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Understanding the cellular origins of childhood brain tumors is key for discovering novel 

tumor-specific therapeutic targets. Previous strategies mapping cellular origins typically 

involved comparing human tumors to murine embryonal tissues1,2, a potentially imperfect 

approach due to spatio-temporal gene expression differences between species3. Here we 

use an unprecedented single-nucleus atlas of the developing human cerebellum (Sepp, 

Leiss, et al) and extensive bulk and single-cell transcriptome tumor data to map their 

cellular origins with focus on three most common pediatric brain tumors – pilocytic 

astrocytoma, ependymoma, and medulloblastoma. Using custom bioinformatics 

approaches, we postulate the astroglial and glial lineages as the origins for posterior fossa 

ependymomas and radiation-induced gliomas (secondary tumors after medulloblastoma 

treatment), respectively. Moreover, we confirm that SHH, Group3 and Group4 

medulloblastomas stem from granule cell/unipolar brush cell lineages, whereas we 

propose pilocytic astrocytoma to originate from the oligodendrocyte lineage. We also 

identify genes shared between the cerebellar lineage of origin and corresponding tumors, 

and genes that are tumor specific; both gene sets represent promising therapeutic targets. 

As a common feature among most cerebellar tumors, we observed compositional 

heterogeneity in terms of similarity to normal cells, suggesting that tumors arise from or 

differentiate into multiple points along the cerebellar “lineage of origin”. 

 
Pediatric central nervous system (CNS) tumors represent one of the most fatal disease entities 

in children4. Despite major advances in the classification and diagnosis of these tumors, such 

as DNA methylation analysis5 and routine next-generation sequencing-based work-up6, 

contemporary treatment stratification does not match the tremendous inter-tumor heterogeneity 

observed in pediatric CNS tumors. Current radiation and chemotherapy approaches frequently 

result in neurocognitive disorders and life-long side effects, including secondary malignancies 

in patients surviving their primary disease7. Future therapeutic approaches must evolve to target 

tumor-specific vulnerabilities8, ideally without affecting normal tissue architecture – a difficult 

task, owing to the compositional and functional complexity of the brain9. To address these 

challenges, we focused on the cerebellum, the most frequent anatomic location of pediatric 

brain tumors1,10. We sought to uncover human cerebellar cellular diversity, identify cells 

vulnerable to tumor formation, and detect regulatory genes or surface markers as potential 

tumor specific therapeutic targets.  
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In this study, we concentrated on the three most common cerebellar tumor types in children: 

medulloblastoma (MB), posterior fossa ependymoma (PFA-EPD), and pilocytic astrocytoma 

(PA). Medulloblastoma, the most prevalent malignant cerebellar tumor, is classified into WNT, 

SHH, Group 3 and Group 4 molecular groups, and associated subgroups11. While WNT MBs 

are thought to arise from the lower rhombic lop in the dorsal brainstem rather than the 

cerebellum12, SHH MBs are known to originate from granule cell precursors13,14, whereas 

Group 4 MBs most likely arise from unipolar brush cells1,2. The cellular origin of Group 3 MBs 

is still less clearly pinpointed. PFA, a hindbrain-specific ependymoma type15, is frequently fatal 

due to its chemotherapy resistance. In previous studies, this tumor class showed closest 

similarities to radial glial cell subtypes16 – “roof-plate-like stem cells” and  “gliogenic 

progenitors” – when comparing it to murine cerebellar cell types1. Pilocytic astrocytomas, even 

though representing benign tumors, are often associated with life-long morbidities and multiple 

tumor recurrences17. While the origin of these tumors is unknown, PAs are hypothesized to 

arise from oligodendrocytes18. Notably, the cellular origins of pediatric tumors have been 

primarily deduced from murine cell atlases1,2, a limited and potentially imperfect approach due 

to spatio-temporal developmental gene expression differences between these species3,19. 

Therefore, it is essential to revisit the cellular origins of pediatric tumors based on a 

comprehensive human cell atlas. 

 

To fill this gap, we compared transcriptomes representing cell types, differentiation states, and 

subtypes from the developing human cerebellum (Sepp, Leiss, et al.) to bulk and single-cell 

gene expression profiles from pediatric CNS tumors (Figure 1a, Supplementary Figure 1a). 

Our integrated analyses of these datasets revealed the best matching cellular lineages of origin 

for medulloblastoma, ependymoma and pilocytic astrocytoma classes and subclasses. Using 

tumor-to-normal tissue comparisons, we identified candidate target genes and pathways as 

putative tumor-specific vulnerabilities. Additionally, we detected the glial lineage, a source of 

both astrocytes and oligodendrocytes, as the lineage of origin in radiation-induced gliomas20, a 

relatively common secondary tumor arising after medulloblastoma treatment21, suggesting that 

these tumors arise independently rather than occuring through evolution or trans-differentiation 

from the primary medulloblastoma. To enable readers to access and use our resources and 

results further, we developed an online graphical user interface, which facilitates the interactive 

exploration of our data and results at brain-match.org.   
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Figure 1. Human single-nuclei developmental cerebellum cell atlas as the reference for deciphering lineages-of-origin of cerebellar tumors. 

a) Overview of the BRAIN-MATCH project. Single-nuclei gene expression profiles of the developing brain region(s) serve as the reference 

for comparing to region-specific bulk or single-cell tumor gene expression data. b) Uniform Manifold Approximation and Projection (UMAP) 

visualization of human developmental cerebellum single-nuclei data. Color coded by the cell state annotation and labels show the main cell 

types.   c) Proportions of different cells in different cell states across time points of collected data. d) UMAP visualization of main bulk tumor 

cohort colored as per methylation classification. Random forest based predicted samples depicted in cross. 
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Distinct origins for different tumor classes  

In the companion paper (Sepp, Leiss, et al), we generated an extensive single-nucleus RNA 

sequencing (snRNA-seq) dataset that covers the development of the human cerebellum from 

the beginning of neurogenesis to adulthood, and serves as a reference for the tumor-matching 

analyses in this study. In the reference atlas, 180,956 cells (Figure 1b) are grouped into 21 cell 

types (e.g. astroglia), further divided into 37 cell differentiation states (e.g., progenitor), 

hereafter referred to as cell states (Suppl. Figure 1a; Figure 1c). In addition, subtypes are 

specified for cell types and states, resulting in 65 transcriptomically-defined subtypes of cells 

(e.g., progenitors divided in nine spatio-temporal subtypes including rhombic lip progenitors). 

Notably, cell states within a cell type form a continuum along the differentiation trajectory, 

which we refer to as “cellular lineage” in this study. For instance, the astroglial lineage includes 

progenitor (neuroepithelial and radial glial cells), glioblast, and astrocyte cell states. 

 

We used an unprecedented set of Affymetrix bulk expression data as our main tumor 

transcriptome cohort (Suppl. Figure 1b). To remove sample- or study-specific classification 

biases, we used methylation-based classification, covering 55% of the target samples; for 

samples with missing methylation data, we used a random forest model to impute missing 

methylation classes (Suppl. Figure 1c-d). This Affymetrix data cohort represents 2,923 

samples annotated into 45 defined molecular classes (e.g. medulloblastoma G3) and 68 

methylation subclasses (e.g. medulloblastoma G34_II) (Figure 1d, Suppl. Table 1). We 

supplemented this Affymetrix cohort with an independent collection of bulk RNA-seq datasets 

(Suppl. Table 2), the largest of them the from the Children’s Brain Tumor Network (CBTN, n 

= 626) (Suppl. Figure 1e).  

 

After considering existing computational approaches1,2,22-24, we selected two main measures to 

determine the similarity of a tumor class to a normal cell type: correlation of expression patterns 

of shared highly-variable genes23 and gene set variance analysis (GSVA)24. These measures 

were validated using SHH medulloblastoma as a positive control, given that this tumor class 

was experimentally shown to arise from granule cell progenitors (GCPs)13,14. A direct 

comparison of our training medulloblastoma RNA-seq dataset25 (ICGC cohort, n = 160) to 

cerebellar cell types also confirmed these results (Suppl. Figure 2a). Additionally, we found 

that at least 400 cells are needed per reference cluster to obtain a stable score when using our 

combinatorial correlation and GSVA approach (Suppl. Figure 2b-c), and we estimated the 

filtering thresholds for these computed values (Suppl. Figure 2d-e).  
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We next compared the large Affymetrix transcriptome tumor cohort to cerebellar cells (Figure 

2). We included non-cerebellar tumor classes, such as meningioma (MNG), or glioma profiles 

enriched with immune cells (GLIOMA_NORM_HI) as external controls for this global 

comparison, which demonstrated matches to the expected cell states.  

 
Figure 2. Global analysis identifies lineages-of-origin for multiple tumor types.  Heatmap showing comparisons of bulk central nervous 

system tumor transcriptome profiles (in columns) to cerebellar cell state (in rows), based on gene signature enrichment score (via Gene Set 

Variance Analysis (GSVA), indicated by color) and Pearson correlation score (indicated by area). Most evident association of a tumor type to 

a cell state is highlighted by dashed rectangles, selected based on cutoff limits (min GSVA enrichment = 0.4 and min correlation = 0.4).  

yes
occasionally
no

Cell cycle
effect

-0.2
0
0.2
0.4

Correlation

GSVA
enrichment

−1
−0.5
0
0.5
1

Tumor located 
in cerebellum

Med
ullo

blas
toma

Epen
dym

oma

Pilo
cy

tic

as
tro

cy
toma

Glio
blasto

ma

M
B_

SH
H

M
B_

W
N

T
M

B_
G

3
M

B_
G

4
EP

N
_P

FA
1

EP
N

_P
FA

2
EP

N
_P

FB
EP

N
_P

F_
SE

EP
N

_R
EL

A
EP

N
_S

PI
N

E
EP

N
_S

T_
SE

EP
N

_Y
AP

EP
N

_M
PE

PA
_I

N
F

PA
_M

ID
D

M
G

_K
27

D
M

G
_E

G
FR

G
BM

_G
34

G
BM

_I
D

H
G

BM
_M

ES
_N

O
S

G
BM

_p
ed

M
YC

N
G

BM
_p

ed
R

TK
AT

R
T_

M
YC

AT
R

T_
SH

H
AT

R
T_

TY
R

H
G

N
ET

_B
C

O
R

H
G
N
ET

_M
N
1

H
G

N
ET

_P
LA

G
IH

G
C

N
S_

N
B_

FO
XR

2
C

PH
_A

D
M

C
PH

_P
AP

EF
T_

C
IC

ET
M

R
EW

S
G

C
T_

TE
R

A
G

C
T_

YO
LK

SA
C

G
LI

O
M

A_
N

O
R

M
_H

I
M

N
G

M
PN

ST
M

PN
ST

_S
pi

ne N
B

PT
PR PX

A
eR

M
S

0.045

0.05

0.055

0.06

Number of 
samples

100

50

0

G
lia

l
Ve

nt
ric

ul
ar

 z
on

e
R

ho
m

bi
c 

lip

Other c
entra

l n
ervous 

syste
m tu

mors

Atypica
l te

ratoid

rhaboid 

High-grade  

neuroepith
elia

l

progenitor

glioblast

astrocyte

oligo_progenitor

oligodendrocyte

VZ_neuroblast1

VZ_neuroblast2

VZ_neuroblast3

parabrachial

noradrenergic

GABA_DN_defined

Purkinje_diff

Purkinje_defined

Purkinje_mature

interneuron_diff

interneuron_defined

NTZ_neuroblast1

NTZ_neuroblast2

NTZ_neuroblast3

isth_N_diff

isth_N_defined

glut_DN_defined

glut_DN_maturing

glut_DN_mature

GCP

GC_diff1

GC_diff2

GC_defined

GCP_UBCP

UBC_diff

UBC_defined

isthmic_neuroblast

GABA_MB

meningeal

immune

erythroid

mural/endoth

Figure 2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 7 

From this comparison, we further confirmed the closest association of SHH MB to GCP and 

differentiating granule cells (GC_diff1). Group 4 MB most closely matched differentiating 

unipolar brush cells (UBC_diff), confirming previous studies using murine atlases for 

comparison1,2. Associations of Group 3 medulloblastoma were ambiguous and showed several 

matches within the glutamatergic lineage, including progenitors and differentiating cells of the 

GC/UBC lineage, amongst others, but none of them passed our filtering thresholds. Predictably, 

WNT-medulloblastoma did not match to any cell state of the developing cerebellum, as it is 

believed to arise from the developing brainstem12.  

 

The two classes of posterior fossa A (PFA) ependymoma, PFA1 and PFA2, were most similar 

to cells in the astroglial lineage, which includes progenitors, glioblasts and astrocytes. We note 

that some glial cell types including ependymal were missing in our human cerebellum dataset.  

Other posterior fossa ependymoma tumor classes, which are much rarer in children, including 

posterior fossa B (PFB) and posterior fossa subependymoma (PF_SE), showed similar 

associations with the astroglial lineage.  

 

Infratentorial pilocytic astrocytoma (PA_INF), a tumor class mostly occurring in the 

cerebellum, showed the closest association with oligodendrocyte cell states – oligodendrocyte 

progenitor cells (OPC) and oligodendrocytes, thus validating a previous hypothesis about their 

cellular origin18. Several glioblastoma (GBM) molecular classes only occasionally located in 

the cerebellum26,27, demonstrated similarities to different glial cell states, such as astrocytes, 

oligodendrocytes, and their respective precursors. 

 

Additional comparisons of tumors at the methylation subclass level recapitulated the detected 

associations at the molecular class level; for example, MB SHH subgroups were clearly related 

to GCP (Suppl. Figure 3a). The results we obtained using the CBTN cohort as a validation 

dataset were fully compatible with what we had found using the Affymetrix data (Suppl. 

Figure 3b), thus validating our approach using different expression datasets and platforms.  

 

After obtaining these global results, we next sought to investigate the cellular origins of 

pediatric tumors in greater detail and at single-cell resolution focusing on the three most 

common entities arising in the cerebellum. 
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Posterior fossa ependymomas likely arise from the astroglial lineage  

PFA and PFB, the two major classes of ependymoma located in the cerebellum/posterior fossa 

were previously proposed to originate from radial glial cells16. This result was partly confirmed 

in a murine cerebellum-based reference map that found an association with “roof-plate like 

stem cells” and “gliogenic progenitors”1, but it has not been validated previously against a 

human reference. Using our human cerebellum single-cell dataset, we found that the 

transcriptional profiles of posterior fossa ependymomas most closely resembled various states 

of differentiation within the astroglial lineage of the cerebellum starting from radial glial and 

neuroepithelial progenitors and ranging to glioblasts followed by astrocytes (Figure 2, Suppl. 

Figure 4a), which in turn showed similarity to the “roof-plate-like stem cells” and “gliogenic 

progenitors”, as defined in a published murine cerebellum atlas1 (Suppl. Figure 4b), thus 

potentially resolving the apparent contradiction. 

 

To increase the resolution of the cell type associations, we next focused on cell subtypes within 

the astroglial lineage (Figure 3a). There are two spatially segregated gliogenic paths in the 

cerebellum that start from gliogenic progenitors (producing Bergmann glia and parenchymal 

astrocytes) and bipotent progenitors (producing GABAergic interneurons and parenchymal 

astrocytes), respectively, and progress via their corresponding glioblast subtypes towards 

mature astrocytes28 (Sepp, Leiss, et al). We found that transcriptomes matching bipotent 

progenitors, prospective white matter glioblasts (glioblast_PWM), astroblast, and mature 

parenchymal astrocyte subtypes signatures were enriched in both PFA and PFB ependymoma 

samples (Figure 3b).  

 

Based on these observations, we hypothesize that either the tumor develops from the earliest 

node within the astroglial lineage and differentiates along the specified trajectory after 

malignant transformation, or that the transcriptome of posterior fossa ependymoma cells is 

comprised of a mix of progenitor and mature cell signatures. To investigate these possibilities 

further, we investigated published posterior fossa ependymoma single-cell data from three 

independent studies1,29,30. We assigned each tumor cell to its closest matching cell state identity, 

using an adjusted SingleR-SVM approach31 (see Methods for details, Suppl. Figure 4c). After 

assignment, we found non-malignant immune cell clusters in PF ependymoma samples 

analyzed using 10x chemistry (Suppl. Figure 4d). As expected, these cell clusters also had 

normal DNA copy number profiles when compared to tumor cell clusters (Suppl. Figure 4e); 

hence, we excluded them from further analysis to prevent obscuring the tumor signature.   
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Figure 3. Ependymoma tumors correspond to the astroglial lineage. a) Genealogy of astroglial cell lineage subtypes as derived from early 

ventricular zone (VZ) progenitors. b) Comparison of bulk ependymoma tumor gene expression profiles to cell subtypes of the astroglial lineage, 

based on GSVA enrichment and correlation measures. c) Ependymoma tumor single cell data SingleR-SVM comparison to cerebellum cell 

state per sample. d,e) Example showing integration of single cell tumor data (ID: PFA1_10x_g, 10x v2) with astroglial cell subtypes as 

visualized via UMAP (d) and DiffusionMap (e) f) Expression boxplot of ependymoma PFA specific gene shared with astroglial lineage MLC1 

(limma adjusted p-value: 5.67E-31). The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× 

interquartile range and outliers, respectively.  g) Expression boxplot of tumor-unique ependymoma PFA specific gene BEST4 (limma adjusted 

p-value: 1.75E-61). The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile range and 

outliers, respectively. h) Examples of genes shared between ependymoma PFA and astroglial lineage (green), and tumor-specific (red), gene 

expression across the cerebellum cell states 
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Similarly, we also filtered out cells with assigned identities that did not align to the astroglial 

lineage (for example, meningeal, GCP, oligo-progenitors, etc.), given that these tumor cells do 

not form independent cell clusters and therefore may be rare non-immune normal cells from 

the tumor microenvironment. After filtering, we found that each tumor sample had cells 

resembling progenitor, glioblast, and mature astrocyte-like cells, but with different proportional 

distributions within tumors of the same class (Figure 3c). This result suggests that a tumor is 

comprised of cells along a differentiation trajectory within the lineage of origin. We tested this 

hypothesis by overlaying tumor cells onto the astroglial lineage and found that the tumor cells 

laid along the entire lineage, suggesting a gradient of differentiation within PF tumors with a 

possible origin from bipotent and gliogenic progenitors (Figure 3d, e). Surprisingly, the 

transcriptomic signatures of progenitor-like and astrocyte-like tumor cells did not show 

mutually exclusive marker gene expression as seen in the normal lineage stages; however, 

enrichment of marker genes (e.g. progenitor: TENM3, astrocyte: AQP4) supported the assigned 

identity of these tumor cells (Suppl. Figure 4f). We thus predict that even “mature” tumor cells 

maintain proliferative capacity. We also observed a similar gradient of differentiation in an 

independent Smart-seq2 dataset (Suppl. Figure 4g).  Altogether, and with the caveat of not 

having ependymal cells represented in our dataset, our findings suggest that PF tumors are 

composed of cells along a maturation gradient of the astroglial lineage.  

 

We next determined shared genes between the cerebellar astroglial lineage and PFAs 

(Supplementary Table 3). Among the shared genes, we focused on those that are specifically 

expressed in the brain and/or cerebellum3, and either confirmed to be plasma membrane 

localized or possible drug targets based on their Human Protein Atlas annotation32. As one of 

the top candidates, we identified the potentially druggable MLC1 gene expressed in 

ependymomas (Figure 3f), which was also expressed specifically in the astroglial lineage, but 

not in any other cell lineage in the cerebellum (Figure 3f) or outside of the brain (Suppl. Figure 

4h). Similarly, we identified and filtered tumor-specific candidates including the gene BEST4, 

which encodes a membrane protein and was not detected in any cerebellar cell lineage 

(Supplementary Table 4, Figure 3g,h); it is also absent or lowly expressed in other normal 

tissues (Suppl. Figure 4i). These two potential therapeutic targets could be explored for CAR-

T therapies to specifically attack tumor cells33. Through further investigation of affected 

pathways, we observed specificity in neurogenesis for genes common between tumors and the 

astroglial lineage, while, cancer-related pathways (e.g. GBM silenced by methylation or soft 

tissue tumors activity) were enriched in tumor-specific gene sets (Suppl. Figure 4j).   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

Pilocytic astrocytomas correspond to postnatal OPC 

Our global comparisons confirmed previous observations that two pilocytic astrocytoma 

molecular classes, PA_INF (infratentorial or posterior fossa, predominantly cerebellum) and 

PA_MID (supratentorial midline), most closely resembled oligodendrocyte progenitor cells 

(OPCs) (Figure 2). 

 

We examined an additional bulk RNA-seq cohort34 covering another class of pediatric low-

grade gliomas, namely supratentorial gangliogliomas (GG_ST), which also most closely 

resembled OPCs (Suppl. Figure 5a). We observed from our global comparisons that diffuse 

midline gliomas, H3 K27 altered (DMG_K27) were associated with astrocytes and also with  

oligodendrocytes (Figure 2); therefore, we included DMG_K27 tumors as an external 

comparison for further investigation of PA origins. We then examined the subtypes along the 

oligodendrocyte lineage and found the best match to late oligodendrocyte progenitor cells 

(OPC_late) that are present in the postnatal cerebellum (Figure 4a,b; Suppl. Figure 5b). The 

similarity level demonstrated an association with the anatomic location of the tumor in the 

brain, i.e. posterior fossa PA showed the closest match to cerebellar OPCs, with a less striking 

match in midline PAs. Using single-cell gene expression data from independent cohorts1,18 

(non-tumor cells excluded as described above), we confirmed the similarity of transcriptomes 

between pilocytic astrocytoma and OPCs (Figure 4c). We then overlaid single-cell tumor data 

onto the oligodendrocyte lineage and found that most tumor cells integrated with the OPC_late 

cluster, with some cells overlapping with early OPCs and mature oligodendrocytes (Figure 

4d,e; Suppl. Figure 5c).  

 

We next assessed shared genes between pilocytic astrocytoma and OPCs (Suppl. Table 3), and 

identified some notable candidates, such as GPR17, which encodes a cell-surface protein 

(Figure 4f,h; Suppl. Figure 5d). Inspection of tumor-unique genes also revealed some 

interesting candidates (Suppl. Table 4), including potentially druggable TRPM8 as a possible 

candidate for therapeutic intervention (Figure 4g,h; Suppl. Figure 5e).  

 

Using gene-set enrichment analysis, we found that OPC and pilocytic astrocytomas shared 

genes involved in oligodendrocyte development, while interestingly tumor-specific genes were 

specifically enriched in major histocompability complex class II (MHC II) and immune system 

associated genes (Suppl. Figure 5f). Because this immune signature could result from immune  
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Figure 4. Pilocytic astrocytomas arise from the oligodendrocyte lineage. a) Genealogy of oligodendrocyte cell lineage subtypes starting from 

bipotent progenitors b) Comparison of bulk PA tumor gene expression profiles to cell subtypes from oligodendrocytic lineage based on GSVA 

enrichment and correlation measures. K27M DMG is external control.  c) PA tumor single cell data correlation-based comparison to cerebellum 

cell state per sample.  d,e) Example showing integration of single-cell tumor sample (ID: PA_10X_a, 10x v2) with oligodendrocyte cell 

subtypes as visualized via UMAP (d) and DiffusionMap (e). f) Expression boxplot of PA specific gene shared with oligodendorcytic lineage 

GPR17 (limma adjusted p-value: 1.25E-105). The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× 

interquartile range and outliers, respectively. g) Expression boxplot of tumor-unique PA specific gene TRPM8 (limma adjusted p-value: 2.14E-

72). The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile range and outliers, 

respectively. h) Examples of genes common in PA and oligodendrocyte lineage (green) and tumor-specific (red), gene expression across 

cerebellum cell states i) Direct combination of single-cell sample (ID: PA_10X_a, non-tumorous immune cells included) with oligodendrocyte 

lineage 
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cells within the tumor micro-environment, we inspected single-cell data from pilocytic 

astrocytomas. After excluding non-malignant cells, we still found expression of MHC class II 

genes (e.g., CD74, HLA-DRB5) in tumor cells (Suppl. Figure 5g), similar to previous 

observations in pilocytic astrocytoma for some MHC class I members18; thus these genes are 

indeed overexpressed in tumor cells. Notably, known downstream targets of MAPK signaling 

(pathway constitutively activated in pilocytic astrocytoma), including CCND1 (Cyclin D), 

KRAS or MAPK1 were expressed across most normal and tumor cell clusters and within the 

oligodendrocyte lineage (Figure 4i). The immunological role of this pattern in terms of 

tumorigenesis and possibly contribution to the senescence phenotype typically observed in PA 

remains to be studied.  

 

Medulloblastomas originate from the GC/UBC lineage 

From our global comparison, SHH, Group 3, and Group 4 MBs closely associated with one or 

both branches of the GC/UBC lineage (Figure 2); therefore, we next focused on a high-

resolution lineage map to delineate the potential origins of different medulloblastoma 

subclasses (further referred also as subgroups based on WHO terminology6) (Figure 5a). We 

found that most of the SHH-medulloblastoma subgroups closely corresponded to GCPs and 

nascent postmitotic GCs (GC_diff1) (Figure 5b). SHH-medulloblastoma subgroups I,II,IV 

showed high similarity to the late subpopulation of differentiating GCs that emerge at postnatal 

stages (GC_diff1_late). SHH-II (beta) subgroup, which is associated with infant onset and 

metastasis35, instead resembled more differentiated GC cells states including defined GC 

(GC_defined) that have reached the inner granule cell layer.  

 

Group 3 and 4 medulloblastoma subgroups range from I-VIII, with subgroups II/III restricted 

to Group 3 and subgroups VI/VIII restricted to Group 436. Subgroups V-VIII (mostly Group 4 

medulloblastoma) best matched to UBCs (differentiating and defined). Subgroups I-IV (mostly 

Group 3 medulloblastoma) displayed low transcriptome correlations with subtypes in the 

GC/UBC lineage; nevertheless, GSVA enrichment scores suggested some similarity with 

GC/UBC progenitors and early differentiating UBC. The lowest correlation/GSVA similarity 

to normal cell types was observed for Group 3/4 subgroup II, which is known to be associated 

with MYC amplification36. Such somatic MYC changes may drive the tumor to further deviate 

from the original lineage as investigated in more details below.  
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Figure 5. Medulloblastomas correspond to granule/unipolar brush cell lineages. a) Genealogy of granule/unipolar brush cell (GC/UBC) 

lineage subtypes derived from rhombic lip progenitors. b) Comparison of bulk medulloblastoma gene expression profiles to the cell subtypes 

from GC/UBC cells, based on GSVA enrichment and correlation measures. c) Medulloblastoma single cell data correlation-based comparison 

to cerebellum cell state per sample. d,e) Examples of 10X tumor samples ( IDs: SHH_10X_b, G3_10x_d , G4_10x_f ) showing integration 

with the cell subtypes in granule/unipolar brush cell lineage as visualized via NMF UMAP (d) and DiffusionMap (e). f) Expression boxplot of 

tumor-unique medulloblastoma specific gene IMPG2 (limma adjusted p-value: 5.72E-148). The center line, box limits, whiskers and crosses 

indicate the median, upper/lower quartiles, 1.5× interquartile range and outliers, respectively. g) Expression boxplot of tumor-unique 

medulloblastoma specific gene GABRA5 (limma adjusted p-value: 2.89E-77). The center line, box limits, whiskers and crosses indicate the 

median, upper/lower quartiles, 1.5× interquartile range and outliers, respectively.h) H3K27me3 ChIP-seq profiles (reads per million mapped 

reads per bp, rpm/bp) of GABRA5 loci in the four MB classes. 
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Using medulloblastoma single-cell data1,2,37, we recapitulated these findings (Figure 5c). 

Group 4 tumor cells aligned with differentiating GCs and UBCs, suggesting that these tumors 

differentiate along a bifurcating GC/UBC trajectory, with a predominance of UBC-like cells 

(Figure 5d,e; Suppl. Figure 6a). Similarly, we found that Group 3 tumor cells differentiated 

along a similar trajectory, but with a predominance of proliferating and differentiating GC-like 

cells. Remarkably, both Group 3 and Group 4 medulloblastoma samples had a high proportion 

of unassigned cells (less than 50% classification probability and classified as “not assigned”), 

but were most similar to GC/UBC-like cells based on best-matching identity (Suppl. Figure 

6b). Consistent with these observations, recent animal studies proposed the transforming 

capacity of Atoh1-positive lineages such as GCs and UBCs into MYC-driven Group 338 and 

SRC-driven Group 4 tumors39. 

 

Some Group 3/4 tumor cells best matched to differentiating Purkinje cells or nuclear transitory 

zone neuroblasts, suggesting the presence of cells outside of the GC/UBC lineages. However, 

these tumor cells did not cluster separately from other GC/UBC-like cells and expressed 

GC/UBC lineage specific genes (Suppl. Figure 6c,d), suggesting the expression of multi-

lineage markers leading to this ambiguous identity. Alternatively, somatic alterations in 

proliferative genes driving tumor development, such as MYC/MYCN amplifications (like in 

Group 3 subgroup II as described above), could possibly explain this phenomenon, and may 

prevent the tumor cells from resembling a defined lineage. A similar phenomenon has been 

shown in mice38. In addition, when separately examining MYC (Group3) and MYCN (SHH and 

Group 4) amplified tumors, they did not show the expected similarity to the GC/UBC signature, 

confirming the impact of these somatic changes (Suppl. Figure 6e). 

 

To identify clinically relevant candidates, we focused on genes shared between the 

medulloblastoma classes and the GC/UBC lineage (Supplementary Table 3). An example of 

shared genes, EOMES, a transcription factor specific for Group 4 medulloblastoma, is known 

to play an important role in brain development and has strong association with structural defects 

in the fetus40  (Suppl. Figure 7a-c). Among possible tumor unique candidates (Supplementary 

Table 4), we identified the surface protein coding gene37, IMPG2, which is specific for Group 

3 tumors and lowly expressed in normal tissue (Figure 5f; Suppl. Figure 7a,d).  

 

We next identified the gene ontology pathways detected in these gene groups to further inspect 

their molecular associations (Suppl. Figure 7e-g). Even though association with CNS 
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development was found across all medulloblastoma classes, Group 3 tumor-specific genes were 

highly enriched for H3K27me3-suppressed genes in normal stem cells (Suppl. Figure 7f). 

Some of these genes e.g., GABRA5 (Figure 5g), were found to be present only in tumors. 

Changes in H3K27me3 have been observed to play a role in Group 3 medulloblastoma 

formation41,42; notably, we also found loss of H3K27me3 in these genes specifically in Group 

3 (Figure 5h, Suppl. Figure 7h,i).  

 

Radiation-induced gliomas are independent secondary tumors based on lineage of origin 

Radiation-induced gliomas (RIGs) may occur as a consequence of cranial radiotherapy 

commonly used to treat CNS tumors43, including medulloblastoma44. Based on their 

glioblastoma-specific genetic landscape, the lack of overlapping mutations with the initial 

medulloblastoma21,45, and on functional studies in non-human primates46, it is assumed that 

these tumors arise de novo from healthy cells after radiation rather than by trans-differentiation 

of residual medulloblastoma cells. However, this has never been formally demonstrated. To 

further investigate this hypothesis, we focused on radiation-induced gliomas (n = 11) and the 

respective primary medulloblastoma samples (n = 11) for comparison to the cerebellum cell 

types (Suppl. Table 5, Suppl. Figure 8a). As expected, copy number variation analysis showed 

distinct, non-overlapping profiles for primary and secondary tumors, with an increased number 

of insertion and deletion events in RIGs (Suppl. Figure 8b). Unsupervised hierarchical 

clustering of gene expression profiles further distinguished primary medulloblastomas from 

secondary RIGs (Figure 6a). For a subset of formalin-fixed paraffin-embedded (FFPE) 

primary-relapse matched samples, we compared transcriptome profiles with an additional FFPE 

bulk RNA-seq dataset (n = 410), representing sporadic medulloblastoma and glioblastoma 

samples (Suppl. Table 2). UMAP visualization of the tumor pairs with control data resulted in 

grouping of the primary and secondary tumors with medulloblastoma and GBM clusters, 

respectively (Figure 6b).  

 

We next compared each medulloblastoma-RIG pair to cerebellar cell states, using correlation 

analyses only (GSVA enrichment requires differentially expressed genes from >2 samples), 

including merged profiles from sporadic medulloblastoma and glioblastoma datasets. RIG 

tumors, along with glioblastoma controls, correlated with glioblast/astrocyte/oligodendrocyte 

cells comprising the glial lineage, whereas medulloblastoma primary tumors and controls were 

most similar to the cells in the GC/UBC lineage (Figure 6c). We also merged all RIG samples 

into a single group and computed both correlation and GSVA scores; these samples 
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corresponded to oligodendrocyte progenitors and glioblasts. From this data, we conclude that 

the lineage-of-origin is different between primary medulloblastoma and secondary RIG tumors 

(Suppl. Figure 8c), and that secondary RIGs arise exclusively from a glial lineage. 

Figure 6. Secondary radiation induced gliomas (RIGs) originate from the glial cell lineage and not from the original primary tumor.  

a) Unsupervised hierarchal clustering of batch-effect adjusted RNA-seq profiles from primary medulloblastoma and secondary RIG tumors 

(based on top 500 HVGs) b) UMAP visualization of medulloblastoma and glioblastomas. Primary medulloblastoma and corresponding 

secondary RIGs highlighted with circles. c) Comparison of gene expression profiles of primary medulloblastoma and secondary RIG tumors 

combined with corresponding FFPE bulk control to cerebellum cell state, based on correlation measures. 
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Discussion 
 

Using an unprecedented cell atlas of the developing human cerebellum, we performed a 

comprehensive comparison of childhood brain tumor cohorts to normal cells and determined 

the most probable cellular lineages of origin for the most common tumor types arising in the 

cerebellum. One of the remarkable observations from our exhaustive analysis was that rarely 

any tumor class exhibited associations with only one cell state. Instead, tumors typically 

contained a gradient of differentiating cells along a cellular lineage. However, tumors belonging 

to a class did show compositional heterogeneity in terms of similarity to normal cells. In 

addition, alignment of tumors to the proposed lineage of origin showed differences in the 

starting point of tumorigenesis along a normal cell type lineage trajectory. These findings 

suggest that tumors from the same class may arise at several differential stages in the associated 

lineage, and that tumor expansion often follows a pre-specified trajectory, which closely 

resembles the developmental trajectory of the lineage of origin. Importantly, it also indicates 

that tumors exploit developmental and functional characteristics of the lineage of origin to grow 

and develop into their complex form, similar to a tissue containing cells of different functions.  

  

For posterior fossa ependymomas, we found a possible origin in the astroglial lineage, covering 

previous studies using murine cerebellar atlas1, in which however only “roof-plate-like stem 

cells” (possibly choroid plexus or ependymal precursors) and gliogenic progenitors were 

hypothesized as the cell-of-origin. We also found transcriptomic similarities between these 

murine cell types to a subset of progenitors in the human cerebellum atlas. Nevertheless, in the 

future, expanding to regions outside of the cerebellum, including posterior hindbrain regions, 

would help to further refine this observation and uncover cell types that were missed, such as 

ependymal cells, potentially also in connection to ependymomas29.  

 

In our analysis, pilocytic astrocytomas associated with postnatal OPCs. The favorable 

prognosis of these patients could be a result of slow growth, MAPK-induced senescence, 

increased immunogenicity, or a combination thereof. Importantly, we also found that MHC 

class II members are abundantly expressed in tumor cells, which suggests these tumors may be 

better recognized by the immune system, in contrast to other CNS tumors.  

 

For SHH-, Group 3-, and Group 4-medulloblastomas, we found possible origins within the two 

branches of the GC/UBC lineage. While these tumors are all associated with the same broad 
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lineage, the relative proportions of GC and UBC cells within a tumor varied depending on the 

tumor class/subclass. We found that while Group 4 tumors are enriched with UBCs, these 

tumors also harbor the potential to differentiate along the GC trajectory. This finding suggests 

that Group 4 tumors arise from an earlier precursor cell that is able to generate both UBC and 

GC. Group 3 medulloblastomas were also composed of both GC and UBC cells; however, they 

were not enriched in either signature. Instead, many cells within Group 3 tumors were ‘not-

assigned’ after filtering, or exhibited a non-GC/UBC lineage signature (e.g., NTZ neuroblasts 

or differentiating Purkinje cells) along with GC/UBC marker genes. The inability to assign a 

specific identity to Group 3 tumor cells could occur if the cell type of origin was not captured 

in our cerebellar atlas or it deviates a lot from all normal lineages based on strong MYC activity. 

We also observed that Group 3 was associated with specific H3K27me3 loss and strong 

activation of a group of genes that are typically silenced in normal stem cells.  One example, 

GABRA5, has a clear connection with aggressive tumor growth47 and appears to be ubiquitously 

expressed within the tumor, making it a potentially attractive target for therapeutic interference.  

 

We identified the most specific marker genes that are expressed in tumors and the closest 

lineage of origin, as well as genes that are tumor-specific and are not detected in the developing 

cerebellum. The main reason for this combined inspection was that even though tumor-active 

genes not present in normal tissues were initially suggested to serve as ideal targets, some recent 

studies challenged this view48, while the use of genes that are active not only in the tumor, but 

also in progenitor cells demonstrated better results (e.g., CD133 in gliomas49). In addition, some 

lineage-specific genes remain active only in progenitors within a lineage (e.g., GPR17, active 

in OPCs only), and hence could be used as candidate targets based on their persisting expression 

in the resulting tumors. Finally, a lineage-specific gene active in mature cells could be used for 

gating strategies to target localized tumors50. Importantly, if these tumor-specific genes or 

lineage-shared genes are not detected or are only minimally expressed in postnatal non-brain 

tissue, and if the gene expresses a protein localizes to the plasma membrane, this target could 

be used in next generation CAR-T therapies.  

 

Current limitations in the understanding of oncogenic vulnerabilities of normal cell types and 

tumor progression therefrom, are major roadblocks in search of new specific therapies in 

pediatric neuro-oncology. In our work, we focused on uncovering these conundrums by 

integrating a human single cell cerebellum atlas to pediatric CNS tumors via global 

comparisons. We have made the analysis tools and results freely available via an interactive 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20 

graphical interface at brain-match.org for further hypothesis generation and exploitation of 

these precious resources for the benefit of our patients. 
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Supplementary Figures 

 
Suppl. Figure 1.  Global combined profiles of cerebellar tumors and their classification. a) Schematic summary of the strategy used for the 

annotation of cells in the reference atlas of human cerebellum development. Shown are 3 hypothetical cell types (reflected by color) and their 

subtypes (rectangles). The y-axis depicts differentiation that gives rise to a continuum of cell differentiation states. Biological and technical 

reasons (legend below the plot) could explain cases when subtypes cannot be distinguished across all states in a given cell type. b) UMAP 

representation of combined Affymetrix tumor cohort (based on top 500 HVG) color coded as per methylation classification mnp12. Random 

forest predicted samples are marked by cross. c) Statistical details of random forest classification showing dependency of accuracy on number 

of predictors d) Heatmap showing results of a 5-fold cross-validation of the random forest classifier incorporating information tumor samples 

with methylation data. e) UMAP representation of CBTN pediatric brain tumor RNA-seq dataset (based on top 2000 HVG). 
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Suppl. Figure 2.  Validation of GSVA and correlation measures strategy to find correspondence of tumor class with closes cell state match. 

a) Comparison of ICGC MB RNA-seq data to cerebellum cell states based GSVA enrichment and correlation values. Size of circle: correlation 

measure; Color of circle: GSVA enrichment measure. b-c) Effect of cluster size on correlation (b) and GSVA(c) measures stability: size of 

GCP cluster was varied from 100 to 3000 cells randomly selected cells, showing   correspondence to SHH medulloblastoma plateaued around 

~300-500 cells.  d-e) Cutoff limits for correlation (d) and GSVA(e) measures: clusters derived from permutated cells (100 repeats, random 

cluster size reflects sizes of cell state classification) are compared to SHH medulloblastoma bulk RNA-seq data. Dashed lines represent result 

achieved from cell state comparisons. Cutoff limit is derived from empirical rule adjustment (mean + 3 standard deviations). Mean cutoff limits 

computed from all MB classes comparison; correlation: ~0.4, GSVA enrichment: ~0.4  
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Suppl. Figure 3. Extended global tumor data comparisons confirm identified lineages-of-origin for cerebellum-specific CNS tumors.   

a) Comparison of main tumor bulk gene expression profiles in Methylation Classes (mnp12.3) to normal cerebellum cell states based on GSVA 

and correlation measures. Unsupervised clustering based on correlation measure is applied to group tumor classes and cell types. b) Comparison 

of CBTN RNA-seq gene expression profiles to normal cerebellum cell states based on GSVA and correlation measures, recapitulating tumor-

normal developmental state associations obtained from Affymetrix data. The observations obtained from mnp12.3 global cohort comparison 

are fully confirmed.  
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Suppl. Figure 4. Ependymoma tumors correspond to the astroglial lineage. a) Comparison of gene expression profiles of ependymoma tumor 

classes to CB cell subclusters from astrocyte lineage based GSVA enrichment and correlation measures. b) Correlation-based comparison of 

mouse cerebellum cells vs human cells based on usage of orthologous genes.  c) Verification of SingleR-SVM based label assignment of cell 

types using train (80%) and test (20%) sets of cerebellum data. SingleR: SingleR based correlation measure; SVM: SingleR assignment pruned 

with SVM; SVMrej; SVM based best matches filtered for 50% probability cutoff. d) Ependymoma single cell dataset (10x) comparison to 

cerebellum per sample via SingleR-SVM. Enrichment of immune cells observed across samples.  e) CNV profiles of ependymoma 10X samples 

allow to distinguish somatic and non-tumor cells f) Mutually exclusive expression pattern of marker genes in normal progenitor, glioblast and 

mature astrocyte (left side), that are co-expressed in progenitor-like, glioblast-like and astrocyte-like tumor cells (right side). Scaling (below), 

however, show why based on pattern of expression the cell identity assigned is comparative to normal cell types. g) Integration of PFA1 sample 

(PFA1_SS2_a) with astroglial lineage shown using UMAP and DiffusionMap. h) Expression boxplot of ependymoma PFA specific gene 

MLC1 across normal tissues. The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile 

range and outliers, respectively.   i) Expression boxplot of ependymoma PFA specific gene BEST4 across normal tissues. The center line, box 

limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile range and outliers, respectively.   j) Top enriched 

GO pathways for ependymoma PFA specific DEGs either shared with astroglial lineage or uniquely enriched in PFAs. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

 
Suppl. Figure 5. Pilocytic astrocytomas arise from the oligodendrocytic lineage. a) Comparison of INFORM RNA-seq profiles to normal 

cerebellum cell states based on GSVA and correlation measures.  b) Comparison of gene expression profiles of PA tumor classes to CB cell 

subclusters from oligodendoryte lineage based GSVA enrichment and correlation measures. c) Integration of single cell PA data (PA_SS2_a) 

VZ progenitors and oligodendrocyte lineage as shown using UMAP  and DiffusionMap  d) Expression boxplot of PA specific gene GPR171 

across normal tissues. The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile range and 

outliers, respectively.   e) Expression boxplot of PA specific gene TRPM8 across normal tissues. The center line, box limits, whiskers and 

crosses indicate the median, upper/lower quartiles, 1.5× interquartile range and outliers, respectively.   f) Top enriched GO pathways for 

PA_INF specific DEGs either shared with oligodendrocytic lineage or tumor specific. g) Expression of MHC class II members protein complex 

that are not active in cerebellum oligodenrocyte lineage subtypes, but present in PA tumor cells. 
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Suppl. Figure 6. Medulloblastoma tumors correspond to granule/unipolar brush cell lineages.  a) Integration of single cell SHH,Group 3 

and Group 4 data with GC/UBC lineage as shown via UMAP and DiffusionMap. b) Medulloblastoma tumor single cell data in combination 

with main enrichment of granule cell and unipolar brush cells per sample also show presence of additional cell types (filtered non-assigned 

cell types for datasets MDT 10X, Gojo SS2, Riemondy 10X). c) Comparison of tumor cell clusters to cerebellum cell states d) Expression of 

NTZ_NB (MEIS2, LHX9) or Purkinje (BCL11A) expression is found in Group 3 tumor cells, giving them similar identity (right side). However, 

these cells also express GCP (GPC6, NFIA) or UBC (EOMES) markers, probably having a hybrid identity. e) Comparison of ICGC MB RNA-

seq profiles with split by MYC (Group 3) and MYCN (SHH/Group 4) amplification status to normal cerebellum cell states based on GSVA 

and correlation measures. 
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Suppl. Figure 7. Medulloblastoma genes in correspondence to granule/unipolar brush cell lineages and unique tumor-specific.  

a) Examples of genes common for MB and GC/UBC lineage (green) and tumor-specific (red), gene expression across the cerebellum cell states 

b) Expression boxplot of medulloblastoma specific gene shared with GC/UBC lineage EOMES (differential expression adjusted p-value: 

3.55E-27) c) Expression boxplot of MB G4 specific gene EOMES across normal tissues. The center line, box limits, whiskers and crosses 

indicate the median, upper/lower quartiles, 1.5× interquartile range and outliers, respectively.   d) Expression boxplot of MB G3 specific gene 

IMPG2 across normal tissues. The center line, box limits, whiskers and crosses indicate the median, upper/lower quartiles, 1.5× interquartile 

range and outliers, respectively. e) Top enriched GO pathways for SHH specific DEGs either shared with GC/UBC lineage or tumor specific. 

f) Top enriched GO pathways for Group 3 specific DEGs either shared with GC/UBC lineage or tumor specific. g) Top enriched GO pathways 

for Group 4 specific DEGs either shared with GC/UBC lineage or tumor specific. h,i) H3K27me3 ChIP-seq profiles (reads per million mapped 

reads per bp, rpm/bp) of EPHA8 (h) and TULP1 (i) loci in the four MB classes. 
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Suppl. Figure 8. Secondary radiation induced gliomas (RIGs) originate from the glial cell lineage and not from the original tumor. 

a) Fingerprint match comparison for primary MB and secondary RIG tumors b) Copy number profiles of primary MB G3 vs secondary RIG 

tumors c) Comparison of FFPE RNA-seq gene expression profiles to normal cerebellum cell state cell types based on GSVA and correlation 

measures. Target primary secondary samples are included into MB cohort, while secondary RIG into GBM. 
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Supplementary tables 

 
Suppl. Table 1. Overview of the methylation and molecular mnp12.3 tumor classes. 

 

Suppl. Table 2. List of bulk and single cell transcriptome tumor profiling datasets used in this 

study.  

 

Suppl. Table 3. Differentially expressed genes of target tumor classes MB, EPN and PA 

common with genes specific for the cerebellum cell states. 

 

Suppl. Table 4. Differentially expressed genes of target tumor classes MB, EPN and PA unique 

only for tumor and not/low expressed in the cerebellum.  

 

Suppl. Table 5. Annotation of samples of primary MB and secondary RIG tumors 
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Methods 
 

Human cerebellum single nuclei RNA sequencing data 

The snRNA-seq data generation and annotation are described in detail in the companion paper 

(Sepp, Leiss et al.). Shortly, 38 libraries from 31 independent human cerebellum samples were 

produced using Chromium (10x Genomics) version 2 or 3 reagents. The dataset includes 

180,956 high quality cells from 10 developmental stages ranging from postconceptional week 

7 to adult age. Louvain algorithm was used to cluster the merged dataset into 68 clusters and 

611 subclusters. Hierarchical annotation of the dataset classified the cells into 21 cell types and 

37 cell differentiation states. Cells from 12 cell states were further divided into 37 subtypes. 

For the purpose of the current study, we combined the cell state and subtype level annotations 

to divide the dataset into 65 subgroups. For simplicity, we refer to these subgroups as ‘subtypes’ 

throughout the study. 

 

Bulk tumor transcriptome data integration 

The main Affymetrix tumor cohort used for our analyses was generated from the combination 

of 3 datasets: mixed CNS tumor cohort from various sources including normal brain (n=2351), 

glioblastoma tumor cohort (n=430) and relapse associated INFORM cohort with both CNS and 

non-CNS tumors (n=1040). After filtering for sample quality and exclusion of overlaps, the 

resulting cohort included 3497 unique samples.   

Bulk RNA-seq profiles ( Reads Per Kilobase of transcript, per Million mapped reads / RPKM,  

normalized gene expression counts) were obtained from four independent datasets: ICGC 

medulloblatoma25, Burdenko FFPE51,52, INFORM34  and Children's Brain Tumor Network 

(cbtn.org).  

For the Children's Brain Tumor Network dataset gene expression counts were provided by the 

resource, while for remaining datasets main processing (alignment, gene expression counts 

computation, quality control) was performed as previously described51.  

 

Tumor profiles random forest classification and regression 

In order to remove sample- or study-specific classification biases and assign DNA methylation-

based classification mnp v12.3 (molecularneuropathology.org/mnp) to CNS tumor samples 

without this data type we performed a consensus classification of the entire tumor cohort. 

Samples covering both expression and methylation data (~ 55% samples in the combined 

Affymetrix cohort) were used as a reference. Each reference mnp12.3 tumor class consisted of 
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at least 5 samples (with minimum methylation-based assignment score >= 0.75 per sample), 

resulting in a total of 1199 samples across 68 tumor classes. We generated a random forest 

classifier based on the reference dataset with 5x5 cross validation via caret R package v6.0-86. 

Classification parameters including initial total number of genes, number of sample candidates 

(mtry) and number of trees were tested for precision and recall to select optimal settings.  We 

then used the trained model to classify the remaining 1724 tumor samples lacking methylation 

data.  

 

Comparison of bulk tumor profiles to the normal cerebellum single nuclei data 

We compared the transcriptomic signatures of tumor samples to those of normal cerebellum 

cell states or subtypes (as reference) based on a combination of correlation estimates and Gene 

Set Variance Analysis (GSVA53 package v1.28). Expression profiles of normal cerebellar cells 

were aggregated into pseudobulk across cell state and subtypes and normalized into RPKM 

values. 

An intersection set of highly variable genes (HVGs) among tumor bulk profiles and cerebellum 

pseudobulk cell types computed via genefilter R package was used to calculate correlation. We 

optimized the number of HVGs used for the analysis using the well-established correspondence 

of SHH medulloblastoma to GNPs as a control, varying the number of HVGs from 1000 to 

2000 with step 250 for cerebellum cell types and from 250 to 500 among tumor classes.  

For GSVA measure the differentially expressed genes among tumor classes within target bulk 

datasets were identified using limma54 package v3.42 with minimum adjusted p-value 0.05. The 

requirement was that tumor class of interest must have at least three samples for the detection 

of a specific differentially expressed gene signature55. Main control input variable for GSVA 

measures was number of selected differentially expressed genes specific for tumor class based 

on adjusted p-value < 0.05, and ranked by adjusted p-value for specificity. Score stability was 

observed between 50 to 200 genes, thus we used 100 DEGs as default for comparisons.  

To inspect the effect of cluster size on correlation-GSVA measures, cerebellum single cell GCP 

cluster was subsampled with a minimum of 50 cells and a step size of 50 cells. Filtering cut 

limits for both measures were obtained from a distribution of computed correlation/GSVA 

enrichment scores obtained from random subsampling of cerebellum cells into possible clusters 

(repeated 100 times, number of cells selected based on proportions from annotations) in 

correspondence to SHH medulloblastoma and adjusted via empirical rule (mean + 2*standard 

deviation). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 33 

Cell cycle effect as annotation for bulk expression profiles was computed as proportion of 

expression of cell cycle genes56 in full expression profile across samples. 

 

Differential gene expression analysis among cerebellum cell types and tumor tissues 

The differentially expressed genes among assigned cerebellum cell types were achieved via 

methods from Seurat v.3.2.2 (Wilcoxon Rank Sum and distance-based assignment). 

The genes differentially expressed among tumor classes were adjusted following selection of 

limma derived group-specific comparison (target tumor class vs all other samples in cohort) 

using minimum adjusted p-value 0.05 followed also with cut to top 2000 from the sorting.  

The tumor specific genes were compared to cell type via the overlaps by gene ID and split 

accordingly in 2 groups: [1] those that are shared between target lineage, and [2] tumor-specific, 

not differentially expressed in cerebellum cell types. Gene ontology analysis was performed on 

selected tumor-specific groups using hypergeometric test on annotations from MSigDB 

reference database (gsea-msigdb.org) blocks C2 (curated gene sets) and C5 (ontology gene 

sets) with minimum p-value limit 0.01. Additional selection was performed from top50 

significant terms from each gene ontology test.  

For above detected genes we also inspected global bulk tissue profiles3 (n=297) to mark only 

brain-specific (obtained via differential expression analysis among tissues via limma package) 

for shared [1] and not/low expressed in any tissue (based on mean expression < 5 RPKM limit) 

for unique [2] as well as combined surfaceome markers and druggable candidates using Human 

Protein Atlas resource (proteinatlas.org).  

 

Single cell tumor transcriptome data processing 

Single cell datasets were collated from various publications for medulloblastoma, ependymoma 

and PA as described in Suppl. Table2, representing 10x (v2 and v3) and SmartSeq2 platforms.  

SmartSeq2 sample data processing: Gene count matrices filtered for cells were normalized 

using scran57, except for PA samples where TPM normalized gene matrix was used. 

Mitochondrial, ribosomal (prefixes: RPS, RPL, MRPS or MRP) and cell cycle associated 

genes56  were removed before calling HVGs, and top 2000 HVGs were used to perform PCA. 

First 15 PCAs were used to cluster cells in individual samples.  

10x sample data processing: Filtered gene count matrices were processed with additional cell 

filtering performed for mitochondrial (prefix: MT-) gene proportion (cutoff: 3 MAD above 

mean) and number of genes detected (> 200 and <6000) for all samples, except for Gillen et al. 

data. Count matrix were normalized using scran and processed similar to SmartSeq2 samples. 
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Cell type assignment to tumor cells 

SingleR method31 was modified with a Support Vector Machine (SVM) based fine tuning step 

to assign each tumor cell an identity to the cerebellum cell state annotation reference. In the 

first round of classification, scran normalized count matrix were used for both reference 

(cerebellum data) and target (tumor sample). Genes were subsetted to an intersection of top 

2000 HVGs across tumor types and all the HVGs in cerebellum (getTOPhvg function, scran). 

Since tumor cells are enriched for a particular lineage (e.g.: SHH-MB enriched for GC lineage), 

to improve classification of non-tumor cells in tumor samples, we merged top 2000 HVGs 

across medulloblastoma , ependymoma and PA samples. A Spearman correlation was 

calculated for each test cell and each cell state in cerebellum reference using SingleR (method= 

wilcox, de=15) and top candidate matches were selected after filtering for one standard 

deviation from the highest correlation score. 

For pruning, a calibrated SVM model generated with LinearSVC (max_iter=100000, 

class_weight = ‘balanced’, cv=10, scikit-learn, v1.0.1) was used for each cell. Tumor and 

cerebellum data were further cosine normalized, for genes used to calculate correlation in 

SingleR, to account for sample specific size factors. For SVM prediction of each cell, the 

cerebellum reference was further subsetted to cells associated with top candidate cell state 

annotations. The SVM model assigned probability value to each candidate cell state with the 

highest probability assigned as “best match” identity. All best match identities with >=50% 

probability were assigned to “pruned identity”. In case the probability of assignment was <50%, 

the pruned identity was assigned as NA (not assigned). 

 

Combination of single cell tumor data with cerebellum reference 

To study the trajectory of tumor w.r.t to cerebellum cell type trajectory, we integrated each 

tumor sample to the best match cell type lineage of that sample’s tumor type (medulloblastoma: 

GC/UBC, ependymoma: Astrocytes and PA: Oligodendrocytes). We used batch reduction 

method to integrate tumor sample to the matching normal lineage, with the assumption that 

tumorigenic effect on cell transcriptome is independent (and hence orthogonal) to normal 

developmental program and can be “corrected”. Batch correction via MNN58 adjusts a cell’s 

expression component along the average batch (in our case, tumor) vector. Hence to avoid 

miscalculating tumor vector, in each tumor sample, we removed probable (best match identity 

as assigned by SVM) non-tumor cells (non-neuronal cell for medulloblastoma, non-astroglial 

cells for ependymoma and non-oligodendrocytic cells for PA). Verification of non-tumor cells 
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was performed via copy number profiling of EPN tumor samples performed with InferCNV56 

v1.3.2. We then recalculated HVGs for the filtered cells and used top 500 genes after 

intersection with top 5000 HVGs in the lineage. The reference and target data were cosine 

normalized in the subsetted gene space, merged and factorized using NMF (max_iter=1000000, 

init = ‘nndsvda’, solver = ‘mu’, random_state = 5; scikit-learn v1.0.1) to obtain 100 NMF 

factors for the merged data. The reduced data was then batch corrected for tumor status variable 

using reducedMNN (R package batchelor) to obtain corrected factors which were further used 

for UMAP visualization and diffusion map analysis (DiffusionMap function, R package 

destiny59).  

In diffusion map analysis, a pseudotime (dpt function) value was calculated for each cell by 

averaging dpt values obtained from 30 randomly selected set of roots cells in reference data ( 

Stage =CS18, cell subtype: medulloblastoma - early RL ; ependymoma/PA -  early VZ). 

For additional inspection of PA to compare a single cell tumor sample with the lineage of origin, 

the tumor single cell data, without any filtering for non-tumor cells, was combined with cells 

assigned to lineage of origin (e.g. oligodendrocytes). The gene space was nested to a union of 

top 1000 HVG from the tumor sample and lineage of origin. Resulting gene expression matrix 

was scaled using cosineNorm, combined and factorized using NMF as described above to 

obtain 100 NMF factors. The factorized data was used to obtain UMAP visualization of the 

combined tumor sample and normal cell type lineage. 

 
Available resources 

The results of all described main comparisons of normal cell types to tumors (both bulk and 

single cell data) can be checked from online ShinyApp R application at brain-match.org. 

Source code of the application is available upon request.   

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 36 

References 
 

1 Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal 
transcriptional programs. Nature 572, 67-73 (2019). 

2 Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell 
genomics. Nature 572, 74-79 (2019). 

3 Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. 
Nature 571, 505-509 (2019). 

4 Udaka, Y. T. & Packer, R. J. Pediatric brain tumors. Neurologic clinics 36, 533-556 
(2018). 

5 Capper, D. et al. DNA methylation-based classification of central nervous system 
tumours. Nature 555, 469-474 (2018). 

6 Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous 
system: a summary. Neuro-oncology 23, 1231-1251 (2021). 

7 Chemaitilly, W., Armstrong, G. T., Gajjar, A. & Hudson, M. M. Hypothalamic-pituitary 
axis dysfunction in survivors of childhood CNS tumors: importance of systematic 
follow-up and early endocrine consultation. Journal of Clinical Oncology 34, 4315-
4319 (2016). 

8 Jones, D. T. et al. Molecular characteristics and therapeutic vulnerabilities across 
paediatric solid tumours. Nature Reviews Cancer 19, 420-438 (2019). 

9 Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-
cell sequencing. Nature Reviews Cancer 17, 557-569 (2017). 

10 Kaatsch, P., Rickert, C. H., Kühl, J., Schüz, J. & Michaelis, J. Population-based 
epidemiologic data on brain tumors in German children. Cancer: Interdisciplinary 
International Journal of the American Cancer Society 92, 3155-3164 (2001). 

11 Northcott, P. A. et al. Medulloblastoma. Nature Reviews Disease Primers 5, 1-20 
(2019). 

12 Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. 
Nature 468, 1095-1099 (2010). 

13 Kim, J. Y. et al. Medulloblastoma tumorigenesis diverges from cerebellar granule cell 
differentiation in patched heterozygous mice. Developmental biology 263, 50-66 
(2003). 

14 Wallace, V. A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron 
precursor cell proliferation in the developing mouse cerebellum. Current Biology 9, 
445-448 (1999). 

15 Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS 
compartments, histopathological grades, and age groups. Cancer cell 27, 728-743 
(2015). 

16 Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer 
cell 8, 323-335 (2005). 

17 Colin, C. et al. Outcome analysis of childhood pilocytic astrocytomas: a retrospective 
study of 148 cases at a single institution. Neuropathology and applied neurobiology 39, 
693-705 (2013). 

18 Reitman, Z. J. et al. Mitogenic and progenitor gene programmes in single pilocytic 
astrocytoma cells. Nature communications 10, 1-17 (2019). 

19 Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse 
cortex. Nature 573, 61-68 (2019). 

20 Whitehouse, J. P. et al. Defining the molecular features of radiation-induced glioma: a 
systematic review and meta-analysis. Neuro-Oncology Advances (2021). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 37 

21 Deng, M. Y. et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric 
gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nature 
communications 12, 5530, doi:10.1038/s41467-021-25708-y (2021). 

22 Jessa, S. et al. Stalled developmental programs at the root of pediatric brain tumors. 
Nature genetics 51, 1702-1713 (2019). 

23 Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in 
single-cell and single-nucleus RNA-seq workflows. Genome biology 21, 1-25 (2020). 

24 Diaz-Mejia, J. J. et al. Evaluation of methods to assign cell type labels to cell clusters 
from single-cell RNA-sequencing data. F1000Research 8 (2019). 

25 Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. 
Nature 547, 311-317 (2017). 

26 Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-
mutant gliomas by single-cell RNA-seq. Science (New York, N.Y.) 355 (2017). 

27 Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas 
dissected by single-cell RNA-seq. Science (New York, N.Y.) 360, 331-335 (2018). 

28 Cerrato, V. et al. Multiple origins and modularity in the spatiotemporal emergence of 
cerebellar astrocyte heterogeneity. PLoS biology 16, e2005513 (2018). 

29 Gojo, J. et al. Single-cell RNA-seq reveals cellular hierarchies and impaired 
developmental trajectories in pediatric ependymoma. Cancer cell 38, 44-59. e49 (2020). 

30 Gillen, A. E. et al. Single-cell RNA sequencing of childhood ependymoma reveals 
neoplastic cell subpopulations that impact molecular classification and etiology. Cell 
reports 32, 108023 (2020). 

31 Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a 
transitional profibrotic macrophage. Nature immunology 20, 163-172 (2019). 

32 Thul, P. J. et al. A subcellular map of the human proteome. Science (New York, N.Y.) 
356 (2017). 

33 June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T 
cell immunotherapy for human cancer. Science (New York, N.Y.) 359, 1361-1365 
(2018). 

34 van Tilburg, C. M. et al.     (American Society of Clinical Oncology, 2020). 
35 Cavalli, F. M. et al. Intertumoral heterogeneity within medulloblastoma subgroups. 

Cancer cell 31, 737-754. e736 (2017). 
36 Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: an 

international meta-analysis of Group 3 and Group 4 subtypes. Acta neuropathologica 
138, 309-326 (2019). 

37 Riemondy, K. A. et al. Neoplastic and immune single-cell transcriptomics define 
subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-
Oncology, doi:10.1093/neuonc/noab135 (2021). 

38 Kawauchi, D. et al. Novel MYC-driven medulloblastoma models from multiple 
embryonic cerebellar cells. Oncogene 36, 5231-5242 (2017). 

39 Forget, A. et al. Aberrant ERBB4-SRC signaling as a hallmark of group 4 
medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer cell 34, 
379-395. e377 (2018). 

40 Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human 
neocortex. Cell 146, 18-36 (2011). 

41 Dubuc, A. M. et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation 
occur across subgroups in medulloblastoma. Acta neuropathologica 125, 373-384 
(2013). 

42 Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. 
Nature 488, 43-48 (2012). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 38 

43 Relling, M. V. et al. High incidence of secondary brain tumours after radiotherapy and 
antimetabolites. The Lancet 354, 34-39 (1999). 

44 Yamanaka, R., Hayano, A. & Kanayama, T. Radiation-induced gliomas: a 
comprehensive review and meta-analysis. Neurosurgical review 41, 719-731 (2018). 

45 DeSisto, J. et al. Comprehensive molecular characterization of pediatric radiation-
induced high-grade glioma. Nature communications 12, 1-16 (2021). 

46 Lonser, R. R. et al. Induction of glioblastoma multiforme in nonhuman primates after 
therapeutic doses of fractionated whole-brain radiation therapy. Journal of 
neurosurgery 97, 1378-1389 (2002). 

47 Sengupta, S. et al. α5-GABAA receptors negatively regulate MYC-amplified 
medulloblastoma growth. Acta neuropathologica 127, 593-603 (2014). 

48 Land, C. A., Musich, P. R., Haydar, D., Krenciute, G. & Xie, Q. Chimeric antigen 
receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of 
Translational Medicine 18, 1-13 (2020). 

49 Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a 
phase I trial. Oncoimmunology 7, e1440169 (2018). 

50 Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, 
heterogeneity, and persistence in treating glioblastoma. Science translational medicine 
13 (2021). 

51 Korshunov, A. et al. Transcriptional profiling of medulloblastoma with extensive 
nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent 
prognostic marker. Acta neuropathologica 139, 583-596 (2020). 

52 Korshunov, A. et al. Molecular analysis of pediatric CNS-PNET revealed nosologic 
heterogeneity and potent diagnostic markers for CNS neuroblastoma with FOXR2-
activation. Acta neuropathologica communications 9, 1-12 (2021). 

53 Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC bioinformatics 14, 1-15 (2013). 

54 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing 
and microarray studies. Nucleic acids research 43, e47-e47 (2015). 

55 Ching, T., Huang, S. & Garmire, L. X. Power analysis and sample size estimation for 
RNA-Seq differential expression. Rna 20, 1684-1696 (2014). 

56 Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by 
single-cell RNA-seq. Science (New York, N.Y.) 352, 189-196 (2016). 

57 Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level 
analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5 (2016). 

58 Haghverdi, L., Lun, A. T., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell 
RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature 
biotechnology 36, 421-427 (2018). 

59 Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-
cell analysis of differentiation data. Bioinformatics 31, 2989-2998 (2015). 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.19.473154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473154
http://creativecommons.org/licenses/by-nc-nd/4.0/

