFisher Scientific, USA) linked to a submerged heat exchanger
391 coil. Oxygen levels in tanks were maintained at 90%-100% O₂ saturation using
392 multiple air stones and water were recirculated through a UV lamp apparatus to avoid
393 bacterial growth. Each respirometric chamber was connected to two separate water
394 pumps (Eheim, Germany). One was used for flushing between subsequent
395 measurements, whereas the other was used for recirculating water to allow for
396 dissolved oxygen measurement via a flow-through oxygen cell and a mini spot sensor
397 connected through an optical fiber to a Witrox oxygen meter. Temperature was
398 continuously monitored using a software-integrated thermometer; system operation as
399 well as data monitoring were performed using AutoResp software (ver. 2.2.2, Loligo

400 Systems). The respirometric system was drained and cleaned between runs to prevent
401 the development of biofilm which may cause background respiration.

402 The experiment included 24 fish (n=12 fish/treatment) and was divided into 3
403 subsequent and identical runs of 8 fish per run (n=4 fish/treatment) over the course of
404 one week. In each run, fish were weighed and randomly placed in either treatment or
405 control chambers for a 4-hour acclimation. Overnight measurements began at 5 pm
406 and lasted for 15 h, during which temperature for treatment group was reduced from
407 26°C to 14°C ($\pm 0.5^\circ\text{C}$) at an average rate of 0.75°C/h. Mass-specific O₂ consumption
408 ($\dot{\text{M}}\text{O}_2$; mg O₂/kg/h) was continuously measured in 8.5 minute cycles, each composed
409 of a “flush” (3 min), “wait” (0.5 min) and “measure” (5 min) periods. Duration of
410 measurement cycles was empirically tested to avoid reaching below 80% O₂
411 saturation and minimize additional effect of respiratory stress. For each animal, RMR
412 was analyzed in 1°C (± 0.5) bins.

413 Zebrafish system included eight 11.5 mL glass cylindrical chambers. Chambers were
414 placed in one of two thermally regulated 10 L water tanks connected through a 70 L
415 reservoir. Temperature was maintained at 27°C ($\pm 0.5^\circ\text{C}$) using a standard heating
416 element followed by gradual decrease averaged at $\sim 1^\circ\text{C}/\text{h}$ using a refrigerated/heated
417 bath circulator (Arctic Series A25, ThermoFisher Scientific, USA) linked to a heat
418 exchanger coil submerged in the main reservoir. Oxygen levels in tanks were
419 maintained at 90%-100% O₂ saturation. Each respirometric chamber was connected to
420 two separate miniature impeller pumps (PU10700, Loligo Systems). Flow scheme and
421 regulation were as described for tilapia. $\dot{\text{M}}\text{O}_2$ was continuously measured using 300
422 seconds cycles, each composed of a “flush” (90 seconds), “wait” (30 seconds) and
423 “measure” (180 seconds) periods. To avoid inter-measurements bias, every trial
424 contained 1-2 fish from each genotype, which were randomly assigned to the
425 respirometric chambers. For each animal, RMR was analyzed in 1°C (± 0.5) bins.

426

427 **Pharmacological treatment**

428 To assess the involvement of OXT signaling in the metabolic rate at rest of cold-
429 exposed Nile tilapia, fish were intraperitoneally injected with L-368,899 (ChemCruz,
430 Dallas, TX, USA), which is a known ORA^{31,32}. Control fish were intraperitoneally
431 injected with saline. Metabolic analysis of pharmacologically treated fish was

432 performed as described above, with slight modifications. Analysis was performed in
433 four replicates, each included 4 control (2 normothermy and 2 cold- exposed) and 4
434 ORA-treated (2 normothermy and 2 cold-exposed) fish. In view of the previously
435 described pharmacokinetics of L-368,899^{29,30}, temperature reduction in the cold-
436 exposed group was modified to 1.25-1.5 °C/h and started immediately following ORA
437 administration.

438 **Tissue collection and biochemical analysis**

439 At the end of each run, blood was collected via the caudal vein using a 23-gauge
440 hypodermic needle rinsed with heparin (200 IU/ml). Blood glucose levels were
441 measured using a FreeStyle Optimum glucometer (Abbott Diabetes Care, Witney,
442 UK). Plasmas were separated from blood cells and platelets by centrifugation at
443 4°C/3.2 g for 20 min, transferred to 1.5 mL tubes and stored at -80°C until further
444 analysis. Following blood collection, weight and total length were measured for each
445 fish and the diencephalon, including the preoptic area, were micro-dissected and snap-
446 frozen in liquid nitrogen. Subsequently, plasma lactate, triglycerides and total protein
447 content, as well as cortisol and growth hormone (GH) levels, were measured. Lactate,
448 triglycerides and total protein were quantified using the Cobas c111 analyzer (Roche
449 diagnostics GmbH, Mannheim Germany) as previously described by Segev-Hadar et
450 al.³⁸. Cortisol and GH were quantified according to previously published protocols by
451 Yeh et al.⁶⁵ and Mizrahi et al.⁶⁶.

452

453 **RNA extraction and transcriptome sequencing**

454 Total RNA was extracted using TRIzol® reagent (Life Technologies Corporation,
455 Carlsbad, USA) according to manufacturer protocol and purified to remove remaining
456 DNA contamination using the TURBO DNA-free™ kit (Invitrogen, USA). RNA
457 concentration and purity were determined using an Epoch Microplate
458 Spectrophotometer (BioTek, USA). RNA samples from treatment and control groups
459 (n=4/treatment) were sequenced at the Technion Genome Center (Technion Institute
460 of Technology, Haifa, Israel). RNA integrity was tested using an Agilent 2200
461 TapeStation (Agilent Technologies, USA). Subsequently, poly (A) mRNA was
462 isolated from the total RNA with poly (dT) oligo-attached magnetic beads, and cDNA
463 libraries were prepared using the TruSeq RNA Sample Preparation Kit (Illumina,

464 USA) following the manufacturer protocol. Eight cDNA libraries were sequenced on
465 a single lane by the HiSeq2500 sequencing platform (Illumina, USA) at 2×100 bp
466 paired-end (PE) reads. The data have been deposited in the GEO database (accession
467 number GSE159019).

468

469 **Gene expression analysis.** The *O. niloticus* genome was downloaded from NCBI on
470 April 2019 (v.1.0). Reads were aligned to the genome using Hisat2⁶⁷, and gene
471 expression was determined using IsoEM2. Differential gene expression was
472 determined using IsoDE2⁴⁰, which reports a confident fold-change ($P < 0.01$). Genes
473 with a confident fold-change > 2 were considered differentially expressed.
474 Upregulated and downregulated genes expressed above 1 TPM in at least one
475 condition were submitted to g:Profiler⁴¹ for functional annotation analysis using *O.*
476 *niloticus* as background. Real-Time PCR validation of selected genes was performed
477 as previously described³⁸. Briefly, possible genomic DNA contamination was
478 eliminated by treatment with Invitrogen TURBO DNA-freeTM kit (Thermo Fisher
479 Scientific, Vilnius, Lithuania) according to the manufacturer's protocol. DNase-free
480 total RNA (0.5 μ g) was reverse-transcribed using Verso cDNA kit (Thermo Fisher
481 Scientific; naïve fish) or High Capacity cDNA Reverse Transcription kit (Thermo
482 Fisher Scientific; ORA experiment) according to the manufacturer's protocol. cDNA
483 was stored at -20°C until quantitation by real-time PCR. Hypothalamic gene
484 expression levels were analyzed by quantitative PCR using a StepOnePlus Real-Time
485 PCR System (Applied Biosystems, Inc. Foster City, CA, USA). *elongation factor 1*
486 *alpha (ef1 α)* and β -*actin* served as reference genes (**Supp. Table 2**). Each reaction
487 consisted of 5 μ L SYBRR green dye (Thermo Fisher Scientific, Vilnius, Lithuania),
488 0.5 μ L of 2 μ M forward and reverse primers, 2.5 μ L of ultra-pure water (UPW) and
489 1.5 μ L of cDNA template (diluted 1:16 in UPW). Analysis was performed in
490 duplicates. Controls without the cDNA were used to test for non-specific
491 amplification. Specificity of the primers was validated by Sanger sequencing and melt
492 curve analysis was used to confirm amplification of a single product. Amplification
493 was performed under the following conditions; 95.0°C for 20 sec, 40 cycles at 95.0°C
494 for 3 sec, and 60.0°C for 30 sec, followed by one cycle at 95.0°C for 15 sec and
495 60.0°C for 1 min, 95.0°C for 15 sec for the generation of the melting curve.
496 Fluorescence signals of the target and reference genes in the control and treatment

497 groups were analyzed using StepOne software Version 2.3. Relative quantification of
498 within-tissue expression was determined using the $2^{-\Delta\Delta CT}$ method⁶⁸.

499

500 **Statistical analysis**

501 Values are presented as mean \pm standard deviation (SD). The level of significance
502 was set to $p < 0.05$ in all performed analyses. A two-way ANOVA (Tukey's multiple
503 comparisons) was used to test for RMR differences between normothermic and cold-
504 exposed fish. Unpaired Student's t-test test was used for analyzing the physiological
505 parameters measured and for analyzing Real-Time PCR data of transcriptome
506 validation. Analysis of RMR differences of the pharmacological analysis
507 demonstrated that the data significantly diverged from linearity. Therefore, the data
508 were analyzed using non-linear regression followed by an extra sum-of-squares F test
509 which demonstrated that the data sets could not be represented by a single curve
510 ($p=0.0035$). Analysis of physiological parameters measured and Real-Time PCR data
511 were performed using a two-way ANOVA (Tukey's multiple comparisons). A two-
512 way ANOVA (Tukey's multiple comparisons) was used to test for RMR differences
513 between different zebrafish genotypes at specific temperatures. Due to baseline RMR
514 differences of the zebrafish mutants, data were plotted as delta RMR ($RMR[27^\circ C] -$
515 $RMR[X^\circ C]$). Data sets were further analyzed by linear regression which demonstrated
516 that slopes are significantly different ($p=0.0013$). Statistical analyses performed using
517 GraphPad Prism 7.03.

518 **Reference**

519 1 Sieck, G. C. Physiology in Perspective: Homeostasis and Evolution. *Physiology* **32**, 98-
520 99, doi:10.1152/physiol.00002.2017 (2017).
521 2 Boyce, A. & Jenking, C. M. in *Metabolism, movement and control* (eds A. Boyce & C.
522 M. Jenking) 142-148 (Macmillan Education UK, 1980).
523 3 Woods, H. A. & Wilson, J. K. An information hypothesis for the evolution of
524 homeostasis. *Trends in Ecology & Evolution* **28**, 283-289,
525 doi:<https://doi.org/10.1016/j.tree.2012.10.021> (2013).
526 4 Tan, C. L. & Knight, Z. A. Regulation of Body Temperature by the Nervous System.
527 *Neuron* **98**, 31-48, doi:10.1016/j.neuron.2018.02.022 (2018).
528 5 Leriorato, J. C. & Nakamura, Y. Unpredictable extreme cold events: a threat to
529 range-shifting tropical reef fishes in temperate waters. *Marine Biology* **166**, 110,
530 doi:10.1007/s00227-019-3557-6 (2019).
531 6 Nitzan, T. et al. Transcriptome Analysis Reveals Common and Differential Response
532 to Low Temperature Exposure Between Tolerant and Sensitive Blue Tilapia
533 (*Oreochromis aureus*). *Frontiers in Genetics* **10**, doi:10.3389/fgene.2019.00100
534 (2019).

535 7 Clarke, A. Costs and consequences of evolutionary temperature adaptation. *Trends in Ecology & Evolution* **18**, 573-581, doi:<https://doi.org/10.1016/j.tree.2003.08.007> (2003).

538 8 Tseng, Y.-C. *et al.* Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish. *Frontiers in Zoology* **11**, 53, doi:[10.1186/s12983-014-0053-1](https://doi.org/10.1186/s12983-014-0053-1) (2014).

541 9 Hu, P. *et al.* Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. *Scientific Reports* **6**, 28952, doi:[10.1038/srep28952](https://doi.org/10.1038/srep28952) (2016).

544 10 Gracey, A. Y. *et al.* Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 16970, doi:[10.1073/pnas.0403627101](https://doi.org/10.1073/pnas.0403627101) (2004).

548 11 He, J. *et al.* Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia *Oreochromis niloticus* (L.), subjected to short-term low temperature stress. *Journal of thermal biology* **53**, 90-97, doi:<https://doi.org/10.1016/j.jtherbio.2015.08.010> (2015).

553 12 Li, B. J. *et al.* Genome-Wide Characterization of Alternative Splicing Events and Their Responses to Cold Stress in Tilapia. *Frontiers in Genetics* **11**, doi:[10.3389/fgene.2020.00244](https://doi.org/10.3389/fgene.2020.00244) (2020).

556 13 Hu, P. *et al.* Global identification of the genetic networks and cis-regulatory elements of the cold response in zebrafish. *Nucleic Acids Research* **43**, 9198-9213, doi:[10.1093/nar/gkv780](https://doi.org/10.1093/nar/gkv780) (2015).

559 14 Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. *The Journal of Experimental Biology* **222**, jeb193516, doi:[10.1242/jeb.193516](https://doi.org/10.1242/jeb.193516) (2019).

562 15 Chen, W. H., Sun, L. T., Tsai, C. L., Song, Y. L. & Chang, C. F. Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. *Gen Comp Endocrinol* **126**, 90-100, doi:[10.1006/gcen.2001.7772](https://doi.org/10.1006/gcen.2001.7772) (2002).

566 16 Abram, Q. H., Dixon, B. & Katzenback, B. A. Impacts of Low Temperature on the Teleost Immune System. *Biology* **6**, doi:[10.3390/biology6040039](https://doi.org/10.3390/biology6040039) (2017).

568 17 Biran, J., Blechman, J., Wircer, E. & Levkowitz, G. in *Model animals in neuroendocrinology: From worm to mouse to man* (eds M. Ludwig & G. Levkowitz) Ch. 5, pp101-131 (Wiley-Blackwell, 2018).

571 18 Tabarean, I., Morrison, B., Marcondes, M. C., Bartfai, T. & Conti, B. Hypothalamic and dietary control of temperature-mediated longevity. *Ageing Research Reviews* **9**, 41-50, doi:<https://doi.org/10.1016/j.arr.2009.07.004> (2010).

574 19 Liu, H., Xu, Y. & Hu, F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. *Frontiers in Endocrinology* **11**, doi:[10.3389/fendo.2020.578830](https://doi.org/10.3389/fendo.2020.578830) (2020).

577 20 Zhang, W. & Bi, S. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis. *Frontiers in Endocrinology* **6**, doi:[10.3389/fendo.2015.00136](https://doi.org/10.3389/fendo.2015.00136) (2015).

580 21 Biran, J. & Levavi-Sivan, B. in *Encyclopedia of Reproduction (Second Edition)* (ed Michael K. Skinner) 362-368 (Academic Press, 2018).

582 22 Soyano, K. & Mushirobira, Y. in *Survival Strategies in Extreme Cold and Desiccation: Adaptation Mechanisms and Their Applications* (eds Mari Iwaya-Inoue, Minoru Sakurai, & Matsuo Uemura) 149-164 (Springer Singapore, 2018).

585 23 Cassemiro, F. A. S., Bailly, D., da Graça, W. J. & Agostinho, A. A. The invasive
586 potential of tilapias (Osteichthyes, Cichlidae) in the Americas. *Hydrobiologia* **817**,
587 133-154, doi:10.1007/s10750-017-3471-1 (2018).

588 24 FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable
589 development goals. *Rome. CC BY-NC-SA 3.0 IGO* (2018).

590 25 Zambrano, L., Martínez-Meyer, E., Menezes, N. & Peterson, A. T. Invasive potential
591 of common carp (*Cyprinus carpio*) and Nile tilapia (*Oreochromis niloticus*) in
592 American freshwater systems. *Canadian Journal of Fisheries and Aquatic Sciences*
593 **63**, 1903-1910, doi:10.1139/f06-088 (2006).

594 26 Mollo, E. *et al.* Factors promoting marine invasions: a chemoecological approach.
595 *Proceedings of the National Academy of Sciences of the United States of America*
596 **105**, 4582-4586, doi:10.1073/pnas.0709355105 (2008).

597 27 Barlow, G. *The Cichlid Fishes: Nature's Grand Experiment In Evolution*. (Hachette UK,
598 2008).

599 28 Lowe, M. R. *et al.* Survival, Growth and Reproduction of Non-Native Nile Tilapia II:
600 Fundamental Niche Projections and Invasion Potential in the Northern Gulf of
601 Mexico. *PLOS ONE* **7**, e41580, doi:10.1371/journal.pone.0041580 (2012).

602 29 van de Pol, I., Flik, G. & Gorissen, M. Comparative Physiology of Energy Metabolism:
603 Fishing for Endocrine Signals in the Early Vertebrate Pool. *Frontiers in endocrinology*
604 **8**, 36-36, doi:10.3389/fendo.2017.00036 (2017).

605 30 McCormack, S. E., Blevins, J. E. & Lawson, E. A. Metabolic Effects of Oxytocin.
606 *Endocrine Reviews* **41**, 121-145, doi:10.1210/endrev/bnz012 (2019).

607 31 Zimmermann, F. F., Gaspary, K. V., Siebel, A. M. & Bonan, C. D. Oxytocin reversed
608 MK-801-induced social interaction and aggression deficits in zebrafish. *Behavioural*
609 *Brain Research* **311**, 368-374, doi:<https://doi.org/10.1016/j.bbr.2016.05.059> (2016).

610 32 Thompson, K. L. *et al.* Pharmacokinetics and disposition of the oxytocin receptor
611 antagonist L-368,899 in rats and dogs. *Drug metabolism and disposition: the*
612 *biological fate of chemicals* **25**, 1113-1118 (1997).

613 33 Sokolova, I. in *Encyclopedia of Ecology (Second Edition)* (ed Brian Fath) 558-561
614 (Elsevier, 2019).

615 34 Zhu, H. P. *et al.* Screening and identification of microsatellite markers associated
616 with cold tolerance in Nile tilapia *Oreochromis niloticus*. *Genetics and molecular*
617 *research : GMR* **14**, 10308-10314, doi:10.4238/2015.August.28.16 (2015).

618 35 Vijayan, M. M., Pereira, C., Grau, E. G. & Iwama, G. K. Metabolic Responses
619 Associated with Confinement Stress in Tilapia: The Role of Cortisol. *Comparative*
620 *Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology*
621 **116**, 89-95, doi:[https://doi.org/10.1016/S0742-8413\(96\)00124-7](https://doi.org/10.1016/S0742-8413(96)00124-7) (1997).

622 36 Machluf, Y., Gutnick, A. & Levkowitz, G. Development of the zebrafish
623 hypothalamus. *Ann N Y Acad Sci* **1220**, 93-105, doi:10.1111/j.1749-
624 6632.2010.05945.x (2011).

625 37 Pearson, C. A. & Placzek, M. Development of the Medial Hypothalamus: Forming a
626 Functional Hypothalamic-Neurohypophyseal Interface. *Current Topics in*
627 *Developmental Biology* **106**, 49-88, doi:10.1016/B978-0-12-416021-7.00002-X
628 (2013).

629 38 Segev-Hadar, A., Alupo, G., Tal, K., Nitzan, T. & Biran, J. Identification and
630 characterization of a non-muscular myostatin in the Nile tilapia. *Frontiers in*
631 *endocrinology* **11**, 94-94, doi:10.3389/fendo.2020.00094 (2020).

632 39 Simoes, J. M., Teles, M. C., Oliveira, R. F., Van der Linden, A. & Verhoye, M. A three-
633 dimensional stereotaxic MRI brain atlas of the cichlid fish *Oreochromis*
634 *mossambicus*. *PLoS One* **7**, e44086, doi:10.1371/journal.pone.0044086 (2012).

635 40 Al Seesi, S., Tiagueu, Y. T., Zelikovsky, A. & Măndoiu, I. I. Bootstrap-based differential
636 gene expression analysis for RNA-Seq data with and without replicates. *BMC*
637 *genomics* **15**, S2, doi:10.1186/1471-2164-15-S8-S2 (2014).

638 41 Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and
639 conversions of gene lists (2019 update). *Nucleic Acids Research* **47**, W191-W198,
640 doi:10.1093/nar/gkz369 (2019).

641 42 Nishimori, K. *et al.* in *Progress in Brain Research* Vol. 170 (eds Inga D. Neumann &
642 Rainer Landgraf) 79-90 (Elsevier, 2008).

643 43 Xi, D. *et al.* Ablation of Oxytocin Neurons Causes a Deficit in Cold Stress Response.
644 *Journal of the Endocrine Society* **1**, 1041-1055, doi:10.1210/jse.2017-00136 (2017).

645 44 Lu, D.-L. *et al.* Fasting enhances cold resistance in fish through stimulating lipid
646 catabolism and autophagy. *J Physiol* **597**, 1585-1603, doi:10.1113/JP277091 (2019).

647 45 Yamada, S., Tanaka, Y. & Ando, S. Purification and sequence identification of
648 anserinase. *The FEBS Journal* **272**, 6001-6013, doi:10.1111/j.1742-
649 4658.2005.04991.x (2005).

650 46 Pirone, L., Di Gaetano, S., Rizzarelli, E., Bellia, F. & Pedone, E. Focusing on the
651 functional characterization of the anserinase from *Oreochromis niloticus*.
652 *International Journal of Biological Macromolecules* **130**, 158-165,
653 doi:<https://doi.org/10.1016/j.ijbiomac.2019.02.118> (2019).

654 47 Kaneko, J., Enya, A., Enomoto, K., Ding, Q. & Hisatsune, T. Anserine (beta-alanyl-3-
655 methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in
656 aged A β PPswe/PSEN1dE9 Alzheimer's-model mice. *Scientific Reports* **7**, 12571,
657 doi:10.1038/s41598-017-12785-7 (2017).

658 48 Oliveira, R. & Galhardo, L. Psychological Stress and Welfare in Fish. *Annual Review of*
659 *Biomedical Sciences* **11**, doi:10.5016/1806-8774.2009v11p1 (2009).

660 49 Blechman, J., Anbalagan, S., Matthews, G. G. & Levkowitz, G. Genome editing
661 reveals idiosyncrasy of CNGA2 ion channel-directed antibody immunoreactivity
662 toward oxytocin. *Frontiers in cell and developmental biology* **6**, 117,
663 doi:10.3389/fcell.2018.00117 (2018).

664 50 Woods, I. G. *et al.* Neuropeptidergic Signaling Partitions Arousal Behaviors in
665 Zebrafish. *The Journal of Neuroscience* **34**, 3142, doi:10.1523/JNEUROSCI.3529-
666 13.2014 (2014).

667 51 Wilkerson, J. E., Raven, P. B., Bolduan, N. W. & Horvath, S. M. Adaptations in man's
668 adrenal function in response to acute cold stress. *Journal of Applied Physiology* **36**,
669 183-189, doi:10.1152/jappl.1974.36.2.183 (1974).

670 52 Lemly, A. D. Winter Stress Syndrome: An Important Consideration for Hazard
671 Assessment of Aquatic Pollutants. *Ecotoxicology and Environmental Safety* **34**, 223-
672 227, doi:<https://doi.org/10.1006/eesa.1996.0067> (1996).

673 53 Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: dynamics,
674 mechanisms of action, and metabolic regulation. *Reviews in Fish Biology and*
675 *Fisheries* **9**, 211-268, doi:10.1023/A:1008924418720 (1999).

676 54 Han, H. S., Kang, G., Kim, J. S., Choi, B. H. & Koo, S. H. Regulation of glucose
677 metabolism from a liver-centric perspective. *Experimental & molecular medicine* **48**,
678 e218, doi:10.1038/emm.2015.122 (2016).

679 55 Rizza, R. A., Cryer, P. E., Haymond, M. W. & Gerich, J. E. Adrenergic mechanisms of
680 catecholamine action on glucose homeostasis in man. *Metabolism* **29**, 1155-1163,
681 doi:[https://doi.org/10.1016/0026-0495\(80\)90025-6](https://doi.org/10.1016/0026-0495(80)90025-6) (1980).

682 56 Li, A.-J., Wang, Q., Elsarelli, M. M., Brown, R. L. & Ritter, S. Hindbrain Catecholamine
683 Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.
684 *Endocrinology* **156**, 2807-2820, doi:10.1210/en.2015-1138 (2015).

685 57 Onaka, T. & Takayanagi, Y. Role of oxytocin in the control of stress and food intake.
686 *Journal of Neuroendocrinology* **31**, e12700, doi:10.1111/jne.12700 (2019).

687 58 Wircer, E., Ben-Dor, S. & Levkowitz, G. Non-Mammalian Models for
688 Neurohypophyseal Peptides. *Molecular Neuroendocrinology: From Genome to*
689 *Physiology*, 301-328, doi:10.1002/9781118760369.ch14 (2016).

690 59 Kasahara, Y., Takayanagi, Y., Kawada, T., Itoi, K. & Nishimori, K. Impaired
691 thermoregulatory ability of oxytocin-deficient mice during cold-exposure. *Biosci*
692 *Biotechnol Biochem* **71**, 3122-3126, doi:10.1271/bbb.70498 (2007).

693 60 Kasahara, Y. *et al.* Oxytocin Receptor in the Hypothalamus Is Sufficient to Rescue
694 Normal Thermoregulatory Function in Male Oxytocin Receptor Knockout Mice.
695 *Endocrinology* **154**, 4305-4315, doi:10.1210/en.2012-2206 (2013).

696 61 Gratacap, R. L., Wargelius, A., Edvardsen, R. B. & Houston, R. D. Potential of genome
697 editing to improve aquaculture breeding and production. *Trends Genet* **35**, 672-684,
698 doi:10.1016/j.tig.2019.06.006 (2019).

699 62 Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life
700 cycle define climate vulnerability of fish. *Science* **369**, 65,
701 doi:10.1126/science.aaz3658 (2020).

702 63 Gutnick, A. *et al.* The hypothalamic neuropeptide oxytocin is required for formation
703 of the neurovascular interface of the pituitary. *Dev Cell* **21**, 642-654,
704 doi:10.1016/j.devcel.2011.09.004 (2011).

705 64 Biran, J. *et al.* Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a
706 paradoxical age-dependent stress behavior. *Scientific Reports* **10**, 9559,
707 doi:10.1038/s41598-020-66447-2 (2020).

708 65 Yeh, C. M., Glock, M. & Ryu, S. An optimized whole-body cortisol quantification
709 method for assessing stress levels in larval zebrafish. *PLoS One* **8**, e79406,
710 doi:10.1371/journal.pone.0079406 (2013).

711 66 Mizrahi, N. *et al.* Deciphering Direct and Indirect Effects of Neurokinin B and GnRH in
712 the Brain-Pituitary Axis of Tilapia. *Frontiers in Endocrinology* **10**,
713 doi:10.3389/fendo.2019.00469 (2019).

714 67 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
715 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*
716 **37**, 907-915, doi:10.1038/s41587-019-0201-4 (2019).

717 68 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-
718 time quantitative PCR and the 2- $\Delta\Delta CT$ method. *Methods* **25**, 402-408,
719 doi:<https://doi.org/10.1006/meth.2001.1262> (2001).

720

721

722

723 **Acknowledgements**

724 We thank Tatiana Slosman (Agricultural Research Organization) and Roy Hofi
725 (Weizmann Institute of Science) for animal care and Nitzan Konstantin for English
726 editing. This research was supported by grants 20-04-0055 (to J.B.) and 20-11-0026
727 (to A.C.) from the Chief Scientist of the Ministry of Agriculture and Rural
728 Development. We thank Jannik Herskin and Andreas Mørck (Loligo Systems) for
729 their technical assistance and graphical contribution of metabolic systems to Figures
730 1a and 4a. Other components in Figures 1a and 4a were created with [BioRender.com](https://biorender.com).

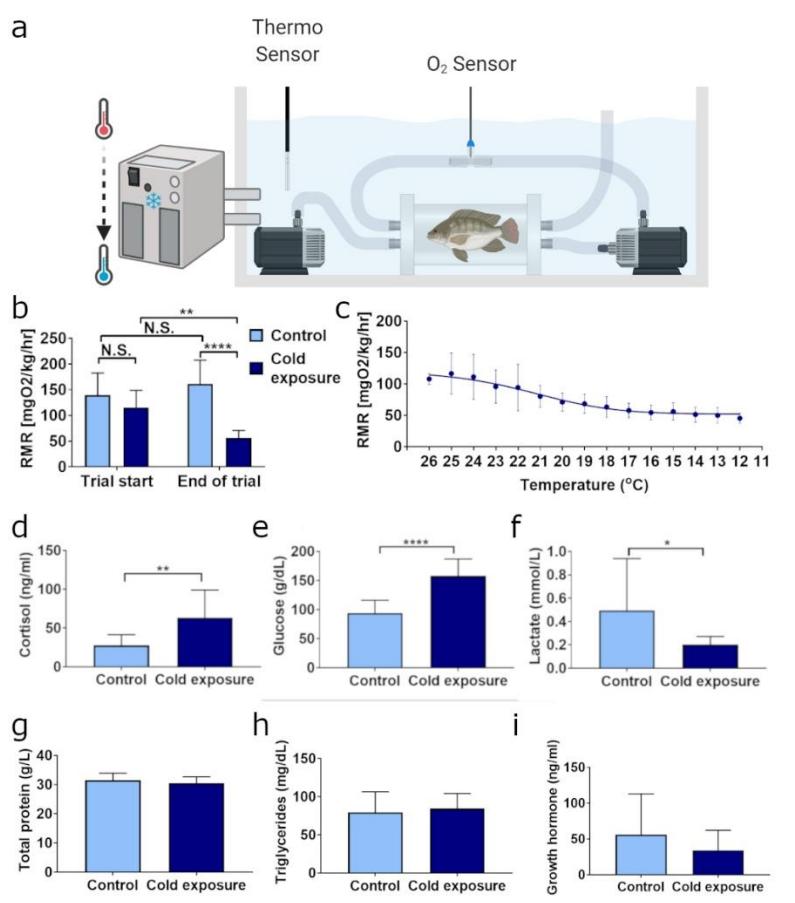
731

732 **Author contributions**

733 J.B., A.C. and R.N.K. conceived and designed the project. A.S.H., S.K., L.H., A.B.
734 and T.N. performed *in vivo* metabolic analyses, physiological and molecular analyses.
735 A.M.O, K.C.H and R.N.K performed the bioinformatics analysis. G.L. designed the
736 metabolic analysis of zebrafish mutants and contributed *oxt*^{-/-} and *oxtr*^{-/-} germlines.
737 J.B. prepared the figures. J.B., A.C., R.N.K. and A.M.O. wrote the manuscript. All
738 authors reviewed the manuscript.

739 **Declaration of interests**

740 The authors declare that no competing interests.


741

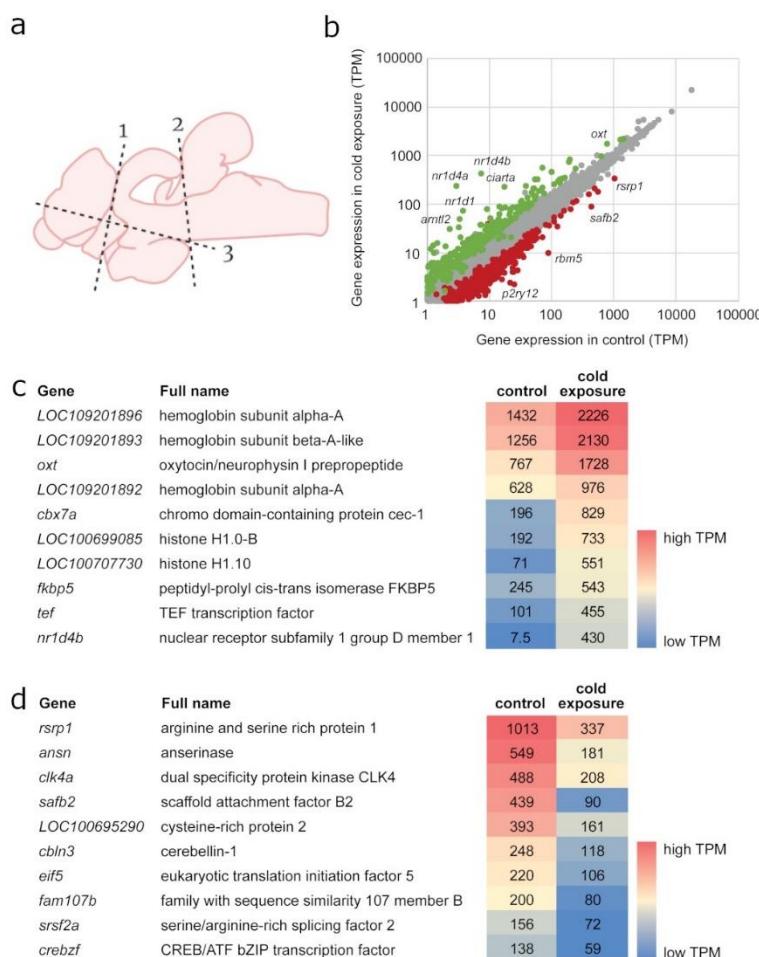
742

743 **Figures and Tables**

744 **Figure 1**

745

746


747

748 **Figure 1. Cold exposure suppresses metabolic rate and elicits physiological stress**
749 **response in Nile tilapia.** (a) Schematic representation of the experiment. Fish were
750 individually placed into 1L acrylic chambers connected to an oxygen measurement
751 cell and submerged into temperature regulated water reservoir. (b) Analysis of the
752 average metabolic rate at rest (RMR) of Nile tilapia prior to cold exposure (26°C and
753 25°C for control and cold-exposed fish, respectively) and following it (26°C and 14°C
754 for control and cold-exposed fish, respectively) indicate a significant reduction in the
755 RMR of exposed tilapia. (c) RMR analysis of cold-exposed fish in 1°C bins revealed
756 a direct but nonlinear correlation of the fish RMR with the environmental
757 temperature. (d and e) Plasma cortisol and blood glucose significantly increased
758 following cold exposure; however, paradoxically, plasma lactate levels were
759 decreased (f). (g-i) No significant changes were detected in plasma protein,
760 triglyceride (TG) or growth hormone (GH) levels. The data are presented as mean \pm
761 SD.*p < 0.05; **p < 0.01; ***p < 0.0001. n=12 fish/treatment.

762

763 **Figure 2**

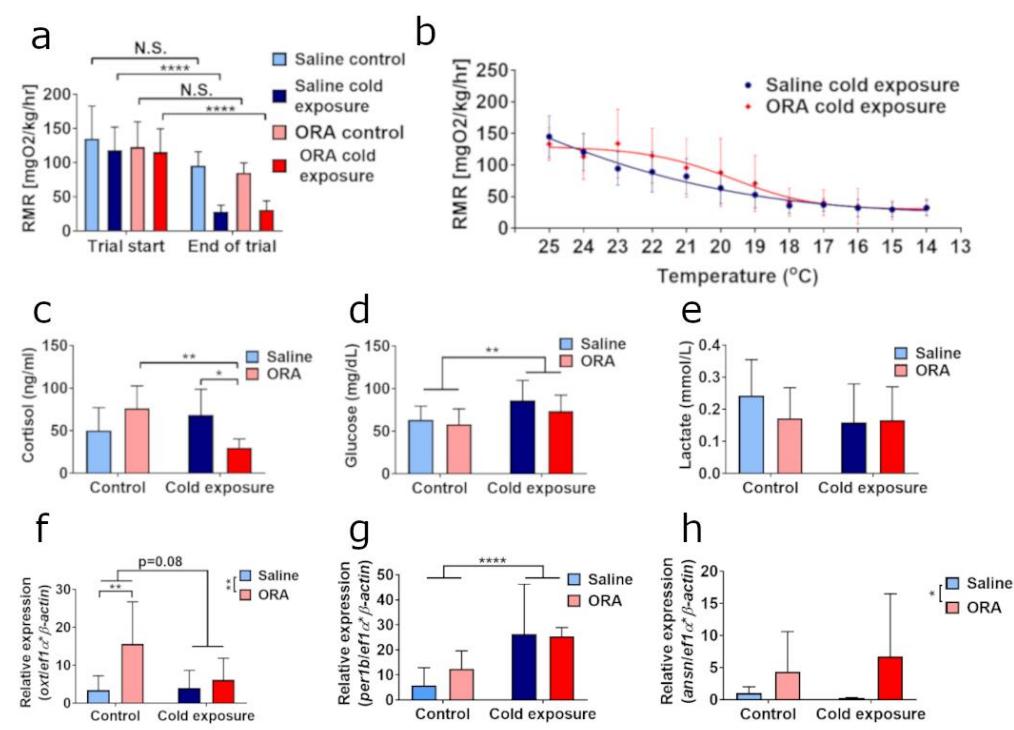
764

765

766 **Figure 2. Cold exposure induces a transcriptional hypothalamic response of**
767 **major neuroendocrine and metabolism related pathways. (a)** Nile tilapia brains
768 were micro-dissected to include all the major hypothalamic nuclei, including the
769 preoptic area. **(b)** Transcriptome analysis of hypothalami revealed an increased
770 expression of over 900 genes and suppressed expression of about 2,000 genes in
771 response to cold exposure. **(c)** Analysis of the most highly expressed upregulated
772 genes identified *oxt* as the most cold-responsive neuroendocrine factor, suggesting its
773 involvement in the adaptive response of Nile tilapia to cold exposure. **(d)** Analysis of
774 the most highly expressed downregulated genes yielded mainly genes involved in
775 mRNA expression and processing. TPM, transcripts per million.

776

777


778

779

780

781 **Figure 3**

782

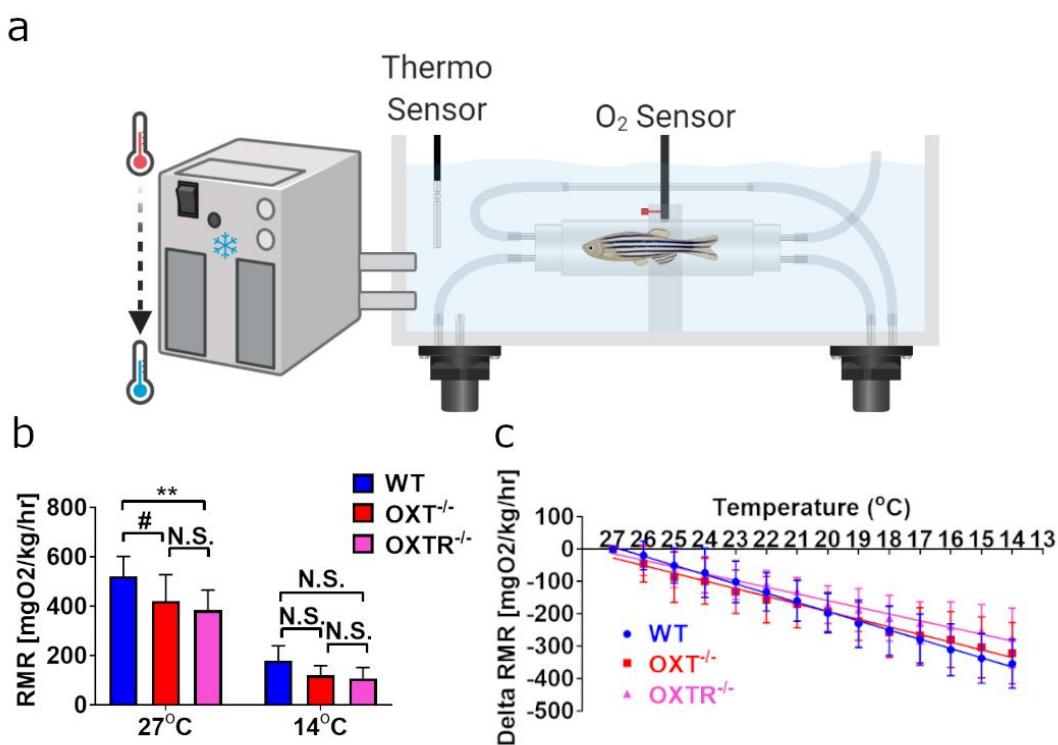
783

784 **Figure 3. Oxt-receptor antagonist inhibits the cold-induced decline in metabolic**
785 **rate and the physiological stress response in Nile tilapia. (a)** Analysis of the
786 average metabolic rate at rest (RMR) of Nile tilapia prior to cold exposure (24-24.5°C
787 for all groups) and following it (24°C and 14°C for control and cold-exposed fish,
788 respectively) indicate a significant reduction in the RMR of cold-exposed tilapia,
789 regardless of the ORA treatment. **(b)** Nonetheless, regression analysis of
790 normothermic and cold-exposed fish RMR in 1°C bins showed a significant
791 perturbation of the fish RMR by ORA administration (p=0.0035). The cold-induced
792 increase of plasma cortisol (c) but not of blood glucose (d) or lactate (e) was
793 significantly blunted following ORA treatment. As expected by the blockage of OXT
794 signaling, OXT expression was significantly increased by ORA (f). **(g,h)** While most
795 analyzed genes were responsive to the cold exposure, the expression of the enzyme-
796 coding *anserinase* responded significantly to ORA treatment. The data are presented
797 as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.0001. n=12 fish/treatment.

798

799

800


801

802

803 **Figure 4**

804

805

806

807 **Figure 4. Genetic perturbation of OXT signaling alters basal and cold-adaptive**
808 **metabolic rate in zebrafish.** (a) Fish were individually placed into a glass chamber
809 connected to an optical fiber for oxygen measurement, positioned in a temperature-
810 regulated water reservoir. (b) As compared to wild-type (WT) controls, *oxtr*^{-/-} and *oxtr*
811 ^{-/-} zebrafish displayed significant reduction in RMR under normothermic temperature
812 (27°C), but not during cold exposure (14°C). (c) Therefore, delta RMR
813 (RMR_{temperature}-RMR_{27°C}) was used to identify the adaptive cold-related effects of
814 OXT perturbation, within the genetic background of each line. Similarly to the
815 oxytocinergic effects detected in Nile tilapia, regression analysis of RMR data
816 demonstrated that genetic ablation of *oxtr* or *oxtr* significantly delayed RMR
817 suppression caused by reduced water temperature ($p=0.0013$). The data are presented
818 as mean \pm SD. ** $p < 0.01$; # $p=0.0792$; N.S., not significant. n=7-9 fish/treatment.

819

820 **Table 1. Functional annotation of genes downregulated upon cold exposure.**

GO term	Term name	Adjusted P-value	Number of genes
GO:0004930	G protein-coupled receptor activity	0.00339	43
GO:0008523	G protein-coupled peptide receptor activity	0.007352	13
GO:0001653	Peptide receptor activity	0.007909	13
GO:0038023	Signaling receptor activity	0.030744	54
GO:0060089	Molecular transducer activity	0.030744	54
GO:0004888	Transmembrane signaling receptor activity	0.033708	50
GO:0007166	Cell surface receptor signaling pathway	0.047196	40

821

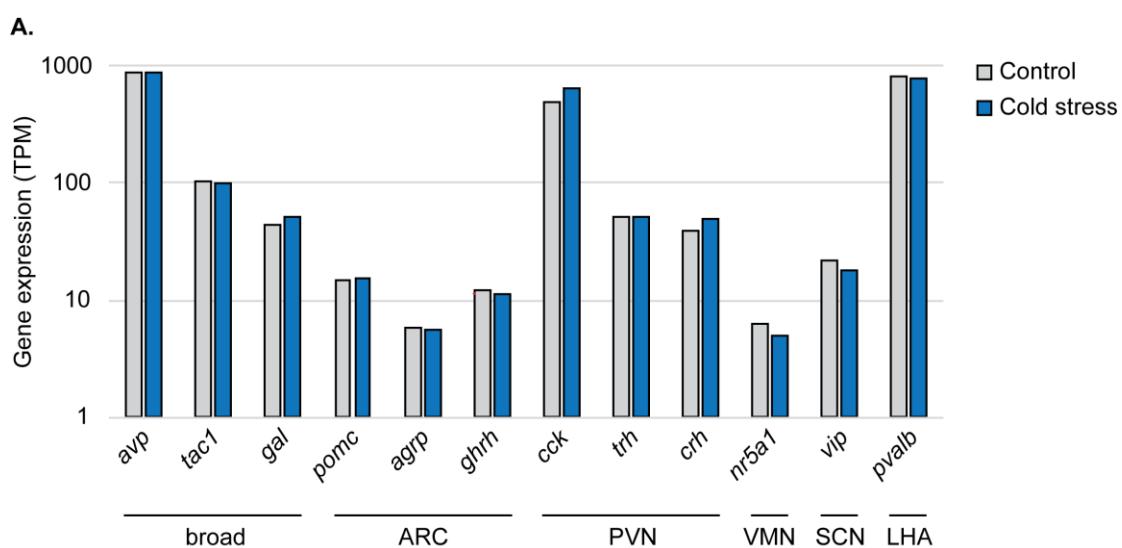
822

823 **Table 2. Functional annotation of genes upregulated upon cold exposure.**

GO term	Term name	Adjusted P-value	Number of genes
GO:0032922	Circadian regulation of gene expression	1.24E-6	6
GO:0005634	Nucleus	3.50E-5	45
GO:0003677	DNA binding	0.00024	37
GO:0007623	Circadian rhythm	0.00031	7
GO:0140110	Transcription regulator activity	0.00044	24
GO:0048511	Rhythmic process	0.00046	7
GO:0003700	DNA-binding transcription factor activity	0.00049	22
GO:0046983	Protein dimerization activity	0.00493	16
GO:0000981	DNA-binding transcription factor activity, RNA polymerase II-specific	0.00618	7
GO:0006270	DNA replication initiation	0.01200	4
GO:1901363	Heterocyclic compound binding	0.01401	90
GO:0097159	Organic cyclic compound binding	0.01504	90
GO:0097659	Nucleic-acid templated transcription	0.01522	36
GO:0032774	RNA biosynthetic process	0.01596	36
GO:0005833	Hemoglobin complex	0.01640	4
GO:0098531	Ligand-activated transcription factor activity	0.01833	5
GO:0004879	Nuclear receptor activity	0.01833	5
GO:0043231	Intracellular membrane-bounded organelle	0.03371	49
GO:0006915	Apoptotic process	0.03556	14
GO:0012501	Programmed cell death	0.04078	14
GO:0048523	Negative regulation of cellular process	0.04088	21
GO:0003676	Nucleic acid binding	0.04799	58
GO:0065007	Biological replication	0.04885	100

824

825


826

827

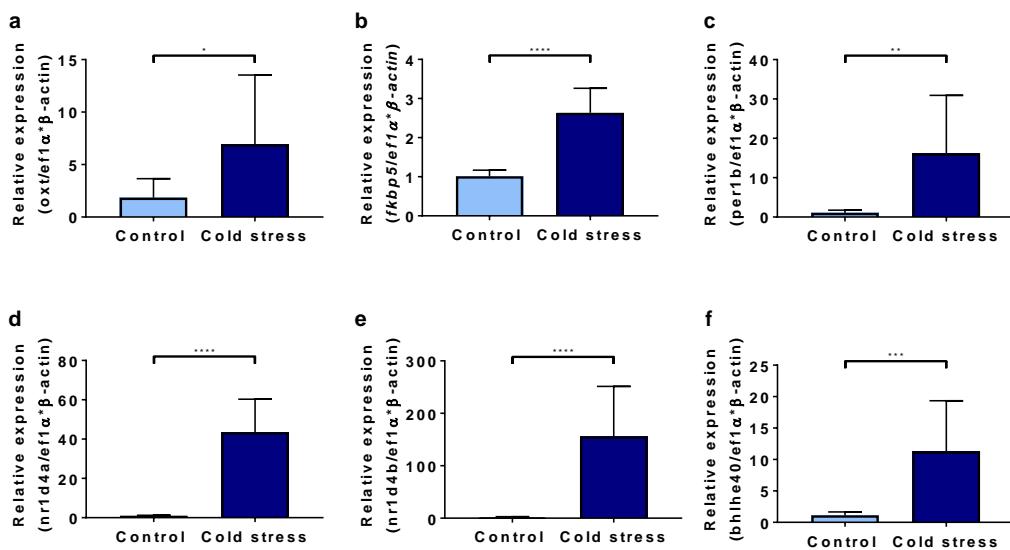
828 **Supplemental Information**

829 **Supplemental Figure 1**

830

831

832


833 **Supplemental Figure 1.** Validation of hypothalamic microdissection by RNAseq
834 analysis for expression of hypothalamic markers. No significant differences were
835 observed for *LOC10070874* (*avp*), *tac1*, *gal*, *pomc* (*pomca*), *LOC100691312* (*agrp*),
836 *ghrh*, *cck*, *trh*, *crh* (*crhb*), *nr5a1*, *LOC100705021* (*vip*) or *LOV100710987* (*pvalb*).
837 Genes are grouped by the hypothalamic nucleus they mark in the mammalian brain.
838 ARC, arcuate nucleus; PVN, paraventricular nucleus; VMN, ventromedial nucleus;
839 SCN, suprachiasmatic nucleus; LHA, lateral hypothalamic area.

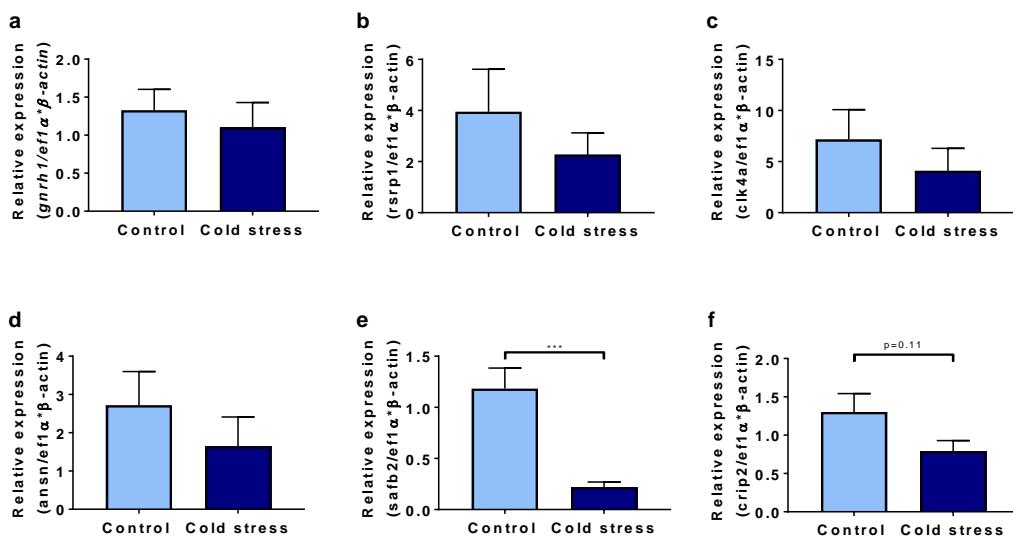
840

841

842 **Supplemental Figure 2**

843

844

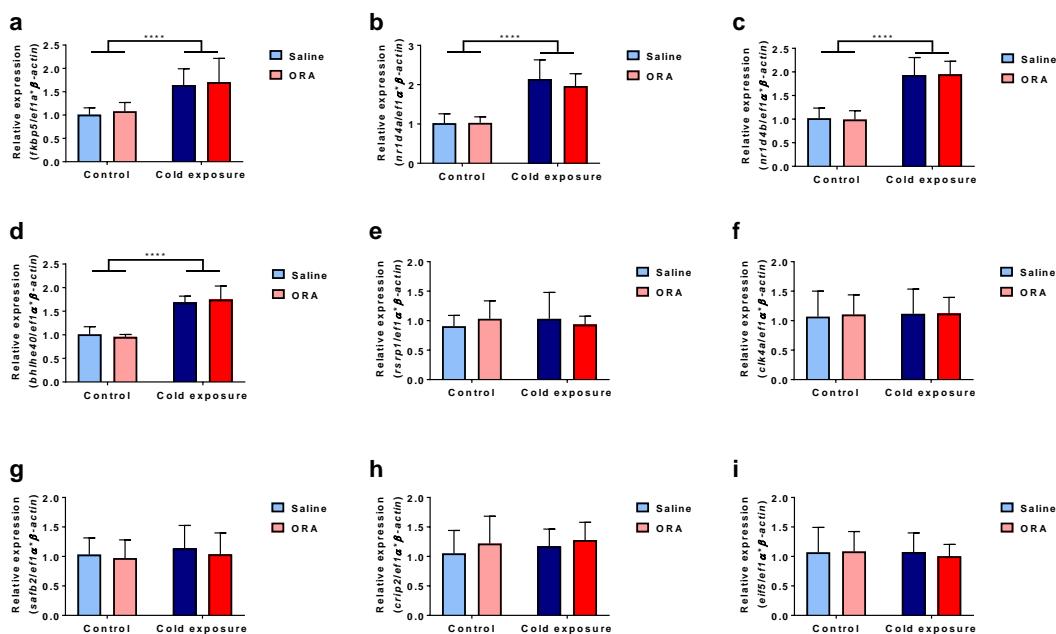

845 **Supplemental Figure 2.** Validation of transcriptomic analysis results for identified
846 cold-induced genes. Total RNA was extracted from midbrains of control (n=11) and
847 cold-exposed (n=9) tilapia and was analyzed by real-time PCR for cold-induced
848 expression of various genes. Similar to the transcriptome data, *oxytocin* (a), *fkbp5*(b),
849 *per1b* (c), *nr1d4a* (d), *nr1d4b* (e) and *bhlike40* (f) displayed significantly increased
850 expression in response to cold exposure. The data are presented as mean \pm SD. *p <
851 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

852

853 **Supplemental Figure 3**

854

855



856

857 **Supplemental Figure 3.** Validation of transcriptomic analysis results for identified
858 cold-suppressed genes. Total RNA was extracted from midbrains of control (n=11)
859 and cold-exposed (n=9) tilapia and was analyzed by real-time PCR for cold-
860 suppressed expression of various genes. Similar to the transcriptome data, *gnrh1* (a),
861 *rsrp1* (b), *clk4a* (c), *ansn* (d), *safb2* (e) and *crip2* (f) displayed clear trends for
862 decreased expression in response to cold exposure. The data are presented as mean \pm
863 SD. ***p < 0.001.

864

865 **Supplemental Figure 4**

866

867 **Supplemental Figure 4.** Expression analysis of cold-responsive genes upon
868 administration of Oxt-receptor antagonist. Total RNA was extracted from midbrains
869 of control and cold-exposed tilapia that were intraperitoneally injected with either
870 saline or 1 mg/kg body weight ORA and was analyzed using real-time PCR. Most
871 genes displayed similar trends of responsiveness as we identified in non-injected
872 tilapia. Analyzed genes included *fkbp5* (a), *nr1d4a* (b), *nr1d4b* (c), *bhlhe40* (d),
873 *rsrp1* (e), *clk4a* (f), *safb2* (g), *crip2* (h) and *eif5* (i). The data are presented as mean \pm
874 SD. ***p < 0.0001. n=8 fish/treatment.

875

876

877 **Supplemental Table 1. Gene expression of cold-exposed Nile tilapia**

878 See attached Excel file

879

880 **Supplemental Table 2. Oligos used in the current study**

Primer	Position	Sequence : (5' to 3')	Efficiency (%)	R ²	Product size
OXT_F	110	AGCTAACAAAAATGACCGGAGC	107.774	0.998	187
OXT_R	279	CAGCAGATACTTGGCCCGAA			
FKBP5_F	684	TCCTCCCAGCTCTCAGTAGT	123.46	0.989	150
FKBP5_R	834	AGGTGCACGTTAACAACTGATCC			
nr1d4_a_F	2143	TCAGGCACCTTCCAGGTTCT	99.02	0.998	104
nr1d4_a_R	2247	AAAGTGGGCAGCGGGTAAG			
nr1d4_b_F	1014	GCGCAAATTACGACGGTGTGTC	76.797	0.792	100
nr1d4_b_R	1114	CCATACCTCCGGTTTGGTGA			
per1_b_F	3097	GACATGACCCCCGACTTCTCC	147.298	0.988	121
per1_b_R	3218	TTCTCCGGCTGTCCTATCA			
bhlhe40_F	381	GCTGACATGCAAGGAATGGAC	109.375	0.97	108
bhlhe40_R	489	GATAAGTCGGTGGGGCAACT			
RSRP1_F	167	ATTTGCCACAGCGTTTGCT	92.346	0.985	129
RSRP1_R	296	CTGTTCCCTGGCCATTGTC			
CLK4a_F	389	CTTGGGCTCAGCACATACGA	89.018	0.993	132
CLK4a_R	521	CTGTGTGCGTCAGCTTGTTC			
ANSN_F	246	ACTGTGGCTCAGAAACTCCG	90.858	0.996	120
ANSN_R	366	TACCAAACTGAGCCGTACC			
SAFB2_F	1483	CTGTGGAGCGGGCTAAAAATG	96.168	0.996	199
SAFB2_R	1682	AACAGGCTCTCCCTGGACT			
CRIP2_F	284	CACGATGGAAGGCCCTACTG	94.957	0.968	190
CRIP2_R	474	GCTTTGATGGTGCCTGGG			
EIF5_F	939	AATTGTGCTGTGTGCCGAG	89.005	0.975	166
EIF5_R	1105	ATCATTGCTCTCAGGTGGGT			
EF1a_F	640	GGAGACCAGTGACAAGATGAG	103.96	0.999	158
EF1a_R	798	GTTCCGATACCGCCAATCT			
β-actin_F	140	CCACCCAAAGTTCAGCCATG	90.379	0.956	121
β-actin_R	261	ACGATGGAGGGGAAGACAG			

881

882