

1 The effects of locomotion on sensory-evoked haemodynamic responses in the cortex

2 of awake mice

Beth Eyre^{1,2,3*}, Kira Shaw^{1,5}, Paul Sharp^{1,6}, Luke Boorman¹, Llywelyn Lee^{1,2,3}, Osman Shabir^{1,2,3,4}, Jason Berwick^{1,2,3+}, Clare Howarth^{1,2,3+}

¹Sheffield Neurovascular Lab, Department of Psychology, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN (United Kingdom)

⁸ ²Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN (United Kingdom)

9 ³Healthy lifespan Institute, University of Sheffield

10 ⁴Department of Infection, Immunity & Cardiovascular Disease (IICD), University of Sheffield Medical
11 School, Royal Hallamshire Hospital, Beech Hill Road, Sheffield, S10 2RX (United Kingdom)

12 ⁵School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United
13 Kingdom

⁶Medicines Discovery Catapult, Mereside, Alderley Park, Alderley Edge, SK10 4TG

15 These authors contributed equally. These authors contributed equally

17 Abstract

18 Investigating neurovascular coupling in awake rodents is becoming ever more popular due,
19 in part, to our increasing knowledge of the profound impacts that anaesthesia can have upon
20 brain physiology. Although awake imaging brings with it many advantages, we still do not
21 fully understand how voluntary locomotion during imaging affects sensory-evoked
22 haemodynamic responses. In this study we investigated how evoked haemodynamic
23 responses can be affected by the amount and timing of locomotion. Using an awake imaging
24 set up, we used 2D-Optical Imaging Spectroscopy (2D-OIS) to measure changes in cerebral
25 haemodynamics within the sensory cortex of the brain during either 2s whisker stimulation or
26 spontaneous (no whisker stimulation) experiments, whilst animals could walk on a spherical
27 treadmill. We show that locomotion alters haemodynamic responses. The amount and timing
28 of locomotion relative to whisker stimulation is important, and can significantly impact
29 sensory-evoked haemodynamic responses. If locomotion occurred before or during whisker
30 stimulation, the amplitude of the stimulus-evoked haemodynamic response was significantly
31 altered. Therefore, monitoring of locomotion during awake imaging is necessary to ensure
32 that conclusions based on comparisons of evoked haemodynamic responses (e.g., between
33 control and disease groups) are not confounded by the effects of locomotion.

34

35

36

37

38 **Introduction**

39 When neurons fire, there follows a localised increase in blood flow to that same brain region.
40 This relationship between neuronal firing and an increase in blood flow is known as
41 neurovascular coupling (NVC), and underpins the principles of blood oxygen level
42 dependent functional magnetic resonance imaging (BOLD fMRI). NVC ensures that the
43 brain receives prompt increases in cerebral blood flow (CBF) to activated regions of the
44 brain, allowing for the rapid delivery of essential nutrients such as O₂ and glucose and the
45 removal of waste products such as CO₂ and lactate¹. This mechanism is important for
46 healthy brain function; accumulating evidence suggests that NVC is impaired in several
47 neurological disorders, including Alzheimer's disease²⁻⁵. Therefore, understanding how NVC
48 may be altered by disease is integral to furthering our understanding of the onset and
49 progression of such diseases.

50

51 Over the last fifty years, the neurovascular field has been revolutionised by the advent of
52 new scientific methods. The development of techniques such as wide-field optical imaging^{6,7}
53 and two-photon microscopy⁸, alongside advances in the development of genetically-encoded
54 calcium indicators such as GCAMP⁹, have been vital in furthering our knowledge of the inner
55 workings of the brain. Just considering the last twenty years, we have discovered the
56 potential role of pericytes¹⁰⁻¹², astrocytes¹³⁻¹⁵ and even caveolae¹⁶ in NVC. Many studies
57 investigating NVC, including several of those previously mentioned were conducted under
58 anaesthesia. The use of anaesthesia has allowed the field to gain an in-depth insight into
59 neural activity and the subsequent haemodynamic response in a controlled environment.
60 However, anaesthesia is not without its pitfalls¹⁷.

61

62 Not only does anaesthesia dampen neural activity but it can also reduce many aspects of
63 the haemodynamic response - including blood oxygenation, CBF and cerebral blood volume
64 (CBV)^{18,19} in addition to delaying the time-course of the haemodynamic response¹⁸.

65

66 To mitigate these effects, several groups, including our own, have developed anaesthetic
67 regimes that produce stable haemodynamic responses, of similar timing and magnitude to
68 those in the awake preparation²⁰⁻²² - these regimes can produce stable responses without
69 the confounds of behaviour. Despite this, many groups have begun to move away from the
70 use of anaesthesia. A growing number of studies have used awake, moving animals to
71 investigate NVC and the roles of cells within the neurovascular unit (NVU)^{16,23,24}.

72

73 Studies using electrophysiology, two-photon microscopy and intrinsic optical signal (IOS)
74 imaging have shown that locomotion can generate robust increases in neural activity, vessel

75 diameter, and CBV, respectively^{23,25,26}. While these studies focused on how locomotion itself
76 impacts brain haemodynamics (within surface vessels of the brain), Tran et al. (2018)
77 explored how locomotion may affect sensory-evoked haemodynamic responses. No
78 significant differences in peak amplitude dilation of arterioles were reported when mice were
79 continuously running during whisker stimulation, went from quiet to running in response to
80 whisker stimulation, or when they remained quiet prior to and after whisker stimulation²⁴ –
81 suggesting that locomotion did not have an impact on sensory-evoked haemodynamic
82 responses. However, the study focused on dilation changes in penetrating arterioles, and
83 locomotion may affect sensory-evoked haemodynamic responses within the surface vessels
84 of the brain to a different extent, as it has been shown that the narrowing of the Virchow-
85 Robin space may restrict dilations within penetrating arterioles²⁷.

86

87 It is critical to characterise how sensory-evoked haemodynamic responses may be impacted
88 by locomotion for a number of reasons. If sensory-evoked haemodynamic responses are
89 affected by locomotion and locomotion is not monitored, when comparing responses (for
90 example when comparing a disease group to a wild-type (WT) group), differences in
91 neurovascular function could be erroneously assumed to be a consequence of disease,
92 rather than a consequence of differential locomotion.

93

94 Therefore, to improve our understanding of how locomotion may impact sensory-evoked
95 haemodynamic responses we used two-dimensional optical imaging spectroscopy (2D-OIS)
96 to investigate changes in cortical blood oxygenation in C57BL/6J mice. We hypothesised
97 that locomotion would increase the amplitude of evoked haemodynamic responses within
98 the cerebral cortex of the brain, as previous research suggests that locomotion leads to
99 greater dilations within surface vessels as compared to penetrating vessels²⁷. Additionally,
100 we hypothesised that the time at which locomotion occurred (in relation to the 2s whisker
101 stimulation) would also impact evoked haemodynamic responses, with locomotion occurring
102 closer to the stimulation onset being expected to increase the amplitude of the evoked
103 hemodynamic response. The data set included 21 separate imaging sessions taken from 4
104 animals, with each session comprised of continuous recordings taken during (a) a 2s
105 whisker stimulation experiment (59 x 25-second trials, with whisker stimuli presented
106 between 5-7s after trial onset) and (b) a spontaneous experiment, with no whisker
107 stimulation (also separated into 59 x 25-second trials). For the 2s whisker stimulation data
108 set recorded in each of the individual 21 sessions, the following analysis was conducted.
109 The 59 trials were ranked by the amount of voluntary locomotion occurring during the entire
110 trial period (25s), and during different 5s time windows within the trial (occurring before,
111 during or after stimulation). Average evoked haemodynamic time series were created from

112 the top (n=6 trials per session) and bottom (n=6 trials per session) 10% of ranked trials,
113 corresponding to those with the most and least locomotion respectively, this was completed
114 for each session. For visualisation and analysis purposes, average evoked time series were
115 then generated by averaging across all 21 sessions (giving mean +/- SEM between
116 sessions). From this analysis, we were able to reveal how different amounts of locomotion
117 impact the amplitude of the sensory-evoked haemodynamic response, as well as being able
118 to dissect how the timing of locomotion (relative to whisker stimulation) impacted evoked
119 haemodynamic responses. For the purpose of this study we were interested in how
120 locomotion alters sensory-evoked haemodynamic responses, so for the 2s spontaneous
121 dataset, time series analysis was not conducted (Figs 2-3), but spatial maps were generated
122 (Fig 4).

123

124 **Results**

125 **Locomotion alters the sensory-evoked hemodynamic response**

126 Animals received a thinned cranial window surgery to allow 2D-OIS to measure changes in
127 cerebral haemodynamics – specifically changes in oxygenated haemoglobin (HbO),
128 deoxygenated haemoglobin (HbR) and total haemoglobin (HbT). During imaging, animals
129 could move on a spherical treadmill whilst whiskers could be stimulated with a mechanical T-
130 bar (Fig 1a). The treadmill was attached to an optical motion sensor, which allowed us to
131 assess the impact that the amount and timing of locomotion (in isolation and also relative to
132 whisker stimulation) had on the haemodynamic response. Twenty-one individual recording
133 sessions, each with 59 trials, made up the 2s whisker stimulation data set. For each session,
134 trials were ranked by voluntary locomotion occurring at different time points relative to the
135 whisker stimulation. Evoked haemodynamic time series were generated from the top and
136 bottom 10% of locomotion-ranked trials, corresponding to trials in which the most and least
137 locomotion occurred, and were averaged across the 21 sessions.

138

139 A representative locomotion and HbT response is shown in Figure 1b and c. Throughout the
140 stimulations (marked on the x-axis), HbT responses to individual whisker stimulation trials
141 can be observed. Large increases in HbT can be seen that coincide with spontaneous
142 walking events (black arrowheads).

143

144 First, we checked whether the presence of whisker stimulation changes the amount of
145 locomotion (Fig 1d and 1e). A sign test with continuity correction revealed there was no
146 statistically significant difference in the median distance travelled (Median \pm SEM: -1517 \pm
147 2065) in experiments with a 2s whisker stimulation (Median \pm SEM: 14894 \pm 2732),

148 compared to experiments without whisker stimulation (Median \pm SEM: 12360 ± 1532 , $z = 1.309$, $p = 0.189$).

150

151 We then looked at whether locomotion alters the evoked haemodynamic response. To do
152 this we examined the effects of locomotion across the entire 25s trial period for the top and
153 bottom 10% of trials ranked by locomotion. We examined how the greatest amount of
154 locomotion influenced the evoked haemodynamic response as compared to the evoked
155 haemodynamic response when the animals moved the least (Figs 2a, b and c). Sign tests
156 with continuity correction revealed there were no statistically significant median differences
157 in HbT peak (during a 2s whisker stimulation) (Median \pm SEM: $0.003 \pm .007$) and HbO peak
158 (Median \pm SEM: $-0.0004 \pm .008$) during trials with the greatest locomotion (Median \pm SEM:
159 HbT: $1.038 \pm .007$, HbO: $1.057 \pm .009$), as compared to when a stimulation occurred during
160 trials with the least locomotion (Median \pm SEM: HbT: $1.028 \pm .003$, $z = -0.873$, $p=0.383$,
161 HbO: $1.049 \pm .005$, $z = 0.000$, $p=1.000$) (Figs 2b-e). Additionally, a Wilcoxon signed ranks
162 test revealed no significant median difference in HbR peak (during a 2s whisker stimulation)
163 (Median \pm SEM: $-0.0004 \pm .005$) during trials with the greatest locomotion (Median \pm SEM:
164 $0.948 \pm .006$), as compared to when a stimulation occurred during trials with the least
165 locomotion (Median \pm SEM: $0.945 \pm .005$, $z = -0.330$, $p=0.741$) (Figs 2b, c and f).

166

167 However, in trials where the greatest locomotion occurred (Fig 2b) a slower return to
168 baseline for HbT, HbO and HbR was observed (as compared to trials where the least
169 locomotion occurred). We took mean values of HbT, HbO and HbR between 15-20s to
170 assess the return to baseline differences across the two behaviours. Sign tests with
171 continuity correction revealed a statistically significant median increase in HbT (Median \pm
172 SEM: $0.024 \pm .005$) and a median decrease in HbR (Median \pm SEM: $-0.021 \pm .005$) at the
173 end of the 25s stimulation period during trials with the greatest locomotion (Median \pm SEM:
174 HbT: $1.019 \pm .005$, HbR: $0.980 \pm .004$) compared to trials where the least locomotion
175 occurred (Median \pm SEM: HbT: $0.997 \pm .002$, $z = -3.055$, $p=.001$, HbR: $0.999 \pm .003$, $z =$
176 3.491 , $p<.0001$). A Wilcoxon signed ranks test revealed a statistically significant median
177 increase in HbO (Median \pm SEM: $0.032 \pm .007$) at the end of the 25s stimulation period
178 during trials with the greatest locomotion (Median \pm SEM: $1.030 \pm .006$) compared to trials
179 where the least locomotion occurred (Median \pm SEM: $0.994 \pm .003$, $z = -3.702$, $p<.0001$)
180 (Figs 2b, c, g, h and i).

181

182 **The timing of locomotion (relative to whisker stimulation) impacts the sensory-evoked**
183 **haemodynamic response**

184 As we have shown that locomotion across the whole trial can alter the return to baseline of
185 the sensory-evoked haemodynamic response we wanted to investigate in more detail how
186 the timing of locomotion (relative to whisker stimulation) impacted the sensory-evoked
187 response.

188

189 To do this, trials taken during the 2s whisker stimulation experiment were ranked by the
190 amount of voluntary locomotion occurring across different 5s time windows (pre-stim: -5-0s,
191 mid-stim: 0-5s, post-stim: 5-10s, 10-15s, 15-20s; Fig 3, Column 1). Evoked haemodynamic
192 time series were created from the top and bottom 10% of ranked trials, these top and bottom
193 10% of ranked trials were averaged across sessions and corresponded to trials in which the
194 most and least locomotion occurred (21 sessions; n = 6 top & n = 6 bottom per session (an
195 average of the top and bottom ranked trials was taken for each session and used in the
196 visualisation/analysis)) during the different 5s time windows (Fig 3). All mean peak values
197 were taken between 0-5s and are referred to as occurring during the whisker stimulation.

198

199 Three two-way repeated measures ANOVAs for HbT, HbO and HbR respectively, revealed
200 that there was a significant interaction between the amount of locomotion (factors: most &
201 least) and the time at which locomotion was ranked (factors: -5-0s, 0-5s, 5-10s, 10-15s, 15-
202 20s) on the peak of the haemodynamic response to the 2s whisker stimulation (peak
203 occurring between 0-5 seconds):- HbT: $F(2.58, 51.57) = 13.35, p < .0001, \epsilon = .645$; HbO:
204 $F(2.89, 57.88) = 13.32, p < .0001, \epsilon = .723$; HbR: $F(2.53, 50.52) = 8.712, p < .0001, \epsilon = .632$),
205 indicating that the effect of locomotion was dependent on the timing of locomotion.

206

207 To dissect how the timing of locomotion during the trial impacted the sensory-evoked
208 haemodynamic response (HbT, HbO or HbR peak detected between 0-5s), simple main
209 effects were run to assess how ranked-locomotion during the five different time windows
210 impacted the sensory-evoked haemodynamic response.

211

212 *Most Locomotion trials:*

213 Simple main effects revealed that for the trials in which the most locomotion occurred (Fig 3,
214 Column 2), the time at which locomotion was ranked had a significant effect on the mean
215 peak of HbT ($F(2.52, 50.41) = 12.99, p < .0001, \epsilon = .630$), HbO ($F(2.66, 53.19) = 12.79, p =$
216 $< .0001 \epsilon = .665$), and HbR ($F(2.69, 53.78) = 11.50, p < .0001, \epsilon = .672$) during the 2s whisker
217 stimulation. Pairwise comparisons with a Bonferroni correction revealed significant
218 differences when locomotion occurred before (-5-0s) and during the stimulation (0-5s), as
219 discussed in detail below (Table 1).

220

221 There were notable differences in the mean peaks of HbT, HbO and HbR during the 2s
222 whisker stimulation (as assessed by pairwise comparisons with a Bonferroni correction).
223 When locomotion was ranked before the stimulation (-5 to 0s), mean HbO peak during the
224 2s stimulation was greater than when locomotion was ranked at 10-15 and 15-20s and mean
225 HbT peak during the 2s stimulation was greater than when locomotion was ranked at 15-
226 20s(Fig 3f-g). Additionally, when locomotion was ranked before the stimulation (-5-0) mean
227 HbR peak during the 2s stimulation was less than when locomotion was ranked at all time
228 windows after the stimulation (5-10s, 10-15s and 15-20s) (Fig 3h) - indicating a larger HbR
229 washout occurs when locomotion is ranked before the whisker stimulation as compared to
230 after the whisker stimulation (Table 1).

231
232 Additionally, when locomotion was ranked at the stimulation onset (0-5s) mean HbT and
233 HbO peak responses during the 2s stimulation were greater than when locomotion was
234 ranked at all time windows after the stimulation (Fig 3f-g). For HbR when locomotion was
235 ranked at stimulation onset (0-5s) mean HbR peak during the 2s whisker stimulation was
236 less than when locomotion was ranked at all time windows after the stimulation (Fig 3h) -
237 indicating a larger HbR washout when locomotion was ranked at stimulation onset as
238 compared to when it occurred after the whisker stimulation (Table 1).

239
240 *Least Locomotion trials:*
241 Simple main effects revealed that for the trials in which the least locomotion occurred (Fig 3,
242 Column 3), the time at which locomotion was ranked also had a significant effect on the
243 mean peak of HbT ($F(2.94, 58.79) = 8.93, p <.0001, \epsilon = .735$), HbO ($F(4, 80) = 9.94, p$
244 $<.0001$) & HbR ($F(4, 80) = 6.83, p <.0001$) during the 2s whisker stimulation. Pairwise
245 comparisons with a Bonferroni correction revealed that significant differences were
246 observed when locomotion was ranked before the stimulation (-5-0s) and at the stimulation
247 onset (0-5s) vs the post-stimulation ranked locomotion conditions (5-10s, 10-15s, 15-20s).

248
249 When locomotion was ranked before the stimulation (-5-0s), the mean HbT and HbO peak
250 responses were greater than when locomotion was ranked at stimulation onset (0-5s) (Fig
251 3f-g). Additionally, mean HbR peak when locomotion was ranked before the stimulation (-5-
252 0s) was less than when locomotion was ranked at stimulation onset (0-5s) (Fig 3h) –
253 indicating a larger HbR washout when locomotion was ranked before the stimulation, as
254 compared to when ranked during the stimulation (Table 1).

255
256 When locomotion was ranked at the stimulation onset (0-5s) mean HbT and mean HbO
257 peaks during the 2s whisker stimulation were less than when locomotion was ranked at all

258 time windows after the stimulation (Fig 3f and 3g). Whereas mean HbR peak during whisker
259 stimulation when locomotion was ranked at stimulation onset (0-5s) was greater than when
260 locomotion was ranked at all time windows after the stimulation (Fig 3h) – indicating a
261 smaller HbR washout when locomotion was ranked at stimulation onset compared to when
262 ranked after the stimulation (Table 1).

263

264 **The amount of locomotion impacts the sensory-evoked haemodynamic response only
265 when locomotion is ranked at specific time windows**

266 Having previously shown that there is a significant interaction between the amount of
267 locomotion (factors: most & least) and the time at which locomotion was ranked (factors: -5-
268 0s, 0-5s, 5-10s, 10-15s, 15-20s) on the peak of the haemodynamic response to the 2s
269 whisker stimulation (peak occurring between 0-5 seconds), as well as highlighting at which
270 time windows ranked-locomotion impacted the sensory-evoked haemodynamic response,
271 we now wanted to reveal how the amount of locomotion at these five time windows impacted
272 the sensory-evoked response.

273

274 Simple main effects with a Bonferroni correction revealed that mean whisker stimulation-
275 evoked HbT peak was greater for trials in which the most locomotion occurred as compared
276 to trials in which the least locomotion occurred when locomotion was ranked at stimulation
277 onset (0-5s; $F(1,20) = 19.68$, $p < .0001$, mean \pm SEM: $1.054 \pm .007$ vs $1.020 \pm .002$) (Figs 3a,
278 b, Columns 2 and 3). No significant differences were found when comparing the effect of
279 locomotion on the mean whisker stimulation-evoked HbT peak when locomotion was ranked
280 before the stimulation (-5-0) and at 5-10s, 10-15s and 15-20s. This indicates that the amount
281 of locomotion only effects the HbT element of the evoked-haemodynamic response when
282 locomotion occurs during the stimulation.

283

284 Simple main effects with a Bonferroni correction indicated that mean whisker stimulation-
285 evoked HbO peak was also greater for trials in which the most locomotion occurred as
286 compared to trials in which the least locomotion occurred when locomotion was ranked at
287 stimulation onset (0-5s; $F(1,20) = 24.83$, $p < .0001$, mean \pm SEM: $1.083 \pm .009$ vs $1.033 \pm$
288 $.004$) (Figs 3a, b, Columns 2 and 3). No significant differences were found when comparing
289 the effect of locomotion on the mean whisker stimulation-evoked HbO peak when
290 locomotion was ranked before the stimulation (-5-0) and when ranked at 5-10s, 10-15s and
291 15-20s. Indicating that the amount of locomotion only effects the HbO element of the
292 evoked-haemodynamic response when locomotion occurs during the stimulation.

293

294 Simple main effects with a Bonferroni correction revealed that mean whisker stimulation-
295 evoked HbR peak was less for trials in which the most locomotion occurred as compared to
296 trials in which the least locomotion occurred when locomotion was ranked at stimulation
297 onset (0-5s; $F(1,20) = 38.75$, $p < .0001$, mean \pm SEM: $0.934 \pm .006$ vs $0.969 \pm .004$) –
298 indicating a larger HbR washout when the animal moved more (Figs 3a, b, Columns 2 and
299 3). No significant differences were found when comparing the effect of locomotion on the
300 mean whisker stimulation-evoked HbR peak for trials in which locomotion was ranked before
301 the stimulation (-5-0) and when ranked at 5-10s, 10-15s and 15-20s. This indicates that the
302 amount of locomotion only effects the HbR element of the evoked-haemodynamic response
303 when locomotion occurs during the stimulation.

304

305 **Locomotion impacts the spatial spread of HbT across the surface vasculature**

306 Representative spatial maps from each animal show HbT activation - revealing fractional
307 change in HbT within the surface vasculature, during locomotion occurring with and without
308 a 2s whisker stimulation (activation between 0-5s) (Fig 4). Red pixels indicate increased
309 activation and blue pixels decreased activation. Figure 4 (Column 2) was generated from
310 spontaneous trials (with no stimulation). Column 2 shows that during locomotion, a more
311 global activation can be observed which is not restricted to the whisker region alone (red
312 ROIs, Column 1) as per when a whisker-stimulation occurs concurrently with limited
313 locomotion (see Column 4, 'least' locomotion). Figure 4 (Columns 3 & 4) shows
314 representative spatial maps for each animal for the trials in which the most and least
315 locomotion occurred during the 2s whisker stimulation. Increased activation can be observed
316 within the whisker region (red outline, Fig 4, Column 1) for trials in which the most
317 locomotion occurred during the 2s whisker stimulation (Fig 4, Column 3). Increased
318 activation within the whisker region can also be observed in trials where animals moved the
319 least during a whisker stimulation. A decrease in activation (blue pixels in a region adjacent
320 to the whisker region within red outline) can also be seen, which suggests a reduction in
321 HbT within a region anterior to the whisker area (Fig 4, Column 4).

322

323 **Discussion**

324 The present study measured spontaneous (Fig 4) and sensory-evoked (Figs 2-4)
325 haemodynamic responses from the cerebral cortex in head-fixed, awake mice, whilst
326 locomotion was concurrently monitored. The novel aspect of our approach was to
327 investigate the impact of the amount and timing of locomotion events on sensory-evoked
328 haemodynamic responses. Our experiments revealed that sensory-evoked haemodynamic
329 responses are altered by the presence of locomotion, which was dependent on the timing
330 (relative to whisker stimulation) that the locomotion occurred. Our findings suggest there is a

331 relationship between the time at which locomotion occurs (in 5s time windows relative to the
332 whisker stimulation) and the amount of summed locomotion, and that this affects the evoked
333 haemodynamic response, with locomotion appearing to have the largest effects when it
334 occurred before the stimulation (-5-0s) and during (0-5s) the stimulation. We therefore
335 suggest that it is especially important to monitor locomotion in awake imaging experiments in
336 which haemodynamics are being assessed/compared between groups (e.g., disease vs
337 healthy subjects).

338

339 Previous studies have shown that certain behaviours, including body movements and
340 whisking can enhance CBV in awake, head-fixed mice²⁸. It has also been reported that
341 locomotion, in the absence of sensory stimulation, increases cortical CBV²³, and rapidly
342 dilates arteries²⁵. However, the above studies did not explore how locomotion may
343 specifically affect sensory-evoked haemodynamic responses, making our findings novel.

344

345 Of the few papers that have investigated the impact of locomotion on evoked haemodynamic
346 responses, Tran et al., (2018)²⁴ explored whether the behaviour of an animal during whisker
347 stimulation had an effect on penetrating arteriole dilation. They showed that the behaviour of
348 the animal did not alter the peak amplitude of arteriole dilation. In comparison, our data
349 suggests that the animal's behaviour does impact the peak amplitude of arteriole dilation.
350 Our opposing findings could be explained by the different methods used in the two studies.
351 Tran et al. used two-photon microscopy to investigate haemodynamic responses, focusing
352 on penetrating vessel dilation. In contrast, our study used 2D-OIS to measure changes in
353 blood oxygenation from the surface of the cerebral cortex. It is conceivable that locomotion
354 and the time at which locomotion occurs relative to whisker stimulation may have a differing
355 impact on evoked haemodynamic responses depending on the type and location of blood
356 vessels investigated. In support of this explanation, Gao et al., (2015)²⁷ found that
357 locomotion impacted surface vessels to a greater extent than penetrating vessels, with
358 locomotion leading to surface vessel dilations that were almost three times the size of
359 intracortical vessel dilation. However, the study did not investigate how locomotion affected
360 sensory-evoked haemodynamic responses. Future studies using two-photon microscopy are
361 still warranted²⁹ to explore how sensory-evoked haemodynamic responses are impacted by
362 locomotion, as well as to assess if our results can be replicated using other methods.

363

364 Our study was not without limitations, the behavioural set up only monitored locomotion
365 behaviours and did not monitor whisking behaviours or pupil dilations in the animals. It has
366 been reported that whisking occurs when an animal moves³⁰ Therefore, there may also be a
367 relationship between locomotion, whisking and sensory-evoked haemodynamic responses.

368 Future studies may benefit from monitoring both locomotion and whisking²⁴ to assess if there
369 are interactions between these behaviours and the impact this may have on the evoked
370 haemodynamic response – as voluntary whisking has been reported to increase CBV²⁸.
371 However, the purpose of our paper was to focus on the effects of locomotion on sensory-
372 evoked haemodynamic responses.

373

374 Additionally, neural activity was not measured during the study, it would have been
375 informative to observe how neural activity was affected by the amount and timing of
376 locomotion. Other studies have recorded neural activity alongside CBV during voluntary
377 locomotion and found that voluntary locomotion does indeed increase neural activity^{23,31}.
378 Measuring simultaneous haemodynamics in awake animals combined with genetically
379 encoded calcium indicators (such as GCAMP6)⁷ to measure spontaneous and evoked
380 neuronal activity will provide additional information on how brain activity is modulated by the
381 interaction of locomotion and sensory stimulation.

382

383 Our paper demonstrates the importance of monitoring behaviour – especially locomotion -
384 during awake haemodynamic imaging. As our study shows that the amount and timing of
385 locomotion (relative to whisker stimulation) can impact the amplitude of an evoked
386 haemodynamic response we suggest that, where possible, groups should monitor
387 locomotion in their awake imaging experiments – particularly when using sensory
388 stimulation. If locomotion behaviours cannot be monitored, other methods could be used to
389 limit locomotion behaviours, such as training animals to remain stationary³². Monitoring
390 locomotion is especially important to consider when comparing different disease groups, in
391 which locomotion may differ³³ – if locomotion behaviour is not monitored (or excluded),
392 confounded conclusions could potentially be made.

393

394 **Methods**

395 **Animals**

396 Adult (3-12m; 24-40g) female C57/BL6J mice (n = 4) were used in the experiment. Food and
397 water were available ad-libitum and mice were housed on a 12hr dark/light cycle. All animal
398 procedures were approved by the UK Home Office and in agreement with the guidelines and
399 scientific regulations of the Animals (Scientific Procedures) Act 1986 with additional approval
400 received from the University of Sheffield licensing committee and ethical review board.

401

402 **Surgery**

403 Induction of anaesthesia was achieved with a combination of fentanyl-fluanisone (Hypnorm,
404 Vetapharm Ltd), midazolam (Hypnovel, Roche Ltd) and sterile water in the ratio 1:1:2

405 (1ml/kg i.p). Surgical anaesthetic plane was maintained using isoflurane (0.25-0.8%) in
406 100% oxygen. Body temperature was monitored and maintained throughout surgery via a
407 rectal thermometer and a homeothermic blanket respectively (Harvard Apparatus). Eyes
408 were protected using Viscotears (Novartis). A scalpel was used to shave the head prior to
409 the mouse being positioned in a stereotaxic frame (Kopf Instruments). Iodine was applied to
410 the scalp and the scalp was removed. Using a dental drill, the bone covering the right
411 somatosensory cortex was thinned to translucency to create the thinned optical window
412 (~3mm²). Cyanoacrylate glue was thinly applied across the window to strengthen the
413 window and reduce optical specularities. Dental cement (Superbond C & B; Sun Medical)
414 was applied to the bone on the contralateral side of the cranial window and a well was built
415 up around the window to allow for a metal head plate to be attached for chronic imaging.
416 Following surgery, mice were housed individually and given at least one week to recover
417 before any imaging commenced.

418

419 **Awake imaging**

420 Prior to imaging, mice were gradually habituated to the experimenter, imaging room,
421 spherical treadmill and head-fixation. To achieve this, training sessions were completed with
422 a reward at the end of each session (toffee popcorn, Sunkist). The first session lasted
423 approximately 10 minutes. The experimenter handled the mice and allowed the mice to
424 explore the spherical treadmill without head fixation. The second session was a repeat of the
425 first session. Session three involved head-fixing the mice for approximately 10 minutes
426 whilst the lights were on. This was followed by ~20 minutes with the lights off. Session three
427 was repeated daily until mice learned how to move on the spherical treadmill and displayed
428 grooming behaviours (approximately 2-3 sessions). The whisker stimulator was introduced
429 during the final two training sessions.

430

431 **Whisker Stimulation**

432 Whiskers were mechanically stimulated using a plastic T-bar at 5Hz. Each experiment lasted
433 1475 seconds and comprised of 59 25s trials. During whisker stimulation trials whisker
434 deflection lasted 2s, occurring every 25s. Spontaneous experiments were also conducted
435 using the same timings as 2s whisker stimulation experiments, however the motor
436 controlling the whisker stimulator was switched off, ensuring whiskers were not stimulated.

437

438 **Locomotion Data Collection and Analysis**

439 Locomotion data was collected from a spherical treadmill with an optical motion sensor
440 attached, to quantify locomotion. Locomotion data was analysed using in-house created
441 scripts in MATLAB (MathWorks). The optical motion sensor recorded the movement of the

442 treadmill and produced a file comprised of: locomotion data (a vector which showed the
443 rotation of the treadmill, integers were used to quantify the displacement of the treadmill,
444 with stationary periods reflected by 0, the quicker the spherical treadmill moved, the higher
445 the integer; plotted as distance (arbitrary unit, AU)); the time vector (which allowed
446 locomotion to be measured across time (s)); and the trigger points (these indicated the
447 timing of the whisker stimulation, across trials, this enabled locomotion data to be matched
448 with the timing of the haemodynamic data). To establish if locomotion did impact evoked-
449 haemodynamic responses, 2s whisker stimulation trials were ranked by voluntary locomotion
450 across the entire trial (25s) and across different 5s time windows within the stimulation
451 period (-5-0s, 0-5s, 5-10s, 10-15s, 15-20s). For each session, evoked haemodynamic time
452 series were created from the top and bottom 10% of ranked trials, these top and bottom 10%
453 of ranked trials were averaged together across sessions and corresponded to trials in which
454 the most and least locomotion occurred (21 sessions from 4 animals, n = 6 top & n = 6
455 bottom trials per session (an average of the top and bottom ranked trials was taken for each
456 session and used in the visualisation/analysis)). In Figure 4 (Column 2), HbT spatial maps
457 for spontaneous locomotion were created as followed. Locomotion events from spontaneous
458 trials were selected and a spectroscopy file was created to assess how locomotion alone
459 impacts the spatial spread of HbT within the surface vasculature
460

461 **2D-Optical Imaging Spectroscopy (2D-OIS)**

462 2D-OIS uses light to measure cortical haemodynamic signals by estimating concentration
463 changes in oxygenated haemoglobin (HbO), deoxygenated haemoglobin (HbR) and total
464 haemoglobin (HbT). In order to measure changes in cortical haemodynamics a Lambda DG-
465 4 high-speed galvanometer (Sutter Instrument Company, USA) was used to illuminate the
466 right somatosensory cortex with 4 wavelengths of light ($495 \pm 31\text{nm}$, $559 \pm 16\text{nm}$, $575 \pm$
467 14nm and $587 \pm \text{nm}$). A Dalsa 1M60 CCD camera was used to capture remitted light at $184 \times$
468 184 pixels, at a 32 Hz frame rate, this provided a resolution of $\sim 75\mu\text{m}$.
469

470 To produce 2D images of micromolar changes in HbO, HbR and HbT, spectral analysis
471 (based on the path length scale algorithm (PLSA)) was conducted^{34,35}. This algorithm uses a
472 modified Beer Lambert Law, with a path-length correction factor and predicted absorption
473 values of HbO, HbR and HbT. The relative concentration estimates of HbO, HbR and HbT
474 were gathered from baseline values, whereby haemoglobin tissue concentration was
475 estimated as $100\text{ }\mu\text{M}$, with tissue saturation of oxygen estimated at 80%.
476

477 **Regions of Interest (ROI) overlying the whisker barrels from 2D spatial maps**

478 MATLAB (MathWorks) was used to select ROI for time series analysis. Custom-made in-
479 house scripts were used to select ROIs from the 2D spatial maps produced using 2D-OIS.
480 The whisker ROI was selected using the HbT spatial map taken from the 2s whisker
481 stimulation experiments; this was completed for each of the 21 sessions. Pixels were
482 included in the 'active' region if they were $> 1.5 \times \text{STD}$ across the entire spatial map, hence
483 the whisker ROI (red ROI, Fig 4, Column 1) was the area of cortex with the greatest
484 haemodynamic response for HbT. The following time series analyses included in the study
485 (Fig 2 & 3) were conducted for the whisker region.

486

487 **Statistical Analysis**

488 Statistical tests were conducted in SPSS (v26) and figures were created in MATLAB and
489 RStudio. P values of <0.05 were deemed to be significant. Outliers were assessed using box
490 plots, with values greater than 1.5 box lengths from the edge of the box classified as outliers
491 – outliers were kept in the data set. Normality was assessed using the Shapiro Wilk test. If
492 outliers were observed and/or data was non-normal, non-parametric tests were used (if
493 available).

494

495 For distance travelled calculations, the total distance (AU) from each session for
496 experiments with and without whisker stimulation were used – with the total sum of distance
497 travelled taken for each experiment during each of the 21 sessions. A sign test was used to
498 assess if there was a statistically significant difference in distance travelled during
499 experiments.

500

501 Non-parametric Sign tests (HbT and HbO) and the Wilcoxon signed ranks test (HbR) were
502 used to assess if there were significant differences in HbO, HbR and HbT peaks during the
503 2s whisker stimulation when comparing trials with the greatest and least amount of
504 locomotion (when locomotion was ranked across the entire 25s). The peak amplitude of
505 HbT, HbO and HbR were computed as the time point with the greatest change in the
506 concentration of haemoglobin from baseline²⁰ between 0-5 seconds during the ranked trials
507 where the most and least locomotion occurred.

508

509 Sign tests (HbT and HbR) and the Wilcoxon signed ranks test (HbO) were used to establish
510 if there were significant differences in the return to baseline of HbT, HbO and HbR, when
511 comparing trials in which the most and least locomotion occurred during a 2s whisker
512 stimulation – mean HbT, HbO and HbR values were taken at the end of the 25s stimulation
513 period (mean values between 15-20s).

514

515 Three, two-way repeated measures ANOVAs were completed to assess if there was an
516 effect of the amount (factors: most & least) and timing (factors: -5-0s, 0-5s, 5-10s, 10-15s,
517 15-20s) of locomotion on the peak of the haemodynamic response (dependent variables:
518 HbT, HbO, HbR) to the 2s whisker stimulation (peak occurring between 0-5 seconds). The
519 presence of outliers was assessed using studentised residuals, where values greater than
520 ± 3 were deemed to be outliers. Outliers were observed and were kept in the data set.
521 Normality was assessed by the Shapiro Wilk test, and sphericity was assessed using the
522 Mauchly's test of sphericity. For the two-way ANOVAs, a number of variables were not
523 normally distributed (see Supplementary Statistics Table S9). If Mauchly's sphericity was
524 violated ($p < .05$) Greenhouse Geiser correction was used. The use of the Greenhouse
525 Geiser correction can be observed if there is an epsilon (ϵ) value when reporting ANOVA
526 results. As there is no non-parametric alternative for a two-way ANOVA if variables were not
527 normally distributed and outliers were present, a two-way ANOVA was still completed, as
528 ANOVAs are robust to slight deviations from normality. Data were not transformed as
529 transforming the data results in difficulties comparing the means across different groups³⁶. If
530 an interaction effect was found, to assess the simple main effects, one-way ANOVAs were
531 completed and pairwise comparisons with a Bonferroni correction were completed. Data are
532 reported as means \pm standard error of the mean (SEM), unless otherwise stated. Individual
533 dots on violin plots and bar charts represent individual mean data points. Data was
534 visualised as a bar plot when statistical tests compared the mean, whereas violin plots were
535 used when statistical tests compared the median. Detailed statistical outputs can be found in
536 the supplementary tables.

537

538 **Data availability**

539 Data sets used/analysed in the current study are available in the DRYAD repository,
540 <https://doi.org/10.5061/dryad.v41ns1rxs>

541

542 **References**

- 543 1 Attwell, D. *et al.* Glial and neuronal control of brain blood flow. *Nature* **468**, 232-243
544 (2010).
- 545 2 Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease
546 and other disorders. *Nat Rev Neurosci* **12**, 723-738, doi:10.1038/nrn3114 (2011).
- 547 3 Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow
548 regulation and neurovascular dysfunction in Alzheimer disease. *Nat Rev Neurosci*
549 **18**, 419-434, doi:10.1038/nrn.2017.48 (2017).

550 4 Kotliar, K. *et al.* Altered neurovascular coupling as measured by optical imaging: a
551 biomarker for Alzheimer's disease. *Scientific Reports* **7**, doi:ARTN
552 1290610.1038/s41598-017-13349-5 (2017).

553 5 Tarantini, S., Tran, C. H. T., Gordon, G. R., Ungvari, Z. & Csiszar, A. Impaired
554 neurovascular coupling in aging and Alzheimer's disease: Contribution of astrocyte
555 dysfunction and endothelial impairment to cognitive decline. *Exp Gerontol* **94**, 52-58,
556 doi:10.1016/j.exger.2016.11.004 (2017).

557 6 Orbach, H. S., Cohen, L. B. & Grinvald, A. Optical mapping of electrical activity in rat
558 somatosensory and visual cortex. *J Neurosci* **5**, 1886-1895 (1985).

559 7 Ma, Y. *et al.* Wide-field optical mapping of neural activity and brain haemodynamics:
560 considerations and novel approaches. *Philos Trans R Soc Lond B Biol Sci* **371**,
561 doi:10.1098/rstb.2015.0360 (2016).

562 8 Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence
563 microscopy. *Science* **248**, 73-76, doi:10.1126/science.2321027 (1990).

564 9 Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a
565 single green fluorescent protein. *Nat Biotechnol* **19**, 137-141, doi:10.1038/84397
566 (2001).

567 10 Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS
568 capillary diameter by pericytes. *Nature* **443**, 700-704, doi:10.1038/nature05193
569 (2006).

570 11 Hall, C. N. *et al.* Capillary pericytes regulate cerebral blood flow in health and
571 disease. *Nature* **508**, 55-60, doi:10.1038/nature13165 (2014).

572 12 Kisler, K. *et al.* Pericyte degeneration leads to neurovascular uncoupling and limits
573 oxygen supply to brain. *Nat Neurosci* **20**, 406-416, doi:10.1038/nn.4489 (2017).

574 13 Zonta, M. *et al.* Neuron-to-astrocyte signaling is central to the dynamic control of
575 brain microcirculation. *Nat Neurosci* **6**, 43-50, doi:10.1038/nn980 (2003).

576 14 Lind, B. L., Brazhe, A. R., Jessen, S. B., Tan, F. C. & Lauritzen, M. J. Rapid stimulus-
577 evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse
578 somatosensory cortex in vivo. *Proc Natl Acad Sci U S A* **110**, E4678-4687,
579 doi:10.1073/pnas.1310065110 (2013).

580 15 Mishra, A. *et al.* Astrocytes mediate neurovascular signaling to capillary pericytes but
581 not to arterioles. *Nat Neurosci* **19**, 1619-1627, doi:10.1038/nn.4428 (2016).

582 16 Chow, B. W. *et al.* Caveolae in CNS arterioles mediate neurovascular coupling.
583 *Nature* **579**, 106-110, doi:10.1038/s41586-020-2026-1 (2020).

584 17 Gao, Y. R. *et al.* Time to wake up: Studying neurovascular coupling and brain-wide
585 circuit function in the un-anesthetized animal. *Neuroimage* **153**, 382-398,
586 doi:10.1016/j.neuroimage.2016.11.069 (2017).

587 18 Pisauro, M. A., Dhruv, N. T., Carandini, M. & Benucci, A. Fast hemodynamic
588 responses in the visual cortex of the awake mouse. *J Neurosci* **33**, 18343-18351,
589 doi:10.1523/JNEUROSCI.2130-13.2013 (2013).

590 19 Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G. & Wyrwicz, A. M. Effects of
591 anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. *J*
592 *Cereb Blood Flow Metab* **35**, 1819-1826, doi:10.1038/jcbfm.2015.130 (2015).

593 20 Sharp, P. S. *et al.* Comparison of stimulus-evoked cerebral hemodynamics in the
594 awake mouse and under a novel anesthetic regime. *Sci Rep* **5**, 12621,
595 doi:10.1038/srep12621 (2015).

596 21 Lee, J. *et al.* Opposed hemodynamic responses following increased excitation and
597 parvalbumin-based inhibition. *J Cereb Blood Flow Metab* **41**, 841-856,
598 doi:10.1177/0271678X20930831 (2021).

599 22 Uhlirova, H. *et al.* Cell type specificity of neurovascular coupling in cerebral cortex.
600 *Elife* **5**, doi:10.7554/elife.14315 (2016).

601 23 Huo, B. X., Smith, J. B. & Drew, P. J. Neurovascular coupling and decoupling in the
602 cortex during voluntary locomotion. *J Neurosci* **34**, 10975-10981,
603 doi:10.1523/JNEUROSCI.1369-14.2014 (2014).

604 24 Tran, C. H. T., Peringod, G. & Gordon, G. R. Astrocytes Integrate Behavioral State
605 and Vascular Signals during Functional Hyperemia. *Neuron* **100**, 1133-1148 e1133,
606 doi:10.1016/j.neuron.2018.09.045 (2018).

607 25 Huo, B. X., Gao, Y. R. & Drew, P. J. Quantitative separation of arterial and venous
608 cerebral blood volume increases during voluntary locomotion. *Neuroimage* **105**, 369-
609 379, doi:10.1016/j.neuroimage.2014.10.030 (2015).

610 26 Huo, B. X., Greene, S. E. & Drew, P. J. Venous cerebral blood volume increase
611 during voluntary locomotion reflects cardiovascular changes. *Neuroimage* **118**, 301-
612 312, doi:10.1016/j.neuroimage.2015.06.011 (2015).

613 27 Gao, Y. R., Greene, S. E. & Drew, P. J. Mechanical restriction of intracortical vessel
614 dilation by brain tissue sculpts the hemodynamic response. *Neuroimage* **115**, 162-
615 176, doi:10.1016/j.neuroimage.2015.04.054 (2015).

616 28 Winder, A. T., Echagarruga, C., Zhang, Q. & Drew, P. J. Weak correlations between
617 hemodynamic signals and ongoing neural activity during the resting state. *Nat*
618 *Neurosci* **20**, 1761-1769, doi:10.1038/s41593-017-0007-y (2017).

619 29 Peringod, G., Yu, L., Murari, K. & Gordon, G. R. Spatiotemporal components of
620 sustained functional hyperemia are differentially modulated by locomotion and
621 silenced with vascular chemogenetics. *bioRxiv* (2021).

622 30 Sofroniew, N. J., Cohen, J. D., Lee, A. K. & Svoboda, K. Natural whisker-guided
623 behavior by head-fixed mice in tactile virtual reality. *J Neurosci* **34**, 9537-9550,
624 doi:10.1523/JNEUROSCI.0712-14.2014 (2014).

625 31 Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging
626 large-scale neural activity with cellular resolution in awake, mobile mice. *Neuron* **56**,
627 43-57, doi:10.1016/j.neuron.2007.08.003 (2007).

628 32 Rungta, R. L. *et al.* Diversity of neurovascular coupling dynamics along vascular
629 arbors in layer II/III somatosensory cortex. *Commun Biol* **4**, 855, doi:10.1038/s42003-
630 021-02382-w (2021).

631 33 Walker, J. M. *et al.* Spatial learning and memory impairment and increased
632 locomotion in a transgenic amyloid precursor protein mouse model of Alzheimer's
633 disease. *Behav Brain Res* **222**, 169-175, doi:10.1016/j.bbr.2011.03.049 (2011).

634 34 Mayhew, J. *et al.* Spectroscopic analysis of changes in remitted illumination: the
635 response to increased neural activity in brain. *Neuroimage* **10**, 304-326,
636 doi:10.1006/nimg.1999.0460 (1999).

637 35 Berwick, J. *et al.* Neurovascular coupling investigated with two-dimensional optical
638 imaging spectroscopy in rat whisker barrel cortex. *Eur J Neurosci* **22**, 1655-1666,
639 doi:10.1111/j.1460-9568.2005.04347.x (2005).

640 36 Feng, C. *et al.* Log-transformation and its implications for data analysis. *Shanghai*
641 *Arch Psychiatry* **26**, 105-109, doi:10.3969/j.issn.1002-0829.2014.02.009 (2014).

642

643 **Acknowledgements**

644 BE would like to thank the Battelle – Dr Jeff Wadsworth studentship for funding her PhD
645 [Grant number R/156208-14-1]. OS is funded by a British Heart Foundation (BHF) project
646 grant (PG/13/55/30365). CH is funded by a Sir Henry Dale Fellowship jointly funded by the
647 Wellcome Trust and the Royal Society. This research was funded in whole, or in part, by the
648 Wellcome Trust [Grant number 105586/Z/14/Z]. For the purpose of Open Access, the author
649 has applied a CC BY public copyright licence to any Author Accepted Manuscript version
650 arising from this submission. We also would like to thank Michael Port for building and
651 maintaining the whisker stimulation device and 2D-OIS imaging equipment. Awake imaging
652 experimental figure created with BioRender.com.

653

654 **Author Information**

655 Contributions

656 B.E wrote the main manuscript. C.H and J.B conceived research ideas. K.S and P.S
657 completed surgeries and imaging experiments. B.E, J.B and C.H analysed the data. L.B,

658 K.S., B.E., C.H & J.B. wrote the code for analysis. K.S, L.L, O.S, C.H, and J.B edited and
659 proofread the manuscript. B.E and K.S contributed equally. J.B and C.H contributed equally.
660
661

662 **Ethics declarations**

663 Competing interests

664 The authors declare no competing interests
665

666 **Figure Legends**

667 **Figure 1. Awake imaging experimental set up.** (a) Animals were head fixed and could run
668 on a spherical treadmill. Locomotion data was collected using an optical motion sensor
669 (attached to the ball – not shown). Light (495, 559, 575, 587 nm) was shone onto the thinned
670 cranial window, and haemodynamic responses were collected during 2s whisker stimulation
671 trials and during spontaneous (no whisker stimulation) trials. (b) and (c) show representative
672 plots of the distance travelled (grey) and percentage change in HbT (green, taken from an
673 artery within the whisker ROI (see Figure 4)) across the 2s whisker experiment (continuous
674 data recording of the 59 whisker-stimulation trials taken from one representative
675 animal/session, black lines on x axis mark individual 25s stimulation trials) respectively.
676 Black arrows show large bouts of spontaneous walking. (d) shows total distance travelled
677 during whisker stimulation trials (black/grey) compared to spontaneous trials (pink) averaged
678 for all 21 sessions. Error bars represent +/- SEM. (e) shows a violin plot with individual
679 points to show the distance travelled during each session for the different trial types (2s
680 whisker stimulation and spontaneous trials with no whisker stimulation) (Sign test p=0.189).
681 Black lines on violin plot represent interquartile range and median. Awake imaging
682 experimental figure (a) created with BioRender.com
683

684 **Figure 2. Mean sensory evoked haemodynamic responses in the whisker ROI for trials**
685 **ranked with the greatest and least locomotion across the entire 25s trial.** (a) Heat map
686 showing locomotion traces for the 59 whisker-stimulation trials ranked by locomotion (across
687 the whole 25s trial), (b) and (c) show mean fractional changes from baseline in HbO, HbR
688 and HbT during a 2s whisker stimulation (grey shaded bar) when locomotion was ranked
689 across the whole trial (between -5 to 20 seconds). 'Greatest locomotion' (left) represents the
690 top 10% of these ranked trials, which correspond to trials with the most locomotion during
691 the entire 25s trial recording (-5-20s) (21 sessions from 4 animals; per session n = 6 top
692 trials (an average of the top ranked trials was taken for each session)). 'Least locomotion'
693 (right) represents the bottom 10% of ranked trials, which correspond to trials in which the
694 least amount of locomotion occurred during the 25s recording (21 sessions from 4 animals);

695 per session n = 6 bottom trials (an average of the bottom ranked trials was taken for each
696 session). Error bars represent mean +/- SEM between the total 126 trials. **(d), (e) and (f)**
697 show mean sensory-evoked peak values for HbT, HbO and HbR respectively, for trials in
698 which the most and least locomotion occurred when locomotion was ranked across the
699 entire trial (25s). Violin plots show individual mean values overlaid. Black horizontal lines
700 indicate interquartile range and median. P values are from Sign tests for HbT and HbO and
701 from Wilcoxon Signed Ranks test for HbR. **(g), (h) and (i)** show the mean return to baseline
702 values (mean values taken between 15-20s) for HbT, HbO and HbR respectively, for trials in
703 which the most and least locomotion occurred when locomotion was ranked across the
704 entire trial (25s). P values from Sign tests for HbT and HbR and Wilcoxon Signed ranks test
705 for HbO. Black horizontal lines on violin plots indicate interquartile range and median.
706

707 **Figure 3. Mean sensory-evoked haemodynamic responses during trials where the**
708 **most and least locomotion occurred with locomotion ranked at different time**
709 **windows throughout the 25s trial.** Whisker stimulation occurs between 0-2s (grey bar in
710 centre and right columns). **Column one:** heat maps showing locomotion traces for the 59
711 whisker-stimulation trials, with locomotion ranked at different 5s time windows during the 25s
712 trial (each ranked trial was averaged across 21 sessions/4 animals). The different 5s
713 windows during the 25s trial where locomotion was ranked are: before **(a:** -5-0s), during **(b:**
714 0-5s) and after whisker stimulation **(c: 5-10s, d: 10-15s, e: 15-20s).** Trials were ranked
715 according to locomotion in these 5s periods and presented in descending order. Colour bar
716 indicates amount of locomotion, red pixels indicate more locomotion and dark blue indicate
717 less locomotion. **Column two:** mean fractional changes from baseline in stimulation-
718 dependent HbT, HbO and HbR taken from the top 10% of ranked locomotion trials across
719 the different 5s time windows (21 sessions/4 animals; n=6 top per session (mean of top trials
720 taken for each session, mean of all sessions used in the visualisation/analysis). **Column**
721 **three:** mean fractional changes in stimulation-dependent HbT, HbO and HbR for the bottom
722 10% of locomotion trials ranked across the 5s time windows throughout the trial (21
723 sessions/4 animals; n=6 bottom per session (mean of bottom trials taken for each session,
724 mean of all sessions used in the visualisation/analysis). Black boxes indicate the 5s time
725 window locomotion was ranked. Data show mean across the total 126 trials +/- SEM. **(f), (g)**
726 and **(h)** show mean +/- SEM between groups and individual mean peak values per session
727 for HbT, HbO and HbR. Two-way repeated measures ANOVA's were completed for HbT,
728 HbO and HbR. Significant interactions were found and simple effects run (time and
729 locomotion) for each of the haemodynamic measures. P values from pairwise comparisons
730 (Bonferroni correction) are reported. Black solid brackets indicate comparison between most
731 and least locomotion, dotted brackets reveal comparisons for most locomotion across

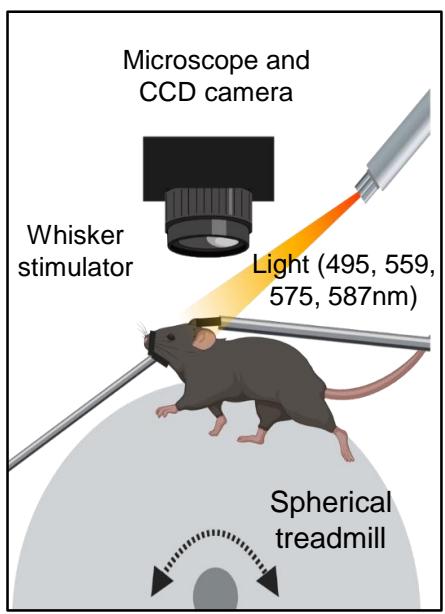
732 different time windows and dashed brackets show comparisons for least locomotion across
733 different time windows.

734

735 **Figure 4. Representative HbT spatial maps during locomotion.** Spatial maps from each
736 animal included in the analysis **(a-d)** showing the surface vasculature in the somatosensory
737 cortex as recorded during locomotion alone (left centre, spontaneous recordings), and
738 during trials with the most (right centre) and least (right) locomotion occurring during the 2s
739 whisker stimulation (from the 0-5s time window, see Fig 3b). **Column one:** in vivo images of
740 the thinned cranial window with the automatically generated whisker region highlighted in
741 red. **Column two:** spatial maps showing fractional changes in HbT generated from
742 spontaneous trials (with no whisker stimulation) during 25s bouts of continuous locomotion.
743 **Column three & four:** HbT spatial maps of trials in which the most (right centre) and least
744 (right) locomotion occurred during a 2s whisker stimulation. This map reveals the spatial
745 location of the whisker region (red pixels, which corresponds to the automatically generated
746 whisker region in red ROI of Column 1), as well as revealing an area with a decrease in
747 fractional change of HbT (blue pixels). Colour bar represents fractional change in HbT, with
748 red indicating an increase in fractional change and blue indicating a decrease. Column 1, **(b)**
749 ((in vivo image animal 2) also used in Sharp et al., 2015²⁰, see Figure 4B).

750

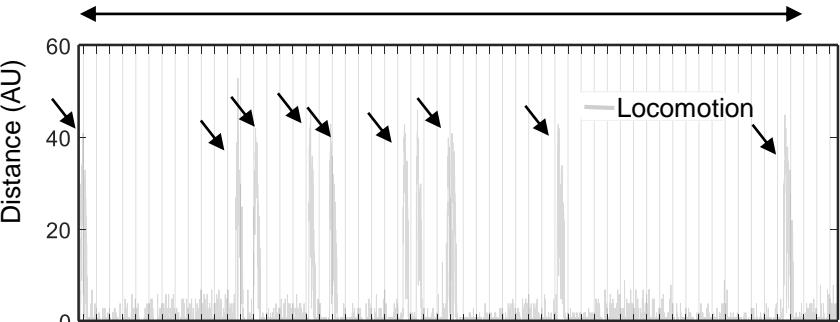
751 **Table 1: Comparisons between 5s time windows for HbT, HbO and HbR peaks during**
752 **whisker stimulation for most and least locomotion conditions**

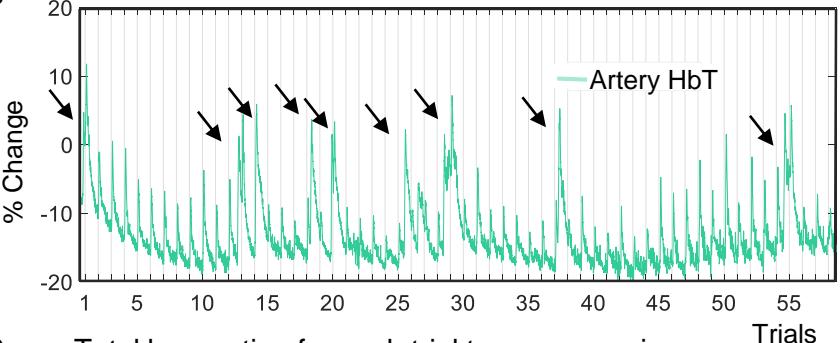

753 Mean diff refers to mean difference between the time window in which locomotion was
754 ranked, compared with the time window compared to. Pairwise comparisons with a
755 Bonferroni correction reported. SEM is standard error of the mean. * indicates a significant
756 difference between the means.

757

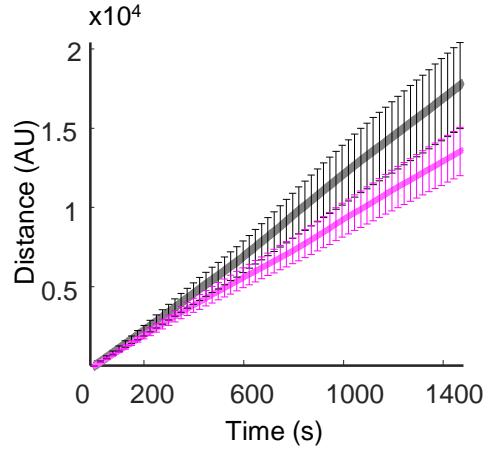
Locomotion ranked	Compared to	Haem Measure	Most Locomotion			Least Locomotion		
			Mean diff	SEM	p	Mean diff	SEM	p
-5-0	0-5	HbT	-.006	.003	1.000	.016	.003	.000*
		HbO	-.005	.006	1.000	.028	.005	.000*
		HbR	-.004	.006	1.000	-.025	.006	.008*
	5-10	HbT	.008	.003	.194	.004	.002	.769
		HbO	.015	.005	.065	.008	.004	.356
		HbR	-.018	.005	.017*	-.008	.004	.546
	10-15	HbT	.012	.004	.100	.001	.003	1.000
		HbO	.020	.006	.048*	.004	.005	1.000
		HbR	-.021	.006	.012*	-.004	.005	1.000
	15-20	HbT	.017	.005	.013*	.004	.003	1.000
		HbO	.026	.007	.008*	.009	.006	1.000
		HbR	-.024	.006	.005*	-.007	.007	1.000
0-5	5-10	HbT	.013	.003	.006*	-.011	.003	.013*
		HbO	.020	.005	.008*	-.020	.005	.006*
		HbR	-.014	.004	.013*	.017	.005	.018*
	10-15	HbT	.017	.004	.003*	-.014	.004	.009*
		HbO	.025	.006	.003*	-.024	.005	.001*
		HbR	-.017	.004	.004*	.021	.005	.007*
	15-20	HbT	.023	.004	.000*	-.011	.003	.005*
		HbO	.031	.006	.000*	-.019	.004	.002*
		HbR	-.020	.004	.001*	.018	.005	.015*
5-10	10-15	HbT	.004	.002	.933	-.003	.002	1.000
		HbO	.005	.003	1.000	-.005	.003	1.000
		HbR	-.003	.003	1.000	.004	.004	1.000
	15-20	HbT	.010	.004	.158	.000	.003	1.000
		HbO	.011	.005	.346	.000	.005	1.000
		HbR	-.006	.004	1.000	.001	.005	1.000
10-15	15-20	HbT	.005	.002	.232	.003	.003	1.000
		HbO	.006	.003	.344	.005	.005	1.000
		HbR	-.003	.003	1.000	-.003	.005	1.000

758

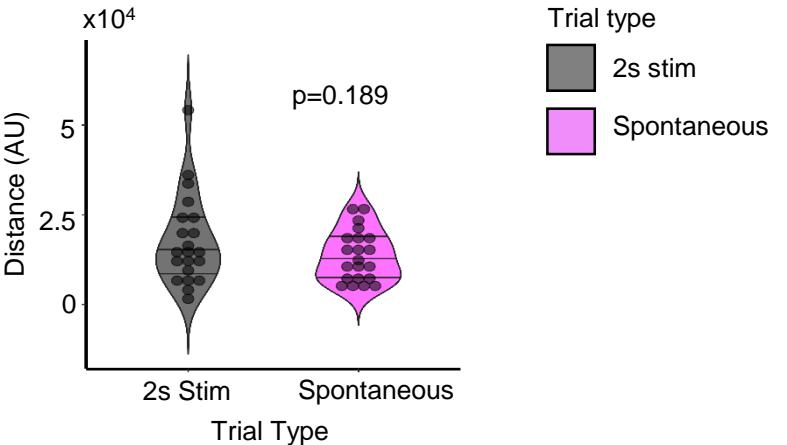

a

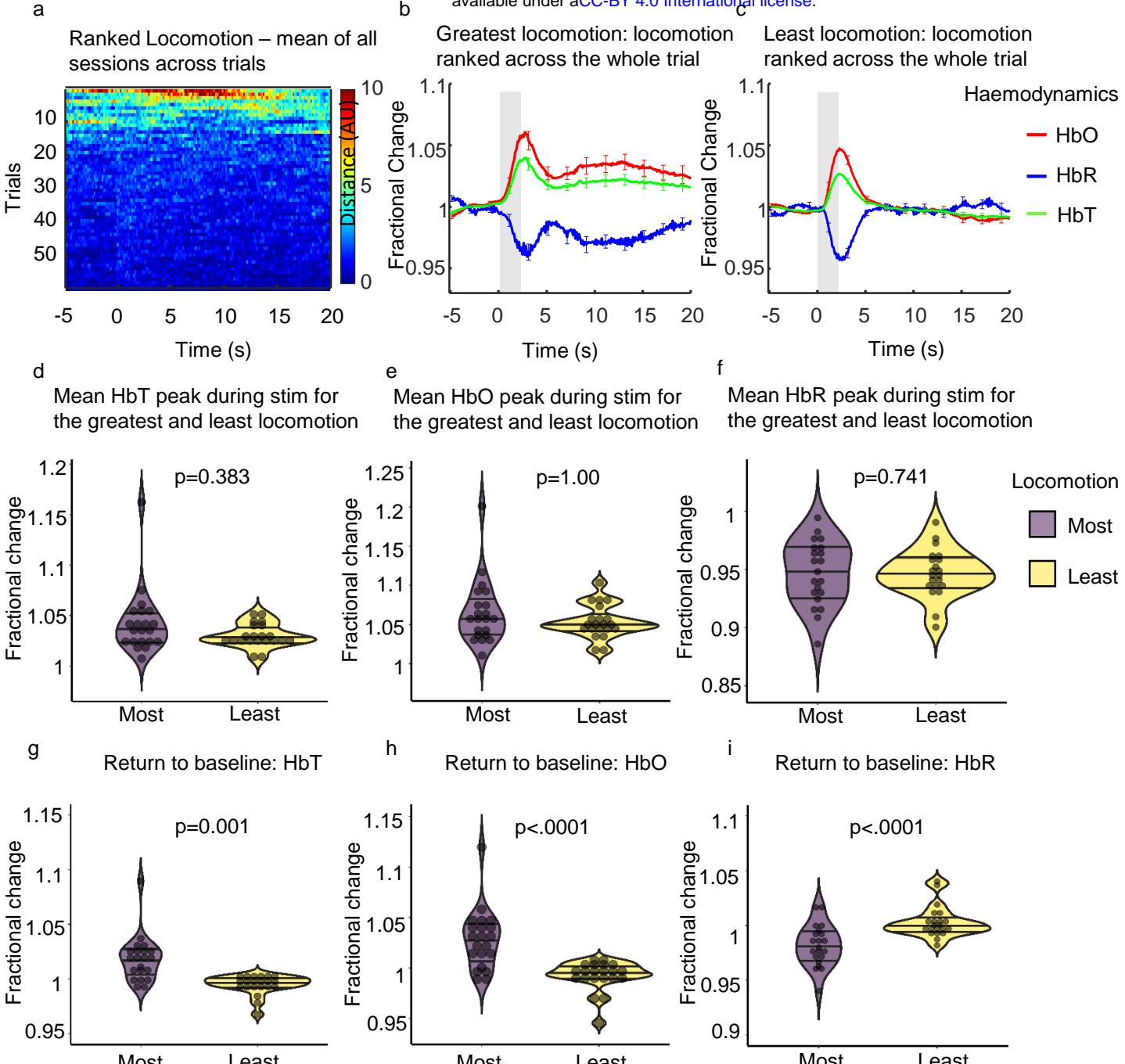

b

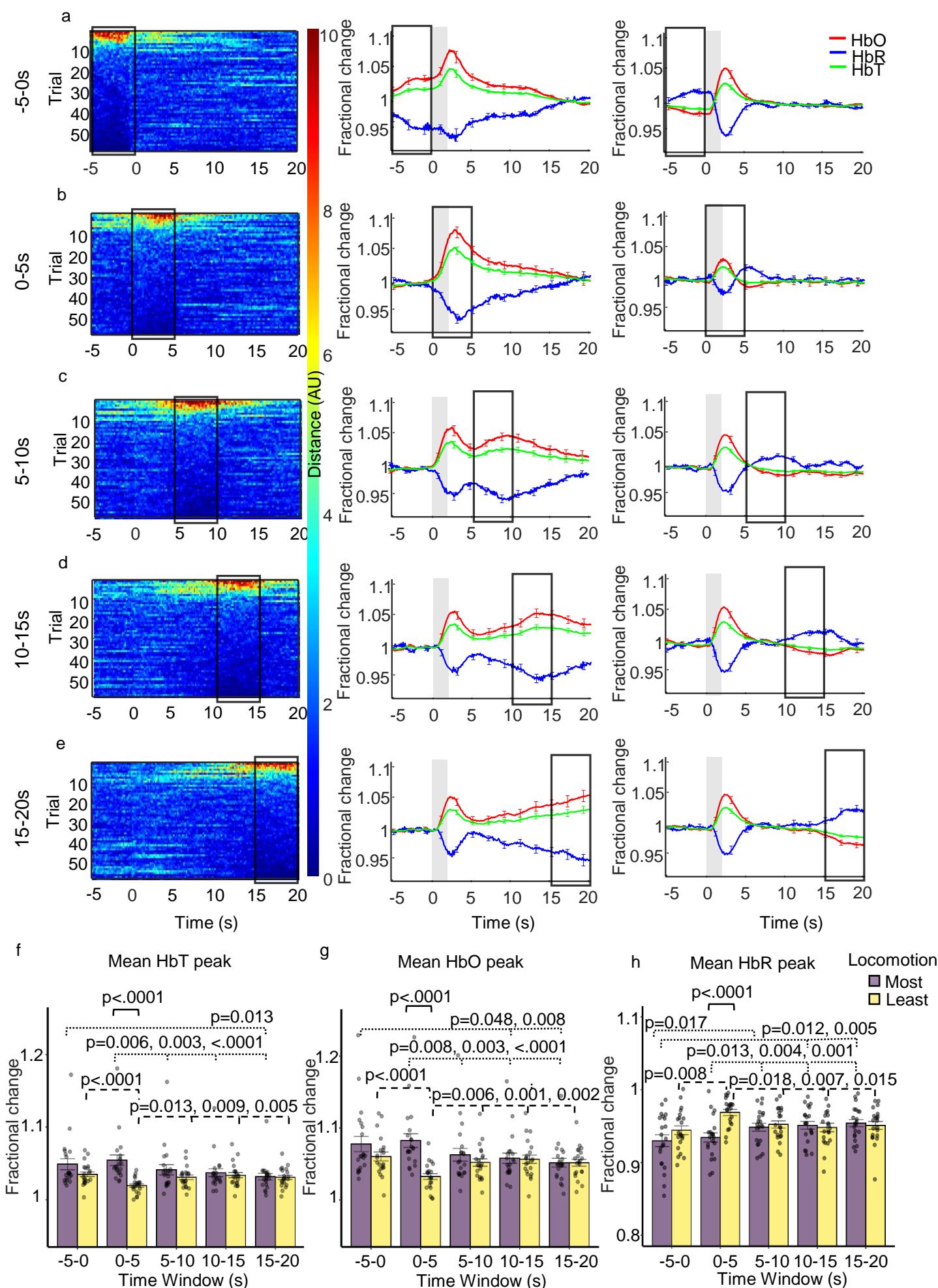
available under aCC-BY-NC-ND 4.0 International license.

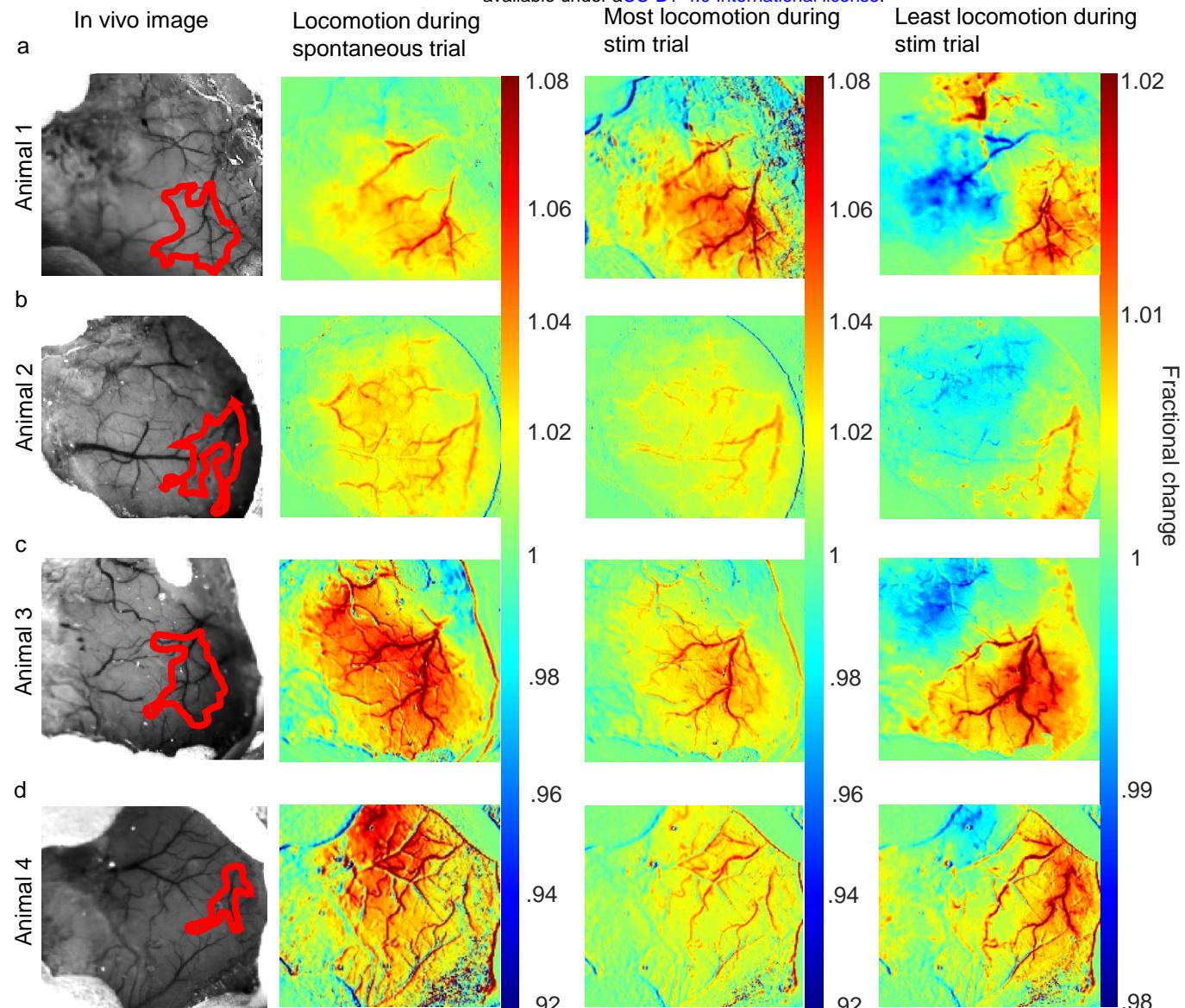

Continuous data collection during whisker stim experiment

c




d Locomotion during experiments


e


Total locomotion for each trial type per session

(which was not certified by peer review)
Ranked locomotion – mean of all sessions across trials

