

1 **Electrical activity between skin cells regulates melanoma initiation**
2

3 Mohita Tagore¹, Emiliano Hergenreder^{2,3,4}, Shruthy Suresh¹, Maayan Baron⁵, Sarah C. Perlee^{1,6},
4 Stephanie Melendez¹, Travis J. Hollmann⁷, Trey Ideker⁵, Lorenz Studer^{2,3}, Richard M. White^{1,8*}

5 ¹Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New
6 York, NY 10065, USA.

7 ²The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY,
8 USA.

9 ³Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY,
10 USA.

11 ⁴Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.

12 ⁵Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
13 92093, USA.

14 ⁶Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering
15 Cancer Center, New York, NY 10065, USA.

16 ⁷Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065,
17 USA.

18 ⁸Weill Cornell Medical College, New York, NY 10065, USA.

19 *Corresponding author. Email: whiter@mskcc.org

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40 **Summary**
41 Oncogenes can only initiate tumors in certain cellular contexts, which is referred to as oncogenic
42 competence. In melanoma, whether cells in the microenvironment can endow such competence
43 remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we
44 demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes
45 melanoma initiation by *BRAF^{V600E}*. GABA is synthesized in melanoma cells, which then acts on
46 GABA-A receptors on keratinocytes. Electron microscopy demonstrates synapse-like structures
47 between keratinocytes and melanoma cells, and multi-electrode array analysis shows that GABA
48 acts to inhibit electrical activity in melanoma/keratinocyte co-cultures. Genetic and pharmacologic
49 perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that
50 electrical activity across the skin microenvironment determines the ability of oncogenes to initiate
51 melanoma.

52
53 **Introduction**
54 Melanoma arises at the dermal-epidermal junction, commonly harboring mutations in genes such
55 as *BRAF* or *NRAS*¹. These same mutations occur in benign nevi, raising the question of why
56 some melanocytes, but not others, are competent to form melanoma. Previous work has shown
57 that the developmental state of the cell plays a dominant role in such competence, since more
58 neural crest-like melanocytes have a chromatin landscape that makes them permissive for
59 oncogenesis². Melanocytes in the skin are encased in a dense network of microenvironmental
60 cells, including keratinocytes which make up the majority of the skin surface. We and others have
61 previously shown that keratinocytes can have both pro-tumorigenic^{3,4,5,8,9,10} and anti-
62 tumorigenic^{6,7,11,12,13} roles in melanoma. Whether these abundant microenvironmental cells like
63 keratinocytes play a role in melanoma initiation remains unclear. Here, we identify a specific pro-
64 tumorigenic keratinocyte population in direct communication with melanoma cells and identify the
65 pathways mediating this communication.

66
67 **Results**
68 **A reporter system to detect melanocyte/keratinocyte communication**
69 In normal physiology, melanocytes are connected to keratinocytes through dendrites. These
70 dendrites allow for the export of a pigment-containing organelle called a melanosome into the
71 surrounding keratinocytes forming the epidermal melanin unit¹⁴⁻¹⁶. This unusual organelle transfer
72 between cell types is responsible for skin coloration, since keratinocytes make up the vast majority
73 of the skin surface. In addition to melanosomes, melanocytes also export smaller extracellular
74 vesicles like exosomes that contain RNA and proteins¹⁷. We took advantage of this normal
75 physiologic mechanism to develop a genetic reporter of melanocyte/keratinocyte communication.
76 We engineered transgenic zebrafish to express Cre under the melanocyte-specific *mitfa*
77 promoter, along with a floxed *lacZ* or GFP to RFP reporter under the keratinocyte-specific *krt4*
78 promoter. This approach has been previously used to study vesicular communication between
79 different cell types, both during normal development as well as in cancer^{18,19}. In this system, any
80 keratinocyte which takes up Cre from the melanocyte will switch to express RFP fluorescence.
81 To put this in the context of melanoma, we used the previously described miniCoopR transgenic
82 system²⁰, in which the melanocytes were further engineered to express *BRAF^{V600E}* in the context
83 of *p53^{-/-}* along with a palmitoylated GFP fluorophore (Fig. 1a). Upon transgene injection, control
84 animals without Cre in the melanocytes had no RFP positive keratinocytes, as expected. In
85 contrast, animals in which the melanocytes expressed Cre had on average 55% RFP positive
86 switched keratinocytes (Fig. 1b and c). In 91% of the cases (Extended Data Fig. 1g), the RFP
87 positive keratinocytes were directly adjacent to the *BRAF^{V600E}, p53^{-/-}* melanocytes (marked by
88 palmGFP fluorescence), suggesting it was only the subset of keratinocytes in physical contact
89 with the nascent melanoma cells that exhibited such communication (Extended Data Fig. 1a - f).
90

91 **Melanocyte/keratinocyte communication is required for melanoma initiation**

92 This interaction between the keratinocytes and melanocytes could have been either pro or
93 antitumorigenic. We tested this using a diphtheria toxin mediated cell ablation strategy previously
94 developed in the zebrafish²¹. Using the same system as above, we re-engineered the keratinocyte
95 cassette to express a floxed GFP to Diphtheria toxin (DTA) transgene, such that any keratinocyte
96 that receives Cre from the melanocyte would undergo cell death. This would help us understand
97 if switched keratinocytes played any role in melanoma initiation, using our miniCoopR melanocyte
98 rescue model. We also co-expressed a GFP to RFP switch cassette in the keratinocytes to mark
99 the switched cells over time (Fig 1d). As a control, we found a significant decrease (68%) in the
100 RFP positive area which labels switched keratinocytes in animals expressing the DTA cassette,
101 validating that we could ablate keratinocytes in this setting (Fig. 1e). We then measured the
102 number of pigmented BRAF^{V600E} positive melanocytes. While control animals not expressing
103 keratinocyte-DTA had on average 17 rescued nascent melanoma cells, in the presence of
104 keratinocyte-DTA this was reduced to an average of less than 1 (Fig. 1f). Because in the
105 miniCoopR system, only these MITF positive pigmented melanocytes are capable of giving rise
106 to melanomas that form later in life, this indicates that loss of communication with these
107 keratinocytes is important for melanoma initiation by BRAF^{V600E}.

108

109 **Human and mouse melanoma cells communicate with keratinocytes**

110 To test the relevance of these findings in human and mouse melanoma progression, we
111 developed a similar system using human or mouse melanoma cells in co-culture with human
112 keratinocytes (Extended Data Fig. 2a). As a positive control we first engineered a zebrafish
113 melanoma cell line (ZMEL1) to express Cre, and co-cultured it with HaCaT keratinocytes
114 expressing a floxed dsRED to GFP reporter. Similar to what we saw in vivo in the zebrafish, we
115 found that a consistent percent of cells (1.5% switching efficiency) in vitro also underwent Cre
116 mediated switching. We then tested a panel of mouse (YUMM cells) and human lines (A375,
117 Hs294T, etc) in the same fashion. While there was some variation from line to line, as expected,
118 all of the tested lines exhibited Cre mediated fluorescent switching (Fig. 1g and h), and this again
119 primarily occurred when melanoma cells and keratinocytes were physically adjacent to each other
120 (Extended Data Fig 2d - i). To ensure that this was not a unique feature associated with HaCaT
121 cells only, we tested this in a second human keratinocyte cell line, Ker-CT. Co-culture of Ker-CT
122 keratinocytes with human melanoma cell lines showed similar robust Cre-mediated switching
123 (Extended Data Fig. 3g), again only observed when melanoma cells and keratinocytes were
124 physically touching each other (Extended Data Fig. 3c - f). Consistent with this, when the cells
125 were separated by a Transwell membrane, the keratinocytes failed to undergo fluorescent
126 switching, confirming that they require direct physical contact (Extended Data Fig. 2b and c). To
127 eliminate the possibility of cell-cell fusion between melanoma cells and keratinocytes, resulting in
128 the formation of GFP positive keratinocytes, we performed karyotypic analysis of individual cell
129 populations as well as immunofluorescent studies for melanoma (SOX10) and keratinocyte
130 (KRT14) markers. Karyotypic analysis of individual keratinocyte populations (dsRED positive and
131 GFP positive) indicated that GFP positive keratinocytes were karyotypically identical to dsRED
132 positive keratinocytes (Extended Data Fig. 3a). Further, we noted that GFP positive keratinocytes
133 were negative for the melanoma marker, SOX10, thus eliminating the possibility of melanoma cell
134 and keratinocyte fusion (Extended Data Fig. 3b). We also wanted to know if this form of
135 communication was used by melanoma cells to communicate with each other
136 (melanoma/melanoma crosstalk). To test this, we engineered a similar cassette as above with
137 melanoma cells expressing a floxed dsRED to GFP switch reporter, and found no evidence of
138 such communication between melanoma cells alone (Extended Data Fig. 3h - j). In addition,
139 increasing the ratio of melanoma cells to keratinocytes increased switching efficiency suggesting
140 that this mode of communication was dependent upon the density of melanoma cells (Extended
141 Data Fig. 4a). Because the original studies using this Cre-based system was based on vesicle

142 exchange, we wanted to confirm if this was the case here using both pharmacological and genetic
143 loss of function approaches. Treatment of melanoma/keratinocyte co-cultures with GW4869
144 which is an inhibitor of exosome biogenesis, or genetic knockdown in melanoma cells of nSMase2
145 which is involved in exosome biogenesis²², substantially reduced keratinocyte switching efficiency
146 (Extended Data Fig. 4b and c), highlighting the role of exosome-like vesicles in
147 melanoma/keratinocyte communication. These data indicate that the vesicle mediated
148 communication we report is a unique property only in the context of melanoma/keratinocyte
149 communication across species.
150

151 **A screen for melanoma/keratinocyte communication reveals a role for GABA**

152 The mechanisms regulating this melanoma/keratinocyte crosstalk are unknown, but could
153 represent a means for abrogating melanoma initiation. To address this, we performed a small
154 molecule screen to identify pathways which mediated this communication. We used human A375
155 melanoma cells expressing Cre along with HaCaT keratinocytes expressing the floxed dsRED to
156 GFP reporter, and then used fluorescent imaging to calculate the number of switched cells after
157 applying the LOPAC1280 small molecule library, which contains a diverse set of chemicals
158 affecting well-defined biological pathways (Fig 2a). Overall, we found 28 molecules which
159 increased switching above the DMSO control wells (Supplementary Table 2). Amongst the top 10
160 hits, we found 3 molecules (30%) which were all involved in GABAergic signaling. For example,
161 the top hit from the screen was the GABA-A receptor agonist, homotaurine (3-Amino-1-
162 propanesulfonic acid sodium) which caused a nearly 20-fold increase in keratinocyte switching
163 compared to control. Other hits included the GABA-A positive allosteric modulators SB205384
164 and tetrahydrodeoxycorticosterone (THDOC) (Fig 2b). To validate results from our screen, we
165 tested switching efficiency in co-cultures with GABA, a natural agonist of GABA-A receptors and
166 muscimol, a previously validated, ionotropic, GABA-A receptor agonist²³ (Extended Data Fig. 5a),
167 and found significant increases in switching efficiency in melanoma/keratinocyte co-cultures only
168 (34% and 57% increase respectively) (Extended Data Fig. 5b). We further tested the GABA-A
169 receptor antagonists bicuculline methbromide and picrotoxin, and found they significantly
170 decreased Cre mediated recombination and switching efficiency in keratinocytes (24% and 35%
171 decrease respectively), further confirming the role of GABA-A in this communication (Fig. 2c). To
172 test whether GABAergic signaling mediated melanoma/keratinocyte communication in vivo, we
173 used the transgenic zebrafish system described above to calculate switching efficiency (Fig 1c
174 and 2d). We bathed the fish in either a GABA-A agonist (muscimol) or a GABA-A antagonist
175 (picrotoxin) and measured the number of keratinocytes that had switched to RFP fluorescence
176 (Fig 2d). Consistent with the in vitro results of the screen, we found that GABA-A agonist activity
177 increased the number of RFP positive cells (44% increase, Fig 2e), whereas GABA-A antagonist
178 activity strongly reduced the number of RFP positive cells (59% decrease, Fig 2f). These data
179 support the notion that GABA is a specific mediator of melanoma/keratinocyte communication.
180

181 **GABAergic genes are differentially expressed in keratinocytes versus melanoma cells**

182 GABAergic signaling has mainly been studied in the context of neuronal communication, but our
183 data suggested it may unexpectedly play an analogous role in melanoma/keratinocyte
184 communication. In neurons, GABA is synthesized in presynaptic neurons via GAD1 or GAD2^{24,25},
185 and is exported into the synapse where it binds to GABA-A receptors on postsynaptic neurons.
186 We hypothesized that components of this machinery might also be expressed by melanoma cells
187 and keratinocytes, since previous studies have reported the presence of certain GABAergic
188 signaling components in skin²⁶⁻²⁹. To test this, we performed RNA-sequencing of the keratinocyte
189 populations that had undergone Cre mediated switching. Consistent with our chemical screen,
190 Gene Set Enrichment Analysis demonstrated that those keratinocytes had a marked enrichment
191 for pathways related to activation of the GABA-A receptor (Fig 2g, Supplementary Table 1), with
192 upregulation of individual genes including GABA-A receptor subunits such as *GABRA3*, *GABRB3*

193 and *GABRG2* as well as *ARHGEF9* (collybistin), a gene encoding an assembly protein which
194 ensures proper synaptic organization of the GABA-A receptor³⁰⁻³² (Extended Data Fig. 5c). We
195 also analyzed publicly available gene expression data (from CCLE and Wistar Melanoma Cell
196 lines)³³ and found that melanoma cells (but not mature melanocytes) express high levels of the
197 GABA synthesizing enzyme *GAD1* (Extended Data Fig. 5d). Moreover, *GAD1* expression is
198 induced upon oncogene (*BRAF*^{V600E}) expression and correlated with melanoma oncogenic
199 competence in our previously developed hPSC derived melanoma model^{2,34,35} (Extended Data
200 Fig. 5e). To further test this, we performed immunofluorescence studies and were able to detect
201 the presence of GABA itself in melanoma cells, which showed co-localization with wheat germ
202 agglutinin (WGA), a widely used plasma membrane marker (Fig 2h). To genetically test the role
203 of GABA-A signaling, we knocked down the GABA synthesis enzymes *GAD1* and *GAD2* only in
204 melanoma cells, or the GABA-A receptor organizer *ARHGEF9* (collybistin) only in keratinocytes,
205 and then measured Cre mediated fluorescent switching (Fig 2i). While individual knockdowns
206 showed a partial decrease in switching (Extended Data Fig. 5f and g), double knockdown of *GAD1*
207 and *GAD2* in melanoma cells, and *ARHGEF9* in keratinocytes, showed a much larger decrease
208 (92%, Fig 2j), highlighting the primary role of the GABAergic pathway in this form of
209 melanoma/keratinocyte communication.
210

211 **Keratinocytes form inhibitory electrochemical synapses with melanoma cells**

212 In the adult nervous system, GABAergic synapses are primarily involved in inhibitory
213 neurotransmission via an influx of chloride ions into the postsynaptic cell, resulting in a decreased
214 likelihood of a postsynaptic action potential^{36,37}. Recent studies using melanocyte/keratinocyte co-
215 cultures have demonstrated the presence of calcium spike based electrical activity between these
216 cell types during normal development³⁸. Based on this, we hypothesized that melanoma cells
217 were reviving this developmental mechanism to promote tumor initiation by forming inhibitory
218 GABAergic synapses with keratinocytes.
219

220 Studies in neurons have shown that synaptic GABA-A receptor activation is regulated post-
221 transcriptionally and requires the clustering of assembly proteins like gephyrin, which ensures
222 proper stabilization of GABA-A receptors at synapses³⁹. Further, gephyrin clustering at synapses
223 is highly dependent on the activity of collybistin (*ARHGEF9*)³⁰, which we previously found was
224 upregulated in switched keratinocytes (Extended Data Fig. 5c). To test whether
225 melanoma/keratinocyte co-cultures expressed such synaptic markers, we performed
226 immunofluorescence studies using gephyrin as a GABAergic postsynapse marker. We detected
227 the presence of membrane gephyrin protein clusters specifically in keratinocytes in direct contact
228 with melanoma cells in co-culture, highlighting the activation of the GABA-A receptor machinery
229 in keratinocytes, only upon direct contact with melanoma cells (Figure 3a and b, Extended Data
230 Fig. 6f). To further test this in melanoma patient samples, we stained a series of in situ melanomas
231 in a tumor microarray to look for the presence of the GABA-A receptor machinery in the
232 keratinocytes directly adjacent to the tumor cells. We marked melanoma cells with S100A6, and
233 stained for gephyrin (as a marker of the GABA-A receptor), and found that n=6/6 melanoma
234 samples contained gephyrin positive clusters in keratinocytes directly adjacent to melanoma cells
235 as well as in more distal keratinocytes, suggesting activation of the GABAergic machinery in
236 melanoma associated keratinocytes, but not in normal skin (Fig 3c and d). In addition, we looked
237 at differentially upregulated pathways in switched keratinocytes using GSEA analysis. We found
238 a strong enrichment of pathways related to synapse formation, particularly associated with the
239 postsynapse (Extended Data Fig. 6d). We then performed electron microscopy on
240 melanoma/keratinocyte co-cultures, which revealed striking evidence of a morphology highly
241 consistent with synaptic structures between the two cell types, similar to what is found in neurons
242 (Fig 3e, Extended Data Fig. 6a - c).
243

244 To functionally test this potential synaptic relationship, we then performed extracellular
245 electrophysiology recordings of melanoma/keratinocyte co-cultures. This allowed us to quantify
246 fast changes in membrane voltage. We plated melanoma cells with parental keratinocytes or Cre-
247 recombined switched keratinocytes on a multi-electrode array (MEA) system to record electrical
248 spikes of melanoma cells alone, keratinocytes alone, or both cell types together (Fig 3f). Whereas
249 melanoma/parental keratinocytes had substantial spiking activity (33 spikes/minute), this was
250 greatly diminished with the melanoma/switched keratinocytes (14 spikes/minute), consistent with
251 an inhibitory effect of GABAergic signaling present in those keratinocytes (Fig 3g and h). To
252 further test this, we performed calcium imaging using fluorescent calcium indicators⁴⁰, an
253 important marker of electrical activity in neurons⁴¹. We loaded melanoma cells and either parental
254 or switched keratinocytes with the calcium dye Rhod-4. Consistent with the switched
255 keratinocytes having more GABA signaling, we found decreased calcium activity compared to
256 parental co-cultures (35% less activity, Fig 3i). We then tested the effect of the GABA-A antagonist
257 picrotoxin. While this had little to no effect on monocultures, we found that treatment with a GABA-
258 A antagonist increased calcium activity in the co-cultured keratinocytes, consistent with an
259 increase in electrical activity upon loss of inhibitory GABAergic signaling between
260 melanoma/keratinocytes (Fig 3j).

261
262 In neurons, GABA-A receptor mediated inhibitory neurotransmission is associated with an inward
263 flux of chloride ions, which ensures rapid hyperpolarization and decreased action potential in the
264 postsynaptic cell. To test whether the chloride ion itself was involved in melanoma/keratinocyte
265 communication, we used a reduced chloride medium to decrease the intracellular chloride
266 concentration in keratinocytes, as described earlier⁴². We found that decreasing intracellular
267 chloride ions decreased switching efficiency in co-cultures and disrupted melanoma/keratinocyte
268 communication highlighting the critical role of the chloride influx in this form of communication
269 (Extended Data Fig. 6e). Collectively, these data indicate that melanoma cells and keratinocytes
270 form structures similar to neuronal synapses, and that GABAergic signaling from melanoma cells
271 acts as an inhibitor of electrical activity in melanoma/keratinocyte co-cultures.

272 **GABA signaling promotes melanoma initiation**

273 The above data suggested that melanoma/keratinocyte communication is important in melanoma
274 initiation, and that this communication is mediated by GABA. Based on this, we wanted to
275 genetically test the effects of GABA on melanoma initiation in vivo. To identify which GABA related
276 proteins were most relevant, we analyzed components of the GABAergic signaling pathway in
277 human melanoma tissue samples. We performed immunofluorescence for GAD1 (as a marker of
278 GABA synthesis) and S100A6 (as a melanoma marker) on a human tissue microarray containing
279 both normal skin as well as primary melanomas (n = 39 samples). Whereas nearly all normal skin
280 samples (n = 9) were negative for GAD1, 40% of primary melanoma samples (n = 30, Fig 4a and
281 b) were positive for GAD1. We also analyzed TCGA data, and found a remarkably strong negative
282 correlation between high expression of *GAD1* and progression free survival (Extended Data Fig.
283 8e). Based on this human data, we used the zebrafish to test the effect of *GAD1* (and its related
284 protein *GAD2*) on melanoma initiation. We used the miniCoopR system described above to
285 activate *BRAF^{V600E}* in melanocytes (along with germline *p53* loss) but sensitized the system by
286 injecting low doses of the rescue plasmids, such that most of the fish would not develop melanoma
287 on their own (Extended Data Fig. 8a). As expected, only 10% of control fish receiving miniCoopR
288 alone developed tumors at the 16 week time point. In contrast, transgenic fish overexpressing
289 either *gad1b* (n = 53) or *gad2* (n = 63) in melanocytes had a higher rate of melanoma initiation by
290 *BRAF^{V600E}* (Fig 4c and d). Furthermore, we noted that the gad overexpressing fish tended to have
291 multiple tumors, suggesting that GAD/GABA signaling lowers the threshold for tumor initiation in
292 this model (Extended Data Fig. 8b and c). To further test this, we then performed loss of function
293 experiments. Because zebrafish melanomas express multiple GAD genes (*gad1a/gad1b/gad2*)⁴³

295 (Extended Data Fig. 7 a - d), we took advantage of the TEAZ model of transgenic melanoma in
296 which multiplexed CRISPR cassettes can be directly electroporated into the skin of an adult fish⁴⁴.
297 We designed sgRNAs against all 3 zebrafish *gad* genes (*gad1a/gad1b/gad2*) and then initiated
298 tumors using melanocyte-specific expression of *BRAF*^{V600E} along with loss of *pten* and *p53* (Fig
299 4e). We found that CRISPR-mediated deletion of the *gad* genes resulted in a significant decrease
300 in tumor size at both 6 weeks (Fig. 4f and g) and 10 weeks (Extended Data Fig. 8d) in the *gad*
301 knockouts compared to the non-targeting control animals (65% decrease). Because GABA could
302 be acting in a cell-autonomous manner on the melanoma cells themselves (rather than on the
303 keratinocytes), we excluded this possibility by treating melanoma cells in vitro with GABA or
304 picrotoxin, and found no change in proliferation rate (Extended Data Fig. 9a - b). Similarly,
305 knockdown of GAD1/2 in melanoma cells in culture also did not affect proliferation (Extended
306 Data Fig. 9c), indicating that the effect in vivo is not due to cell-autonomous effects on the
307 melanoma cells themselves. Collectively, this data strongly implicates GABA signaling as a key
308 factor in melanoma initiation in vivo via an interaction with keratinocytes.
309

310 **Electrically decoupled keratinocytes promote melanoma growth through LIF**

311 The above data suggested that the GABAergic keratinocytes were promoting the growth of the
312 melanoma cells in vivo. Keratinocytes have previously been shown to suppress melanoma
313 formation through physical tethering, which acts to restrain the growth of the nascent melanoma⁶.
314 In part, this is controlled through expression of *Par3* on the keratinocytes, and its loss then allows
315 the nascent melanoma cells to “decouple” or “escape” from the growth control of the
316 keratinocytes¹¹. In addition to physical decoupling, the keratinocytes can also express secreted
317 factors such as *EDN1*, *EDN3* or *FGFs*, which can promote melanoma growth by binding to
318 EDNRB or FGFR receptors^{45,46}. Our data indicate that another way that melanoma cells could
319 escape from keratinocyte growth control is through the activation of inhibitory GABAergic
320 signaling, but whether these GABAergic keratinocytes promoted growth of melanoma through
321 similar secreted factors remained unclear. To address this, we first co-cultured our human
322 melanoma cells with parental keratinocytes or Cre-recombined switched keratinocytes and
323 monitored the proliferation of the melanoma cells using phospho-H3 staining (Extended Data Fig.
324 10b). Co-culture with switched keratinocytes increased melanoma cell proliferation (Extended
325 Data Fig. 10a and c). Further, the increase in proliferation was also seen when melanoma cells
326 were treated only with conditioned media from the switched keratinocytes (Extended Data Fig.
327 10d and e), suggesting that part of the pro-tumorigenic effect could be mediated by a secreted
328 factor from switched keratinocytes. We analyzed our RNA-seq data of the Cre-switched
329 keratinocytes compared to the parental keratinocytes to find putative secreted ligands that would
330 promote melanoma proliferation. While we saw no significant increase in expression of *EDN1* or
331 *FGF1/2*, we found a significant elevation of *FGF5*, *BMP6* and *LIF*, factors known to promote
332 melanoma growth^{47,48 49,50} (Fig. 4h). Based on this, we then tested whether inhibition of these
333 pathways would slow proliferation of the melanoma cells grown with conditioned media from
334 keratinocytes. This revealed that only inhibition of LIF receptor signaling by EC330 decreased
335 melanoma proliferation (Fig. 4i), consistent with recent data that expression of the LIF receptor in
336 melanoma is associated with poor prognosis in this disease⁵¹. Interestingly, LIF expression has
337 been widely reported in the nervous system, including GABAergic neurons⁵², and is associated
338 with increased growth, survival and neuroprotection^{53,54}. Taken together our data suggests that
339 loss of electrical activity between nascent melanoma cells and keratinocytes in the skin is pro-
340 tumorigenic, and depends upon LIF mediated increase in melanoma proliferation.
341

342 **Discussion**

343 In this study, we identify a novel mode of communication between melanoma cells and
344 keratinocytes in the melanoma microenvironment. While these cells are closely intertwined in
345 normal skin physiology, they typically become decoupled from each other during the early stages

346 of melanoma formation^{6,55–57}. While physical decoupling is one such mechanism, we found that
347 keratinocytes and melanoma cells form inhibitory synapse-like structures, not previously reported
348 in skin. Given that electrical activity is increasingly recognized to play a role in tumorigenesis⁵⁸, it
349 is likely that this type of GABAergic mechanism may be true in other epithelial tissues, which
350 awaits further study.

351
352 Despite the fact that electrical activity primarily regulates cell-cell communication in excitable cells
353 like neurons, non-excitable cells can also be regulated by electrical activity^{59,60}. In the skin for
354 example, certain ion channels regulating electrical activity and membrane potential play an
355 important role in establishing skin pigmentation patterns^{61,62}. In tumors, some of the earliest
356 studies looking at electrical activity found that nascent tumor cells show loss of electrical activity
357 upon transformation⁶³. Further studies highlighted that the loss of electrical activity was
358 specifically between transformed cancer cells and 'non-transformed' healthy cells, suggesting a
359 functional loss of communication between tumor cells and the 'non-transformed' healthy cells in
360 their microenvironment^{64,65}. Our present study suggests that one of the mechanisms which could
361 drive such loss of electrical activity-based communication in melanoma is the activation of
362 GABAergic inhibitory signaling in the tumor microenvironment, promoting increased proliferation
363 of nascent tumor cells via the secretion of pro-tumorigenic factors. It remains to be understood
364 whether loss of electrical activity also invokes non-secreted mechanisms of communication.

365
366 Recent studies in brain tumors have shown that functional synapses can form between a tumor
367 cell and a neuron which aids in tumor progression^{66–68}. These studies suggest that formation of a
368 tumor cell to neuron synapse is pro-tumorigenic both via increased neuronal activity due to
369 stronger synaptic connections as well as via secreted paracrine factors which promote tumor
370 proliferation. In our study, we show for the first time that functional GABAergic inhibitory synapse-
371 like structures between skin cells can be formed in primary melanoma, independent of any input
372 from neurons. It remains to be tested whether this unique communication pathway between
373 melanoma cells and keratinocytes is a part of the normal physiology of melanocyte/keratinocyte
374 communication during development. Interestingly, a recent study using GCaMP based calcium
375 imaging in skin showed the presence of calcium spikes and 'electric-like' activity in
376 melanocyte/keratinocyte co-cultures, suggesting that melanocytes and keratinocytes might
377 communicate via electrical signals³⁸. Further, a recent scRNAseq study in epidermal melanocyte
378 populations at different stages of development found that 'synapse formation' is a highly
379 upregulated pathway during melanocyte development, in addition to canonical melanocyte
380 specific pathways like pigmentation and organelle maturation⁶⁹. The above two studies suggest
381 that electrical activity-based communication and ability to form synapses is closely intertwined
382 with melanocyte development. Combined with our findings, this might indicate that nascent
383 melanoma cells induce *GAD1* expression and use their pre-existing synaptic machinery to
384 activate inhibitory GABAergic signaling in keratinocytes, effectively decoupling themselves from
385 the stringent growth control of the skin keratinocytes.

386
387 An interesting finding in our study is that melanoma/keratinocyte communication is mediated by
388 exosome-like vesicles. Our loss of function studies suggest that perturbation of exosome-like
389 vesicle machinery in melanoma cells by pharmacological (GW4869 treatment) or genetic
390 approaches (nSMase2 knockdown) is sufficient to block this vesicle-mediated communication
391 between melanoma cells and keratinocytes (Extended Data Fig. 4b and c). Since most vesicle-
392 based cargo is targeted for degradation in the recipient cell^{70,71}, synaptic GABAergic signaling
393 may be one such mechanism, which increases the magnitude of vesicle-based communication
394 between different cell types. In accordance with this, we note that disrupting the GABA-A receptor
395 mediated chloride efflux either by blocking the chloride channel (Fig 2c and j) or decreasing the
396 intracellular chloride concentration (Extended Data Fig. 6e) is sufficient to disrupt this vesicle-

397 based communication. Interestingly, drugs inducing chloride accumulation in the cell and
398 facilitating 'endosomal escape' are being increasingly used for the functional delivery of
399 extracellular vesicle cargo^{72,73}. Future identification of the role of chloride in this process may pave
400 the way for a new generation of therapeutic targets to disrupt tumor/microenvironment
401 communication.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448 **Acknowledgements**

449 The authors would like to thank members of the White lab for helpful discussions and support for
450 this project. We thank Lee-Cohen Gould and Juan Jimenez for help with transmission electron
451 microscopy and Chenura Jayewickreme for help with optimization of immunofluorescence
452 protocols. We would also like to thank the MSKCC Molecular Cytology core for imaging
453 assistance, Flow Cytometry Core for cell sorting assistance and Molecular Cytogenetics core for
454 karyotyping assistance. All schematic figures were created using Biorender.

455

456 This work was funded with support from the NIH/NCI Cancer Center Support Grant P30
457 CA008748, the Melanoma Research Alliance, The Debra and Leon Black Family Foundation, NIH
458 Research Program Grants R01CA229215 and R01CA238317, NIH Director's New Innovator
459 Award DP2CA186572, The Pershing Square Sohn Foundation, The Mark Foundation, The Alan
460 and Sandra Gerry Metastasis Research Initiative at the Memorial Sloan Kettering Cancer Center,
461 The Harry J. Lloyd Foundation, Consano and the Starr Cancer Consortium (all to R.M.W.),
462 Melanoma Research Foundation (MRF), MSKCC TROT fellowship (both to SS), Marie-Josée
463 Kravis Women in Science Endeavor Postdoctoral Fellowship (to MT), The Cancer Cell Map
464 Initiative NIH / NCI U54 CA209891 (to TI).

465

466 **Competing interests**

467 R.M.W. is a consultant to N-of-One, a subsidiary of Qiagen. All other authors declare no
468 competing interests.

469

470 **Author contributions**

471 Conceptualization: MT, RMW

472 Methodology: MT, EH, SS, SCP, SM

473 Investigation: MT, EH, SS, SCP, MB, SM, TH

474 Visualization: MT, EH, SS, MB

475 Funding acquisition: RMW

476 Project administration: MT, RMW, TH, TI, LS

477 Supervision: RMW

478 Writing – original draft: MT, RMW

479 Writing – review & editing: MT, EH, SS, MB, SCP, RMW

480

481 **Data and software availability**

482 GEO accession numbers for RNA-seq are pending. All raw data files will be made available upon
483 request. All transgenic zebrafish lines are available upon request from the authors or via the ZIRC
484 zebrafish stock center (<https://zebrafish.org/home/guide.php>). Plasmids generated in this study
485 will be deposited to Addgene.

486

487

488

489

490

491

492

493 **Fig. 1. Nascent melanoma cells are in direct communication with keratinocytes.**

494 **(a):** Schematic representation of the genetic reporter system to identify keratinocytes in direct
495 communication with nascent melanoma cells.

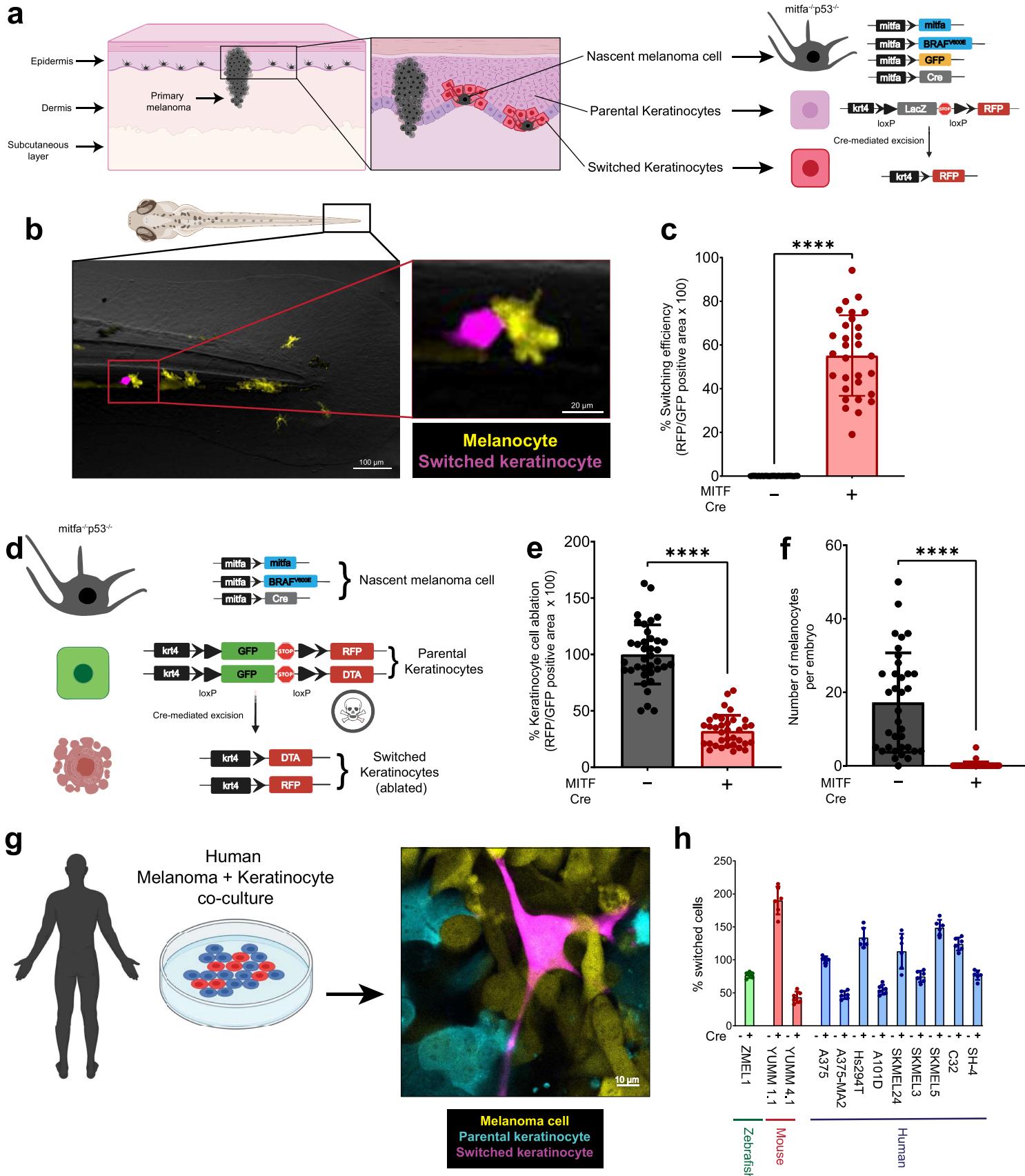
496 (Left) The epidermal melanin unit is disrupted in primary melanoma, zoomed in image shows
497 nascent melanoma cells and keratinocytes in direct physical contact.

498 (Right) The genetic reporter system for detecting melanoma keratinocyte communication in
499 zebrafish casper F0 embryos with the genotype $p53^{-/-} mitfa:BRAF^{V600E}$ injected with the
500 indicated melanocyte and keratinocyte reporter constructs (+/- mitfa:Cre).

501 **(b):** Representative image of an F0 zebrafish embryo with nascent melanoma cells over-
502 expressing Cre and palmGFP in direct communication with a switched keratinocyte over-
503 expressing RFP. Individual cells are pseudocolored as indicated.

504 **(c):** % Switching efficiency calculated as % RFP positive area normalized to GFP positive
505 area in 3 dpf zebrafish embryos. Data represent n = 30 control fish (negative for mitfa-Cre)
506 and n = 30 switch fish (positive for mitfa-Cre) pooled from 3 biological replicates. Error bars:
507 SD, P values generated by two tailed unpaired t test, **** p-value < 0.0001.

508 **(d):** Schematic representation of the zebrafish genetic reporter system to detect melanoma
509 keratinocyte communication and specifically ablate melanoma associated keratinocytes (RFP
510 positive, switched) using the transgenic expression of DTA (diphtheria toxin gene A chain).


511 **(e):** Switched keratinocyte ablation calculated as % RFP positive area normalized to GFP
512 positive area in 3 dpf zebrafish embryos (+/- DTA expression) in keratinocytes. Absolute
513 values were normalized to no DTA control to calculate cell ablation efficiency. Data represent
514 n = 37 control fish (negative for mitfa-Cre) and n = 35 DTA fish (positive for mitfa-Cre) pooled
515 from 3 biological replicates. Error bars: SD, P values generated by two tailed unpaired t test,
516 **** p-value < 0.0001.

517 **(f):** Number of pigmented melanocytes per embryo in +/- DTA conditions. Data represent n =
518 37 control fish (negative for mitfa-Cre) and n = 35 DTA fish (positive for mitfa-Cre) pooled from
519 3 biological replicates. Error bars: SD, P values generated by Mann Whitney test, **** p-value
520 < 0.0001.

521 **(g):** Representative confocal image of human melanoma/keratinocyte co-culture with non-
522 switched keratinocytes, melanoma cells and switched keratinocytes pseudo-colored as
523 indicated.

524 **(h):** % Switching efficiency in human keratinocytes when co-cultured with zebrafish, mouse
525 or human melanoma cell lines calculated as number of switched keratinocytes per well,
526 normalized to the human melanoma cell line, A375. No switching was observed in the
527 absence of Cre-expressing melanoma cell lines. Data represent n = 6 for control co-cultures
528 (no Cre) and n = 6 for switched co-cultures (+ Cre) pooled from 3 biological replicates for each
529 cell line indicated. Error bars: SD.

Fig.1: Nascent melanoma cells are in direct communication with keratinocytes

530 **Fig. 2. GABAergic signaling drives melanoma keratinocyte communication.**

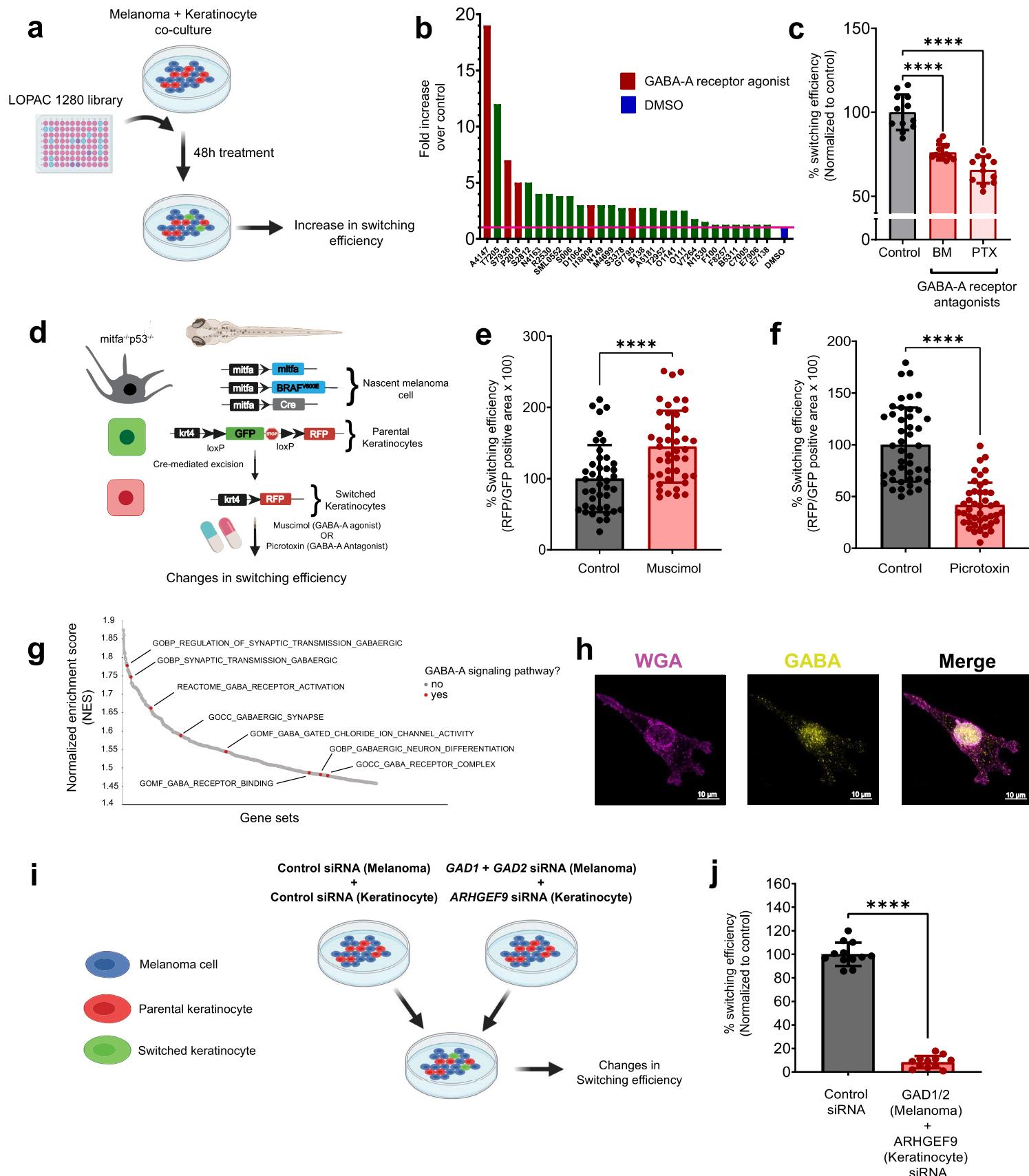
531 **(a):** Schematic representation of the LOPAC small molecule library screen in human
532 melanoma/keratinocyte co-cultures treated with control (DMSO) or 1280 LOPAC library
533 compounds (10 μ M each, indicated by their Sigma library identifiers) for 48 hours and
534 quantified for increase in switching efficiency.

535 **(b):** Fold change over control (DMSO) in switching efficiency in top 28 hits of the LOPAC small
536 molecule library screen. Red bars indicate compounds which are agonists or allosteric
537 modulators of the GABA-A receptor, blue bar represents DMSO control.

538 **(c):** % Switching efficiency calculated as number of switched cells per well normalized to
539 control (DMSO) upon treatment with GABA antagonists, BM (bicuculline methbromide, 100
540 μ M) and PTX (Picrotoxin, 100 μ M) in melanoma/keratinocyte co-cultures for 48 hours pooled
541 from 4 biological replicates (n = 12). Error bars: SD, p-values generated by unpaired t test
542 with **** = p < 0.0001.

543 **(d):** Schematic representation of the F0 zebrafish genetic reporter assay to quantify changes
544 in keratinocyte switching efficiency in zebrafish embryos treated with a GABA-A agonist
545 (Muscimol) or a GABA-A antagonist (Picrotoxin).

546 **(e-f):** % Switching efficiency calculated as % RFP positive area normalized to GFP positive
547 area in 3 dpf zebrafish embryos treated with Muscimol (10 μ M) or Picrotoxin (100 μ M). Data
548 represent n = 44 DMSO treated fish and n = 42 Muscimol treated fish and n = 44 Picrotoxin
549 treated fish pooled from 3 biological replicates. Error bars: SD, P values generated by two
550 tailed unpaired t test, **** p-value < 0.0001.


551 **(g):** Waterfall plot of enriched pathways from GSEA analysis of switched vs parental
552 keratinocytes. GABA receptor pathways are highlighted in red.

553 **(h):** Immunostaining for GABA in A375 melanoma cells and membrane staining with wheat
554 germ agglutinin (WGA). Individual cells are pseudocolored as indicated.

555 **(i):** Schematic representation of the human in vitro switch reporter assay in melanoma
556 keratinocyte co-cultures with genetic loss of function in GABA pathway components.

557 **(j):** % Switching efficiency calculated as number of switched cells per well normalized to
558 control siRNA when co-cultures are treated with a combination of GAD1/2 (melanoma cells)
559 and ARHGEF9 (keratinocytes) targeting siRNA pooled from 3 biological replicates (n = 12).
560 Error bars: SD, p-values generated by two-tailed unpaired t test with **** = p < 0.0001.

Fig.2: GABAergic signaling drives melanoma keratinocyte communication

561 **Fig. 3. Melanoma cells form synaptic connections with keratinocytes.**

562 **(a):** Representative image of immunostaining for KRT17 (keratinocyte marker), SOX10
563 (melanoma marker) and gephyrin (postsynapse marker) in human melanoma/keratinocyte co-
564 cultures. Gephyrin positive clusters are only observed in keratinocytes at sites of melanoma
565 cell contact (indicated by red arrows). Individual cells are pseudocolored as indicated.

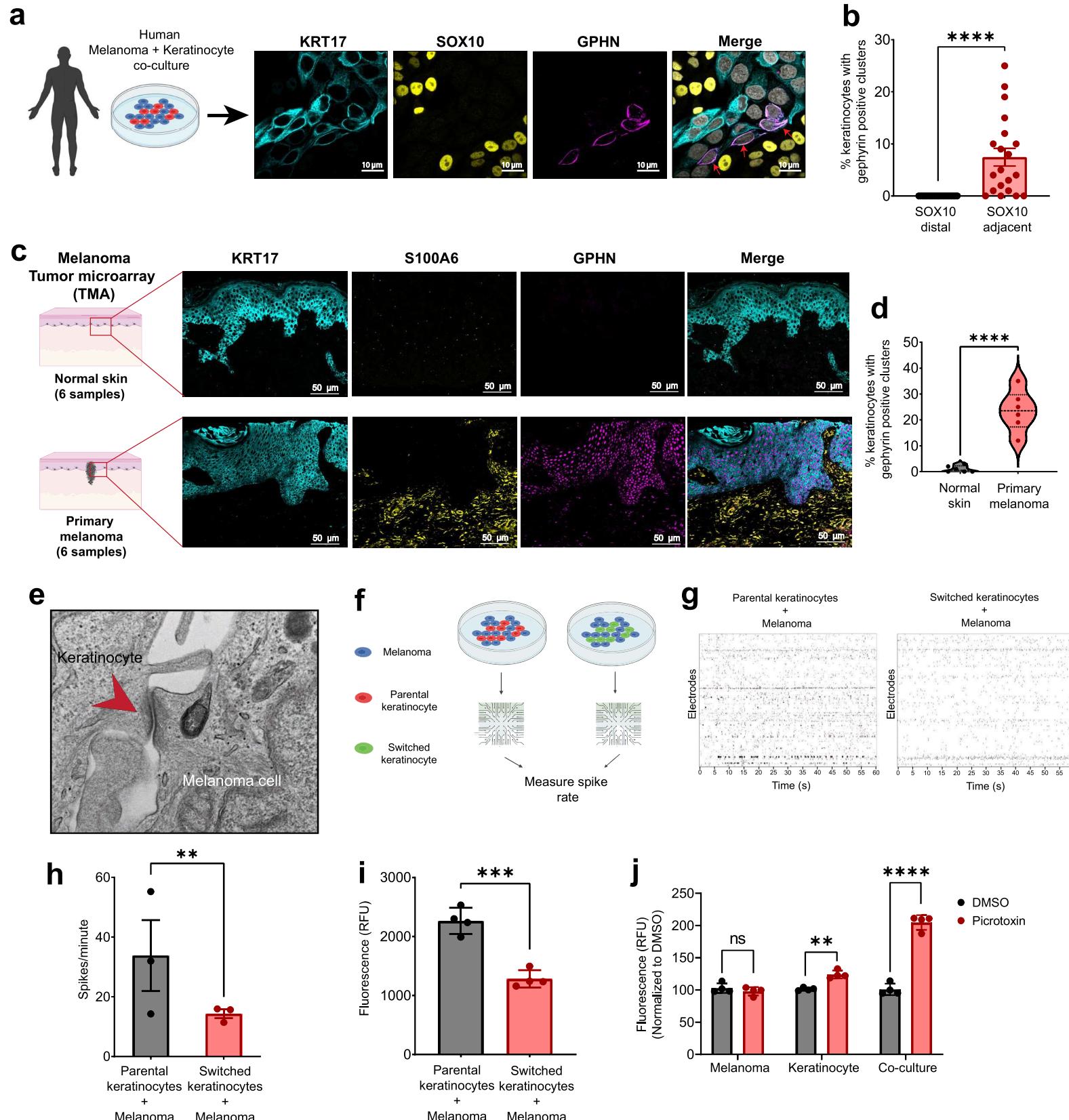
566 **(b):** Quantification of gephyrin positive clusters in melanoma/keratinocyte co-cultures. Each
567 data point represents a microscopic field quantified for the presence of keratinocyte gephyrin
568 positive clusters pooled from 4 biological replicates (n = 20).

569 **(c):** Representative images of a patient malignant melanoma in situ (MMIS) and normal skin
570 sample with immunostaining for KRT17 (keratinocyte marker), SOX10 (melanoma marker)
571 and GPHN (post-synapse marker). Individual cells are pseudocolored as indicated.

572 **(d):** Violin plots showing % keratinocytes with gephyrin positive clusters in melanoma patient
573 samples and normal skin. Data represent samples from n = 6 melanoma in situ patients, n =
574 6 normal skin, P values generated by unpaired t-test, **** p-value < 0.0001.

575 **(e):** Transmission electron microscopy of melanoma/keratinocyte co-cultures with synapse-
576 like structures indicated with red arrow. Representative image is shown.

577 **(f):** Schematic for multi-electrode array (MEA) experimental setup in human melanoma co-
578 cultures with parental or switched keratinocytes for 48 hours.


579 **(g):** Representative spike rastergrams of 1 minute of activity on MEA chip in 48 hours
580 melanoma/keratinocyte co-cultures.

581 **(h):** Quantification of MEA activity in 48-hour melanoma/keratinocyte co-cultures calculated
582 as spikes per minute. Data represent 3 biological replicates per condition with p values
583 calculated using multiple unpaired t-test using the Holm-Šídák method for multiple
584 comparisons, ** p-value < 0.01.

585 **(i):** Calcium spike activity in co-cultures of melanoma cells with switched or parental
586 keratinocytes. RFU is relative fluorescence units measured using the calcium dye, Rhod-4.
587 Data represent 3 biological replicates per condition calculated using unpaired t-test, *** p value
588 < 0.001.

589 **(j):** Calcium spike activity in monocultures (melanoma and keratinocytes) and co-cultures
590 upon picrotoxin (100 μ M) addition. RFU is relative fluorescence units measured using the
591 calcium dye, Cal-520. Data represent 3 biological replicates per condition calculated using
592 unpaired t-test, ** p value < 0.01, *** p-value < 0.001.

Fig.3: Melanoma cells form synaptic connections with keratinocytes

593 **Fig. 4. GABAergic signaling is pro-tumorigenic in melanoma.**

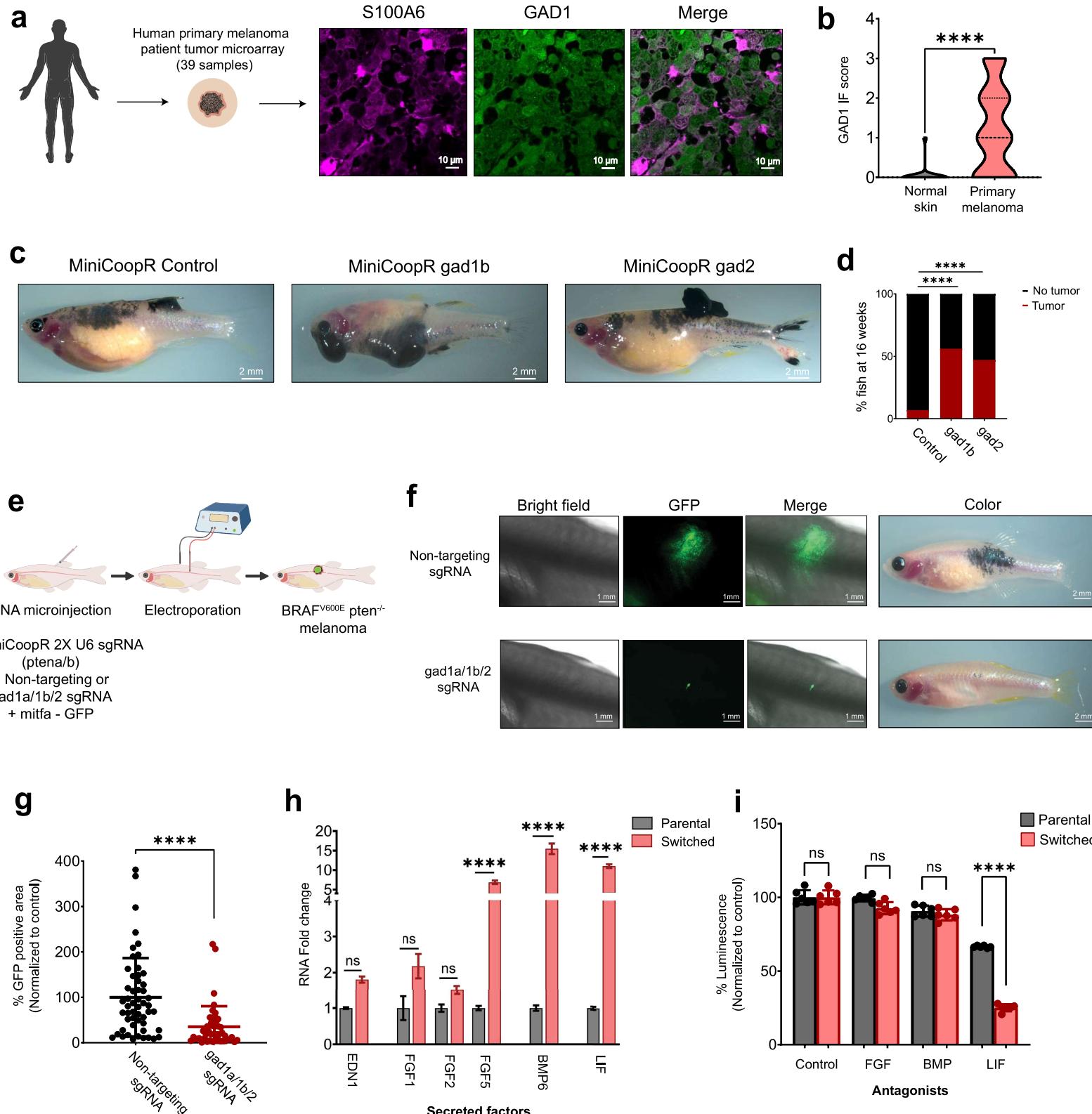
594 **(a):** Representative image of a patient primary melanoma sample from a primary melanoma
595 tumor microarray (TMA) with immunostaining for S100A6 (melanoma marker) and GAD1
596 (GABA marker). Individual cells are pseudocolored as indicated.

597 **(b):** Violin plots of IF (immunofluorescence) score and quantification of GAD1 immunostaining
598 in primary melanoma tumor samples and normal skin. Data represent samples from n = 30
599 primary melanoma patients and n = 9 normal skin, P values generated by unpaired t-test, ****
600 p-value < 0.0001.

601 **(c):** Representative images of 16-week-old zebrafish with the genotype (*mitfa*^{-/-} *p53*^{-/-}
602 *mitfa:BRAF*^{V600E}) in the casper background injected with MiniCoopR rescue plasmids showing
603 control (GFP), *gad1b* or *gad2* over-expressing tumors.

604 **(d):** Quantification of melanoma incidence expressed as % fish with tumors in 16-week-old
605 zebrafish over-expressing GFP or *gad1b* or *gad2* under a melanocyte specific promoter. Data
606 represent n = 55 control (GFP) fish, n = 53 *gad1b* and n = 63 *gad2* fish pooled from 3 biological
607 replicates. P values generated by chi-squared test, **** p-value < 0.0001.

608 **(e):** Schematic representation of the TEAZ based loss of function system in zebrafish to
609 knockout GABA synthesis genes. Plasmids expressing a non-targeting sgRNA or sgRNAs
610 against *gad1a*, *gad1b* and *gad2* along with MiniCoopR 2x U6 sgRNAs-*pten*, *mitfa*:Cas9 are
611 co-electroporated to generate control (Non-Targeting) or gad KO *BRAF*^{V600E} *pten*^{-/-}
612 melanomas in vivo.

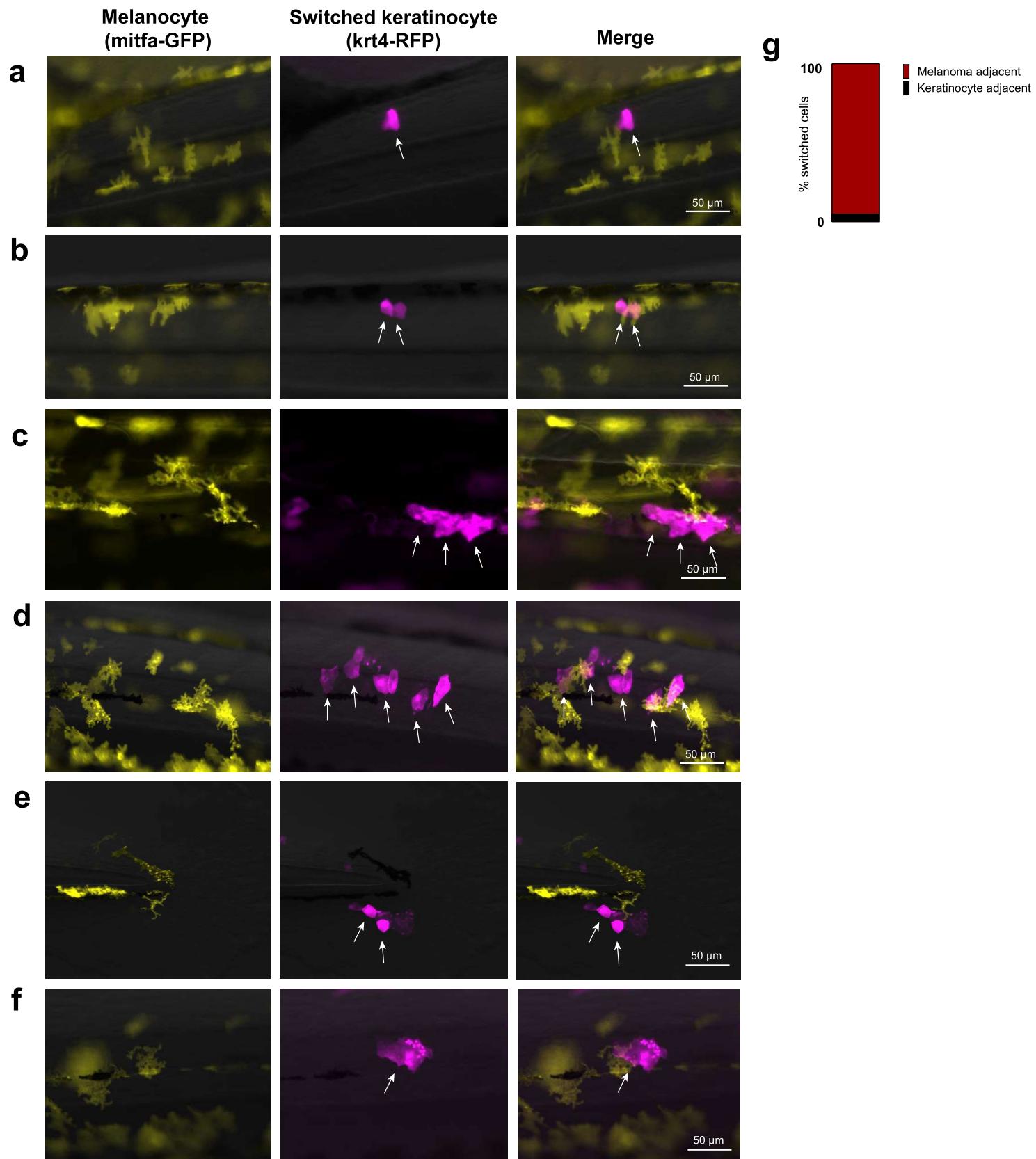

613 **(f):** Representative image of a transgenic fish electroporated with melanocyte specific Cas9
614 and a Non-targeting sgRNA or *gad1a/gad1b/gad2* sgRNAs, 6 weeks post electroporation.

615 **(g):** Quantification of tumor area calculated as GFP positive area and normalized to the non-
616 targeting control plasmid group. Data represent n = 53 non-targeting sgRNA fish and n = 46
617 *gad1a/1b/2* sgRNA fish pooled from 3 biological replicates. Error bars: SD, P values generated
618 by Mann Whitney test, **** p-value < 0.0001.

619 **(h):** Fold change differences in expression of secreted factors derived from RNA-seq analysis
620 comparing switched vs parental keratinocytes. Data represent 3 biological replicates, Error
621 bars: SD, p-values calculated using DeSeq2.

622 **(i):** Melanoma proliferation calculated as % Luminescence in melanoma cells treated with
623 parental or switched keratinocyte conditioned media for 48 hours +/- antagonists for the
624 receptors of the indicated factors. Data represent 3 biological replicates (n = 12) and each
625 condition (parental or switched) is normalized to its corresponding conditioned media control
626 (no antagonist). Error bars: SD, p-values generated by unpaired t test with **** = p < 0.0001.

Fig.4: GABAergic signaling is pro-tumorigenic in melanoma



627 **Extended Data Fig. 1: Switching requires direct contact between nascent melanoma**
628 **cells and keratinocytes in vivo.**

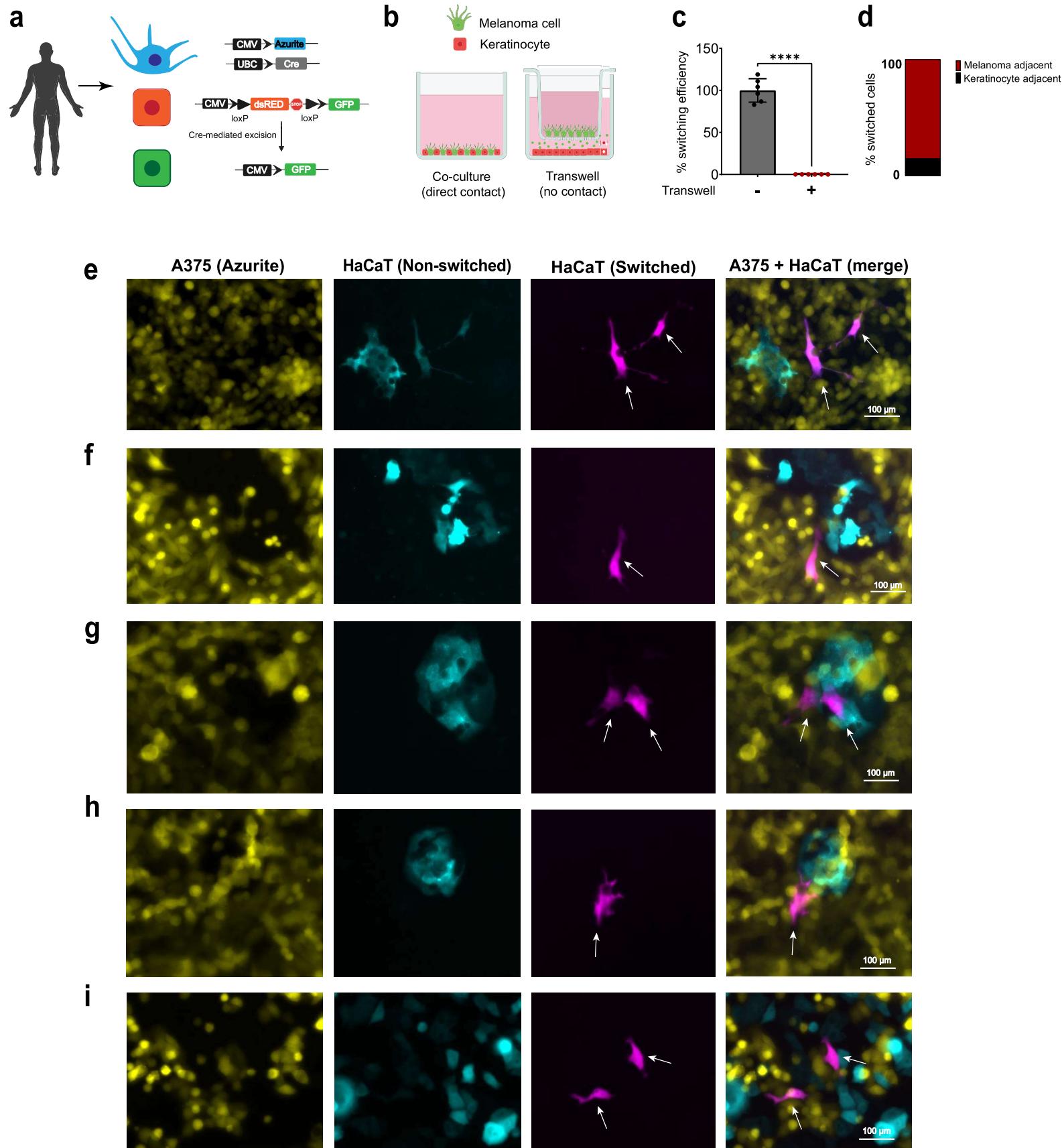
629 **(a - f):** Representative images of 3 dpf zebrafish embryos injected with the previously
630 described constructs (Fig. 1A). Switched keratinocytes (magenta, indicated by white arrows)
631 are primarily located directly adjacent to a nascent melanoma cell (yellow). Individual cells are
632 pseudocolored as indicated.

633 **(g):** Bar plot showing % switched keratinocytes (RFP positive) in direct contact with a nascent
634 melanoma cell (palmGFP positive). Data is pooled from 3 biological replicates (n = 60).

Extended Data Fig.1: Switching requires direct contact between nascent melanoma cells and keratinocytes *in vivo*

635 **Extended Data Fig. 2: Switching requires direct contact between melanoma cells and**
636 **keratinocytes in vitro.**

637 (a): Schematic representation of the genetic reporter system to detect melanoma/keratinocyte
638 communication in human co-culture cells.


639 (b): Schematic representation of Transwell assay for detecting melanoma/keratinocyte
640 communication (using the Cre-loxP system) +/- direct cell-cell contact using a 400 nm transwell
641 chamber.

642 (c): % Switching efficiency calculated as number of switched cells per well in keratinocytes +/-
643 direct contact with melanoma cells, normalized to no transwell (positive control). Data is pooled
644 from 3 biological replicates (n = 6). Error bars: SD, p-values generated by unpaired t test with ****
645 = p < 0.0001.

646 (d): Bar plot showing % switched keratinocytes (GFP positive) in co-culture in direct contact with
647 a melanoma cell (Azurite positive). Data is pooled from 4 biological replicates (n = 12).

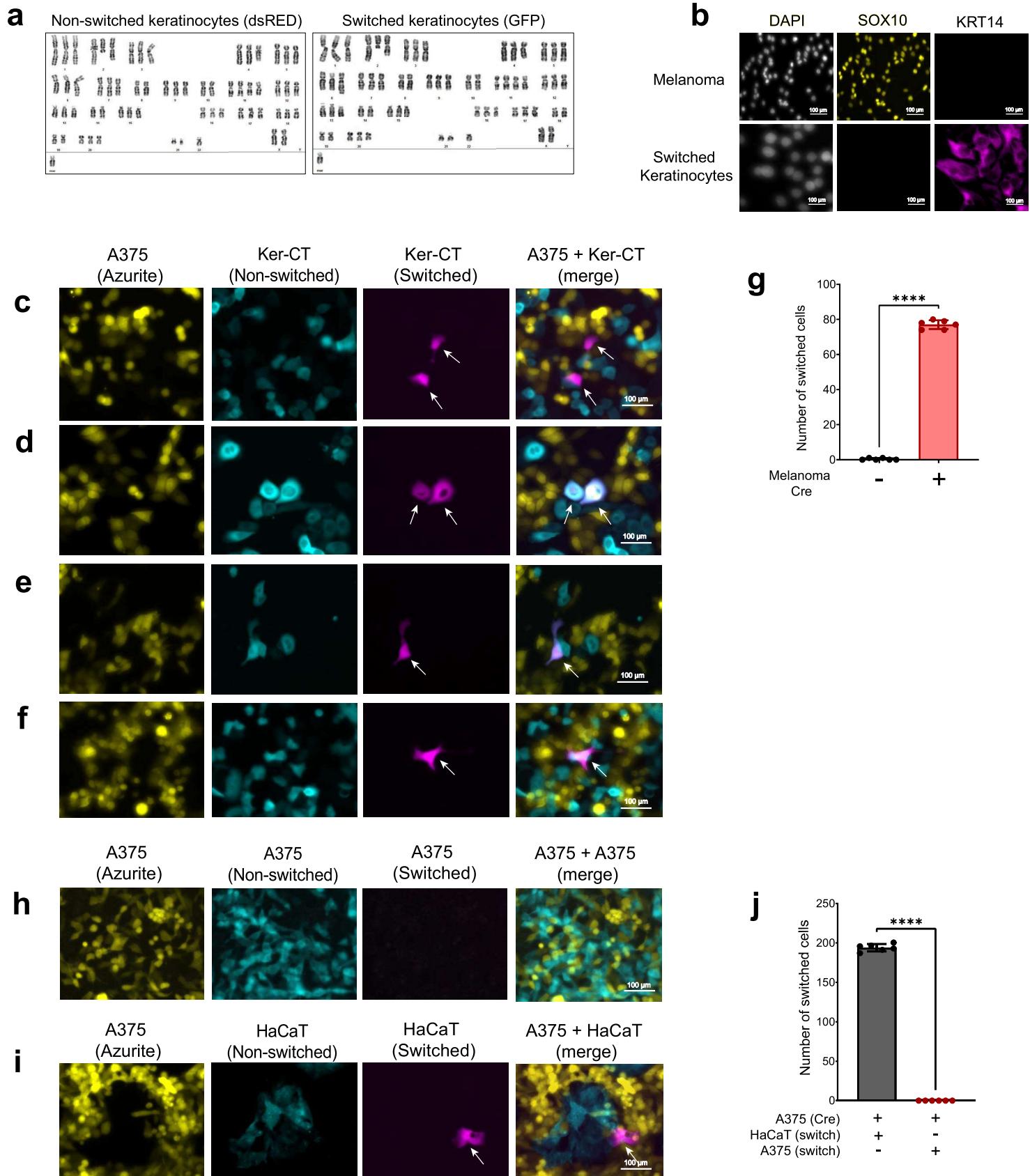
648 (e - i): Representative images of melanoma/keratinocyte co-cultures with A375 melanoma cells
649 (yellow) over-expressing Cre and Azurite and HaCaT switched keratinocytes over-expressing the
650 floxed dsRED to GFP switch construct (magenta, indicated by white arrows). Switched
651 keratinocytes are primarily located directly adjacent to a melanoma cell. Individual cells are
652 pseudocolored as indicated.

Extended Data Fig. 2: Switching requires direct contact between melanoma cells and keratinocytes in vitro

653 **Extended Data Fig. 3: Switching does not involve cell fusion between keratinocytes and**
654 **melanoma cells.**

655 **(a):** Karyotypic analysis of switched (GFP positive) vs non-switched (dsRED positive)
656 keratinocytes post FACS sorting highlighting the presence of HaCat specific chromosomal
657 markers in both cell types without additional chromosomal changes in switched keratinocytes.

658 **(b):** Immunostaining for SOX10 (melanoma marker) and KRT14 (keratinocyte marker) in
659 monocultures of switched keratinocytes and melanoma cells to identify evidence of cell fusion
660 between melanoma cells and keratinocytes in co-culture. Individual cells are pseudocolored
661 as indicated.

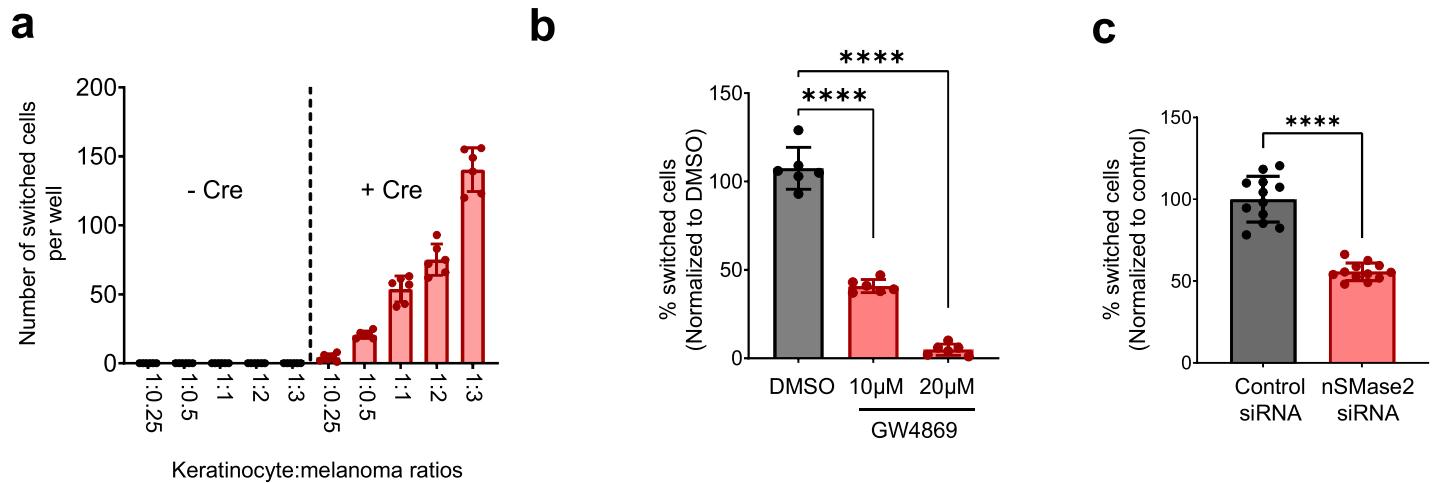

662 **(c - f):** Representative images of 48-hour melanoma/keratinocyte co-cultures with A375
663 melanoma cells over-expressing Cre and Azurite (yellow) and switched Ker-CT keratinocytes
664 over-expressing the floxed dsRED to GFP switch construct (magenta, indicated by white
665 arrows). Individual cells are pseudocolored as indicated.

666 **(g):** Quantification of switching efficiency represented as number of switched cells per well in
667 melanoma keratinocyte co-cultures with Ker-CT keratinocytes and A375 melanoma cells +/-
668 Cre per well of a 96-well plate. Data is pooled from 3 biological replicates (n = 6). Error bars:
669 SD, p-values generated by unpaired t test with **** = p < 0.0001.

670 **(h - i):** Representative images of 48-hour melanoma/melanoma or melanoma/keratinocyte co-
671 cultures with one population of A375 melanoma cells over-expressing Cre and Azurite (yellow)
672 and a second population of A375 melanoma cells/HaCaT keratinocytes over-expressing the
673 floxed dsRED to GFP switch construct (turquoise/magenta). Individual cells are
674 pseudocolored as indicated.

675 **(j):** Quantification of switching efficiency represented as number of switched cells per well in
676 melanoma/melanoma or melanoma/keratinocyte co-cultures per well of a 96-well plate. Data
677 is pooled from 3 biological replicates (n = 6). Error bars: SD, p-values generated by unpaired
678 t test with **** = p < 0.0001.

Extended Data Fig.3: Switching does not involve cell fusion between keratinocytes and melanoma cells


679 **Extended Data Fig. 4: Exosome-like vesicles are transferred from melanoma cells to**
680 **keratinocytes.**

681 **(a):** Switching efficiency calculated as number of switched cells per well with different
682 melanoma/keratinocyte ratios. Increasing the number of melanoma cells, while keeping
683 number of keratinocytes constant increases switching efficiency in keratinocytes. Data is
684 pooled from 3 biological replicates (n = 6). Error bars: SD.

685 **(b):** % Switching efficiency calculated as number of switched cells per well normalized to
686 control (DMSO) upon treatment with increasing concentrations of nSMase2 inhibitor, GW4869
687 in melanoma/keratinocyte co-cultures for 48 hours pooled from 3 biological replicates (n = 6).
688 Error bars: SD, p-values generated by unpaired t test with *** = p < 0.0001.

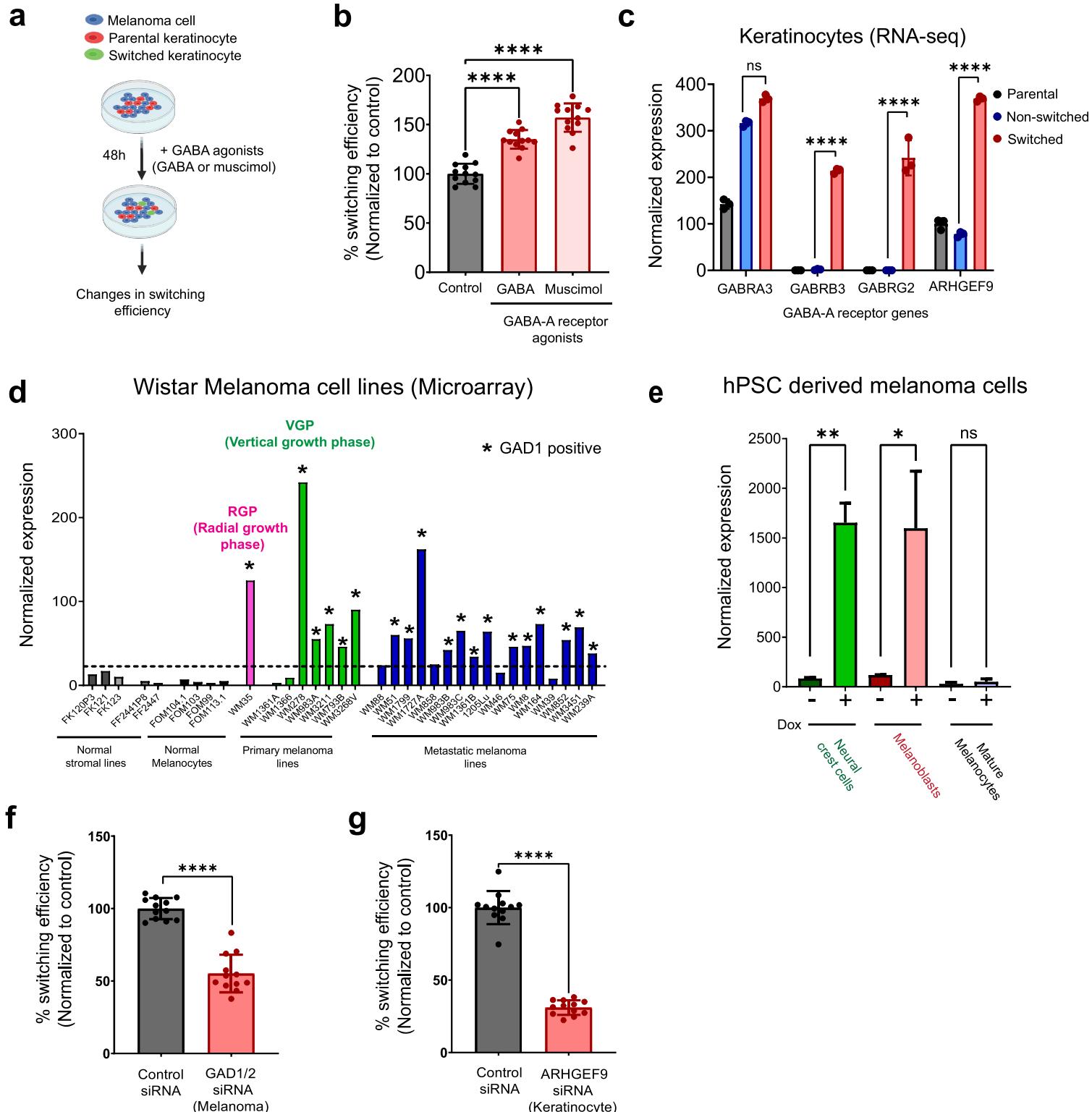
689 **(c):** % Switching efficiency calculated as number of switched cells per well normalized to
690 control siRNA when co-cultures are treated with nSMase2 targeting siRNA pooled from 3
691 biological replicates (n = 12). Error bars: SD, p-values generated by two-tailed unpaired t test
692 with *** = p < 0.0001.

Extended Data Fig.4: Exosome-like vesicles are transferred from melanoma cells to keratinocytes

693 **Extended Data Fig. 5: GABAergic signaling is active in skin and melanoma cells.**

694 **(a):** Schematic representation of the switching efficiency assay in vitro in
695 melanoma/keratinocyte co-cultures grown for 48 hours +/- GABA-A agonists, GABA and
696 muscimol.

697 **(b):** % Switching efficiency calculated as number of switched cells per well normalized to
698 control (DMSO) upon treatment with GABA-A agonists, GABA (100 μ M) and muscimol (10
699 μ M) in melanoma/keratinocyte co-cultures pooled from 4 biological replicates (n = 12). Error
700 bars: SD, p-values generated by unpaired t test with **** = p < 0.0001.


701 **(c):** Normalized expression of GABA receptor subunits (*GABRA3*, *GABRB3* and *GABRG2*)
702 and collybistin (*ARHGEF9*) in parental, non-switched and switched keratinocytes from RNA-
703 seq analysis. Data represent three biological replicates. Error bars: SD, p values were
704 calculated using DeSeq2 with **** = p < 0.0001.

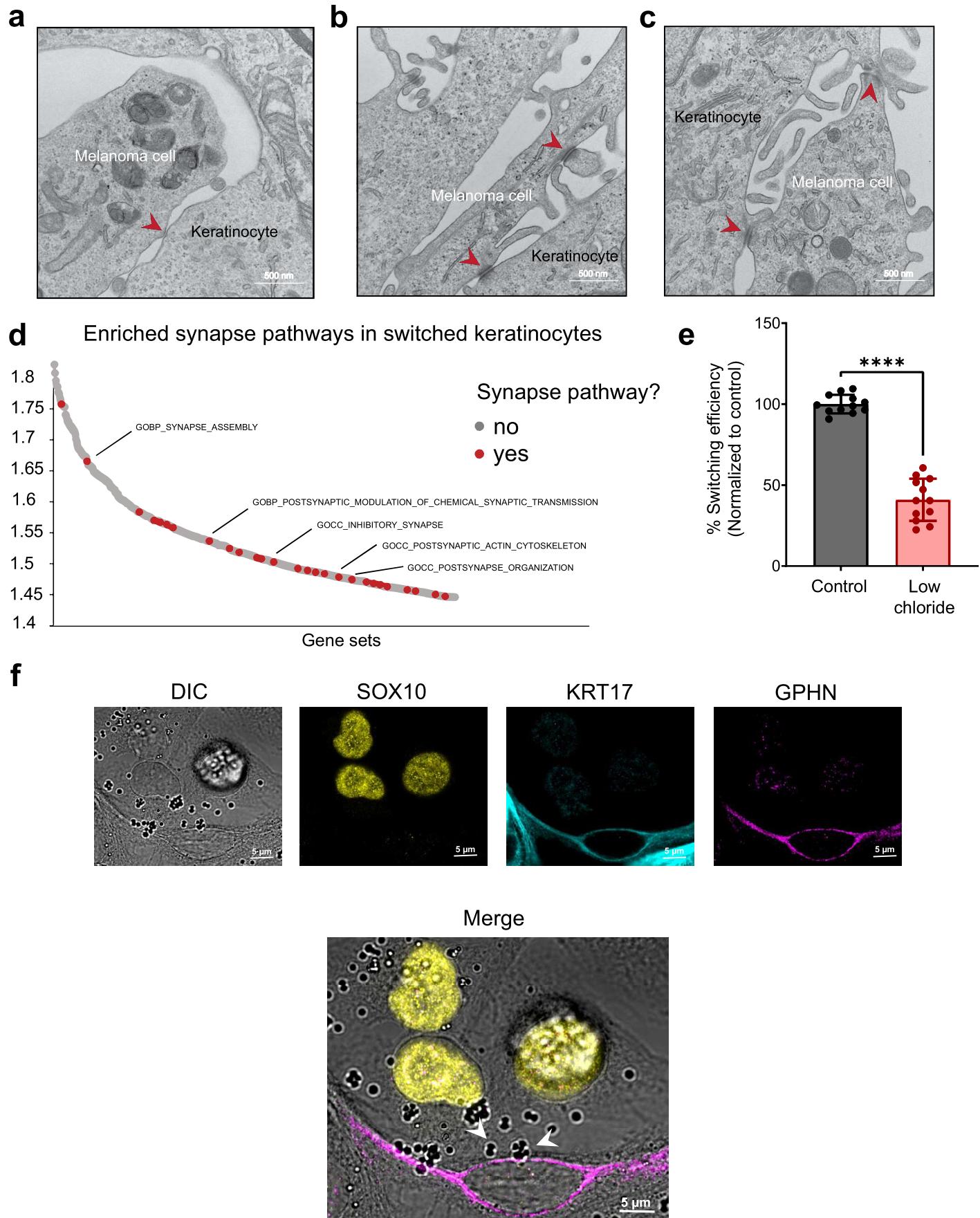
705 **(d):** Normalized expression of *GAD1* in Wistar melanoma cell lines representing primary
706 melanoma (RGP and VGP), metastatic melanoma, primary melanocytes (FOM lines),
707 keratinocytes (FK lines) and fibroblasts (FF lines). * represents cell lines that are *GAD1*
708 positive.

709 **(e):** Normalized expression of *GAD1* in triple knockout (*RB1*, *P53*, *P16*) human pluripotent
710 stem cell (hPSC) lines differentiated into neural crest cells, melanoblasts and melanocytes
711 (data from Baggio et al, 2021). Addition of doxycycline induces expression of *BRAF^{V600E}* in
712 this system. Only neural crest cells and melanoblasts induce *GAD1* expression in response
713 to doxycycline and can form tumors in vivo. Data represent three biological replicates. Error
714 bars: SD, p values were calculated using DeSeq2 with ** = p < 0.01 and * = p < 0.05.

715 **(f and g):** % Switching efficiency calculated as number of switched cells per well normalized
716 to control siRNA pooled from 3 biological replicates upon *GAD1/2* only (F) or *ARHGEF9* only
717 (G) knockdown (n = 12). Error bars: SD, p-values generated by two-tailed unpaired t test with
718 **** = p < 0.0001.

Extended Data Fig.5: GABAergic signaling is active in skin and melanoma cells

719 **Extended Data Fig. 6: Synapse-like signatures are enriched in melanoma cells and**
720 **keratinocytes.**

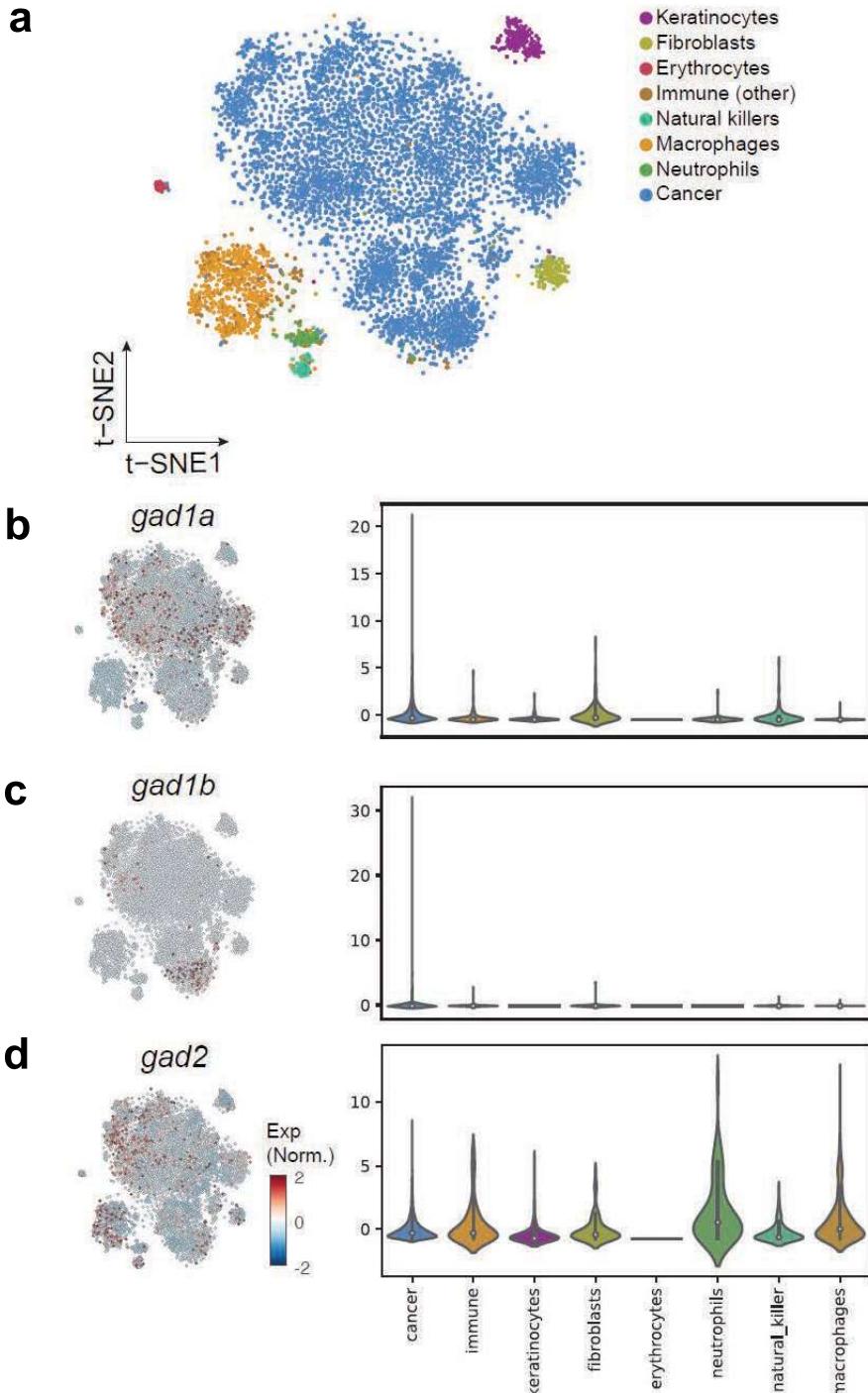

721 **(a - c):** Transmission electron microscopy of melanoma/keratinocyte co-cultures with
722 synapse-like structures indicated with red arrow. Representative images are shown.

723 **(d):** Waterfall plot of enriched pathways from GSEA analysis of switched vs parental
724 keratinocytes. Synapse related pathways are highlighted in red.

725 **(e):** % Switching efficiency calculated as number of switched cells per well normalized to
726 control (regular media) upon growth in low chloride media of melanoma/keratinocyte co-
727 cultures (to deplete intracellular chloride). Data is pooled from 4 biological replicates (n = 12).
728 Error bars: SD, p-values generated by unpaired t test with *** = p < 0.0001.

729 **(f):** Representative image of immunostaining for KRT17 (keratinocyte marker), SOX10
730 (melanoma marker) and gephyrin (post-synapse marker) in human melanoma/keratinocyte
731 co-cultures. Individual cells are pseudocolored as indicated. DIC overlap shows gephyrin
732 clustering in keratinocytes which are in direct contact with melanoma cells (white arrows).

Extended Data Fig.6: Synapse-like signatures are enriched in melanoma cells and keratinocytes



733 **Extended Data Fig. 7: GABA producing enzymes are expressed in zebrafish melanoma**
734 **cells.**

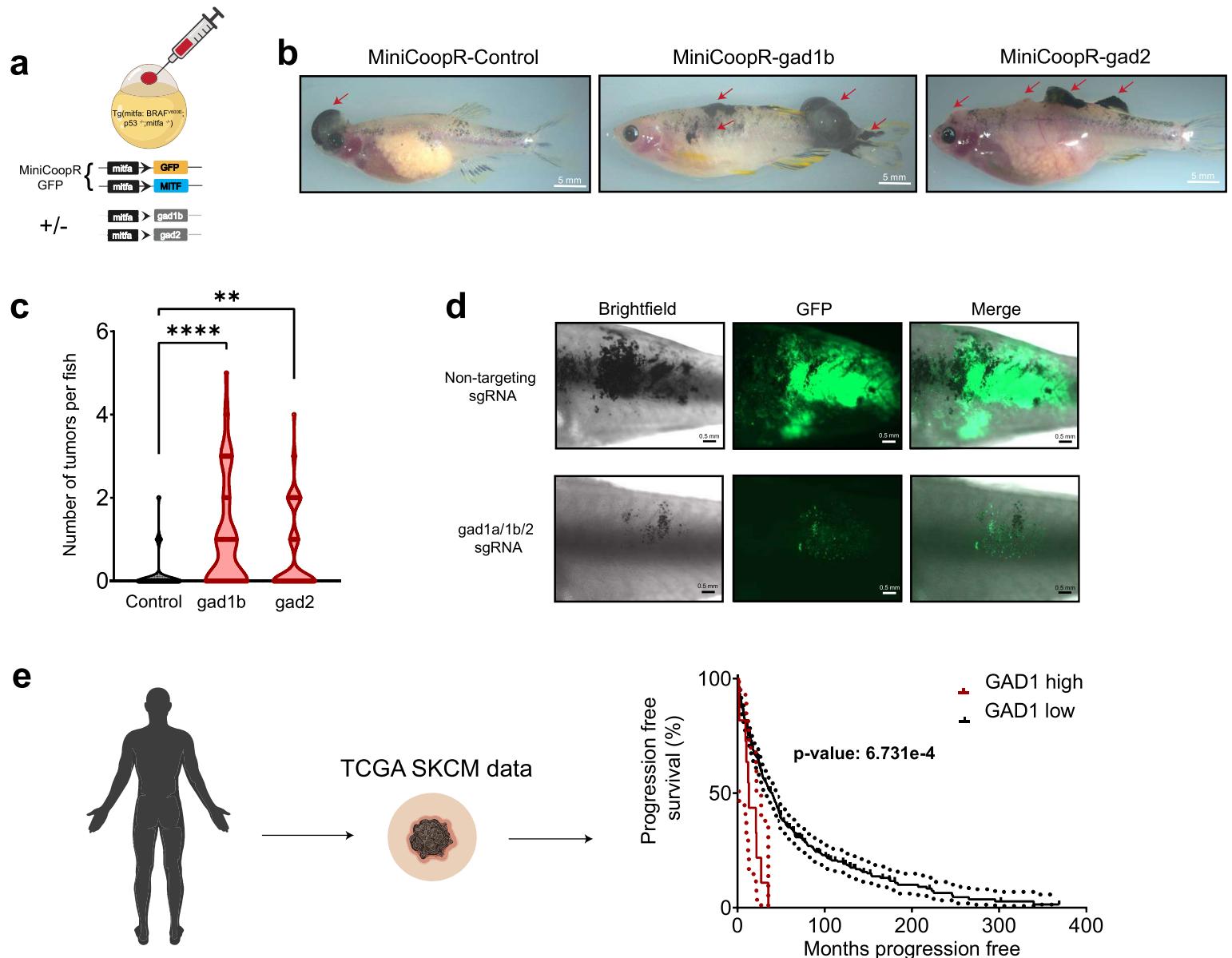
735 **(a):** tSNE analysis of 7278 individual zebrafish melanoma cells with colors indicating individual
736 tumor and microenvironmental cell types (data from Baron et al, 2020).

737 **(b - d):** Gene expression levels for *gad1a*, *gad1b* and *gad2* in single-cell RNA-seq analysis of
738 zebrafish melanoma with individual cell clusters (left) and violin plots showing quantification
739 of the genes in individual cell types (right). *gad1a* and *gad1b* are primarily expressed in tumor
740 cells while *gad2* is expressed in tumor and immune cell populations.

Extended Data Fig 7: GABA producing enzymes are expressed in zebrafish melanoma cells

741 **Extended Data Fig. 8: GAD expression correlates with worse prognosis in melanoma.**

742 **(a):** Schematic representation of the MiniCoopR melanocyte rescue and melanoma
743 development system in zebrafish with over-expression of *gad1b* or *gad2* gene in a melanocyte
744 specific manner.

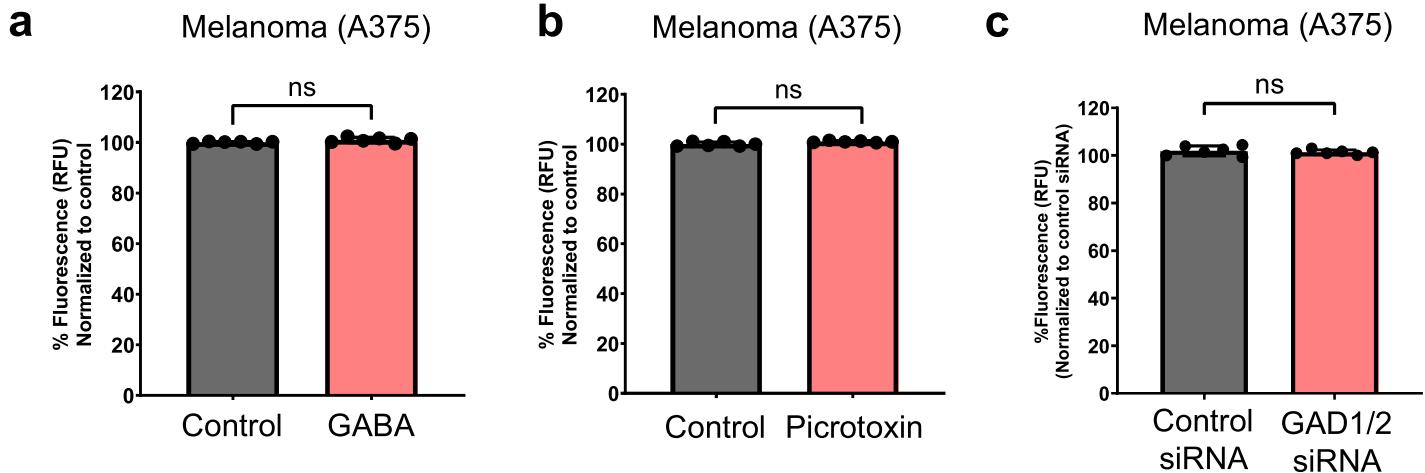

745 **(b):** Representative images of 16-week-old zebrafish injected with MiniCoopR rescue
746 plasmids showing control (GFP), *gad1b* and *gad2* over-expressing tumors. *gad* over-
747 expressing zebrafish have multiple tumors per fish (red arrow) when compared to control fish.

748 **(c):** Violin plots showing quantification of melanoma initiation frequency expressed as number
749 of tumors per fish in 16-week-old zebrafish over-expressing GFP or *gad1b* or *gad2* under a
750 melanocyte specific (*mitfa*) promoter. Data represent n = 55 control (GFP) fish, n = 53 *gad1b*
751 and n = 63 *gad2* fish pooled from 3 biological replicates. P values generated by chi-squared
752 test, ** p-value < 0.01, **** p-value < 0.0001.

753 **(d):** Representative images of transgenic fish electroporated with melanocyte specific Cas9
754 and a non-targeting sgRNA or *gad1a/1b/2* sgRNA, 10 weeks post electroporation.

755 **(e):** Kaplan-Meier progression free survival curve of TCGA SKCM patients with high levels of
756 *GAD1* expression. Log-rank p-value is indicated.

Extended Data Fig. 8: GAD expression correlates with worse prognosis in melanoma


757 **Extended Data Fig. 9: GABA treatment does not increase proliferation in monocultured**
758 **melanoma cells.**

759 **(a):** Melanoma proliferation calculated as % Fluorescence in melanoma cells treated with
760 GABA (100 μ M) as indicated. Data is pooled from 3 biological replicates (n = 6) and is
761 normalized to control treatment condition. Error bars: SD, p-values generated by unpaired t
762 test with **** = p < 0.0001.

763 **(b):** Melanoma proliferation calculated as % Fluorescence in melanoma cells treated with
764 Picrotoxin (100 μ M) as indicated. Data is pooled from 3 biological replicates (n = 6) and is
765 normalized to control treatment (DMSO) condition. Error bars: SD, p-values generated by
766 unpaired t test with **** = p < 0.0001.

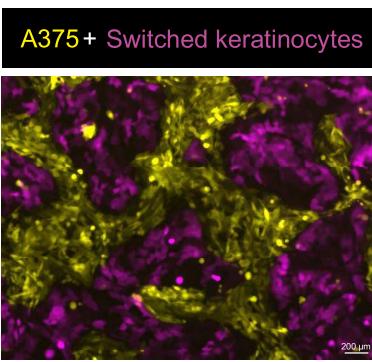
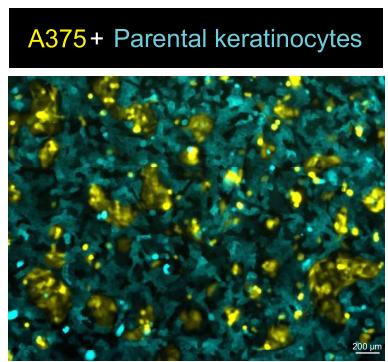
767 **(c):** Melanoma proliferation calculated as % Fluorescence in melanoma cells treated with
768 control siRNA or GAD1/2 siRNA as indicated. Data is pooled from 3 biological replicates (n =
769 6) and is normalized to control siRNA treatment condition. Error bars: SD, p-values generated
770 by unpaired t test with **** = p < 0.0001.

Extended Data Fig.9: GABA treatment does not increase proliferation in monocultured melanoma cells

771 **Extended Data Fig. 10: Switched keratinocytes are pro-tumorigenic in melanoma.**

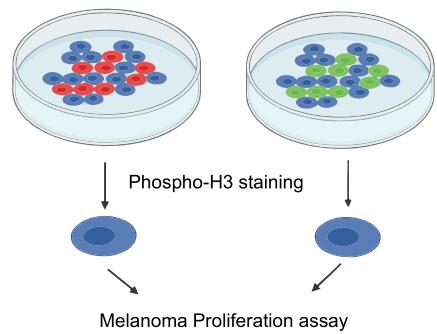
772 **(a):** Representative images of melanoma/keratinocyte co-cultures with A375 melanoma cells
773 (yellow) and HaCaT parental keratinocytes (turquoise, left) or HaCaT switched keratinocytes
774 (magenta, right). Switched keratinocytes are pro-tumorigenic in melanoma as seen by the
775 increased number of A375 cells in co-culture with switched keratinocytes (right panel).

776 **(b):** Schematic representation of melanoma proliferation assay in melanoma/keratinocyte co-
777 cultures using phospho-histone (pH3) staining.

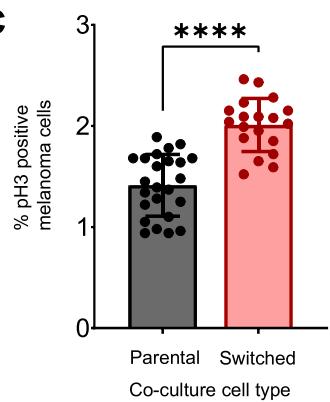


778 **(c):** Melanoma proliferation calculated as % phospho-histone (pH3) positive melanoma cells
779 when co-cultured with parental or switched keratinocytes for 48 hours. Data is pooled from 4
780 biological replicates (n = 12). Error bars: SD, p-values generated by unpaired t test with ****
781 = p < 0.0001.

782 **(d):** Schematic representation of luminescence-based melanoma proliferation assay.
783 Melanoma cells are treated with 24-hour conditioned media from parental or switched
784 keratinocytes for 48 hours and proliferation is measured using the CellTiter-Glo assay.

785 **(e):** Melanoma proliferation calculated as % Luminescence in melanoma cells treated with
786 conditioned media as indicated. Data is pooled from 4 biological replicates (n = 12) and is
787 normalized to parental keratinocyte condition. Error bars: SD, p-values generated by unpaired
788 t test with **** = p < 0.0001.

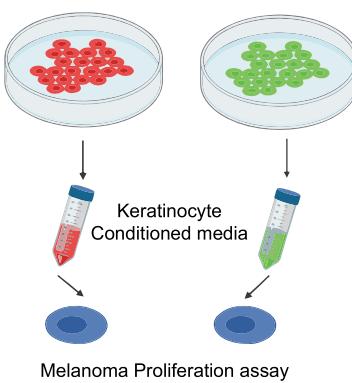

Extended Data Fig.10: Switched keratinocytes are pro-tumorigenic in melanoma

a

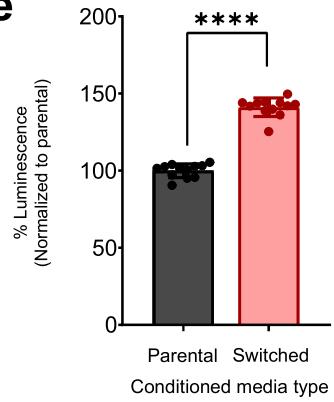


b

- Melanoma
- Parental keratinocyte
- Switched keratinocyte

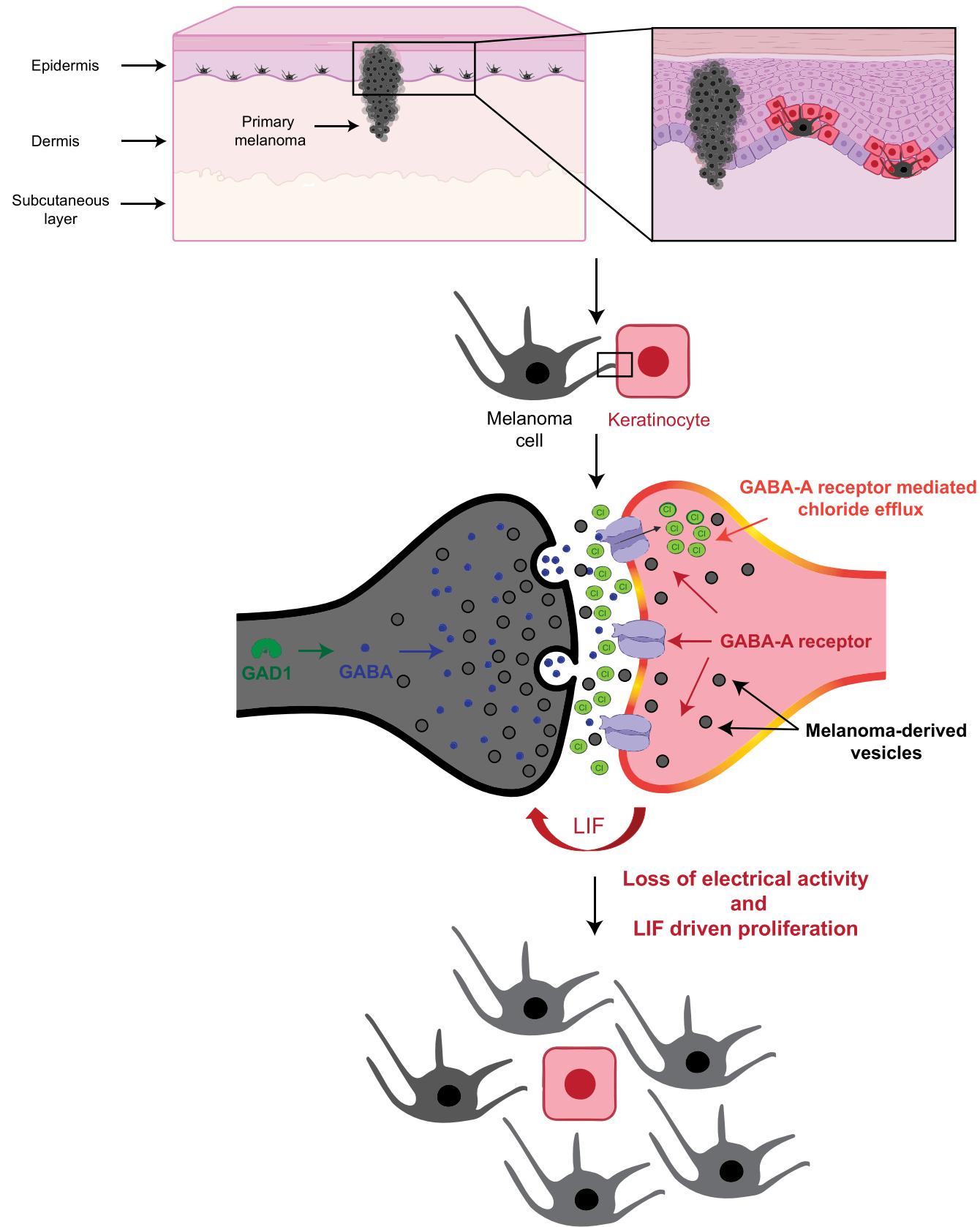


c



d

- Melanoma
- Parental keratinocyte
- Switched keratinocyte



e

789 **Extended Data Fig. 11: Model for GABAergic signaling driven melanoma/ keratinocyte**
790 **communication.**

Extended Data Fig. 11: Model for GABAergic signaling driven melanoma/keratinocyte communication

791 **Methods**

792 **Zebrafish**

793 *Zebrafish husbandry*

794 All zebrafish experiments were carried out in accordance with institutional animal protocols from
795 Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee
796 (IACUC), protocol number 12-05-008. Fish stocks were kept under standard conditions at 28.5°C
797 under 14 hr light/10 hr dark cycles, with salinity and pH (7.4) controlled conditions. Animals were
798 fed standard zebrafish diet consisting of brine shrimp followed by Zeigler pellets. Embryos were
799 collected from natural mating and incubated in E3 buffer (5 mM NaCl, 0.17 mM KCl, 0.33 mM
800 CaCl₂, 0.33 mM MgSO₄) at 28.5°C. All anesthesia was performed using Tricaine-S (MS-222,
801 Syndel USA, 712 Ferndale, WA) with a 4g/L, pH 7.0 stock. Sex determination in embryos is not
802 possible at 3-5 days post fertilization (dpf).

803 *In vivo switch assay in zebrafish embryos*

804 For the in vivo switch assay in zebrafish, one cell stage casper ⁷⁴ mitfa:BRAF^{V600E} *p53*^{-/-} embryos
805 (30 embryos per condition) were injected with the following reporter constructs:

806 1. krt4-loxP-lacZ-loxP-tdTomato OR krt4-loxP-GFP-loxP-tdTomato
807 2. MiniCoopR-palmGFP OR MiniCoopR-empty
808 3. mitfa-cre OR mitfa-empty

809 at 5ng/μl with tol2 mRNA at 20ng/μl. Embryos were screened for GFP fluorescence and imaged
810 at 3 dpf to measure GFP and tdTomato (RFP) fluorescence. To calculate switching efficiency in
811 embryos, we used GFP fluorescence from krt4-loxP-GFP-loxP-tdTomato construct to mark all
812 rescued keratinocytes in the embryo and tdTomato (RFP) fluorescence to mark switched
813 keratinocytes only. For quantifying switching efficiency, background autofluorescence was
814 subtracted and rescued keratinocyte area was quantified by uniformly thresholding the GFP
815 intensity using the default ImageJ segmentation algorithm, followed by quantifying the switched
816 keratinocyte area by uniformly thresholding the tdTomato (RFP) intensity across all animals. %
817 Switching efficiency was calculated as tdTomato (RFP) positive area/GFP positive area times 100
818 using ImageJ (NIH). For cell-cell direct contact measurements in Fig S1A, each embryo was
819 manually screened for the presence of switched keratinocytes (tdTomato positive from the
820 construct krt4-loxP-lacZ-loxP-tdTomato) adjacent or not adjacent to a rescued melanocyte (GFP
821 positive from the construct MiniCoopR-palmGFP). All images were acquired on a Zeiss AxioZoom
822 V16 fluorescence microscope.

823 *Pharmacological treatment of zebrafish embryos*

824 Zebrafish melanoma prone embryos (casper mitfa:BRAF^{V600E} *p53*^{-/-}) were injected with the
825 following constructs: krt4-loxP-GFP-loxP-tdTomato + MiniCoopR-Cre (20 embryos per condition)
826 at the one-cell stage. At 8 hours post fertilization (hpf) embryos were placed in a 40 μm cell
827 strainer in a 6-well dish in 6 ml of E3 water. Each well was treated with the following compounds:
828 DMSO or Muscimol (Sigma #M1523) at 10 μM, or Picrotoxin (Sigma #P1675) at 100 μM. The
829 compounds were added at 8 hpf and reapplied at 1 dpf and 2 dpf. Embryos were imaged at 3 dpf

830 using the same imaging and quantification protocol as described above to calculate % Switching
831 efficiency.

832 *Generation of gad1b and gad2 overexpressing MiniCoopR transgenic fish*

833 Transgenic zebrafish were generated by injection of 5 ng/μl of MiniCoopR-GFP and empty vector
834 or MiniCoopR-GFP; *mitfa-gad1b* or MiniCoopR-GFP; *mitfa-gad2* and *tol2* mRNA at 20 ng/μl in
835 melanoma prone casper *mitfa:BRAF^{V600E} p53^{-/-}* embryos. Embryos were screened for melanocyte
836 rescue at 5 dpf. Embryos with successful melanocyte rescue were grown to adulthood and scored
837 for the emergence of tumor at 10 and 16 weeks post fertilization (wpf).

838 *TEAZ electroporation*

839 Transgene Electroporation in Adult Zebrafish (TEAZ) was utilized to generate melanomas as
840 previously described⁴⁴. casper *mitfa:BRAF^{V600E} p53^{-/-}* transgenic animals (5-6 months old) were
841 electroporated with plasmids to generate *BRAF^{V600E}*, *p53^{-/-}*, *pten^{-/-}* tumors expressing either a Non-
842 targeting sgRNA or sgRNAs against *gad1a*, *gad1b* and *gad2*. Plasmids electroporated per animal
843 included MiniCoopR 2x U6 sgRNAs-*pten*, *mitfa:Cas9* (300 ng)⁷⁵ to induce melanocyte rescue and
844 loss of *pten*, *mitfa:GFP* (125 ng), *Tol2* (58 ng) and 100 ng of Non-targeting or *gad* sgRNAs. Briefly,
845 adult male fish were anesthetized with 0.2% tricaine and injected with 1μl of plasmid mix
846 described above into the skin below the dorsal fin. Fish were electroporated and allowed to
847 recover in fresh system water. Electroporation was performed using a CM830 Electro Square
848 Porator from BTX Harvard Apparatus and Genepaddles 3x5mm, with a voltage of 45V, 5 pulses,
849 60ms pulse length and 1s pulse interval. Fish were imaged every week using brightfield and
850 fluorescent imaging at 25X and 10X using a Zeiss AxioZoom V16 fluorescence microscope.
851 Tumor area was quantified by GFP fluorescence using ImageJ.

852 All *gad* sgRNAs for this experiment were designed using CHOPCHOP⁷⁶ and GuideScan⁷⁷. The
853 sgRNA sequences are outlined below:

854 Non-targeting: AACCTACGGGCTACGATACG

855 *pten*: GAATAAGCGGAGGTACCAGG

856 *ptenb*: GAGACAGTGCCTATGTTCAG

857 *gad1a*: TGACGTCACCTATGACACGG

858 *gad1b*: TACGACAACCTGCCACAAAGT

859 *gad2*: GTAGAGATCCGAAAAGCACG

860 *Plasmid construction*

861 For melanocyte-specific constructs, the previously developed *mitfa* promoter⁷⁸ in a gateway
862 compatible 5' entry vector was used. For keratinocyte-specific constructs, we used the previously
863 described *krt4* promoter which labels differentiated keratinocytes in the zebrafish skin⁷⁹. The
864 keratinocyte-specific switch construct was generated by modifying the previously generated
865 ubiquitin switch construct in zebrafish, ubb-*loxP-GFP-loxP-tdTomato*⁸⁰. The following plasmids
866 were constructed using the Gateway Tol2 kit⁸¹:

867 1. krt4:loxP-lacZ-loxP-tdTomato-394
868 2. krt4:loxP-GFP-loxP-tdTomato-394
869 3. krt4:loxP-GFP-loxP-DTA-394
870 4. MiniCoopR:palmGFP
871 5. MiniCoopR: Cre
872 6. mitfa:palmGFP-394
873 7. mitfa:cre-394
874 8. ubb:cre-394bsd (blasticidin in 394 backbone)
875 9. mitfa:gad1b-394
876 10. mitfa:gad2-394

877 For cloning *gad1a*, *gad1b* and *gad2* targeting sgRNAs into a plasmid backbone, we used three
878 different U6 promoters as described in⁸² and cloned all the sgRNAs (Non-targeting or gad) in a
879 single gateway compatible 394 backbone with tol2 arms. Guide RNA cutting efficiency was
880 validated using the Surveyor mutation kit (IDT #706020). MiniCoopR 2xU6:gRNA, mitfa:Cas9
881 (MAZERATI)⁷⁵ was a gift from Leonard Zon (Addgene plasmid #118844).

882 **Cell culture**

883 *Melanoma cell culture*

884 Human melanoma cell lines (A375, A375-MA2, HS294T, A101D, SKMEL24, SKMEL3, SKMEL5,
885 C32, SH-4) were obtained from ATCC where routine cell line authentication is performed. The
886 zebrafish melanoma cell line (ZMEL1) was derived from a tumor in a mitfa-BRAF^{V600E} *p53*^{-/-}
887 zebrafish as described previously⁸³. Mouse melanoma cell lines, YUMM 1.1 and YUMM 4.1⁸⁴
888 were a kind gift from the Neal Rosen lab. Human melanoma cell lines, A375, A375-MA2, Hs294T,
889 A101D and SH-4 were maintained in DMEM (Gibco #11965) supplemented with 10% FBS
890 (Gemini Bio), 1X penicillin/streptomycin (Gibco #15140122), SKMEL-24 and C32 were
891 maintained in EMEM (ATCC #30-2003) supplemented with 10% FBS (Gemini Bio), 1X
892 penicillin/streptomycin (Gibco #15140122), SKMEL-3 was maintained in McCoy's 5a Medium
893 Modified (ATCC #30-2007) supplemented with 10% FBS (Gemini Bio), 1X penicillin/streptomycin
894 (Gibco #15140122). Mouse melanoma lines, YUMM 1.1 and YUMM 4.1 were maintained in
895 DMEM-F12 (ATCC #30-2006) supplemented with 10% FBS (Gemini Bio), 10% Non-essential
896 Amino Acids (Gibco #11440-076), 1X penicillin/streptomycin (Gibco #15140122). Zebrafish
897 melanoma cell line, ZMEL1 was maintained in DMEM (Gibco #11965) supplemented with 10%
898 FBS (Gemini Bio), 1X penicillin/streptomycin/glutamine (Gibco #10378016), and 1X GlutaMAX
899 (Gibco #35050061) and grown at 28°C with 5% CO₂ in a humidified incubator. All cells were
900 passaged less than 20 times before a low passage batch was thawed. They were routinely tested
901 for mycoplasma using a luminescence-based mycoplasma detection kit (MycoAlert Mycoplasma
902 Detection kit, Lonza #: LT07-318).

903 *Keratinocyte cell culture*

904 HaCaT keratinocyte cell line⁸⁵ was obtained from Addexbio and authenticated at the MSKCC
905 Molecular Cytogenetics Core. Ker-CT is an hTERT immortalized keratinocyte cell line⁸⁶ and was
906 obtained from ATCC. HaCaT cells were maintained in DMEM (Gibco #11965) supplemented with
907 10% FBS (Gemini Bio), 1X penicillin/streptomycin (Gibco #15140122). Ker-CT cells were
908 maintained in KGM-Gold Keratinocyte growth medium supplemented with KGM-Gold™
909 BulletKit™(Lonza #00192060). Cells were split when confluent, approximately 2X per week, and

910 were used directly in co-cultures. For melanoma/keratinocyte co-cultures, 50:50 media from
911 melanoma cells and keratinocytes was used and co-cultures were maintained for 48 hours to
912 three weeks. For low chloride media experiments, Na-gluconate and K-gluconate was used as a
913 substitute for chloride as described in⁴² to maintain isotonicity.

914 *Cell line generation*

915 All human and mouse melanoma lines were engineered to overexpress Cre under the *UBC*
916 promoter modified from Addgene plasmid #65727 as described in⁸⁷. Zebrafish ZMEL1-Cre
917 overexpressing lines were generated using electroporation with the plasmid ubb:Cre-394Bsd
918 using the Neon transfection system (Thermo Fisher). All human and mouse melanoma lines were
919 selected with puromycin (1 μ g/ml) while the zebrafish ZMEL1 line was selected with blasticidin
920 (4 μ g/ml) for three weeks. For switch cell line generation in melanoma cells (A375) and
921 keratinocytes (HaCaT and Ker-CT), the plasmid, pLV-CMV-LoxP-DsRed-LoxP-eGFP (Addgene
922 plasmid #65726) was used for lentiviral infection as described in⁸⁷. All switch lines were subjected
923 to puromycin selection followed by two rounds of FACS sorting to eliminate any double positive
924 (dsRED/GFP positive) cells.

925 *In vitro switch assay in melanoma/keratinocyte co-cultures*

926 HaCaT or Ker-CT reporter keratinocytes expressing the switch cassette (0.4 million cells) and all
927 human/mouse/zebrafish melanoma cell lines expressing Cre (1.2 million cells) were seeded in
928 1:3 ratios in 6-well plates with 50:50 keratinocyte/melanoma cell media. For zebrafish melanoma
929 (ZMEL1) and human keratinocyte (HaCaT) co-cultures, cells were maintained in a 28°C
930 humidified incubator with 5% CO₂. For all other co-cultures, cells were maintained in a 37°C with
931 5% CO₂ humidified incubator. After 48 hours of co-culture, conditions were blinded and each well
932 was manually scored for the number of switched keratinocytes (GFP positive) per condition.
933 Control co-cultures with no Cre melanoma cells were scored in parallel to eliminate the possibility
934 of background switching in each condition. All imaging was performed in a Zeiss AxioObserver
935 fluorescence microscope.

936 *siRNA treatment*

937 For siRNA studies, Dharmacon ON-TARGETplus SMARTpool siRNAs were used to knockdown
938 individual human genes and cells were treated based on the manufacturer's instructions. Briefly,
939 melanoma cells or keratinocytes were seeded overnight in regular media with no antibiotics in 6-
940 well dishes as monocultures and transfected with the indicated SMARTpool siRNAs and
941 DharmaFECT 1 transfection reagent (Horizon #T-2005-01) in serum free media. 72 hours post-
942 transfection, siRNA treated cells (melanoma cells or keratinocytes) were treated with a second
943 dose of siRNA, followed by a 48 hour incubation and then co-cultured with the corresponding non-
944 targeting siRNA treated melanoma cells or keratinocytes and incubated for an additional 48 hours.
945 Knockdown efficiency of monocultures was measured at 72 hours post transfection. For
946 calculating switching efficiency, number of switched cells per condition (3 technical replicates)
947 was counted 48 hours post co-culture and 7 days post transfection. Knockdown efficiency was
948 validated using qPCR at 5 days and Western Blot at 7 days post transfection. All siRNA-treated
949 cells were monitored for signs of toxicity or changes in proliferation rate using Cyquant Cell
950 Proliferation Assay (see below) and no toxicity was observed for the indicated siRNA treatments.

951

952

953 *Transwell assay*

954 Transwell assay was performed to detect requirement of cell-cell contact for switching in
955 keratinocytes, as described in⁸⁷. Briefly, 20,000 HaCaT keratinocytes expressing the switch
956 construct were plated alone or in combination with 60,000 A375 melanoma cells expressing Cre
957 per well of a 24-well plate. 24 hours post plating, 20,000 A375 melanoma cells (+/- Cre) were
958 seeded into the upper Transwell chamber (400 nm size) with a layer of keratinocytes seeded
959 previously at the bottom. 48 hours post seeding the transwell chamber, switched GFP positive
960 cells were counted per condition. Cells were incubated for an additional two weeks and scored
961 for GFP positive switched keratinocytes in the bottom well.

962 *Sigma LOPAC library small molecule screen*

963 For the small molecule screen, we wanted to identify enhancers of switching efficiency, which is
964 a readout of melanoma/keratinocyte communication, in co-cultures, using the in vitro switch assay
965 outlined above. To do this, human melanoma/keratinocyte co-cultures (HaCaT and A375 cells)
966 were seeded in 96-well plates at 1:3 ratios on Day 0. 24 hours post seeding, co-cultures were
967 treated with 10 μ M chemicals from the Sigma LOPAC 1280 library. All chemicals were prepared
968 from 10 mM stocks and diluted in cell growth medium. Eight DMSO only wells were included in
969 each plate to quantify basal switching efficiency. Co-cultures were incubated for an additional 48
970 hours post chemical addition and switching efficiency was quantified 3 days post seeding and 48
971 hours post adding chemicals. Each well was manually screened and the number of GFP positive
972 switched keratinocytes was counted. Fold change was calculated by dividing the number of
973 switched keratinocytes per well to the average number of switched keratinocytes per well in
974 DMSO controls. After the identification of positive hits, a majority of which were modulators of the
975 GABA-A signaling pathway, a second round of validation was performed in a 6-well format, using
976 bona fide GABA-A receptor agonists like GABA (Sigma #A2129), Muscimol (Sigma #M1523), as
977 well as GABA-A receptor antagonists like Bicuculline methbromide (Sigma #B7561) and
978 Picrotoxin (Sigma #P1675), followed by in vivo validation in zebrafish embryos.

979 **RNA-seq of keratinocytes**

980 HaCaT keratinocyte cell line expressing the switch construct was grown either in monoculture or
981 co-culture with A375 melanoma cells expressing Cre in a 1:3 keratinocyte/melanoma ratio for 21
982 days in complete DMEM. Co-cultures were split 1X per week upon reaching confluence.
983 Monoculture keratinocytes (dsRED positive) and co-culture keratinocytes, both switched and non-
984 switched (GFP positive and dsRED positive) were then isolated using FACS and plated on 6-well
985 dishes for recovery following the FACS procedure. Total RNA was isolated from the FACS
986 isolated keratinocytes post-recovery using the Quick RNA miniprep kit (Zymo) and purified RNA
987 was delivered to GENEWIZ (South Plainfield, NJ) for mRNA preparation with the TruSeq RNA V2
988 kit (Illumina) and 150bp paired-end sequencing on the Illumina HiSeq2500. Quality control of the
989 raw reads from RNA-seq fastq files was performed using FASTQC (Babraham Bioinformatics)
990 and trimming was performed using TRIMOMATIC⁸⁸. Trimmed reads were mapped to the human
991 (hg38) genome using STAR⁸⁹. Gene counts of aligned reads were performed using the *feature*
992 *counts* algorithm⁹⁰, followed by differential gene expression analysis using DeSeq2⁹¹. Pathway
993 and gene ontology analysis was performed using GSEA⁹². All data will be deposited in the GEO
994 database.

995

996

997 **Immunostaining**

998 *Immunofluorescence staining of cultured cells*

999 HaCaT/A375 co-cultures were grown on 35 mm glass bottom dishes (ThermoFisher #150682) for
1000 48 hours. Post 48 hours incubation, growth media was aspirated from the dishes and cells were
1001 fixed with 4% PFA for 20 min at room temperature (RT) and washed 3X with PBS. Following this,
1002 cells were permeabilized for 15 min in 0.1% Triton X-100 (diluted from 10% stock, Sigma #93443)
1003 in 1X PBS, followed by 3X washes with PBS. Blocking was performed using 10% normal goat
1004 serum (ThermoFisher #50062Z) for 1 hour at RT followed by overnight incubation with primary
1005 antibodies at 4°C. Cells were subsequently washed 3X with PBS and incubated with secondary
1006 antibodies diluted in blocking solution for 1.5 hour at RT, followed by 3X PBS washes. For
1007 fluorophore conjugated secondary antibodies, samples were individually treated with the specific
1008 conjugated antibodies for 2 hours at RT after secondary antibody incubation, followed by 3X
1009 washes with PBS. Finally, cells were counterstained using Hoechst 33343 (Invitrogen #H3570) in
1010 PBS for 20 min followed by 3X PBS washes. For wheat germ agglutinin (WGA) staining, cells
1011 were treated with WGA conjugated to Alexa Fluor 555 (Thermo Fisher #W32464) prior to
1012 permeabilization for 10 min at RT. Fresh PBS was added after the final wash to the cells and
1013 imaged on an LSM880 high resolution confocal microscope with a 63X objective using AiryScan
1014 imaging. The following primary antibodies were used: mouse anti-human GPHN (Synaptic
1015 Systems #147011); rabbit anti-human SOX10 (ThermoFisher #PA5-84795); rabbit anti-human
1016 KRT17 conjugated to Alexa Fluor 546 (Santa Cruz Biotechnology #sc-393002 AF546); rabbit anti-
1017 GABA (Sigma #A2052). The following secondary antibodies were used: AlexaFluor 488 anti-
1018 mouse IgG (Cell Signaling #4408S); AlexaFluor 647 anti-rabbit IgG (Cell Signaling #4414S).

1019 *Immunofluorescence staining of patient samples*

1020 Malignant melanoma in situ (MMIS) samples and Tumor microarrays (TMA) were obtained from
1021 the Memorial Sloan Kettering Cancer Center TMA Database and US Biomax (ME208). Paraffin
1022 sections of all tumors and normal skin were deparaffinized and antigen retrieval was performed
1023 using heat induced epitope retrieval method (HIER) with 1X Antigen Retrieval solution (Invitrogen
1024 #00-4955-58) in a pressure cooker at 95°C for 10 min. Slides were washed 3X with PBS and
1025 blocked with 10% normal goat serum (ThermoFisher #50062Z) for 2 hours at RT and incubated
1026 with primary antibodies overnight at 4°C. Slides were washed with PBS (3X) followed by
1027 incubation with secondary antibodies for 2 hours at RT and 3X washes with PBS post-secondary
1028 antibody incubation. For fluorophore conjugated secondary antibodies, samples were individually
1029 treated with the specific conjugated antibodies for 2 hours at RT after secondary antibody
1030 incubation, followed by 3X washes with PBS. After the final PBS wash, slides were counterstained
1031 with Hoechst 33342 (Invitrogen #H3570) and mounted in ProLong Glass Antifade Mountant
1032 (Fisher #P36984). The following primary antibodies were used: rabbit anti-human GAD1 (Sigma
1033 #HPA058412) mouse anti-human GPHN (Synaptic Systems #147011); rabbit anti-human KRT17
1034 (Sigma #HPA000452); rabbit anti-human S100A6 conjugated to Alexa Fluor 647 (Abcam
1035 #ab204028). The following secondary antibodies were used: AlexaFluor 488 anti-mouse IgG (Cell
1036 Signaling #4408S); Alexa Fluor 555 anti-rabbit IgG (Cell Signaling #4413S). For calculating GAD1
1037 IF score, we probed the intensity (score 0-2) and the coverage (score 1-4) of each individual
1038 sample from melanoma patients and normal skin and assigned the IF score by multiplying the
1039 intensity score with the coverage score. All sections were imaged on an LSM880 high resolution
1040 confocal microscope with a 63X objective using AiryScan imaging.

1041

1042 **Proliferation assays**

1043 *A375 phospho-Histone H3 (pH3) immunostaining*

1044 For proliferation studies, A375 melanoma cells (Azurite fluorophore positive) were co-cultured
1045 either with switched (GFP positive) or parental (dsRED positive) keratinocytes in low serum (2%)
1046 media, where melanoma cells and keratinocytes were plated in a 1:5 ratio for 48 hours. Following
1047 the 48 hours incubation, cells were fixed in 4% PFA and stained with a phospho-Histone H3
1048 primary antibody (1:1000; Millipore #05-806) overnight at 4°C. Cells were counterstained with
1049 AlexaFluor 647 anti-mouse IgG (Cell Signaling #4410) and more than 10 images per condition
1050 were acquired in a Zeiss AxioObserver fluorescence microscope. The number of mitotic cells was
1051 quantified by calculating double-positive cells (Azurite+, AlexaFluor647+) as a fraction of the total
1052 number of Azurite+ cells in each field.

1053 *CellTiter-Glo assay in melanoma cells treated with keratinocyte conditioned media*

1054 For conditioned media experiments, switched and parental keratinocytes were grown in 2% serum
1055 containing media for 24 hours and collected in 50 ml Falcon tubes followed by centrifugation at
1056 500g for 5 minutes to remove any dead cells or debris. To measure cell proliferation, monocultures
1057 of A375 azurite positive cells were plated at a density of 5,000 cells per well in a 96-well plate in
1058 100 µL of conditioned media from switched or parental keratinocytes. After 48 hours of
1059 conditioned media treatment, CellTiter-Glo reagent (Promega #G7570) was added to the cells as
1060 per the manufacturer's instructions and luminescence was read using a BioTek Synergy 96-well
1061 plate reader. All values were normalized to the A375 cells treated with parental keratinocytes
1062 conditioned media, done in quadruplicate for all cell lines. For the antagonist treatments, the same
1063 protocol as above was used except cells were treated with the following antagonists which were
1064 directly added to the conditioned media: AZD4547 (FGF receptor, Fisher Scientific #NC0660421,
1065 100 ng/ml) or DMH1 (BMP receptor, Sigma #D8946, 0.5 µM) or EC330 (LIF receptor, Fisher
1066 #501871773, 30 nM).

1067 *Cyquant proliferation assay in monocultures and co-cultures*

1068 For proliferation experiments upon treatment with GABA/picrotoxin, 2000 or 5000 cells/well of
1069 melanoma cells were plated in 96-well plates. 24 hours post plating, GABA/picrotoxin was added
1070 to the media followed by a 48 hour incubation. Proliferation was measured using the Cyquant Cell
1071 Proliferation assay as per the manufacturer's instructions and fluorescence was read using a
1072 BioTek Synergy 96-well plate reader. All values were normalized to the control conditions.

1073 **Transmission Electron Microscopy**

1074 Melanoma/keratinocyte co-cultures were incubated for 48 hours and fixed using 4%
1075 paraformaldehyde, 2.5% glutaraldehyde, 0.002% picric acid in 0.1 mol/L sodium cacodylate
1076 buffer, pH 7.3 for transmission electron microscopy (12,000–15,000x). Imaging was performed
1077 on the JEOL JSM 1400, operated at 100 kV. Images were captured on a Vela 2K × 2K CCD
1078 camera (EM-SIS).

1079

1080

1081

1082 **Electrophysiology studies**

1083 *MEA assay*

1084 Extracellular recordings – Melanoma cell and keratinocyte co-cultures were seeded onto
1085 complementary metal oxide semiconductor multi-electrode array (CMOS-MEA) probes (3Brain
1086 AG, Wädenswil, Switzerland) coated with poly D-lysine (Sigma #P6407) overnight in the 37°C
1087 incubator. A 100- μ l droplet of cell suspension was placed directly on the probe recording area.
1088 After 1 hour of incubation at 37°C, 1.5 ml of medium was added to the probe and replaced daily.
1089 Recordings were performed 48 hours days after plating. 2 minutes of spontaneous activity were
1090 sampled from the 4096 electrodes in each probe using the BioCAM X system. Recordings were
1091 analyzed using the BrainWave 4 software. Spike detection was performed using a Precise Timing
1092 Spike Detection (PTSD)⁹³ algorithm by applying a threshold of 8 standard deviation to each
1093 channel trace. Average firing rates were calculated from a subset containing the 64 most active
1094 electrodes in each recording.

1095 *Calcium activity assay*

1096 Calcium activity was measured using the Cal-520 (Abcam ab171868) and Rhod-4 (Abcam
1097 ab112156) dyes following the manufacturer's instructions. Briefly, melanoma and keratinocyte
1098 monocultures and co-cultures were plated in white bottom 96-well plates (Fisher #07-200-566)
1099 and incubated for 48 hours. Following incubation, cells were treated with Cal-520 or Rhod-4 dyes
1100 at 37°C followed by RT incubation. For Cal-520 measurements, Picrotoxin (Sigma #P1675) was
1101 added to monocultures and co-cultures following RT incubation. Readings were measured using
1102 a BioTek Synergy 96-well plate reader at 488 and 540 nm wavelengths respectively.

1103 **Data analysis**

1104 *TCGA data analysis in melanoma patients*

1105 Melanoma patient sample analysis was performed using data from 448 samples in the TCGA
1106 Skin cutaneous melanoma (SKCM) PanCancer Atlas obtained from the Cancer Genome Atlas
1107 (TCGA)⁹⁴. Samples were divided into two groups from gene expression data based on *GAD1* high
1108 and *GAD1* low mRNA expression. Kaplan Meier survival curves were generated using Graphpad
1109 Prism 9.

1110 *Analysis of publicly available *GAD1* expression data*

1111 For *GAD1* expression analysis, microarray expression data from Wistar melanoma cell lines was
1112 downloaded from Rockland-inc.com Melanoma Cell Lines and Mutations dataset (34 lines listed)
1113 (<https://rockland-inc.com/melanoma-cell-lines.aspx>)^{33,95}. *GAD1* expression value for each
1114 melanoma cell line (radial growth phase, vertical growth phase and metastatic) and normal cell
1115 lines (melanocytes, keratinocytes and fibroblasts) was plotted and *GAD1* positivity assigned
1116 based on default analysis parameters used in the dataset.

1117

1118

1119

1120 **Supplementary materials:**

1121 Table S1 (LOPAC Screen results in melanoma keratinocyte co-cultures)

1122 Table S2 (RNA-seq and GSEA results in switched vs non-switched keratinocytes)

1123 **References**

- 1124 1. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. *Cell* **161**,
1125 1681–1696 (2015).
- 1126 2. Bagiolini, A. *et al.* Developmental chromatin programs determine oncogenic competence
1127 in melanoma. *Science* **373**, eabc1048 (2021).
- 1128 3. Chung, H., Suh, E.-K., Han, I.-O. & Oh, E.-S. Keratinocyte-derived laminin-332 promotes
1129 adhesion and migration in melanocytes and melanoma. *J. Biol. Chem.* **286**, 13438–13447
1130 (2011).
- 1131 4. Golan, T. *et al.* Interactions of Melanoma Cells with Distal Keratinocytes Trigger Metastasis
1132 via Notch Signaling Inhibition of MITF. *Mol. Cell* **59**, 664–676 (2015).
- 1133 5. Kim, I. S. *et al.* Microenvironment-derived factors driving metastatic plasticity in melanoma.
1134 *Nat. Commun.* **8**, 14343 (2017).
- 1135 6. Hsu, M. Y. *et al.* E-cadherin expression in melanoma cells restores keratinocyte-mediated
1136 growth control and down-regulates expression of invasion-related adhesion receptors. *Am.*
1137 *J. Pathol.* **156**, 1515–1525 (2000).
- 1138 7. Ableser, M. J., Penuela, S., Lee, J., Shao, Q. & Laird, D. W. Connexin43 reduces
1139 melanoma growth within a keratinocyte microenvironment and during tumorigenesis *in vivo*.
1140 *J. Biol. Chem.* **289**, 1592–1603 (2014).
- 1141 8. Halaban, R. *et al.* Met and hepatocyte growth factor/scatter factor signal transduction in
1142 normal melanocytes and melanoma cells. *Oncogene* **7**, 2195–2206 (1992).
- 1143 9. Kunisada, T. *et al.* Keratinocyte expression of transgenic hepatocyte growth factor affects
1144 melanocyte development, leading to dermal melanocytosis. *Mech. Dev.* **94**, 67–78 (2000).
- 1145 10. Brenner, M., Degitz, K., Besch, R. & Berking, C. Differential expression of melanoma-
1146 associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B
1147 radiation. *Br. J. Dermatol.* **153**, 733–739 (2005).
- 1148 11. Mescher, M. *et al.* The epidermal polarity protein Par3 is a non-cell autonomous suppressor

1149 of malignant melanoma. *J. Exp. Med.* **214**, 339–358 (2017).

1150 12. Shih, I. M., Elder, D. E., Hsu, M. Y. & Herlyn, M. Regulation of Mel-CAM/MUC18
1151 expression on melanocytes of different stages of tumor progression by normal
1152 keratinocytes. *Am. J. Pathol.* **145**, 837–845 (1994).

1153 13. Hsu, M., Andl, T., Li, G., Meinkoth, J. L. & Herlyn, M. Cadherin repertoire determines
1154 partner-specific gap junctional communication during melanoma progression. *J. Cell Sci.*
1155 **113 (Pt 9)**, 1535–1542 (2000).

1156 14. Ando, H. *et al.* Melanosomes are transferred from melanocytes to keratinocytes through the
1157 processes of packaging, release, uptake, and dispersion. *J. Invest. Dermatol.* **132**, 1222–
1158 1229 (2012).

1159 15. Chen, H., Weng, Q. Y. & Fisher, D. E. UV signaling pathways within the skin. *J. Invest.*
1160 *Dermatol.* **134**, 2080–2085 (2014).

1161 16. Fitzpatrick, T. B. & Breathnach, A. S. [the epidermal melanin unit system]. *Dermatol.*
1162 *Wochenschr.* **147**, 481–489 (1963).

1163 17. Wäster, P., Eriksson, I., Vainikka, L., Rosdahl, I. & Öllinger, K. Extracellular vesicles are
1164 transferred from melanocytes to keratinocytes after UVA irradiation. *Sci. Rep.* **6**, 27890
1165 (2016).

1166 18. Zomer, A. *et al.* In Vivo imaging reveals extracellular vesicle-mediated phenocopying of
1167 metastatic behavior. *Cell* **161**, 1046–1057 (2015).

1168 19. Ridder, K. *et al.* Extracellular vesicle-mediated transfer of genetic information between the
1169 hematopoietic system and the brain in response to inflammation. *PLoS Biol.* **12**, e1001874
1170 (2014).

1171 20. Ceol, C. J. *et al.* The histone methyltransferase SETDB1 is recurrently amplified in
1172 melanoma and accelerates its onset. *Nature* **471**, 513–517 (2011).

1173 21. Wang, J. *et al.* The regenerative capacity of zebrafish reverses cardiac failure caused by
1174 genetic cardiomyocyte depletion. *Development* **138**, 3421–3430 (2011).

1175 22. Trajkovic, K. *et al.* Ceramide triggers budding of exosome vesicles into multivesicular
1176 endosomes. *Science* **319**, 1244–1247 (2008).

1177 23. Johnston, G. A. R. Muscimol as an ionotropic GABA receptor agonist. *Neurochem. Res.* **39**,
1178 1942–1947 (2014).

1179 24. Asada, H. *et al.* Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking
1180 the 67-kDa isoform of glutamic acid decarboxylase. *Proc Natl Acad Sci USA* **94**, 6496–
1181 6499 (1997).

1182 25. Lazarus, M. S., Krishnan, K. & Huang, Z. J. GAD67 deficiency in parvalbumin interneurons
1183 produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal
1184 cortex. *Cereb. Cortex* **25**, 1290–1296 (2015).

1185 26. Denda, M., Inoue, K., Inomata, S. & Denda, S. gamma-Aminobutyric acid (A) receptor
1186 agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced
1187 by barrier disruption. *J. Invest. Dermatol.* **119**, 1041–1047 (2002).

1188 27. Allen, J. R., Skeath, J. B. & Johnson, S. L. Maintenance of Melanocyte Stem Cell
1189 Quiescence by GABA-A Signaling in Larval Zebrafish. *Genetics* **213**, 555–566 (2019).

1190 28. Pomeranz Krummel, D. A. *et al.* Melanoma Cell Intrinsic GABA_A Receptor Enhancement
1191 Potentiates Radiation and Immune Checkpoint Inhibitor Response by Promoting Direct and
1192 T Cell-Mediated Antitumor Activity. *Int. J. Radiat. Oncol. Biol. Phys.* **109**, 1040–1053
1193 (2021).

1194 29. Ito, K., Tanaka, K., Nishibe, Y., Hasegawa, J. & Ueno, H. GABA-synthesizing enzyme,
1195 GAD67, from dermal fibroblasts: evidence for a new skin function. *Biochim. Biophys. Acta*
1196 **1770**, 291–296 (2007).

1197 30. Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces
1198 submembrane clustering of gephyrin. *Nat. Neurosci.* **3**, 22–29 (2000).

1199 31. Harvey, K. *et al.* The GDP-GTP exchange factor collybistin: an essential determinant of
1200 neuronal gephyrin clustering. *J. Neurosci.* **24**, 5816–5826 (2004).

1201 32. Papadopoulos, T. *et al.* Impaired GABAergic transmission and altered hippocampal
1202 synaptic plasticity in collybistin-deficient mice. *EMBO J.* **26**, 3888–3899 (2007).

1203 33. Hsu, M.-Y., Elder, D. E. & Herlyn, M. Melanoma: the wistar melanoma (WM) cell lines. in
1204 *Human Cell Culture* (eds. Masters, J. R. W. & Palsson, B.) 259–274 (Kluwer Academic
1205 Publishers, 2002). doi:10.1007/0-306-46872-7_14.

1206 34. Callahan, S. J., Mica, Y. & Studer, L. Feeder-free Derivation of Melanocytes from Human
1207 Pluripotent Stem Cells. *J. Vis. Exp.* e53806 (2016) doi:10.3791/53806.

1208 35. Unable to find information for 9541685.

1209 36. Lefler, Y., Yarom, Y. & Uusisaari, M. Y. Cerebellar inhibitory input to the inferior olive
1210 decreases electrical coupling and blocks subthreshold oscillations. *Neuron* **81**, 1389–1400
1211 (2014).

1212 37. Marlin, J. J. & Carter, A. G. GABA-A receptor inhibition of local calcium signaling in spines
1213 and dendrites. *J. Neurosci.* **34**, 15898–15911 (2014).

1214 38. Belote, R. L. & Simon, S. M. Ca²⁺ transients in melanocyte dendrites and dendritic spine-
1215 like structures evoked by cell-to-cell signaling. *J. Cell Biol.* **219**, (2020).

1216 39. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Lüscher, B. Postsynaptic clustering
1217 of major GABA_A receptor subtypes requires the gamma 2 subunit and gephyrin. *Nat.*
1218 *Neurosci.* **1**, 563–571 (1998).

1219 40. Lock, J. T., Parker, I. & Smith, I. F. A comparison of fluorescent Ca²⁺ indicators for imaging
1220 local Ca²⁺ signals in cultured cells. *Cell Calcium* **58**, 638–648 (2015).

1221 41. Zhang, S. J. & Jackson, M. B. GABA-activated chloride channels in secretory nerve
1222 endings. *Science* **259**, 531–534 (1993).

1223 42. Heimlich, G. & Cidlowski, J. A. Selective role of intracellular chloride in the regulation of the
1224 intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. *J. Biol. Chem.* **281**, 2232–
1225 2241 (2006).

1226 43. Baron, M. *et al.* The Stress-Like Cancer Cell State Is a Consistent Component of

1227 Tumorigenesis. *Cell Syst.* **11**, 536-546.e7 (2020).

1228 44. Callahan, S. J. *et al.* Cancer modeling by Transgene Electroporation in Adult Zebrafish
1229 (TEAZ). *Dis. Model. Mech.* **11**, (2018).

1230 45. Hirobe, T. Role of keratinocyte-derived factors involved in regulating the proliferation and
1231 differentiation of mammalian epidermal melanocytes. *Pigment Cell Res.* **18**, 2–12 (2005).

1232 46. Halaban, R. Signal transduction in normal and malignant melanocytes. *Pigment Cell Res.*
1233 **7**, 89–95 (1994).

1234 47. Ghassemi, S. *et al.* FGF5 is expressed in melanoma and enhances malignancy in vitro and
1235 in vivo. *Oncotarget* **8**, 87750–87762 (2017).

1236 48. Halaban, R. *et al.* Basic fibroblast growth factor from human keratinocytes is a natural
1237 mitogen for melanocytes. *J. Cell Biol.* **107**, 1611–1619 (1988).

1238 49. Venkatesan, A. M. *et al.* Ligand-activated BMP signaling inhibits cell differentiation and
1239 death to promote melanoma. *J. Clin. Invest.* **128**, 294–308 (2018).

1240 50. Kuphal, S., Wallner, S. & Bosserhoff, A. K. Impact of LIF (leukemia inhibitory factor)
1241 expression in malignant melanoma. *Exp. Mol. Pathol.* **95**, 156–165 (2013).

1242 51. Guo, H., Cheng, Y., Martinka, M. & McElwee, K. High LIF_r expression stimulates melanoma
1243 cell migration and is associated with unfavorable prognosis in melanoma. *Oncotarget* **6**,
1244 25484–25498 (2015).

1245 52. Lemke, R., Gradient, R. A., Patterson, P. H., Bigl, V. & Schliebs, R. Leukemia inhibitory
1246 factor (LIF) mRNA-expressing neuronal subpopulations in adult rat basal forebrain.
1247 *Neurosci. Lett.* **229**, 69–71 (1997).

1248 53. Blesch, A. *et al.* Leukemia inhibitory factor augments neurotrophin expression and
1249 corticospinal axon growth after adult CNS injury. *J. Neurosci.* **19**, 3556–3566 (1999).

1250 54. Li, M., Sendtner, M. & Smith, A. Essential function of LIF receptor in motor neurons. *Nature*
1251 **378**, 724–727 (1995).

1252 55. Haass, N. K. & Herlyn, M. Normal human melanocyte homeostasis as a paradigm for

1253 understanding melanoma. *J. Investig. Dermatol. Symp. Proc.* **10**, 153–163 (2005).

1254 56. Lee, J. T. & Herlyn, M. Microenvironmental influences in melanoma progression. *J. Cell.*
1255 *Biochem.* **101**, 862–872 (2007).

1256 57. Li, G., Satyamoorthy, K. & Herlyn, M. Dynamics of cell interactions and communications
1257 during melanoma development. *Crit. Rev. Oral Biol. Med.* **13**, 62–70 (2002).

1258 58. Barria, A. Dangerous liaisons as tumour cells form synapses with neurons. *Nature* **573**,
1259 499–501 (2019).

1260 59. McCaig, C. D., Song, B. & Rajnicek, A. M. Electrical dimensions in cell science. *J. Cell Sci.*
1261 **122**, 4267–4276 (2009).

1262 60. Chernet, B. & Levin, M. Endogenous Voltage Potentials and the Microenvironment:
1263 Bioelectric Signals that Reveal, Induce and Normalize Cancer. *J. Clin. Exp. Oncol. Suppl* **1**,
1264 (2013).

1265 61. Bellono, N. W., Kammel, L. G., Zimmerman, A. L. & Oancea, E. UV light phototransduction
1266 activates transient receptor potential A1 ion channels in human melanocytes. *Proc Natl
1267 Acad Sci USA* **110**, 2383–2388 (2013).

1268 62. Watanabe, M. *et al.* Spot pattern of leopard Danio is caused by mutation in the zebrafish
1269 connexin41.8 gene. *EMBO Rep.* **7**, 893–897 (2006).

1270 63. Loewenstein, W. R. & Kanno, Y. Intercellular communication and the control of tissue
1271 growth: lack of communication between cancer cells. *Nature* **209**, 1248–1249 (1966).

1272 64. Yamasaki, H., Hollstein, M., Mesnil, M., Martel, N. & Aguelon, A. M. Selective lack of
1273 intercellular communication between transformed and nontransformed cells as a common
1274 property of chemical and oncogene transformation of BALB/c 3T3 cells. *Cancer Res.* **47**,
1275 5658–5664 (1987).

1276 65. Enomoto, T. & Yamasaki, H. Lack of intercellular communication between chemically
1277 transformed and surrounding nontransformed BALB/c 3T3 cells. *Cancer Res.* **44**, 5200–
1278 5203 (1984).

1279 66. Venkataramani, V. *et al.* Glutamatergic synaptic input to glioma cells drives brain tumour
1280 progression. *Nature* **573**, 532–538 (2019).

1281 67. Venkatesh, H. S. *et al.* Electrical and synaptic integration of glioma into neural circuits.
1282 *Nature* **573**, 539–545 (2019).

1283 68. Zeng, Q. *et al.* Synaptic proximity enables NMDAR signalling to promote brain metastasis.
1284 *Nature* **573**, 526–531 (2019).

1285 69. Belote, R. L. *et al.* Human melanocyte development and melanoma dedifferentiation at
1286 single-cell resolution. *Nat. Cell Biol.* **23**, 1035–1047 (2021).

1287 70. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting
1288 steps in EV-mediated delivery. *J. Extracell. Vesicles* **5**, 31027 (2016).

1289 71. Kanada, M. *et al.* Differential fates of biomolecules delivered to target cells via extracellular
1290 vesicles. *Proc Natl Acad Sci USA* **112**, E1433-42 (2015).

1291 72. Heath, N. *et al.* Endosomal escape enhancing compounds facilitate functional delivery of
1292 extracellular vesicle cargo. *Nanomedicine (Lond)* **14**, 2799–2814 (2019).

1293 73. Sonawane, N. D., Szoka, F. C. & Verkman, A. S. Chloride accumulation and swelling in
1294 endosomes enhances DNA transfer by polyamine-DNA polyplexes. *J. Biol. Chem.* **278**,
1295 44826–44831 (2003).

1296 74. White, R. M. *et al.* Transparent adult zebrafish as a tool for in vivo transplantation analysis.
1297 *Cell Stem Cell* **2**, 183–189 (2008).

1298 75. Ablain, J. *et al.* Human tumor genomics and zebrafish modeling identify SPRED1 loss as a
1299 driver of mucosal melanoma. *Science* **362**, 1055–1060 (2018).

1300 76. Labun, K. *et al.* CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome
1301 editing. *Nucleic Acids Res.* **47**, W171–W174 (2019).

1302 77. Perez, A. R. *et al.* GuideScan software for improved single and paired CRISPR guide RNA
1303 design. *Nat. Biotechnol.* **35**, 347–349 (2017).

1304 78. Patton, E. E. *et al.* BRAF mutations are sufficient to promote nevi formation and cooperate

1305 with p53 in the genesis of melanoma. *Curr. Biol.* **15**, 249–254 (2005).

1306 79. Gong, Z. *et al.* Green fluorescent protein expression in germ-line transmitted transgenic

1307 zebrafish under a stratified epithelial promoter from keratin8. *Dev. Dyn.* **223**, 204–215

1308 (2002).

1309 80. Mosimann, C. *et al.* Ubiquitous transgene expression and Cre-based recombination driven

1310 by the ubiquitin promoter in zebrafish. *Development* **138**, 169–177 (2011).

1311 81. Kwan, K. M. *et al.* The Tol2kit: a multisite gateway-based construction kit for Tol2

1312 transposon transgenesis constructs. *Dev. Dyn.* **236**, 3088–3099 (2007).

1313 82. Yin, L. *et al.* Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and

1314 sgRNAs. *Genetics* **200**, 431–441 (2015).

1315 83. Heilmann, S. *et al.* A quantitative system for studying metastasis using transparent

1316 zebrafish. *Cancer Res.* **75**, 4272–4282 (2015).

1317 84. Meeth, K., Wang, J. X., Micevic, G., Damsky, W. & Bosenberg, M. W. The YUMM lines: a

1318 series of congenic mouse melanoma cell lines with defined genetic alterations. *Pigment*

1319 *Cell Melanoma Res.* **29**, 590–597 (2016).

1320 85. Boukamp, P. *et al.* Normal keratinization in a spontaneously immortalized aneuploid human

1321 keratinocyte cell line. *J. Cell Biol.* **106**, 761–771 (1988).

1322 86. Ramirez, R. D. *et al.* Bypass of telomere-dependent replicative senescence (M1) upon

1323 overexpression of Cdk4 in normal human epithelial cells. *Oncogene* **22**, 433–444 (2003).

1324 87. Zomer, A., Steenbeek, S. C., Maynard, C. & van Rheenen, J. Studying extracellular vesicle

1325 transfer by a Cre-loxP method. *Nat. Protoc.* **11**, 87–101 (2016).

1326 88. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina

1327 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

1328 89. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

1329 90. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for

1330 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

1331 91. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1332 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

1333 92. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1334 interpreting genome-wide expression profiles. *Proc Natl Acad Sci USA* **102**, 15545–15550
1335 (2005).

1336 93. Maccione, A. *et al.* A novel algorithm for precise identification of spikes in extracellularly
1337 recorded neuronal signals. *J. Neurosci. Methods* **177**, 241–249 (2009).

1338 94. Cancer Genome Atlas Research Network *et al.* The Cancer Genome Atlas Pan-Cancer
1339 analysis project. *Nat. Genet.* **45**, 1113–1120 (2013).

1340 95. Hoek, K. S. *et al.* Metastatic potential of melanomas defined by specific gene expression
1341 profiles with no BRAF signature. *Pigment Cell Res.* **19**, 290–302 (2006).