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Abstract 14 

Inspecting concordance between self-reported sex and genotype-inferred sex from genomic data is a 15 
significant quality control measure in clinical genetic testing. Numerous tools have been developed to 16 
infer sex for genotyping array, whole-exome sequencing, and whole-genome sequencing data. 17 
However, improvements in sex inference from targeted gene sequencing panels are warranted. Here, 18 
we propose a new tool, seGMM, which applies unsupervised clustering (Gaussian Mixture Model) to 19 
determine the gender of a sample from the called genotype data integrated aligned reads. seGMM 20 
consistently demonstrated > 99% sex inference accuracy in publicly available (1000 Genomes) and 21 
our in-house panel dataset, which achieved obviously better sex classification than existing popular 22 
tools. Compared to including features only in the X chromosome, our results show that adding 23 
additional features  from Y chromosomes (e.g. reads mapped to the Y chromosome) can increase sex 24 
classification accuracy. Notably, for WES and WGS data, seGMM also has an extremely high degree 25 
of accuracy. Finally, we proved the ability of seGMM to infer sex in single patient or trio samples by 26 
combining with reference data and pinpointing potential sex chromosome abnormality samples. In 27 
general, seGMM provides a reproducible framework to infer sex from massively parallel sequencing 28 
data and has great promise in clinical genetics. 29 
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1 Introduction 33 

Next-generation sequencing (NGS) has revolutionized the clinical field by transforming the 34 
landscape of clinical genetic testing and has been adopted as a standard for diagnosing hereditary 35 
disorders, expanding our understanding of clinical genetics, and offering new opportunities for 36 
personalized precision medicine over the last decade (Phillips and Douglas, 2018; Phillips et al., 37 
2020). Clinical genetic testing usually refers to the analysis of DNA to identify pathogenic variants to 38 
aid in the diagnosis of disease (McPherson, 2006). It may focus on a single gene, multi-gene panels 39 
[targeted gene sequencing (TGS)], whole exome [whole exome sequencing (WES)], or whole 40 
genome [whole genome sequencing (WGS)](Di Resta et al., 2018). TGS is highly recommended in 41 
genetic testing because of its validity, utility, and cost-effectiveness, especially in hearing loss, 42 
cardiovascular disorders, and renal disorders (Lin et al., 2012; Saudi Mendeliome, 2015). 43 

Parallelized TGS analysis of patients from the large cohort is commonplace in clinical genetic 44 
testing. Considerable efforts are required for quality control (QC) and preprocessing of these data 45 
before detecting pathogenic variants (Lee et al., 2017). Mismatched genders indicate potential sample 46 
swap, pollution, sex chromosome abnormalities, or sequencing error, which will substantially lead to 47 
erroneous conclusions and affect treatment decisions (Taylor et al., 2015; Webster et al., 2019). Thus, 48 
one essential QC step is verifying concordance between self-reported sex and genotype-inferred sex. 49 
Cytogenetic analyses, such as karyotyping, are gold standard methods of inferring sex but are time 50 
and effort consuming. Leveraging computational tools to infer genotypic sex from sequencing data of 51 
X and Y chromosomes is a convenient and powerful alternative strategy to verify sex concordance. 52 

Several tools, such as PLINK, seXY, and XYalign, have been developed to infer sex using data from 53 
genotyping array, WES, or WGS. PLINK calculated the F coefficient with X chromosome 54 
heterozygosity to infer sex for genotype array data (Purcell et al., 2007). In contrast, seXY considered 55 
both X chromosome heterozygosity and Y chromosome missingness to infer sex in genotype array 56 
data by logistic regression (Qian et al., 2017). In particular, XYalign extract read count mapped to 57 
sex chromosomes and calculated the ratio of X and Y counts (Webster et al., 2019). Together with 58 
self-reported sex and calculated ratios, by plotting a scatter plot, users can infer sex with eyeballs for 59 
WES and WGS data. However, the accuracy of these methods in TGS panel data has not yet been 60 
fully evaluated, and improvements in sex inference from gene panel data are warranted. 61 

In this study, we propose a new sex inference tool, seGMM, that determines the gender of a sample 62 
from called genotype data integrated aligned reads and jointly considers information on the X and Y 63 
chromosomes in diverse genomic data, including TGS panel data. seGMM applies Gaussian Mixture 64 
Model (GMM) clustering to classify the samples into different clusters. Compared to previous 65 
methods that use logistic regression and training data to infer sex, seGMM is more powerful for 66 
modeling data with different covariance structures and different numbers of mixture components for 67 
various genomic data. 68 

2 Materials and Methods 69 

2.1 Data 70 

To evaluate the accuracy of existing methods and seGMM in inferring sex for TGS panel data, we 71 
used 2 datasets from publicly available sources (Supplementary Table S1) and 1 dataset from our in-72 
house resource: (1) exon-targeted sequencing data for 1000 genes from 110 males and 98 females 73 
from the 1000 Genomes Project (Dataset 1, (Genomes Project et al., 2010)); (2) massively parallel 74 
sequencing of 785 deafness-related genes (Supplementary Table S2) from 8,950 males and 7,737 75 
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females (Dataset 2); and (3) targeted sequencing data for 189 autism risk genes across a cohort from 76 
the Autism Clinical and Genetic Resources in China (ACGC), including 42 females and 205 males 77 
(Dataset 3, (Guo et al., 2018)). 78 

In addition, to assess the application of seGMM in inferring sex for WES and WGS data, we used 2 79 
datasets from publicly available sources (Supplementary Table S3 and Supplementary Table S4) and 80 
1 dataset from our in-house source: (1) exome sequencing data from 164 males and 118 females from 81 
the 1000 Genomes Project (Dataset 4, (Genomes Project et al., 2015)); (2) 27 high-coverage whole 82 
genomes from the 1000 Genomes Project including 11 males and 16 females (Dataset 5; (Genomes 83 
Project et al., 2015)) and (5) exome sequencing data from 1,255 males and 1,138 females from our 84 
in-house resource (Dataset 6). 85 

The publicly available BAM files were previously mapped to the reference genome (GRCh37), 86 
which we can directly use for downstream analyses. For our in-house datasets, Fastp was used to 87 
remove adapters and low-quality reads, as well as evaluate the quality of sequencing data via several 88 
measures, including Q20, sequence duplication levels, coverage, and GC content (Chen et al., 2018). 89 
After evaluation, none of the samples were excluded. Clean DNA sequencing reads were mapped to 90 
the human reference genome hg19 using the BWA-MEM algorithm (Li and Durbin, 2009). 91 
Duplicated reads for public BAM files and our in-house BAM files were removed using PicardTools. 92 
Genomic variants were called following the Genome Analysis Toolkit software best practices 93 
(McKenna et al., 2010). Variants were filtered by VCFtools (Danecek et al., 2011) with (1) missing 94 
in more than 50% of samples; (2) minor allele count < 3; (3) quality < 30 and (4) DP < 5. 95 

2.2 Inferring genetic sex with seGMM 96 

As expected, five features may be associated with sex, including X chromosome heterozygosity 97 
(XH), reads mapped to the X chromosome (Xmap), reads mapped to the Y chromosome (Ymap), the 98 
ratio of X/Y counts (XYratio), and the mean depth of exons in the sex-determining region of the Y 99 
chromosome (SRY) gene (SRY_dep). Usually, seGMM computes XH as the fraction of all genotypes 100 
on the X chromosome with two different allele calls, excluding missing genotypes. Xmap/Ymap was 101 
computed as the fraction of high-quality reads (mapq>30) that mapped to the X/Y chromosome in all 102 
high-quality reads that mapped to the genome with samtools (Li et al., 2009). XYratio was computed 103 
as the ratio of Xmap divided by Ymap. SRY_dep was extracted by mosdepth with  high-quality reads 104 
(mapq>30) (Pedersen and Quinlan, 2018). Considering that the panel data may only contain genes in 105 
the X or Y chromosome, seGMM allows users to select features put into the GMM model. 106 

After extracting features from BAM and VCF files, features were normalized to the same level using 107 
the scale function in R. Then, the R package mclust was used to perform model-based clustering via 108 
the EM algorithm to classify the samples into different clusters (Scrucca et al., 2016). Samples with 109 
an uncertainty greater than 0.1 were considered outliers. In addition, seGMM can infer genetic sex 110 
for a single patient or trio samples with additional reference data containing the same features 111 
selected to put into the model (Figure 1). 112 

2.3 Identifying potential sex abnormity samples 113 

To pinpoint sex abnormity samples, we first define these values as mean_xmap_z, sd_xmap_z, 114 
mean_ymap_z and sd_ymap_z, where z � {m, f} denotes whether the summaries were conditioned 115 
on the genetically determined males or females. Then, we defined the following six gates to classify 116 
individuals according to the values above: 117 

● XY gate: 118 
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� mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m 119 
� mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m 120 

● XYY gate: 121 
� mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m 122 
� y > 2 mean_ymap_m 123 

● XX gate: 124 
� mean_xmap_f - 3 sd_xmap_f < x < mean_xmap_f+ 3 sd_xmap_f 125 
� mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f 126 

● XXY gate: 127 
� x > 2 mean_xmap_f 128 
� mean_ymap_m- 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m 129 

● XXX gate: 130 
� x > 3 mean_xmap_f 131 
� mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f 132 

● X gate: 133 
� x < 0.5 mean_xmap_f 134 
� mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f 135 

2.4 Comparing performance with existing methods 136 

To compare the performance between seGMM and existing methods. First, we downloaded and 137 
configured three tools for sex inference: PLINK 1.9, XYalign and seXY. For PLINK 1.9, X 138 
chromosome pseudoautosomal region was first splited off with --split-x. Then, -- check-sex was 139 
running once without parameters, eyeball the distribution of F estimates, and rerun with parameters 140 
corresponding to the empirical gap. For XYalign, following the method described in their published 141 
paper, we used the CHROM_STATS module to obtain the depth of the 19 chromosome, X 142 
chromosome and Y chromosome. Then, the depth of the X and Y chromosomes was normalized by 143 
dividing it by the depth of chromosome 19. Finally, we plotted a scatter plot to assess sex-144 
mismatched samples. For seXY, the first step was obtain the X.ped and Y.ped files with PLINK. 145 
Next, sex inference was conducted with seXY using X.ped, Y.ped and the training data set (subjects 146 
in prostate cancer and ovarian cancer GWAS) provided by seXY. PLINK was applied to all datasets. 147 
Since the target gene panel data of Datasets 2 and 3 do not contain genes located on the Y 148 
chromosome, XYalign and seXY were only applied to Dataset 1. In addition, XYalign was also 149 
applied to WES and WGS data. 150 

2.5 STR analysis for verifying sex 151 

The STR analysis was conducted in our own-designed multiplex STR system (modified based on 152 
PowerPlex® 16 System), which allows coamplification and four-color detection of sixteen loci 153 
(fifteen STR loci and Amelogenin). The primers for Amelogenin were designed as 5'- 154 
GTTCAGACGTGTGCTTCAACTTCAGCTATGAGGTAATTTTTC – 3' and 5'- 155 
ATCCGACGGTAGTGTCCAACCATCAGAGCTTAAACTGG – 3'. All sixteen loci were amplified 156 
simultaneously in a single tube and analyzed in a single injection or gel lane. One primer for each of 157 
the vWA, amelogenin, FGA and TPOX loci was labeled with carboxyrhodamine (ROX). The 158 
amplicons were separated on an ABI 3730XL Genetic Analyzer, and data were collected using 159 
GeenMapper ID v3.2. Since females are XX, only a single peak is observed when testing female 160 
DNA, whereas males, which possess both X and Y chromosomes, exhibit two peaks with a 6 bp 161 
difference. 162 

3 Results 163 
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3.1 seGMM achieved better sex classification in TGS data than existing methods 164 

We calculated XH, Xmap, Ymap and XYratio for Dataset 1. We found that Ymap and XYratio plot 165 
as distinct clusters for the majority of males and females (Figure 2). The distribution of XH and 166 
Xmap for males and females has a lot of intersections, suggesting that the accuracy of sex inference 167 
is limited if we only include features extracted from the X chromosome. Our results proved this 168 
hypothesis: with features extracted only from the X chromosome, seGMM reported 59 samples as 169 
outliers, and the accuracy for the remaining samples was only 84.56%. Next, we evaluate the 170 
performance of seGMM in Dataset 1 using the 4 features we calculated before. We found that no 171 
samples were reported as outliers, and the accuracy increased to 99.52% after including features from 172 
the Y chromosome (Table 1). Moreover, looking into different genders, the accuracy of seGMM in 173 
females was 98.98%, and that in males was 100%. The only female sample (NA19054) misclassified 174 
by seGMM had an XY ratio that closely mirrored those of males. 175 

To assess the performance of seGMM, we also applied PLINK, seXY and XYalign in Dataset 1 to 176 
assess the accuracy of these existing tools in inferring sex. We discovered that the distribution of the 177 
F coefficient is concentrated between 0-0.9 and without an empirical gap (Supplementary Figure S1). 178 
The accuracy of PLINK was 81.44 %, with 94 samples whose predicted sex was clear (Table 1). The 179 
accuracy of seXY is only 62.5%. For XYalign, which does not directly provide a predicted sex, we 180 
plot the normalized sequence depth of chromosome X and chromosome Y. A couple of females and 181 
males are mixed, indicating the loss of accuracy with XYalign compared to seGMM (Supplementary 182 
Figure S2). Moreover, we have tested the computation time of different methods using 1 core, 10 183 
cores and 20 cores on a server with 64 Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60 GHz. We can see 184 
that, as expected, seGMM costs much more time than PLINK and seXY, which don’t collect features 185 
of reads mapped to the X and Y chromosomes. Contrary to PLINK and seXY, with 1 core, seGMM 186 
costs fairly time compared to XYalign, while when using 20 cores, seGMM achieves 10 times faster 187 
than XYalign. (Supplementary Table S5)  188 

To validate the performance of seGMM in inferring sex from gene panel data, we further applied 189 
seGMM to Dataset 2 and Dataset 3. Since the target gene panel data of these datasets do not contain 190 
genes located on the Y chromosome, we calculated XH and Xmap as features. In contrast to Dataset 191 
1, the distribution of XH and Xmap for Dataset 2 plot as distinct clusters for the majority of males 192 
and females (Figure 3). We compared the performance of seGMM in inferring sex with PLINK. In 193 
total, the accuracy of seGMM was 99.10%, while the accuracy of PLINK was 86.58% (Table 2). 194 
Additionally, looking into different genders, the accuracy of seGMM in females was nearly 100% 195 
and 98.34% in males. The few males misclassified by seGMM have XH values that closely mirror 196 
those of females. Furthermore, the accuracy of seGMM in Dataset 3 is 92.31% (Table 2), while the 197 
accuracy of PLINK is relatively lower (38.87%). 198 

3.2 seGMM has good performance in inferring sex for WES and WGS data 199 

Recently, WES and WGS have shown promise in becoming a first-tier diagnostic test for patients 200 
with Mendelian disorders. Therefore, we evaluated the performance of seGMM in inferring sex from 201 
WES and WGS data. First, we applied seGMM to publicly available WES data (Dataset 4). The 202 
accuracy of seGMM was 100%, indicating that seGMM also has excellent performance in WES data 203 
(Table 3 and Supplementary Figure S3). Meanwhile, the accuracy of  PLINK was 100%, while the 204 
accuracy of XYalign  was 99.65%. NA12413 was mixed with female samples (Supplementary Figure 205 
S4). 206 
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In addition, we applied seGMM to our in-house WES data (Dataset 6). The accuracy of seGMM in 207 
our in-house WES data was 99.75%, 99.76% for males and 99.74% for females (Supplementary 208 
Table S6). Six samples (3 males and 3 females; Table 3 and Figure 4a) were mismatched between 209 
SNP-inferred sex and self-reported sex, indicating potential misregistration of clinical information. 210 
For PLINK, the accuracy was 99.54%, and 11 samples were mismatched (Table 3 and Figure 4b). 211 
The accuracy for XYalign was 99.66%, and 8 samples were mismatched (Figure 4c). Six samples 212 
were detected with mismatched sex in the three methods; however, 5 mismatched samples detected 213 
with PLINK and 2 mismatched samples detected with XYalign were correct in seGMM (Figure 4d). 214 

To verify the real sex of these 6 samples, we performed STR analysis with a sex marker, the 215 
amelogenin gene. PCR products generated from the amelogenin gene are widely accepted for use in 216 
sex identification. The amelogenin gene is highly conserved and occurs on both the X- and Y-217 
chromosomes. With a 6 bp deletion of the amelogenin gene in the Y chromosome, amplicons 218 
generated from the X and Y chromosomes were distinguished from one another when electrophoretic 219 
separation was performed to separate STR alleles. The results showed that the real sex matched the 220 
seGMM prediction results, proving the pinpoint accuracy of seGMM (Table 4 and Figure 5). Finally, 221 
seGMM was conducted on the WGS data (Dataset 5), and the accuracy was 100% (Table 3). The 222 
accuracy for PLINK and XYalign is also 100%. 223 

3.3 The ability of seGMM in clinical application 224 

In clinical practice, individual patient or trio samples are usually sequenced to obtain a molecular 225 
diagnosis. However, the GMM model requires a sufficient sample size to ensure the accuracy of 226 
classification. To address this problem, seGMM permits users to provide additional reference data. 227 
By combining the features from reference data, seGMM can ensure accuracy for clinical application. 228 
Taking WES data as an example, using features including Xmap, Ymap, XYratio and normalized 229 
SRY_dep (divided by XYratio), we found that with 1000 Genomes data points as a reference, all 230 
samples in our in-house WES data were predicted accurately and vice versa. 231 

Additionally, approximately 0.25% male and 0.15% female live births demonstrated some form of 232 
sex chromosome abnormality. A previous study examined the feasibility of defining five gates to 233 
classify individuals according to the normalized X and Y chromosome ratio, calculated on 234 
genetically determined males and females, respectively (Turro et al., 2020). Similarly, following this 235 
strategy, seGMM can automatically classify samples into 6 sex chromosome karyotypes (XX, XY, 236 
XYY, XXY, XXX and X) according to the Xmap and Y map. For publicly available WES and WGS 237 
data, none of the samples had sex chromosome abnormalities. For our in-house WES data, 3 samples 238 
(HBSY-012-ge, HBSY-012 and XiZ-086) were identified with XYY chromosome karyotypes. 239 

4 Discussion 240 

This article introduces a sex inference tool, seGMM, to infer genotype sex from NGS data, especially 241 
TGS panel data. seGMM integrates several tools and algorithms into a single workflow. Using 242 
features extracted from sex chromosomes, seGMM applied unsupervised clustering to classify the 243 
samples. Compared to many existing supervised methods that attempt to infer sex by training a 244 
logistic regression classifier based on limited available data, seGMM can be applied directly to 245 
different types of genomic data. By comparing PLINK, seXY and XYalign, we proved that seGMM 246 
outperforms existing tools in inferring sex with TGS panel data and has excellent performance in 247 
WES and WGS data. 248 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.472877
http://creativecommons.org/licenses/by-nd/4.0/


  seGMM: a new tool to infer genetic sex 

 
7 

Additionally, compared with including features extracted from only the X chromosome, we 249 
discovered that jointing valuable information on the Y chromosome improved the accuracy of 250 
inferring sex. Our data suggest that adding probes targeting unique regions of the Y chromosome, 251 
particularly the exon of the SRY, which is involved in male-typical sex development (Gubbay et al., 252 
1990; Parma and Radi, 2012), is helpful in inferring genders using TGS panel data. 253 

One important innovation of seGMM is that seGMM is adapted to clinical applications that can be 254 
applied to individual patients and automatically report sex chromosome abnormality samples. When 255 
applying seGMM with reference data, attention should be given to the consistency of the analytical 256 
methods between reference data and testing data, since inconsistent analysis methods can introduce 257 
bias. 258 

There are several limitations for seGMM. First, as a method expected to find sex chromosome 259 
abnormal samples, seGMM classifies the samples by calculating the Xmap and Ymap intervals in 260 
which they are located. However, the interval is fixed and when the number of male or female 261 
samples in the testing dataset is small, the distribution of the Xmap/Ymap is approximately 262 
nonnormal and then the sex chromosome karyotypes classification of samples in this case may be 263 
inaccurate. Hence, we recommended that if the sample size of the male or female is small, combining 264 
with a reference data is an effective strategy to ensure the accuracy of results. Second, the 265 
computational time of seGMM depends on many factors, such as the number of features, the number 266 
of samples, and the number of threads used. seGMM costs much time in collecting features of reads 267 
mapped to the X and Y chromosomes, causing it to run slower than PLINK and seXY but faster than 268 
XYalign. The running speed of seGMM can increased by adding cores, and we also consider 269 
rewriting it as a GPU program to speed up in the future. 270 

In conclusion, we have developed a new tool to infer genetic sex based on a Gaussian Mixture Model 271 
called seGMM, which combines stable predictive ability and clinical application. In addition, when 272 
the genomic data are TGS, seGMM is one of the best choices for inferring sex, which could meet the 273 
needs of clinical genetics. 274 

5 Data Availability Statement 275 

seGMM is publicly available at https://github.com/liusihan/seGMM and can be installed directly by 276 
Conda. Users can also download the source code from GitHub or PyPI and install related software. 277 
The data used in this study were retrieved from the 1000 Genomes database (https://ftp-278 
trace.ncbi.nih.gov/1000genomes/ftp/). Further inquiries can be directed to the corresponding authors. 279 
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Figure legends 365 

Fig. 1. Schematic diagram of seGMM. The input file to seGMM is VCF and BAM file, seGMM 366 
will automatically collect features and build the GMM model. 367 

Fig. 2. Distribution of features collected from Dataset 1. a. Distribution of X chromosome 368 
heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X 369 
chromosome (%) between males and females. c. Distribution of reads mapped to the Y chromosome 370 
(%) between males and females. d. Distribution of XYratio between male and female. 371 

Fig. 3. Distribution of features collected from Dataset 2. a. Distribution of X chromosome 372 
heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X 373 
chromosome (%) between males and females. 374 

Fig. 4. Accuracy of different methods in inferring sex with our in-house WES data. a. Sample 375 
clustering results of seGMM. b. Distribution of F coefficient. c. Scatter plot of normalized X and Y 376 
ratio using XYalign. d. Venn plot of mismatched gender samples detected by the three methods. 377 

Fig. 5. Experimentally verified gender results. 378 
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Tables 395 

Table 1. Accuracy of different methods in inferring sex with Dataset 1. 396 

 Accuracy for all samples 
(%) 

Accuracy for Male 
(%) 

Accuracy for Female 
(%) 

PLINK 81.44 48.28 100 

seXY 62.5 45.45 81.63 

seGMM 99.52 100 98.98 

 397 
 398 
 399 
 400 
 401 
Table 2. Accuracy of different methods in inferring sex with Dataset 2 and Dataset 3. 402 

 Dataset 2 Dataset 3 

PLINK 86.58 38.87 

seGMM 99.10 92.31 

 403 
 404 
 405 
 406 
Table 3. Accuracy of different methods in inferring sex with WES and WGS data. 407 

 PLINK XYalign seGMM 

1000G phase3 WES data 100 99.65 100 

1000G phase3 high quality WGS data 100 100 100 

In-house WES data 99.54 99.66 99.75 

 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
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Table 4. Accuracy of different methods in inferring sex with WES and WGS data. 421 

Sample ID Amelogenin 
Self-reported 

gender 
seGMM inferred 

gender 
Experiment validate 

gender 

GX-0524 
209.15 

Male Female Female 
- 

GX-0946 
209.06 

Male Female Female 
- 

GYF-
0602212 

209.04 
Female Male Male 

214.8 

GYF-
0804464 

209.06 
Female Male Male 

214.85 

GYF-
0905712-ge 

209.11 
Male Female Female 

- 

JL-102 
209.18 

Female Male Male 
214.92 

 422 
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Sample File Sample Name Panel SQO OS SQ
GX-0524.fsa GX-0524 None

GX-0946.fsa GX-0946 None

GYF-0602212.fsa GYF-0602212 None

a

b

c

Sample File Sample Name Panel SQO OS SQ
GYF-0804464.fsa GYF-0804464 None

GYF-0905712-ge.fsa GYF-0905712-ge None

JL-102.fsa JL-102 None
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