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Abstract

Cancer metastasis is the leading cause of cancer-related mortality and the process of Epithelial to
Mesenchymal Transition (EMT) is crucial for cancer metastasis. Either a partial or complete EMT have
been reported to influence the metabolic plasticity of cancer cells in terms of switching among oxidative
phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of
these major metabolic pathways their associations with EMT across different cancers is lacking. Here,
we analyse more than 180 cancer cell datasets and show diverse associations of these metabolic
pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally
positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid
metabolism. These correlations are also consistent at the level of their molecular master regulators,
namely AMPK and HIF1a. Yet, these associations are shown to not be universal. Analysis of single-
cell data of EMT induction shows dynamic changes along the different axes of metabolic pathways,
consistent with general trends seen in bulk samples. Together, our results reveal underlying patterns
of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-
mesenchymal spectrum of states.
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Introduction

The Epithelial to Mesenchymal transition (EMT) is a cellular programme that gives rise to a loss of
epithelial phenotypes (reduced expression of cadherins involved in cell-cell attachment, loss of apical-
basal polarity) with a concomitant gain in mesenchymal traits such as migration and invasion [1]. This
programme has long been known to be involved in embryogenesis and wound healing in adults [2].
Cancer cells are known to activate EMT during the metastatic progression of a tumour, which allows
the cells to invade and establish secondary tumours. EMT is not a binary process; instead, cells can
acquire and maintain one or more hybrid epithelial/mesenchymal (E/M) states [3]. Plasticity of cancer
cells along the epithelial-hybrid-mesenchymal landscape is highly dynamic, complex and multi-
dimensional in nature [4]. Often, other relevant biological traits such as immune evasion, stemness,
anoikis resistance and therapy resistance are coupled with this dynamic nature of cancer cells [5-10].

The metabolic status of cancer cells has also been reported to be coupled with EMT. Specifically,
many EMT-inducing transcription factors (EMT-TFs) regulate the expression of various metabolic
genes involved in glucose, lipid, glutamine, amino acid and nucleotide metabolism [11-13].
Furthermore, a change in metabolic state of cancer cells can induce a change in their EMT status [13].
The exact modalities by which these two processes are related are, however, relatively unclear, and
have only begun to be investigated. For instance, activation of glycolytic enzymes by EMT has been
reported in breast and prostate cancer cells [14]. A similar study reports EMT-driven activation of
glycolysis in non-small cell lung cancer cells (NSCLC) by transcriptional activation of glucose
transporter 3 (GLUT3) [15]. In the reverse direction, upregulation of glycolysis has been shown to
promote stemness and EMT in pancreatic cancer cells [16]. On the other hand, TGF-B induced EMT
has been shown to inhibit glycolysis and instead activate oxidative phosphorylation (OXPHOS) via the
repression of pyruvate dehydrogenase kinase 4 (PDK4) [17], an enzyme that prevents conversion of
pyruvate to acetyl-CoA. Overexpressing PDK4 inhibited EMT [17], thus demonstrating mutual
regulation of these two axes of plasticity. Similarly, TGF-B induced EMT in colon cancer cells was
shown to supress glycolysis by nuclear translocation of pyruvate kinase M2 (PKM2) [18], a cytosolic
enzyme required for pyruvate formation. Finally, expression of SNAI1, an EMT-TF, was shown to
repress another glycolytic enzyme, fructose-1,6-biphosphatase (FBP1) [19]. Similar context-
dependent trends were observed in the case of the association of lipid metabolism with EMT. While
TNFa or TGF-B induced EMT activation promoted the lipid synthesis pathway in prostate cancer cells
[20], overexpression of SNAI1 can also lead to inactivation of lipid synthesis enzymes [21]. Overall,
these studies suggest context-dependency of EMT mediated coupling to metabolic networks.

Additionally, several lipid metabolism enzymes such as acetyl-CoA synthetases (ACSL1 or ACSL4,
steroyl-CoA desaturase (SCD) etc.) can activate EMT [22—-24]. Notably, two pathways with whose
links with EMT have been particularly well studied are glycolysis and mitochondrial metabolism. For
instance, the glycolytic enzyme phosphoglucose isomerase (PGI) could also act as a cytokine and
activate EMT via ZEB1 and ZEB2 stabilization in breast cancer cells [25]. But, again, this trend may
not be ubiquitous across cancer subtypes and different microenvironments. The glycolytic enzyme
FBP1, for instance, blocks the induction of SNAI1-driven EMT in breast cancer cells and the loss of
this enzyme favours EMT, as shown in vitro [26]. Downregulation of several mitochondrial metabolic
genes and mutations in TCA cycle enzymes have also been associated with EMT activation. Mutations
in fumarate hydratase, an enzyme that converts fumarate to malate in TCA cycle, can induce EMT by
inhibiting the activity of miR-200 [27]. Similarly, mutations in the TCA enzymes succinate
dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) also induce EMT via epigenetic
suppression of miR-200, leading to alterations in the miR200-ZEB1 axis [27,28] that regulates the
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EMT status of cells [29]. Moreover, silencing of another TCA cycle enzyme, citrate synthase (CS),
induces EMT-like cellular changes in vitro and promotes metastasis in vivo [30]. However, more recent
studies reveal CS to be upregulated in several other tumour types and that its inactivation impedes
EMT programme in tumour cell lines [31]. While these studies point towards a causal link between
EMT and the metabolic pathways of glycolysis, fatty acid oxidation and oxidative phosphorylation, the
overall interconnection landscape among these pathways is quite confounding, thereby necessitating
further research.

Here, we sought to analyse the association of three main aspects of cellular metabolism — glycolysis,
oxidative phosphorylation and fatty acid synthesis — with the process of EMT in more than 180 publicly
available microarray/RNA-seq datasets comprising cell lines and patient tumors. We found that
oxidative phosphorylation is predominantly negatively correlated with the process of EMT, and its
primary regulator AMPK is primarily correlated (positively) specifically with an epithelial programme.
Conversely, glycolysis and its key regulator HIF1a predominantly positively correlated with a
mesenchymal programme and the induction of EMT. However, glycolysis also showed a positive
correlation with the epithelial programme in many datasets, highlighting its complex interaction with
the EMT programme. Fatty acid oxidation was correlated negatively with acquisition of a mesenchymal
phenotype and positively with the epithelial nature of cancer cells. However, alternative modalities of
association of metabolic axes with the EMT programme were also observed. Analysis of EMT
induction in single cell RNA-seq data showed largely consistent trends with the generic patterns seen
in the analysis of bulk samples.

Results
EMT scoring metrics are largely consistent across datasets

Multiple transcriptomic-based scoring metrics have been used to quantify the EMT status of biological
samples [32]. We used 5 different approaches to quantify the EMT status of biological samples in a
set of 182 datasets. The 76GS [33,34] and KS [35] EMT scoring methods use two different sets of
gene lists (including epithelial and/or mesenchymal genes) to score a sample along the epithelial-
hybrid-mesenchymal spectrum. We further used ssGSEA (single-sample Gene Set Enrichment
Analysis) and/or Singscore to calculate the activity of epithelial and mesenchymal gene lists (see
Methods) to estimate the epithelial and mesenchymal nature of the samples respectively.

For 114 out of 182 datasets, the KS score (a higher KS score implies a more mesenchymal state) is
positively correlated with the enrichment of Hallmark EMT signature; in only 8 datasets, this correlation
is significantly negative (Fig 1A, left). On the other hand, the 76GS EMT score (a higher 76GS score
indicates a more epithelial state) largely correlates with epithelial signature (Fig 1A, middle). The KS
metric was also positively correlated with an independent mesenchymal signature (Fig 1A, right). A
comparison of 4 representative pairs of metrics show that in most datasets we looked at, these EMT
scores were correlated significantly and consistently, including a negative correlation between the
76GS and KS scores, as expected (Fig 1B). These results show that all these EMT scoring metrics
are largely consistent with one another.

Next, we wanted to quantify the consistency of pairs of metrics if they were significantly correlated. To
quantify that trend, we computed a “probability” score for a given pair of metrics by considering the
number of datasets correlated significantly (p < 0.05) either positively (r > 0.3) or negatively (r <-0.3).
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We computed a ratio of number of positively or negatively correlated datasets (depending on the trend
seen) to the total number of datasets that showed a significant (p <0.05) association (irrespective of
the direction of association). The higher this ratio is, the better the concordance between these two
metrics in a given direction. We found that a) KS score vs. Mesenchymal, b) KS score vs. Epithelial
and c) Mesenchymal signature vs. Hallmark EMT signatures were most consistent with one another
in positive, negative and positive directions respectively (Fig 1C). When these probabilities were
further weighted by a fraction of significant cases out of all datasets considered, we saw that a) KS
score vs. Epithelial, b) 76 GS score vs. KS score and c) 76GS vs. Epithelial were most consistent with
each other in negative, negative and positive directions respectively, as expected (Fig 1D). KS score
vs. Mesenchymal and KS score vs. Hallmark EMT correlations also maintained their trends as seen
in earlier scenario (compare Fig 1D with Fig 1C). Put all together, these results show that the EMT
metrics considered here are highly consistent with one another in a majority of the datasets.
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Fig 1: Consistency between different EMT scoring metrics. (A) Volcano plots depicting the Pearson
correlation coefficient and the -logio(p-value) for 3 pairs of EMT scoring metrics — KS vs Hallmark EMT,
76GS vs epithelial and KS vs mesenchymal. Vertical boundaries are set at correlation coefficient -0.3 and
0.3. The cut-off for p-value is set at 0.05. (B) 4-way Venn diagram for comparison of 4 representative pairs
of EMT scoring metrics. (C) Probability of a dataset having a positive (blue) or a negative (red) correlation
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) for different pairs of EMT scoring
metrics. (D) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation
coefficient > 0.3) given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for
different pairs of EMT scoring metrics.
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OXPHOS is more likely to be negatively correlated with a mesenchymal program and
positively with an epithelial one

Having assessed the consistency of different EMT scoring metrics among themselves on a cohort of
datasets, we next wanted to understand how the different axes of metabolism associated with EMT
metrics. Oxidative phosphorylation is a predominant way by which cells generate energy for survival.
To study how the biological process of oxidative phosphorylation associates with different EMT
metrics, we correlated the ssGSEA activity scores calculated for the Hallmark oxidative
phosphorylation gene set with different EMT metrics.

Upon correlating the OXPHOS signature with the Hallmark EMT scores, we found that although there
were significant correlations both in the positive and negative directions, there were many more
datasets correlated negatively (56 vs. 24) with Hallmark EMT than were correlated positively (Fig 2A).
This overall observation is in accordance with many experimental studies that point towards a negative
association between oxidative phosphorylation and EMT [36—-39]. However, this relationship is not
exclusive, i.e. these quantities could be positively correlated in a variety of contexts, as reported in
other experimental studies [40—42]. Among all pairs of correlations between OXPHOS signature and
EMT metrics, the OXPHOS-Hallmark EMT pair showed the strongest propensity of negative
association with one another, given that the correlation was significant in either direction (Fig 2B).
Furthermore, the OXPHOS-Hallmark EMT pair was also the top scoring pair when weighted with the
fraction of significant cases (Fig 2C), further highlighting the finding that the acquisition of the
mesenchymal features was more likely to result in the decline in activity of the OXPHOS gene set.

Oxidative phosphorylation in cells has been reported to be positively regulated by AMPK activity levels
in cells. To assess AMPK activity, we considered a list of AMPK target genes that have been used as
a proxy for the activity of the phosphorylated active form of AMPK (see Methods). We find that the
AMPK signature is more likely to be positively correlated with epithelial signature (41 datasets showed
positive correlations vs. 12 showed negative correlations) (Fig 2D). However, the AMPK signature did
not show a strong skew towards being either positively or negatively correlated with the separate
mesenchymal signature (Fig 2E). Together, these trends could indicate towards the fact that the active
form of AMPK is likely more strongly correlated with the presence of an epithelial signature rather than
with the absence of a mesenchymal one, especially if we deconvolute EMT into two-dimensional
process where loss of epithelial traits and gain of mesenchymal traits can be at treated semi-
independently.

Quantifying the trends of association of the AMPK signature with various EMT metrics, we noticed that
the probability of positive correlation between AMPK and epithelial metrics (Epithelial signature, 76 GS
scores) was higher than that of a negative correlation between AMPK and mesenchymal ones (KS
score, Hallmark EMT, Mesenchymal signature) (Fig 2F). These observations suggest that AMPK is
strongly coupled with epithelial traits of cells, rather than with their mesenchymal ones. However, we
noticed OXPHOS is strongly negatively correlated with both Hallmark EMT signature as well as the
Mesenchymal signature (Fig 2A, 2B). This difference seen between trends of AMPK and OXPHOS
can be due to additional context-specific factors, apart from AMPK, that might also mediate the
crosstalk between EMT and OXPHOS [43], thus leading to an overall stronger negative association of
OXPHOS with the hallmark EMT program.
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Fig 2: OXPHOS is more likely to correlate negatively with EMT. (A) Volcano plots depicting the Pearson
correlation coefficient and the -logio(p-value) for hallmark OXPHOS and hallmark EMT signatures. (B)
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3)
given that it is significant (p-value < 0.05) for OXPHOS and different EMT scoring metrics. (C) Probability
of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) given that
it is significant (p-value < 0.05) weighted by the fraction of significant cases for OXPHOS and different EMT
scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -logio(p-value) for (D)
AMPK signature and epithelial signature, (E) AMPK signature and mesenchymal signature. (F) Probability
of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3) given that
itis significant (p-value < 0.05) weighted by the fraction of significant cases for AMPK signature and different
EMT scoring metrics. Vertical boundaries for volcano plots are set at correlation coefficient -0.3 and 0.3.
The cut-off for p-value is set at 0.05.

Glycolysis is more likely to be positively correlated with a (partial) EMT programme.

Next, we wanted to check how the glycolytic process was associated with the EMT programme in the
datasets we had considered. To assess this association, we correlated the enrichment (ssGSEA)
scores for hallmark EMT and hallmark glycolysis signatures, across our datasets. We observed that
glycolysis was more likely to be significantly positively correlated with EMT than being significantly
negatively correlated (66 vs. 13 respectively) (Fig 3A). One would therefore expect that glycolysis
should be negatively correlate with the epithelial programme or with the 76 GS EMT scoring metric that
assign epithelial samples a higher score. This is, however, not what we observed. Instead, glycolysis
was also found to be positively correlated with scoring metrics that report an enriched epithelial
program (Epithelial gene list, as well as 76 GS scores), to a comparable extent with which it correlated
with a mesenchymal program (Fig 3B). Similar trends are also seen when the association probability
values were further weighted by number of significant datasets in which a given trend was observed
(Fig 3C). Here, the association of glycolysis with Hallmark EMT programme was stronger, albeit not
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to a large degree, than that seen for the epithelial gene list and 76GS score, suggesting its putative
association with a partial EMT state and/or other context-specific factors not included in our analysis.

HIF1a is a known mediator of the glycolytic pathway [44] and in modulating the EMT status of cells
[45]. Thus, next we probed how the HIF1a signature associated with epithelial and mesenchymal
programmes. Intriguingly, we found that both the volcano plots showed a skew towards the positive
side (Fig 3D-E), suggesting that HIF1a activation may associate with a partial EMT state exhibiting
both epithelial and mesenchymal features [46]. It should be noted that in the case of mesenchymal
programme, the HIF1a signature was somewhat more strongly skewed towards to the positive side in
comparison to the positive skew present in the case of epithelial programme (47 out of 60 datasets
vs. 31 datasets out of 46 respectively) (Fig 3D-E). The positive association of Glycolysis as well as its
known regulator HIF1a with both the epithelial and mesenchymal axes may indicate that glycolysis is
a hallmark feature of hybrid E/M states. Recent observations about glycolysis accompanying collective
cell migration endorse this association of glycolytic shift in partial EMT state(s) [47,48]; however, how
metabolic heterogeneity maps on to leader-follower dynamic switching remains to be investigated in
more detail [49-51]. Nevertheless, stronger trends as measured by weighted probability scores for
HIF1a vs. Hallmark EMT and HIF1a vs. Mesenchymal compared to HIF1a vs. 76GS or HIF1a vs.
Epithelial indicates enrichment of HIF1a in being associated with a relatively more mesenchymal
phenotype (Fig 3F). The degree of coupling of gain of mesenchymal with loss of epithelial traits in a
given scenario [52] may play a key role in associating HIF1a with a partial or complete EMT.
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Fig 3: Glycolysis is more likely to correlate positively with EMT. (A) Volcano plots depicting the
Pearson correlation coefficient and the -logio(p-value) for hallmark glycolysis and hallmark EMT signatures.
(B) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient >
0.3) given that it is significant (p-value < 0.05) for glycolysis and different EMT scoring metrics. (C)
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3)
given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for glycolysis and
different EMT scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -log1o(p-
value) for (D) HIF1a signature and epithelial signature, (E) HIF1a signature and mesenchymal signature.
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(F) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient >
0.3) given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for HIF1a
signature and different EMT scoring metrics. Vertical boundaries for volcano plots are set at correlation
coefficient -0.3 and 0.3. The cut-off for p-value is set at 0.05.

FAO is more likely to positively correlate with an epithelial program and negatively with a
mesenchymal program

Fatty acid oxidation (FAO) is a catabolic process in which fatty acids are broken down and is another
key mechanism by which cancer cells can generate energy for survival [53]. Genes involved in fatty
acid oxidation have been characterised previously [53]. We used one such gene set as a proxy for the
activity of the FAO pathway in our datasets (see Methods). We found that as with OXPHOS, FAO
was most likely to be negatively correlated with the Hallmark EMT programme (52 significantly
negative vs. 11 significantly positive cases) (Fig 4A). The epithelial programme alone was more likely
to be correlated positively (37 positive vs. 17 negative) (Fig 4B) while the mesenchymal programme
alone was likely to correlate negatively (30 negative vs. 18 positive) (Fig 4C). These results show that
FAO more likely associates negatively with acquisition of a mesenchymal phenotype. Upon calculation
of the probability of positive/negative correlations given the correlation is significant as well as the
overall weighted probability, we observed that the mesenchymal metrics (hallmark EMT,
mesenchymal signature and KS) were all skewed towards the negative side, while the more epithelial
metrics (76GS and epithelial signature) were positively correlated with FAO (Fig 4D). These results
collectively show that while OXPHOS and FAO are more likely to be associated negatively with the
mesenchymal programme and the process of EMT, glycolysis is more likely to be positively associated
with the mesenchymal characteristics of cells. These associations, at least in part, are supported by
the activity of molecular regulators such as AMPK and HIF1a.
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Fig 4: Fatty acid oxidation is more likely to correlate negatively with EMT. (A) Volcano plots depicting
the Pearson correlation coefficient and the -logio(p-value) for fatty acid oxidation (FAO) and hallmark EMT
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signatures. (B) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation
coefficient > 0.3) given that it is significant (p-value < 0.05) for FAO and different EMT scoring metrics. (C)
Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient > 0.3)
given that it is significant (p-value < 0.05) weighted by the fraction of significant cases for FAO and different
EMT scoring metrics. Volcano plots depicting the Pearson correlation coefficient and the -log1o(p-value) for
(D) Probability of a dataset having a positive (blue) or a negative (red) correlation (correlation coefficient >
0.3) given that it is significant (p-value < 0.05) (top panel) and weighted by the fraction of significant cases
(bottom panel) for FAO signature and different EMT scoring metrics. Vertical boundaries for volcano plots
are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is set at 0.05.

Different modalities of association between pairs of metabolic pathways and EMT

After exploring the three major metabolic axes (OXPHOS, glycolysis and FAO) independently in terms
of their association with EMT, we wanted to investigate the pair wise associations between the
metabolic pathways in the context of EMT. For datasets under consideration, we first computed the
fractions of datasets that had none, one, two or all three axes of metabolism associated significantly
with the hallmark EMT signature (Fig 5A). Most datasets (~60%) had a maximum of one axis of
metabolism correlated with the Hallmark EMT programme (Fig 5A). In about 25% of the datasets,
hallmark EMT was not correlated with any of the metabolic axes, probably indicative of biological
scenarios where these metabolic axes are not coupled directly with the EMT spectrum. In the
remaining 40% of datasets, where two or more than two axes were significantly correlated with the
hallmark EMT signature, we investigated if certain combinations of associations were more likely than
others in context of their correlations with EMT. To answer this question, we first plotted all 45 datasets
that had significant correlations with the EMT axis and either OXPHOS or glycolysis (Fig 5B). Among
those, 21 (46.67%) datasets showed a positive correlation between glycolysis and hallmark EMT
programme, while OXPHOS was negatively correlated with the hallmark EMT programme (Fig 5B,
green box). This co-occurring association of OXPHOS and glycolysis with EMT in inverse directions
has been reported earlier experimentally [54,55].

However, this co-occurrence is not the only mode of association between these three axes. The next
most predominant modality of association is the scenario where both glycolysis and OXPHOS are
positively correlated with EMT — this trend is shown in 14 (31.11%) datasets (Fig 5B, red box). This
could be indicative of the EMT associating positively with a hybrid metabolic state in which both
OXPHOS and glycolysis are high [54]. The other two case — both OXPHOS and glycolysis correlating
negatively with EMT (Fig 5B, yellow box) and OXPHQOS being positively associated while glycolysis
being negatively associated (Fig 5B, blue box) — were 15.55% and 6.67% respectively. Collectively,
this analysis shows that besides predominant modalities of association between OXPHOS and
glycolysis in the context of EMT, other modalities also exist although less frequently.

Next, we wanted to explore how FAO and OXPHOS are associated with each other in the context of
their correlations with EMT. Upon plotting scatter plots, similar to what we had done for glycolysis and
OXPHOS, we find that only 3 quadrants are populated with different propensities (Fig 5C). The most
predominant modality was the scenario in which EMT was negatively correlated with both OXPHOS
and FAO in 30 (73.17%) datasets (Fig 5C, yellow box). In 7 (17.07%) datasets, OXPHOS and FAO
were both positively correlated with the hallmark EMT signature (Fig 5C, red box). In the remaining
four datasets, OXPHOS was positively correlated with EMT while FAO was significantly negatively
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correlated with EMT (Fig 5C, blue box). These results show that FAO and OXPHOS are more likely
to coordinated in a similar manner — either positively or negatively correlated to EMT.

Similarly, when we compared glycolysis with FAO, we found that the major modality of action was the
scenario where glycolysis was positively correlated with EMT while FAO was negatively correlated
with the EMT programme (Fig 5D, blue box). This association was observed in 25 (69.44%) datasets.
The other two observed modalities of regulation were the cases where both FAO and glycolysis were
both positively (Fig 5D, red box) or both negatively (Fig 5D, yellow box) correlated with EMT. Overall,
our analysis uncovers the different possibilities and propensities by which these three axes of
metabolism might associate with one another in terms of their connection with EMT.
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Fig 5: Varied associations between different metabolic axes with EMT. (A) Proportion of datasets that
have a given number of metabolic axis significantly correlated with the Hallmark EMT signature (p-value <
0.05). Scatter plot of correlation coefficients of (B) OXPHOS with EMT and glycolysis with EMT (C) hallmark
glycolysis with EMT and glycolysis with EMT (D) glycolysis with EMT and fatty acid oxidation with EMT.

Heterogeneity in associations between different axes of metabolism in relation to EMT is
also reflected in single cell RNA-seq data

Until now, our analysis was focused on bulk samples. We next examined whether there was evidence
for the observed heterogeneity of association of metabolic axes with EMT present in single-cell data
as well. To do so, we analysed single-cell data across different cell lines induced to undergo EMT by
TGF [56], to ask a) if there was a shift along any of the metabolic axis upon induction of EMT, and b)
whether the different modalities of associations were seen across different biological conditions. For
the cell line A549, as EMT was induced for 7 days, there was a distinct rise in the hallmark EMT scores
of the cells at day 7 compared to day 0 (Fig 6A). Concomitantly, there was a significant rise in the
levels of glycolysis and FAO, while there was a drop in the levels of OXPHOS (Fig 6A). In the case of
DU145 cells, as the hallmark EMT scores of cells increased at day 7 compared to day 0, a significant
increase in the level of glycolysis, but a significant shift towards reduced levels of OXPHOS as well as
FAO was noted, as expected from the most dominant trend seen in bulk datasets (Fig 6B). In the case
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of MCF7 cells, there was no significant change in glycolysis levels at day 0 and day 7. However, there
was significant drop in the levels of both OXPHOS and FAO (Fig 6C). These results demonstrate that
some level of heterogeneity in the modalities by which pairs of metabolic axes associate contingent
upon the biological context, in this case the cell line considered and extent to which EMT was induced.
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Fig 6: Metabolic signatures in single cells RNA-seq data upon EMT induction. Kernel density estimate
plots of hallmark EMT and metabolic signatures — glycolysis, OXPHOS and fatty acid oxidation — at day 0
(untreated) and day 7 (upon TGFf treatment) for different cell lines (A) A549 (B) DU145 (C) MCF7

Discussion

Metabolic reprogramming in cancer cells is a key step in the adaptation and survival of cancer cells in
the changing milieu of the tumour microenvironment. Metabolic reactions are more likely to act on a
smaller time scale compared to transcriptional and translational processes. This difference in time
scales makes metabolic remodelling an attractive mode for instantaneous adaptation for cancer cells.
However, changes to the metabolic programmes in cells also happens at a time scale longer than
such immediate adaptations. Long term changes in metabolic programmes can happen due to cross
talk with other dynamic biological process in cells. In the context of EMT, cells switch from an epithelial
to a more mesenchymal phenotype through multiple intermediate states, which facilitate metastasis.
Changes in cellular motility and stresses arising from new microenvironments during metastasis may
require more energy to adapt and survive and thus necessitate altered metabolism. Such metabolic
alterations that affect the overall energy balance in the cell ultimately determine its fitness. Thus, it is
not surprising that EMT and metabolism have been shown to influence one another [54,57].

In this study, we have focused on three major energy producing metabolic processes — glycolysis,
oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Cancer cells typically facilitate
glycolysis as their primary energy source, irrespective of the presence of oxygen [58]. This process is
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referred to as Warburg effect or aerobic glycolysis. Conversely, the role of oxidative phosphorylation
has also been observed to be important in cancer cells and cannot be ignored [59,60]. EMT induced
metabolic alterations have been an active field of research with the identification of numerous
mechanisms by which the metabolic state of cells is altered. Several EMT-inducing signals and EMT-
TFs have been shown to activate glycolysis [15,19,61]. Further, glycolysis has been shown to promote
EMT in turn, thus forming a positive feedback loop [62—-65]. In addition, several studies have shown
that EMT-TFs can also inhibit mitochondrial respiration and oxidative phosphorylation [66,67] . Thus,
EMT has been consistently shown to be associated with activation of glycolysis and inhibition of
OXPHOQOS, as also noted in scenarios of EMT induction [36]. However, in contrast to these studies,
other pieces of evidence suggest that cancer cells with activated EMT may also have increased levels
of OXPHOS in some cases [21,60]. Such conflicting findings [21,60] regarding glycolysis vs. OXPHOS
may be due to differing tumor microenvironments in these studies or due to differences in cell lines/
patient samples used. Another possible explanation is that cancer cells may exhibit a hybrid metabolic
phenotype [68] where both glycolysis and OXPHOS states may co-exist which allows high metabolic
adaptability.

Consistent with the existing literature, our analysis of more than 180 gene expression datasets reveals
that the process of EMT is more likely to be positively associated with the glycolytic process and
negatively with OXPHOS programme. We also report here that FAO is also likely to be negatively
associated with EMT progression, similar to OXPHOS. These broad trends are, however, not binding,
but rather probabilistic in nature given different biological contexts. In other words, the absence of a
universal rule indicates that cancer cells may favour glycolysis or oxidative metabolism depending on
factors present in the tumor microenvironment (TME) such as availability of glucose, hypoxia, reactive
oxygen species, etc. Such an ability to shift the metabolic balance dynamically may provide an
advantage amidst shifting energy demands inherent in an evolving TME. Upon analysis of pairs of
metabolic pathways in the context of their associations with EMT we observed that while glycolysis
and OXPHOS are more likely to be antagonistic in their associations with EMT, OXPHOS and FAO
were more likely to be both associated negatively with EMT. The other modalities of associations were
also observed albeit in lower propensities. The observed heterogeneities were also seen in single cell
RNA-seq data upon the induction of EMT.

Transcriptomic analysis of metabolic genes for given pathways, as done here, is one of the ways to
estimate the level of activity of a pathway and its corresponding associations with the EMT programme.
However, analysis of metabolomics data would give a more precise picture of the actual metabolic
state of cells. Furthermore, there is a need to better characterise the molecular players and associated
mechanisms that could allow for heterogeneity in the various modalities of associations between the
different metabolic pathways and if there exist feedback loops/networks that might allow a switch from
one modality of association to another. Identifying such mechanistic basis would be important to
develop this understanding for any therapeutic strategies. Based on the current study, we cannot
comment if the observed associations are likely to hold in the context of EMT induction only or also
hold in the context of mesenchymal to epithelial transition (MET). EMT/MET dynamics has been shown
to be hysteretic (non-symmetric) in nature [69—71]; whether that feature extends to metabolic
reprogramming remains to be seen.

Despite these limitations, our work sheds light upon underlying patterns in terms of metabolic plasticity
and heterogeneity along the epithelial-hybrid-mesenchymal spectrum in cancer cells. Understanding
this coupling between EMT/MET and metabolic plasticity will enable effective targeting of cells in
heterogeneous tumor populations.
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Materials and Methods
Software and Datasets

Python (version 3.6) and R (version 4.0.2) were used for conducting all computational and statistical
analyses. Microarray datasets were downloaded from NCBI GEO using GEOquery R Bioconductor
package. FASTQ files for RNA sequencing datasets were downloaded from the ENA (European
Nucleotide Archive) database. A complete list of datasets used, and the associated metadata has
been provided in Supplementary Table 1.

Pre-processing of Microarray datasets

Gene wise expression for each sample was obtained after appropriate pre-processing of microarray
datasets. Probe wise expression matrices downloaded using GEOquery were log2 normalised and
annotation files corresponding to microarray platforms were utilized for mapping the probes to
respective genes. In cases where more than one probe mapped on to a single gene, the mean of
expression values of all these probes was used for such genes.

Pre-processing of RNA-seq datasets

Adapter contamination and overall quality of sequences were inspected using FastQC. Sequences
were aligned with the hg38 human (or mm10 mouse) reference genome using the STAR alignment
software. Finally, the raw counts for each gene were calculated with these aligned sequences using
htseq-count. These raw counts were then normalised for gene length and transformed to TPM
(transcripts per million) values which were then log2 normalised to obtain the final values.

EMT scoring methods

EMT scores were calculated using five different methods for each dataset. Each method requires gene
expression data as input. Each method uses a distinct gene set or a distinct algorithm.

76GS: The 76-gene EMT scoring method (76GS) was developed using transcriptomic data from
NSCLC cell lines and patient samples [33,34]. As the name suggests, it utilizes 76 gene signatures.
The weighted sum of gene expression values of 76 genes was calculated for each sample, where the
weight factors are correlation coefficients with CDH1 levels. The values obtained through this method
have no specific range. EMT score for each sample was subtracted by the mean obtained from all
samples such that the resultant mean score was zero. As per this new scale, negative scores indicate
a M phenotype, and positive scores indicate an E phenotype.

KS: KS method uses the two-sample Kolmogorov Smirnov test (KS) to score EMT for cell lines and
tumor samples [35]. It uses 218 gene signatures for cell line samples and 315 gene signatures for
tumor samples. Briefly, cumulative distribution functions (CDFs) are obtained for each of the two
signatures (E and M) and the maximum distance between these CDFs is used as the test statistic for
a two-sample KS test to obtain the EMT scores. The final EMT scores lie in the range [-1, 1]. Positive
& negative scores represent mesenchymal and epithelial phenotypes respectively.

Hallmark EMT: This method uses the hallmark geneset for EMT available (Supplementary Table 2)
in the MSigDB [72] repository. For each sample, ssGSEA (single sample gene set enrichment
analysis) [73] analysis was performed using this geneset to obtain the normalized enrichment score
(NES). All calculations were done using the GSEAPY python library.
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Epithelial and Mesenchymal scores: These metrics use the KS epithelial and mesenchymal gene
signatures to quantify E & M status separately. A rank-based single sample scoring method called
Singscore [74] was used for quantifying the enrichment level of these gene sets in a given sample.
The final value obtained from this method has a range of [-1, 1]. For the epithelial score, a higher value
indicates a more epithelial phenotype. The mesenchymal score also operates in a similar manner.

Metabolic pathways scoring methods: ssGSEA scores were calculated using the hallmark oxidative
phosphorylation and glycolysis gene sets (MSigDB) to obtain OXPHOS and glycolysis signatures
respectively (Supplementary Table 2). AMPK and HIF-1 signatures were quantified using expression
levels of their downstream target genes as previously reported [68]. A total of 33 downstream genes
for AMPK and 23 downstream genes for HIF-1 were used. The final scores were obtained using the
Singscore method [74] performed on these gene sets. The FAO scores were calculated based on
equations previously reported [75] which uses expression levels of 14 FAO enzyme genes.
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Fig S1: Consistency between different EMT scoring metrics. Volcano plots depicting the Pearson
correlation coefficient and the -logio(p-value) for (A) Epithelial vs Hallmark EMT (B) KS vs Mesenchymal
(C) Epithelial vs Mesenchymal (D) Mesenchymal vs 76GS (E) KS vs Epithelial (F) Mesenchymal vs
Hallmark EMT. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is
set at 0.05.
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Fig S2: OXPHOS and its regulator AMPK is more likely to correlate negatively with EMT. Volcano
plots depicting the Pearson correlation coefficient and the -logo(p-value) for (A) OXPHOS vs 76GS (B)
OXPHOS vs KS (C) OXPHOS vs Epithelial (D) OXPHOS vs Mesenchymal (E) AMPK vs 76GS (F) AMPK
vs KS. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for p-value is set at
0.05.
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Fig S3: Glycolysis and its regulator HIF1a is more likely to correlate negatively with EMT. Volcano
plots depicting the Pearson correlation coefficient and the -log+o(p-value) for (A) Glycolysis vs KS (B)
Glycolysis vs 76GS (C) Glycolysis vs Epithelial (D) Glycolysis vs Mesenchymal (E) HIF1a vs 76GS (F)
HIF1a vs Hallmark EMT. Vertical boundaries are set at correlation coefficient -0.3 and 0.3. The cut-off for
p-value is set at 0.05.
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