

seGMM: a new tool to infer sex from massively parallel sequencing data

1 **Sihan Liu¹, Yuanyuan Zeng², Meilin Chen¹, Qian Zhang¹, Lanchen Wang¹, Chao Wang¹, Yu
2 Lu^{1,*}, Hui Guo^{3,*}, Fengxiao Bu^{1,*}**

3 ¹ Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China

4 ² School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen
5 University, Xiamen, China

6 ³ Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of
7 Life Sciences, Central South University, Changsha, Hunan 410078, China

8 *** Correspondence:**

9 Fengxiao Bu: bufengxiao@wchscu.cn;

10 Hui Guo: guohui@sklmg.edu.cn;

11 Yu Lu: samuelluyu@163.com

12 **Keywords:** Sex inferring, massively parallel sequencing data, Gaussian Mixture Model, sex
13 abnormality identification, clinical application.

14 Abstract

15 Inspecting concordance between self-reported sex and genotype-inferred sex from genomic data is a
16 significant quality control measure in clinical genetic testing. Numerous tools have been developed to
17 infer sex for genotyping array, whole-exome sequencing, and whole-genome sequencing data.
18 However, improvements in sex inference from targeted gene sequencing panels are warranted. Here,
19 we propose a new tool, seGMM, which applies unsupervised clustering (Gaussian Mixture Model) to
20 determine the gender of a sample from the called genotype data integrated aligned reads. seGMM
21 consistently demonstrated > 99% sex inference accuracy in publicly available (1000 Genomes) and
22 our in-house panel dataset, which achieved obviously better sex classification than existing popular
23 tools. Compared to including features only in the X chromosome, our results show that adding
24 additional features from Y chromosomes (e.g. reads mapped to the Y chromosome) can increase sex
25 classification accuracy. Notably, for WES and WGS data, seGMM also has an extremely high degree
26 of accuracy. Finally, we proved the ability of seGMM to infer sex in single patient or trio samples by
27 combining with reference data and pinpointing potential sex chromosome abnormality samples. In
28 general, seGMM provides a reproducible framework to infer sex from massively parallel sequencing
29 data and has great promise in clinical genetics.

30

31

32

33 1 Introduction

34 Next-generation sequencing (NGS) has revolutionized the clinical field by transforming the
35 landscape of clinical genetic testing and has been adopted as a standard for diagnosing hereditary
36 disorders, expanding our understanding of clinical genetics, and offering new opportunities for
37 personalized precision medicine over the last decade (Phillips and Douglas, 2018; Phillips et al.,
38 2020). Clinical genetic testing usually refers to the analysis of DNA to identify pathogenic variants to
39 aid in the diagnosis of disease (McPherson, 2006). It may focus on a single gene, multi-gene panels
40 [targeted gene sequencing (TGS)], whole exome [whole exome sequencing (WES)], or whole
41 genome [whole genome sequencing (WGS)](Di Resta et al., 2018). TGS is highly recommended in
42 genetic testing because of its validity, utility, and cost-effectiveness, especially in hearing loss,
43 cardiovascular disorders, and renal disorders (Lin et al., 2012; Saudi Mendeliome, 2015).

44 Parallelized TGS analysis of patients from the large cohort is commonplace in clinical genetic
45 testing. Considerable efforts are required for quality control (QC) and preprocessing of these data
46 before detecting pathogenic variants (Lee et al., 2017). Mismatched genders indicate potential sample
47 swap, pollution, sex chromosome abnormalities, or sequencing error, which will substantially lead to
48 erroneous conclusions and affect treatment decisions (Taylor et al., 2015; Webster et al., 2019). Thus,
49 one essential QC step is verifying concordance between self-reported sex and genotype-inferred sex.
50 Cytogenetic analyses, such as karyotyping, are gold standard methods of inferring sex but are time
51 and effort consuming. Leveraging computational tools to infer genotypic sex from sequencing data of
52 X and Y chromosomes is a convenient and powerful alternative strategy to verify sex concordance.

53 Several tools, such as PLINK, seXY, and XYalign, have been developed to infer sex using data from
54 genotyping array, WES, or WGS. PLINK calculated the F coefficient with X chromosome
55 heterozygosity to infer sex for genotype array data (Purcell et al., 2007). In contrast, seXY considered
56 both X chromosome heterozygosity and Y chromosome missingness to infer sex in genotype array
57 data by logistic regression (Qian et al., 2017). In particular, XYalign extract read count mapped to
58 sex chromosomes and calculated the ratio of X and Y counts (Webster et al., 2019). Together with
59 self-reported sex and calculated ratios, by plotting a scatter plot, users can infer sex with eyeballs for
60 WES and WGS data. However, the accuracy of these methods in TGS panel data has not yet been
61 fully evaluated, and improvements in sex inference from gene panel data are warranted.

62 In this study, we propose a new sex inference tool, seGMM, that determines the gender of a sample
63 from called genotype data integrated aligned reads and jointly considers information on the X and Y
64 chromosomes in diverse genomic data, including TGS panel data. seGMM applies Gaussian Mixture
65 Model (GMM) clustering to classify the samples into different clusters. Compared to previous
66 methods that use logistic regression and training data to infer sex, seGMM is more powerful for
67 modeling data with different covariance structures and different numbers of mixture components for
68 various genomic data.

69 2 Materials and Methods

70 2.1 Data

71 To evaluate the accuracy of existing methods and seGMM in inferring sex for TGS panel data, we
72 used 2 datasets from publicly available sources (Supplementary Table S1) and 1 dataset from our in-
73 house resource: (1) exon-targeted sequencing data for 1000 genes from 110 males and 98 females
74 from the 1000 Genomes Project (Dataset 1, (Genomes Project et al., 2010)); (2) massively parallel
75 sequencing of 785 deafness-related genes (Supplementary Table S2) from 8,950 males and 7,737

76 females (Dataset 2); and (3) targeted sequencing data for 189 autism risk genes across a cohort from
77 the Autism Clinical and Genetic Resources in China (ACGC), including 42 females and 205 males
78 (Dataset 3, (Guo et al., 2018)).

79 In addition, to assess the application of seGMM in inferring sex for WES and WGS data, we used 2
80 datasets from publicly available sources (Supplementary Table S3 and Supplementary Table S4) and
81 1 dataset from our in-house source: (1) exome sequencing data from 164 males and 118 females from
82 the 1000 Genomes Project (Dataset 4, (Genomes Project et al., 2015)); (2) 27 high-coverage whole
83 genomes from the 1000 Genomes Project including 11 males and 16 females (Dataset 5; (Genomes
84 Project et al., 2015)) and (5) exome sequencing data from 1,255 males and 1,138 females from our
85 in-house resource (Dataset 6).

86 The publicly available BAM files were previously mapped to the reference genome (GRCh37),
87 which we can directly use for downstream analyses. For our in-house datasets, Fastp was used to
88 remove adapters and low-quality reads, as well as evaluate the quality of sequencing data via several
89 measures, including Q20, sequence duplication levels, coverage, and GC content (Chen et al., 2018).
90 After evaluation, none of the samples were excluded. Clean DNA sequencing reads were mapped to
91 the human reference genome hg19 using the BWA-MEM algorithm (Li and Durbin, 2009).
92 Duplicated reads for public BAM files and our in-house BAM files were removed using PicardTools.
93 Genomic variants were called following the Genome Analysis Toolkit software best practices
94 (McKenna et al., 2010). Variants were filtered by VCFtools (Danecek et al., 2011) with (1) missing
95 in more than 50% of samples; (2) minor allele count < 3; (3) quality < 30 and (4) DP < 5.

96 2.2 Inferring genetic sex with seGMM

97 As expected, five features may be associated with sex, including X chromosome heterozygosity
98 (XH), reads mapped to the X chromosome (Xmap), reads mapped to the Y chromosome (Ymap), the
99 ratio of X/Y counts (XYratio), and the mean depth of exons in the sex-determining region of the Y
100 chromosome (SRY) gene (SRY_dep). Usually, seGMM computes XH as the fraction of all genotypes
101 on the X chromosome with two different allele calls, excluding missing genotypes. Xmap/Ymap was
102 computed as the fraction of high-quality reads (mapq>30) that mapped to the X/Y chromosome in all
103 high-quality reads that mapped to the genome with samtools (Li et al., 2009). XYratio was computed
104 as the ratio of Xmap divided by Ymap. SRY_dep was extracted by mosdepth with high-quality reads
105 (mapq>30) (Pedersen and Quinlan, 2018). Considering that the panel data may only contain genes in
106 the X or Y chromosome, seGMM allows users to select features put into the GMM model.

107 After extracting features from BAM and VCF files, features were normalized to the same level using
108 the scale function in R. Then, the R package mclust was used to perform model-based clustering via
109 the EM algorithm to classify the samples into different clusters (Scrucca et al., 2016). Samples with
110 an uncertainty greater than 0.1 were considered outliers. In addition, seGMM can infer genetic sex
111 for a single patient or trio samples with additional reference data containing the same features
112 selected to put into the model (Figure 1).

113 2.3 Identifying potential sex abnormality samples

114 To pinpoint sex abnormality samples, we first define these values as mean_xmap_z, sd_xmap_z,
115 mean_ymap_z and sd_ymap_z, where $z \in \{m, f\}$ denotes whether the summaries were conditioned
116 on the genetically determined males or females. Then, we defined the following six gates to classify
117 individuals according to the values above:

- 118 • XY gate:

- 119 ○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m
- 120 ○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m
- 121 ● XYY gate:
 - 122 ○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m
 - 123 ○ y > 2 mean_ymap_m
- 124 ● XX gate:
 - 125 ○ mean_xmap_f - 3 sd_xmap_f < x < mean_xmap_f + 3 sd_xmap_f
 - 126 ○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f
- 127 ● XXY gate:
 - 128 ○ x > 2 mean_xmap_f
 - 129 ○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m
- 130 ● XXX gate:
 - 131 ○ x > 3 mean_xmap_f
 - 132 ○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f
- 133 ● X gate:
 - 134 ○ x < 0.5 mean_xmap_f
 - 135 ○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f

136 2.4 Comparing performance with existing methods

137 To compare the performance between seGMM and existing methods. First, we downloaded and
138 configured three tools for sex inference: PLINK 1.9, XYalign and seXY. For PLINK 1.9, X
139 chromosome pseudoautosomal region was first split off with --split-x. Then, --check-sex was
140 running once without parameters, eyeball the distribution of F estimates, and rerun with parameters
141 corresponding to the empirical gap. For XYalign, following the method described in their published
142 paper, we used the CHROM_STATS module to obtain the depth of the 19 chromosome, X
143 chromosome and Y chromosome. Then, the depth of the X and Y chromosomes was normalized by
144 dividing it by the depth of chromosome 19. Finally, we plotted a scatter plot to assess sex-
145 mismatched samples. For seXY, the first step was obtain the X.ped and Y.ped files with PLINK.
146 Next, sex inference was conducted with seXY using X.ped, Y.ped and the training data set (subjects
147 in prostate cancer and ovarian cancer GWAS) provided by seXY. PLINK was applied to all datasets.
148 Since the target gene panel data of Datasets 2 and 3 do not contain genes located on the Y
149 chromosome, XYalign and seXY were only applied to Dataset 1. In addition, XYalign was also
150 applied to WES and WGS data.

151 2.5 STR analysis for verifying sex

152 The STR analysis was conducted in our own-designed multiplex STR system (modified based on
153 PowerPlex® 16 System), which allows coamplification and four-color detection of sixteen loci
154 (fifteen STR loci and Amelogenin). The primers for Amelogenin were designed as 5'-
155 GTTCAGACGTGTGCTTCAACTTCAGCTATGAGGTAATTTTC - 3' and 5'-
156 ATCCGACGGTAGTGTCCAACCATCAGAGCTTAAACTGG - 3'. All sixteen loci were amplified
157 simultaneously in a single tube and analyzed in a single injection or gel lane. One primer for each of
158 the vWA, amelogenin, FGA and TPOX loci was labeled with carboxyrhodamine (ROX). The
159 amplicons were separated on an ABI 3730XL Genetic Analyzer, and data were collected using
160 GeenMapper ID v3.2. Since females are XX, only a single peak is observed when testing female
161 DNA, whereas males, which possess both X and Y chromosomes, exhibit two peaks with a 6 bp
162 difference.

163 3 Results

164 **3.1 seGMM achieved better sex classification in TGS data than existing methods**

165 We calculated XH, Xmap, Ymap and XYratio for Dataset 1. We found that Ymap and XYratio plot
166 as distinct clusters for the majority of males and females (Figure 2). The distribution of XH and
167 Xmap for males and females has a lot of intersections, suggesting that the accuracy of sex inference
168 is limited if we only include features extracted from the X chromosome. Our results proved this
169 hypothesis: with features extracted only from the X chromosome, seGMM reported 59 samples as
170 outliers, and the accuracy for the remaining samples was only 84.56%. Next, we evaluate the
171 performance of seGMM in Dataset 1 using the 4 features we calculated before. We found that no
172 samples were reported as outliers, and the accuracy increased to 99.52% after including features from
173 the Y chromosome (Table 1). Moreover, looking into different genders, the accuracy of seGMM in
174 females was 98.98%, and that in males was 100%. The only female sample (NA19054) misclassified
175 by seGMM had an XY ratio that closely mirrored those of males.

176 To assess the performance of seGMM, we also applied PLINK, seXY and XYalign in Dataset 1 to
177 assess the accuracy of these existing tools in inferring sex. We discovered that the distribution of the
178 F coefficient is concentrated between 0-0.9 and without an empirical gap (Supplementary Figure S1).
179 The accuracy of PLINK was 81.44 %, with 94 samples whose predicted sex was clear (Table 1). The
180 accuracy of seXY is only 62.5%. For XYalign, which does not directly provide a predicted sex, we
181 plot the normalized sequence depth of chromosome X and chromosome Y. A couple of females and
182 males are mixed, indicating the loss of accuracy with XYalign compared to seGMM (Supplementary
183 Figure S2). Moreover, we have tested the computation time of different methods using 1 core, 10
184 cores and 20 cores on a server with 64 Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60 GHz. We can see
185 that, as expected, seGMM costs much more time than PLINK and seXY, which don't collect features
186 of reads mapped to the X and Y chromosomes. Contrary to PLINK and seXY, with 1 core, seGMM
187 costs fairly time compared to XYalign, while when using 20 cores, seGMM achieves 10 times faster
188 than XYalign. (Supplementary Table S5)

189 To validate the performance of seGMM in inferring sex from gene panel data, we further applied
190 seGMM to Dataset 2 and Dataset 3. Since the target gene panel data of these datasets do not contain
191 genes located on the Y chromosome, we calculated XH and Xmap as features. In contrast to Dataset
192 1, the distribution of XH and Xmap for Dataset 2 plot as distinct clusters for the majority of males
193 and females (Figure 3). We compared the performance of seGMM in inferring sex with PLINK. In
194 total, the accuracy of seGMM was 99.10%, while the accuracy of PLINK was 86.58% (Table 2).
195 Additionally, looking into different genders, the accuracy of seGMM in females was nearly 100%
196 and 98.34% in males. The few males misclassified by seGMM have XH values that closely mirror
197 those of females. Furthermore, the accuracy of seGMM in Dataset 3 is 92.31% (Table 2), while the
198 accuracy of PLINK is relatively lower (38.87%).

199 **3.2 seGMM has good performance in inferring sex for WES and WGS data**

200 Recently, WES and WGS have shown promise in becoming a first-tier diagnostic test for patients
201 with Mendelian disorders. Therefore, we evaluated the performance of seGMM in inferring sex from
202 WES and WGS data. First, we applied seGMM to publicly available WES data (Dataset 4). The
203 accuracy of seGMM was 100%, indicating that seGMM also has excellent performance in WES data
204 (Table 3 and Supplementary Figure S3). Meanwhile, the accuracy of PLINK was 100%, while the
205 accuracy of XYalign was 99.65%. NA12413 was mixed with female samples (Supplementary Figure
206 S4).

207 In addition, we applied seGMM to our in-house WES data (Dataset 6). The accuracy of seGMM in
208 our in-house WES data was 99.75%, 99.76% for males and 99.74% for females (Supplementary
209 Table S6). Six samples (3 males and 3 females; Table 3 and Figure 4a) were mismatched between
210 SNP-inferred sex and self-reported sex, indicating potential misregistration of clinical information.
211 For PLINK, the accuracy was 99.54%, and 11 samples were mismatched (Table 3 and Figure 4b).
212 The accuracy for XYalign was 99.66%, and 8 samples were mismatched (Figure 4c). Six samples
213 were detected with mismatched sex in the three methods; however, 5 mismatched samples detected
214 with PLINK and 2 mismatched samples detected with XYalign were correct in seGMM (Figure 4d).

215 To verify the real sex of these 6 samples, we performed STR analysis with a sex marker, the
216 amelogenin gene. PCR products generated from the amelogenin gene are widely accepted for use in
217 sex identification. The amelogenin gene is highly conserved and occurs on both the X- and Y-
218 chromosomes. With a 6 bp deletion of the amelogenin gene in the Y chromosome, amplicons
219 generated from the X and Y chromosomes were distinguished from one another when electrophoretic
220 separation was performed to separate STR alleles. The results showed that the real sex matched the
221 seGMM prediction results, proving the pinpoint accuracy of seGMM (Table 4 and Figure 5). Finally,
222 seGMM was conducted on the WGS data (Dataset 5), and the accuracy was 100% (Table 3). The
223 accuracy for PLINK and XYalign is also 100%.

224 3.3 The ability of seGMM in clinical application

225 In clinical practice, individual patient or trio samples are usually sequenced to obtain a molecular
226 diagnosis. However, the GMM model requires a sufficient sample size to ensure the accuracy of
227 classification. To address this problem, seGMM permits users to provide additional reference data.
228 By combining the features from reference data, seGMM can ensure accuracy for clinical application.
229 Taking WES data as an example, using features including Xmap, Ymap, XYratio and normalized
230 SRY_dep (divided by XYratio), we found that with 1000 Genomes data points as a reference, all
231 samples in our in-house WES data were predicted accurately and vice versa.

232 Additionally, approximately 0.25% male and 0.15% female live births demonstrated some form of
233 sex chromosome abnormality. A previous study examined the feasibility of defining five gates to
234 classify individuals according to the normalized X and Y chromosome ratio, calculated on
235 genetically determined males and females, respectively (Turro et al., 2020). Similarly, following this
236 strategy, seGMM can automatically classify samples into 6 sex chromosome karyotypes (XX, XY,
237 XYY, XXY, XXX and X) according to the Xmap and Y map. For publicly available WES and WGS
238 data, none of the samples had sex chromosome abnormalities. For our in-house WES data, 3 samples
239 (HBSY-012-ge, HBSY-012 and XiZ-086) were identified with XYY chromosome karyotypes.

240 4 Discussion

241 This article introduces a sex inference tool, seGMM, to infer genotype sex from NGS data, especially
242 TGS panel data. seGMM integrates several tools and algorithms into a single workflow. Using
243 features extracted from sex chromosomes, seGMM applied unsupervised clustering to classify the
244 samples. Compared to many existing supervised methods that attempt to infer sex by training a
245 logistic regression classifier based on limited available data, seGMM can be applied directly to
246 different types of genomic data. By comparing PLINK, seXY and XYalign, we proved that seGMM
247 outperforms existing tools in inferring sex with TGS panel data and has excellent performance in
248 WES and WGS data.

249 Additionally, compared with including features extracted from only the X chromosome, we
250 discovered that jointing valuable information on the Y chromosome improved the accuracy of
251 inferring sex. Our data suggest that adding probes targeting unique regions of the Y chromosome,
252 particularly the exon of the SRY, which is involved in male-typical sex development (Gubbay et al.,
253 1990; Parma and Radi, 2012), is helpful in inferring genders using TGS panel data.

254 One important innovation of seGMM is that seGMM is adapted to clinical applications that can be
255 applied to individual patients and automatically report sex chromosome abnormality samples. When
256 applying seGMM with reference data, attention should be given to the consistency of the analytical
257 methods between reference data and testing data, since inconsistent analysis methods can introduce
258 bias.

259 There are several limitations for seGMM. First, as a method expected to find sex chromosome
260 abnormal samples, seGMM classifies the samples by calculating the Xmap and Ymap intervals in
261 which they are located. However, the interval is fixed and when the number of male or female
262 samples in the testing dataset is small, the distribution of the Xmap/Ymap is approximately
263 nonnormal and then the sex chromosome karyotypes classification of samples in this case may be
264 inaccurate. Hence, we recommended that if the sample size of the male or female is small, combining
265 with a reference data is an effective strategy to ensure the accuracy of results. Second, the
266 computational time of seGMM depends on many factors, such as the number of features, the number
267 of samples, and the number of threads used. seGMM costs much time in collecting features of reads
268 mapped to the X and Y chromosomes, causing it to run slower than PLINK and seXY but faster than
269 XYalign. The running speed of seGMM can increased by adding cores, and we also consider
270 rewriting it as a GPU program to speed up in the future.

271 In conclusion, we have developed a new tool to infer genetic sex based on a Gaussian Mixture Model
272 called seGMM, which combines stable predictive ability and clinical application. In addition, when
273 the genomic data are TGS, seGMM is one of the best choices for inferring sex, which could meet the
274 needs of clinical genetics.

275 **5 Data Availability Statement**

276 seGMM is publicly available at <https://github.com/liusihan/seGMM> and can be installed directly by
277 Conda. Users can also download the source code from GitHub or PyPI and install related software.
278 The data used in this study were retrieved from the 1000 Genomes database (<https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/>). Further inquiries can be directed to the corresponding authors.

280 **6 Conflict of Interest**

281 The authors declare that the research was conducted in the absence of any commercial or financial
282 relationships that could be construed as a potential conflict of interest.

283 **7 Author Contributions**

284 SL developed the tool and drafted the manuscript. YZ, MC and QZ participated in data preprocessing
285 and testing. LW and CW performed the experiment. YL and HG reviewed and revised the
286 manuscript. FB designed and supervised the study and reviewed the manuscript. All authors
287 contributed to the article and approved the submitted version.

288 **8 Funding**

289 This work was supported by the 1·3·5 project for disciplines of excellence, West China
290 Hospital, Sichuan University.

291 **9 Reference**

292 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultrafast all-in-one FASTQ preprocessor.
293 *Bioinformatics* 34(17), i884-i890. doi: 10.1093/bioinformatics/bty560.

294 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., et al. (2011). The
295 variant call format and VCFtools. *Bioinformatics* 27(15), 2156-2158. doi:
296 10.1093/bioinformatics/btr330.

297 Di Resta, C., Galbiati, S., Carrera, P., and Ferrari, M. (2018). Next-generation sequencing approach
298 for the diagnosis of human diseases: open challenges and new opportunities. *EJIFCC* 29(1),
299 4-14.

300 Genomes Project, C., Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, R.M., et al.
301 (2010). A map of human genome variation from population-scale sequencing. *Nature*
302 467(7319), 1061-1073. doi: 10.1038/nature09534.

303 Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., et al.
304 (2015). A global reference for human genetic variation. *Nature* 526(7571), 68-74. doi:
305 10.1038/nature15393.

306 Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., et al. (1990). A
307 gene mapping to the sex-determining region of the mouse Y chromosome is a member of a
308 novel family of embryonically expressed genes. *Nature* 346(6281), 245-250. doi:
309 10.1038/346245a0.

310 Guo, H., Wang, T., Wu, H., Long, M., Coe, B.P., Li, H., et al. (2018). Inherited and multiple de novo
311 mutations in autism/developmental delay risk genes suggest a multifactorial model. *Mol
312 Autism* 9, 64. doi: 10.1186/s13229-018-0247-z.

313 Lee, C., Bae, J.S., Ryu, G.H., Kim, N.K.D., Park, D., Chung, J., et al. (2017). A Method to Evaluate
314 the Quality of Clinical Gene-Panel Sequencing Data for Single-Nucleotide Variant Detection.
315 *J Mol Diagn* 19(5), 651-658. doi: 10.1016/j.jmoldx.2017.06.001.

316 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler
317 transform. *Bioinformatics* 25(14), 1754-1760. doi: 10.1093/bioinformatics/btp324.

318 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence
319 Alignment/Map format and SAMtools. *Bioinformatics* 25(16), 2078-2079. doi:
320 10.1093/bioinformatics/btp352.

321 Lin, X., Tang, W., Ahmad, S., Lu, J., Colby, C.C., Zhu, J., et al. (2012). Applications of targeted
322 gene capture and next-generation sequencing technologies in studies of human deafness and
323 other genetic disabilities. *Hear Res* 288(1-2), 67-76. doi: 10.1016/j.heares.2012.01.004.

324 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The
325 Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
326 sequencing data. *Genome Res* 20(9), 1297-1303. doi: 10.1101/gr.107524.110.

327 McPherson, E. (2006). Genetic diagnosis and testing in clinical practice. *Clin Med Res* 4(2), 123-129.
328 doi: 10.3121/cmr.4.2.123.

329 Parma, P., and Radi, O. (2012). Molecular mechanisms of sexual development. *Sex Dev* 6(1-3), 7-17.
330 doi: 10.1159/000332209.

331 Pedersen, B.S., and Quinlan, A.R. (2018). Mosdepth: quick coverage calculation for genomes and
332 exomes. *Bioinformatics* 34(5), 867-868. doi: 10.1093/bioinformatics/btx699.

333 Phillips, K.A., and Douglas, M.P. (2018). The Global Market for Next-Generation Sequencing Tests
334 Continues Its Torrid Pace. *J Precis Med* 4.

335 Phillips, K.A., Douglas, M.P., and Marshall, D.A. (2020). Expanding Use of Clinical Genome
336 Sequencing and the Need for More Data on Implementation. *JAMA* 324(20), 2029-2030. doi:
337 10.1001/jama.2020.19933.

338 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., et al. (2007).
339 PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J
340 Hum Genet* 81(3), 559-575. doi: 10.1086/519795.

341 Qian, D.C., Busam, J.A., Xiao, X., O'Mara, T.A., Eeles, R.A., Schumacher, F.R., et al. (2017). seXY:
342 a tool for sex inference from genotype arrays. *Bioinformatics* 33(4), 561-563. doi:
343 10.1093/bioinformatics/btw696.

344 Saudi Mendeliome, G. (2015). Comprehensive gene panels provide advantages over clinical exome
345 sequencing for Mendelian diseases. *Genome Biol* 16, 134. doi: 10.1186/s13059-015-0693-2.

346 Scrucca, L., Fop, M., Murphy, T.B., and Raftery, A.E. (2016). mclust 5: Clustering, Classification
347 and Density Estimation Using Gaussian Finite Mixture Models. *R J* 8(1), 289-317.

348 Taylor, J.C., Martin, H.C., Lise, S., Broxholme, J., Cazier, J.B., Rimmer, A., et al. (2015). Factors
349 influencing success of clinical genome sequencing across a broad spectrum of disorders. *Nat
350 Genet* 47(7), 717-726. doi: 10.1038/ng.3304.

351 Turro, E., Astle, W.J., Megy, K., Graf, S., Greene, D., Shamardina, O., et al. (2020). Whole-genome
352 sequencing of patients with rare diseases in a national health system. *Nature* 583(7814), 96-
353 102. doi: 10.1038/s41586-020-2434-2.

354 Webster, T.H., Couse, M., Grande, B.M., Karlins, E., Phung, T.N., Richmond, P.A., et al. (2019).
355 Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-
356 generation sequencing data. *Gigascience* 8(7). doi: 10.1093/gigascience/giz074.

357

358

359

360

361

362

363

364

365 **Figure legends**

366 **Fig. 1. Schematic diagram of seGMM.** The input file to seGMM is VCF and BAM file, seGMM
367 will automatically collect features and build the GMM model.

368 **Fig. 2. Distribution of features collected from Dataset 1.** a. Distribution of X chromosome
369 heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X
370 chromosome (%) between males and females. c. Distribution of reads mapped to the Y chromosome
371 (%) between males and females. d. Distribution of XYratio between male and female.

372 **Fig. 3. Distribution of features collected from Dataset 2.** a. Distribution of X chromosome
373 heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X
374 chromosome (%) between males and females.

375 **Fig. 4. Accuracy of different methods in inferring sex with our in-house WES data.** a. Sample
376 clustering results of seGMM. b. Distribution of F coefficient. c. Scatter plot of normalized X and Y
377 ratio using XYalign. d. Venn plot of mismatched gender samples detected by the three methods.

378 **Fig. 5. Experimentally verified gender results.**

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395 **Tables**

396 **Table 1.** Accuracy of different methods in inferring sex with Dataset 1.

	Accuracy for all samples (%)	Accuracy for Male (%)	Accuracy for Female (%)
PLINK	81.44	48.28	100
seXY	62.5	45.45	81.63
seGMM	99.52	100	98.98

397

398

399

400

401

402 **Table 2.** Accuracy of different methods in inferring sex with Dataset 2 and Dataset 3.

	Dataset 2	Dataset 3
PLINK	86.58	38.87
seGMM	99.10	92.31

403

404

405

406

407 **Table 3.** Accuracy of different methods in inferring sex with WES and WGS data.

	PLINK	XYalign	seGMM
1000G phase3 WES data	100	99.65	100
1000G phase3 high quality WGS data	100	100	100
In-house WES data	99.54	99.66	99.75

408

409

410

411

412

413

414

415

416

417

418

419

420

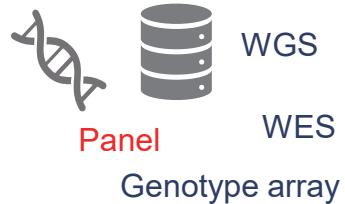
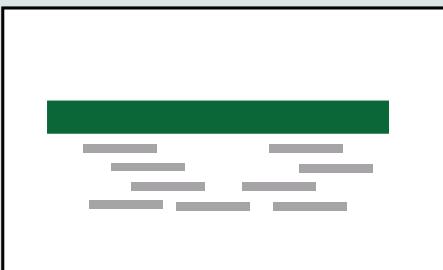
421 Table 4. Accuracy of different methods in inferring sex with WES and WGS data.

Sample ID	Amelogenin	Self-reported gender	seGMM inferred gender	Experiment validate gender
GX-0524	209.15 -	Male	Female	Female
GX-0946	209.06 -	Male	Female	Female
GYF-0602212	209.04 214.8	Female	Male	Male
GYF-0804464	209.06 214.85	Female	Male	Male
GYF-0905712-ge	209.11 -	Male	Female	Female
JL-102	209.18 214.92	Female	Male	Male

422

Input data

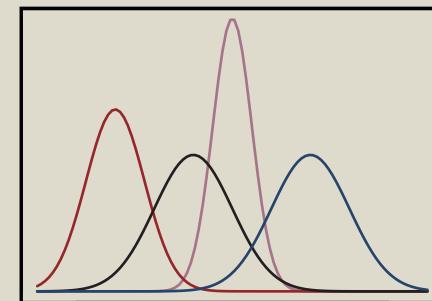
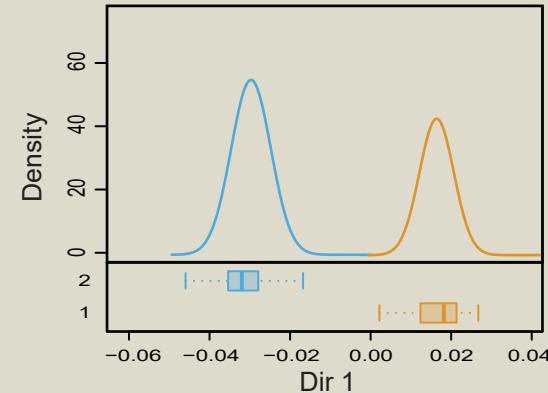
VCF data



Bam file

Reference data
seGMM

Sample clustering: GMM model



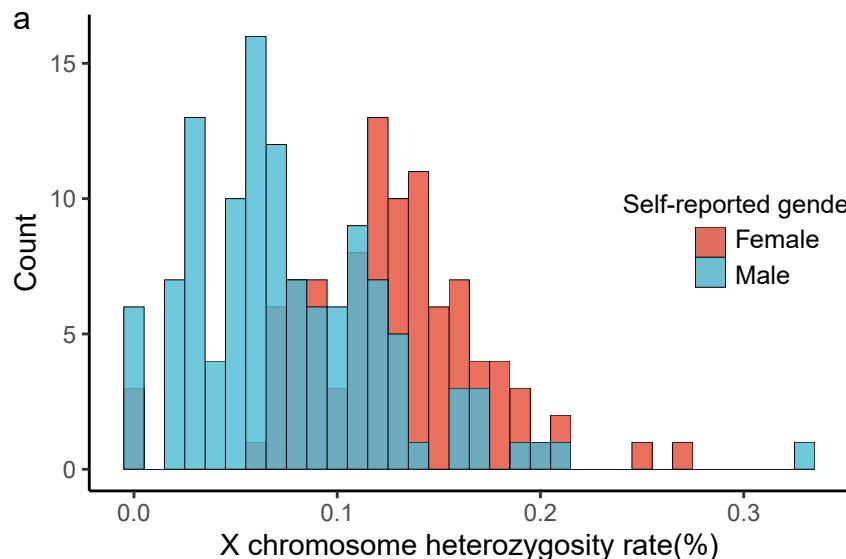
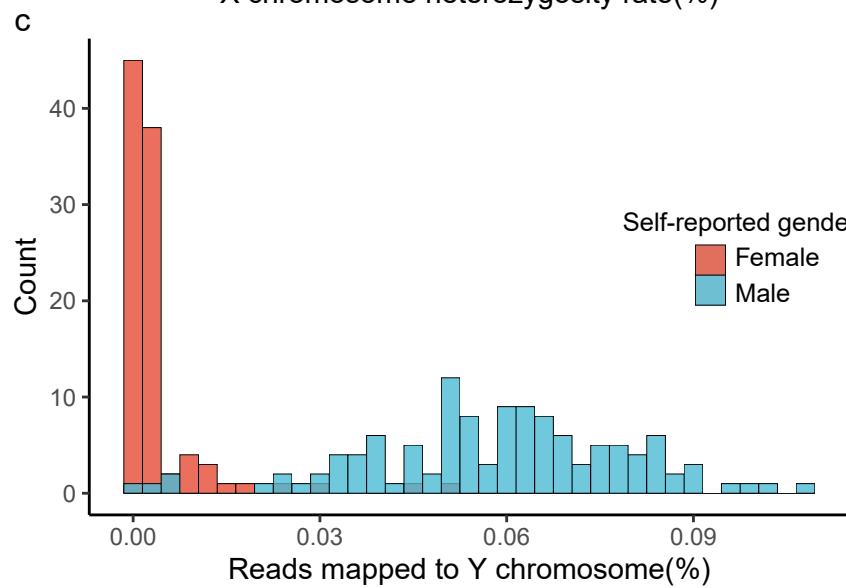
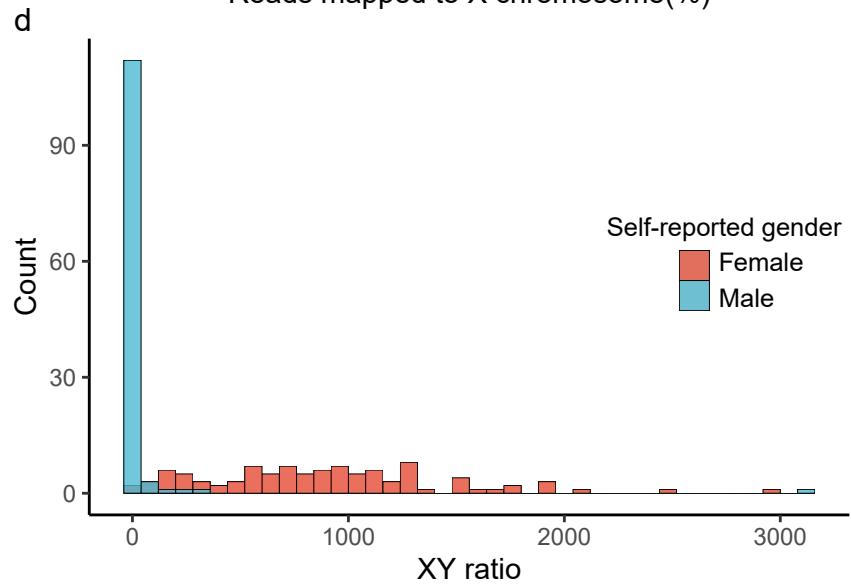
Output

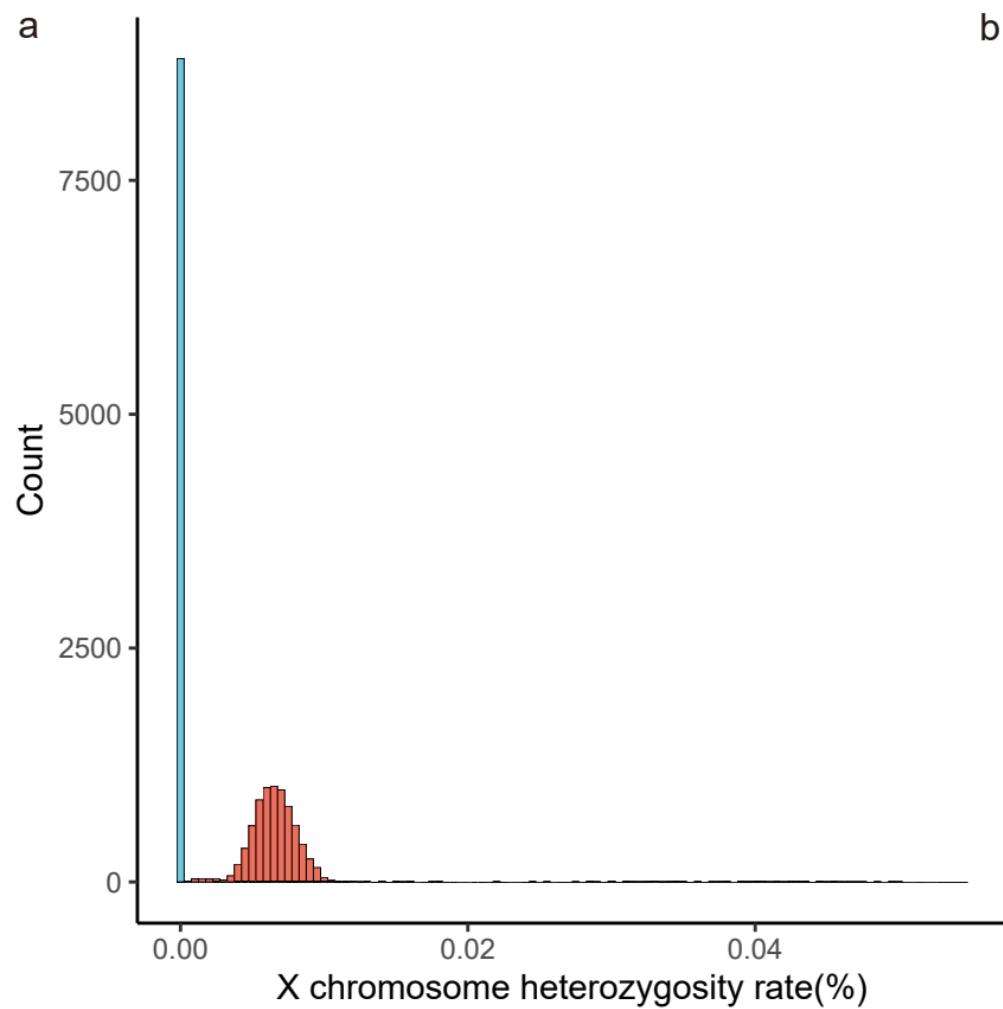
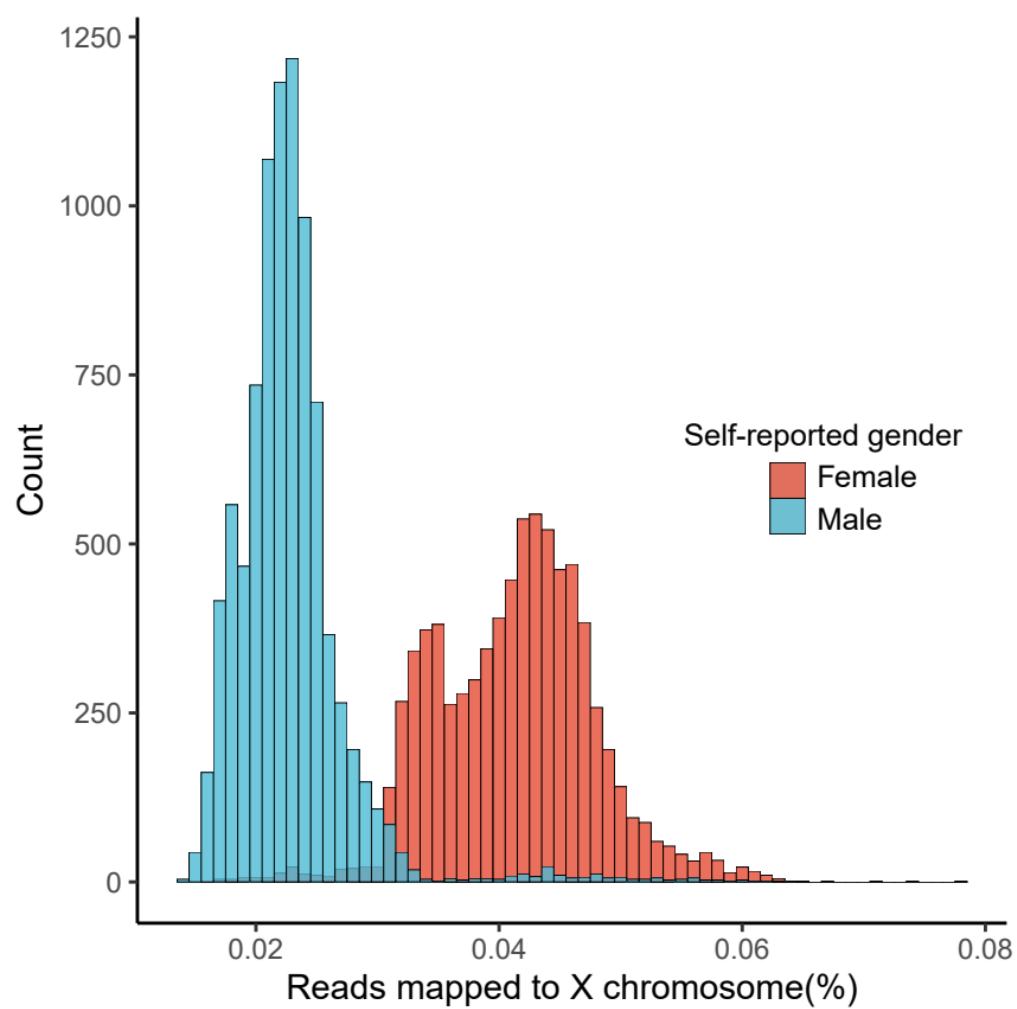
Cluster 2

Cluster 1

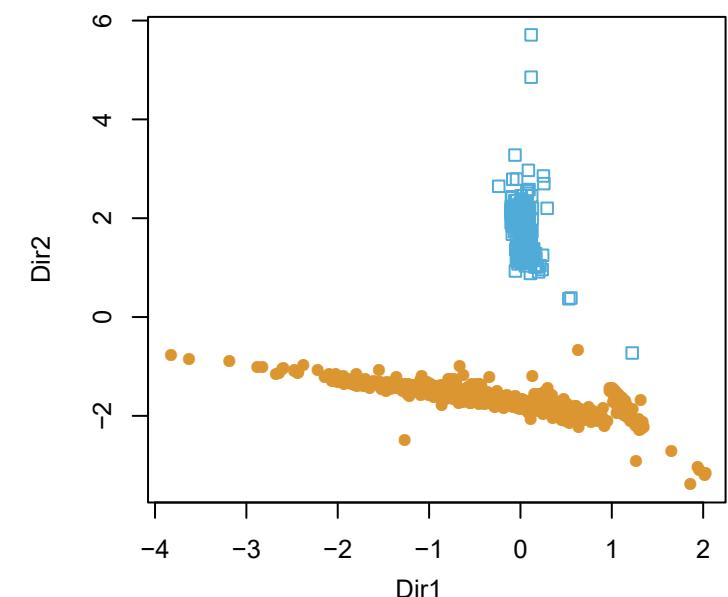
Abnormality

♀ ♂

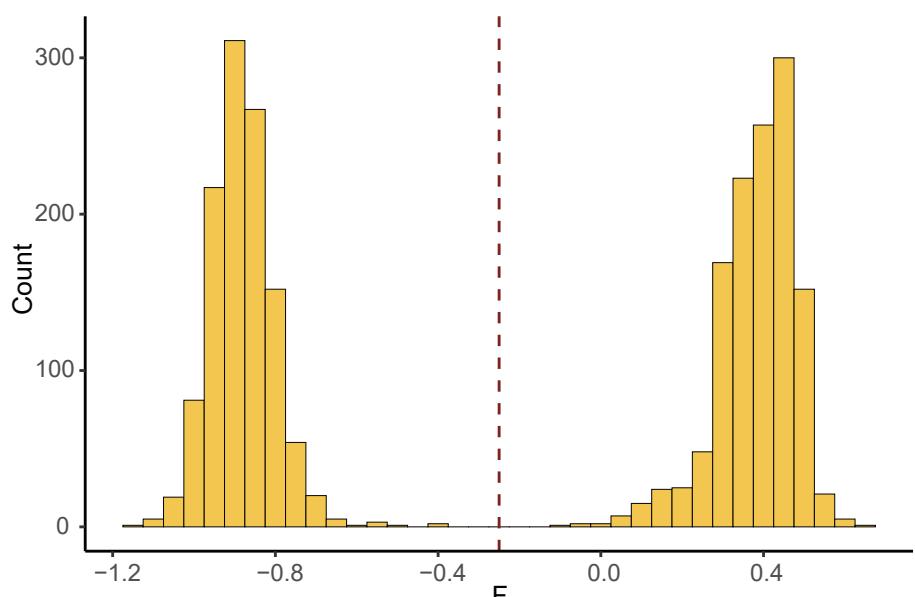




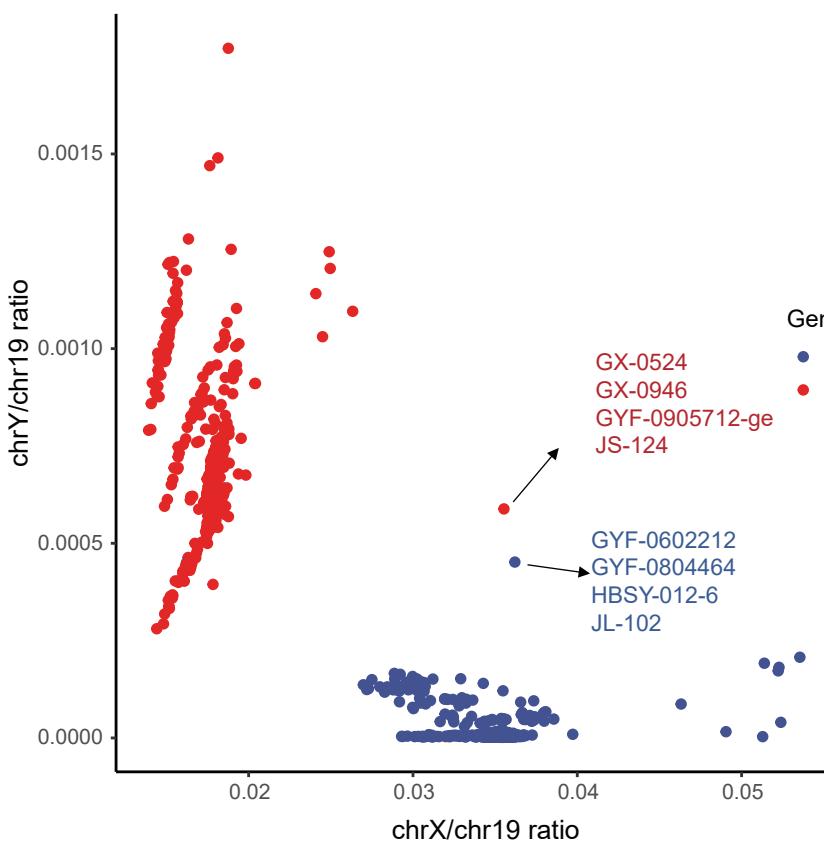
a



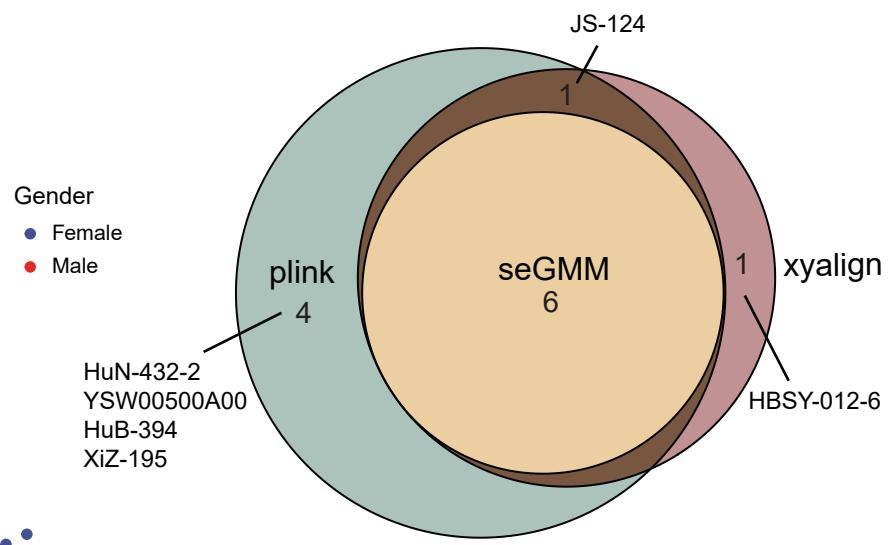
b



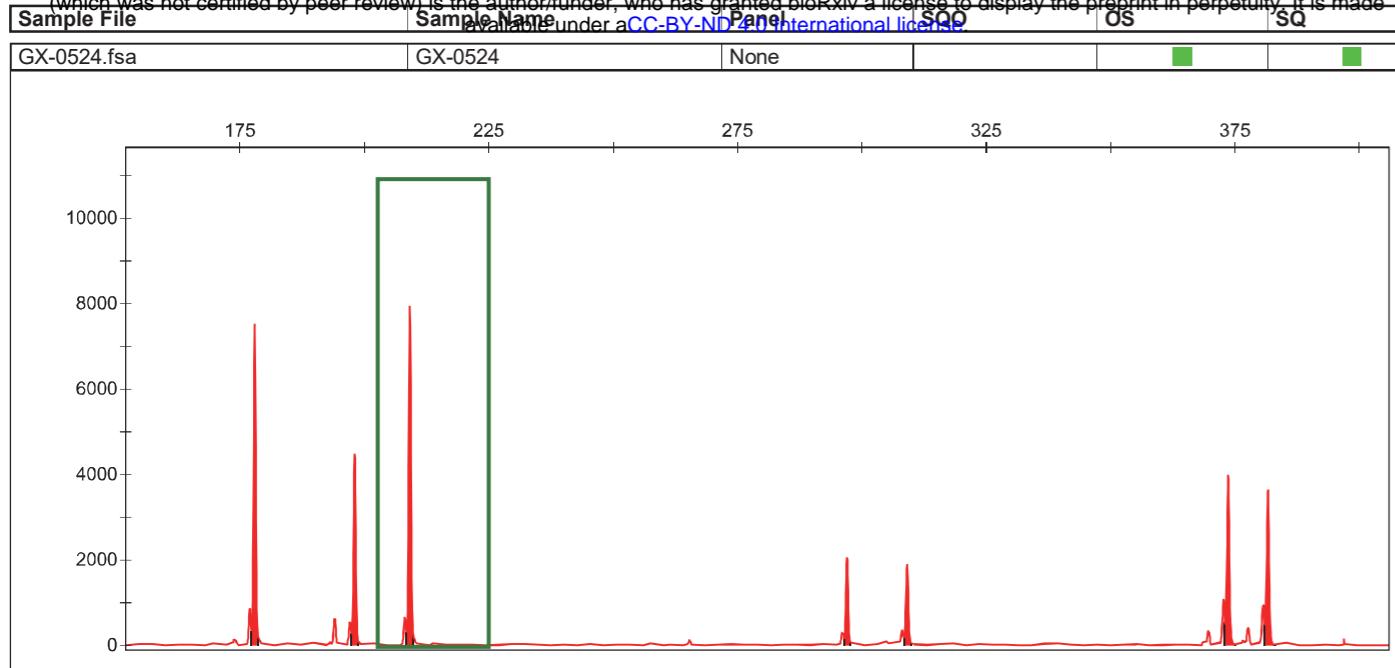
c



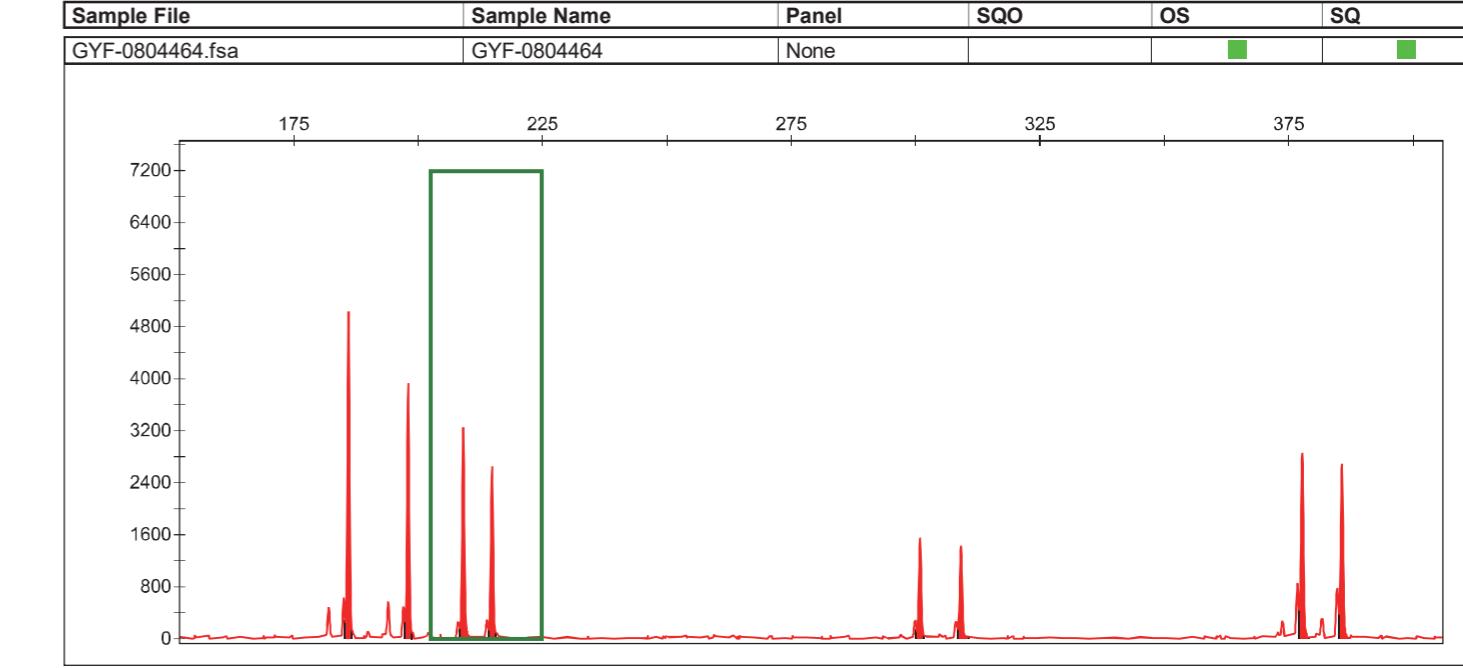
d



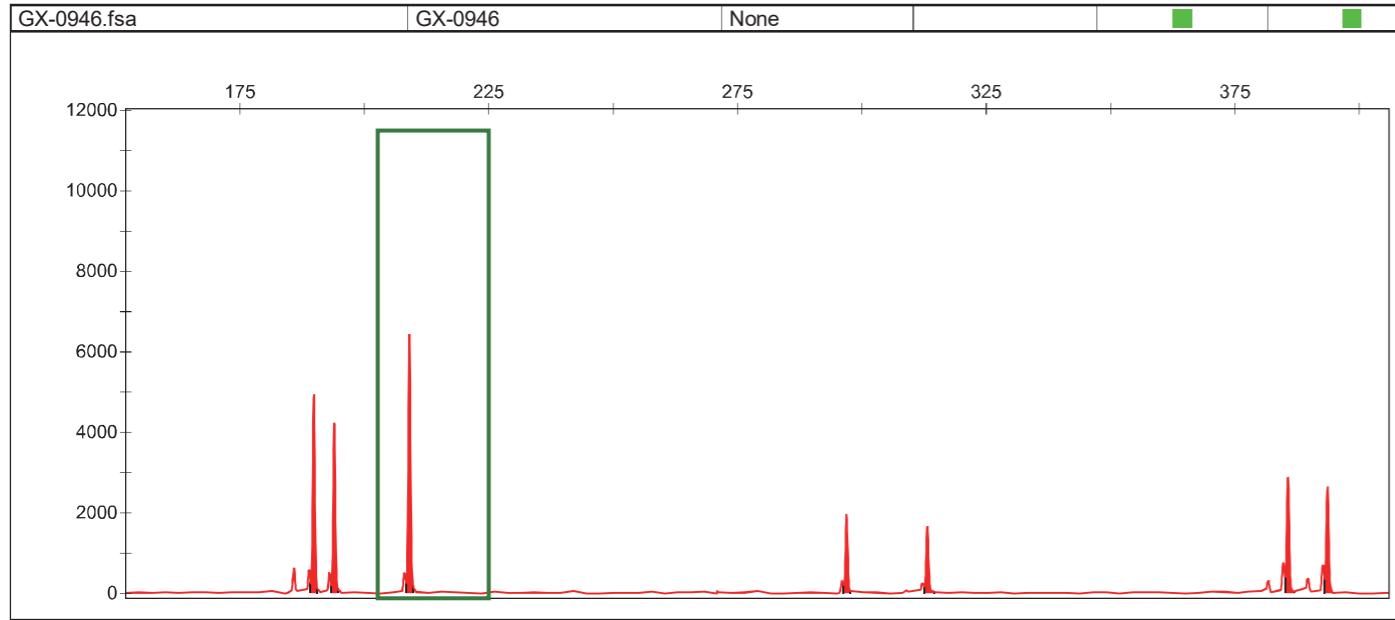
a



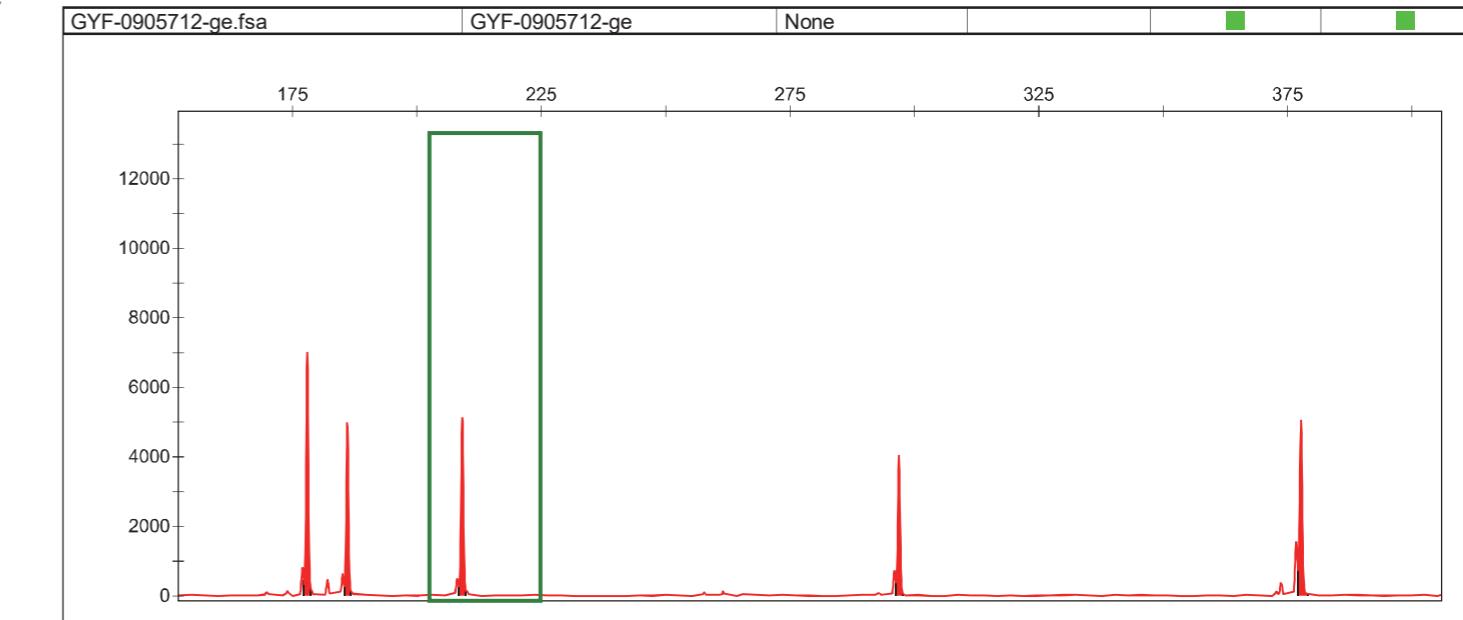
d



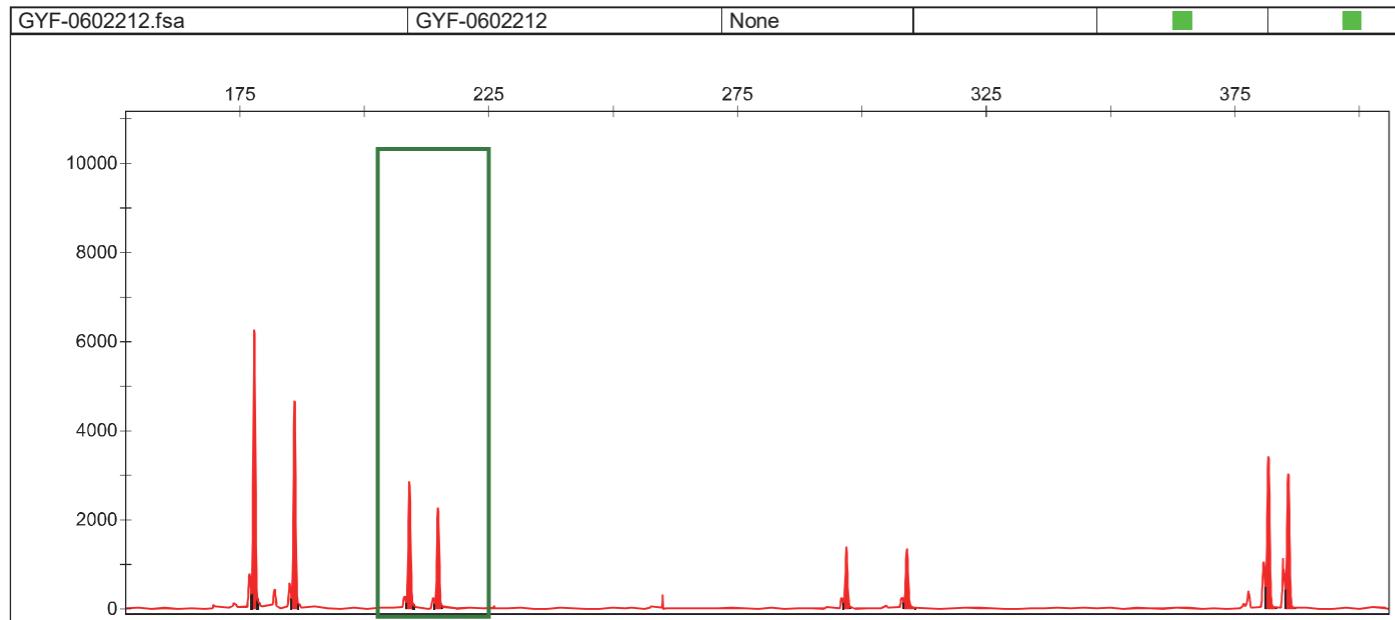
b



e



c



f

