

1 **New Results**

2

3 **Disrupted Peyer's patch microanatomy in COVID-19 including germinal centre**

4 **atrophy independent of local virus**

5

6 Silvia C. Trevelin^{1*}, Suzanne Pickering², Katrina Todd³, Cynthia Bishop³, Michael Pitcher¹, Jose Garrido Mesa³,
7 Lucia Montorsi¹, Filomena Spada³, Nedyalko Petrov³, Anna Green⁴, Manu Shankar-Hari⁵, Stuart J.D. Neil², Jo
8 Spencer^{1*}

9

10 1. Peter Gorer Department of Immunology, School of Immunology and Microbial Sciences, King's College
11 London, London, UK. 2. Department of Infectious Diseases, School of Immunology and Microbial Sciences,
12 King's College London, London, UK. 3. NIHR Guy's and St. Thomas Biomedical Research Centre at Guy's and
13 St. Thomas NHS Foundation Trust and King's College London, London, UK. 4. Department of Histopathology,
14 Guy's and St. Thomas NHS Foundation Trust and King's College London, London, UK. 5. Centre for
15 Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK

16

17 ***Corresponding authors:** Silvia Cellone Trevelin, Peter Gorer Department of Immunology, School of
18 Immunology and Microbial Sciences, 2nd Floor, Borough Wing, Guy's Hospital, St. Thomas Street, SE1 9RT,
19 King's College London, London, UK. E-mail: silvia.cellone_trevelin@kcl.ac.uk. Phone: +44(0)2078485189.
20 Jo Spencer, Peter Gorer Department of Immunology, School of Immunology and Microbial Sciences, 2nd
21 Floor, Borough Wing, Guy's Hospital, St. Thomas Street, SE1 9RT, King's College London, London, UK.
22 E-mail: jo.spencer@kcl.ac.uk. Phone: +44(0)2078489609.

23

24 **Key words:** Germinal centre, Peyer's Patch, atrophy of lymphoid follicle, gut Sars-CoV2
25 infection, severe COVID-19.

26 **Running title:** Disrupted Peyer's patches in severe COVID-19

27 **Total word count:** 4,752.

28

29 **Abstract**

30 Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in
31 microbiota associated with coronavirus disease 2019 (COVID-19) severity have been
32 previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's
33 patches (PP) remains unknown. Here we analysed *post-mortem* tissues from throughout the
34 gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by
35 PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria
36 macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry
37 (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T
38 cell zonation and decreased potential B and T cell interaction and lower nuclear density in
39 COVID-19 patients. This occurred independent of the local viral levels. The changes in PP
40 demonstrate that the ability to mount an intestinal immune response is compromised in severe
41 COVID-19, which could contribute to observed dysbiosis.

42

43 **Introduction**

44 Dysregulated immune response to infection with SARS-coronavirus-2 (SARS-CoV-2) is the
45 main driver of mortality in coronavirus disease 2019 (COVID-19) (1, 2). Whilst respiratory
46 dysfunction is common, symptoms involving the gastrointestinal (GI) tract has been identified,
47 including vomiting and diarrhoea in 12% of the patients (3). Moreover, viral RNA has been
48 found in stool samples (4) and viral particles identified in ileal epithelium (5). The receptor
49 for SARS-CoV-2 angiotensin converting enzyme 2 (ACE2) is expressed on the luminal surface
50 of epithelial cells throughout the GI tract. It has been proposed that reservoirs of virus in the
51 GI tract could support longer lived antibody responses that are fundamental for controlling
52 virus replication or could be associated with persistent disease if ineffective (5, 6). However,
53 the consequences of SARS-CoV-2 infection on the GI immune system and the local ability to
54 respond to viral infection in severe disease is currently unknown.

55 The intestinal immune system is highly compartmentalised (7). Immune responses can
56 be initiated in gut-associated lymphoid tissue (GALT) (8). Activated B and T cells generated
57 in GALT acquire specific receptors, such as $\alpha 4\beta 7$, CCR9 and CCR10 that allow them to home
58 to lamina propria following circulation via lymphatics and the blood (9-11).

59 Peyer's patches (PP) are clusters of GALT concentrated in the terminal ileum. A
60 common feature of PP from early life in humans is the presence of germinal centre (GC) that
61 are acquired in response to particulate antigens sampled from the gut lumen. The ensuing GC
62 response generates lamina propria plasma cells secreting IgA that is transported into the gut
63 lumen and that subsequently regulates the microbiota and maintains homeostasis (7, 12).

64 GC responses are regulated in part by transcription factor BCL6 (B-cell lymphoma 6)
65 that is considered a marker for GC cells. It is known that GCs can be lost in lymph nodes and
66 spleen in acute COVID-19, and this has been linked to diminishing of BCL6⁺ B and T cells in
67 these tissues and blood (6). Whether GALT is similarly impacted is not known.

68 Here, the virus was quantified and localised in samples of gastrointestinal tract from
69 patients who died with COVID-19 using reverse transcription quantitative PCR (RT-qPCR)
70 and immunohistochemistry. By immunohistochemistry and imaging mass cytometry (IMC),
71 the architecture and cellularity of PPs in the same samples were then explored in detail.

72

73 **Results**

74 *Identification of SARS-CoV-2 in tissue samples along the GI tract*

75 We first quantified and localised SARS-CoV-2 in formalin-fixed paraffin embedded (FFPE)
76 samples of oesophagus, stomach, duodenum, ileum, colon, lungs and spleen from 7 males and
77 2 females who died after being diagnosed with COVID-19 (Supplementary Table 1). RT-
78 qPCR analysis of N1 of SARS-CoV-2 nucleocapsid standardised to RNase P revealed traces
79 of the virus in most tissues from COVID-19 patients but not controls (Figure 1A-C).
80 Immunohistochemistry with a cocktail of antibodies to the spike 2 glycoprotein and
81 nucleocapsid of SARS-CoV-2 showed epithelial staining and punctate staining in subepithelial
82 lamina propria. Double staining localised the punctate staining to CD68⁺ macrophages (Figure
83 1D). No virus staining was observed in lymphoid tissues (Figure 1D).

84 Therefore, in severe infection, SARS-CoV-2 is distributed along the digestive tract
85 where it is localised mainly in epithelium and in subepithelial macrophages.

86

87 *Peyer's patches from COVID-19 patients are depleted of germinal centres*

88 In order to investigate better the architecture of PPs, ileal samples were initially double stained
89 with anti-CD45RB that is expressed by T and the B cells on the periphery of lymphoid tissues,
90 but not GC B cells (13) and anti-CD10 that stains the GC (14). The CD10:CD45RB ratio was
91 significantly reduced in COVID-19 patients compared to controls, irrespective of the local

92 levels of viral RNA measured by RT- qPCR (Figure 2A-B). Depletion of GC was therefore
93 independent of the presence of local virus (Figure 2A).

94 IMC was used to characterize the cellularity of the ileal PP from 5 *post mortem* samples
95 from COVID-19 patients and 4 controls including one from a *post mortem* and 3 surgical
96 samples. Sections were stained with a cocktail of 22 antibodies (Supplementary Table 2) and
97 areas of lymphoid tissue were ablated on a Hyperion imaging system (Fluidigm, South San
98 Francisco, CA). The acquired raw images were visualized in histoCAT (15) and cells were then
99 segmented using a pipeline based on pixel classification of multi-channel images using Ilastik
100 (16) and Cell Profiler (17). The mean signal intensity (MSI) for each channel corresponding
101 the antibody staining was extracted from individual cells and normalized between values of 0
102 and 100 before cell classification and heatmap validation (Supplementary Figure 1-3).
103 Preliminary unsupervised clustering analyses by Seurat (18) and Phenograph(15) were not able
104 to robustly identify the fundamental cell populations. Therefore, the cell classification was
105 achieved using a basic gating strategy.

106 Cells were specifically selected from the lymphoid tissue in the PP and splenic white
107 pulp for subsequent analysis (Supplementary Figure 4). IMC confirmed that the structure of
108 the PP was disrupted in patients with COVID-19. Zonation of B cells and T cells was lost
109 (Figure 2C). Expression of the GC-associated BCL6 transcription factor was reduced in T and
110 B cells of follicular area from COVID-19 samples compared to those from controls (Figure
111 2D).

112

113 *Analysis of cellularity and cellular interactions in PP from COVID-19 patients*

114 The relative numbers of T and B cells, CD4⁺ T cells, CD8⁺ T cells, CD4⁺FoxP3⁺ T cells and
115 the mean signals for PD-1, CD27 and CD45RO in T cells were similar between COVID-19
116 patient and control samples (Supplementary Figure 5 and Figure 3A-D). The relative

117 proportion of macrophages was higher in follicles of COVID-19 samples compared to controls
118 (Figure 3E), although the percentages of CD14⁺CD16⁻ or CD14⁺CD16⁺ or CD14^{lo}CD16⁺
119 macrophages were similar between groups (Figure 3F).

120 The area of the ablated regions occupied by the lymphoid tissue was comparable
121 between COVID-19 samples and controls (0.08 ± 0.028 vs 0.09 ± 0.021 mm²). However, the
122 cellular density was significantly reduced in lymphoid tissue in COVID-19 (Figure 4A).

123 As a surrogate measurement for T cell/B cell interaction, we identified segmented cells
124 that gave membrane signal for both B cells and T cells and designated these cells CD3/CD20
125 neighbours (CD3CD20N). Proportionately fewer CD3CD20N were observed in the PP of
126 COVID-19 samples compared to controls (Figure 4B-D). The lack of proximity of T cells and
127 B cells in COVID-19 samples could also be observed by mixing of CD3 and CD20 signals in
128 a single pixel in the follicle images (Figure 4D).

129 Considering the significant depletion of GC and reduced T cell/ B cell interaction in the
130 ileal follicles in PP of COVID-19 patients, we next evaluated the CD27 and CD74 expression
131 by B cells. The presence of CD27⁺CD20⁺ B cells and CD74^{hi}CD20⁺ B cells were significantly
132 reduced in PP from patients with COVID-19 (Figure 5A-B) compared to controls.

133 The data extracted from the lamina propria was highly variable between samples and
134 therefore not described here.

135 Similar findings to those in PP, including the deficient CD74^{hi} B cells, were observed
136 in splenic white pulp (Figure 5C), although the total populations of plasma cells (CD19⁺CD20⁻
137), T, B cells and memory T cells (CD45RO⁺) were comparable to controls (Supplementary
138 Figure 6).

139

140 In summary, the structure and cellularity in PP of deceased COVID-19 patients is
141 severely altered independent of the local levels of the virus. Such disturbed architecture could
142 be related to changes in IgA production and microbiota described by previous studies(19, 20).

143

144 **Discussion**

145 Infection with SARS-CoV-2 causes a range of symptoms including GI manifestations (3). Here
146 we observed GI epithelial cells and subepithelial macrophages containing virus in patients who
147 died with COVID-19. We also showed that microanatomy of PP of COVID-19 patients was
148 severely affected by the disease, which was independent of the local levels of viral RNA.

149 We observed depletion of GC in the PP of patients who died with COVID-19. Depletion
150 of GC in spleen and lymph nodes in *post mortem* samples from patients with COVID-19 has
151 been reported previously (6). This was linked to failure of BCL6- expressing T follicular helper
152 cells to support GC formation. In the present study a depletion of BCL6- expressing B and T
153 cells in PP was also observed in COVID-19. Unlike in the spleen and lymph nodes that are
154 commonly quiescent in the absence of infection, GC are constitutively present and clearly
155 visible in PP from early stages of life (21). Our data therefore suggest that existing GC can
156 become diminished in severe COVID-19. In addition, GC have reduced potential to form *de*
157 *novo* through deficiencies in T cell B cell interactions.

158 A previous study has shown a decreased number of CD4⁺ T cells and CD19⁺ B cells
159 expressing $\alpha 4\beta 7$ integrin in blood of patients with severe COVID-19, even after remission of
160 the symptoms (22). This integrin is imprinted in GALT and is essential for homing of cells
161 generated in the PP back to the lamina propria (23). Lack of cells expressing $\alpha 4\beta 7$ integrin in
162 blood is consistent with compromised potential for immune induction and generation of
163 effector cells in GALT observed here.

164 Changes in PPs were observed even when only trace levels of local virus were detected
165 in the tissues. It therefore seems likely that changes observed in PP are related to the systemic
166 inflammation rather than the virus *per se*. Lymphopenia observed in these patients and in other
167 studies (24) supports this concept. Indeed, a study in mice showed that LPS injection resulted
168 in a significant reduction in numbers of T and B lymphocytes in PP, which was attributed to
169 an increased apoptosis rate (25). Another group showed thermal injury-plus-sepsis or sepsis
170 alone in rats lead to a suppressed CD4⁺ T proliferation/IL-2 production and a substantial down-
171 modulation of lymphocyte survival in mesenteric lymph nodes (26).

172 B cells expressing CD27 were depleted in GALT of COVID-19 patients evaluated here.
173 This is consistent with depletion of B cells with the phenotype CD27⁺IgM⁺IgD⁺ seen in blood
174 (24, 27). This is also consistent with a depletion of CD27⁺ B cells in blood in sepsis (28). B
175 cells in PP of COVID-19 patients expressed lower levels of CD74 than in controls. Lower
176 antigen-presentation capacity previously reported in patients with sepsis with reduced HLA-
177 DR expression in monocytes inversely correlated with the severity of multi-organ damage (29).

178 The decreased cell density of the PP and depletion of the GC in ileal follicles of patients
179 with COVID-19 is consistent with impaired T and B cell interaction, which could contribute
180 to failure to generate a long-term response to local antigens and contribute to dysbiosis (19,
181 30).

182 In conclusion, patients with severe COVID-19 show significant impaired architecture
183 and cellularity of PP. The resulting poor local immunity could contribute to dysbiosis. Our
184 findings also suggest that oral vaccination to prevent COVID-19 disease could not be effective
185 if patients were already ill, since the gut immune system is compromised with features
186 indicating that they would lack the ability to mount an efficient immune response.

187

188

189 **Material and Methods**

190 *COVID-19 patients.* Formalin fixed paraffin embedded (FFPE) samples including samples of
191 oesophagus, stomach, duodenum, ileum, colon, lung and spleen were obtained from 9 patients
192 who died with severe COVID-19. Sex, age, body mass index (BMI), symptoms at admission,
193 time to death and some laboratorial parameters are described in Supplementary Table 1.

194

195 *Pre-pandemic negative samples.* A *post-mortem* ileal sample obtained from a patient with
196 metastatic lung adenocarcinoma and 3 surgical resections of ileum and spleen obtained from
197 anonymous donor's pre-pandemic were used as COVID-19⁻ controls.

198

199 *RT-qPCR.* Total RNA was extracted from 10 μ m- sections of FFPE tissues using a commercial
200 kit (High pure FFPET RNA isolation kit, Roche, Cat.6650775001) and resuspended in 25 μ l
201 final volume. RT-qPCR reactions were performed with Taq-ManTM Fast virus 1-step master
202 mix (ThermoFisher Scientific, Cat. 4444436) and primer-probe sets targeting SARS-CoV-2
203 nucleocapsid (N1 set) and human RNase P (CDC 2019-Novel Coronavirus (2019-nCoV) RT-
204 PCR diagnostic panel (Centers for Disease Control and Prevention, Cat. 2019-nCoVEUA-01).

205

206 *Immunohistochemistry (IHC).* 5 μ m- sections of FFPE tissues on SuperFrost Plus adhesion
207 slides (ThermoScientific, Cat. 10149870) were deparaffinized using 3 solutions of absolute m-
208 xylene or HistoClear II histology (SLS, Cat. NAT1334), rehydrate in 90%, 80%, 70% ethanol
209 solutions and DPBS (ThermoFisher, Cat.14190169). After then, the slides were immersed in
210 an antigen retrieval solution pH 9.0 (Agilent Dako, S236784-2) and kept in a pressure cooker
211 for 2 minutes. The cells into tissues were permeabilized in a 0.1%Tween20 solution for 5
212 minutes. The blocking, staining with primary and secondary antibodies were realized according
213 to the manufactures of the following IHC kits: Mouse and rabbit specific HRP/DAB IHC

214 detection Kit micro-polymer (Abcam, Cat.ab236466) and ImmPRESS[R] Duet double staining
215 kit anti-rabbit AP/anti-mouse HRP (Vector laboratories, Cat.mp7724). Anti-SARS-CoV-2
216 spike antibody, targeting the S2 subunit, and anti-SARS-CoV-2 nucleocapsid (1:300) antibody
217 were acquired from Insight Biotechnology (Cat. GTX632604) and BioserverUK (Cat.BSV-
218 COV-AB-13), respectively. Anti-CD68 was obtained from Cell signalling (Cat. 7643T). All
219 samples were stained with haematoxylin.

220

221 *Antibodies.* Antibodies conjugated with metals were acquired from Fluidigm and the catalogue
222 numbers are displayed in Supplementary Table 2. Anti-CD11c, anti-CD45RB, anti-CD103,
223 and anti-ACE2 were labelled in house with metals using commercial kits (MaxPar labelling
224 Kits, Fluidigm) according to the manufacturer's instructions. All the antibodies used were
225 validated by IHC.

226

227 *Imaging mass cytometry.* Deparaffinization, rehydration, antigen retrieval and
228 permeabilization were the same as described previously. After permeabilization, unspecific
229 epitopes were blocked in a solution made of 10%BSA, 0.1%Tween20, 1:20 Human TryStain
230 FcX (Biolegend, Cat. 422301) and 1:20 Kiovig (5mg/ml solution, Baxter). The samples were
231 incubated in a wet chamber with the antibody cocktail overnight and washed in DPBS plus
232 Tween 0.1%. The nuclei were stained with a 1 μ M solution of Cell-IDTM Intercalator- Ir
233 (Fluidigm, Cat.201192B) in DPBS. Finally, the samples were desalinized in milli-Q water and
234 were kept in a dry place protected from any sources of oxidation until the tissue ablation. The
235 tissues were visualized under a light microscope and after choosing a region of interest (where
236 the lymphoid tissue was present), data was acquired on a Hyperion imaging system coupled to
237 a Helios Mass Cytometer (Fluidigm) tuned with 3 element tuning slide, at a laser frequency
238 mean of 200Hz and 6dB power.

239

240 *Imaging mass cytometry analyses.* The acquired images were visualized in histoCAT(15) and
241 segmented using Bodenmiller's group pipeline (<https://doi.org/10.5281/zenodo.3841961>). The
242 data was normalized in GraphPad Prism software v9.0 (GraphPad Software, Inc., La Jolla, CA)
243 and cell populations defined in R studio according to the MSI parameters (Supplementary
244 Figures 3-5). The x and y nuclear localization coordinates of all cells were plotted and the
245 follicle cells or white pulp cells were selected using a custom R script to manually draw around
246 the follicle or white pulp following the B cells signal visualized in histoCAT (Supplementary
247 Figure 6). The % of area occupied by the follicle was determined in Image J (version 1.0 for
248 Mac OS X) using the image selected in R studio. The follicular area was converted in mm² by
249 taking the size of the total ablated area and the % of area occupied by the follicle.

250

251 *Statistics.* Analyses were performed using GraphPad Prism software v9.0 (GraphPad Software,
252 Inc., La Jolla, CA). Data are reported as mean \pm SEM. Comparisons were undertaken using
253 Kruskal-Wallis followed by Dunn's post-test or Mann Whitney t-test. $P < 0.05$ was considered
254 significant.

255

256 **Author Contributions**

257 J.S. supervised the study. J.S. S.N. and S.C.T. conceived the study and contributed to
258 experimental design. S.C.T., S.P., L.M., J.G.M., K.T., C.B. performed the experiments. S.C.T.,
259 F.S., N.P. and M.P. analysed the data. J.S. and S.C.T. interpreted data and wrote the
260 manuscript. S.N, A.G. and M.S.H. provided critical intellectual input.

261

262

263

264 **Funding**

265 This study was supported by UK Research and Innovation (UKRI) and the National Institute
266 of Health Research (NIHR) via the UK Coronavirus Immunology Consortium. This research
267 was also funded/supported by the National Institute for Health Research (NIHR) Biomedical
268 Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College
269 London and/or the NIHR Clinical Research Facility. The views expressed are those of the
270 author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and
271 Social Care.

272 Human samples used in this research project were obtained from the Imperial
273 College Healthcare Tissue Bank (ICHTB). ICHTB is supported by the National Institute for
274 Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare
275 NHS Trust and Imperial College London. ICHTB is approved by Wales REC3 to release
276 human material for research (17/WA/0161), and the samples for this project (give approved
277 project number R20044) were issued from sub-collection reference
278 number MED_MO_20_011: Covid 19 Post Mortem Research.

279

280 **Acknowledgements**

281 We thank Professor Mathew Brown for his intellectual input and for allowing us to use
282 his laboratory facilities. We also acknowledge Kishan Joshi for supporting the acquisition of
283 samples studied.

284

285 **References**

286

287 1. Wang C, Xu J, Wang S, Pan S, Zhang J, Han Y, et al. Imaging Mass Cytometric
288 Analysis of Postmortem Tissues Reveals Dysregulated Immune Cell and Cytokine
289 Responses in Multiple Organs of COVID-19 Patients. *Front Microbiol*.
290 2020;11:600989.

291 2. Ferrando-Vivas P, Doidge J, Thomas K, Gould DW, Mouncey P, Shankar-Hari M, et
292 al. Prognostic Factors for 30-Day Mortality in Critically Ill Patients With Coronavirus
293 Disease 2019: An Observational Cohort Study. *Crit Care Med.* 2021;49(1):102-11.

294 3. Parasa S, Desai M, Thoguluva Chandrasekar V, Patel HK, Kennedy KF, Roesch T, et
295 al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With
296 Coronavirus Disease 2019: A Systematic Review and Meta-analysis. *JAMA Netw
297 Open.* 2020;3(6):e2011335.

298 4. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, et al. Virological
299 assessment of hospitalized patients with COVID-2019. *Nature.* 2020;581(7809):465-9.

300 5. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution
301 of antibody immunity to SARS-CoV-2. *Nature.* 2021;591(7851):639-44.

302 6. Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, Mahajan VS, et al. Loss
303 of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19.
304 *Cell.* 2020;183(1):143-57 e13.

305 7. Morbe UM, Jorgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, et al. Human
306 gut-associated lymphoid tissues (GALT); diversity, structure, and function. *Mucosal
307 Immunol.* 2021;14(4):793-802.

308 8. Turner JR. Intestinal mucosal barrier function in health and disease. *Nat Rev Immunol.*
309 2009;9(11):799-809.

310 9. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, et al. Alpha 4
311 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin
312 MAdCAM-1. *Cell.* 1993;74(1):185-95.

313 10. Fu H, Jangani M, Parmar A, Wang G, Coe D, Spear S, et al. A Subset of CCL25-
314 Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer.
315 *Front Immunol.* 2019;10:271.

316 11. Hu S, Yang K, Yang J, Li M, and Xiong N. Critical roles of chemokine receptor CCR10
317 in regulating memory IgA responses in intestines. *Proc Natl Acad Sci U S A.*
318 2011;108(45):E1035-44.

319 12. Junt T, Scandella E, and Ludewig B. Form follows function: lymphoid tissue
320 microarchitecture in antimicrobial immune defence. *Nat Rev Immunol.*
321 2008;8(10):764-75.

322 13. Koethe S, Zander L, Koster S, Annan A, Ebenfelt A, Spencer J, et al. Pivotal advance:
323 CD45RB glycosylation is specifically regulated during human peripheral B cell
324 differentiation. *J Leukoc Biol.* 2011;90(1):5-19.

325 14. Goteri G, Lucarini G, Zizzi A, Costagliola A, Giantomassi F, Stramazzotti D, et al.
326 Comparison of germinal center markers CD10, BCL6 and human germinal center-
327 associated lymphoma (HGAL) in follicular lymphomas. *Diagn Pathol.* 2011;6:97.

328 15. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al.
329 histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry
330 data. *Nat Methods.* 2017;14(9):873-6.

331 16. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik:
332 interactive machine learning for (bio)image analysis. *Nat Methods.* 2019;16(12):1226-
333 32.

334 17. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al.
335 CellProfiler: image analysis software for identifying and quantifying cell phenotypes.
336 *Genome Biol.* 2006;7(10):R100.

337 18. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al.
338 Comprehensive Integration of Single-Cell Data. *Cell.* 2019;177(7):1888-902 e21.

339

340 19. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition
341 reflects disease severity and dysfunctional immune responses in patients with COVID-
342 19. *Gut*. 2021;70(4):698-706.

343 20. Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, et al. Serum IgA, IgM, and IgG
344 responses in COVID-19. *Cell Mol Immunol*. 2020;17(7):773-5.

345 21. Gustafson CE, Higbee D, Yeckes AR, Wilson CC, De Zoeten EF, Jedlicka P, et al.
346 Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell
347 development during human infancy. *Mucosal Immunol*. 2014;7(3):467-77.

348 22. Muller TM, Becker E, Wiendl M, Schulze LL, Voskens C, Volkl S, et al. Circulating
349 Adaptive Immune Cells Expressing the Gut Homing Marker alpha4beta7 Integrin Are
350 Decreased in COVID-19. *Front Immunol*. 2021;12:639329.

351 23. Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, et al. Human
352 mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal
353 tract and associated lymphoid tissue. *Am J Pathol*. 1997;151(1):97-110.

354 24. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, et al. A
355 dynamic COVID-19 immune signature includes associations with poor prognosis. *Nat
356 Med*. 2020;26(10):1623-35.

357 25. Manhart N, Vierlinger K, Habel O, Bergmeister LH, Gotzinger P, Sautner T, et al.
358 Lipopolysaccharide causes atrophy of Peyer's patches and an increased expression of
359 CD28 and B7 costimulatory ligands. *Shock*. 2000;14(4):478-83.

360 26. Fazal N, and Al-Ghoul WM. Thermal injury-plus-sepsis contributes to a substantial
361 deletion of intestinal mesenteric lymph node CD4 T cell via apoptosis. *Int J Biol Sci*.
362 2007;3(6):393-401.

363 27. Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, Seow J, et al. Peripheral
364 immunophenotypes in children with multisystem inflammatory syndrome associated
365 with SARS-CoV-2 infection. *Nat Med*. 2020;26(11):1701-7.

366 28. Shankar-Hari M, Fear D, Lavender P, Mare T, Beale R, Swanson C, et al. Activation-
367 Associated Accelerated Apoptosis of Memory B Cells in Critically Ill Patients With
368 Sepsis. *Crit Care Med*. 2017;45(5):875-82.

369 29. Almansa R, Martin S, Martin-Fernandez M, Heredia-Rodriguez M, Gomez-Sanchez E,
370 Aragon M, et al. Combined quantification of procalcitonin and HLA-DR improves
371 sepsis detection in surgical patients. *Sci Rep*. 2018;8(1):11999.

372 30. Zheng D, Liwinski T, and Elinav E. Interaction between microbiota and immunity in
373 health and disease. *Cell Res*. 2020;30(6):492-506.

374

375

376 **Figures legends**

377

378 **Figure 1. Identification of SARS-CoV-2 in tissue samples along the GI tract. (A-C)**

379 Evaluation of SARS-CoV-2 presence using RT-qPCR in different FFPE samples from 9
380 COVID-19 deceased patients and 4 pre-COVID patients used as controls. Dots represent the
381 viral RNA level from each sample and were coloured by patient. The lines represent the median

382 values *per* organ (B) or patient (C). (E) IHC for SARS-CoV-2 spike and nucleocapsid proteins
383 in an ileal sample from patient 20.8 showing the virus presence in the epithelium (panel on the
384 left) and sub-mucosal macrophages (panels on the right). Scale bar for image on the left:
385 100 μ m. Sale bars for images on the right: 20 μ m. The dashed line delimitates the GALT.

386

387 **Figure 2. Peyer's patches (PP) from COVID-19 patients lose germinal centre.** (A-B) IHC
388 for CD45RB (brown) and CD10 (red) in ileal FFPE samples from COVID-19 patients with
389 different local levels of SARS-CoV-2 viral RNA. Images on the top show the whole sections
390 and ileal follicles are highlighted in each of the bottom images. The images on the left represent
391 a sample from one control; the images in the middle represent a sample from a COVID-19
392 patient with high local levels of viral RNA; and the images on the right represent a COVID-19
393 patient with low local levels of viral RNA. (B) CD10:CD45RB area ratio. Data is shown as
394 mean \pm SEM. (n=4 controls and 9 patients). Two tailed Mann-Whitney t test. *P<0.05. (C)
395 Representative images from histoCAT showing CD3 (green), CD20 (magenta), E-cadherin
396 (orange) and CD68 (white) signals in ileal samples. (D) Representative images from histoCAT
397 showing CD45RB (magenta) and BCL6 (green) signals in PP follicle on the left, and mean
398 BCL6 signals in T and B cells on the right. Data is shown as mean \pm SEM. (n=4 controls and 5
399 patients). Kruskal-Wallis followed Dun's post-test in D. *P<0.05.

400

401 **Figure 3. Enhanced relative numbers of macrophages in ileal follicles in Peyer's patches**
402 **(PP) of COVID-19 patients.** (A-C) Percentages of follicular T and B cells, CD4 $^{+}$, CD8 $^{+}$ and
403 CD4 $^{+}$ FoxP3 $^{+}$ T cells in ileal Peyer's Patch (PP) from COVID-19 $^{-}$ and COVID-19 $^{+}$ patients.
404 (D) Representative images from histoCAT showing CD4 (green), CD8a (blue), FoxP3 (red)
405 and CD20 (magenta) signals in PPs. (E) Representative images from histoCAT showing CD68
406 (white), CD14 (green) and CD16 (magenta) signals in PPs on the left, and mean CD68 signals

407 on the right. (F) Percentages of follicular CD14⁺, CD16⁺ and CD14⁺CD16⁺ cells from CD68⁺
408 cell population. Data is shown as mean \pm SEM. (n=4 controls and 5 patients). Kruskal-Wallis
409 followed Dun's post-test in D and two tailed Mann-Whitney t test in E. *P<0.05.

410

411 **Figure 4. Decreased T and B cell interaction in ileal follicles in Peyer's patches (PP) of**
412 **COVID-19 patients.** (A) Representative images from histoCAT showing nuclear density in
413 ileal follicles in Peyer's Patch (PP) from COVID-19⁻ and COVID-19⁺ patients on the left; and
414 mean data on the right. (B) Dot-plots showing the interaction between T and B cells in ileal
415 follicles. (C) Percentages of different cellular types in follicles from each control and COVID-
416 19⁺ patient. CD3CD20N: T and B cell neighbours. UC: unclassified cells. (D) Representative
417 images from histoCAT showing CD3 (green) and CD20 (red) merged signals (yellow) on the
418 left the mean of proportions of CD3CD20 neighbours (CD3CD20N) on the right. Data is shown
419 as mean \pm SEM. (n=4 controls and 5 patients). Mann-Whitney t test in A and D. *P<0.05.

420

421 **Figure 5. Decreased memory and antigen-presenting B cells in ileal follicles in Peyer's**
422 **patches (PP) of COVID-19 patients.** (A) Representative images from histoCAT showing
423 CD27 (green) and CD20 (red) in ileal follicles in Peyer's Patch (PP) from COVID-19⁻ and
424 COVID-19⁺ patients on the top. The percentage of CD27⁺CD20⁺ cells and mean signal of
425 CD27 in B cells on the bottom. (B) Representative images from histoCAT showing CD74
426 (green) and CD20 (red) in ileal follicles on the top. The percentage of CD74^{hi}CD20⁺ cells and
427 mean signal of CD74 in B cells on the bottom. (C) Representative images from histoCAT
428 showing CD74 (green) and CD20 (red) in white pulp from spleen on the left. The percentages
429 of CD74^{hi}CD20⁺ cells and mean signal of CD74 in B cells on the right.

430

431 **Figure 6.** Schematic depicting the microanatomical features identified in ileal *post mortem*
432 samples from patients who died with COVID-19: depletion of the germinal centre (GC) in the
433 Peyer's patches, enhanced numbers of follicular macrophages, decreased interaction between
434 B and T cells, fewer CD27⁺ memory B cells and lower expression CD74 on B cells.

435

436 **Figures**

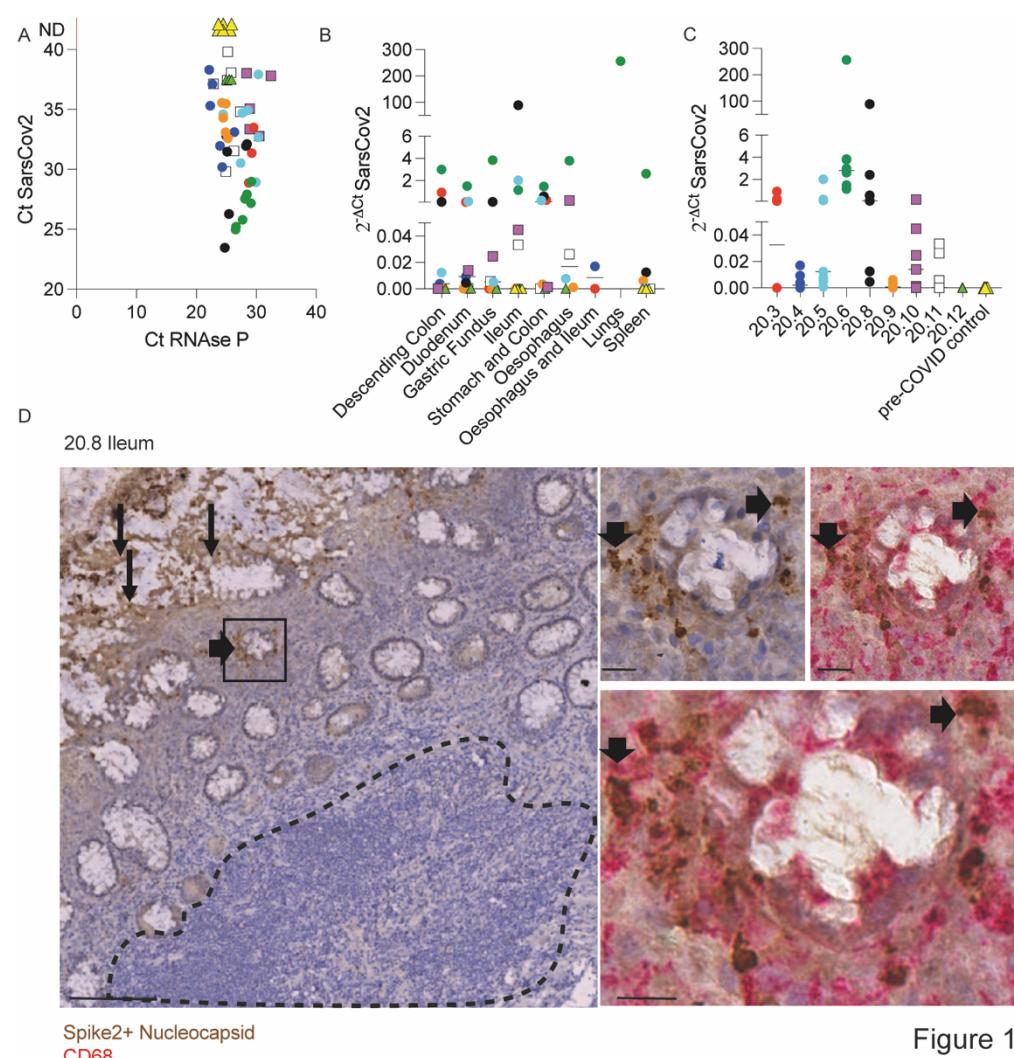
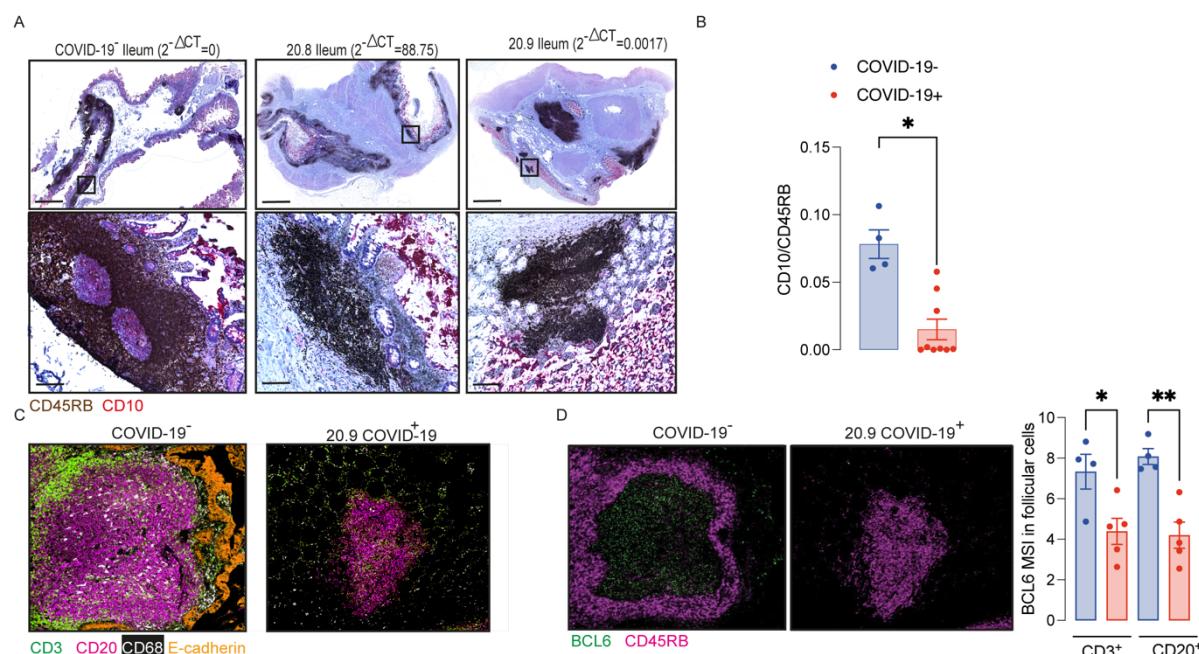
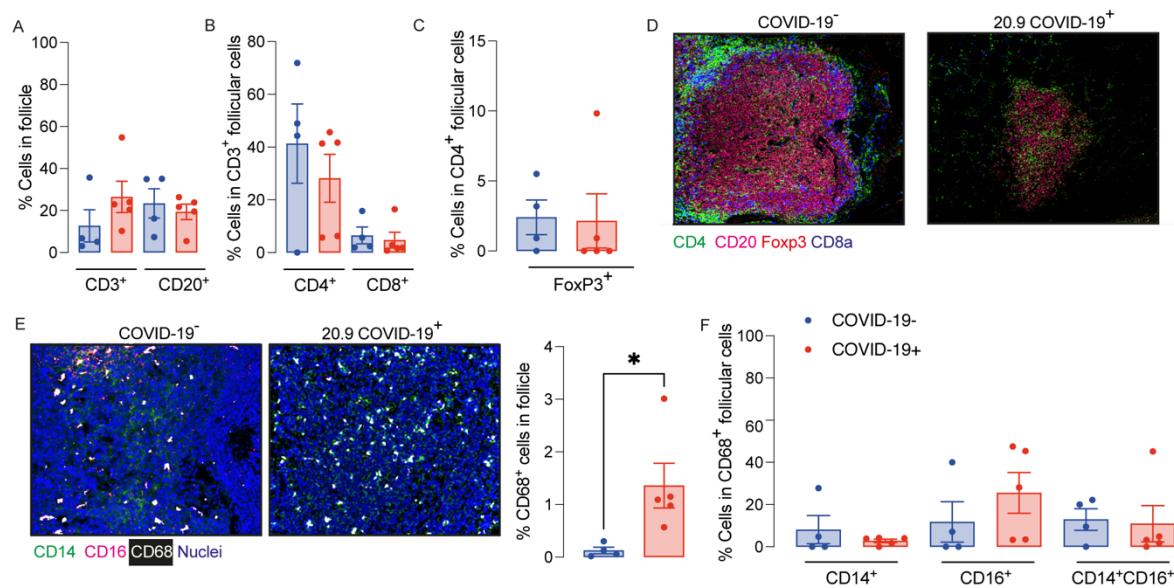
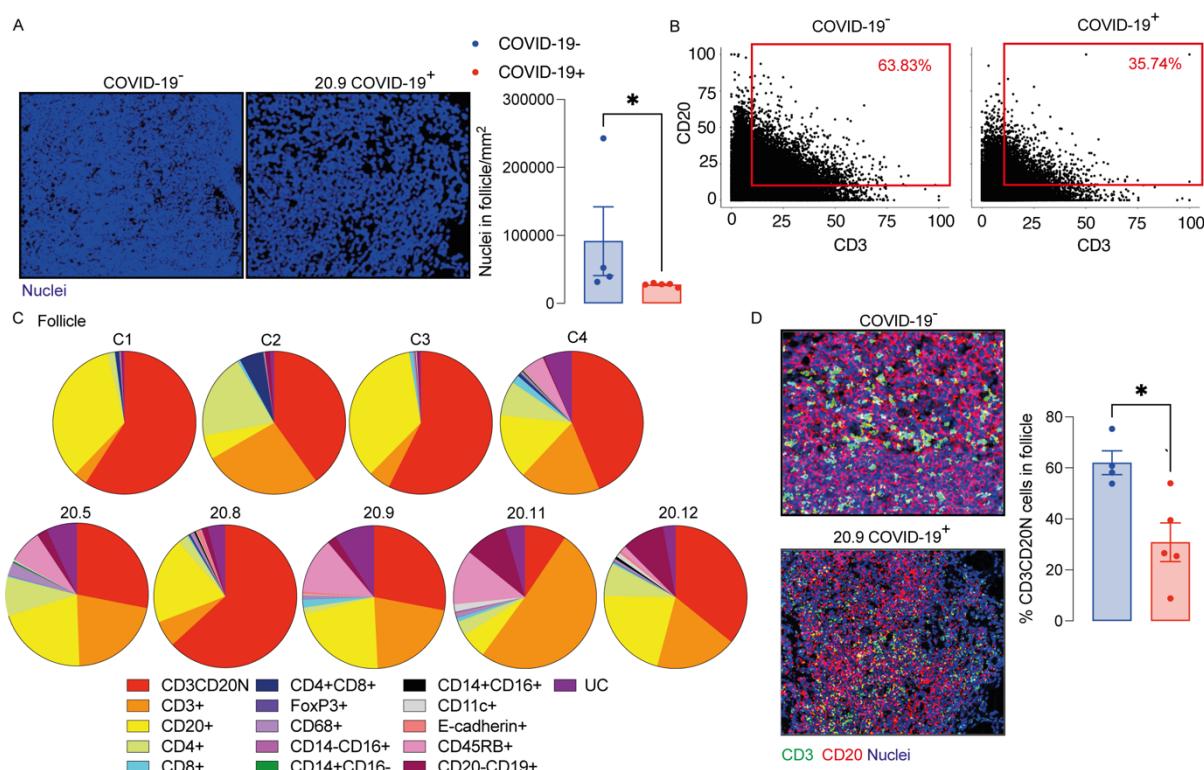



Figure 1

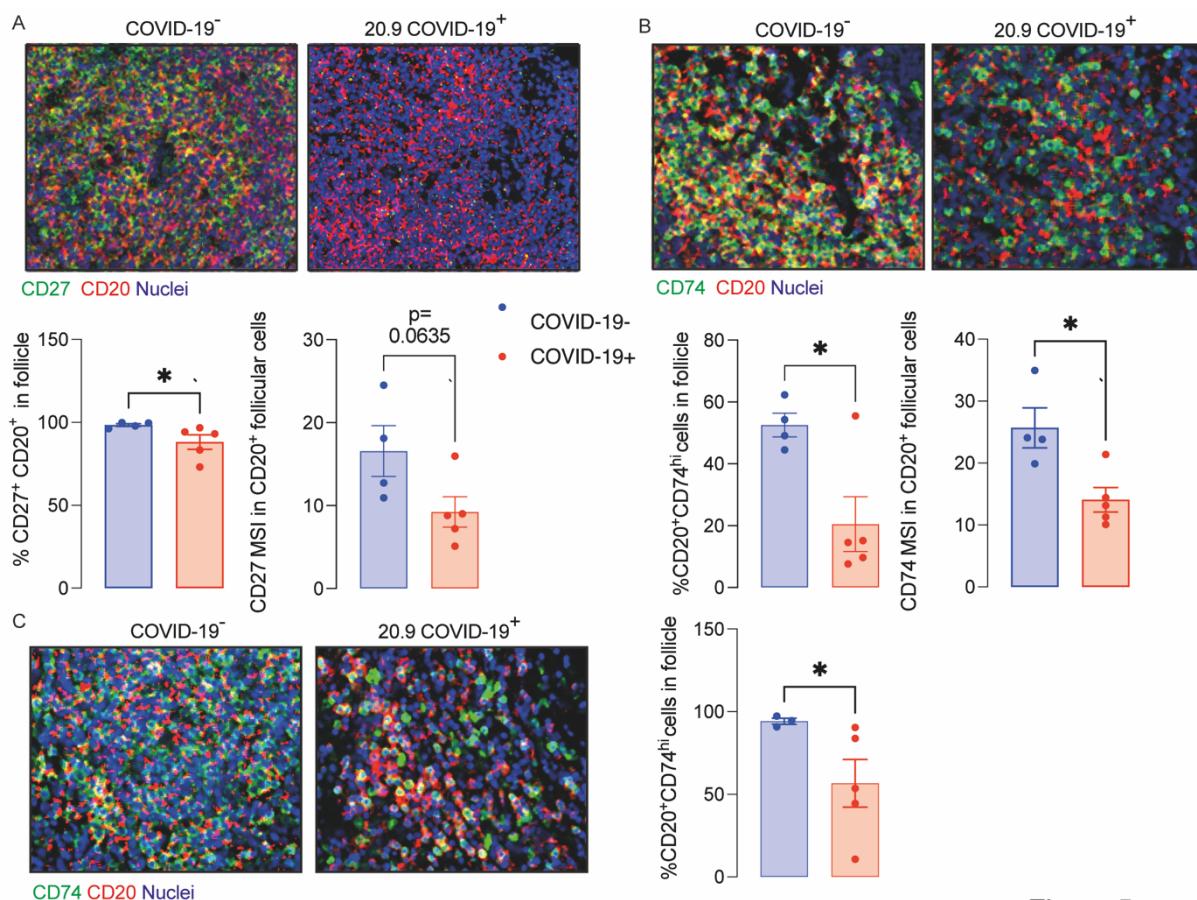
437

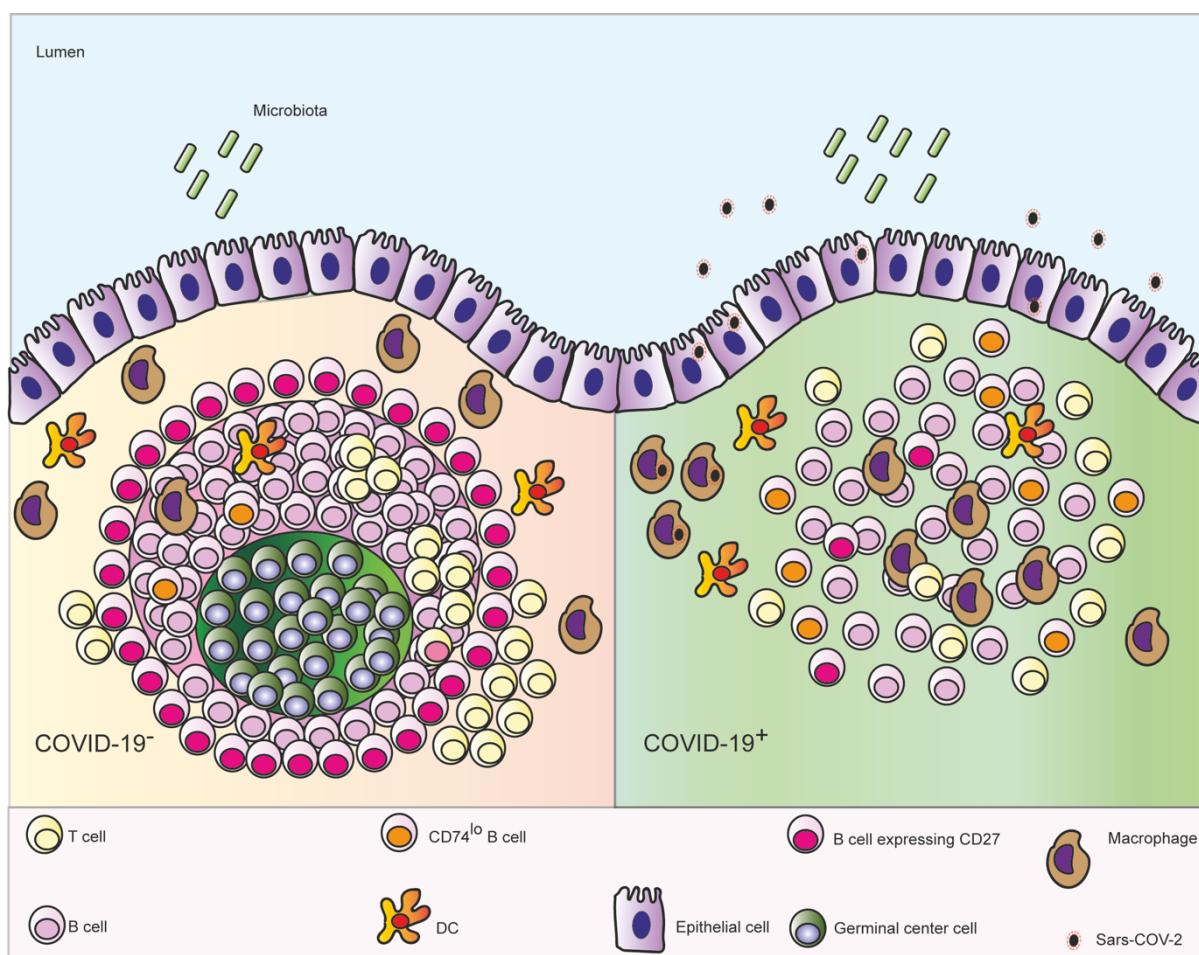

438 **Figure 1. Identification of SARS-CoV-2 in tissue samples along the GI tract. (A-C)**
439 Evaluation of SARS-CoV-2 presence using RT-qPCR in different FFPET om 9
440 COVID-19 deceased patients and 4 pre-COVID patients used as controls. Dots represent the
441 viral RNA level from each sample and were coloured by patient. The lines represent the median

442 values *per* organ (B) or patient (C). (E) IHC for SARS-CoV-2 spike and nucleocapsid proteins
443 in an ileal sample from patient 20.8 showing the virus presence in the epithelium (panel on the
444 left) and sub-mucosal macrophages (panels on the right). Scale bar for image on the left:
445 100 μ m. Scale bars for images on the right: 20 μ m. The dashed line delimits the GALT.


446
447 **Figure 2. Peyer's patches (PP) from COVID-19 patients lose germinal centre. (A-B) IHC**
448 for CD45RB (brown) and CD10 (red) in ileal FFPE samples from COVID-19 patients with
449 different local levels of SARS-CoV-2 viral RNA. Images on the top show the whole sections
450 and ileal follicles are highlighted in each of the bottom images. The images on the left represent
451 a sample from one control; the images in the middle represent a sample from a COVID-19
452 patient with high local levels of viral RNA; and the images on the right represent a COVID-19
453 patient with low local levels of viral RNA. (B) CD10:CD45RB area ratio. Data is shown as
454 mean \pm SEM. (n=4 controls and 9 patients). Two tailed Mann-Whitney t test. *P<0.05. (C)
455 Representative images from histoCAT showing CD3 (green), CD20 (magenta), E-cadherin
456 (orange) and CD68 (white) signals in ileal samples. (D) Representative images from histoCAT
457 showing CD45RB (magenta) and BCL6 (green) signals in PP follicle on the left, and mean

458 BCL6 signals in T and B cells on the right. Data is shown as mean \pm SEM. (n=4 controls and 5
459 patients). Kruskal-Wallis followed Dun's post-test in D. *P<0.05.


460


461 **Figure 3. Enhanced relative numbers of macrophages in ileal follicles in Peyer's patches**
462 **(PP) of COVID-19 patients.** (A-C) Percentages of follicular T and B cells, CD4⁺, CD8⁺ and
463 CD4⁺FoxP3⁺ T cells in ileal Peyer's Patch (PP) from COVID-19⁻ and COVID-19⁺ patients.
464 (D) Representative images from histoCAT showing CD4 (green), CD8a (blue), FoxP3 (red)
465 and CD20 (magenta) signals in PPs. (E) Representative images from histoCAT showing CD68
466 (white), CD14 (green) and CD16 (magenta) signals in PPs on the left, and mean CD68 signals
467 on the right. (F) Percentages of follicular CD14⁺, CD16⁺ and CD14⁺CD16⁺ cells from CD68⁺
468 cell population. Data is shown as mean \pm SEM. (n=4 controls and 5 patients). Kruskal-Wallis
469 followed Dun's post-test in D and two tailed Mann-Whitney t test in E. *P<0.05.

470

471 **Figure 4. Decreased T and B cell interaction in ileal follicles in Peyer's patches (PP) of**
472 **COVID-19 patients.** (A) Representative images from histoCAT showing nuclear density in
473 ileal follicles in Peyer's Patch (PP) from COVID-19⁻ and COVID-19⁺ patients on the left; and
474 mean data on the right. (B) Dot-plots showing the interaction between T and B cells in ileal
475 follicles. (C) Percentages of different cellular types in follicles from each control and COVID-
476 19⁺ patient. CD3CD20N: T and B cell neighbours. UC: unclassified cells. (D) Representative
477 images from histoCAT showing CD3 (green) and CD20 (red) merged signals (yellow) on the
478 left the mean of proportions of CD3CD20 neighbours (CD3CD20N) on the right. Data is shown
479 as mean \pm SEM. (n=4 controls and 5 patients). Mann-Whitney t test in A and D. *P<0.05.

