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Abstract 
 
Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have 
received considerable attention. While the technical advances spearheaded by the Human Connectome 
Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data 
should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the 
dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique 
dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and 
angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-
the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP 
scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we 
show that simple pre- and post-processing strategies can improve the accuracy and robustness of many 
tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, 
branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope 
that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods. 
 
Keywords: Validation; Tractography; Anatomic tracing; Diffusion MRI; White matter anatomy. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.472836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.472836
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction  
 
Diffusion MRI (dMRI) tractography allows us to image brain pathways in vivo and non-invasively, and is 

thus a useful tool in a variety of research and clinical settings. However, it relies on indirect measurements 

of axonal orientations extracted from the dMRI signal, which can lead to errors in the reconstructed 

pathways. Possible sources of these errors, as identified by early studies, included uncertainty in the signal 

due to imaging noise1 and crossing fibers2. These issues motivated the effort to improve the signal-to-

noise ratio (SNR), as well as the spatial and angular resolution of dMRI. The Human Connectome Project 

(HCP) sought to address these needs by developing scanners with ultra-high gradients, which allowed 

higher b-values to be acquired without sacrificing SNR, and accelerated dMRI sequences, which enabled 

higher angular and spatial resolution with shorter acquisition times3,4. These developments made multi-

shell dMRI data prevalent. In parallel, orientation reconstruction methods were adapted to make better 

use of such data5–9.  

These advances in data acquisition and analysis improved our ability to resolve crossing fibers 

within a voxel10,11 and allowed us to reconstruct white-matter circuitry in greater detail than previously 

possible12,13. However, it is unclear which analysis methods maximize the anatomic accuracy of the 

pathways that can be reconstructed from these state-of-the-art acquisition protocols. Given the large 

amounts of HCP-style, multi-shell data that are now publicly available3,14–16, and the plethora of methods 

for pre-processing, orientation reconstruction, and tractography that can be applied to these data, it is of 

critical importance to compare these methods with respect to objective metrics of anatomic accuracy.  

Anatomic tracing in non-human primates (NHPs) can be used to assess the accuracy of 

tractography in the brain17. It allows us to reconstruct the complete trajectories of axon bundles from a 

tracer injection site to their destinations throughout the brain. The majority of previous studies that 

compared dMRI tractography to anatomic tracing were limited to single-shell dMRI data18–24. 

Furthermore, the majority of such studies only considered the end points of the fiber bundles, and not 

their complete trajectory23–28. That is because they did not have dMRI and tracer data from the same 

brains, hence they relied on connectivity matrices from existing tracer databases. 

The IronTract Challenge is the first open tractography challenge to be conducted on high-

resolution, densely sampled brain dMRI data. This allowed us to evaluate tractography accuracy for two 

widely adopted sampling schemes: multi-shell and Cartesian-grid. We leveraged a unique collection of 

NHP brains, where both anatomic tracer injections and ex vivo dMRI had been performed29–31. The 

availability of dMRI and tracer data in the same brains allowed us to evaluate the accuracy of tractography 

not only at the end points of the axon bundles but along their trajectory in the white matter. This is the 
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only way localize exactly where tractography algorithms go wrong, which is a necessary step towards 

determining why they go wrong, and therefore how to improve them. 

The IronTract Challenge also differed from previous tractography challenges in terms of its design. 

Participants submitted results with a wide range of tractography thresholds. When methods are 

compared only at their default thresholds (e.g., 19,22,32), they differ in terms of both sensitivity and 

specificity, and it is impossible to disentangle the effect of the threshold and the effect of the algorithm. 

Our design allowed us to circumvent this issue and to compare algorithms in terms of their sensitivity at 

the same level of specificity. 

A previous validation study used data only from the training case of this challenge and performed 

a systematic comparison of a small number of q-space sampling, orientation reconstruction, and 

tractography methods, in all their permutations29. The IronTract Challenge expands the scope of our prior 

validation studies in two major ways. First, challenge participants chose a much wider range of state-of-

the-art orientation reconstruction and tractography methods. Second, the addition of the validation case, 

which involved an injection in a different anatomical location and fibers following very different 

trajectories than the training case, allowed us to compare the robustness of the methods to the location 

of the seed region.  

 The IronTract Challenge was administered in two rounds (https://irontract.mgh.harvard.edu). 

The first round was organized in the context of the 2019 international conference on Medical Image 

Computing and Computer-Assisted Intervention. Preliminary results from the first and second rounds      

were presented, respectively, at the 2020 and 2021 annual meetings of the International Society for 

Magnetic Resonance in Medicine33,34. In the first round, two teams outperformed all others, achieving 

both high accuracy and robustness to the location of the seed region. This motivated the second round, 

where all participants revisited their analyses, replacing their pre- and post-processing steps with those 

of the two high-performing teams. This allowed us to investigate the extent to which performance was 

dependent on the pre- and post-processing vs. the orientation reconstruction and tractography methods. 

The outcomes of this effort, as detailed below, include (i) practical recommendations for users of HCP-

style, multi-shell dMRI data, who are interested in methods for analyzing these data that maximize 

anatomical accuracy, and (ii) insights on the fundamental failure modes of tractography for method 

developers, who are interested in potential avenues for improving these methods. 

 

Results 

Outline of the Challenge  
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Both rounds of the IronTract challenge followed the outline shown in Figure 1. In vivo tracer injections 

and ex vivo dMRI scanning were performed on two macaque brains. The dMRI data, acquired on a 

Cartesian grid, were resampled onto the two-shell of the HCP acquisition protocol16 (See Methods for 

details). We will refer to these datasets as diffusion spectrum imaging (DSI) and HCP respectively. The 

organizing team uploaded the data to the QMENTA platform (https://qmenta.com/irontract-challenge/) 

and the challenge teams could download them along with the tracer injection sites in the dMRI space. 

Each team analyzed the data with methods of their choice (Methods, Analysis of dMRI data by challenge 

participants). In round 1, this included image pre-processing, orientation reconstruction, tractography, 

and tractogram post-processing. In round 2, the pre- and post-processing steps were standardized across 

all teams. Each team produced tractograms with a range of thresholds and uploaded them to the QMENTA 

platform. A receiver operating characteristic (ROC) analysis was performed on the fly. The true positive 

rate (TPR) and false positive rate (FPR) were computed by voxel-wise comparison with the tracer. A partial 

area under the curve (AUC) was calculated, for which the maximum possible AUC score was 0.3 (Methods, 

ROC analysis). For the training case, participants were shown their score and were allowed to repeat data 

analysis and upload of results. Thus, participants tuned their analysis pipelines to maximize their score on 

the training case. Finally, they applied the optimized pipeline to the data from the validation case. The 

organizing team computed AUC scores on the validation case and used them for the final ranking of the 

challenge teams.  

 

 
Figure 1. Overview of the IronTract Challenge. Data from two monkey brains, one with an injection in the anterior 
frontal cortex and one with an injection in the vlPFC, served as the training and validation case, respectively. Ex vivo 
dMRI data were acquired for both brains on a Cartesian grid (515 directions, bmax = 40,000 s/mm2) and resampled 
via NUFFT on the two shells of the HCP lifespan acquisition scheme, with b-values adjusted for ex vivo dMRI (93 
directions with b=6000 s/mm2, 92 directions with b=12,000 s/mm2). Participants downloaded data and uploaded 
results on the QMENTA platform. For the training case, they received a score, allowing them to optimize their 
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tractography pipeline. The optimized pipelines were then applied to the validation case for the final scores. In round 
2, this procedure was repeated, but the pre- and post-processing (blue boxes) were standardized across teams.  
 

Round 1 results (variable pre- and post-processing) 

Out of 30 registered teams, 12 completed the challenge (total submissions: 227; training: 186; validation: 

38) and 16 final submissions were ranked. A detailed list is reported in Supplementary Table 1.   

 

 
Figure 2. Round 1 results. A) ROC curves are shown for each submission. Results are shown for the training case 
(left) and validation case (right), and for the HCP (solid lines) and DSI (dashed line) acquisition schemes. B) Bar plots 
show the AUC score for each submission for the training case (blue) and validation (green) case, and for HCP and DSI 
sampling schemes. C) AUC scores are shown by acquisition scheme, orientation reconstruction method, and 
tractography propagation method for the training case (top) and the validation case (bottom). Rumba-SD = robust 
and unbiased model-based spherical deconvolution35; CSD= constrained spherical deconvolution38; M-CSD = multi-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.472836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.472836
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

shell multi-tissue CSD6,39; 3Comp = three compartment model40; ASI = asymmetry spectrum imaging41; GQI = 
generalized Q-ball imaging42; RL= Richardson Lucy43, RDSI = radial diffusion spectrum imaging44,45.  
 

Overall, results from round 1 showed that, in both training and validation cases, no submission could 

achieve high TPR without also generating a large number of false positives (Figure 2A).  Most submissions 

achieved TPRs higher than 0.8 only at FPRs higher than 0.2. Almost all submissions achieved higher 

accuracy in the training case (mean AUC=0.20) than in the validation case (mean AUC=0.16). Three teams 

only (Teams 1, 2, 6) obtained similar accuracy across datasets, with even higher accuracy for the validation 

case (Figure 2B). The AUC score of two of these three teams (Teams 1,2) was considerably higher (AUC > 

0.23) than all other submissions (AUC ≤ 0.18) in the validation case. The overall highest score (AUC = 0.27) 

was obtained by Team 1, with a combination of the Robust and Unbiased Model-BAsed Spherical 

Deconvolution (Rumba-SD) method for orientation reconstruction35 and probabilistic tractography36,37 on 

the DSI data. Methods that used the DSI scheme achieved consistently high accuracy (Figure 2C, left), 

whereas methods that used the HCP scheme varied in their performance. However, the results suggest 

that, if analysis methods can be optimized carefully, the HCP acquisition may approach the accuracy of 

the much more demanding DSI acquisition. While most orientation reconstruction methods performed 

similarly in the training case, Rumba-SD35 outperformed the other submissions in the validation case 

(Figure 2C, center). Finally, probabilistic tractography approaches achieved overall higher accuracy scores 

(mean AUC = 0.20) than deterministic ones (mean AUC = 0.15), especially for the validation case (Figure 

2C, right). (See Supplementary Figure 1 for performance by method.)  

 

Sensitivity varies across white matter regions 

We investigated how many of the white matter regions included in the tracer mask were correctly labeled 

by each Submission. To this end, every voxel included in the tracer mask in dMRI space was labeled by AY 

and CM. For the training case, voxels were assigned to one of 8 classes: anterior frontal white matter (AF); 

anterior limb of the internal capsule (ALIC); cingulum bundle (CB); corpus callosum (CC); external capsule 

(EC); medial prefrontal white matter (MPF); lateral prefrontal white matter (LPF); uncinate fasciculus (UF). 

For the validation case, voxels were assigned to one of 10 classes: ALIC; brainstem fibers (BS); commissural 

fibers (CF); CB; CC; EC; extreme capsule (EmC); LPF; thalamic fibers (ThF); UF. Figure 3 shows the TPR of 

each submission at the same specificity level (FPR=0.1) for each of these regions of interest (ROIs). 

Sensitivity was variable across regions, with similar patterns across submissions. In the training case, most 

teams labeled the EC, CC, and MPF correctly, but could reach the UF and CB only partially (Figure 3A).  
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Figure 3. Performance by white-matter region. A) 3D rendering of the tracer mask for the training case, showing 
the location of the coronal slices that are displayed in boxes a, b, and c. The boxes show the main white-matter 
pathways present in the tracing. Boxplots overlaid with scatterplots show the TPR in each bundle for each 
submission, with the HCP scheme (top, light red) and the DSI scheme (bottom, light blue). B) The same results are 
presented for the validation case. All TPRs were evaluated at FPR=0.1. (AF = anterior frontal white matter; 
ALIC=anterior limb of the internal capsule; BS= brainstem fibers; CB = cingulum bundle; CC = corpus callosum; CF = 
commissural fibers; EC = external capsule; EmC = extreme capsule; LPF = lateral pre-frontal white matter; MPF = 
medial pre-frontal white matter; OF = orbitofrontal white matter; ThF = thalamic fibers; UF = uncinate fasciculus). 
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In the validation case, almost all methods could label the UF, EC, and LPF correctly but most of the 

submissions failed to reach regions located at a greater distance from the injection site, like the BF, ThF, 

and ALIC. In the training case several teams achieved similar performance as Team 1. In the validation 

case, however, where fine-tuning with respect to the ground truth was not possible, the performance of 

most teams deteriorated. The best result was achieved by the Rumba-SD model35 and probabilistic 

tractography36,37 on the DSI data (Team 1), which achieved a TPR higher than 0.9 for all the regions. There 

were clear differences in the bundles where errors occurred in the training vs. the validation case. This 

has to do with the fact that fibers starting from the two different injection sites enter these bundles from 

different angles (See Localization of challenging areas). 

 

Round 2 results (standardized pre- and post-processing) 

In round 2 the pre- and post-processing steps were standardized across teams. Participants downloaded 

pre-processed dMRI data from the QMENTA platform and were provided scripts to replicate the post-

processing strategies that had been used by the two teams that had consistently good performance across 

both training and validation cases in round 1. These were: (i) a Gaussian filtering strategy, implemented 

by Team 1 in round 1; (ii) an anatomical ROI strategy, implemented by Team 2 in round 1 (see Methods 

for details). 

Fourteen teams completed round 2 (259 total submission. Training: 105. Validation: 154). Of these, eleven 

also completed round 1, one completed round 1 but submitted results with a different pipeline in round 

2, and two teams were new (Team 13 and Team 14). Some of the teams that had completed round 1 

submitted results with new methods, in addition to regenerating results with the methods that they had 

used in round 1 but with the standardized pre- and post-processing. Fifty final submissions were ranked 

(Supplementary Table 2). 

Results show that the performance of most returning teams improved when compared to round 1, as a 

result of applying the harmonized pre- and post-processing strategies. This improvement was greater for 

the validation case (2%-85%) than the training case (2%-30%) (Figure 4A). As a result, the difference in 

AUC score between the training and validation case decreased substantially in round 2 (Figure 4B). This 

led to many more teams achieving more similar performance between the training and validation case 

(Supplementary Figure 2). At the same FPR = 0.1, all submissions achieved higher TPR than in round 1 

(Supplementary Figure 3). 

 Remarkably, post-processing by Gaussian filtering, which does not assume any prior anatomical 

knowledge, also improved results for most submissions (Figure 4B), leading to a training-validation 

percent difference only slightly higher than the one obtained when using the anatomical ROIs. Only two 
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teams (Team 6 and Team 8) did not show improvement with Gaussian filtering and one of them (Team 8) 

did not show improvement with anatomical ROIs. These improvements allowed most teams to obtain 

higher scores, reducing the difference between their performance and that of Team 1, especially for the 

validation case (Figure 4C). 
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Figure 4. Effect of harmonized pre- and post-processing. A) Boxplots show the percent change in AUC scores 
between round 1 and round 2 for both post-processing strategies (Gaussian filter and anatomical ROIs). Results are 
shown for the training case (blue) and validation case (green), and for the HCP (left) and DSI (right) acquisition 
schemes. B) Difference in AUC scores between the training and validation cases, for round 1 and for each of the two 
post-processing strategies in round 2 (Gaussian Filter and Anatomical ROIs). C) Difference in AUC scores between 
each submission and the score achieved in round 1 by Team 1 for round 1 and the two post-processing strategies in 
round 2. Median percent change is indicated by a horizontal line in each plot. 
 
 
Branching and turning fiber configurations are challenging for tractography 

Figure 8 shows histograms of the number of teams that achieved a true positive (TP) (i.e., voxels included 

both in the tractogram and in the tracer mask) in each voxel of the tracer mask, at FPR = 0.1 (Methods, 

Localization of challenging areas).  

 

 
Figure 5. Number of teams reaching each voxel in the tracer mask. The heat maps are maximum intensity 
projections of the histograms of TPs across teams at FPR = 0.1, for the HCP acquisition scheme. The tracer mask is 
shown in green, under the heat maps. Results are shown for the training and validation case, and for round 1 and 
the two filtering strategies (Gaussian filtering, anatomical ROIs) in round 2. Only submissions that completed both 
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rounds were included. Cyan arrows point to regions where the standardized pre- and post-processing round 2 led to 
improvement with respect to round 1. Violet arrows point to regions that remained challenging in both rounds.  
 

These histograms are shown for round 1 and for each of the post-processing strategies adopted in round 

2. The pre- and post-processing used in round 2 improved the overall coverage of the tracer masks by 

tractography. In the training case, the ALIC, CB, EC were labeled correctly by most teams (Figure 5, top, 

light blue arrows), while only few teams could label these regions in Round 1. The region where fibers 

turn sharply towards the temporal terminations of the UF remained challenging for all teams in both 

rounds (Figure 5, top, violet arrow). In the validation case, the biggest improvement was located where 

fibers coming from the ALIC branch into fibers entering the thalamus and fibers entering a narrow bundle 

of axons projecting down the brainstem. In round 2, more submissions labeled the thalamic fibers 

correctly and achieved improved coverage of the inferior brainstem fibers. Despite this improvement, this 

region continues to pose challenges for most teams (Figure 5, bottom, violet arrow). Like the UF region, 

this branch point is located further away from the injection/seed point than other regions in the tracing 

mask. Therefore, tractography needs to traverse other branching and turning points to get there and, as 

errors accumulate, the number of streamlines that reach these regions is small.  

 

 
Figure 6. Challenging areas for tractography. A) 3D rendering of the tracer and injection site for the training (green) 
and validation (red) cases. Labeled boxes show the location of 2D views presented in B-E. B,C) A map of FPs is shown 
for one representative submission at FPR = 0.1 (red), overlaid by the tracer mask (blue) for the training case. 
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Streamlines follow the ILF, instead of turning into the UF (B). Streamlines continue into the AF instead of fanning 
into the LPF (C). D,E) A map of FPs is shown for one representative submission at FPR = 0.1 (red), overlaid by the 
tracer mask (blue) for the validation case. Streamlines continue in the body of the CC to project contralaterally and 
miss the turn into the superior frontal gyrus (D). Tractography follows paths of lower curvature in the body of the 
CC and in the EC, instead of projecting into the ALIC (E). AF: antero-frontal white matter; ALIC: anterior limb of the 
internal capsule; CC: corpus callosum; EC: external capsule; ILF: inferior longitudinal fasciculus; LPF: lateral pre-
frontal white matter; UF: uncinate fasciculus.  
 

We can better understand the nature of these errors by examining the false positives (FPs) that 

occur around these challenging areas, i.e., the paths that tractography chose to follow instead of the 

correct bundles. We identified two regions for the training case (UF and LPF) and two for the validation 

case (ALIC and EC) where the tracer and tractography trajectories consistently diverged in most 

submissions (Figure 6). We observed that in areas where fibers branch into two bundles, tractography 

tends to follow the least curved of the two and miss the other. Similarly, in areas where fibers take a sharp 

turn but, at the resolution of the dMRI data, overlap with a separate, less curved pathway, tractography 

follows the latter, instead of taking the turn. An example of such configuration is the area where the fibers 

coming from the EC turn towards the UF and the ILF (Figure 6B). Here tractography follows the ILF 

erroneously and fails to reach the UF terminations in the temporal lobe.  

Fanning regions also lead to errors in tractography. In the training case, fibers exiting the injection 

site branch from the main bundle, which is sometimes referred to as the “stalk”, and fan out towards the 

dorsolateral prefrontal cortex. Here tractography follows the main stalk, continuing in the frontal white 

matter and does not turn supero-lateral to then fan into the LPF (Figure 6C). In the validation case, most 

teams showed false negatives (FNs), i.e., voxels included in the tracer mask but not in the tractogram, in 

the supero-frontal projections of the CC (Figure 5). Figure 6D shows that here tractography continues into 

the body of the CC to project to contralateral areas, missing the sharp turn of CC projections to the 

superior frontal gyrus. Another region of the validation case that showed significant FNs across 

submissions was the region where fibers enter the ALIC. Here tractography prefers following the direction 

of least curvature in the CC body and into the big bundle of anterior-posterior fibers stemming from the 

EC, rather than turning into the smaller ALIC (Figure 6E).  

 
 
Sharper diffusion profiles do not always lead to more accurate tractography 

We compared the orientation distribution functions (ODFs) from different submissions in an area that was 

consistently challenging across methods. This was where fibers branched into thalamic and brainstem 

fibers (Figure 7) (Methods, Comparison of orientation distribution functions). All submissions identified 

two fiber populations correctly in the superior part of this region, where fibers branched, and one main 

fiber population in the inferior part, where fibers projected caudally to the brainstem. However, there 
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were differences in the sharpness of the ODFs. Interestingly, the submissions that achieved the highest 

accuracy had somewhat less sharp diffusion profiles in the superior part of the ROI, where the two sets of 

fibers diverge (Figure 7B-D). However, one of the submissions achieving lower accuracy also shows 

somewhat less sharp ODFs (Figure 7O).  

 

Figure 7. Comparison of ODFs across submissions. A) 3D rendering of the tracer mask from the validation case, 
showing the location of the magnification region where thalamic (TH) and brainstem (BS) fibers branch. B-R) ODFs 
for each submission are visualized for the region shown in A. Submissions are ordered based on the AUC score 
obtained for the validation case in round 2. ASI: asymmetry spectrum imaging41; 3CMP: three compartment model40; 
CSD: constrained spherical deconvolution38; DSI: Diffusion spectrum imaging46; M-CSD: multi-shell multi-tissue 
CSD6,39; ML: machine learning-based reconstruction47; RDSI: radial diffusion spectrum imaging44,45; Rumba-SD: robust 
and unbiased model-based spherical deconvolution35. 
 

We quantified the sharpness of the ODFs by computing the dispersion of each peak in each voxel. 

Figure 8 shows plots of the average dispersion in seven ROIs from the training and validation case. We 

selected both regions with complex fiber configurations (UF, CB, CC, EC-IC, TH-BS) and regions that should 

mainly contain single fiber orientations, like the body of the CC (CCb) and BS. Figure 8 shows that, although 

ODF dispersion was not the only factor that determined accuracy, submissions that achieved higher AUC 

scores had less sharp ODFs, especially in regions with turning, fanning, and branching fiber configurations 

(TH-BS, CC, UF). 
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Figure 8. Effect of ODF dispersion and peak orientation on the accuracy of tractography. Bar plots of mean 
dispersion for each submission and each sampling scheme across different ROIs from the training and validation 
cases. For each ROI, teams are ordered along the x-axis based on AUC score for the validation case in round 2. Note 
that, as dispersion affects only methods that sample orientations from ODF, we excluded methods that follow the 
peak orientation exclusively. Training case: CB = cingulum bundle, UF = uncinate fasciculus. Validation case: BS = 
brainstem, CC = corpus callosum, CCb = body of the corpus callosum, EC-IC = external capsule – internal capsule, TH-
BS = thalamus – brainstem. ASI = asymmetry spectrum imaging41; 3CMP = three compartment model40; CSD = 
constrained spherical deconvolution38; DSI = Diffusion spectrum imaging46; ; M-CSD = multi-shell multi-tissue CSD39; 
GRL= generalized Richardson-Lucy48; ML = machine learning-based reconstruction47; RDSI = radial diffusion spectrum 
imaging44,45; Rumba-SD = robust and unbiased model-based spherical deconvolution35. 
 
 
Discussion  

The IronTract Challenge evaluated a variety of state-of-the-art tractography methods on high-angular and 

spatial resolution dMRI data by quantitative voxel-wise comparison to anatomic tracing data in the same 

NHP brains. This effort differed from previous tractography challenges in several ways. First, the dMRI 

acquisition protocol allowed us to evaluate HCP-style and DSI acquisition schemes in real brain data. 

Second, the availability of both dMRI and tracer data in the same brains allowed the precise localization 

of tractography errors and challenging fiber configurations. Third, a training and validation case with 

different injection sites allowed us to evaluate the robustness of submissions across seed areas. Fourth, a 

full ROC analysis allowed us to compare the sensitivity of different methods at the same level of specificity. 

Fifth, by iterating over the results in a second round, where all teams used the same pre- and post-

processing steps, we disentangled the contribution of these steps from that of the orientation 

reconstruction and tractography steps. Our results provide insights into the optimal processing strategies 

for widely available, HCP-style data. They also reveal why errors occur even with these state-of-the-art 

acquisition and analysis techniques, thus pointing to possible areas of improvement for future 

methodological development. 
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The effect of acquisition scheme and propagation method 

We compared an HCP-style, two-shell acquisition scheme with a much more densely sampled DSI scheme. 

Overall, higher accuracy was achieved by methods that used the full DSI data (515 diffusion volumes) 

(Figure 2). However, a few of the methods that used the HCP data approached the accuracy of the DSI 

methods. For methods that could be applied to both schemes, the loss in accuracy when using HCP versus 

DSI data was lower than 10% (Supplementary Table 1, Figure 2). This illustrates that when analysis 

methods are carefully optimized, the two-shell HCP scheme represents an advantageous trade-off 

between accuracy and acquisition time, given that DSI acquisition involves 2.8 times more directions and 

3.3 times higher maximum b-value. Previous validation studies showed that DSI produces more accurate 

fiber orientation estimates both in simulations49 and in comparison to optical imaging measurements50. 

In this study, the most accurate submission was obtained using DSI data. While a full DSI acquisition is 

time-consuming, compressed sensing (CS) allows DSI data to be reconstructed from undersampled q-

space4,51,52. A recent post mortem validation study showed that a CS-DSI protocol with 171 directions 

(similar to the number of directions in the two-shell HCP protocol), preserves the high angular accuracy 

of fully sampled DSI53. Thus, it is a viable alternative that combines the benefits of shell and grid 

acquisitions.  

In regard to the propagation method, we found that probabilistic tractography led to overall 

higher AUC (mean AUC: 0.22) than deterministic tractography (mean AUC = 0.17). This was particularly 

true for the validation case, where pipelines were not optimized with respect to the ground truth (Figure 

2A, 2C). This confirms the overall lower sensitivity of deterministic approaches at the same level of 

specificity28,29. Probabilistic tractography led to better bundle coverage (Supplementary Figure 1,4). Three 

deterministic submissions could not reach all the bundles labeled in the validation case, and the other 

ones did so at a much higher FPR than the probabilistic methods (Supplementary Figure 4). This was 

especially true for white matter regions located further away from the injection site/seed (Figure 3B).  

 

The effect of orientation reconstruction method 

Differences between the ODFs from the various submissions were mostly subtle. Our results suggest that 

there is no simple, one-to-one mapping between ODF characteristics and the accuracy of tractography 

(Figure 8, Supplementary Figure 7). This result is in line with a recent study that found that there is no 

single optimal method for all different fiber configurations54.  

However, the dispersion of the ODFs does seem to play a role. The conventional wisdom is that 

sharper ODFs are better because they help resolve crossing fibers with small inter-fiber angles54. However, 

the ODFs from the winning method (Rumba-SD) showed higher dispersion than ODFs from most of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.472836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.472836
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

other submissions. This was the case in almost all selected ROIs and especially in those that included 

branching, fanning, or turning fibers (Figure 8). Less sharp ODFs, when combined with probabilistic 

tractography, allow a broader range of orientations to be sampled from the same ODF peak. This can be 

beneficial in areas of branching or fanning. Areas where fibers take sharp turns remain a challenge for all 

methods. They can only be resolved by relaxing bending angle thresholds to a degree where the FPR 

becomes prohibitively high. 

In a previous study, we evaluated a different set of tractography methods on the dataset that we 

refer to as the training set here29. We observed the highest accuracy from the combination of probabilistic 

tractography with GQI, a reconstruction method that does not produce particularly sharp ODFs. The 

performance of probabilistic GQI in that study (TPR < 0.7 at FPR = 0.1) was lower than the performance of 

probabilistic Rumba-SD in the present study (TPR = 0.74 at FPR = 0.1). However, it may be worth revisiting 

the probabilistic GQI approach with the optimized pre- and post-processing methods of the IronTract 

Challenge.  

 

The effect of pre- and post-processing  

In the second round of the challenge, we investigated the extent to which the pre- and post-processing 

strategies had contributed to the higher robustness achieved by teams 1 and 2 in the first round. When 

the remaining teams used the same strategies, accuracy improved for almost all submissions (Figure 4). 

This improvement was higher for the validation than the training case, i.e., the accuracy of tractography 

became more robust to the location of the seed region. More specifically, accuracy improved in some 

regions that proved challenging in round 1 (Figure 5).  

While we did not study the effects of the pre- and post-processing separately, prior work studied 

the effects of some pre-processing steps on the accuracy of diffusion orientation estimates49. They found 

that denoising improved orientation accuracy up to 30%–40%. Approximately half of the teams had 

applied denoising in round 1 and only four teams had performed eddy-current correction. These steps 

were included in the standardized pre-processing of round 2. 

The improved accuracy obtained with the use of a priori anatomical ROIs was expected. The more 

surprising result was that post-processing with a simple Gaussian filter, which requires no prior anatomical 

information, increased the AUC by up to 80%, a benefit similar to the use of anatomical ROIs 

(Supplementary Figure 2). While harmonizing pre- and post-processing in round 2 decreased the 

difference in AUC score between all the submissions and Team 1, the latter continued to achieve the 

highest accuracy. When using DSI data, Team 1 could reach a much higher TPR than all other submissions      
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(TPR = 0.96 at FPR=0.1), suggesting that its pre- and post-processing strategies were not the only factors 

contributing to its high performance.  

 

Localization of challenging areas 

Having data from anatomic tracing and dMRI in the same monkey brain allowed us to identify the regions 

where tractography errors occurred consistently across submissions.  These included regions where fibers 

branched into smaller bundles, or where they took a sharp turn to enter a bundle (Figures 5, 6). These 

results agree with previous validation studies21,29 and illustrate the importance of anatomic tracing for 

identifying realistic failure modes of tractography that go beyond the simple crossing fiber configurations 

used in digital or physical phantoms. Almost all submissions were successful in identifying projections that 

ran through major crossing regions (Figures 3, 5). However, many methods had trouble following fibers 

that branched into smaller bundles or fanned off the main bundle (Figure 5, 6). These results highlight the 

need for further validation and development of tractography methods that go beyond the crossing-fiber 

paradigm.  

 

Robustness across seed areas 

Our training and validation cases allowed us to evaluate the robustness of tractography methods across 

different seed areas. The two injection sites, while projecting through similar white-matter pathways 

(Figure 3), follow very different routes to reach these pathways and pose different challenges to 

tractography. In the training case, the injection site is in the frontal pole. From here, most fibers travel 

straight posteriorly to enter the internal and external capsule. The most challenging areas are where fibers 

fan out into the LPF or turn into the UF and CB (Figure 5,6). In the validation case, the injection site is in 

the vlPFC. From here, fibers need to first course medially and take a more complicated and curved 

trajectory before entering the capsules. The ALIC shows lower TPs in the validation case than in the 

training case (Figure 3), and the most challenging area is located posterior to the ALIC where fibers branch 

into thalamic and brainstem fibers (Figure 5).  

For most of the submissions, optimizing the methods with respect to accuracy for one 

seed/injection region did not guarantee optimal performance for another region, with a 25% average 

decrease in AUC score between the training and the validation case (Figure 2). Only two teams could 

achieve high accuracy for both injection sites. One of these two teams used anatomical ROIs, based on 

general knowledge on the connections of the prefrontal cortex from previous tracer experiments55, 

illustrating the importance of such experiments for mapping the organizational rules of white matter 
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projections. In future studies, we intend to investigate a wider variety of injection sites and evaluate 

whether these conclusions generalize to different brain areas.  

 

Optimal data processing for the HCP protocol 

One of the main goals of the IronTract challenge was to identify optimal processing strategies for the 

widely used, two-shell HCP acquisition scheme. Our results can inform various methodological choices 

that have to be made when analyzing such data, including pre-processing, orientation reconstruction, 

tractography, post-processing, and thresholding. When these choices were made as summarized below, 

tractography reconstructed 8 out of the 10 bundles present in the tracer mask with FPR = 0.05, and it 

reconstructed all 10 with FPR = 0.1 (Supplementary Figure 4). 

Pre-processing: The winning pipeline included denoising56, corrections for Gibbs ringing57, and 

motion/eddy-current distortions58,59, all sensible and widely used procedures.  

Orientation reconstruction: The method that achieved the highest performance was Rumba-SD 

(Figures 3, Supplementary Figures 4,6,8). Its estimation framework relies on Rician and noncentral Chi 

likelihood models, which accommodate realistic MRI noise, and a 3D total-variation spatial regularization 

term, which promotes continuity and smoothness along individual tracts by taking into account the spatial 

correlation among adjacent voxels35. While this is a relatively newer method, we note that high accuracy 

and robustness were also achieved by classical reconstruction methods like CSD38 (applied on the high-b 

shell only) and DSI46. However, these results were specific to Team 2, who supplemented these methods 

with anatomical ROIs. The 3CMP40 and M-CSD6,39 also achieved relatively higher accuracy and lower 

reconstruction error than other methods (Figures 5, 6).  

Tractography: Our results concur with previous studies that showed the higher sensitivity of 

probabilistic methods, when compared to their deterministic counterparts at the same specificity28,29,60.  

Post-processing: Simple Gaussian post-filtering improved the accuracy of most tractography 

methods used in this challenge, as well as their robustness to the location of the seed region. The use of 

inclusion ROIs based on prior anatomical knowledge led to small additional gains in performance. 

Thresholding: Most methods required a rather low threshold (< 2% of the maximum value of the 

tractogram) to reach all the main bundles present in the tracer (Supplementary Figure 5). This is in 

agreement with a prior finding that the biggest changes in tractograms occur between thresholds of 

approximately 2–3%, above which the sensitivity of tractography decreases dramatically21. We note that 

we focused on optimal thresholds for reconstructing all the bundles that the injection site projects to, 

which is a task that requires high sensitivity. In other tasks, such as constructing whole-brain connectivity 
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matrices, high specificity may be more important. In that case, one may want to use more stringent 

thresholds and accept that only a subset of the true connections will be included. 

 

Limitations 

The main limitation of using tracer injections to validate dMRI tractography is that such studies cannot be 

performed in the human brain. Human and NHP brains differ in terms of both absolute and relative sizes 

of different gray and white-matter structures. However, similarities in position, cytoarchitectonics, 

connections, and behavior indicate that the overall organization of brain circuitry is relatively 

comparable61,62. In particular, the relative positions of different brain regions, as well as the obstacles the 

fibers encounter on their way from one area to another, are comparable. As a result, similar fiber 

geometries (crossing, branching, turning, fanning) exist in similar locations of the NHP and human brain. 

Thus, important insights can be gained from the performance of tractography methods in NHP brains.  

The present study was limited to two injection/seed areas. Furthermore, we used binary tracer 

and tractography maps, i.e., we only compared the presence or absence of labeled axons and tractography 

streamlines at each voxel, rather than their density. Automated methods for segmenting and quantifying 

the tracer maps will be critical for extending these analyses in the future.  

Other limitations of tracer validation studies include imperfect tracer uptake or imperfect 

alignment of histology and dMRI data. The injections used in this study passed rigorous quality assurance 

checks at Dr. Haber's laboratory and had high-quality transport. The manual annotation of the axon 

bundles and their alignment to the dMRI volumes were also checked by Dr. Haber and refined at multiple 

stages. 

 

Conclusion 

As part of the IronTract challenge we undertook a comprehensive, quantitative, voxel-wise assessment of 

tractography accuracy across different tractography pipelines, acquisition schemes, and seed areas. This 

allowed us to identify common failure modes of tractography for both established and new tractography 

algorithms and to propose optimized strategies for analyzing dMRI data that have been acquired with 

state-of-the-art, high angular resolution techniques, including the popular two-shell acquisition scheme 

employed by the lifespan and disease HCP. The IronTract Challenge remains open 

(https://qmenta.com/irontract-challenge/) and we plan to expand its scope in future iterations. We hope 

that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.  
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Methods 
 
Data description 

The training and validation cases used in this challenge are part of a previously described dataset that 

consists of in vivo tracing and high-resolution ex vivo dMRI acquired in the same macaque brains29–31. 

Tracer injections 

The training and validation datasets came from two different male rhesus macaques. The former received 

an injection of the anterograde/bidirectional tracer Lucifer Yellow in the anterior frontal cortex (frontal 

pole). The latter received an injection of the anterograde/bidirectional tracer Fluorescein in the 

ventrolateral prefrontal cortex (vlPFC). Surgery and tissue preparation were performed at the University 

of Rochester Medical Center. Details of these procedures were described previously30,55,63. Briefly, each 

monkey received an injection of a bidirectional tracer conjugated with dextran amine (40–50 nl, 10% in 

0.1 M phosphate buffer, pH 7.4; Invitrogen). Twelve days after the injection, animals were perfused and 

their brains were postfixed overnight and cryoprotected in increasing gradients of sucrose (10, 20, and 

30%). All experiments were performed in accordance with the Institute of Laboratory Animal Resources 

Guide for the Care and Use of Laboratory Animals and approved by the University of Rochester Committee 

on Animal Resources. 

dMRI data acquisition 

After fixation, the brains were scanned in a small-bore 4.7T Bruker BioSpin scanner (maximum gradient 

strength 480 mT/m) using a 3D EPI sequence with the following parameters: TR = 750 ms, TE = 43 ms, δ = 

15 ms, Δ = 19 ms, maximum b = 40,000 s/mm2, matrix size 96 × 96 × 112, 0.7 mm isotropic resolution. 

Brains were submerged in liquid Fomblin to eliminate susceptibility artifacts. We acquired 1 non-diffusion 

weighted (b = 0 s/mm2) volume and 514 diffusion-weighted volumes corresponding to a Cartesian lattice 

in q-space. The total acquisition time was 48 hours. We refer to this q-space sampling scheme data as 

diffusion spectrum imaging (DSI).  

We resampled the data onto q-shells, following a methodology that was previously described and 

validated50,53. It involves approximating data points distributed on spheres in q-space from data points 

distributed on a Cartesian grid, using a fast implementation of the non-uniform fast Fourier transform 

(NUFFT)64. We followed this procedure to generate data on the two q-shells of the lifespan and disease 

HCP acquisition protocol16. This in vivo protocol includes 93 directions with b=1500 and 92 directions with 

3000 s/mm2. We multiplied these b-values by the 4x factor required to achieve comparable diffusion 

contrast ex vivo as in vivo65, i.e., we used b=6000 and 12000 s/mm2. We refer to this q-space sampling 

scheme as HCP. 
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Histological processing  

Following whole-brain ex vivo dMRI, the brains were returned to the University of Rochester for 

histological processing. They were sectioned in 50 μm thick coronal slices on a freezing microtome into 

0.1 m phosphate buffer or cryoprotectant solution as previously described66. An undistorted photo of the 

blockface was taken before cutting for use in image registration (See Registration of tracer and dMRI 

data). Immunocytochemistry was then performed on every 8th slice to visualize the transported tracer, 

resulting in an inter-slice resolution of 400 µm. Additional details on the histological procedures can be 

found elsewhere55,67,68. Labeled fiber bundles were outlined under dark-field illumination with a 4.0 or 

6.4x objective, using Neurolucida software (MBF Bioscience). Fibers traveling together were outlined as a 

group or bundle. Axons were charted as they left the tracer injection site and followed through the right 

hemisphere, until the anterior commissure. The 2D outlines were combined across slices using IMOD 

software (Boulder Laboratory69) to create 3D renderings of the structures and pathways as they traveled 

through them. These were used to further refine bundle contours and ensure spatial consistency across 

sections. 

 
Registration of tracer and dMRI data  

Each histology slice was registered to its corresponding blockface using a 2D robust affine registration70, 

followed by a 2D symmetric diffeomorphic registration71. Blockface images were then stacked to create a 

3D volume and registered to the b=0 dMRI volume using a 3D affine registration followed by a 3D 

diffeomorphic registration, with the same methods as above. The computed transformations were then 

applied to the tracer mask and the injection site mask, to map them into dMRI space. The transformed 

injection site mask was shared with challenge participants, to be used as the seed region for tractography.  

 

Analysis of dMRI data by challenge participants in Round 1 

In the first round, teams were provided raw dMRI data. They were allowed to use the q-space sampling 

scheme and analysis methods of their choice. A detailed description of the methods that each team used 

in this round, including pre-processing, orientation reconstruction method, tractography, and post-

processing, are provided in the Supplementary note 1. Both probabilistic and deterministic tractography 

approaches were deployed, with a variety of orientation reconstruction methods. Participants were asked 

to generate tractograms at multiple thresholds by varying one or more parameters of their choice. The 

most common choices were lower thresholds on probability, for submissions that used a probabilistic 

tractography algorithm; and upper thresholds on the bending angle, sometimes combined with lower 
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thresholds on fractional anisotropy or other microstructural parameters, for submissions that used a 

deterministic tractography algorithm.  

For each submission, participants uploaded a series of tractograms, obtained with different 

thresholds, to the QMENTA platform. A score was computed on the fly by comparing the tractograms to 

the tracer data (see ROC analysis). For the training case, the platform generated a performance report, 

including the AUC score, and made it available to the participant. Participants could repeat their analysis, 

upload, and score any number of times, allowing them to fine-tune the free parameters of their methods 

and optimize their score. They then applied their optimized analysis pipeline to the dMRI data from the 

validation case and uploaded the resulting tractograms to the QMENTA platform. The final AUC scores 

were computed from the validation case and used to rank the teams. 

 

Analysis of dMRI data by challenge participants in Round 2 

In the second round, analysis and scoring of the training and validation cases were performed as described 

above. The difference was that the pre- and post-processing steps were standardized across teams. 

Participants downloaded pre-processed dMRI data from the QMENTA platform and were provided scripts 

for the post-processing steps.  

Pre-processing: This followed the dMRI pre-processing procedures that had been used in round 1 

by Team 1, the team that achieved the best performance (Results, Round 1 Results). They included 

denoising56 and correction for Gibbs ringing57 in MRtrix372, and correction for motion and eddy-current 

distortions in FSL58,59. A binary dilation was applied to the tracer injection seed/point.  

Orientation reconstruction and tractography: Teams were asked to apply the same orientation 

reconstruction and tractography methods as in round 1, if they had participated in round 1, or any 

methods of their choice otherwise.  

Post-processing: This replicated the post-processing strategies that had been used by the two 

teams that had consistently good performance across both training and validation cases in round 1  

(Results, Round 1 Results). (i) Gaussian filtering. This strategy had been implemented by Team 1 in round 

1. It included the application of a Gaussian filter with sigma = 0.5 to increase coverage, followed by an 

iterative thresholding of 200 steps on the log of the streamline count, for a total of 200 output tractogram 

volumes. (ii) Anatomical ROIs. This strategy had been implemented by Team 2 in round 1. ROIs from the 

PennCHOP macaque atlas73 were transformed to the space of each dMRI dataset. Only streamlines 

intersecting at least one of these ROIs were retained. The ROIs were selected on the base of general 

knowledge of projections of the prefrontal cortex55 and were located in: the cingulum bundle, the genu 

of the corpus callosum, the external capsule, the anterior limb of the internal capsule, and the uncinate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.472836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.472836
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

fasciculus. For round 2, after applying the anatomical ROIs, the same smoothing (sigma = 0.5) and iterative 

thresholding (200 steps on the log of the streamline count) as in the Gaussian filtering strategy were 

performed. 

 
ROC analysis 

We adopted the area under the ROC curve (AUC) as our main performance score (See Supplementary 

Note 3 for additional metrics). The ROC analysis was performed as follows. For each of the submitted 

tractograms, we obtained the numbers of voxels that were true positive (TP; voxels included both in the 

tractogram and in the tracer mask), true negative (TN; voxels included neither in the tractogram nor in 

the tracer mask), false positive (FP; voxels included in the tractogram but not in the tracer mask), and false 

negative (FN; voxels included in the tracer mask but not in the tractogram). The true-positive rate (TPR) 

and false-positive rate (FPR) were then calculated as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
	

 

This was repeated for all tractograms in a submission, which had been thresholded at different levels 

(either with the thresholding method chosen by each team in round 1, or with the standardized 

thresholding method in round 2). We obtained the ROC curve of each submission by plotting the TPR as a 

function of FPR. We computed a partial AUC score, i.e., the area under the ROC curve for FPR in the [0,0.3] 

range. Thus, the maximum possible AUC score was 0.3. The choice of this range was based on prior results 

showing that deterministic tractography methods cannot always achieve FPRs outside this range29. 

 

Localization of challenging areas.   

Having tracer and dMRI data from the same brain allows us to identify the exact locations where 

tractography goes wrong, and thus the fiber geometries that are consistently challenging across 

tractography methods. To this end, we extracted a map of TP voxels at FPR = 0.1, for each of the 

submissions that participated in both rounds of the challenge. We binarized these maps and summed 

them across all submissions. This yielded a histogram that showed the number of teams that achieved a 

TP in each voxel of the tracer mask. This allowed us to identify the locations where errors occurred 

consistently across tractography methods in round 1, and to examine whether the pre- and post-

processing steps that were applied in round 2 mitigated these common errors.  

 

Comparison of orientation distribution functions  
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After the end of the challenge, we asked participants to share the ODFs from their final submissions, to 

examine if the ODFs played a role in the performance differences between teams. All ODFs were projected 

onto a common set of 362 directions that were distributed uniformly on the half sphere. This direction 

set was generated by the electrostatic repulsion model74, as implemented in DIPY36. We then normalized 

the ODFs by the maximum ODF value and converted their amplitudes to their spherical harmonic 

representation in MRtrix3 (lmax=12)72. For each submission, we extracted a voxel-wise map of orientation 

dispersion by computing the mean dispersion of the ODF lobes inside the voxel75.  We included only ODF 

lobes with peak amplitudes larger than 0.2 times the maximum ODF amplitude.  

 

Data Availability 

The authors declare that the data supporting the findings of this study are available on the QMENTA 
platform (https://qmenta.com/irontract-challenge/). Detailed information on how to reproduce the 
tractograms generated by the Challenge Teams, and links to code repositories are provided in the 
Supplementary information. 
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