bioRxiv preprint doi: https://doi.org/10.1101/2021.12.18.473300; this version posted December 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

HiC-TE: a computational pipeline for Hi-C data
analysis shows a possible role of repeat family
interactions in the genome 3D organization

Matej Lexal2", Monika Cechova!, Son Hoang Nguyen!, Pavel Jedlicka?, Viktor Tokan?,
Zdenek Kubat?, Roman Hobza?, Eduard Kejnovsky? "

1 Faculty of Informatics, Masaryk University, Botanickd 68a, 60200 Brno, Czech
Republic

2 Department of Plant Developmental Genetics, Institute of Biophysics of the Czech
Academy of Sciences, Krdlovopolskd 135, 61200 Brno, Czech Republic

* lexa@fi.muni.cz

Abstract

The role of repetitive DNA in the 3D organization of the interphase nucleus in plant
cells is a subject of intensive study. High-throughput chromosome conformation capture
(Hi-C) is a sequencing-based method detecting the proximity of DNA segments in nuclei.
We combined Hi-C data, plant reference genome data and tools for the characterization
of genomic repeats to build a Nextflow pipeline identifying and quantifying the contacts
of specific repeats revealing the preferential homotypic interactions of ribosomal DNA,
DNA transposons and some LTR retrotransposon families. We provide a novel way to
analyze the organization of repetitive elements in the 3D nucleus.
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Background ,

A significant part of eukaryotic genomes, namely in plants, comprises transposable 2
elements (TEs) and satellite DNA, where e.g. LTR retrotransposons constitute up to 3
90% of genomes [113]. Despite their initial consideration as junk DNA, many functions

of repeats have been revealed during the last decades demonstrating their role in the 5
structure and function of genomes and cells. TEs are often embedded in cellular 6
regulatory networks [4] where they re-wire the gene expression programs [5]. Many 7
examples of the domestication of TEs for specific cellular functions have been 8
observed [6,|7]. The eukaryotic genome is hierarchically packed in the nucleus allowing 9
DNA replication and gene transcription to take place in a spatially and temporally 10
regulated fashion. Distinct organizations of chromosomes in interphase nuclei were 1
revealed exhibiting interactions of centromeric or telomeric repetitive DNA. 12

Methods of high-throughput mapping of DNA-DNA interactions, such as 13
chromosome conformation capture (Hi-C), now allow the study of long-distance 1
interactions in nuclei. A better understanding of the interaction of the main repeat 15
classes can help uncover their genomic role. A recent study demonstrated the role of 16
TEs in organizing the human and mouse genomes [8] but similar analysis in plants is 17
hitherto missing. Additionally, since centromeres and telomeres are mostly composed of 1
repetitive DNA, such analyses have the potential to verify the Rabl and Rosette 19
organizations at the molecular level. 2
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Here we present a new sequence processing pipeline to identify and quantify 2
interactions of transposable elements, satellite DNA and rDNA in nuclei, especially 2
those that participate in long-distance (>1Mbp) or interchromosomal contacts with 2
frequencies that differ from the baseline expectations. 2
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Figure 1. Block diagram showing the overall data flow in the HiC-TE pipeline. Some
details were omitted for greater clarity (the full graph as produced by the pipeline is
shown in Additional File 1)(blue - main data inputs; red - main data outputs; double
edged rectangles - main processes running external bioinformatics tools; FASTA (*.fa),
FASTQ (*.fq), BAM, GFF3 - main sequence and annotation data formats passed between
processes; Rscript - R visualization scripts).

Results 2

Our pipeline (Fig Additional File 1) integrates genome sequence analysis from several 2
sources: assembled genome annotation for the transposable elements and satellite DNA
(TE-greedy-nester, PlantSat database), medium and long-distance contact information 2
(Hi-C sequencing experiments) and repetitive sequencing read clustering (Repeat 2
Explorer 2). The pipeline was implemented with Nextflow to allow for flexibility and 30
scalability, using a recent installation of Ubuntu Linux with all dependencies included. =

In addition, we provide a tested containerized version allowing runs with 2
Docker/Singularity deployment (manual and alternative test config file provided, see 3
Additional File 2 and pipeline repository). As a result, all the figures and tables are u
fully reproducible and can be easily generated. We summarize the memory, disk, and 3
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time requirements in Additional File 3 and 4. 3
To test the pipeline, we used a publicly available dataset with six independent Hi-C s
experiments on the tomato (Solanum lycopersicum) with two technical replicates for 38

each of three plants (from [9]. We verified that the pipeline produces consistent results 1
and that the computational replicates are less variable than any other replicates present. 4

We analyzed Hi-C contacts from reads clustered with Repeat Explorer (Fig) and 2
reference-mapped long-distance interactions (spanning more than 1 Mbp or between ©
sequences located on different chromosomes)(Fig). The main output is a series of a3
heatmaps showing high and low values of normalized contacts in diverging colors, while 4
fields (repeat family pairs) with missing values are shown in grey. This is typically "
caused by extremely low copy number of one of the families (either in data or after 4
normalization randomization). a

We found that in tomato, interactions among genes are limited to distal arm regions s
(euchromatin) while repetitive DNA interactions show higher presence in closer 49
proximity to the centromere (heterochromatin) (Fig,d). When two interacting 50
regions belong to the same repeat family we talk about homotypic interactions 51

(diagonals in Fig,b). More than one third of repeat families (rDNA, DNA TEs, Ale, =
Reina, Galadriel) displayed such a pattern. The homotypic interactions were even more s
common when short-distance interactions were included, here they formed about 80% of s

all interactions (Fig.2a, Additional File 5). We showed that a number of individual 55
interacting repeat families displayed a preference for another repeat family when 56
analyzing pairwise long-distance interactions. This was most pronounced in ribosomal s
DNA, LTR TEs (e.g chromoviruses, Retand, Ogre/Tat, Alesia, Ivana, Chlamyvir, 58
Tyl-outgroup), some tandem repeats (Lpen_370, Lesc_160) and DNA transposons 59
(MuDR_Mutator)(Fig2p). 60
Discussion o

Here we presented a novel pipeline combining Hi-C data, plant reference genome data e
and tools for the characterization of genomic repeats. This pipeline can quickly identify e
and quantify the contacts of specific repeats in the 3D nucleus. Nextflow allowed us to e
formulate the pipeline in a modular manner and conveniently publish ready-to-run code, s

be it on individual computers or HPC environments, with docker and singularity 66
containers to support all necessary dependencies and their required configuration. The &
modules (separate Nextflow processes) communicate via standard file formats. 68
Therefore it should be straightforward to modify the computation to use a different 69

piece of software or different input data. Compared to the non-repetitive fraction of the 7
genome, for which a plethora of tools and pipelines exist, the repetitive sequences, such =

as those used in this pipeline, are challenging in terms of reliable mapping and the 72
number that can be successfully clustered into families. 73

The pipeline contains two modes of repeat annotation, reference-free and 74
reference-based. Being able to compare the results from both increases the robustness of s
the results. While reference-based data contain chromosomal positions and allow the 76

calculation of distances, the reference-free mode avoids the necessity to discern real and =
apparent read mapping, which is especially problematic when dealing with repeats and s

short reads. In the case of tomato analyzed here, we included the unassembled 79
“chromosome 00” in the reference-based mode which should have resulted in a more 8
precise mapping and slightly distorted distance-based calculations, such as binning 81
contacts into TAD and DIST categories. &

While we took extra care to provide several modes of normalization to be able to 8
pinpoint statistically and biologically significant contacts among the transposable 8
elements or satellite DNA families, individual evaluation may still be needed in some &
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Figure 2. Results of testing the HiC-TE pipeline against 6 sequencing datasets from
Dong et al. (2017). Examples from run SRR5748729. a) heatmap of all repeat family
contacts based on HiC reads clustered with Repeat Explorer; grey fields are shown for
pairs where missing values prevented normalization b) heatmap of long-distance repeat
family contacts based on mapping HiC reads to annotated reference genome; grey fields
are shown for pairs where missing values prevented normalization c) circular plot of
Hi-C-supported interactions between regions annotated as TE family “Tekay”; d) circular
plot of Hi-C-supported interactions between regions of the genome annotated as “exon”.

cases (for more details on normalisation see Methods and Additional File 2). For
example, in Fig[2h which shows all contacts that can be attributed to a repeat, results
may partly reflect the length of the elements and the ability of Hi-C reads to bridge
genomic regions a few hundreds of bases apart. However, the presence of the same
result in long-distance contacts (Fig) would suggest that individuals of the respective
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families tend to cluster and perhaps form exclusive domains in the nucleus. The o1
primary DNA sequences, namely abundant repetitive elements embedded in the genome, o«
may in this way instruct genome folding and aid genome compartmentalization. It is 03
known that different types of chromatin regions tend to fold in different ways, with o4
heterochromatic chromatin displaying a different average Hi-C interaction frequencies %
compared to euchromatin regions (Homer) [9,/10]. Individual repeats or entire repeat %
families can play a role in 3D organization by e.g. demarcating TAD boundaries [11] or o
harboring binding sites for architectural proteins [12]. Our pipeline has a potential, o
based on frequency of interactions of specific centromeric or telomeric repeats, to reveal o
these distinct local organizations of chromosomes in interphase nuclei, or even more 100
global ones, such as Rabl, Rosette or Bouquet arrangement [13]. 101

3-D contacts between repeats can possibly participate in processes of gene conversion 10
or ectopic recombination [14]. Gene conversion contributes to LTR retrotransposon 103
homogenization, while ectopic recombination helps to delete genomic regions. Since 104
gene conversion is strongest in ribosomal genes |15], rDNA loci served us as an internal 105
positive control. Indeed, rDNA clusters showed strong interactions with each other 106

(Fig,b). While the high homogeneity of rDNA has a functional consequence (the need 1o
for a large amount of the same functional rDNA molecules), the homogenization of TEs 10
by gene conversion could be beneficial in ectopic recombination (and subsequent genome 100
downsizing) and thus represents a tool for the regulation of genome size. 110

Methods "

Data from six sequencing runs from a Hi-C experiment on the tomato [9], Additional 1

File 5) were fed into our Nextflow [16] computational pipeline “HiC-TE” (Fig/1] 13
Additional File 1). The pipeline combines read trimming with Diachromatic [17], TE 114
annotation with TE-greedy-nester |18] and Repeat Explorer |19], 115
satellite/tandem-repeat annotation with TAREAN [20], TRF [21] and PlantSat [22]. 116
Read mapping is done via Bowtie2 [23] and BBmap| with a subsequent 17
overlap/intersection analysis with bedtools [24] and visualization in 18
R/Bioconductor [25}26] using the following packages: circlize [27], dplyr 28], 119
GenomicRanges [29], ggplot2 [30], gplots [31], karyoplotteR [32], MatrixCorrelation [33], 120
ragg [34], reshape2 [35], Rsamtools [36], rtracklayer [37], stringr [38]. This pipeline 1
generated tables, heatmaps and circular plots showing frequency of Hi-C interaction 122
between repeats and other annotated features in the genome (for code see GitLab 123
repository). Before visualization in heatmaps, the data is normalized to account for the 12
fact that repeat families have varying frequencies. As there are several ways to carry 125
out such normalizations, each with its own biases, we therefore generated heatmaps 126
using a range of normalization techniques (details in Additional File 2 and 5). Joint 127
probability normalization assumes Hi-C contacts occur between independent positions s
and normalizes contact counts against a product of frequencies of the interacting 120
families. Label permutation uses a sample set with family labels subjected to 130
permutation. Annotation interval reshuffling uses a shuffled version of annotation files 1
to normalize contacts. 132
Availability of data and materials -
The source code and documentation for the Nextflow pipeline is available at 134
http://gitlab.fi.muni.cz/hic-te/. 135



http://homer.ucsd.edu/homer/HiC.DoughnutDoc.pdf
https://sourceforge.net/projects/bbmap/
http://gitlab.fi.muni.cz/hic-te/
https://doi.org/10.1101/2021.12.18.473300
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.18.473300; this version posted December 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supporting Information 136
Additional Files 37
Additional file 1 138
Suplementary Figure — Flow chart of the Nextflow HiC-TE pipeline (output from 139
running Nextflow with the -graph switch) 140
Additional file 2 11
HiC-TE manual 142
Additional file 3 143

Suplementary Tables — HiC-TE Nextflow pipeline performance on a 4-core 3.0GHz 143
Intel Ubuntu box and in the cloud (MetaCentrum metacentrum.cz). Numerical values s
are averages of 12 runs excluding TE-greedy-nester reference annotation (is needed only 1
OHCG) 147

Additional file 4 148

Suplementary Tables — Hi-C tomato (Solanum lycopersicum) leaf mesophyll sequencing 14
runs from project SRP110225 (Dong et al., 2017) used to test the Nextflow pipeline. 150
The individual runs represent different biological and technical replicates (see batch and s
plant numbers) 152

Additional file 5 153
PDF files with 6 complete sets of outputs, numbered by SRR ID and the name of output  1ss
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