

1 **Insights into standards of care – dexamethasone and antibodies against COVID-  
2 19 in hamster models**

3  
4 Emanuel Wyler<sup>1,\*,#</sup>, Julia M. Adler<sup>2,10,\*</sup>, Kathrin Eschke<sup>2</sup>, Gustavo Teixeira Alves<sup>1</sup>,  
5 Stefan Peidli<sup>3,4</sup>, Fabian Pott<sup>5,6</sup>, Julia Kazmierski<sup>5,6</sup>, Laura Michalick<sup>7</sup>, Olivia Kershaw<sup>8</sup>,  
6 Judith Bushe<sup>8</sup>, Sandro Andreotti<sup>9</sup>, Peter Pennitz<sup>10,11</sup>, Azza Abdelgawad<sup>2</sup>, Dylan  
7 Postmus<sup>5,6</sup>, Christine Goffinet<sup>5,6</sup>, Jakob Kreye<sup>12,13,14</sup>, S Momsen Reincke<sup>12,13</sup>, Harald  
8 Prüss<sup>12,13</sup>, Nils Blüthgen<sup>3,4</sup>, Achim D. Gruber<sup>8</sup>, Wolfgang M. Kuebler<sup>7</sup>, Martin  
9 Witzenrath<sup>10,11</sup>, Markus Landthaler<sup>1,4</sup>, Geraldine Nouailles<sup>10,\*,#</sup> and Jakob Trimpert<sup>2,\*,#</sup>

10  
11 <sup>1</sup> Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for  
12 Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.

13 <sup>2</sup> Institute of Virology, Freie Universität Berlin, Berlin, Germany.

14 <sup>3</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
15 and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.

16 <sup>4</sup> IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, Berlin,  
17 Germany.

18 <sup>5</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
19 and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany.

20 <sup>6</sup> Berlin Institute of Health (BIH), Berlin, Germany.

21 <sup>7</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
22 and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany.

23 <sup>8</sup> Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany.

24 <sup>9</sup> Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany.

25 <sup>10</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
26 and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin,  
27 Germany.

28 <sup>11</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
29 and Humboldt-Universität zu Berlin, Department of Infectious Diseases and  
30 Respiratory Medicine, Berlin, Germany.

31 <sup>12</sup> German Center for Neurodegenerative Diseases (DZNE) Berlin. Helmholtz  
32 Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab)

33 <sup>13</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
34 and Humboldt-Universität zu Berlin, Department of Neurology and Experimental  
35 Neurology, Berlin, Germany.

36 <sup>14</sup> Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin  
37 and Humboldt-Universität zu Berlin, Department of Pediatric Neurology, Berlin,  
38 Germany.

39 \*equal contribution, #corresponding authors

40

41 Corresponding authors:

42 Emanuel Wyler, [Emanuel.wyler@mdc-berlin.de](mailto:Emanuel.wyler@mdc-berlin.de), Hannoversche Str. 28, 10115 Berlin,  
43 Germany, Phone: + 49 30 9406 3009

44 Geraldine Nouailles, [geraldine.nouailles@charite.de](mailto:geraldine.nouailles@charite.de), Charitéplatz 1, 10117 Berlin,  
45 Germany, Phone: +49 30 450 553347

46 Jakob Trimpert, [trimpert.jakob@fu-berlin.de](mailto:trimpert.jakob@fu-berlin.de), Robert von Oertel-Str. 7 – 13, 14163  
47 Berlin, Germany, Phone: +49 30 838 65028

48

#### 49 **Author contributions**

50 JMA, KE, GT, LM, FP, JuK, DP, OK, AA, JH, PP, GN, JT performed experiments,  
51 analysed and interpreted data. EW, SP, DP performed bioinformatical analysis,  
52 analysed and interpreted data. SP performed RNA velocity analysis and interpreted  
53 data. SA, EW, ML annotated the dwarf hamster genome. EW, JMA, GN and JT  
54 designed experiments. JT designed the study. CG, ADG, NB, WMK, MW, ML  
55 discussed and interpreted data and provided resources. JaK, SMR, HP produced,  
56 characterized, and provided anti-SARS-CoV2 monoclonal antibody.

57

#### 58 **Sources of support**

59 The authors thank Daniela Niemeyer and Christian Drosten for providing SARS-CoV-  
60 2 isolate (BetaCoV/Germany/BavPat1/2020). The mAb CV07-209 used in this study  
61 was kindly provided by Miltenyi Biotech. This research was funded by the Deutsche  
62 Forschungsgemeinschaft (DFG, German Research Foundation) – (SFB TR84; sub-  
63 project Z01b to J.T. and A.D.G.) and PR1274/3-1, PR1274/5-1 to H.P., by the  
64 Helmholtz Association (HIL-A03 to H.P.) and the BMBF (Connect-Generate  
65 01GM1908D to H.P.). G.N., and M.W. are supported by the BMBF and by the Agence  
66 nationale de la recherche (ANR) in the framework of MAPVAP (16GW0247). A.D.G. is

67 supported by BMBF (NUM-COVID 19, Organo-Strat 01KX2021) and Einstein  
68 Foundation 3R (EZ-2020-597 FU). C.G. is supported by BMBF (NUM-COVID 19,  
69 Organo-Strat 01KX2021) and BIH. W.M.K. is supported by the Deutsche  
70 Forschungsgemeinschaft (DFG, German Research Foundation) – (SFB 1449 –  
71 431232613, sub-project B01; SFB-TR84 A02 and C09, SFB 1470 subproject A04,  
72 KU1218/9-1 and KU1218/11-1), by the BMBF in the framework of PROVID  
73 (01KI20160A) and e:Med SYMPATH (01ZX1906A) and by the German Centre for  
74 Cardiovascular Research partner site Berlin. M.W. is supported by the Deutsche  
75 Forschungsgemeinschaft (DFG, German Research Foundation) – (SFB 1449 –  
76 431232613; sub-project B02 and SFB-TR84 C06 and C09), by the BMBF in the  
77 framework of e:Med CAPSyS (01ZX1604B), PROVID (01KI20160A), e:Med  
78 SYMPATH (01ZX1906A), NUM-NAPKON (01KX2021) and by the BIH (CM-COVID).  
79 SP is supported by DFG RTG CompCancer (grant GRK2424/1). SP and NB are  
80 supported by the Stiftung Charite-Einstein BIH Visiting Fellow Program.

81

82 Short running head: COVID-19 therapy with mAb and Dex in hamsters

83

84 Descriptor number: 10.14 Pneumonia: Viral Infections

85

## 86 **At a glance commentary**

87 Our study illuminates the mechanism of action of two widely used COVID-19  
88 treatments, anti-viral monoclonal antibodies and dexamethasone. Using single-cell  
89 RNA sequencing, we provide insights into therapeutic effects observed in two animal  
90 models on a single-cell transcriptome level, and reveal benefits of a combinatorial  
91 treatment approach.

92

## 93 **Online supplement statement**

94 This article has an online data supplement, which is accessible from this issue's table  
95 of content online at ...

96

97 **Abstract**

98 **Rationale:** In face of the ongoing SARS-CoV-2 pandemic, effective and well-  
99 understood treatment options are still scarce. While vaccines have proven instrumental  
100 in fighting SARS-CoV-2, their efficacy is challenged by vaccine hesitancy, novel  
101 variants and short-lasting immunity. Therefore, understanding and optimization of  
102 therapeutic options remains essential.

103 **Objectives:** We aimed at generating a deeper understanding on how currently used  
104 drugs, specifically dexamethasone and anti-SARS-CoV-2 antibodies, affect SARS-  
105 CoV-2 infection and host responses. Possible synergistic effects of both substances  
106 are investigated to evaluate combinatorial treatments.

107 **Methods:** By using two COVID-19 hamster models, pulmonary immune responses  
108 were analyzed to characterize effects of treatment with either dexamethasone, anti-  
109 SARS-CoV-2 spike monoclonal antibody or a combination of both. scRNA sequencing  
110 was employed to reveal transcriptional response to treatment on a single cell level.

111 **Measurements and main results:** Dexamethasone treatment resulted in similar or  
112 increased viral loads compared to controls. Anti-SARS-CoV-2 antibody treatment  
113 alone or combined with dexamethasone successfully reduced pulmonary viral burden.  
114 Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant  
115 disease in a severe COVID-19-like disease model. Combination therapy showed  
116 additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-  
117 cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into  
118 lungs upon dexamethasone treatment and identified a candidate subpopulation of  
119 neutrophils specifically responsive to dexamethasone.

120 **Conclusions:** Our analyses i) confirm the anti-inflammatory properties and indicate  
121 possible modes of action for dexamethasone, ii) validate anti-viral effects of anti-  
122 SARS-CoV-2 antibody treatment, and iii) reveal synergistic effects of a combination  
123 therapy and can thus inform more effective COVID-19 therapies.

124

125 Key words: COVID-19 treatment, dexamethasone, antibody, monoclonal antibody  
126 therapy

127

128 **Introduction**

129 A novel coronavirus (CoV), severe acute respiratory distress syndrome CoV-2 (SARS-  
130 CoV-2) emerged in December 2019 in Wuhan, China and evolved rapidly into an  
131 ongoing pandemic (1). While development of vaccines was successful, there is still a  
132 lack of approved, effective and well-understood CoV disease 2019 (COVID-19)  
133 treatments (2, 3).

134 To devise successful host-directed therapeutic strategies, understanding of COVID-19  
135 pathogenesis is required. For COVID-19 patients, virus-triggered exuberant cytokine  
136 release and associated tissue damage play a crucial role in disease severity, e. g.  
137 elevated levels of pro-inflammatory cytokines as well as loss of effector T-cells were  
138 associated with fatal outcomes (4-7). Despite growing knowledge regarding the  
139 mechanisms of severe disease, very few treatment options are available, so that the  
140 use of corticosteroids, specifically dexamethasone, remains the treatment of choice for  
141 many critically ill patients.

142 Initially, use of corticosteroids was not recommended in treatment guidelines due to  
143 their broadly immunosuppressive action (8-10). Evidently, glucocorticoid treatment can  
144 result in impaired virus clearance (11). Nevertheless, in the RECOVERY trial, clinical  
145 application of dexamethasone yielded positive effects, especially for COVID-19  
146 patients requiring oxygen therapy (12). Although corticosteroids are now used routinely  
147 to treat critically-ill COVID-19 patients, putative hazards for mild to moderate COVID-  
148 19 patients as well as mechanisms underlying its protective efficacy in severe COVID-  
149 19 remain obscure and only begin to be investigated in greater depth (13).

150 Since the development of small molecule inhibitors of virus replication is all but trivial,  
151 passive immunization using monoclonal antibodies (mAb) became an important  
152 approach to COVID-19 therapy relatively early in the pandemic. SARS-CoV-2 cell entry  
153 inhibition by mAb targeting the receptor-binding domain (RBD) of the spike protein  
154 revealed high effectiveness (14). Various anti-SARS-CoV-2 antibodies have been  
155 developed and are currently tested in *in-vivo* models or in clinical trials (15-17). The  
156 first approved anti-SARS-CoV-2 mAb is REGN-COV2 a combination of the mAbs  
157 casirivimab and imdevimab. Effectiveness depends on timing of therapy, as application  
158 early in disease can prevent patient hospitalization. Early therapy or prophylaxis  
159 reduces virus titers in the respiratory tract and consequently the risk of severe disease  
160 progression (18, 19). The therapeutic activity of mAbs depends critically on the  
161 presence of their binding sites in currently circulating virus variants (20).

162 Dexamethasone, in contrast, acts non-specifically on the hosts' immune response and  
163 is less likely to lose therapeutic power to new variants if induced immune responses  
164 remain similarly pathogenic. To date, detailed understanding of the mechanisms  
165 behind the action of these two standard treatments is still not fully developed. To fill  
166 this knowledge gap, we examined the therapeutic effects of dexamethasone and  
167 monoclonal anti-SARS-CoV-2 antibody treatment as well as their potential as  
168 synergistic combinatorial therapy in hamster models of moderate and severe COVID-  
169 19 using single-cell and bulk transcriptome-based analyses.

170

## 171 **Methods**

172 An online Supplement is provided giving more details on the here described methods.  
173

## 174 **Ethics statement and COVID-19 hamster models**

175 Experiments including female and male hamsters (*Mesocricetus auratus*; breed  
176 RjHan:AURA, JanvierLabs, France) and Roborovski hamster (*Phodopus roborovskii*,  
177 via German pet trade) were approved and executed in compliance with all applicable  
178 regulations (permit number 0086/20). SARS-CoV-2 preparation (21) and infection of  
179 hamsters were carried out as previously described (22, 23). Treatments were applied  
180 as single i.p. treatment with 30 mg/kg mAb as previously described (16) and daily i.m.  
181 treatment with 2 mg/kg dexamethasone in the respective groups. Hamsters were  
182 monitored daily until they reached scheduled take-out time points or defined humane  
183 endpoints. Virus titers and RNA copies were determined by plaque assay and  
184 quantitative RT-PCR analysis as previously described (22).

185

## 186 **Histopathology and *in situ*-hybridization of SARS-CoV-2 RNA**

187 For histopathology and *in situ*-hybridization (ISH), lungs were processed, and tissues  
188 evaluated by board-certified veterinary pathologists in a blinded fashion following  
189 standardized recommendations, including pneumonia-specific scoring parameters as  
190 described previously (24).

191

192 **Annotations of the *M. auratus* and *P. roborowskii* genome**

193 The *M. auratus* genome was derived from Ensembl and modified as previously  
194 described (25). The detailed description of the *de-novo* gene assembly of the  
195 Roborovski hamster genome was deposited on a pre-print server (26).

196

197 **Bulk RNA analysis**

198 For RNA-Bulk Sequencing of both hamster species, the right medial lung lobe was  
199 removed and RNA isolated using Trizol reagent according to the manufacturer's  
200 instructions. Bulk RNA sequencing libraries were constructed using the Nebnext Ultra  
201 II Directional RNA Library Prep Kit (New England Biolabs) and sequenced on a  
202 Nextseq 500 or Novaseq 6000 device. Reads were aligned to the genome using hisat2  
203 (27) and gene expression quantified using quasR (27).

204

205 **Single-cell-RNA-Sequencing**

206 To enable scRNA-Seq, cells were isolated from Roborovski hamsters' caudal lung lobe  
207 as previously described (25). 1,000,000 lung cells per sample were subjected to CMO  
208 labeling according to manufacturers' instructions (3'-CellPlex-Kit-Set-A, 10x  
209 Genomics). Labelled cells from 12 samples were pooled, filtered and counted. Pooled  
210 cells were adjusted to a final concentration of ~1,600 cells /  $\mu$ L, and 197,760 cells were  
211 split into four equal pools and subjected to partitioning into Gel-Beads-in-Emulsions  
212 with the aim of recovering a maximum of 120,000 single cells from four lanes by  
213 following the instructions of Chromium-Next-GEM-Single-Cell-3'-Reagent-Kits-v3.1  
214 (Dual Index) provided by the manufacturer (10x Genomics). Library sequencing was  
215 performed on a Novaseq 6000 device (Illumina), with SP4 flow cells (read1: 28  
216 nucleotides, read2: 150 nucleotides). Sequencing of one of four libraries failed.

217

218 **Analysis of single-cell-RNA-Sequencing data**

219 Analysis of the single-cell data was based on Seurat (28). Raw and processed data is  
220 available through GEO at  
221 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE191080>, code through  
222 Github at <https://github.com/Berlin-Hamster-Single-Cell-Consortium/Dwarf-Hamster-Dexamethasone-Antibody>. Details on single cell analysis and RNA velocity analysis  
223 can be found in the online Supplement.

225 **Results**

226 *Dexamethasone treatment prevents severe disease, while monoclonal antibodies*  
227 *decrease viral burden.*

228 Following SARS-CoV-2 infection, Syrian hamsters lost body weight. Irrespective of  
229 treatment, Syrian hamsters failed to show significant differences in body weight  
230 development nor did they present with severe signs of disease (Figure 1A, B). Titors  
231 of replication competent virus of all hamsters receiving mAb or combination treatment  
232 was below the detectable level at all sampling time points. The use of dexamethasone  
233 alone significantly increased viral titers in the lungs of Syrian hamsters and delayed  
234 viral clearance with moderately increased titers on day 5 and sustained increased titers  
235 7 days post infection (dpi) (Figure 1C). This effect was also evident in virus gRNA  
236 levels in the lungs (Figure 1D), but not in the upper respiratory tract (Figure 1E), which  
237 is the common site of sampling in patients.

238 Contrary to Syrian hamsters, Roborovski hamsters which develop fulminant disease  
239 early after infection (23) displayed marked differences in clinical parameters in  
240 response to specific treatments. Specifically, both dexamethasone alone and in  
241 combination with mAb protected Roborovski hamsters from severe disease  
242 progression. By contrast, hamsters assigned to mAb treatment (2/6 on 2 dpi) and  
243 animals receiving mock treatment (2/6 on 2 dpi or 3 dpi) had to be euthanized prior to  
244 the terminal time point as they reached human endpoint criteria (Figure 1F). Hamsters  
245 that developed severe disease in respective groups presented with drastic drops in  
246 body temperature at 2 dpi (Figure 1G). Until the end of the experiment, body weights  
247 in the dexamethasone treated groups remained stable, animals in the mAb treatment  
248 group recovered from initial weight losses, while mock treated animals continued to  
249 lose weight throughout the experiment (Figure 1H). Similar to Syrian hamsters, the  
250 viral load in the lungs of Roborovski hamsters treated with either mAb or combinatorial  
251 therapy was below the detectable level at all regular sampling days. Only Roborovski  
252 hamsters that had to be terminated at 2 dpi showed high titers of replication competent  
253 virus despite mAb treatment (Figure 1I). In contrast to the results obtained from Syrian  
254 hamsters, no boost of viral replication was observed in the dexamethasone treated  
255 group of Roborovski hamsters compared to mock treated animals. This result was  
256 evident for all time-points, on both replicating virus and virus gRNA level in the lungs  
257 as well as in the upper respiratory tract (Figure 1J, K).

258

259 *Dexamethasone restricts the inflammatory response*

260 Dexamethasone is a useful drug to treat severe COVID-19 patients (12). To better  
261 characterize effects on local pathomechanisms, we performed lung histopathology  
262 upon dexamethasone, mAb and combinatorial therapy against SARS-CoV-2 in models  
263 of moderate (Syrian hamster) and severe (Roborovski hamster) COVID-19 (Figure 2A  
264 – F).

265 Lung histology indicated that in both Syrian (Figure 2A) and Roborovski hamsters  
266 (Figure 2B) dexamethasone and combination treatment markedly reduced immune cell  
267 infiltrates over time (Figure E1). Inflammation and bronchitis scores were reduced at  
268 from 5 dpi on in all groups receiving dexamethasone, which corresponds to 3 or 4 days  
269 post treatment start for Syrian and Roborovski hamster, respectively (Figure 2C – F).  
270 mAb treatment alone reduced pneumonia, however, to a lesser extent as compared to  
271 dexamethasone (Figures 2A – F, E1).

272 Next, we investigated how anti-viral and inflammatory transcriptional responses were  
273 influenced by treatment in Syrian (Figure 2G, E2A) and Roborovski hamsters (Figure  
274 2H, E2B) over time. Therefore, we analysed previously established viral infection  
275 related gene sets, *response to type I interferon (IFN)* and *interferon-gamma (IFN-γ)*  
276 (25, 29). In Syrian hamsters, the amplitude of the *type I IFN response* genes decreased  
277 from 5 to 7 dpi in the absence of treatment (Figure 2G, E2A). mAb treatment alone or  
278 in combination with dexamethasone led to further reduction in gene expression of the  
279 *type I IFN response* genes. In contrast, *IFN-γ response* set genes decreased more  
280 upon dexamethasone compared to mAb treatment (Figure 2G, E2A). Similar effects  
281 were observed in Roborovski hamsters (Figure 2H, E2B). The combination treatment  
282 led to a strong reduction of both gene sets, independent of hamster species (Figure  
283 2G,H).

284 Taken together, treatment related improvement in clinical parameters and  
285 histopathology correlated with substantially altered gene expression profiles in general,  
286 and a reduced expression of the *response to IFN-γ* gene set following dexamethasone  
287 treatment specifically.

288

289 *Dexamethasone reduces influx of immune cells and stabilizes endothelial cells*

290 As described above, both mAb and dexamethasone treatment, and in particular their  
291 combination, attenuated inflammatory aspects of pneumonia following SARS-CoV-2

292 infection, thereby rescuing Roborovski hamsters from an otherwise fatal disease  
293 course.

294 In order to investigate cellular mechanisms underlying these treatment effects, we next  
295 performed pulmonary scRNA-seq of Roborovski hamsters for all treatment groups at  
296 3 dpi. First, we evaluated the absolute content and composition of cell types by  
297 measuring total cell counts of the dissociated tissue (Figure 3A) and relative cell type  
298 distribution from scRNA-seq data (Figure 3B–D, E3A–J). Lungs from dexamethasone  
299 (alone or in combination with mAb) treated hamsters yielded significantly lower total  
300 cell counts (Figure 3A). This reduction likely originated from reduced infection-triggered  
301 pulmonary immune cell immigration. NK cell numbers were significantly lower in  
302 dexamethasone treated groups compared to mock and mAb treated hamsters;  
303 similarly, neutrophil, monocytic macrophage, *Trem1*<sup>4+</sup> monocyte, T and B cell showed  
304 reduced numbers in hamsters receiving dexamethasone, although the difference was  
305 not statistically significant (Figure 3B, C). Notably, endothelial cells had significantly  
306 higher counts in groups treated with a combination therapy of dexamethasone and  
307 mAb (Figure 3D) as compared to mock treated animals. Higher endothelial cell counts  
308 were likely caused by mechanisms governing endothelial protection, rather than cell  
309 proliferation, since increased *Mki67* and *Top2* expression was not detectable in  
310 endothelial cells (Figure E3K). The notion of endothelial protection was supported by  
311 histopathological analyses showing reduced edema formation and reduced  
312 endothelialitis in dexamethasone treated groups (Figure 3E, F upper panel), thus  
313 replicating findings in patients (30). Histopathological analyses likewise confirmed  
314 reduction of recruited immune cells following single dexamethasone treatment alone,  
315 and in combination with mAb (Figure 3F). In contrast to mAb treatment alone,  
316 dexamethasone therefore largely reduced recruitment of immune cells.

317

318

319 *Neutrophils and monocytic macrophages exhibit strong responses to dexamethasone*  
320 Dexamethasone directly impairs transcription of NF- $\kappa$ B target genes via Rela/p65 and  
321 Crebbp/CBP (31). In order to assess the effect of dexamethasone treatment, known  
322 target genes of the glucocorticoid receptor, the *coagulation cascade factor F13a1* (32),  
323 the plasma apolipoprotein *serum amyloid a-3 protein (Saa3)* (33), and *Dusp1/MKP-1*,  
324 an inhibitor of the MAP kinase pathways (34), were investigated (Figure E4A-C).  
325 Neutrophils and macrophages, particularly monocytic macrophages, from  
326 dexamethasone treated groups, showed strong increase in target gene expression,  
327 *F13a1*, *Dusp1*, and *Saa3* (Figure E4A – C).  
328 For an unbiased view of the data, we selected all genes that were at least four-fold  
329 upregulated in all cell types (Figure 4A). Again, monocytic macrophages and  
330 neutrophils stood out with several upregulated genes, including *Saa3* and *F13a1* as  
331 mentioned above. We identified a dexamethasone-induced transcriptional program  
332 common to several cell types, whereas some genes, for example *Gal* (coding for  
333 galanin and galanin message-associated peptides) in endothelial cells were cell-type  
334 specific. In contrast, tissue cells, including endothelial cells, alveolar epithelial cell type  
335 2 (AT2) or smooth muscle cells did not show substantial upregulation of gene  
336 expression in response to dexamethasone alone (Figure 4A). Notably, the mRNA of  
337 the glucocorticoid receptor, encoded by the *Nr3c1* gene, is ubiquitously present in both  
338 Roborovski hamsters and Syrian hamsters, and not modulated by SARS-CoV-2  
339 infection or the employed treatments (Figure E4D).  
340 Next, we asked which disease-relevant changes in gene expression were influenced  
341 by treatment in different cell types. We therefore assessed changes in gene expression  
342 between treatments for each cell type in an unbiased manner (Figure E4E). We noticed  
343 consistent downregulation of a group of interferon-induced genes (ISGs) such as  
344 *Ifit2/3*, *Ifi27*, *Ifi209* in animals treated with mAb alone or in combination with  
345 dexamethasone, but not with dexamethasone alone. Conversely, some genes, such  
346 as *Tnfsf10* (coding for the pro-inflammatory cytokine Trail) in neutrophils were more  
347 reduced in dexamethasone treated compared to mAb treated animals.  
348 In order to understand the changes in gene expression patterns caused by these  
349 treatments, we defined, based on our Syrian hamster scRNA-seq data (25), two groups  
350 of gene sets. The first was viral PAMP dependent (identified as “NF- $\kappa$ B-dependent”),  
351 the second induced by the infection in general (“interferon-dependent”) (Figure E4F).  
352 Whereas the “interferon-dependent” gene expression was reduced more by mAb

353 compared to dexamethasone treatment, for the “NF- $\kappa$ B-dependent” gene set we in  
354 tendency observed the opposite (Figure 4B). We scrutinized this effect in detail in  
355 monocytic macrophages and neutrophils, and found that in neutrophils, the NF- $\kappa$ B-  
356 driven cytokine genes *Cxcl10* and *Tnfsf10* are particularly decreased by  
357 dexamethasone, whereas the ISG *Mx2* was specifically diminished by mAb treatment  
358 (Figure 4C). For all genes, the combination treatment showed an additive effect (Figure  
359 4).

360 Overall, these data suggest that the reduced viral load in mAb-treated animals leads  
361 to a generally reduced antiviral/type 1 interferon signal, whereas dexamethasone  
362 treatment downregulates specific genes in some cell types, such as the pro-  
363 inflammatory cytokines *Tnfsf10* and *Cxcl10* in neutrophils, thereby attenuating classic  
364 features of pneumonia in animals receiving dexamethasone.

365

366 *Dexamethasone alters the neutrophilic response to SARS-CoV-2 infection*

367 Given that neutrophils are critical drivers of immune pathology and showed a  
368 particularly strong reactivity to dexamethasone treatment, we investigated this cell type  
369 in greater detail. For this, we sub-clustered the neutrophil population into 11  
370 subpopulations (Figure 5A).

371 In order to understand the transcriptional dynamics within neutrophils and the influence  
372 of the treatments used here, we performed an RNA velocity analysis which can predict  
373 the future state of individual cells (35, 36). This showed a transcriptional trend towards  
374 the cluster on the bottom of the projection (cluster 6 in Figure 5A), which also showed  
375 a particularly high viral RNA content (Figure 5B, E5A). Importantly, cell density in that  
376 cluster decreased upon dexamethasone treatment (Figure 5C, E5B).

377 Among the genes that were particularly prominent in cluster 6 were the cytokines and  
378 macrophage and lymphocyte attractants *Csf1* and *Ccl3* (37, 38) (Figure E5C). We  
379 therefore plotted the expression of these two genes along with the ISG/NF- $\kappa$ B targets  
380 *Mx2/Tnfsf10/Cxcl10*, which showed that neutrophils in cluster 6 express *Csf1* and *Ccl3*  
381 at particularly high levels (Figure 5D), in the same time, these cells become less  
382 abundant upon dexamethasone and particularly combination treatment (Figure 5E).  
383 Concomitantly, by histopathology analysis, we observed less neutrophils in the  
384 dexamethasone treated groups (Figure 5F). Of note, cells expressing mRNAs of  
385 receptors (*Csf1r*, *Ccr1*, *Ccr4*, and *Ccr5*) corresponding to cytokines *Csf1* and *Ccl3* were  
386 less abundant in the lungs upon dexamethasone treatment (Figure E5D, compare with

387 Figure 3B and E3B). In addition, neutrophil-cluster 6 showed particularly low and high  
388 expression of *Il1r2* and *Isg20* (Figure E5E), respectively, thereby recapitulating the  
389 phenotypes seen for immunosuppressive and IFN<sup>active</sup> neutrophils in the peripheral  
390 blood of COVID-19 patients (13).

391 To generalize the observation of this transcriptional dynamic, we applied diffusion map  
392 analysis of neutrophils to identify their most prominent direction of variation (39, 40)  
393 (Figure E5F). For each treatment, we show the neutrophil density along the diffusion  
394 axis (Figure E5G, upper part), which we defined as the first non-trivial component of  
395 the diffusion map. The directional progression towards the right on this axis (which is  
396 the same cellular state represented as neutrophil-cluster 6 above) is present in all  
397 conditions, as shown by the average RNA velocity projected onto the diffusion axis  
398 (Figure E5G, lower part). However, most neutrophils derived from hamsters treated  
399 with dexamethasone or combinatorial treatment are found at the leftmost part of the  
400 axis, whereas neutrophils from hamsters with mAb and mock treatment are split into a  
401 left and right part, confirming that with dexamethasone treatment an otherwise  
402 directional progression of neutrophils is limited. In order to relate the diffusion axis to  
403 biological effects, we scored hallmark signatures (41) for every neutrophil and linearly  
404 correlated each hallmark with the diffusion axis (Figure E5H, upper part). In addition,  
405 we correlated the expression profiles of each gene with the diffusion axis (Figure E5H,  
406 lower part). These correlations revealed that the drive towards neutrophil-cluster 6  
407 marked by high expression of *Csf1* and *Ccl3* and elevated amounts of viral RNA is  
408 accompanied by an increase of interferon/inflammatory response gene expression  
409 (such as *Isg15* or *Cd274*), and a decrease in the levels of classical neutrophil marker  
410 genes such as *S100a8/9* or *Pglyrp1*. Dexamethasone limits this dynamic, effectively  
411 keeping the neutrophils in a stationary transcriptomic state at the left part of the  
412 diffusion axis. As we will discuss in detail, this stagnation could be a reason for the  
413 reduced production of lymphocyte attractants and consequently, the reduction of lung  
414 infiltrates.

415

## 416 **Discussion**

417 In this study, we examined the effects of separate and combined anti-viral and anti-  
418 inflammatory treatments for COVID-19 in two hamster models reflecting a moderate  
419 (Syrian hamster) and severe (Roborovski hamster) disease course, respectively. Using  
420 histopathology and bulk and single-cell transcriptomic analysis of hamsters subjected

421 to dexamethasone, monoclonal antibody, and combination treatment, we demonstrate  
422 treatment efficacy, and identified a subset of neutrophils that express  
423 macrophage/lymphocyte attracting cytokines and can be impeded by dexamethasone.  
424 The use of dexamethasone caused a boost of virus replication and a significant delay  
425 of viral clearance in Syrian hamsters, albeit without significantly worsening the clinical  
426 course of disease. In the light of existing literature on the enhanced replication of  
427 respiratory viruses upon dexamethasone treatment (42), and data that overall shows  
428 a tendency towards a boost of SARS-CoV-2 replication in dexamethasone treated  
429 patients (11, 43-45), this result is not unexpected and may imply a risk for increased  
430 and/or prolonged transmissibility. Still, dexamethasone exerted the expected anti-  
431 inflammatory effects and attenuated inflammatory lung injury. As previously reported  
432 (16), the mAb CV07-209 employed in this study effectively abolished virus replication  
433 within 48 hours of treatment. At the dose applied here, the mAb inhibited the boost of  
434 virus replication after dexamethasone treatment. This suggests that a combination of  
435 dexamethasone and mAb may present an effective way to reduce inflammation and at  
436 the same time suppress virus replication, limiting the risk of viral transmission. This  
437 would advocate for the use of a combination therapy in patients at risk of severe  
438 disease relatively early when active virus replication is still ongoing, and before lung  
439 injury or COVID-19 triggered fibrosis (46) develop. Interestingly, the use of  
440 dexamethasone in the Roborovski hamster, a species highly susceptible to severe  
441 COVID-19-like disease, did not boost virus replication at any of the examined time  
442 points. One possible explanation could be that the virus-restrictive immunity targeted  
443 by dexamethasone in Syrian hamsters is dysregulated in Roborovski hamsters, and  
444 consequently its inhibition has no impact on viral control.

445 Treatment of SARS-CoV-2 infected hamsters with dexamethasone reduced the extent  
446 of lung infiltrates, comparable to what can be observed in CT-scans of human COVID-  
447 19 patients (47). In the single-cell RNA-seq analysis, this effect was evident as reduced  
448 abundance of infiltrating leukocytes and lymphocytes. In an unbiased comparison of  
449 gene expression patterns in the different lung cell types, we found that neutrophils are  
450 particularly affected by dexamethasone treatment. A detailed analysis showed that  
451 upon SARS-CoV-2 infection, neutrophils move towards a state with high expression of  
452 the cytokines *Csf1* and *Ccl3*, and that this movement is impaired by dexamethasone.  
453 Furthermore, the receptors of the two cytokines are expressed on a range of cell types  
454 that become less abundant in the lungs upon dexamethasone treatment. This together

455 suggests a mechanistic link underlying the protective effect, through reduction of lung  
456 infiltrates, by dexamethasone. These results are in line with the key role of neutrophils  
457 in COVID-19 pathogenesis (48), and corroborate recent findings highlighting the effect  
458 of dexamethasone on neutrophils in peripheral blood (13). Although neutrophils in  
459 blood and lung might not be directly comparable, the observation by Sinha and  
460 colleagues, a neutrophil “IFNactive” program restrained by dexamethasone, was  
461 similarly observed in the present study.

462 In addition to its effects on PMN, dexamethasone treatment exerted protective effects  
463 on the endothelium of SARS-CoV-2 infected hamsters, likely by reducing endothelial  
464 injury caused by cytotoxic immunity and bystander effects conveyed by the pro-  
465 inflammatory program executed by highly stimulated immune cells. As a secondary  
466 effect, the expression of inflammatory mediators by endothelial cells could also be  
467 reduced. Of clinical relevance, endothelial protection will reduce the development of  
468 lung edema and micro-thrombosis and may thus contribute to improved gas-exchange  
469 in dexamethasone treated patients.

470 Care should be taken not to transfer findings from animals uncritically to patients. Yet,  
471 it should be noted that we and others recently demonstrated comparability between  
472 immunological responses and pulmonary phenotypes in hamsters and humans in  
473 response to SARS-CoV-2 infection (25, 49, 50). That notwithstanding, future studies  
474 should ideally compare patient data to the findings reported here with the obvious  
475 constraint of limitations in the availability of corresponding human biomaterial.

476 In summary, we found that broadly active anti-inflammatory and immunosuppressive  
477 agents such as dexamethasone may have a strong benefit in SARS-CoV-2 infection  
478 at high risk for severe disease when applied before the onset of severe illness,  
479 particularly when combined with an anti-viral agent. A recent analysis showed that  
480 COVID-19-related ARDS patients can be classified into hypo- and hyperinflammatory  
481 types, with corticosteroid treatment being beneficial only for the latter (51). Animal  
482 models as the ones described here can help to better dissect causes and types of  
483 COVID-19 lung pathologies, and thus help to improve therapeutic strategies.

484

## 485 **Acknowledgement**

486 Computation has been performed on the HPC for Research cluster of the Berlin  
487 Institute of Health and the max cluster of the Max Delbrück Center. The authors thank  
488 Angela Linke, Michaela Scholz, and Simon Dökel for excellent technical assistance

489 with histopathology and ISH, and Jeannine Wilde, Madlen Sohn, and Tatiana Borodina  
490 (MDC Scientific Genomics Platforms) for sequencing. Hamster icons were used from  
491 BioRender.com.

492

#### 493 **Figure legends**

494 **Figure 1. Clinics of SARS-CoV-2 infected Syrian and Roborovski hamsters under**  
495 **COVID-19 therapy.** Syrian hamsters (**A – E**) were challenged with SARS-CoV-2 (1 x  
496  $10^5$  pfu Wildtype (WT)) and treated once at 2 dpi with 30 mg/kg mAb CV07-209 (mAb,  
497 n = 6), daily starting at 2 dpi with 2mg/kg Dexamethasone (Dex, n = 6) or received  
498 combination treatment (Dex + mAb, n = 6). Survival rates (**A**) in percent of SARS-CoV-  
499 2 infected Syrian hamsters and body weight (**B**) development in percent after virus  
500 challenge were measured until analysis time point (5 dpi, n = 3 and 7 dpi n = 3) and  
501 displayed according to treatment group. (**B**) Results are displayed as mean  $\pm$  SD. (**C**)  
502 Quantification of replication competent virus as plaque-forming units (pfu) per gram  
503 homogenized lung tissue. Dotted line marks the limit of detection (DL = 100 pfu). Titors  
504 below the detection limits were set to DL/2 = 50 pfu. Number of genomic RNA (gRNA)  
505 copies detected in homogenized lung tissue (**D**) and oropharyngeal swabs (**E**). (**C – E**)  
506 Results are shown as mean with range. Roborovski hamsters (**F – K**) were challenged  
507 with SARS-CoV-2 (1 x  $10^5$  pfu Wildtype (WT)) and treated once at 1 dpi with 30 mg/kg  
508 mAb CV07-209 (mAb, n = 6), daily starting at 1 dpi with 2 mg/kg Dexamethasone (Dex,  
509 n = 6) or received combination treatment (Dex + mAb, n = 6). Survival rates (**F**) in  
510 percent of SARS-CoV-2 infected Roborovski hamsters, body temperature (**G**) in  
511 degree Celsius and body weight (**H**) development in percent after virus challenge were  
512 measured until planned analysis time point (3 dpi, and 5 dpi) or until termination due  
513 to score sheet criteria (non-survivors) according to treatment group. Two hamsters  
514 from the mAb group and one hamsters from the mock-treated group were euthanized  
515 at 2 dpi (represented by orange squares (**I – K**)). One hamster from the mock-treated  
516 group reached end point criteria at 3 dpi and was included in 3 dpi time point analysis  
517 as planned. (**G, H**) Results are displayed as mean  $\pm$  SD. (**I**) Virus titers displayed as  
518 pfu per gram homogenized lung tissue. Dotted line marks the limit of detection (DL =  
519 100 pfu). Titors below the detection limits were set to DL/2 = 50 pfu. **J + K**  
520 Quantification of gRNA copies in homogenized lung tissue (**J**) and oropharyngeal  
521 swabs (**K**). (**I – K**) Results are displayed as mean with range.

522  
523

524 **Figure 2. Dexamethasone treatment dampens inflammatory responses of SARS-  
525 CoV-2 infected hamsters.** Longitudinal sections of H&E-stained left lungs from  
526 representative Syrian hamsters (**A**) and Roborovski hamsters (**B**) at indicated time  
527 points post infection. Consolidated areas indicative of pneumonia appear in darker  
528 colours. Bars = 3 mm. Lung inflammation score ((**C**) Syrian and (**E**) Roborovski  
529 hamsters) accounting for the severities of pneumonia, immune cell influx, perivascular  
530 lymphocyte cuffs, bronchitis, bronchial epithelial necrosis, alveolar epithelial necrosis  
531 and type II pneumocyte hyperplasia. Bronchitis score ((**D**) Syrian and (**F**) Roborovski  
532 hamsters) assessing bronchitis and bronchial epithelial necrosis. Gene expression ((**G**)  
533 Syrian and (**H**) Roborovski hamsters) was quantified using polyA RNA high-throughput  
534 sequencing from Syrian hamster lung samples. Shown are z-scores of fpkm  
535 (fragments per kilo base of transcript per million mapped fragments) values calculated  
536 over all samples on a colour scale ranging from blue (-4) to red (+4) for selected genes.  
537 Time points and treatments are shown on top of the heatmap. Samples from animals  
538 euthanized at 2 dpi are shown in orange.

539

540 **Figure 3. Dexamethasone limits immune cell recruitment in Roborovski  
541 hamsters.** Roborovski hamsters were challenged with SARS-CoV-2 ( $1 \times 10^5$  pfu  
542 Wildtype (WT)), treated once at 1 dpi with 30 mg/kg mAb CV07-209 (mAb), daily  
543 starting at 1 dpi with 2 mg/kg Dexamethasone (Dex) or received combination treatment  
544 (Dex + mAb). At 3 dpi n = 3 Roborovski hamsters of each group were subjected to  
545 pulmonary single-cell RNA sequencing analysis. Pulmonary single cell suspensions  
546 were generated, cells were microscopically counted and total numbers per lung lobe  
547 calculated. (**A**) Cell count of isolated cells per lung lobe according to treatment group.  
548 Calculated numbers of indicated innate immune cells (**B**), T and B lymphocytes (**C**)  
549 and AT2 and endothelial cells (**D**) based on scRNA-seq determined cell frequencies  
550 (Figure E3) and according to treatment group. Data display means  $\pm$  SD. n = 3 per  
551 group. (A – D) Two-way ANOVA, Tukey's multiple comparisons test. \* P < 0.05, \*\* P  
552 < 0.01, \*\*\* P < 0.001, \*\*\*\* P < 0.0001. (**E**) Edema Score resulting from semi-  
553 quantitative assessment of alveolar and perivascular edema (**F**) H&E stained  
554 histopathology of pulmonary vascular endothelia (upper panel) and lung parenchyma  
555 (lower panel) from Roborovski hamsters at 3 dpi. Mock and mAb treated groups had

556 moderate to marked endothelialitis with activation and loss of endothelial cells whereas  
557 the vascular endothelium remained mostly intact in Dex and Dex + mAb treated  
558 groups. The inflammatory response was more pronounced in mock and mAb treated  
559 hamsters compared to Dex and Dex + mAb treated animals. Differences were  
560 particularly observed for infiltrating neutrophils, macrophages and, lymphocytes as well  
561 as for the degree of alveolar epithelial cell necrosis. Size bars: 15  $\mu\text{m}$  (top) and 25  $\mu\text{m}$   
562 (bottom).

563

564 **Figure 4. Macrophages and neutrophil show strongest gene expression changes**  
565 **by Dexamethasone treatments.** (A) Shown are genes with at least four-fold  
566 upregulation in at least one cell type in the dexamethasone compared to the mock-  
567 treated animals, for all three treatments compared to mock. Size and colors of the dots  
568 indicate log2-transformed fold changes (FC) and p-values, respectively. Adjusted (adj)  
569 p-values were calculated by DEseq2 using Benjamini–Hochberg corrections of two-  
570 sided Wald test p-values. Genes are ordered by unsupervised clustering. (B) Shown  
571 are interferon and NF- $\kappa$ B-dependent genes as determined in Figure E4 for the  
572 comparisons Dex vs. mock and Dex + mAB vs. mock. Otherwise as in (A). (C)  
573 Expression of *Mx2*, *Tnfsf10*, and *Cxcl10* in neutrophils (top) and monocytic  
574 macrophages (bottom). Shown are the fraction of cells with  $\geq$  one mRNA count (means  
575  $\pm$  SD. n = 3 per group).

576

577 **Figure 5. Absence of a specific chemokine-expressing subset of neutrophils**  
578 **upon dexamethasone treatment in Roborovski hamsters.** (A) Neutrophils from the  
579 scRNA-seq data were sub-clustered using the Louvain algorithm based on their  
580 individual transcriptomes, and two-dimensional projections performed using the UMAP  
581 algorithm. Cells were coloured by their cluster identity. (B) Projection as in (A), but  
582 cells are coloured by the log10-transformed percentage of viral RNA. Overlaid are the  
583 stream arrows derived from the RNA velocity analysis. Neutrophil cluster 6 is marked  
584 with a light blue oval. (C) Changes in cellular density on the UMAP projection were  
585 calculated, and cells coloured by fold changes of the indicated Dex vs. mock. Red  
586 indicates increased density, and blue indicates decreased density. Neutrophil cluster  
587 6 is marked with a light blue oval. (D) Graph indicates the log2-transformed fold  
588 changes of the cell counts in the respective neutrophil clusters 1- 10, with all three  
589 treatments compared to mock. For example, in cluster 6 there are about one third less

590 cells (dark blue bar at -0.6, which corresponds to log2 of 0.66) upon dexamethasone  
591 treatment. (E) Dot plots show the expression of selected genes over all hamsters in  
592 the clusters as defined in (A). The dot size indicates the fraction of cells in the clusters  
593 as indicated on the left from mock-treated animals, with  $\geq$  one mRNA count for the  
594 respective gene. The colour represents the average expression in those cells. (F)  
595 Histopathology of Roborovski hamsters 3 days after infection revealed moderate to  
596 marked alveolar and interstitial infiltration with viable and degenerate neutrophils (black  
597 arrowheads) in mock and mAb treated animals as well as elevated numbers of alveolar  
598 macrophages (gray arrowhead). Dex and Dex + mAb treated hamsters had lower  
599 numbers of neutrophils especially in their alveolar spaces and mild to moderate  
600 numbers of neutrophils in alveolar capillaries (black arrowheads). Activated alveolar  
601 macrophages phagocytized cellular debris and cleared the inflammatory response  
602 (gray arrowhead). Scale bar = 20  $\mu$ m.

603

## 604 **References**

- 605 1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R,  
606 Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel  
607 Coronavirus I, Research T. A Novel Coronavirus from Patients with Pneumonia  
608 in China, 2019. *N Engl J Med* 2020; 382: 727-733.
- 609 2. Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 Vaccines. *JAMA* 2021; 325:  
610 1318-1320.
- 611 3. Fischer W, Eron JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, Sheahan TP,  
612 Baric R, Mollan KR, Wolfe CR, Duke ER, Azizad MM, Borroto-Esoda K, Wohl  
613 DA, Loftis AJ, Alabanza P, Lipansky F, Painter WP. Molnupiravir, an Oral  
614 Antiviral Treatment for COVID-19. *medRxiv* 2021.
- 615 4. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S. [Analysis of clinical  
616 features of 29 patients with 2019 novel coronavirus pneumonia]. *Zhonghua Jie  
617 He He Hu Xi Za Zhi* 2020; 43: 203-208.
- 618 5. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current  
619 Evidence and Treatment Strategies. *Front Immunol* 2020; 11: 1708.
- 620 6. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, Lang C, Xiao Q, Xiao K, Yi Z, Qiang M,  
621 Xiang J, Zhang B, Chen Y. Characteristics of lymphocyte subsets and cytokines  
622 in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus  
623 pneumonia (NCP). *medRxiv* 2020: 2020.2002.2010.20021832.
- 624 7. Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, Wang F, Li G, Li Y, Xing L, Peng L,  
625 Yang M, Cao M, Zheng H, Wu W, Zou R, Li D, Xu Z, Wang H, Zhang M, Zhang  
626 Z, Gao GF, Jiang C, Liu L, Liu Y. Plasma IP-10 and MCP-3 levels are highly  
627 associated with disease severity and predict the progression of COVID-19. *J  
628 Allergy Clin Immunol* 2020; 146: 119-127 e114.
- 629 8. Arya SK, Wong-Staal F, Gallo RC. Dexamethasone-mediated inhibition of human T  
630 cell growth factor and gamma-interferon messenger RNA. *J Immunol* 1984; 133:  
631 273-276.

632 9. Dagens A, Sigfrid L, Cai E, Lipworth S, Cheng V, Harris E, Bannister P, Rigby I,  
633 Horby P. Scope, quality, and inclusivity of clinical guidelines produced early in  
634 the covid-19 pandemic: rapid review. *BMJ* 2020; 369: m1936.

635 10. Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W. Anti-glucocorticoid effects  
636 of dehydroepiandrosterone (DHEA). *Mol Cell Biochem* 1994; 131: 99-104.

637 11. Cogliati Dezza F, Oliva A, Cancelli F, Savelloni G, Valeri S, Mauro V, Calabretto  
638 M, Russo G, Venditti M, Turriziani O, Mastroianni CM. Determinants of  
639 prolonged viral RNA shedding in hospitalized patients with SARS-CoV-2  
640 infection. *Diagn Microbiol Infect Dis* 2021; 100: 115347.

641 12. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin  
642 N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T,  
643 Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K,  
644 Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ.  
645 Dexamethasone in Hospitalized Patients with Covid-19. *N Engl J Med* 2021;  
646 384: 693-704.

647 13. Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de  
648 Almeida LGN, Dufour A, Bromley A, McDonald B, Gillrie MR, Fritzler MJ, Yipp  
649 BG, Biernaskie J. Dexamethasone modulates immature neutrophils and  
650 interferon programming in severe COVID-19. *Nat Med* 2021.

651 14. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure,  
652 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* 2020;  
653 181: 281-292 e286.

654 15. Fagre AC, Manhard J, Adams R, Eckley M, Zhan S, Lewis J, Rocha SM, Woods  
655 C, Kuo K, Liao W, Li L, Corper A, Challa D, Mount E, Tumanut C, Tjalkens RB,  
656 Aboellail T, Fan X, Schountz T. A Potent SARS-CoV-2 Neutralizing Human  
657 Monoclonal Antibody That Reduces Viral Burden and Disease Severity in Syrian  
658 Hamsters. *Front Immunol* 2020; 11: 614256.

659 16. Kreye J, Reincke SM, Kornau HC, Sanchez-Sendin E, Corman VM, Liu H, Yuan  
660 M, Wu NC, Zhu X, Lee CD, Trimpert J, Holtje M, Dietert K, Stoffler L, von  
661 Wardenburg N, van Hoof S, Homeyer MA, Hoffmann J, Abdelgawad A, Gruber  
662 AD, Bertzbach LD, Vladimirova D, Li LY, Barthel PC, Skriner K, Hocke AC,  
663 Hippensiel S, Witzenrath M, Suttorp N, Kurth F, Franke C, Endres M, Schmitz  
664 D, Jeworowski LM, Richter A, Schmidt ML, Schwarz T, Muller MA, Drosten C,  
665 Wendisch D, Sander LE, Osterrieder N, Wilson IA, Pruss H. A Therapeutic Non-  
666 self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-  
667 19 Hamster Model. *Cell* 2020; 183: 1058-1069 e1019.

668 17. Renn A, Fu Y, Hu X, Hall MD, Simeonov A. Fruitful Neutralizing Antibody Pipeline  
669 Brings Hope To Defeat SARS-CoV-2. *Trends Pharmacol Sci* 2020; 41: 815-829.

670 18. Copin R, Baum A, Wloga E, Pascal KE, Giordano S, Fulton BO, Zhou A, Negron  
671 N, Lanza K, Chan N, Coppola A, Chiu J, Ni M, Wei Y, Atwal GS, Hernandez AR,  
672 Saotome K, Zhou Y, Franklin MC, Hooper AT, McCarthy S, Hamon S, Hamilton  
673 JD, Staples HM, Alfson K, Carrion R, Jr., Ali S, Norton T, Somersan-Karakaya  
674 S, Sivapalasingam S, Herman GA, Weinreich DM, Lipsich L, Stahl N, Murphy  
675 AJ, Yancopoulos GD, Kyratsous CA. The monoclonal antibody combination  
676 REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical  
677 and human studies. *Cell* 2021; 184: 3949-3961 e3911.

678 19. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan Y,  
679 Koon K, Patel K, Chung KM, Hermann A, Ullman E, Cruz J, Rafique A, Huang  
680 T, Fairhurst J, Libertiny C, Malbec M, Lee WY, Welsh R, Farr G, Pennington S,  
681 Deshpande D, Cheng J, Watty A, Bouffard P, Babb R, Levenkova N, Chen C,  
682 Zhang B, Romero Hernandez A, Saotome K, Zhou Y, Franklin M,

683 Sivapalasingam S, Lye DC, Weston S, Logue J, Haupt R, Frieman M, Chen G,  
684 Olson W, Murphy AJ, Stahl N, Yancopoulos GD, Kyratsous CA. Studies in  
685 humanized mice and convalescent humans yield a SARS-CoV-2 antibody  
686 cocktail. *Science* 2020; 369: 1010-1014.

687 20. Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, Metzler M,  
688 Kohmer N, Hoehl S, Helfritz FA, Wolf T, Goetsch U, Ciesek S. Reduced  
689 Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and  
690 Monoclonal Antibodies. *medRxiv* 2021: 2021.2012.21267432.

691 21. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer  
692 D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S,  
693 Schneider J, Ehmann R, Zwigglmaier K, Drosten C, Wendtner C. Virological  
694 assessment of hospitalized patients with COVID-2019. *Nature* 2020; 581: 465-  
695 469.

696 22. Osterrieder N, Bertzbach LD, Dietert K, Abdelgawad A, Vladimirova D, Kunec D,  
697 Hoffmann D, Beer M, Gruber AD, Trimpert J. Age-Dependent Progression of  
698 SARS-CoV-2 Infection in Syrian Hamsters. *Viruses* 2020; 12.

699 23. Trimpert J, Vladimirova D, Dietert K, Abdelgawad A, Kunec D, Dokel S, Voss A,  
700 Gruber AD, Bertzbach LD, Osterrieder N. The Roborovski Dwarf Hamster Is A  
701 Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2  
702 Infection. *Cell Rep* 2020; 33: 108488.

703 24. Bertzbach LD, Vladimirova D, Dietert K, Abdelgawad A, Gruber AD, Osterrieder N,  
704 Trimpert J. SARS-CoV-2 infection of Chinese hamsters (*Cricetulus griseus*)  
705 reproduces COVID-19 pneumonia in a well-established small animal model.  
706 *Transbound Emerg Dis* 2021; 68: 1075-1079.

707 25. Nouailles G, Wyler E, Pennitz P, Postmus D, Vladimirova D, Kazmierski J, Pott F,  
708 Dietert K, Muelleder M, Farztdinov V, Obermayer B, Wienhold SM, Andreotti S,  
709 Hoefer T, Sawitzki B, Drosten C, Sander LE, Suttorp N, Ralser M, Beule D,  
710 Gruber AD, Goffinet C, Landthaler M, Trimpert J, Witzenrath M. Temporal omics  
711 analysis in Syrian hamsters unravel cellular effector responses to moderate  
712 COVID-19. *Nat Commun* 2021; 12: 4869.

713 26. Andreotti S, Altmüller J, Quedenau C, Borodina T, Nouailles G, Teixeira Alves LG,  
714 Landthaler M, Bieniara M, Trimpert J, Wyler E. &lt;em&gt;De Novo&lt;/em&gt;  
715 Whole Genome Assembly of the Roborovski Dwarf Hamster  
&lt;em&gt;(<em&gt;Phodopus roborovskii</em&gt;)</em&gt; Genome, an Animal Model for  
716 Severe/Critical COVID-19. *bioRxiv* 2021: 2021.2010.2002.462569.

717 27. Gaidatzis D, Lerch A, Hahne F, Stadler MB. QuasR: quantification and annotation  
718 of short reads in R. *Bioinformatics* 2015; 31: 1130-1132.

719 28. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, Lee MJ,  
720 Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP,  
721 Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM,  
722 Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal  
723 single-cell data. *Cell* 2021; 184: 3573-3587 e3529.

724 29. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE,  
725 Earnest JT, Keeler SP, Ritter JH, Kang LI, Dort S, Robichaud A, Head R,  
726 Holtzman MJ, Diamond MS. SARS-CoV-2 infection of human ACE2-transgenic  
727 mice causes severe lung inflammation and impaired function. *Nat Immunol*  
728 2020; 21: 1327-1335.

729 30. Kim WY, Kweon OJ, Cha MJ, Baek MS, Choi SH. Dexamethasone may improve  
730 severe COVID-19 via ameliorating endothelial injury and inflammation: A  
731 preliminary pilot study. *PLoS One* 2021; 16: e0254167.

733 31. McKay LI, Cidlowski JA. CBP (CREB binding protein) integrates NF- $\kappa$ B  
734 (nuclear factor- $\kappa$ B) and glucocorticoid receptor physical interactions and  
735 antagonism. *Mol Endocrinol* 2000; 14: 1222-1234.

736 32. Jubb AW, Young RS, Hume DA, Bickmore WA. Enhancer Turnover Is Associated  
737 with a Divergent Transcriptional Response to Glucocorticoid in Mouse and  
738 Human Macrophages. *J Immunol* 2016; 196: 813-822.

739 33. Sack GH, Jr. Serum amyloid A - a review. *Mol Med* 2018; 24: 46.

740 34. Clark AR, Lasa M. Crosstalk between glucocorticoids and mitogen-activated  
741 protein kinase signalling pathways. *Curr Opin Pharmacol* 2003; 3: 404-411.

742 35. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V,  
743 Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van  
744 Bruggen D, Guo J, He X, Barker R, Sundstrom E, Castelo-Branco G, Cramer  
745 P, Adameyko I, Linnarsson S, Kharchenko PV. RNA velocity of single cells.  
746 *Nature* 2018; 560: 494-498.

747 36. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to  
748 transient cell states through dynamical modeling. *Nat Biotechnol* 2020; 38:  
749 1408-1414.

750 37. Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC, Hamilton  
751 JA. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF  
752 in homeostasis and inflammation. *Immunol Cell Biol* 2012; 90: 429-440.

753 38. Maurer M, von Stebut E. Macrophage inflammatory protein-1. *Int J Biochem Cell  
754 Biol* 2004; 36: 1882-1886.

755 39. Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell  
756 analysis of differentiation data. *Bioinformatics* 2015; 31: 2989-2998.

757 40. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression  
758 data analysis. *Genome Biol* 2018; 19: 15.

759 41. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The  
760 Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell  
761 Syst* 2015; 1: 417-425.

762 42. Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids  
763 enhance replication of respiratory viruses: effect of adjuvant interferon. *Sci Rep*  
764 2014; 4: 7176.

765 43. Aschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel HH, Buttnerova  
766 I, Elezkurtaj S, Scheibe F, Radke J, Meisel C, Drosten C, Radbruch H, Heppner  
767 FL, Corman VM, Stenzel W. Association Between SARS-CoV-2 Infection and  
768 Immune-Mediated Myopathy in Patients Who Have Died. *JAMA Neurol* 2021;  
769 78: 948-960.

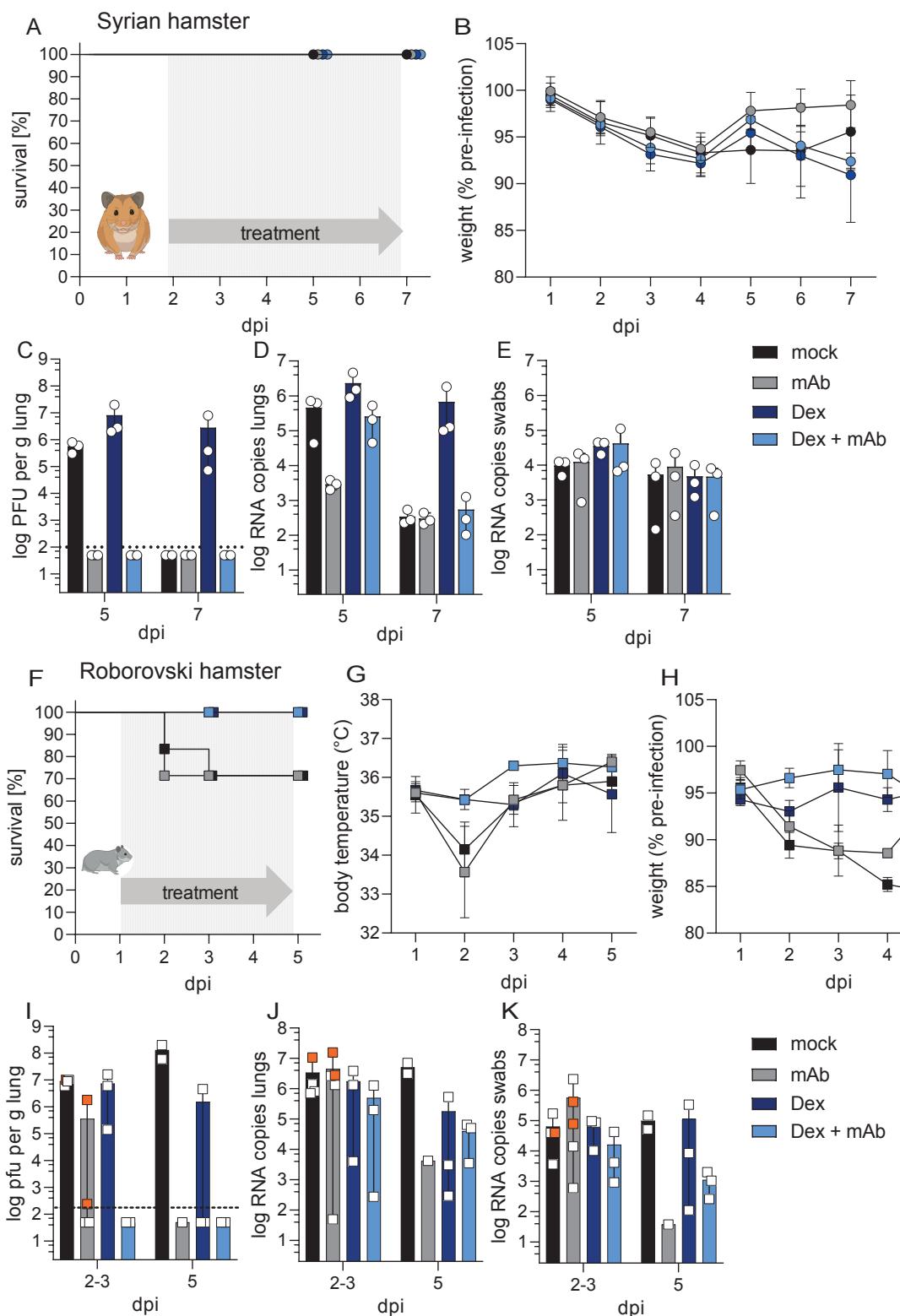
770 44. Chen X, Zhu B, Hong W, Zeng J, He X, Chen J, Zheng H, Qiu S, Deng Y, Chan  
771 JCN, Wang J, Zhang Y. Associations of clinical characteristics and treatment  
772 regimens with the duration of viral RNA shedding in patients with COVID-19. *Int  
773 J Infect Dis* 2020; 98: 252-260.

774 45. Muhlemann B, Thibeault C, Hillus D, Helbig ET, Lippert LJ, Tober-Lau P, Schwarz  
775 T, Muller MA, Pa C-csg, Witzenrath M, Suttorp N, Sander LE, Drosten C, Jones  
776 TC, Corman VM, Kurth F. Impact of dexamethasone on SARS-CoV-2  
777 concentration kinetics and antibody response in hospitalized COVID-19  
778 patients: results from a prospective observational study. *Clin Microbiol Infect*  
779 2021; 27: 1520 e1527-1520 e1510.

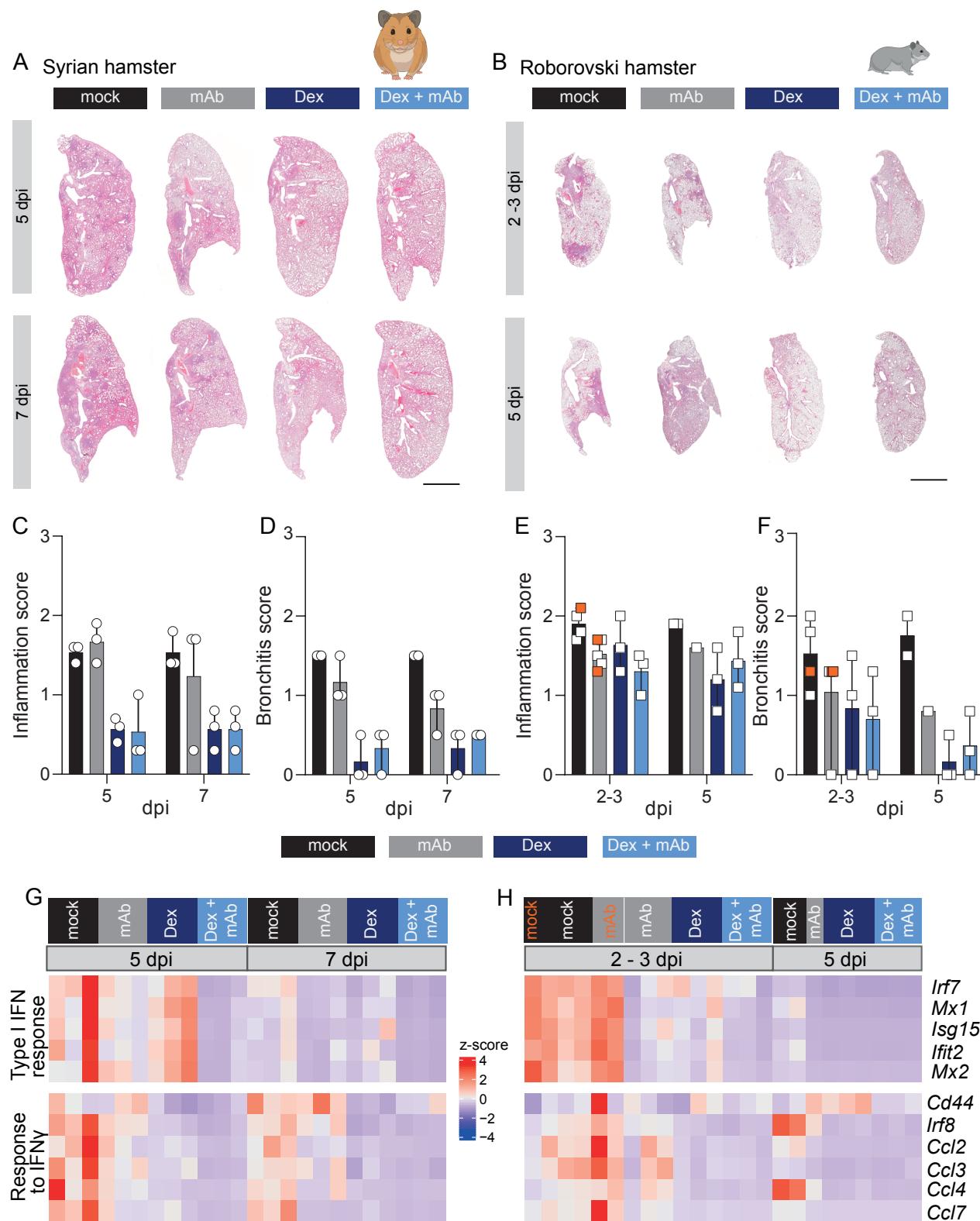
780 46. Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra IL, Mittermaier M, Mache C,  
781 Chua RL, Knoll R, Timm S, Brumhard S, Krammer T, Zauber H, Hiller AL,  
782 Pascual-Reguant A, Mothes R, Bulow RD, Schulze J, Leipold AM, Djudjaj S,  
783 Erhard F, Geffers R, Pott F, Kazmierski J, Radke J, Pergantis P, Bassler K,

784 Conrad C, Aschenbrenner AC, Sawitzki B, Landthaler M, Wyler E, Horst D,  
785 Deutsche C-OI, Hippenstiel S, Hocke A, Heppner FL, Uhrig A, Garcia C,  
786 Machleidt F, Herold S, Elezkurtaj S, Thibeault C, Witzenrath M, Cochaine C,  
787 Suttorp N, Drosten C, Goffinet C, Kurth F, Schultze JL, Radbruch H, Ochs M,  
788 Eils R, Muller-Redetzky H, Hauser AE, Luecken MD, Theis FJ, Conrad C, Wolff  
789 T, Boor P, Selbach M, Saliba AE, Sander LE. SARS-CoV-2 infection triggers  
790 profibrotic macrophage responses and lung fibrosis. *Cell* 2021.

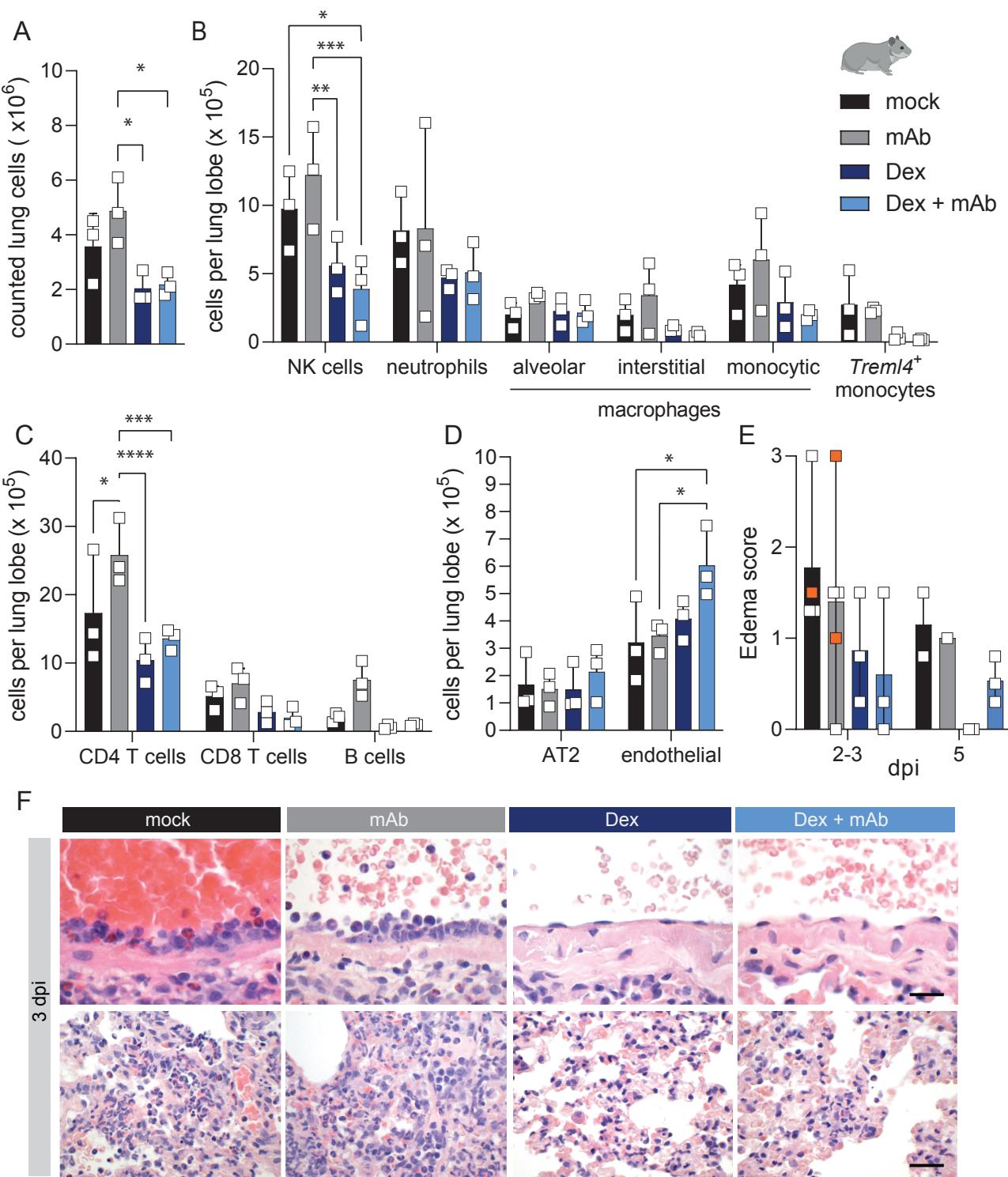
791 47. Calabrese C, Pafundi PC, Mollica M, Annunziata A, Imitazione P, Lanza M,  
792 Polistina G, Flora M, Guarino S, Palumbo C, Fiorentino G. Effectiveness of  
793 corticosteroids on chest high-resolution computed tomography features of  
794 COVID-19 pneumonia. *Ther Adv Respir Dis* 2021; 15: 17534666211042533.


795 48. Cavalcante-Silva LHA, Carvalho DCM, Lima EA, Galvao J, da Silva JSF, Sales-  
796 Neto JM, Rodrigues-Mascarenhas S. Neutrophils and COVID-19: The road so  
797 far. *Int Immunopharmacol* 2021; 90: 107233.

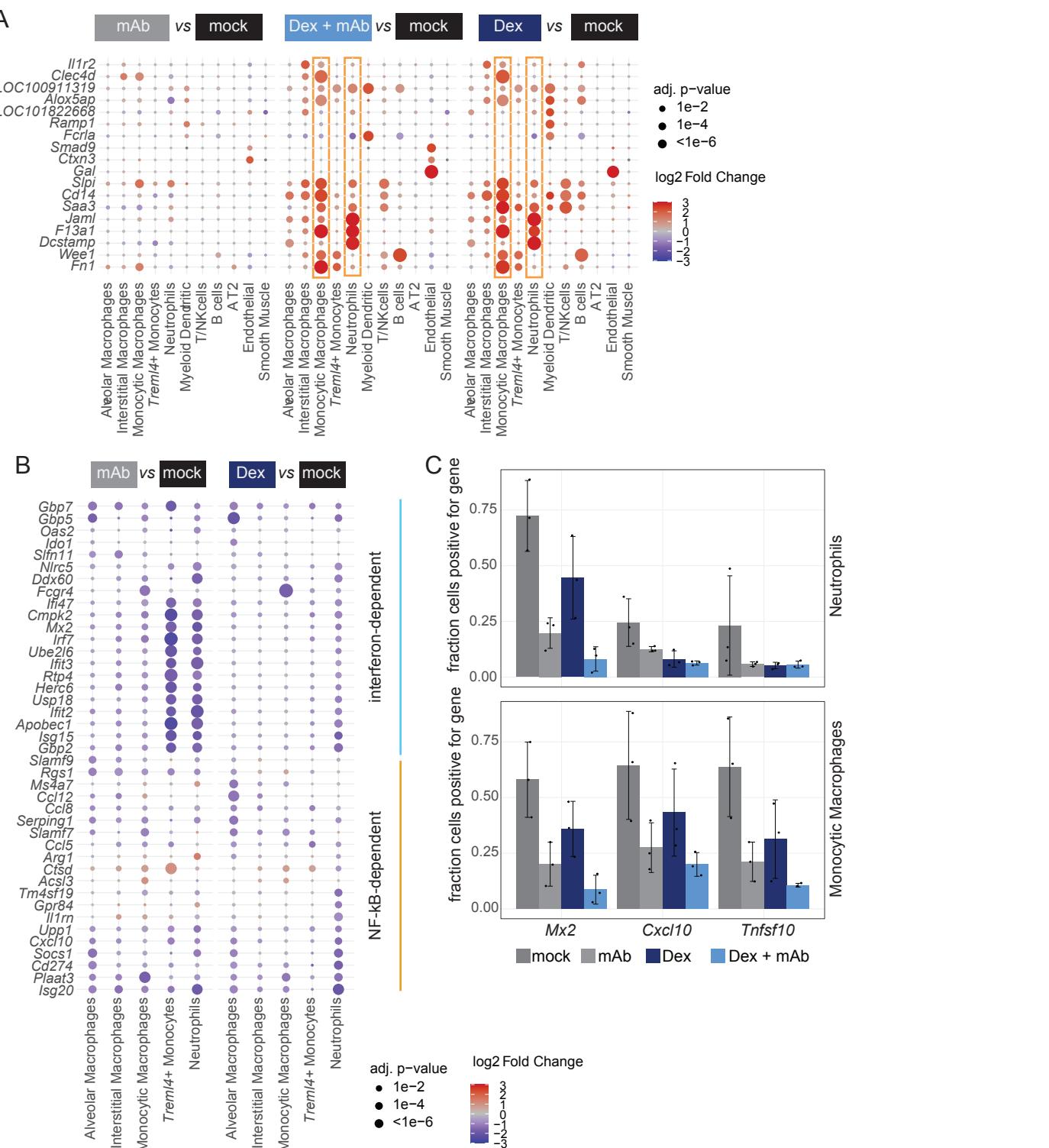
798 49. Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, Liu N, Wang F, Liu J, Xie Y.  
799 Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and  
800 Non-human Primates. *Front Microbiol* 2021; 12: 626553.


801 50. Yang MS, Oh BK, Yang D, Oh EY, Kim Y, Kang KW, Lim CW, Koh GY, Lee SM,  
802 Kim B. Ultra- and micro-structural changes of respiratory tracts in SARS-CoV-2  
803 infected Syrian hamsters. *Vet Res* 2021; 52: 121.

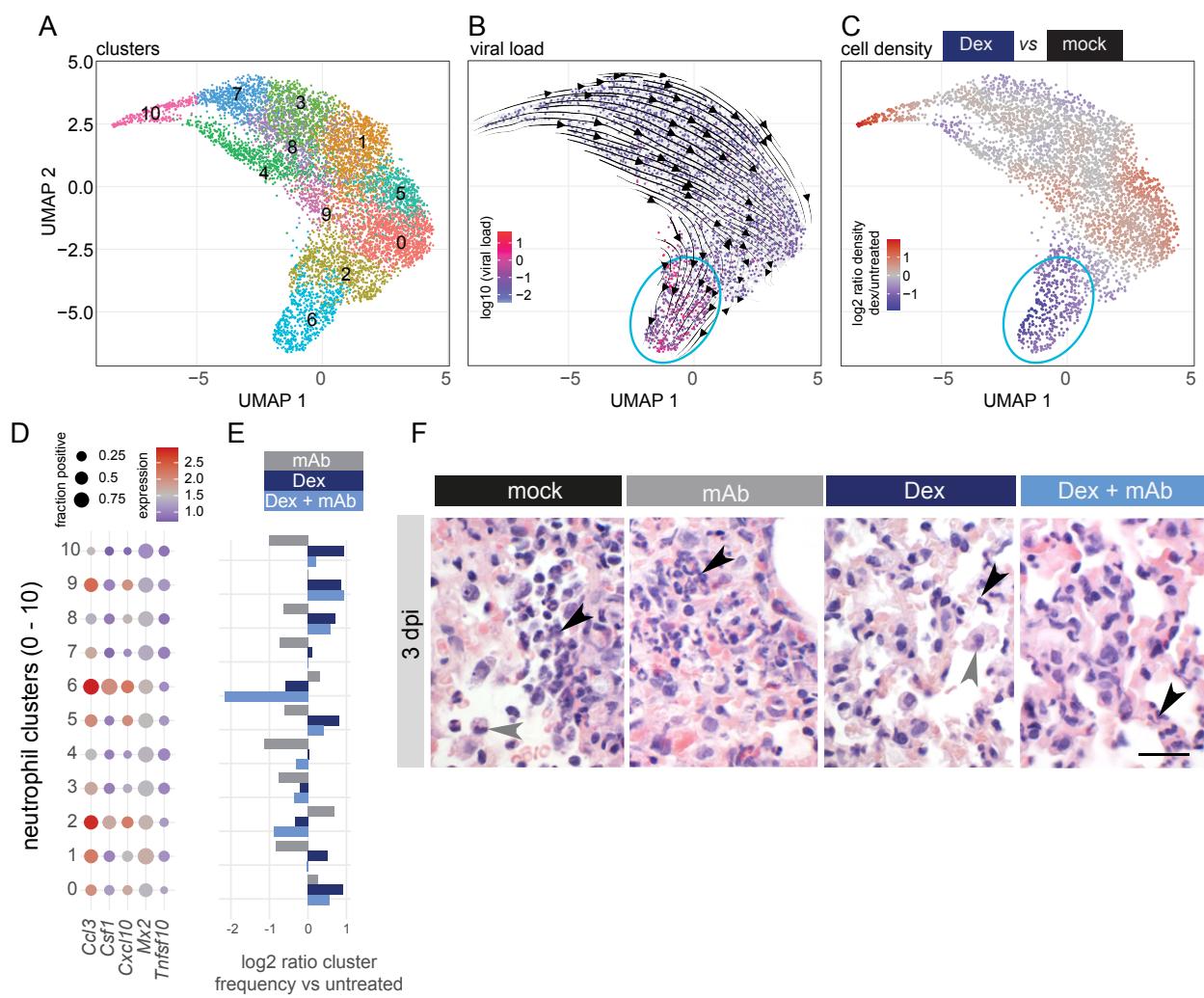
804 51. Sinha P, Furfaro D, Cummings MJ, Abrams D, Delucchi K, Maddali MV, He J,  
805 Thompson A, Murn M, Fountain J, Rosen A, Robbins-Juarez SY, Adan MA,  
806 Satish T, Madhavan M, Gupta A, Lyashchenko AK, Agerstrand C, Yip NH,  
807 Burkart KM, Beitler JR, Baldwin MR, Calfee CS, Brodie D, O'Donnell MR. Latent  
808 Class Analysis Reveals COVID-19-related Acute Respiratory Distress  
809 Syndrome Subgroups with Differential Responses to Corticosteroids. *Am J  
810 Respir Crit Care Med* 2021; 204: 1274-1285.


811




**Figure 1. Clinics of SARS-CoV-2 infected Syrian and Roborovski hamsters under COVID-19 therapy.** Syrian hamsters (A – E) were challenged with SARS-CoV-2 (1 x 105 pfu Wildtype (WT)) and treated once at 2 dpi with 30 mg/kg mAb CV07-209 (mAb, n = 6), daily starting at 2 dpi with 2mg/kg Dexamethasone (Dex, n = 6) or received combination treatment (Dex + mAb, n = 6). Survival rates (A) in percent of SARS-CoV-2 infected Syrian hamsters and body weight (B) development in percent after virus challenge were measured until analysis time point (5 dpi, n = 3 and 7 dpi n = 3) and displayed according to treatment group. (B) Results are displayed as mean  $\pm$  SD. (C) Quantification of replication competent virus as plaque-forming units (pfu) per gram homogenized lung tissue. Dotted line marks the limit of detection (DL = 100 pfu). Titers below the detection limits were set to DL/2 = 50 pfu. Number of genomic RNA (gRNA) copies detected in homogenized lung tissue (D) and oropharyngeal swabs (E). (C – E) Results are shown as mean with range. Roborovski hamsters (F – K) were challenged with SARS-CoV-2 (1 x 105 pfu Wildtype (WT)) and treated once at 1 dpi with 30 mg/kg mAb CV07-209 (mAb, n = 6), daily starting at 1 dpi with 2 mg/kg Dexamethasone (Dex, n = 6) or received combination treatment (Dex + mAb, n = 6). Survival rates (F) in percent of SARS-CoV-2 infected Roborovski hamsters, body temperature (G) in degree Celsius and body weight (H) development in percent after virus challenge were measured until planned analysis time point (3 dpi, and 5 dpi) or until termination due to score sheet criteria (non-survivors) according to treatment group. Two hamsters from the mAb group and one hamster from the mock-treated group were euthanized at 2 dpi (represented by orange squares (I – K)). One hamster from the mock-treated group reached end point criteria at 3 dpi and was included in 3 dpi time point analysis as planned. (G, H) Results are displayed as mean  $\pm$  SD. (I) Virus titers displayed as pfu per gram homogenized lung tissue. Dotted line marks the limit of detection (DL = 100 pfu). Titers below the detection limits were set to DL/2 = 50 pfu. J + K) Quantification of gRNA copies in homogenized lung tissue (J) and oropharyngeal swabs (K). (I – K) Results are displayed as mean with range.




**Figure 2. Dexamethasone treatment dampens inflammatory responses of SARS-CoV-2 infected hamsters.** Longitudinal sections of H&E-stained left lungs from representative Syrian hamsters (A) and Roborovski hamsters (B) at indicated time points post infection. Consolidated areas indicative of pneumonia appear in darker colours. Bars = 3 mm. Lung inflammation score ((C) Syrian and (E) Roborovski hamsters) accounting for the severities of pneumonia, immune cell influx, perivascular lymphocyte cuffs, bronchitis, bronchial epithelial necrosis, alveolar epithelial necrosis and type II pneumocyte hyperplasia. Bronchitis score ((D) Syrian and (F) Roborovski hamsters) assessing bronchitis and bronchial epithelial necrosis. Gene expression ((G) Syrian and (H) Roborovski hamsters) was quantified using polyA RNA high-throughput sequencing from Syrian hamster lung samples. Shown are z-scores of fpkm (fragments per kilo base of transcript per million mapped fragments) values calculated over all samples on a colour scale ranging from blue (-4) to red (+4) for selected genes. Time points and treatments are shown on top of the heatmap. Samples from animals euthanized at 2 dpi are shown in orange.



**Figure 3. Dexamethasone limits immune cell recruitment in Roborovski hamsters.** Roborovski hamsters were challenged with SARS-CoV-2 ( $1 \times 105$  pfu Wildtype (WT)), treated once at 1 dpi with 30 mg/kg mAb CV07-209 (mAb), daily starting at 1 dpi with 2 mg/kg Dexamethasone (Dex) or received combination treatment (Dex + mAb). At 3 dpi  $n = 3$  Roborovski hamsters of each group were subjected to pulmonary single-cell RNA sequencing analysis. Pulmonary single cell suspensions were generated, cells were microscopically counted and total numbers per lung lobe calculated. (A) Cell count of isolated cells per lung lobe according to treatment group. Calculated numbers of indicated innate immune cells (B), T and B lymphocytes (C) and AT2 and endothelial cells (D) based on scRNA-seq determined cell frequencies (Figure E3) and according to treatment group. Data display means  $\pm$  SD.  $n = 3$  per group. (A – D) Two-way ANOVA, Tukey's multiple comparisons test. \*  $P < 0.05$ , \*\*  $P < 0.01$ , \*\*\*  $P < 0.001$ , \*\*\*\*  $P < 0.0001$ . (E) Edema Score resulting from semi-quantitative assessment of alveolar and perivascular edema (F) H&E stained histopathology of pulmonary vascular endothelia (upper panel) and lung parenchyma (lower panel) from Roborovski hamsters at 3 dpi. Mock and mAb treated groups had moderate to marked endothelialitis with activation and loss of endothelial cells whereas the vascular endothelium remained mostly intact in Dex and Dex + mAb treated groups. The inflammatory response was more pronounced in mock and mAb treated hamsters compared to Dex and Dex + mAb treated animals. Differences were particularly observed for infiltrating neutrophils, macrophages and, lymphocytes as well as for the degree of alveolar epithelial cell necrosis. Size bars: 15  $\mu$ m (top) and 25  $\mu$ m (bottom).



**Figure 4. Macrophages and neutrophil show strongest gene expression changes by Dexamethasone treatments.** (A) Shown are genes with at least four-fold upregulation in at least one cell type in the dexamethasone compared to the mock-treated animals, for all three treatments compared to mock. Size and colors of the dots indicate log2-transformed fold changes (FC) and p-values, respectively. Adjusted (adj) p-values were calculated by DEseq2 using Benjamini–Hochberg corrections of two-sided Wald test p-values. Genes are ordered by unsupervised clustering. (B) Shown are interferon and NF- $\kappa$ B-dependent genes as determined in Figure E4 for the comparisons Dex vs. mock and Dex + mAb vs. mock. Otherwise as in (A). (C) Expression of Mx2, Tnfsf10, and Cxcl10 in neutrophils (top) and monocytic macrophages (bottom). Shown are the fraction of cells with  $\geq$  one mRNA count (means  $\pm$  SD. n = 3 per group).



**Figure 5. Absence of a specific chemokine-expressing subset of neutrophils upon dexamethasone treatment in Roborovski hamsters.**

(A) Neutrophils from the scRNA-seq data were sub-clustered using the Louvain algorithm based on their individual transcriptomes, and two-dimensional projections performed using the UMAP algorithm. Cells were coloured by their cluster identity. (B) Projection as in (A), but cells are coloured by the log<sub>10</sub>-transformed percentage of viral RNA. Overlaid are the stream arrows derived from the RNA velocity analysis. Neutrophil cluster 6 is marked with a light blue oval. (C) Changes in cellular density on the UMAP projection were calculated, and cells coloured by fold changes of the indicated Dex vs. mock. Red indicates increased density, and blue indicates decreased density. Neutrophil cluster 6 is marked with a light blue oval. (D) Graph indicates the log<sub>2</sub>-transformed fold changes of the cell counts in the respective neutrophil clusters 1-10, with all three treatments compared to mock. For example, in cluster 6 there are about one third less cells (dark blue bar at -0.6, which corresponds to log<sub>2</sub> of 0.66) upon dexamethasone treatment. (E) Dot plots show the expression of selected genes over all hamsters in the clusters as defined in (A). The dot size indicates the fraction of cells in the clusters as indicated on the left from mock-treated animals, with  $\geq$  one mRNA count for the respective gene. The colour represents the average expression in those cells. (F) Histopathology of Roborovski hamsters 3 days after infection revealed moderate to marked alveolar and interstitial infiltration with viable and degenerate neutrophils (black arrowheads) in mock and mAb treated animals as well as elevated numbers of alveolar macrophages (gray arrowhead). Dex and Dex + mAb treated hamsters had lower numbers of neutrophils especially in their alveolar spaces and mild to moderate numbers of neutrophils in alveolar capillaries (black arrowheads). Activated alveolar macrophages phagocytized cellular debris and cleared the inflammatory response (gray arrowhead). Scale bar = 20  $\mu$ m.