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Abstract

Quaternary climate fluctuations can affect biodiversity assembly through speciation in two
non-mutually-exclusive ways. aglacial species pump, where isolation in glacial refugia
accelerates allopatric speciation, and adaptive radiation during ice-free periods. Here we
detected biogeographic and genetic signatures associated with both mechanismsin the
generation of the European Alps biodiversity. Age distributions of endemic and widespread
species within aguatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and
flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric and
mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient,
suggesting preglacia radiation with limited range expansion and local Pleistocene survival,
perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of
Pleistocene age, and are thus more consistent with the glacial species pump. The lack of
evidence for Holocene adaptive radiation in the terrestrial biome may be attributable to a
faster range expansion of these taxa after glacial retreats, though fewer stable environments
may also have contributed to differences between terrestrial areas and lakes. The high
proportion of young, endemic species make the Alps vulnerable to climate change, but the
mechanisms and consequences of species loss will likely differ between biomes because of
their distinct histories.

Keywords: Time for speciation, Allopatric speciation, Adaptive radiation, Pleistocene
refugia, Glacia species pump, European Alps

1. Background

Immigration, speciation and extinction are the three main processes underlying the assembly
of biodiversity in island-like habitats [1-4]. The relative contribution of these processes
depends on size, isolation and fragmentation of the region, ecosystem or habitat. For instance,
immigration rates decrease with increasing isolation, extinction rates decrease with increasing
area, and rates of in situ speciation increase with both area, isolation, and fragmentation
[1,2,5-7]. The occurrence and interaction of these processes over geological history leave
strong imprints in the contemporary structure of regional and local species assemblages,
including phylogenetic structure and relatedness. The species age distribution, and the nature

and degree of endemism are some of the resulting biodiversity features [8].

Some of the mechanisms that can lead to endemism are through cladogenetic speciation, i.e.,

when an ancestral species divergesinto two or more derived species within an island,
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archipelago or geographic region, or through anagenetic speciation, when alocal or regional
population or set of populations diverges from its progenitors outside the island, archipelago
or region [3]. Recent cladogenetic and anagenetic speciation both result in neoendemic
species, which are young species with geographically restricted distributions. Moreover, if
cladogenetic and anagenetic speciation are the main processes behind regional biodiversity
assembly, aregional biota can be composed of many relatively young and closely related
species. Non-endemic species, in turn, are generally more widespread because they either
have immigrated to the focal region from the outside after range expansion or they have
arisen in the focal region and had time to spread beyond it. Such non-endemic species are
also expected to be older, according to the ‘age and area’ hypothesis [9], which predicts that
older species have had more time to disperse and hence become geographically more
widespread, whereas younger species often are still confined to smaller ranges. However, the
‘age and area’ hypothesis assumes biome stability (including climatic stability) and does not
consider factors other than age that could in fact have strong effects on species range sizes.
For instance, population extirpation or local extinction [10], the presence and movement of
physical or climatic barriersin space and time [11], changes in habitat size through time,
variation between lineages in the ecological versatility and evolutionary adaptability of
species[12], variation in species dispersal ability [13,14] and ecological interactions [15] can
all be important predictors of species range size in addition to species age. The interaction of
these factors can explain, for instance, why some species, despite being so old, are
geographically narrowly confined in the present time (geographical relicts or paleoendemics)
[16].

Physically rugged mountain landscapes at lower and intermediate latitude, such as those of
the Alpine bioregion of Europe (hereafter the European Alps), are hotspots of biodiversity
and endemism [17-19]. In such environments, endemism and species radiations arise through
the interaction of dispersal limitation with steep ecological gradients and often archipelago-
like habitat structures [20—23]. In the European Alps, multiple terrestrial taxa have undergone
local radiations leading to the emergence of endemic clades in several groups such as
flowering plants [24-26] or butterflies [27,28]. Furthermore, some of the largest endemic
radiations in European freshwater habitats also took place in or around the Alps, especially
for amphipods [29-32] and fish [33,34]. Importantly, these radiations occurred in habitats
that are geographically isolated from similar habitats el sewhere, but surrounded by less

isolated habitats, containing diverse assemblages of widely distributed taxa. For example,
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mountai n-tops surrounded by lowlands, or permanently cold, deep lakes isolated from other

such lakes by the seasonally relatively warm, shallow flowing water of rivers.

The climatic and habitat instability driven by the Quaternary climate fluctuations [35] has
interacted evolutionary and ecological processes to shape biodiversity in the Alps [34,36-41].
This includes influences on speciation, extinction and immigration of lineages, and the
reshaping of species abundance, range distribution, richness and genetic diversity patterns
[42—44]. An important fraction of biodiversity in the Alpsis due to recently colonizing
species that immigrated into the region from far away (such as central Asia), or expanded
their range from adjacent regions but have not yet speciated in the area. On the other hand,
endemic biodiversity may have emerged through two alternative, non-exclusive mechanisms
both driven by the succession of glacial—interglacial cycles: (1) the glacial species pump
[45,46], and (2) adaptive radiation during interglacial periods (hereafter adaptive radiation)
[47] (figure 1). The glacial species pump is aprocess in which alopatric speciation is
accelerated viatheisolation of small populationsin glacial refugia. It operates when the
expansion of glaciers makes large areas of a species' range unavailable, but leaves isolated
pockets of suitable habitat (figure 1b; Hewitt 2000; Hewitt 2004; Holderegger and Thiel-
Egenter 2009; April et al. 2013). It can therefore be expected that glacial pump creates
assemblages composed of many species that originally emerged in allopatry (figure 1c) but
might have come into secondary contact more recently (figure 1€). Therole of refugiain
promoting species persistence and in glacial vicariant speciation has been widely reported for

multiple extant European taxa, both animals and plants [36,37,e.g. 50-53].

After each glacial maximum, the retreat of glaciers opens up new, unoccupied habitat in both
terrestrial and aquatic ecosystems, which may lead early colonists to diversify in situ via
adaptive radiations [54] (figure 1b). Adaptive radiation takes place when an ancestor
diversifies ecologically and phenotypically, giving risein arelatively short period of time, to
multiple species that are ecologically distinct [55]. Emblematic examples of adaptive
radiation during inter- or postglacial periods are associated the emergence of many lakesin
the Holarctic realm by the end of the last glacial period, providing opportunities for many
radiations of freshwater fish that occurred in parallel [33,34,47,56-59]. Such process would
be expected to generate sympatric or parapatric species by in situ cladogenetic speciation
[23]. In addition, postglacial expansion of populations also has the potential to bring together
lineages that had previously diverged in Pleistocene refugia [60]. Secondary contact of
lineages can also be important in adaptive radiation, either through causing ecol ogical
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character displacement in sympatry occurring in response to competition [55] (Schluter
2000, or through the occurrence of hybridization which may facilitate the onset of adaptive
radiations upon colonization of new environments [61,62]. This *hybrid swarm origin’
hypothesis of adaptive radiation posits that functional genetic variation, which becomes
enriched in hybrid zones, elevates the evolvability and response to natural selection in hybrid
populations [61,63].

Despiteits large information content for investigating hypothesis regarding biodiversity
assembly and to understand biogeographic patterns in species distributions [64], few studies
have made use of the species age distribution (SAD) [41,65,66], and fewer had investigated
SAD from a multi-taxon perspective [8,67]. We conducted a comparative phylogenetic
analysis to quantify SADs and the extent and type of endemism in aguatic and terrestrial
ecosystems of the European Alps. Our work focuses on several taxonomic groups.
amphipods, fish, butterflies and amphibians with nearly complete taxon sampling, aswell as
15 nearly completely sampled representative genera of perennial flowering angiosperms
plants (henceforth “plants”). We predicted that SADs support a scenario with dominance of
the glacial species pump for the origin of endemism in terrestrial groups, with species dating
to the Pleistocene; whereas SADs may indicate a prominent role of postglacial adaptive
radiation for groups that depend on open water habitats, i.e., fish. Thisis because high
altitude ranges in the terrestrial habitats became fragmented but not completely erased during
glacial maxima, whereas year-round open water bodies as habitat for fish were entirely absent
during glacial maxima, with afew exceptions at the edge of the southern Alps [68]. We also
predicted that SADs of both amphipods and amphibians will resemble fully terrestrial taxa
more than those of fish. Amphipods occupy both open and subterranean freshwater habitats,
and some of the subterranean habitats persisted during the glacial maxima [69], and most
amphibians require open water bodies only during spring and summer and are terrestrial for
the remainder of the year, while some lack an aquatic life stage altogether [70]. Therefore,
some amphibian species likely found Pleistocene refugia within the Alpine region during the
glacial maxima[71,72]. Regarding non-endemic species, we did not expect large differences
in age structure among taxa because non-endemics tend to be widespread, are probably
mostly older and diversified on a wider geographical scale drive by processes thamay have
been decoupled from the climate dynamics of the Alps. Therefore, we predicted that non-
endemic species are older on average than endemics. Because dispersal ability, distance

between sink (new habitats that become available after glacial maxima) and sources of
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colonization, historical stability and heterogeneity of habitat occupied vary between the
taxonomic groups, the magnitude of the difference in species ages between non-endemic and

endemic species will be taxon-dependent.

2. Methods

Our work focuses on the European Alps, following previous delimitations of European high
mountain systems [ 73] but including the peripheral lowland areas, where most of the
perialpine glacial lakes are located. To select the taxonomic groups to be included in this
work, we looked for lineages with reliable distribution data, robust dated phylogenetic trees
that include most of the diversity of the given lineage, and/or genetic data for most of the
recognized species, so that we could estimate and calibrate phylogenetic trees where none
existed. Then, we chose five major taxonomic groups to represent the terrestrial and aguatic
apine and pre-alpine biomes of the region: nearly all known regional species of amphipods,
fishes, amphibians and butterflies, and 14 nearly completely sampled clades of flowering
plants (Homogyne, Petasites, Tussilago, Campanula, Jasione, Phyoplexis, Knautia,
Androsace, Primula, Soldanella, Gentiana, Saxifraga, Carex and Festuca). Only species
native to the European Alps were considered. To assemble species age distributions (stem
age, i.e., time since divergence from closest relative in million years, Ma), we combined

published time-trees and our own estimates (electronic Supplementary M ethods).
(8 Endemism and speciation mode

Species were considered endemic if they naturally occur only in the alpine and/or perialpine
regions of the Alps. When a species was classified as endemic, we assigned its speciation
mode to anagenetic speciation (Alpine species diverged from its non-Alpine sister species,
but did not undergo in situ diversification) or cladogenetic speciation (Alpine species
emerged through in situ diversification, with either the non-endemic sister being native to the
region too, or the two or more sister species all being Alpine endemics), following Rosindell
and Phillimore (2011) (electronic supplementary material, tables S1). To apply these
definitions, we first identified the position of each of the endemic species within the
phylogeny (electronic supplementary material, file S2). Then, if the endemic species was
nested within a clade composed mainly of species that occur outside of the Alps, and its
direct sister species occurred only outside the Alps, we assumed anagenetic speciation. If the
species was nested within a group mostly of species native to the Alps, we assumed

cladogenetic speciation.
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194 (b) Comparisons of species age distributions

195  We performed multiple permutation tests on the distribution of age estimates assembled from
196 all the species to identify differences in the age distributions among and within major clades.
197  Here, we asked 1) whether age distributions differed between endemic and non-endemic

198  gpecies, overall and within each taxonomic group independently; 2) whether species age

199  distributions differed among taxonomic groups; 3) whether non-endemic species age

200 didtributions differed among groups; and 4) whether endemic species age distributions

201 differed among groups. When a difference was significant, if asignificant result was found,
202  we performed post-hoc pairwise permutations to identify which distribution and taxonomic
203  group (or groups) were distinct from one another, using Bonferroni correction for each group
204  of analyses. These analyses were performed using the function ‘oneway_test’ of the library
205 ‘coin’ [74] in R4.0.2 1106 [75] with 10,000 resamples with a distribution approximated via
206 Monte Carlo resampling.

207 3. Results

208 A total of 617 species were included in our analyses: 39 amphipods, 124 fishes, 31

209  amphibians, 245 butterfly and 178 plant species (electronic supplementary material, table

210 S1). Approximately half of all fish and amphipod species were found to be endemic to the
211  European Alps (45.2 % and 49 %, respectively), whereas smaller fractions of 12 %, 13 % and
212 30 % of the butterflies, amphibians and plants, respectively, were found to be endemic (figure
213  2). Our analysis of speciation mode suggests that approximately half of the endemic

214  amphipods and plants, and one third of butterfly species emerged by cladogenesis (53 %, 52
215 % and 36 %, respectively). Cladogenesis was also inferred to be the mode of speciation for
216 the mgority of the endemic amphibian and fish species (75 % and 98 %, respectively) (figure
217 2).

218 Wefound that 94 % of the extant speciesthat now occupy the Alps, irrespective of endemism
219  status, emerged over the past 15 million years (from the Middle Miocene) (figure 2).

220  Endemics were overall younger than non-endemics (p-value < 0.0001), which was also true
221  for each taxonomic group when analysed individually (electronic supplementary material,
222  table S9). We found the species age distributions among non-endemic species to be similar
223  between taxonomic groups (figure 2), with most of the species ages spanning the Late

224  Pleistoceneto Early Miocene (90 % fell between 0.3 and 20 Mya). The only exception was

225  the comparison of plants vs. amphibians, as we found non-endemic amphibians older than
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non-endemic plants (p < 0.0001; electronic supplementary material S10). SADs of endemic
species were also similar among taxa (90 % fell between 0.25 and 8 Ma), except for fish,
which are younger than any other group (90 % fell between 0.6 and 114 Ky; p < 0.0001;
figure 2; electronic supplementary material S11).

We observed the following patterns in the SAD: i) endemics are younger than non-endemics
in all taxonomic groups, and ii) there is ahigh degree of similarity among taxain the age
distributions when endemics and non-endemics are analysed separately. However, we found
on one hand that while most endemic fish species arose in the Holocene through
cladogenesis, very few endemic butterflies and no endemic species in the other groups arose
in the Holocene. On the other hand, only very few endemic fish (all from the southern
periphery of the Alps) date to the Pleistocene whereas most of the endemic butterflies and

many other endemic species date do.

4. Discussion

Inferring past evolutionary process from the structure of current biodiversity is one of the
goals of macroecology, macroevolution and biogeography. Species age distributions among
regional biotais one informative aspect of this structure [64]. We combined estimates of
Species origination times with information on endemism and mode of speciation
(cladogenetic vs. anagenetic) to investigate the dominant mechanisms of biodiversity
assembly in different taxa and major biomes of the European Alps. We found that most of the
species diversity in fish, amphipods, amphibians, butterflies and plants is relatively young,
emerging at the beginning in the Middle Miocene, which coincided with the period of
maximum geological uplift in the region that culminated with the formation of the Alps [76].

Our multi-taxon comparative analysis had the advantage of directly comparing independently
evolving and ecologically distinct clades in the same region. It showed that speciation timing
was dramatically different between terrestrial taxa and those aquatic taxa that require
permanent open surface water (i.e., fish). While 80 % of the Alp’s endemics in the terrestrial
groups originated between the Late Miocene and Late Pleistocene, most endemic fish species
arose only after the final retreat of the glaciers and re-establishment of permanent open water
bodies in the formerly glaciated areas. Combined with the observation that the vast majority
of endemic fish are products of cladogenetic speciation, this suggests that the assembly
process of the fish fauna of the Alps is dominated by an interaction between colonization

from outside the region and adaptive radiation during the last postglacial period, but similar
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processes may have cyclically repeated themselvesin previous interglacial periods,
alternating with extinction during glacial maxima. In contrast, for the terrestrial groups, our
results suggest that colonization from outside the region and the glacial species pump are the
dominant mechanisms, as anagenetic speciation was more important in these taxa, and
endemic richness assembled throughout the Pleistocene. Interestingly, we observed some
postglacial speciation in butterflies, coinciding with the major mode in fish, but being
dwarfed in butterflies by the much larger Pleistocene mode. We suggest that general, non-
exclusive mechanisms underlay these contrasting patterns: 1) Quaternary climate fluctuations
that accelerate allopatric speciation during cold stages but open up new ecological
opportunities for adaptive radiation during interglacial periods; 2) variation among groupsin
their dispersal ability and associated rate of range expansion, and finally 3) the influence of
variation in seasonal and inter-annual habitat stability in either constraining or promoting
adaptive radiation. Below we discuss each of these mechanisms and how they may have
affected diversification in the different taxa studied here.

(& Therole of Quaternary climate fluctuations

We suggest our finding that most endemic fish are of postglacial origin, while endemicsin
other groups arose in the Pleistocene or earlier, is explained by the different effects that the
Quaternary climate oscillations had on freshwater versus terrestrial habitat [68]. Permanent
open surface water habitats, as required by fishes, were absent in the glaciated parts of the
Alps during the Last Glacial Maximum (LGM), because all 1akes and river valleys were
covered by thick glaciers. Therefore, the complete lack of endemic fish species older than
20,000 years on the northern and western flanks of the Alpsislikely dueto local extirpation
of all fish populations across the region during the LGM. With the progressive retreat of
glaciers, which achieved their modern configuration in the Late Holocene, fish would then
have returned to the region from areas located in downstream sections of the large rivers, that
were often far from the alpine region especially on the North face of the Alps[e.g. 77]. This
Holocene recolonization by older widespread species explains the large fraction of old,

widespread and non-endemic fish species in the northern and western Alpine region.

The first fish to colonize after the LGM were probably species adapted to cold water

conditions, such as salmonids und sculpins, that would have lived nearby in the rivers of the
Pleistocene tundra downstream of the Alpine glacier shield. Salmonids are indeed known for
their remarkable colonizing ability and rapid establishment in postglacial freshwater habitats
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[78]. These fish would have encountered ecological opportunitiesin the emerging large and
deep lakes of the region and radiated into many distinct species as they adapted to the vacant
niches associated with distinct lacustrine zones. This process likely generated the young
endemic species, nowadays predominantly in three lineages, whitefish (Coregonus [79]), ,
chars (Salvelinus [80]) and sculpins (Cottus [34]), that have rapidly radiated in periapine
lakes. The very few old, relic endemic fish speciesin the region that date to prior to the
Holocene, are the lake herring Alosa agone, and two trouts of the genus Salmo (S carpio and
S sp. ‘Blackspot’). These three species are endemic to lakes in Northern Italy and southern
Switzerland, a region where probably not all lakes were fully covered by ice sheets during the
LGM [68]. Therefore, these species likely originated during earlier interglacials, when
southern perialpine lakes would have become extensive, and then found refugia during the
LGM to persist to the present day [81]. That there are no young postglacial species among the
non-endemic fish is perhaps due to insufficient time and connectivity between lakes to allow
new species to arose in deep lakes elsewhere in Europe (e.g., in northern Germany and
Scandinavia) in the Holocene prior to expanding their range into the Alps or vice-versa. It is
important to mention that adaptive radiation of fish are far more frequent in deep lakes
[82,83], while riverine adaptive radiations are rare (but see [84-86]).

Unlike for fish, our analysis revealed that al endemic (and all nonendemic) amphipods, the
second fully aquatic taxon in our data, emerged during or before the Pleistocene. This could
be because amphipods can persist in smaller water bodies than fish, and many speciesin this
group are ice-associated, being able to survive under ice cover and in its immediate forefield
[87]. Both factors would have allowed some species to persist in the region throughout the
glaciations. Additionally, as suggested for other invertebrates [69], some species likely
survived in subterranean refugia, such as caves or groundwaters, habitats occupied by many
freshwater amphipod species today, notably species of Niphargus, the most species-rich
group in the region [29,32].

We found that endemic speciesin the terrestrial groups are much older than endemic fish
species. Pleistocene refugia are hypothesized for terrestrial taxain many geographically
restricted areas on nunataks, i.e, mountain peaks that have never been glaciated [88], or
surrounding the Alps [41,89-92], such that extinctions during the glacial cycles did not wipe
out the terrestrial fauna entirely. It is very likely that terrestrial organisms, particularly
butterflies [41,93], plants [94-96] and amphibians [71,72] survived in glacial refugiain the
Alps and at its periphery. Therefore, differential impacts of Quaternary climate fluctuations
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and the resulting glaciations on different habitats and taxa go along way helping to explain

extant patterns of diversity and endemism in the region.
(b) Dispersal ability to explain postglacial radiation

Dispersal ability often negatively correlates with rapid niche evolution. The evolutionary
response to local environmental and ecological conditions tends to be faster in taxa with
limited dispersal, leading to faster niche shifts and higher rates of speciation and adaptive
radiation [97,98]. Therefore, the intriguingly few cases of postglacial speciation in fully
terrestrial species and amphibians could be related to the dispersal rates imposed by the
environments they occupy. Terrestrial taxa experience, in general, less dispersal limitation
than freshwater taxa. For example, many species have acquired adaptations for aerial
dispersal, such as active flying in butterflies [99,100] or passive airborne propagation in
many plants [101], allowing such taxato disperse virtualy in all directions. Conversely,
freshwater-bound taxa need to navigate the dendritic landscapes of rivers and lakesto
disperse, making it alot more difficult to reach isolated habitat patches [102,103]. Given
these limitations to dispersal for many freshwater taxa, postglacial dispersal may have
happened at a much slower pace in fish than for most terrestrial taxa. Terrestrial species may,
hence, have expanded their ranges faster after glacial retreat, also likely facilitated by the
proximity of refugiato the Alps (including inner-al pine refugia), resulting in faster
recolonization of the newly open landscape through long-distance dispersal and range
expansion. Some recent studies have shown that many plant species rapidly and substantially
expanded their range during the recent postglacial period [104-106]. Faster filling of
emerging terrestrial habitats through range expansion left fewer opportunities/less time for
the first colonists to undergo ecological speciation and adaptive radiation in response to
ecological opportunity among terrestrial groups than among aquatic taxa. To test the relative
importance of dispersal limitation versus other aquatic/terrestrial differences, future work
could investigate mainly aguatic taxa with strong aerial dispersal abilities, such as Odonata
and other insects that spent most of their life cycle in freshwater and have short but highly
dispersive terrestrial adult phases.

(c) Seasonal and interannual environmental variation limiting ecological speciation

Habitat stability in the Postglacial Era may have been an additional factor explaining the
larger number of Holocene speciation eventsin fish, but not in terrestrial groups in our study.

Theory and models suggest that environmental fluctuations and stochasticity can reduce or
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even inhibit ecological speciation in unstable habitats [107,108]. Rapid variationin
environmental conditions, both seasonal and interannual, make adaptation difficult and

ecological speciation nearly impossible.

Environmental conditions in terrestrial ecosystems are much more variable than aguatic
ecosystems [109,110], especially large and deep lakes, both in terms of seasonal and year-to-
year variation. For instance, whereas seasonal variations in solar irradiance, temperature and
snow cover make the high mountain terrestrial habitat extremely seasonal, with large year-to-
year variation in the onset and duration of seasons [111,112], they are nearly constant through
the year in the deeper parts of lakes[113,114]. The longer growing and reproductive season,
despite low productivity, and the much more stable environment in deep lakes may create
increased opportunities for ecological speciation and adaptive radiation compared to the
alpineterrestrial ecosystems.

In addition, despite their greater temporal stability, deep lakes al'so have much steeper
environmental gradients because pressure, light and temperature all change much faster with
depth in water than with elevation in the terrestrial realm. This unique property of water may
explain the high frequency of ecological speciation in deep lakes, with sister-species being
gpatially very close to each other but occupying different water depths [58], as observed
among East African cichlids [115] and Alpine whitefish [116].

5. Final considerations

We suggest that the formation of the unique biota of the European Alps was driven by
interacting mechanisms: non-random Pleistocene survival, postglacial immigration, vicariant
speciation during glacial maxima and adaptive radiation in the Postglacial. These interacting
mechanisms left distinct imprints on the age structure of regional assemblages in different
biomes and associated taxon groups. Historical factors (Quaternary climate fluctuations and
Pleistocene refuge availability) impacted freshwater and terrestrial biomes in different ways,
and contemporary ecological factors such as environmental stochasticity and dispersal
limitations also vary between these biomes, shaping them very differently through ecological
and evolutionary processes. In situ speciation and adaptive radiation were prominent in fish,
but occurred mainly after the LGM, and only in deep lakes, likely due to the unavailability of
suitable freshwater habitat during the LGM and the stable conditions within habitats after the
LGM. Amphipods and all terrestrial clades have much older endemic species, perhaps

because their ecology (i.e., cold-resistant and groundwater-dwelling in amphipods) and the
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availability of Pleistocene refugiawithin the region allowed many species to survive the
LGM. At the same time, none of the terrestrial groups generated many young postglacial
species, likely because higher Pleistocene survival and faster postglacial niche filling through
range expansion left fewer ecological opportunities and because larger seasonal variation in

the terrestrial environment places constraints on ecological speciation.

Knowing the history of biodiversity formation is crucial to establish effective strategies of
conservation [117]. For the Alps we show a high fraction of endemism in many groups, with
endemic species having survived in some taxa and ecosystems through repeated glacial
cycles, while those in others are due to prolific speciation after the retreat of the glaciers.
These results improve our understanding of how the Alpine hotspot of species diversity and
endemism emerged, and they reinforce that biodiversity in thisregion is fragile. Endemic
species are often range-restricted, show limited population size and are hence much more
vulnerable to climate change and other environmental changes than non-endemic species
[118], and because of that, they are of high concern for conservation. Even a comparatively
small and transient disturbance of an ecosystem can lead to the extinction of young species
that evolved in adaptation to specific ecological conditions as has aready been observed in
the recent past for adaptive radiations of fish in Swiss lakes [116]. The sharp increase of
extinction rates driven by human activity in the Anthropocene threatens the biodiversity of
the European Alps, and especially that of endemic species [119]. Therefore, this region
deserves greater attention to conserve both the regional biodiversity, as well as the eco-
evolutionary processes that gave riseto it and that are required to continue operating if

biodiversity is to be maintained.
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Figure captions

Figure 1. Evolutionary and ecological history of a hypothetical biodiversity assembly in an
apine-like system. A) Biodiversity in a preglacial phase. B) Early glacial phase: glacial
periods erase freshwater habitats and fragment the terrestrial biome. Some populations
survivein refugiaand C) can diverge into distinct species through allopatric speciation. D)
The retreat of glaciers opens up new, unoccupied habitats offering ecological opportunities

for colonizers. E) Some colonizers undergo adaptive radiation and niche spaceis filled up

again.

Figure 2. Species age distribution (SAD) of endemic and non-endemic species of, from top
to bottom, amphibians, amphipods, butterflies, fish and flowering plants. Pie charts show the
proportion of endemic and non-endemic species as well as the proportion of endemic species

that have emerged through cladogenetic or anagenetic speciation.

23


https://doi.org/10.1101/2021.12.17.472935
http://creativecommons.org/licenses/by-nc/4.0/

A Preglacial

ttps://doi.org/10.1101/2021.12.17.472935; this version posted December 2!
d by peer review) is the author/funder, who has granted bioRxiv a license t
av%bl un -BY-NC 4.0 International license

v R NYY vyt
@ e

B Early glacial

Nunatak refugia

SN\

i "\
™, | N
~\A‘—/N

Peripheral refugia

C Late glacial

Allopatric speciation

S

)

V*\

D Early Postglacial

Colonization A Colonization
Local range
expansion .
*\

v v

E Late Postglacial

PR 1 N
A ‘;) M e Arq.i

I. I s
\ Adaptive radiation /v

B



https://doi.org/10.1101/2021.12.17.472935
http://creativecommons.org/licenses/by-nc/4.0/

Density

Pldistocene

Pleistocene

Plaistocene

10

0.02
Estimated time since divergence (Ma)



https://doi.org/10.1101/2021.12.17.472935
http://creativecommons.org/licenses/by-nc/4.0/

