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Abstract

Inspecting concordance between self-reported sex and genotype-inferred sex from genomic dataisa
significant quality control measurein clinical genetic testing. Numerous tools have been devel oped to
infer sex for genotyping array, whole-exome sequencing, and whole-genome sequencing data.
However, improvements in sex inference from targeted gene sequencing panels are warranted. Here,
we propose a new tool, seGMM, which applies unsupervised clustering (Gaussian Mixture Moddl) to
determine the gender of a sample from the called genotype data integrated aligned reads. sesGMM
consistently demonstrated > 99% sex inference accuracy in publicly available (1000 Genomes) and
our in-house panel dataset, which achieved obviously better sex classification than existing popular
tools. Compared to including features only in the X chromosome, our results show that adding
additional features from'Y chromosomes (e.g. reads mapped to the Y chromosome) can increase sex
classification accuracy. Notably, for WES and WGS data, sesGMM also has an extremely high degree
of accuracy. Finally, we proved the ability of sesGMM to infer sex in single patient or trio samples by
combining with reference data and pinpointing potential sex chromosome abnormality samples. In
general, sesGMM provides a reproducible framework to infer sex from massively parallel sequencing
data and has great promisein clinical genetics.
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1 I ntroduction

Next-generation sequencing (NGS) has revolutionized the clinical field by transforming the
landscape of clinical genetic testing and has been adopted as a standard for diagnosing hereditary
disorders, expanding our understanding of clinical genetics, and offering new opportunities for
personalized precision medicine over the last decade (Phillips and Douglas, 2018; Phillips et al.,
2020). Clinical genetic testing usually refers to the analysis of DNA to identify pathogenic variants to
aid in the diagnosis of disease (M cPherson, 2006). It may focus on a single gene, multi-gene panels
[targeted gene sequencing (TGS)], whole exome [whole exome sequencing (WES)], or whole
genome [whole genome sequencing (WGS)](Di Resta et al., 2018). TGS is highly recommended in
genetic testing because of its validity, utility, and cost-effectiveness, especialy in hearing loss,
cardiovascular disorders, and renal disorders (Lin et al., 2012; Saudi Mendeliome, 2015).

Parallelized TGS analysis of patients from the large cohort is commonplacein clinical genetic

testing. Considerable efforts are required for quality control (QC) and preprocessing of these data
before detecting pathogenic variants (Lee et al., 2017). Mismatched genders indicate potential sample
swap, pollution, sex chromosome abnormalities, or sequencing error, which will substantially lead to
erroneous conclusions and affect treatment decisions (Taylor et al., 2015; Webster et a., 2019). Thus,
one essential QC step is verifying concordance between self-reported sex and genotype-inferred sex.
Cytogenetic analyses, such as karyotyping, are gold standard methods of inferring sex but are time
and effort consuming. Leveraging computational tools to infer genotypic sex from sequencing data of
X and Y chromosomesis a convenient and powerful alternative strategy to verify sex concordance.

Several tools, such as PLINK, seXY, and XY align, have been developed to infer sex using data from
genotyping array, WES, or WGS. PLINK calculated the F coefficient with X chromosome
heterozygosity to infer sex for genotype array data (Purcell et al., 2007). In contrast, seXY considered
both X chromosome heterozygosity and Y chromosome missingness to infer sex in genotype array
data by logistic regression (Qian et al., 2017). In particular, XY align extract read count mapped to
sex chromosomes and calculated the ratio of X and Y counts (Webster et al., 2019). Together with
self-reported sex and calculated ratios, by plotting a scatter plot, users can infer sex with eyeballs for
WES and WGS data. However, the accuracy of these methodsin TGS panel data has not yet been
fully evaluated, and improvementsin sex inference from gene panel data are warranted.

In this study, we propose a new sex inference tool, sesGMM, that determines the gender of a sample
from called genotype data integrated aligned reads and jointly considers information on the X and Y
chromosomes in diverse genomic data, including TGS pand data. seGMM applies Gaussian Mixture
Model (GMM) clustering to classify the samplesinto different clusters. Compared to previous
methods that use logistic regression and training data to infer sex, seGMM is more powerful for
modeling data with different covariance structures and different numbers of mixture components for
various genomic data.

2 Materialsand Methods

2.1 Data

To evaluate the accuracy of existing methods and seGMM in inferring sex for TGS panel data, we
used 2 datasets from publicly available sources (Supplementary Table S1) and 1 dataset from our in-
house resource: (1) exon-targeted sequencing data for 1000 genes from 110 males and 98 females
from the 1000 Genomes Project (Dataset 1, (Genomes Project et a., 2010)); (2) massively paralle
sequencing of 785 deafness-related genes (Supplementary Table S2) from 8,950 males and 7,737
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76  females (Dataset 2); and (3) targeted sequencing data for 189 autism risk genes across a cohort from
77  the Autism Clinical and Genetic Resources in China (ACGC), including 42 females and 205 males
78 (Dataset 3, (Guo et al., 2018)).

79  In addition, to assess the application of seGMM in inferring sex for WES and WGS data, we used 2
80 datasets from publicly available sources (Supplementary Table S3 and Supplementary Table $4) and
81 1 dataset from our in-house source: (1) exome sequencing datafrom 164 males and 118 females from
82 the 1000 Genomes Project (Dataset 4, (Genomes Project et al., 2015)); (2) 27 high-coverage whole
83  genomes from the 1000 Genomes Project including 11 males and 16 females (Dataset 5; (Genomes
84  Project et al., 2015)) and (5) exome sequencing data from 1,255 males and 1,138 females from our
85 in-house resource (Dataset 6).

86  The publicly available BAM files were previously mapped to the reference genome (GRCh37),

87  which we can directly use for downstream analyses. For our in-house datasets, Fastp was used to

88 remove adapters and low-quality reads, aswell as evaluate the quality of sequencing data via several
89  measures, including Q20, sequence duplication levels, coverage, and GC content (Chen et al., 2018).
90  After evaluation, none of the samples were excluded. Clean DNA sequencing reads were mapped to
91 thehuman reference genome hgl9 using the BWA-MEM algorithm (Li and Durbin, 2009).

92 Duplicated reads for public BAM files and our in-house BAM files were removed using PicardTools.
93  Genomic variants were called following the Genome Analysis Toolkit software best practices

94 (McKennaet a., 2010). Variants were filtered by VCFtools (Danecek et al., 2011) with (1) missing
95  inmore than 50% of samples; (2) minor allele count < 3; (3) quality <30 and (4) DP < 5.

96 2.2 Inferringgenetic sex with sesGMM

97  Asexpected, five features may be associated with sex, including X chromosome heterozygosity

98 (XH), reads mapped to the X chromosome (Xmap), reads mapped to the' Y chromosome (Y map), the

99 ratio of X/Y counts (XYratio), and the mean depth of exons in the sex-determining region of the Y
100  chromosome (SRY) gene (SRY _dep). Usually, seGMM computes XH asthe fraction of all genotypes
101  onthe X chromosome with two different alele cals, excluding missing genotypes. Xmap/Y map was
102 computed asthe fraction of high-quality reads (mapg>30) that mapped to the X/Y chromosomein all
103  high-quality reads that mapped to the genome with samtools (Li et al., 2009). XYratio was computed
104 astheratio of Xmap divided by Ymap. SRY _dep was extracted by mosdepth with high-quality reads
105 (mapg>30) (Pedersen and Quinlan, 2018). Considering that the panel data may only contain genesin
106 the X or Y chromosome, seGMM allows usersto select features put into the GMM model.

107  After extracting features from BAM and V CF files, features were normalized to the same level using
108 thescalefunctionin R. Then, the R package mclust was used to perform model-based clustering via
109 the EM algorithm to classify the samplesinto different clusters (Scruccaet a., 2016). Samples with
110  anuncertainty greater than 0.1 were considered outliers. In addition, ssGMM can infer genetic sex
111 for asingle patient or trio samples with additional reference data containing the same features

112  selected to put into the model (Figure 1).

113 2.3 Identifying potential sex abnor mity samples

114  To pinpoint sex abnormity samples, we first define these values as mean xmap_z, sd xmap_z,

115 mean_ymap zand sd ymap z, wherez | {m, f} denotes whether the summaries were conditioned
116  on the genetically determined males or females. Then, we defined the following six gatesto classify
117  individuas according to the values above:

118 e XY gate:
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119 O mean_xmap _ m-3sd xmap m<x<mean xmap m+ 3 sd xmap_m
120 O mean_ymap m-3sd ymap m<y<mean ymap m+3sd ymap m
121 e XYY gate

122 O mean_xmap_ m-3sd xmap m<x<mean xmap_m+3sd xmap_m
123 O y>2mean_ymap m

124 o XX gate:

125 O mean_xmap f-3sd xmap f<x<mean xmap f+3sd xmap f

126 O mean ymap f-3sd ymap f<y<mean ymap f+3sd ymap f

127 e XXY gate:

128 O Xx>2mean_xmap _f

129 O mean_ymap_m-3sd ymap m<y<mean_ymap m+3sd ymap m
130 o XXX gate:

131 O x>3mean_xmap f

132 O mean ymap f-3sd ymap f<y<mean ymap f+3sd ymap f

133 e X gate

134 O x<0.5mean xmap f

135 O mean_ymap f-3sd ymap f<y<mean_ymap f+ 3sd ymap f

136 2.4 Comparing performance with existing methods

137  To compare the performance between sesGMM and existing methods. First, we downloaded and

138  configured three tools for sex inference: PLINK 1.9, XY align and seXY. For PLINK 1.9, X

139  chromosome pseudoautosomal region was first splited off with --split-x. Then, -- check-sex was
140  running once without parameters, eyeball the distribution of F estimates, and rerun with parameters
141  corresponding to the empirical gap. For XY align, following the method described in their published
142  paper, we used the CHROM _STATS module to obtain the depth of the 19 chromosome, X

143  chromosomeand Y chromosome. Then, the depth of the X and Y chromosomes was normalized by
144  dividing it by the depth of chromosome 19. Finally, we plotted a scatter plot to assess sex-

145 mismatched samples. For seXY, thefirst step was obtain the X.ped and Y .ped files with PLINK.
146  Next, sex inference was conducted with seXY using X.ped, Y .ped and the training data set (subjects
147  in prostate cancer and ovarian cancer GWAYS) provided by seXY. PLINK was applied to all datasets.
148 Sincethetarget gene pandl data of Datasets 2 and 3 do not contain genes located on the Y

149  chromosome, XYalign and seXY were only applied to Dataset 1. In addition, XY align was also

150  applied to WES and WGS data.

151 25 STR analyssfor verifying sex

152 The STR analysis was conducted in our own-designed multiplex STR system (modified based on
153 PowerPlex® 16 System), which allows coamplification and four-color detection of sixteen loci

154  (fifteen STR loci and Amelogenin). The primers for Amelogenin were designed as 5'-

155 GTTCAGACGTGTGCTTCAACTTCAGCTATGAGGTAATTTTTC -3 and5-

156 ATCCGACGGTAGTGTCCAACCATCAGAGCTTAAACTGG - 3'. All sixteen loci were amplified
157 simultaneously in asingle tube and analyzed in asingle injection or gel lane. One primer for each of
158 the vWA, amelogenin, FGA and TPOX loci was labeled with carboxyrhodamine (ROX). The

159  amplicons were separated on an ABI 3730XL Genetic Analyzer, and data were collected using

160 GeenMapper ID v3.2. Since females are XX, only a single peak is observed when testing female
161 DNA, whereas males, which possess both X and Y chromosomes, exhibit two peaks with a6 bp
162 difference.

163 3 Results
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164 3.1 seGMM achieved better sex classification in TGS data than existing methods

165 Wecaculated XH, Xmap, Ymap and XYratio for Dataset 1. We found that Y map and XYratio plot
166 asdigtinct clusters for the magjority of males and females (Figure 2). The distribution of XH and

167  Xmap for males and females has alot of intersections, suggesting that the accuracy of sex inference
168 islimited if we only include features extracted from the X chromosome. Our results proved this

169 hypothesis: with features extracted only from the X chromosome, seGMM reported 59 samples as
170 outliers, and the accuracy for the remaining samples was only 84.56%. Next, we evaluate the

171  performance of seGMM in Dataset 1 using the 4 features we calculated before. We found that no
172  samples were reported as outliers, and the accuracy increased to 99.52% after including features from
173 theY chromosome (Table 1). Moreover, looking into different genders, the accuracy of seGMM in
174  females was 98.98%, and that in males was 100%. The only female sample (NA19054) misclassified
175 by seGMM had an XY ratio that closely mirrored those of males.

176  To assessthe performance of sesGMM, we also applied PLINK, seXY and XYalign in Dataset 1 to
177  assessthe accuracy of these existing tools in inferring sex. We discovered that the distribution of the
178  F coefficient is concentrated between 0-0.9 and without an empirical gap (Supplementary Figure S1).
179 Theaccuracy of PLINK was 81.44 %, with 94 samples whose predicted sex was clear (Table 1). The
180 accuracy of seXY isonly 62.5%. For XY align, which does not directly provide a predicted sex, we
181 plot the normalized sequence depth of chromosome X and chromosome Y. A couple of females and
182 malesare mixed, indicating the loss of accuracy with XY align compared to sesGMM (Supplementary
183  Figure S2). Moreover, we have tested the computation time of different methods using 1 core, 10
184  coresand 20 cores on aserver with 64 Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60 GHz. We can see
185 that, as expected, sesGMM costs much more time than PLINK and seXY, which don’t collect features
186  of reads mapped to the X and Y chromosomes. Contrary to PLINK and seXY, with 1 core, ssGMM
187  costsfairly time compared to XY align, while when using 20 cores, sesGMM achieves 10 times faster
188 than XYalign. (Supplementary Table S5)

189 To validate the performance of sesGMM in inferring sex from gene panel data, we further applied
190 seGMM to Dataset 2 and Dataset 3. Since the target gene panel data of these datasets do not contain
191 geneslocated on the Y chromosome, we calculated XH and Xmap as features. In contrast to Dataset
192 1, thedistribution of XH and Xmap for Dataset 2 plot as distinct clusters for the majority of males
193 and females (Figure 3). We compared the performance of sesGMM in inferring sex with PLINK. In
194  total, the accuracy of seGMM was 99.10%, while the accuracy of PLINK was 86.58% (Table 2).
195 Additionaly, looking into different genders, the accuracy of seGMM in females was nearly 100%
196  and 98.34% in males. The few males misclassified by sesGMM have XH values that closaly mirror
197  those of females. Furthermore, the accuracy of seGMM in Dataset 3 is92.31% (Table 2), while the
198 accuracy of PLINK isrelatively lower (38.87%).

199 3.2 seGMM hasgood performancein inferring sex for WES and WGS data

200  Recently, WES and WGS have shown promise in becoming afirst-tier diagnostic test for patients
201  with Mendelian disorders. Therefore, we evaluated the performance of seGMM in inferring sex from
202 WES and WGS data. First, we applied seGMM to publicly available WES data (Dataset 4). The

203  accuracy of seGMM was 100%, indicating that sesGMM also has excellent performance in WES data
204  (Table 3 and Supplementary Figure S3). Meanwhile, the accuracy of PLINK was 100%, while the
205 accuracy of XYalign was 99.65%. NA12413 was mixed with female samples (Supplementary Figure
206 S4).
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207  Inaddition, we applied seGMM to our in-house WES data (Dataset 6). The accuracy of seGMM in
208  our in-house WES data was 99.75%, 99.76% for males and 99.74% for females (Supplementary
209 Table S6). Six samples (3 males and 3 females; Table 3 and Figure 4a) were mismatched between
210  SNP-inferred sex and self-reported sex, indicating potential misregistration of clinical information.
211  For PLINK, the accuracy was 99.54%, and 11 samples were mismatched (Table 3 and Figure 4b).
212  Theaccuracy for XYalign was 99.66%, and 8 samples were mismatched (Figure 4c). Six samples
213  were detected with mismatched sex in the three methods; however, 5 mismatched samples detected
214  with PLINK and 2 mismatched samples detected with XY align were correct in sesGMM (Figure 4d).

215 To verify thereal sex of these 6 samples, we performed STR analysis with a sex marker, the

216  amelogenin gene. PCR products generated from the amelogenin gene are widely accepted for usein
217  sex identification. The amelogenin geneis highly conserved and occurs on both the X- and Y -

218 chromosomes. With a6 bp deletion of the amelogenin geneintheY chromosome, amplicons

219 generated from the X and Y chromosomes were distinguished from one another when electrophoretic
220  separation was performed to separate STR alleles. The results showed that the real sex matched the
221 seGMM prediction results, proving the pinpoint accuracy of ssGMM (Table 4 and Figure 5). Finally,
222 seGMM was conducted on the WGS data (Dataset 5), and the accuracy was 100% (Table 3). The
223  accuracy for PLINK and XYalignisaso 100%.

224 3.3 Theability of sesGMM in clinical application

225 Inclinical practice, individual patient or trio samples are usually sequenced to obtain a molecular
226  diagnosis. However, the GMM model requires a sufficient sample size to ensure the accuracy of

227  classification. To address this problem, sesGMM permits users to provide additional reference data.
228 By combining the features from reference data, sSsGMM can ensure accuracy for clinical application.
229  Taking WES data as an example, using features including Xmap, Y map, XY ratio and normalized
230 SRY_dep (divided by XYratio), we found that with 1000 Genomes data points as a reference, all
231  samplesin our in-house WES data were predicted accurately and vice versa.

232  Additionally, approximately 0.25% male and 0.15% female live births demonstrated some form of
233  sex chromosome abnormality. A previous study examined the feasibility of defining five gatesto
234  classify individuals according to the normalized X and Y chromosome ratio, calculated on

235 genetically determined males and females, respectively (Turro et al., 2020). Similarly, following this
236  strategy, sesGMM can automatically classify samplesinto 6 sex chromosome karyotypes (XX, XY,
237 XYY, XXY, XXX and X) according to the Xmap and Y map. For publicly available WES and WGS
238  data, none of the samples had sex chromosome abnormalities. For our in-house WES data, 3 samples
239 (HBSY-012-ge, HBSY-012 and XiZ-086) were identified with XYY chromosome karyotypes.

240 4 Discussion

241  Thisarticle introduces a sex inference tool, sesGMM, to infer genotype sex from NGS data, especialy
242 TGS pand data. sesGMM integrates several tools and algorithms into a single workflow. Using

243  features extracted from sex chromosomes, seGMM applied unsupervised clustering to classify the
244 samples. Compared to many existing supervised methods that attempt to infer sex by training a

245  logistic regression classifier based on limited available data, ssGMM can be applied directly to

246  different types of genomic data. By comparing PLINK, seXY and XY align, we proved that ssGMM
247  outperforms existing tools in inferring sex with TGS panel data and has excellent performancein
248  WES and WGS data.


https://doi.org/10.1101/2021.12.16.472877
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.472877; this version posted December 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 InternatigpdSIIRANE: a new tool to infer genetic sex

249  Additionally, compared with including features extracted from only the X chromosome, we

250 discovered that jointing valuable information on the Y chromosome improved the accuracy of

251 inferring sex. Our data suggest that adding probes targeting unique regions of the' Y chromosome,
252  particularly the exon of the SRY, which isinvolved in male-typical sex development (Gubbay et al.,
253  1990; Parmaand Radi, 2012), is helpful in inferring genders using TGS panel data.

254  Oneimportant innovation of seGMM isthat sesGMM is adapted to clinical applications that can be
255  appliedto individual patients and automatically report sex chromosome abnormality samples. When
256  applying seGMM with reference data, attention should be given to the consistency of the analytical
257  methods between reference data and testing data, since inconsistent analysis methods can introduce
258  bias.

259 Thereare several limitations for ssGMM. First, as a method expected to find sex chromosome

260 abnormal samples, seGMM classifies the samples by calculating the Xmap and Y map intervalsin
261  which they are located. However, the interval is fixed and when the number of male or female

262 samplesin the testing dataset is small, the distribution of the Xmap/Y map is approximately

263  nonnormal and then the sex chromosome karyotypes classification of samplesin this case may be
264  inaccurate. Hence, we recommended that if the sample size of the male or female is small, combining
265 with areference datais an effective strategy to ensure the accuracy of results. Second, the

266  computational time of seGMM depends on many factors, such as the number of features, the number
267  of samples, and the number of threads used. ssGMM costs much time in collecting features of reads
268 mapped to the X and Y chromosomes, causing it to run slower than PLINK and seXY but faster than
269  XYalign. The running speed of ssGMM can increased by adding cores, and we also consider

270  rewriting it asa GPU program to speed up in the future.

271  Inconclusion, we have developed a new tool to infer genetic sex based on a Gaussian Mixture Model
272  called seGMM, which combines stable predictive ability and clinical application. In addition, when
273  thegenomic dataare TGS, seGMM is one of the best choices for inferring sex, which could meet the
274  needsof clinical genetics.

275 5 Data Availability Statement

276  seGMM ispublicly available at https://github.com/liushan/seGMM and can be installed directly by
277  Conda. Users can aso download the source code from GitHub or PyPl and install related software.
278 Thedataused in this study were retrieved from the 1000 Genomes database (https://ftp-

279  trace.ncbi.nih.gov/1000genomes/ftp/). Further inquiries can be directed to the corresponding authors.
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365 Figurelegends

366 Fig. 1. Schematic diagram of sesGMM. Theinput fileto seGMM isVCF and BAM file, seGMM
367  will automatically collect features and build the GMM model.

368 Fig. 2. Distribution of features collected from Dataset 1. a. Digtribution of X chromosome

369 heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X

370 chromosome (%) between males and females. c. Distribution of reads mapped to the Y chromosome
371 (%) between males and females. d. Distribution of XY ratio between male and female.

372  Fig. 3. Distribution of features collected from Dataset 2. a. Distribution of X chromosome
373  heterozygosity rate (%) between males and females. b. Distribution of reads mapped to the X
374  chromosome (%) between males and females.

375  Fig. 4. Accuracy of different methodsin inferring sex with our in-house WES data. a. Sample
376  clustering results of sesGMM. b. Distribution of F coefficient. c. Scatter plot of normalized X and Y
377  ratiousing XYalign. d. Venn plot of mismatched gender samples detected by the three methods.

378  Fig. 5. Experimentally verified gender results.
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395 Tables

396 Table 1. Accuracy of different methods in inferring sex with Dataset 1.
Accuracy for al samples Accuracy for Male Accuracy for Female

(%) (%) (%)

PLINK 81.44 48.28 100
seXY 62.5 45.45 81.63
seGMM 9952 100 98.98

397

398

399

400

401

402  Table 2. Accuracy of different methods in inferring sex with Dataset 2 and Dataset 3.

Dataset 2 Dataset 3

PLINK 86.58 38.87
seGMM 99.10 92.31

403

404

405

406

407  Table 3. Accuracy of different methods in inferring sex with WES and WGS data.

PLINK XYalign seGMM

1000G phase3 WES data 100 99.65 100
1000G phase3 high quality WGS data 100 100 100
In-house WES data 99.54 99.66 99.75
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421  Table 4. Accuracy of different methods in inferring sex with WES and WGS data.
Self-reported seGMM inferred Experiment validate

Sample ID Amelogenin

gender gender gender
209.15

GX-0524 Mae Female Female
209.06

GX-0946 Mae Female Female
. 209.04

GYF Female Mae Mae
0602212 2148
GYF- 209.06

Female Mae Mae
0804464 214.85
GYF- 209.11

0905712-ge ] Mae Female Female
209.18

JL-102 Female Mae Mae
214.92

422
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