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Abstract 

Cancer metastasis is the leading cause of cancer-related mortality and the process of Epithelial to 
Mesenchymal Transition (EMT) is crucial for cancer metastasis. Either a partial or complete EMT have 
been reported to influence the metabolic plasticity of cancer cells in terms of switching among oxidative 
phosphorylation, fatty acid oxidation  and glycolysis pathways. However, a comprehensive analysis of 
these major metabolic pathways their associations with EMT across different cancers is lacking. Here, 
we analyse more than 180 cancer cell datasets and show diverse associations of these metabolic 
pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally 
positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid 
metabolism. These correlations are also consistent at the level of their molecular master regulators, 
namely AMPK and HIF1α. Yet, these associations are shown to not be universal. Analysis of single-
cell data of EMT induction shows dynamic changes along the different axes of metabolic pathways, 
consistent with general trends seen in bulk samples. Together, our results reveal underlying patterns 
of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-
mesenchymal spectrum of states. 
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Introduction 

The Epithelial to Mesenchymal transition (EMT) is a cellular programme that gives rise to a loss of 
epithelial phenotypes (reduced expression of cadherins involved in cell-cell attachment, loss of apical-
basal polarity) with a concomitant gain in mesenchymal traits such as migration and invasion [1]. This 
programme has long been known to be involved in embryogenesis and wound healing in adults [2]. 
Cancer cells are known to activate EMT during the metastatic progression of a tumour,  which allows 
the cells to invade and establish secondary tumours. EMT is not a binary process; instead, cells can 
acquire and maintain one or more hybrid epithelial/mesenchymal (E/M) states [3]. Plasticity of cancer 
cells along the epithelial-hybrid-mesenchymal landscape is highly dynamic, complex and multi-
dimensional in nature [4]. Often, other relevant biological traits such as immune evasion, stemness, 
anoikis resistance and therapy resistance are coupled with this dynamic nature of cancer cells [5–10].  

The metabolic status of cancer cells has also been reported to be coupled with EMT. Specifically, 
many EMT-inducing transcription factors (EMT-TFs) regulate the expression of various metabolic 
genes involved in glucose, lipid, glutamine, amino acid and nucleotide metabolism [11–13]. 
Furthermore, a change in metabolic state of cancer cells can induce a change in their EMT status [13]. 
The exact modalities by which these two processes are related are, however, relatively unclear, and 
have only begun to be investigated. For instance, activation of glycolytic enzymes by EMT has been 
reported in breast and prostate cancer cells [14]. A similar study reports EMT-driven activation of 
glycolysis in non-small cell lung cancer cells (NSCLC) by transcriptional activation of glucose 
transporter 3 (GLUT3) [15]. In the reverse direction, upregulation of glycolysis has been shown to 
promote stemness and EMT in pancreatic cancer cells [16]. On the other hand, TGF-β induced EMT 
has been shown to inhibit glycolysis and instead activate oxidative phosphorylation (OXPHOS) via the 
repression of pyruvate dehydrogenase kinase 4 (PDK4) [17], an enzyme that prevents conversion of 
pyruvate to acetyl-CoA. Overexpressing PDK4 inhibited EMT [17], thus demonstrating mutual 
regulation of these two axes of plasticity. Similarly, TGF-β induced EMT in colon cancer cells was 
shown to supress glycolysis by nuclear translocation of pyruvate kinase M2 (PKM2) [18], a cytosolic 
enzyme required for pyruvate formation. Finally, expression of SNAI1, an EMT-TF, was shown to 
repress another glycolytic enzyme, fructose-1,6-biphosphatase (FBP1) [19]. Similar context-
dependent trends were observed in the case of the association of lipid metabolism with EMT. While 
TNFα or TGF-β induced EMT activation promoted the lipid synthesis pathway in prostate cancer cells 
[20], overexpression of SNAI1 can also lead to inactivation of lipid synthesis enzymes [21]. Overall, 
these studies suggest context-dependency of EMT mediated coupling to metabolic networks. 

Additionally, several lipid metabolism enzymes such as acetyl-CoA synthetases (ACSL1 or ACSL4, 
steroyl-CoA desaturase (SCD) etc.) can activate EMT [22–24]. Notably, two pathways with whose 
links with EMT have been particularly well studied are glycolysis and mitochondrial metabolism. For 
instance, the glycolytic enzyme phosphoglucose isomerase (PGI) could also act as a cytokine and 
activate EMT via ZEB1 and ZEB2 stabilization in breast cancer cells [25]. But, again, this trend may 
not be ubiquitous across cancer subtypes and different microenvironments. The glycolytic enzyme 
FBP1, for instance, blocks the induction of SNAI1-driven EMT in breast cancer cells and the loss of 
this enzyme favours EMT, as shown in vitro [26]. Downregulation of several mitochondrial metabolic 
genes and mutations in TCA cycle enzymes have also been associated with EMT activation. Mutations 
in fumarate hydratase, an enzyme that converts fumarate to malate in TCA cycle, can induce EMT by 
inhibiting the activity of miR-200 [27]. Similarly, mutations in the TCA enzymes succinate 
dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) also induce EMT via epigenetic 
suppression of miR-200, leading to alterations in the miR200-ZEB1 axis [27,28] that regulates the 
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EMT status of cells [29]. Moreover, silencing of another TCA cycle enzyme, citrate synthase (CS), 
induces EMT-like cellular changes in vitro and promotes metastasis in vivo [30]. However, more recent 
studies reveal CS to be upregulated in several other tumour types and that its inactivation impedes 
EMT programme in tumour cell lines [31]. While these studies point towards a causal link between 
EMT and the metabolic pathways of glycolysis, fatty acid oxidation and oxidative phosphorylation, the 
overall interconnection landscape among these pathways is quite confounding, thereby necessitating 
further research. 

Here, we sought to analyse the association of three main aspects of cellular metabolism – glycolysis, 
oxidative phosphorylation and fatty acid synthesis – with the process of EMT in more than 180 publicly 
available microarray/RNA-seq datasets comprising cell lines and patient tumors. We found that 
oxidative phosphorylation is predominantly negatively correlated with the process of EMT, and its 
primary regulator AMPK is primarily correlated (positively) specifically with an epithelial programme. 
Conversely, glycolysis and its key regulator HIF1α predominantly positively correlated with a 
mesenchymal programme and the induction of EMT. However, glycolysis also showed a positive 
correlation with the epithelial programme in many datasets, highlighting its complex interaction with 
the EMT programme. Fatty acid oxidation was correlated negatively with acquisition of a mesenchymal 
phenotype and positively with the epithelial nature of cancer cells. However, alternative modalities of 
association of metabolic axes with the EMT programme were also observed. Analysis of EMT 
induction in single cell RNA-seq data showed largely consistent trends with the generic patterns seen 
in the analysis of bulk samples.  

 

Results 

EMT scoring metrics are largely consistent across datasets 

Multiple transcriptomic-based scoring metrics have been used to quantify the EMT status of biological 
samples [32]. We used 5 different approaches to quantify the EMT status of biological samples in a 
set of 182 datasets. The  76GS [33,34] and KS [35] EMT scoring methods use two different sets of 
gene lists (including epithelial and/or mesenchymal genes) to score a sample along the epithelial-
hybrid-mesenchymal spectrum. We further used ssGSEA (single-sample Gene Set Enrichment 
Analysis) and/or Singscore to calculate the activity of epithelial and mesenchymal gene lists (see 
Methods) to estimate the epithelial and mesenchymal nature of the samples respectively.  

For 114 out of 182 datasets, the KS score (a higher KS score implies a more mesenchymal state) is 
positively correlated with the enrichment of Hallmark EMT signature; in only 8 datasets, this correlation 
is significantly negative (Fig 1A, left). On the other hand, the 76GS EMT score (a higher 76GS score 
indicates a more epithelial state) largely correlates with epithelial signature (Fig 1A, middle). The KS 
metric was also positively correlated with an independent mesenchymal signature (Fig 1A, right). A 
comparison of 4 representative pairs of metrics show that in most datasets we looked at, these EMT 
scores were correlated significantly and consistently, including a negative correlation between the 
76GS and KS scores, as expected (Fig 1B). These results show that all these EMT scoring metrics 
are largely consistent with one another.  

Next, we wanted to quantify the consistency of pairs of metrics if they were significantly correlated. To 
quantify that trend, we computed a “probability” score for a given pair of metrics by considering the 
number of datasets correlated significantly (p < 0.05) either positively (r > 0.3) or negatively (r < -0.3). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.18.473275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.18.473275
http://creativecommons.org/licenses/by-nc-nd/4.0/


We computed a ratio of number of positively or negatively correlated datasets (depending on the trend 
seen) to the total number of datasets that showed a significant (p <0.05) association (irrespective of 
the direction of association). The higher this ratio is, the better the concordance between these two 
metrics in a given direction. We found that a) KS score vs. Mesenchymal, b) KS score vs. Epithelial 
and c) Mesenchymal signature vs. Hallmark EMT signatures were most consistent with one another 
in positive, negative and positive directions respectively (Fig 1C). When these probabilities were 
further weighted by a fraction of significant cases out of all datasets considered, we saw that a) KS 
score vs. Epithelial, b) 76GS score vs. KS score and c) 76GS vs. Epithelial were most consistent with 
each other in negative, negative and positive directions respectively, as expected (Fig 1D). KS score 
vs. Mesenchymal and KS score vs. Hallmark EMT correlations also maintained their trends as seen 
in earlier scenario (compare Fig 1D with Fig 1C). Put all together, these results show that the EMT 
metrics considered here are highly consistent with one another in a majority of the datasets. 

 

 
Fig 1: Consistency between different EMT scoring metrics. (A) Volcano plots depicting the Pearson 
correlation coefficient and the -log10(p-value) for 3 pairs of EMT scoring metrics – KS vs Hallmark EMT, 
76GS vs epithelial and KS vs mesenchymal. Vertical boundaries are set at correlation coefficient -0.3 and 
0.3. The cut-off for p-value is set at 0.05. (B) 4-way Venn diagram for comparison of 4 representative pairs 
of EMT scoring metrics. (C) Probability of a dataset having a positive (blue) or a negative (red) correlation 
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) for different pairs of EMT scoring 
metrics. (D) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation 
coefficient > 0.3) given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for 
different pairs of EMT scoring metrics.  
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OXPHOS is more likely to be negatively correlated with a mesenchymal program and 
positively with an epithelial one 

Having assessed the consistency of different EMT scoring metrics among themselves on a cohort of 
datasets, we next wanted to understand how the different axes of metabolism associated with EMT 
metrics. Oxidative phosphorylation is a predominant way by which cells generate energy for survival. 
To study how the biological process of oxidative phosphorylation associates with different EMT 
metrics, we correlated the ssGSEA activity scores calculated for the Hallmark oxidative 
phosphorylation gene set with different EMT metrics.  

Upon correlating the OXPHOS signature with the Hallmark EMT scores, we found that although there 
were significant correlations both in the positive and negative directions, there were many more 
datasets correlated negatively (56 vs. 24) with Hallmark EMT than were correlated positively (Fig 2A). 
This overall observation is in accordance with many experimental studies that point towards a negative 
association between oxidative phosphorylation and EMT [36–39]. However, this relationship is not 
exclusive, i.e.  these quantities could be positively correlated in a variety of contexts, as reported in 
other experimental studies [40–42]. Among all pairs of correlations between OXPHOS signature and 
EMT metrics, the OXPHOS-Hallmark EMT pair showed the strongest propensity of negative 
association with one another, given that the correlation was significant in either direction (Fig 2B). 
Furthermore, the OXPHOS-Hallmark EMT pair was also the top scoring pair when weighted with the 
fraction of significant cases (Fig 2C), further highlighting the finding that the acquisition of the 
mesenchymal features was more likely to result in the decline in activity of the OXPHOS gene set.  

Oxidative phosphorylation in cells has been reported to be positively regulated by AMPK activity levels 
in cells. To assess AMPK activity, we considered a list of AMPK target genes that have been used as 
a proxy for the activity of the phosphorylated active form of AMPK (see Methods). We find that the 
AMPK signature is more likely to be positively correlated with epithelial signature (41 datasets showed 
positive correlations vs. 12 showed negative correlations) (Fig 2D). However, the AMPK signature did 
not show a strong skew towards being either positively or negatively correlated with the separate 
mesenchymal signature (Fig 2E). Together, these trends could indicate towards the fact that the active 
form of AMPK is likely more strongly correlated with the presence of an epithelial signature rather than 
with the absence of a mesenchymal one, especially if we deconvolute EMT into two-dimensional 
process where loss of epithelial traits and gain of mesenchymal traits can be at treated semi-
independently.  

Quantifying the trends of association of the AMPK signature with various EMT metrics, we noticed that 
the probability of positive correlation between AMPK and epithelial metrics (Epithelial signature, 76GS 
scores) was higher than that of a negative correlation between AMPK and mesenchymal ones (KS 
score, Hallmark EMT, Mesenchymal signature) (Fig 2F). These observations suggest that AMPK is 
strongly coupled with epithelial traits of cells, rather than with their mesenchymal ones. However, we 
noticed OXPHOS is strongly negatively correlated with both Hallmark EMT signature as well as the 
Mesenchymal signature (Fig 2A, 2B). This difference seen between trends of AMPK and OXPHOS 
can be due to additional context-specific factors, apart from AMPK, that might also mediate the 
crosstalk between EMT and OXPHOS [43], thus leading to an overall stronger negative association of 
OXPHOS with the hallmark EMT program. 
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Fig 2: OXPHOS is more likely to correlate negatively with EMT. (A) Volcano plots depicting the Pearson 
correlation coefficient and the -log10(p-value) for hallmark OXPHOS and hallmark EMT signatures. (B) 
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) 
given that it is significant (p-value < 0.05) for OXPHOS and different EMT scoring metrics. (C) Probability 
of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) given that 
it is significant (p-value < 0.05) weighted by the fraction of significant cases for OXPHOS and different EMT 
scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -log10(p-value) for (D) 
AMPK signature and epithelial signature, (E) AMPK signature and mesenchymal signature. (F) Probability 
of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) given that 
it is significant (p-value < 0.05) weighted by the fraction of significant cases for AMPK signature and different 
EMT scoring metrics. Vertical boundaries for volcano plots are set at correlation coefficient -0.3 and 0.3. 
The cut-off for p-value is set at 0.05. 

 

 

Glycolysis is more likely to be positively correlated with a (partial) EMT programme. 

Next, we wanted to check how the glycolytic process was associated with the EMT programme in the 
datasets we had considered. To assess this association, we correlated the enrichment (ssGSEA) 
scores for hallmark EMT and hallmark glycolysis signatures, across our datasets. We observed that 
glycolysis was more likely to be significantly positively correlated with EMT than being significantly 
negatively correlated (66 vs. 13 respectively) (Fig 3A). One would therefore expect that glycolysis  
should be negatively correlate with the epithelial programme or with the 76GS EMT scoring metric that 
assign epithelial samples a higher score. This is, however, not what we observed. Instead, glycolysis 
was also found to be positively correlated with scoring metrics that report an enriched epithelial 
program (Epithelial gene list, as well as 76GS scores), to a comparable extent with which it correlated 
with a mesenchymal program (Fig 3B). Similar trends are also seen when the association probability 
values were further weighted by number of significant datasets in which a given trend was observed 
(Fig 3C). Here, the association of glycolysis with Hallmark EMT programme was stronger, albeit not 
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to a large degree, than that seen for the epithelial gene list and 76GS score, suggesting its putative 
association with a partial EMT state and/or other context-specific factors not included in our analysis.   

HIF1α is a known mediator of the glycolytic pathway [44] and in modulating the EMT status of cells 
[45]. Thus, next we probed how the HIF1α signature associated with epithelial and mesenchymal 
programmes. Intriguingly, we found that both the volcano plots showed a skew towards the positive 
side (Fig 3D-E), suggesting that HIF1α activation may associate with a partial EMT state exhibiting 
both epithelial and mesenchymal features [46]. It should be noted that in the case of mesenchymal 
programme, the HIF1α signature was somewhat more strongly skewed towards to the positive side in 
comparison to the positive skew present in the case of epithelial programme (47 out of 60 datasets 
vs. 31 datasets out of 46 respectively) (Fig 3D-E). The positive association of Glycolysis as well as its 
known regulator HIF1α with both the epithelial and mesenchymal axes may indicate that glycolysis is 
a hallmark feature of hybrid E/M states. Recent observations about glycolysis accompanying collective 
cell migration endorse this association of glycolytic shift in partial EMT state(s) [47,48]; however, how 
metabolic heterogeneity maps on to leader-follower dynamic switching remains to be investigated in 
more detail [49–51].  Nevertheless, stronger trends as measured by weighted probability scores for 
HIF1α vs. Hallmark EMT and HIF1α vs. Mesenchymal compared to HIF1α vs. 76GS or HIF1α  vs. 
Epithelial indicates  enrichment of HIF1α in being associated with a relatively more mesenchymal 
phenotype (Fig 3F). The degree of coupling of gain of mesenchymal with loss of epithelial traits in a 
given scenario [52] may play a key role in associating HIF1α with a partial or complete EMT. 

 

 
Fig 3: Glycolysis is more likely to correlate positively with EMT. (A) Volcano plots depicting the 
Pearson correlation coefficient and the -log10(p-value) for hallmark glycolysis and hallmark EMT signatures. 
(B) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 
0.3) given that it is significant (p-value < 0.05) for glycolysis and different EMT scoring metrics. (C) 
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) 
given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for glycolysis and 
different EMT scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -log10(p-
value) for (D) HIF1a signature and epithelial signature, (E) HIF1a signature and mesenchymal signature. 
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(F) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 
0.3) given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for HIF1a 
signature and different EMT scoring metrics. Vertical boundaries for volcano plots are set at correlation 
coefficient -0.3 and 0.3. The cut-off for p-value is set at 0.05. 

FAO is more likely to positively correlate with an epithelial program and negatively with a 
mesenchymal program 

Fatty acid oxidation (FAO) is a catabolic process in which fatty acids are broken down and is another 
key mechanism by which cancer cells can generate energy for survival [53]. Genes involved in fatty 
acid oxidation have been characterised previously [53]. We used one such gene set as a proxy for the 
activity of the FAO pathway in our datasets (see Methods). We found that as with OXPHOS, FAO 
was most likely to be negatively correlated with the Hallmark EMT programme (52 significantly 
negative vs. 11 significantly positive cases) (Fig 4A). The epithelial programme alone was more likely 
to be correlated positively (37 positive vs. 17 negative) (Fig 4B) while the mesenchymal programme 
alone was likely to correlate negatively (30 negative vs. 18 positive) (Fig 4C). These results show that 
FAO more likely associates negatively with acquisition of a mesenchymal phenotype. Upon calculation 
of the probability of positive/negative correlations given the correlation is significant as well as the 
overall weighted probability, we observed that the mesenchymal metrics (hallmark EMT, 
mesenchymal signature and KS) were all skewed towards the negative side, while the more epithelial 
metrics (76GS and epithelial signature) were positively correlated with FAO (Fig 4D). These results 
collectively show that while OXPHOS and FAO are more likely to be associated negatively with the 
mesenchymal programme and the process of EMT, glycolysis is more likely to be positively associated 
with the mesenchymal characteristics of cells. These associations, at least in part, are supported by 
the activity of molecular regulators such as AMPK and HIF1α.  

 
Fig 4: Fatty acid oxidation is more likely to correlate negatively with EMT. (A) Volcano plots depicting 
the Pearson correlation coefficient and the -log10(p-value) for fatty acid oxidation (FAO) and hallmark EMT 
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signatures. (B) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation 
coefficient > 0.3) given that it is significant (p-value < 0.05) for FAO and different EMT scoring metrics. (C) 
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) 
given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for FAO and different 
EMT scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -log10(p-value) for 
(D) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 
0.3) given that it is significant (p-value < 0.05) (top panel) and weighted by the fraction of significant cases 
(bottom panel) for FAO signature and different EMT scoring metrics. Vertical boundaries for volcano plots 
are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is set at 0.05. 

 

Different modalities of association between pairs of metabolic pathways and EMT 

After exploring the three major metabolic axes (OXPHOS, glycolysis and FAO) independently in terms 
of their association with EMT, we wanted to investigate the pair wise associations between the 
metabolic pathways in the context of EMT. For datasets under consideration, we first computed the 
fractions of datasets that had none, one, two or all three axes of metabolism associated significantly 
with the hallmark EMT signature (Fig 5A). Most datasets (~60%) had a maximum of one axis of 
metabolism correlated with the Hallmark EMT programme (Fig 5A). In about 25% of the datasets, 
hallmark EMT was not correlated with any of the metabolic axes, probably indicative of biological 
scenarios where these metabolic axes are not coupled directly with the EMT spectrum. In the 
remaining 40% of datasets, where two or more than two axes were significantly correlated with the 
hallmark EMT signature, we investigated if certain combinations of associations were more likely than 
others in context of their correlations with EMT. To answer this question, we first plotted all 45 datasets 
that had significant correlations with the EMT axis and either OXPHOS or glycolysis (Fig 5B). Among 
those, 21 (46.67%) datasets showed a positive correlation between glycolysis and hallmark EMT 
programme, while OXPHOS was negatively correlated with the hallmark EMT programme (Fig 5B, 
green box). This co-occurring association of OXPHOS and glycolysis with EMT in inverse directions 
has been reported earlier experimentally [54,55].  

However, this co-occurrence is not the only mode of association between these three axes. The next 
most predominant modality of association is the scenario where both glycolysis and OXPHOS are 
positively correlated with EMT – this trend is shown in 14 (31.11%) datasets (Fig 5B, red box). This 
could be indicative of the EMT associating positively with a hybrid metabolic state in which both 
OXPHOS and glycolysis are high [54]. The other two case – both OXPHOS and glycolysis correlating 
negatively with EMT (Fig 5B, yellow box) and OXPHOS being positively associated while glycolysis 
being negatively associated (Fig 5B, blue box) – were 15.55% and 6.67% respectively. Collectively, 
this analysis shows that besides predominant modalities of association between OXPHOS and 
glycolysis in the context of EMT, other modalities also exist although less frequently. 

Next, we wanted to explore how FAO and OXPHOS are associated with each other in the context of 
their correlations with EMT. Upon plotting scatter plots, similar to what we had done for glycolysis and 
OXPHOS, we find that only 3 quadrants are populated with different propensities (Fig 5C). The most 
predominant modality was the scenario in which EMT was negatively correlated with both OXPHOS 
and FAO in 30 (73.17%) datasets (Fig 5C, yellow box). In 7 (17.07%) datasets, OXPHOS and FAO 
were both positively correlated with the hallmark EMT signature (Fig 5C, red box). In the remaining 
four datasets, OXPHOS was positively correlated with EMT while FAO was significantly negatively 
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correlated with EMT (Fig 5C, blue box). These results show that FAO and OXPHOS are more likely 
to coordinated in a similar manner – either positively or negatively correlated to EMT.  

Similarly, when we compared glycolysis with FAO, we found that the major modality of action was the 
scenario where glycolysis was positively correlated with EMT while FAO was negatively correlated 
with the EMT programme (Fig 5D, blue box). This association was observed in 25 (69.44%) datasets. 
The other two observed modalities of regulation were the cases where both FAO and glycolysis were 
both positively (Fig 5D, red box) or both negatively (Fig 5D, yellow box) correlated with EMT. Overall, 
our analysis uncovers the different possibilities and propensities by which these three axes of 
metabolism might associate with one another in terms of their connection with EMT. 

 
Fig 5: Varied associations between different metabolic axes with EMT. (A) Proportion of datasets that 
have a given number of metabolic axis significantly correlated with the Hallmark EMT signature (p-value < 
0.05). Scatter plot of correlation coefficients of (B) OXPHOS with EMT and glycolysis with EMT (C) hallmark 
glycolysis with EMT and glycolysis with EMT (D) glycolysis with EMT and fatty acid oxidation with EMT. 

 

Heterogeneity in associations between different axes of metabolism in relation to EMT is 
also reflected in single cell RNA-seq data 

Until now, our analysis was focused on bulk samples. We next examined whether there was evidence 
for the observed heterogeneity of association of metabolic axes with EMT present in single-cell data 
as well. To do so, we analysed single-cell data across different cell lines induced to undergo EMT by 
TGFβ [56], to ask a) if there was a shift along any of the metabolic axis upon induction of EMT, and b) 
whether the different modalities of associations were seen across different biological conditions. For 
the cell line A549, as EMT was induced for 7 days, there was a distinct rise in the hallmark EMT scores 
of the cells at day 7 compared to day 0 (Fig 6A). Concomitantly, there was a significant rise in the 
levels of glycolysis and FAO, while there was a drop in the levels of OXPHOS (Fig 6A). In the case of 
DU145 cells, as the hallmark EMT scores of cells increased at day 7 compared to day 0, a significant 
increase in the level of glycolysis, but a significant shift towards reduced levels of OXPHOS as well as 
FAO was noted, as expected from the most dominant trend seen in bulk datasets (Fig 6B). In the case 
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of MCF7 cells, there was no significant change in glycolysis levels at day 0 and day 7. However, there 
was significant drop in the levels of both OXPHOS and FAO (Fig 6C). These results demonstrate that 
some level of heterogeneity in the modalities by which pairs of metabolic axes associate contingent 
upon the biological context, in this case the cell line considered and extent to which EMT was induced. 

 
Fig 6: Metabolic signatures in single cells RNA-seq data upon EMT induction. Kernel density estimate 
plots of hallmark EMT and metabolic signatures – glycolysis, OXPHOS and fatty acid oxidation – at day 0 
(untreated) and day 7 (upon TGFβ treatment) for different cell lines (A) A549 (B) DU145 (C) MCF7 

 

Discussion 

Metabolic reprogramming in cancer cells is a key step in the adaptation and survival of cancer cells in 
the changing milieu of the tumour microenvironment. Metabolic reactions are more likely to act on a 
smaller time scale compared to transcriptional and translational processes. This difference in time 
scales makes metabolic remodelling an attractive mode for instantaneous adaptation for cancer cells. 
However, changes to the metabolic programmes in cells also happens at a time scale longer than 
such immediate adaptations. Long term changes in metabolic programmes can happen due to cross 
talk with other dynamic biological process in cells. In the context of EMT, cells switch from an epithelial 
to a more mesenchymal phenotype through multiple intermediate states, which facilitate metastasis. 
Changes in cellular motility and stresses arising from new microenvironments during metastasis may 
require more energy to adapt and survive and thus necessitate altered metabolism. Such metabolic 
alterations that affect the overall energy balance in the cell ultimately determine its fitness. Thus, it is 
not surprising that EMT and metabolism have been shown to influence one another [54,57]. 

In this study, we have focused on three major energy producing metabolic processes – glycolysis, 
oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Cancer cells typically facilitate 
glycolysis as their primary energy source, irrespective of the presence of oxygen [58]. This process is 
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referred to as Warburg effect or aerobic glycolysis. Conversely, the role of oxidative phosphorylation 
has also been observed to be important in cancer cells and cannot be ignored [59,60]. EMT induced 
metabolic alterations have been an active field of research with the identification of numerous 
mechanisms by which the metabolic state of cells is altered. Several EMT-inducing signals and EMT-
TFs have been shown to activate glycolysis [15,19,61]. Further, glycolysis has been shown to promote 
EMT in turn, thus forming a positive feedback loop [62–65]. In addition, several studies have shown 
that EMT-TFs can also inhibit mitochondrial respiration and oxidative phosphorylation [66,67] . Thus, 
EMT has been consistently shown to be associated with activation of glycolysis and inhibition of 
OXPHOS, as also noted in scenarios of EMT induction [36]. However, in contrast to these studies, 
other pieces of evidence suggest that cancer cells with activated EMT may also have increased levels 
of OXPHOS in some cases [21,60]. Such conflicting findings [21,60]  regarding glycolysis vs. OXPHOS 
may be due to differing tumor microenvironments in these studies or due to differences in cell lines/ 
patient samples used. Another possible explanation is that cancer cells may exhibit a hybrid metabolic 
phenotype [68] where both glycolysis and OXPHOS states may co-exist which allows high metabolic 
adaptability.  

Consistent with the existing literature, our analysis of more than 180 gene expression datasets reveals 
that the process of EMT is more likely to be positively associated with the glycolytic process and 
negatively with OXPHOS programme. We also report here that FAO is also likely to be negatively 
associated with EMT progression, similar to OXPHOS. These broad trends are, however, not binding, 
but rather probabilistic in nature given different biological contexts. In other words, the absence of a 
universal rule indicates that cancer cells may favour glycolysis or oxidative metabolism depending on 
factors present in the tumor microenvironment (TME) such as availability of glucose, hypoxia, reactive 
oxygen species, etc. Such an ability to shift the metabolic balance dynamically may provide an 
advantage amidst shifting energy demands inherent in an evolving TME. Upon analysis of pairs of 
metabolic pathways in the context of their associations with EMT we observed that while glycolysis 
and OXPHOS are more likely to be antagonistic in their associations with EMT, OXPHOS and FAO 
were more likely to be both associated negatively with EMT. The other modalities of associations were 
also observed albeit in lower propensities. The observed heterogeneities were also seen in single cell 
RNA-seq data upon the induction of EMT.  

Transcriptomic analysis of metabolic genes for given pathways, as done here, is one of the ways to 
estimate the level of activity of a pathway and its corresponding associations with the EMT programme. 
However, analysis of metabolomics data would give a more precise picture of the actual metabolic 
state of cells. Furthermore, there is a need to better characterise the molecular players and associated 
mechanisms that could allow for heterogeneity in the various modalities of associations between the 
different metabolic pathways and if there exist feedback loops/networks that might allow a switch from 
one modality of association to another. Identifying such mechanistic  basis would be important to 
develop this understanding for any therapeutic strategies. Based on the current study, we cannot 
comment if the observed associations are likely to hold in the context of EMT induction only or also 
hold in the context of mesenchymal to epithelial transition (MET). EMT/MET dynamics has been shown 
to be hysteretic (non-symmetric) in nature [69–71]; whether that feature extends to metabolic 
reprogramming remains to be seen.  

Despite these limitations, our work sheds light upon underlying patterns in terms of metabolic plasticity 
and heterogeneity along the epithelial-hybrid-mesenchymal spectrum in cancer cells. Understanding 
this coupling between EMT/MET and metabolic plasticity will enable effective targeting of cells in 
heterogeneous tumor populations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.18.473275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.18.473275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 
Software and Datasets 

Python (version 3.6) and R (version 4.0.2) were used for conducting all computational and statistical 
analyses. Microarray datasets were downloaded from NCBI GEO using GEOquery R Bioconductor 
package. FASTQ files for RNA sequencing datasets were downloaded from the ENA (European 
Nucleotide Archive) database. A complete list of datasets used, and the associated metadata has 
been provided in Supplementary Table 1. 

Pre-processing of Microarray datasets 

Gene wise expression for each sample was obtained after appropriate pre-processing of microarray 
datasets. Probe wise expression matrices downloaded using GEOquery were log2 normalised and 
annotation files corresponding to microarray platforms were utilized for mapping the probes to 
respective genes. In cases where more than one probe mapped on to a single gene, the mean of 
expression values of all these probes was used for such genes.  

Pre-processing of RNA-seq datasets 

Adapter contamination and overall quality of sequences were inspected using FastQC. Sequences 
were aligned with the hg38 human (or mm10 mouse) reference genome using the STAR alignment 
software. Finally, the raw counts for each gene were calculated with these aligned sequences using 
htseq-count. These raw counts were then normalised for gene length and transformed to TPM 
(transcripts per million) values which were then log2 normalised to obtain the final values. 

EMT scoring methods  

EMT scores were calculated using five different methods for each dataset. Each method requires gene 
expression data as input. Each method uses a distinct gene set or a distinct algorithm.  
 
76GS: The 76-gene EMT scoring method (76GS) was developed using transcriptomic data from 
NSCLC cell lines and patient samples [33,34]. As the name suggests, it utilizes 76 gene signatures. 
The weighted sum of gene expression values of 76 genes was calculated for each sample, where the 
weight factors are correlation coefficients with CDH1 levels. The values obtained through this method 
have no specific range. EMT score for each sample was subtracted by the mean obtained from all 
samples such that the resultant mean score was zero. As per this new scale, negative scores indicate 
a M phenotype, and positive scores indicate an E phenotype.  
 
KS: KS method uses the two-sample Kolmogorov Smirnov test (KS) to score EMT for cell lines and 
tumor samples [35]. It uses 218 gene signatures for cell line samples and 315 gene signatures for 
tumor samples. Briefly, cumulative distribution functions (CDFs) are obtained for each of the two 
signatures (E and M) and the maximum distance between these CDFs is used as the test statistic for 
a two-sample KS test to obtain the EMT scores. The final EMT scores lie in the range [-1, 1]. Positive 
& negative scores represent mesenchymal and epithelial phenotypes respectively. 

Hallmark EMT:  This method uses the hallmark geneset for EMT available (Supplementary Table 2) 
in the MSigDB [72] repository. For each sample, ssGSEA (single sample gene set enrichment 
analysis) [73] analysis was performed using this geneset to obtain the normalized enrichment score 
(NES). All calculations were done using the GSEAPY python library. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.18.473275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.18.473275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epithelial and Mesenchymal scores: These metrics use the KS epithelial and mesenchymal gene 
signatures to quantify E & M status separately. A rank-based single sample scoring method called 
Singscore [74] was used for quantifying the enrichment level of these gene sets in a given sample. 
The final value obtained from this method has a range of [-1, 1]. For the epithelial score, a higher value 
indicates a more epithelial phenotype. The mesenchymal score also operates in a similar manner. 

Metabolic pathways scoring methods: ssGSEA scores were calculated using the hallmark oxidative 
phosphorylation and glycolysis gene sets (MSigDB) to obtain OXPHOS and glycolysis signatures 
respectively  (Supplementary Table 2). AMPK and HIF-1 signatures were quantified using expression 
levels of their downstream target genes as previously reported [68]. A total of 33 downstream genes 
for AMPK and 23 downstream genes for HIF-1 were used. The final scores were obtained using the 
Singscore method [74] performed on these gene sets. The FAO scores were calculated based on 
equations previously reported [75] which uses expression levels of 14 FAO enzyme genes. 
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Table S1: Details of 184 transcriptomic datasets included in the analysis obtained from the NCBI 
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Supplementary figures 

 

 
Fig S1: Consistency between different EMT scoring metrics. Volcano plots depicting the Pearson 
correlation coefficient and the -log10(p-value) for (A) Epithelial vs Hallmark EMT (B) KS vs Mesenchymal 
(C) Epithelial vs Mesenchymal (D) Mesenchymal vs 76GS (E) KS vs Epithelial (F) Mesenchymal vs 
Hallmark EMT. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is 
set at 0.05. 

 

 
Fig S2: OXPHOS and its regulator AMPK is more likely to correlate negatively with EMT. Volcano 
plots depicting the Pearson correlation coefficient and the -log10(p-value) for (A) OXPHOS vs 76GS (B) 
OXPHOS vs KS (C) OXPHOS vs Epithelial (D) OXPHOS vs Mesenchymal (E) AMPK vs 76GS (F) AMPK 
vs KS. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is set at 
0.05. 
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Fig S3: Glycolysis and its regulator HIF1a is more likely to correlate negatively with EMT. Volcano 
plots depicting the Pearson correlation coefficient and the -log10(p-value) for (A) Glycolysis vs KS (B) 
Glycolysis vs 76GS (C) Glycolysis vs Epithelial (D) Glycolysis vs Mesenchymal (E) HIF1a vs 76GS (F) 
HIF1a vs Hallmark EMT. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for 
p-value is set at 0.05. 
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