

1 **Characterizing the genetic basis of trait evolution in the Mexican cavefish**

2
3 Camila Oliva¹, Nicole K. Hinz², Wayne Robinson¹, Alexys M. Barrett Thompson¹, Julianna Booth¹,
4 Lina M. Crisostomo¹, Samantha Zanineli¹, Maureen Tanner¹, Evan Lloyd^{3,4}, Morgan O'Gorman^{3,4},
5 Brittnee McDole³, Alexandra Paz³, Rob Kozol³, Elizabeth B. Brown³, Johanna E. Kowalko^{3,5},
6 Yaouen Fily³, Erik R. Duboue³, Alex C. Keene^{3,4*}

7
8 1. NIH U-RISE Program, Florida Atlantic University, Jupiter, FL 33401

9 2. Department of Biology, Barnard College, New York, NY, 10027

10 3. Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458

11 4. Department of Biology, Texas A&M University, College Station, TX 77843

12 5. Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015

13
14 * Address correspondence to akeene@bio.tamu.edu

15 **Abstract**

16 Evolution in response to a change in ecology often coincides with various morphological,
17 physiological, and behavioral traits. For most organisms little is known about the genetic and
18 functional relationship between evolutionarily derived traits, representing a critical gap in our
19 understanding of adaptation. The Mexican tetra, *Astyanax mexicanus*, consists of largely
20 independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface
21 fish population, that inhabits the rivers of Mexico and Southern Texas. The recent application of
22 molecular genetic approaches combined with behavioral phenotyping have established *A.*
23 *mexicanus* as a model for studying the evolution of complex traits. Cave populations of *A.*
24 *mexicanus* are interfertile with surface populations and have evolved numerous traits including
25 eye degeneration, insomnia, albinism and enhanced mechanosensory function. The interfertility
26 of different populations from the same species provides a unique opportunity to define the genetic
27 relationship between evolved traits and assess the co-evolution of behavioral and morphological
28 traits with one another. To define the relationships between morphological and behavioral traits,
29 we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed
30 differences in locomotor activity, prey capture, and startle reflex between surface and cavefish
31 populations. To measure the relationship between traits, individual F2 hybrid fish were
32 characterized for locomotor behavior, prey-capture behavior, startle reflex and morphological
33 attributes. Analysis revealed an association between body length and slower escape reflex,
34 suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there
35 were few associations between individual behavioral traits, or behavioral and morphological traits,
36 suggesting independent genetic changes underlie the evolution of behavioral and morphological
37 traits. Taken together, this approach provides a novel system to identify genes that underlie
38 naturally occurring genetic variation in morphological and behavioral traits.

39 **Introduction**

40 Environmental changes often drive the evolution of morphological, behavioral, and physiological
41 traits (Rose 2007). Often trait evolution involves complex changes in genetic architecture that
42 include pleiotropic gene function, or traits that independently evolve in parallel (Stern 2013), yet
43 systematically testing the evolutionary relationship between traits has been challenging.
44 Subterranean environments present a unique opportunity to investigate the relationship between
45 environment and trait evolution because the changes in environment, such as loss of light, are
46 often well defined and present across independently evolved populations (Culver and Pipan
47 2009). In addition, in many cases, a closely related species or population remains in the surface
48 environment, allowing for a direct comparison between species that inhabit different environments
49 (Elliott 2016; Borowsky 2018). Finally, many traits associated with subterranean evolution
50 including albinism, reduced eye size, lower metabolic rate, and loss of circadian rhythms, have
51 evolved in distantly-related species in cavefish and subterranean mammals (Poulson 2001;
52 Jeffery 2009; Tian *et al.* 2017). Therefore, investigating trait evolution in subterranean species
53 has potential to uncover whether seemingly distinct traits are genetically linked and may have co-
54 evolved.

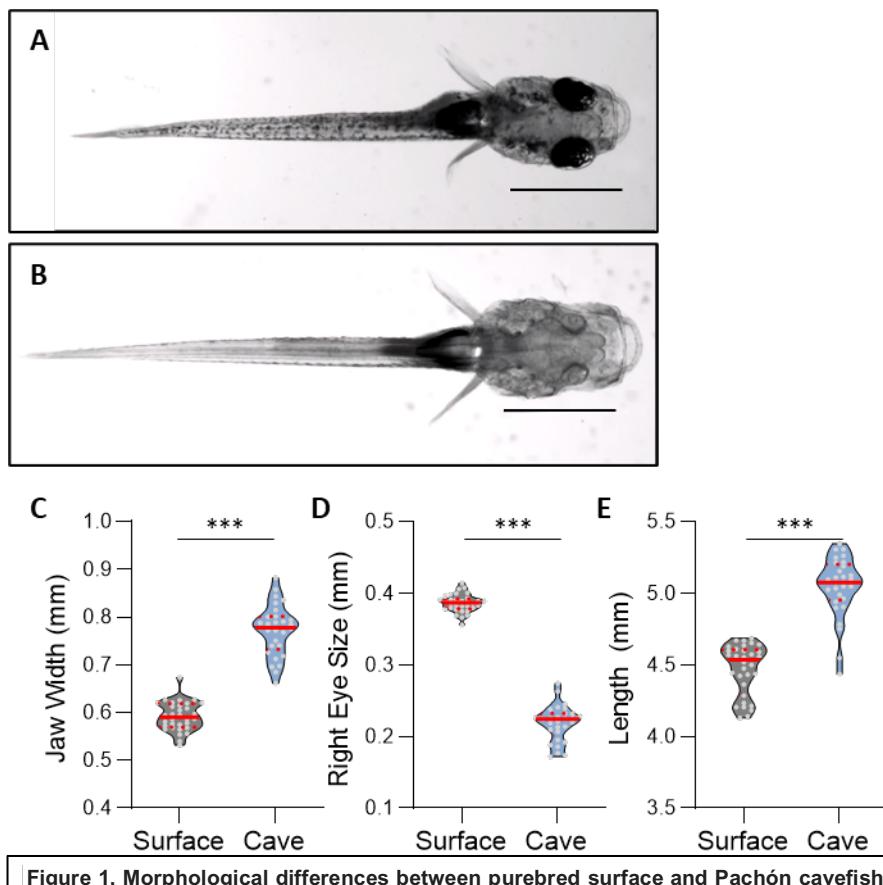
55

56 The Mexican tetra *Astyanax mexicanus* is a leading model to study the evolution of complex traits
57 (Keene *et al.* 2015; Jeffery 2020). The convergent evolution of cavefish from surface-like
58 ancestors in geographically distinct cave environments produced two morphologically distinct
59 forms of *A. mexicanus*. The first is a surface-dwelling form with fully developed eyes found in
60 above-ground rivers and streams of northeast Mexico and parts of southern Texas, and the
61 second includes at least 30 populations cave-dwelling forms, mostly found within the Sierra del
62 Abra region of northeast Mexico (Mitchell *et al.* 1977; Jeffery 2001; Gross 2012). Genomic and
63 geological data suggest cavefish populations are largely independent (with some admixture)
64 providing the opportunity to test the repeatability of evolution (Mitchell *et al.* 1977; Strecker *et al.*
65 2004; Herman *et al.* 2018). Cave-dwelling forms have converged on distinct morphological traits,
66 including albinism and eye loss (Jeffery 2020). In addition, cavefish evolved numerous behavioral
67 changes including different prey capture, startle response, and increased locomotor activity
68 (Duboué *et al.* 2011; Lloyd *et al.* 2018; Paz *et al.* 2020). Overall these changes are thought to be
69 critical for foraging in the absence of visual cues (Yoshizawa 2015; Keene and Duboué 2018;
70 McGaugh *et al.* 2020). Therefore, the robust phenotypic differences between surface fish and
71 cavefish provide an opportunity to examine the relationship between the evolution of behaviors
72 and morphological traits.

73

74 Cavefish and surface fish are interfertile, allowing for the generation of hybrid fish that can be
75 used to assess whether shared or independent genetic architecture regulates seemingly distinct
76 cave-like traits (Protas *et al.* 2006; Yoshizawa *et al.* 2012; O’Quin and McGaugh 2016).
77 Quantitative trait loci (QTL) analyses for multiple traits, including lens and eye size, as well as a
78 relationship between vibration attraction behavior and superficial neuromast number, support the
79 notion that genetic pleiotropy may contribute to the evolution of multiple traits (Yoshizawa *et al.*
80 2012; Kowalko *et al.* 2013; McGaugh *et al.* 2014). In addition, numerous functional interactions
81 have been identified, including interactions between eye loss and the expansion of the jaw and
82 hypothalamus (Yamamoto *et al.* 2009; Pottin *et al.* 2011; Atukorala and Franz-Odendaal 2018).
83 Studies have also found genetic interactions between albinism, elevated catecholamines, and
84 increased locomotor activity (Bilandzija *et al.* 2013; Bilandžija *et al.* 2018). A later study found that
85 mutation of the *oca2* gene causes sleep loss and increased locomotor activity (O’Gorman *et al.*
86 2021). Therefore, investigating many different cave-evolved traits in individual hybrids has
87 potential to identify the degree to which evolved traits relate to one another.

88


89 Here, we generated a pipeline for analyzing behavior and morphology in individual fish. We
90 applied this to analyze F2 hybrids between surface and Pachón cavefish, a highly troglomorphic
91 population, and measured the relationship between traits. We systematically investigated the
92 relationships between individual behaviors as well as the relationships between these behaviors
93 and morphological traits. These studies suggest that behavioral and morphological traits are
94 largely regulated independently, suggesting independent evolution of many cave-associated
95 traits.

96

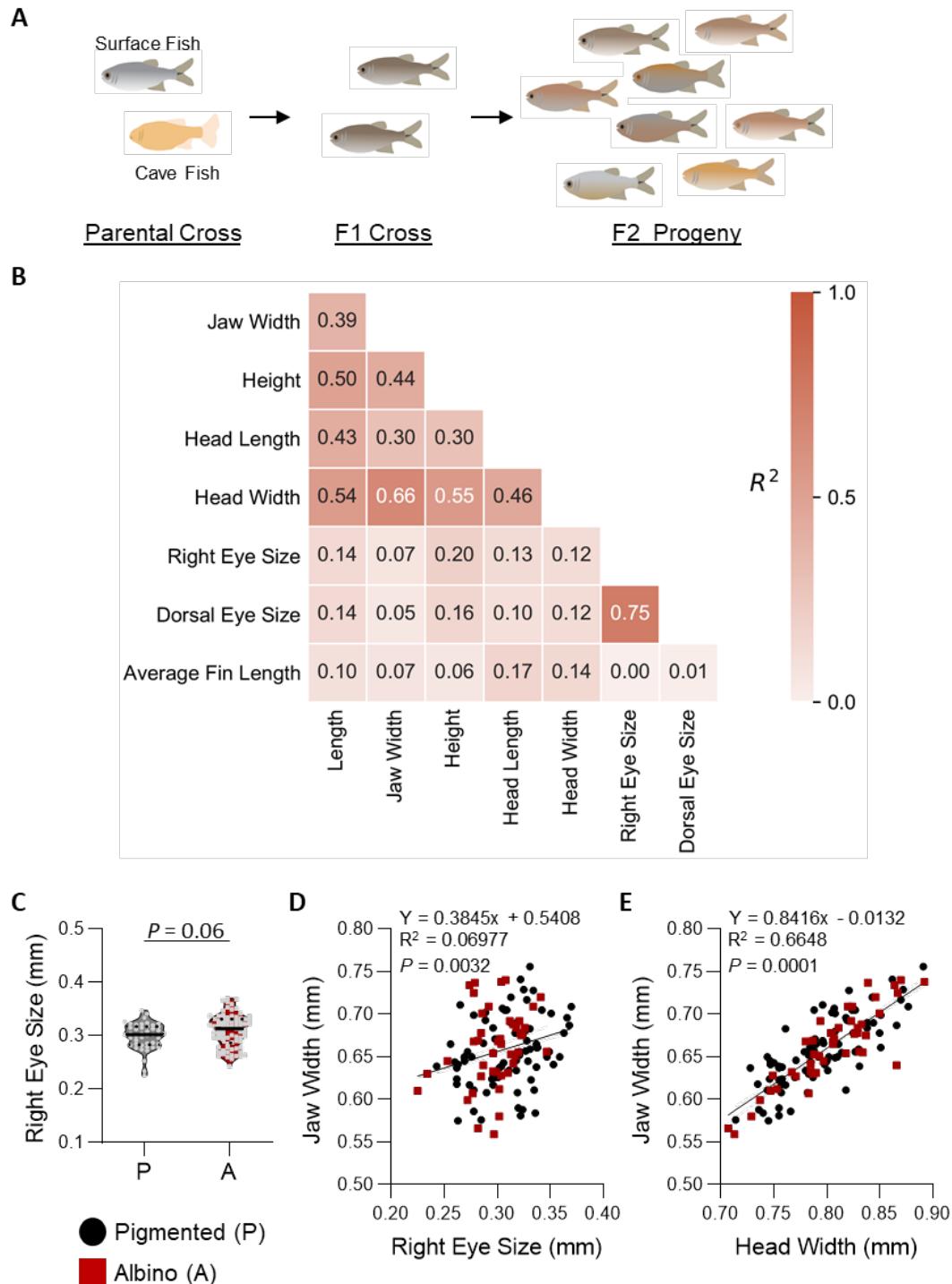
97 **Results**

98 In zebrafish and *A. mexicanus*, 6 days post-fertilization (dpf) larvae are often studied because
99 their transparency and small size is amenable to brain imaging and high-throughput behavioral
100 analysis (Halpern *et al.* 2008; Keene and Appelbaum 2019). We designed our experiments to
101 measure behavior in 6 dpf fish, followed by morphological analysis at 7 dpf. To define
102 morphological differences between surface and cavefish populations, we compared multiple
103 anatomical traits in surface and Pachón cavefish. At this timepoint, the overall developmental
104 stage of surface and cavefish are largely similar, allowing for direct comparisons of anatomical
105 features (Hinaux *et al.* 2011). We quantified eight traits related to overall body size, craniofacial

106 development, and
107 pigmentation (Figure 1,
108 A, B and Figure S1). At
109 7 dpf, cavefish were on
110 average larger with
111 increased body length,
112 height, and head
113 length, revealing an
114 overall increase in the
115 body and head size of
116 Pachón cavefish
117 (Figure S2 and Figure
118 1E). Consistent with
119 the previous reports,
120 we found that jaw size
121 is significantly
122 increased in cavefish
123 and eye size is
124 significantly reduced,
125 raising the possibility of
126 a trade-off between
127 eye and jaw size
128 (Figure 1C,D;

Figure 1. Morphological differences between purebred surface and Pachón cavefish populations. A,B) Dorsal image of surface (A) and Pachón cavefish (B). Scale bars denote 1mm. C) Jaw width is significantly greater in cavefish compared to surface fish (t-test: $t_{59}=16.48$, $P<0.0001$). D) Eye size is significantly greater in surface fish (t-test: $t_{59}=33.80$, $P<0.0001$). E) Length is significantly greater in cavefish compared to surface fish (t-test: $t_{59}=11.55$, $P<0.0001$). For each trait, the median (center line) as well as 25th and 75th percentiles (top and bottom lines) are shown. Circles represent values from individual fish. *** denotes $P<0.001$.

129 Yamamoto et al. 2009; Pottin et al. 2011). Nearly all differences were maintained when individual
130 traits were normalized to length body length (Figure S3), confirming that the observed differences
131 are not due to overall changes in size. Together these analyses confirm the presence of numerous
132 morphological differences between surface and Pachón cavefish at 7 dpf, providing a platform to
133 investigate the genetic relationship between these traits.


134
135 To define behavioral differences between surface and Pachón cavefish, we developed a
136 behavioral analysis pipeline to quantify ecologically relevant behaviors in succession, assessing
137 startle response kinematics, followed by prey capture, and finally locomotor activity in the same
138 individual fish. We focused on behaviors related to foraging and predator evasion, as food scarcity
139 and reduced predation are major changes associated with the cave environment (Elliott 2016;

140 McGaugh *et al.* 2020). To measure feeding behavior, we recorded the response of surface and
141 cavefish during *Artemia* feeding and quantified the angle and distance of prey capture, two
142 kinematic components that differ between visually and non-visually-related feeding (Figure 2A;
143 Lloyd *et al.* 2018; Jaggard *et al.* 2020). Consistent with previous reports, strike angle was
144 significantly greater in cavefish (Figure 2B; Lloyd *et al.* 2018). We also found the strike distance
145 was reduced in Pachón cavefish compared to surface fish (Figure 2C). To assess escape
146 response kinematics, plates containing fish in individual wells were fastened to a small vibration
147 excitor and the response to escape-inducing vibration was measured with a high-speed camera
148 (Figure 2D). The angular speed of cavefish was reduced, approaching significance ($P=0.06$),
149 while the peak angle was also reduced (Figure 2E,F), consistent with a previous report that the
150 escape response is blunted in cavefish (Paz *et al.* 2020). Finally, we measured locomotor activity
151 in cavefish because it is a critical for aspects of predator avoidance and foraging. Cavefish are
152 more active, presumably to allow increased foraging activity and exhibit increased wall-following
153 behavior (Duboué *et al.* 2011). We quantified total locomotor activity and time spent in the center
154 of the arena over a one-hour assay (Figure 2G). Pachón cavefish spent a shorter duration of time
155 in the center of the test arena compared to surface fish and exhibited a greater total amount of
156 activity (Figure 2H,I). Together, these findings are consistent with previously published reports
157 revealing robust differences in sensory and foraging behavior. The establishment of these
158 phenotypes in 6 dpf fish tested in succession for each behavior provides an assay for examining
159 inter-individual variability.

160

161 To examine the relationship between traits in surface and Pachón cavefish, we first examined the
162 correlation between morphological traits. For most morphological traits there was a strong
163 correlation between eye size, head width, length, and jaw width (Figure S4A,B). Conversely, there
164 were far fewer significant interactions between individual components of behavior (Figure S4C,D).
165 Surprisingly for cavefish, total locomotor activity significantly associated with peak angle, and
166 angular speed, revealing a relationship between locomotor behavior and startle reflex (Figure
167 S4C). In addition, in both surface and Pachón cavefish, angular speed associated with peak
168 angle, suggesting a relationship between both metrics of startle reflex (Figure S4C,D). Finally, we
169 examined the relationship between morphological and behavioral traits (Figure S4E,F). There
170 were far fewer correlations between behavioral and morphological traits, than for morphology
171 alone. In cavefish, total distance associated with many aspects of size, yet this was not observed
172 in surface fish (Figure S4E,F). Taken together, these findings reveal strong associations between

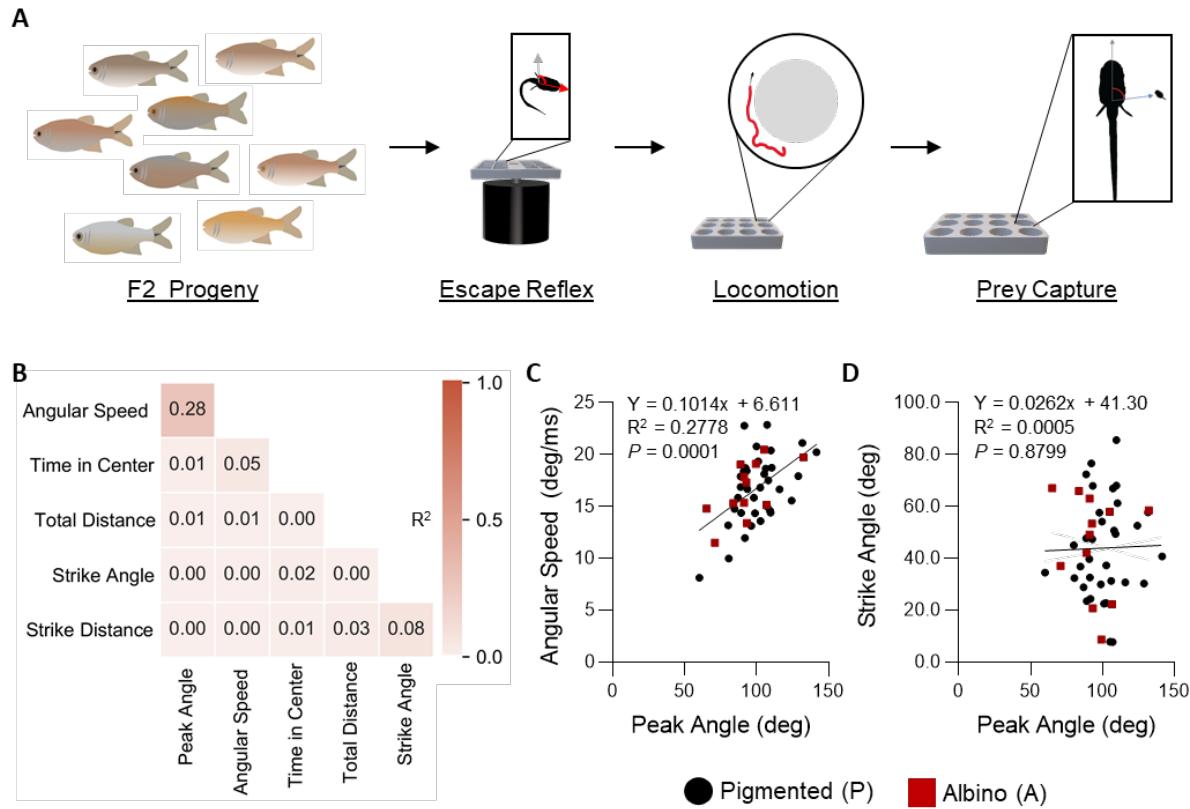
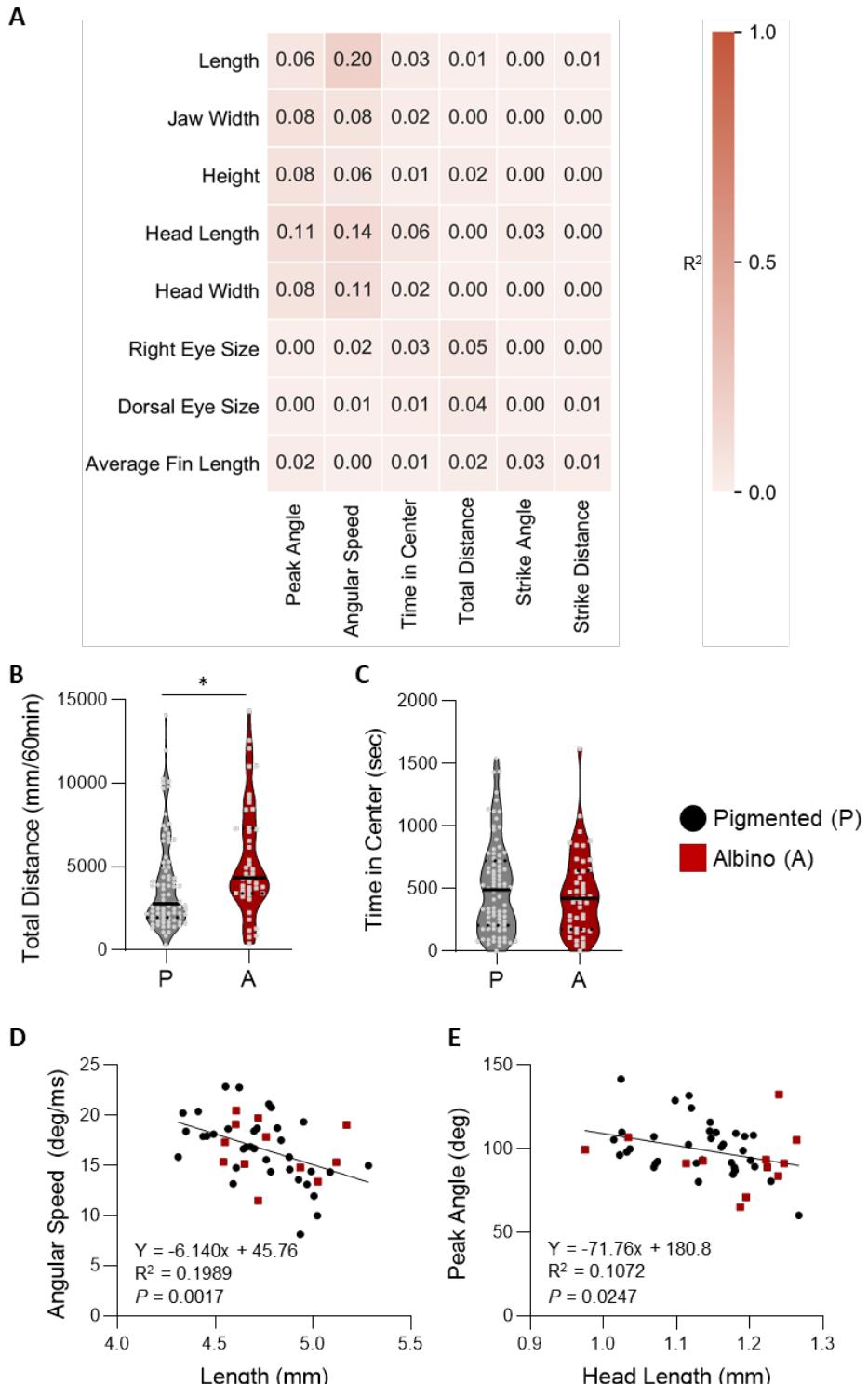

173 morphological traits and fewer between individual behaviors in pure populations of surface and
174 cavefish.

Figure 3. Morphological traits in F2 hybrid offspring. A) Cross-breeding process between purebred Surface (silver) and Pachón (albino) to produce F1 progeny, and F1 crosses to produce F2 hybrids used for study. **B)** Heat map of the correlations between morphological traits in F2 offspring (R^2 values shown). **C)** Eye size does not differ between pigmented and albino individuals (t-test: $t_{121}=1.856$, $P<0.0659$). **D)** Linear regression between jaw width and eye size reveals a significant association ($F_{1,121}=9.076$, $P<0.0032$). **E)** Linear regression between head width and jaw width reveals a significant association ($F_{1,121}=137.5$, $P<0.0001$). Albino individuals are depicted as red squares, while pigmented individuals are depicted as black circles.

176 We sought to define whether any of the morphological differences identified between surface fish
177 and cavefish genetically segregate, a phenotype that would suggest they are governed by shared
178 genetic architecture. To examine the relationship between different morphological traits, including
179 body sizes, eyes, and pigmentation, we generated F2 surface-cave hybrids by crossing F1
180 offspring of the pure-bred surface fish and Pachón cavefish (Figure 3A). We were not able to
181 detect intermediate pigmentation levels and this trait was scored in a binary fashion that includes
182 fish that are heterozygous and homozygous for surface fish *oca2*. We quantified individual fish
183 for numerous traits including eye size, length, height, and jaw size (Figure 3C,D,E). First, we
184 quantified whether there was an interaction between these traits and pigmentation. Across all
185 morphological traits measured in F2 offspring, there were no significant differences between
186 pigmented and albino fish (Table 1 and Figure S5A-G). We directly compared eye size in albino
187 and pigmented fish and found no relationship, suggesting the albinism gene *oca2* is not involved
188 in the development of eye size (Figure 3C). We performed a Spearman's Rank Correlation
189 Coefficient across all variables and found traits related to size had strong associations with one
190 another (Figure 3B). These studies revealed that the majority of morphological traits were linked,
191 including an association between jaw width and overall size. While the difference did not reach
192 significance, albino fish trended towards having larger eyes ($P=0.06$; Figure 3C). However, when
193 eye-size was corrected for body length, eye size was larger in pigmented hybrids than albino
194 hybrids ($P<0.05$; Figure S5H), raising the possibility that shared genes, or closely linked genes,
195 contribute to both processes. It has previously been suggested that jaw width is associated with
196 eye-size (Yamamoto *et al.* 2009) and we observed a significant interaction between these traits
197 (Figure 3D). We also observed a significant interaction between jaw width and overall head width,
198 suggesting jaw width is likely specified by the overall head size of the animal (Figure 3E).
199 Together, these findings suggest the overall growth rate of cavefish is accelerated and the genes
200 regulating different features of growth co-segregate in cavefish.

201
202 It is possible that the many behavioral differences in cavefish evolved independently of one
203 another, or that they are governed by shared genetic architecture. To test the relationships
204 between these traits, we measured the behavior of individual F2 hybrids for locomotor behavior,
205 prey-capture, and escape reflex (Figure 4A). We then performed rank-correlation analysis across
206 all behavioral traits (Figure 4B). We identified a correlation between angular speed and peak
207 angle in escape responses, but not with other behavioral variables tested (Figure 4C).
208 Additionally, no significant associations were identified for variables of prey capture and escape
209 reflexes, suggesting the evolved differences for each behavior in cavefish occurred through


Figure 4. Relationship between behavioral traits within F2 hybrids. A) Schematic for behavioral analysis where individual F2 fish were tested for locomotor activity, escape reflex, and then prey capture in succession. **B)** Heat map of the correlations between behavioral traits in F2 offspring (R^2 values shown). **C)** Peak angle of the escape reflex is associated with angular speed ($F_{1,45}=17.31$, $P<0.0001$). **D)** Peak angle during the escape reflex is not associated with feeding strike angle ($F_{1,44}=0.0231$, $P<0.8799$). Albino individuals are depicted as red squares, while pigmented individuals are depicted as black circles.

210 independent genetic mechanisms (Figure 4D). Together, these findings suggest there is little
 211 shared genetic or functional relationship between three behaviors that are thought to be critical to
 212 cave adaptation.

213
 214 Numerous studies have revealed associations between morphological and behavioral evolution
 215 (Alié *et al.* 2018). To examine the possibility that the behaviors studied in our analysis pipeline
 216 relate to anatomical changes, we compared the associations between anatomical and behavioral
 217 traits measured in F2 offspring (Figure 5A). We identified significant negative correlations
 218 between angular speed in escape response and body length as well as between peak angle in
 219 escape response and head length, suggesting a trade-off between increased size and reduced
 220 escape response performance in cavefish (Figure 5D). We also identified an association between
 221 albinism and total swimming distance, consistent with the notion that mutations in *oca2* confer
 222 sleep loss and altered locomotor activity (Figure 5B; Bilandžija *et al.* 2018; O’Gorman *et al.* 2020).
 223 These differences are likely not reflective of general locomotor abnormalities in albino hybrids

224 because the time in the center did not differ across each population (Fig 5C). Taken together,
225 these findings suggest the evolution of behavioral and morphological phenotypes are largely
226 governed by independent genetic architecture.

227

Figure 5. Comparison between morphological and behavioral traits within F2 hybrid offspring. **A)** Heat map of the correlations between morphological and behavioral traits in F2 offspring (R^2 values shown). **B)** Total distance is significantly greater in albino (A) than in pigmented (P) individuals (t -test: $t_{125}=2.636, P<0.0095$). **C)** Time in the center does not differ between pigmented and albino individuals (t -test: $t_{125}=0.8155, P<0.4163$). For each trait, the median (center line) as well as 25th and 75th percentiles (dotted lines) are shown. **D)** Standard length and angular speed are significantly correlated in F2 hybrid individuals ($R^2=0.1989$). **E)** There is a significant association between peak angle and head length in F2 individuals ($R^2=0.1072$). Albino individuals are depicted as red squares, while pigmented individuals are depicted as black circles. ** denotes $P<0.01$.

229 **Discussion**

230 Across taxa, environmental perturbation leads to the evolution of many behavioral and
231 morphological traits (Stern 2013). Patterns of genetic covariations can influence the rate and
232 direction of phenotypic evolution as seen in the three-spine stickleback populations, resulting in
233 changes in body armor, aggression, and social behaviors (Leinonen *et al.* 2011; Peichel and
234 Marques 2017). Similarly, rapid evolution of species in East African cichlids has led to dramatic
235 changes in many traits including coloration, craniofacial morphology, aggression, and locomotor
236 behavior (Kocher 2004; Powder and Albertson 2016; Salzburger 2018□). Understanding how
237 defined ecological factors impact the evolution of these traits, as well as their genetic bases, is a
238 central question in evolution. Examining numerous behavioral and morphological traits in hybrids
239 with robust evolutionarily-derived differences can be applied to many different species to examine
240 the genetic basis of trait evolution, and whether traits are governed by shared genetic architecture.

241

242 To investigate the relationship between genetic architecture underlying the evolution of behavioral
243 and morphological traits, we quantified segregation of these traits in surface-Pachón cave F2
244 hybrids. The approach of examining numerous behavioral and morphological traits in hybrids with
245 robust evolutionarily-derived differences can be applied to a broad number of species to examine
246 the genetic basis of trait evolution, and whether traits are governed by shared genetic architecture.

247

248 We performed broad analyses of morphological and behavioral traits that suggest the genetic
249 architecture underlying multiple aspects of increased body size including head size, head width
250 and body length, and jaw width are all related. This suggests defined genetic changes have led
251 to an overall increase in growth rate during early development in cavefish. However, there were
252 no associations between eye size and albinism with any other morphological traits. These findings
253 are surprising because QTL analysis has found that eye size and albinism localize to overlapping
254 QTL, raising the possibility that albinism is pleiotropic (Protas *et al.* 2008). Further, increased jaw
255 size has been previously associated with a reduction in eye size(Yamamoto *et al.* 2009).
256 Therefore, increasing the sample size or testing at different developmental stages may identify
257 additional associations between traits including developmentally-specified associations, with
258 interactions at some stages, but not early development. Alternatively, the effect size of many traits
259 may be small and were missed during this study. It is important to note that we only examined
260 superficial morphological traits, and it is possible that a more detailed analysis would uncover
261 additional traits that are related. For example, cavefish have differences in craniofacial
262 morphology, tooth development, and an expansion of lateral line neuromasts (Varatharasan *et al.*

263 2009; Yoshizawa *et al.* 2010; Gross *et al.* 2014; Atukorala and Franz-Odendaal 2018). In addition,
264 we did not test possible interactions between morphological traits and brain neuroanatomy that
265 have previously been reported (Jaggard *et al.* 2019; Loomis *et al.* 2019). Therefore, it is possible
266 that a more detailed analysis will reveal broader genetic interactions.

267

268 Most behavioral traits studied here are unlinked from the observed anatomical changes. We did,
269 however, identify an association between increased length and reduced angular speed during the
270 escape response, revealing a potential trade-off between size and escape performance in fish.
271 While limited information is available about the relationship between body size and escape
272 response in larvae, in adult damsel fish size is correlated with increased escape velocity
273 (McCormick *et al.* 2019). Given that cavefish appear to lack macroscopic predators (Jeffery 2008;
274 Kowalko 2020), it is possible that rapid growth is advantageous in order to develop resistance to
275 starvation, even at the expense of reduced escape abilities. Broadly, we found that pigmentation
276 did not associate with nearly all traits tested (with the exception of eye size), suggesting that loss
277 of *oca2* function is relatively specific to albinism and does not impact the behaviors tested. This
278 is surprising given the role of *oca2* as in monoamine function. In *oca2* mutants, norepinephrine
279 and dopamine levels are elevated, and these neurotransmitters are linked to many behaviors
280 including foraging (Bilandzija *et al.* 2013; Bilandžija *et al.* 2018). We did observe increased
281 locomotor behavior in albino mutants, consistent with previous findings that sleep is reduced F2
282 surface x cave hybrids or surface fish with engineered mutations in *oca2* (O’Gorman *et al.* 2020).
283 Therefore, our findings suggest that the differences in behavioral and morphological traits
284 examined here largely evolved through independent genetic mechanisms, though there are likely
285 to be trade-offs between body size and escape behavior during early development.

286

287 A central question in the field relates to the ecological factors that drive many of the evolved
288 differences in behavior and morphology in cavefish. Here, we confirm previous findings revealing
289 sensory-motor changes in prey capture and startle response, as well as changes in locomotion
290 (Lloyd *et al.* 2018; Jaggard *et al.* 2020). It is unclear which aspects of cave ecology are likely to
291 drive these differences. Caves and surface habitats differ in many ways, including constant
292 darkness, which is proposed to underlie increased dependence on the lateral line during feeding
293 behavior (Yoshizawa *et al.* 2010, 2012). There is also speculation that the caves are nutrient poor
294 compared to surface environments, and this underlies the evolution of sleep loss, however this
295 has not been investigated systematically in the cave environment (Krishnan and Rohner 2017). It
296 is possible that the increased jaw size in cavefish is related to the size of the prey consumed by

297 juveniles, allowing for larger prey, greater suction during feeding, or improved success during
298 lateral-line dependent feeding that involves lateral movement during capture (Yoshizawa *et al.*
299 2010; Holzman *et al.* 2014; Lloyd *et al.* 2018). Conversely, it has previously been shown that
300 enhanced prey capture abilities of larval cavefish are independent from eye loss (Espinasa *et al.*
301 2014). Little is known of the foraging behavior of fish in natural conditions, especially at the larval
302 stage. The stomach contents of adult fish, identifying a diet of arthropods and there is speculation
303 that cavefish consume bat guanos deposited from bat colonies that inhabit the majority of the
304 caves (Espinasa *et al.* 2017). Further investigation of the abiotic and biotic ecology of the caves
305 are likely to contribute to our understanding of evolution, and comparisons of surface and cavefish
306 across different developmental stages should improve our understanding of how the studied traits
307 have evolved.

308
309 We examined hybrids of the surface and Pachón cave populations. We chose this population
310 because geological, genomic, morphological evidence suggests the Pachón population is one of
311 the most troglomorphic, and therefore the most commonly used in Mexican tetra studies. The
312 largely independent evolution of at least 30 different cave populations offers a unique opportunity
313 to study the evolution of various traits. Shared genetic changes underlie evolution in a number of
314 populations. For example, different mutations in the pigmentation gene *oca2* directly lead to
315 albinism in the Molino and Pachón populations (Protas *et al.* 2008). In addition, complementation
316 analysis between independently evolved cavefish populations suggest different genetic changes
317 underlie eye loss in the Pachón and Molino populations (Sifuentes-Romero *et al.* 2020). However,
318 the presence of convergent evolution in these populations increases the likelihood of differences
319 in traits among individual populations. For example, sleep loss in the Pachón population is
320 dependent on enhanced lateral line function, while sleep loss in Tinaja and Molino fish is
321 independent of the lateral line (Jaggard *et al.* 2017). Therefore, the systematic relationship
322 between evolved traits across multiple independently evolved populations of cavefish has
323 potential to uncover whether shared principles governed repeated evolution following similar
324 ecological changes.

325
326 In this study we exclusively examined behavior at 6 days post fertilization. This is an age typically
327 used in zebrafish for genetic manipulations including performing whole brain imaging, and a
328 recently developed neuroanatomical atlas in *A. mexicanus* compared different populations at this
329 age (Halpern *et al.* 2008; Keene and Appelbaum 2019; Jaggard *et al.* 2020). Further, hybrid
330 analysis studies often require large numbers of fish, and testing fish at 7dpf is much more

331 accessible. While the differences between surface fish and cavefish behavior for sleep, foraging,
332 and wall-following (or reduced time in center) are similar in 7 dpf fish and adults, there may be
333 developmentally-specified effects. For example, at 30 dpf the prey capture distance (distance
334 between prey and fish at the start of the attack) is greater in surface fish than cavefish (Lloyd *et*
335 *al.* 2018), however, we report that here it is reduced at this timepoint at 6 dpf. Despite these
336 differences, multiple studies now confirm that the attack angle is greater in cavefish as early as 7
337 dpf through 30 dpf. Therefore, the phenotypes observed may vary across developmental, and
338 therefore any genetic relationships identified through the approach used here may not generalize
339 across development. In addition to the behaviors examined, the behaviors of adults are thought
340 to be more complex, and therefore may allow for more detailed analysis of the relationship
341 between differentially-evolved behaviors. Many behavioral differences have only been described
342 in adults including schooling, aggression, vocalizations, and vibration attraction, and therefore
343 could not be included in the analysis applied here. The approach of generating a pipeline for
344 examining trait interactions could be applied to adult animals allowing for investigation of the
345 interactions between a broader number of traits.

346

347 This investigation sought to understand the relationship between many different evolved traits in
348 F2 surface x cave hybrid fish. While our analysis was limited to phenotyping, previous studies
349 have performed mapping studies to localize genomic regions associated with numerous traits
350 including albinism, locomotor behavior, eye size, social behavior, nonvisual sensory systems
351 (O'Quin and McGaugh 2016). Sequenced genomes for Pachón cave and surface populations of
352 *A. mexicanus* are available and can be applied for mapping traits observed (McGaugh *et al.* 2014;
353 Warren *et al.* 2021). The behavioral pipeline approach used in this study would be particularly
354 powerful because it would allow for genomic mapping of many traits in a relatively small number
355 of animals. In addition to genomic approaches, gene-editing approaches have been applied to
356 functionally validate data obtained from genomic mapping or transcriptional analysis, revealing
357 potential for this approach to identify novel genetic regulators of many different cave evolved traits
358 (Ma *et al.* 2015; Klaassen *et al.* 2018; Stahl *et al.* 2019). Finally, the approach used and its
359 potential for mapping is not limited to *A. mexicanus*. Hybrid analysis and mapping is widely used
360 in other fish species and applying a behavioral pipeline to identify genetic architecture associated
361 with trait evolution has potential for identifying genes in many different models of evolution.

362

363 **Materials and Methods**

364 *Fish Husbandry*: Animal husbandry was carried out as previously described (Stahl *et al.* 2019)
365 and all protocols were approved by the IACUC Florida Atlantic University. Fish were housed in
366 the Florida Atlantic University core facilities at $23^{\circ}\text{C} \pm 1^{\circ}\text{C}$ constant water temperature throughout
367 rearing for behavior experiments. Lights were kept on a 14:10 h light-dark cycle that remained
368 constant throughout the animal's lifetime. Light intensity was kept between 25 and 40 lx for both
369 rearing and behavior experiments. Adult fish were fed a diet of black worms to satiation twice daily
370 at zeitgeber time (ZT) 2 and ZT12, (Aquatic Foods, Fresno, CA,) and standard flake fish food
371 during periods when fish were not being used for breeding (Tetramine Pro). All fry used for
372 experiments were reared on live *Artemia* beginning at 4dpf and fed twice daily through the end of
373 experiments at 7 dpf.

374

375 *Behavioral analysis pipeline*: All fish tested, including surface fish, Pachón cavefish, and surface
376 x cave F2 hybrids followed the same behavioral analysis pipeline. At 6 dpf fish were removed
377 from bowls, transferred to plates and tested for startle reflex as described below. All tests took
378 place between ZT0 and ZT4 in the light. Following completion of startle response assays, larvae
379 were returned to their well plates and transferred to the locomotor assay. Locomotion behavior
380 experiments were run as 4 trials a day, with a 60 min trial interval. Behavioral videos were
381 captured between ZT4 and ZT8. Immediately following locomotor assays at ZT8, larvae were
382 returned to their well plates and then transferred to prey capture arenas
383 containing *Artemia* nauplii, where their behavior was recorded for a single period of 30 minutes.
384 After this period, larvae were returned to their original well plates and incubator overnight. The
385 following day, larvae were retrieved and photographed for measurement of morphological traits.
386 The detailed of each part of the procedure are described below. At all stages care was taken to
387 avoid mixing individual fish throughout the process.

388

389 *Prey capture*: Prey capture behavior was recorded as previously described, with minor
390 modifications, described below (Lloyd *et al*, 2018). Video was acquired using a USB 3.0 camera
391 (LifeCam Studio, Microsoft) fitted with a zoom lens (75 mm DG Series Fixed Focal Length Lens,
392 Edmund Optics Worldwide), and recorded with VirtualDub2 (v44282). All images were acquired
393 at 30 frames per second. Recording chambers were illuminated with custom-designed infrared
394 LED source (Infrared (IR) 850 nm 5050 LED Strip Light, Environmental Lights). All recordings
395 were performed in 6 dpf fry from zeitgeber (ZT) 8 to ZT10. For larval fish recordings, individual
396 fish were placed in 24 well tissue culture plates (Cellvis) or custom-made chambers, filled with
397 ~3 mm of water to constrict the larvae to a single focal plane. Fish were allowed to acclimate for

398 2 min prior to the start of the experiment. To record feeding behavior, approximately 30 *Artemia*
399 *nauplii* were added to each well and fish were imaged for 30 minutes.

400
401 Recordings were analyzed using ImageJ 1.52a (National Institutes of Health; Bethesda, MD).
402 Chamber diameter was set using ImageJ's native “Set Scale” function, and strike distance and
403 angle were measured for all successful feeding events, using ImageJ's “Line” and “Angle” tools.
404 Measurements of both strike distance and angle were taken in the frame prior to initiation of
405 movement towards the prey. Strike distance was defined as the shortest distance between the
406 edge of the fish's body and the prey. Strike angle was defined as the angle between a line
407 extending down the fish's midline, terminating parallel with the pectoral fins, and a line extending
408 from this point to the center of the prey. Measurements of each strike were averaged to calculate
409 the mean strike distance and angle for that individual, and any recording with fewer than three
410 feeding events was excluded from analysis.

411
412 *Startle response*: We assessed startle response probability and kinematics as previously
413 described (Paz et al, 2019). Assays were conducted in a temperature-controlled environment
414 maintained at 24°C. Individual F2, surface, or Pachon larvae were placed in square wells on a
415 custom 3D printed polyactic acid 16-well plate, which was mounted onto a vertically-oriented
416 vibration Exciter controlled by a multi-function I/O device and custom Labview 2018 v.18.0f2
417 (National Instruments, Austin, TX) scripts. To optimize the quality of video recordings, only 8 wells
418 were used at a time. Each assay consisted of an initial 10 minute acclimation period followed by
419 six 500 Hz square wave stimuli of 50 ms duration with a 10 minute interstimulus interval, resulting
420 in a total duration of one hour per assay. A total of 128 F2 larvae were assayed. An LED was
421 connected directly to the signal driving the exciter so that its flashing could be used to identify the
422 start and end of each stimulus in video recordings. C-start responses were identified as
423 accelerated, simultaneous flexion of the head and tail in the same direction. Response probability
424 is reported as the total number of c-starts performed by a larva divided by the total number of
425 stimuli to which the larva was exposed (six). Beginning from the frame immediately preceding the
426 stimulus start (as indicated by the LED turning on), the “angle” tool on ImageJ 1.52a (National
427 Institutes of Health; Bethesda, MD) was used to determine the change in orientation of the larvae
428 over the course of the stimulus, and these measurements were used to determine response
429 latency, angular speed, and peak angle. Response latency is defined as the time interval between
430 stimulus onset and a change in orientation of at least 10 degrees.

431

432 *Locomotor behavior:* We measured locomotion activity as previously described (Jaggard JB,
433 2019). Videos were captured using a Basler ace ac1300-200 um USB 3.0 digital camera (Edmund
434 Optics Inc., NJ; CAT#33978) with a 16mm C series lens (Edmund Optics Inc., CAT#67714) and
435 a UV-VIS filter (Edmund Optics Inc., CAT#65716). *Astyanax mexicanus* populations were placed
436 in single wells of a 6-well plate (34.8 mm diameter; #S3506, Corning Inc., Corning, NY),
437 acclimated for 10 minutes and recorded for one hour. Distance, velocity, and time spent in the
438 center and border were tracked and analyzed using the software EthoVision (Ethovision X14,
439 Noldus Information Technology, Wageningen, NLD). Raw data was binned and transformed using
440 custom made MATLAB scripts (available on request).

441

442 *Morphological analysis:* Pure surface and Pachón cavefish or F2 offspring were anesthetized in
443 0.1 M Tricaine at 7 days post-fertilization for imaging. Each fish was imaged both dorsally and
444 laterally. Images were standardized against a 1mm measurement and were uploaded to Fiji
445 ImageJ (Schindelin *et al.* 2012). The 1mm measurement was measured by the line variable in
446 ImageJ and established as a global calibration for all future measurements. Each fish image was
447 used to measure lengths for the following: standard length, head depth, eye size lateral, eye size
448 dorsal, jaw width, head width, head length, fin length left and right (which were averaged to a
449 single value). Standard length measurement connected the tip of the upper lip to the end of the
450 tail at its greatest length. Head depth was measured as the length from the dorsal edge of the
451 head to the ventral edge of the head. Eye size lateral was determined as the length between
452 either side of the widest part of the right eye (under microscope when fish is placed laterally). The
453 remaining measurements were done from a dorsal perspective. Eye size dorsal was measured
454 from the outside of the widest part of the eye from the center edge to the lateral edge. Jaw width
455 was measured as the length of the widest part of the head rostral to the eyes. Head width was
456 measured as the widest length of the head caudal to the eyes. Head length was recorded as the
457 length from the tip of the upper lip to the end of the head, established when it meets the swimmer
458 bladder. Finally, fin lengths were measured as the greatest length where each fin attaches to the
459 head to the tip of the end of each fin. Every measurement was completed by two different raters
460 to determine inter-rater reliability, and both measurements were averaged to find final values for
461 analysis.

462

463 *Statistical analysis:* All morphological and behavioral traits are presented as violin plots; indicating
464 the median, 25th, and 75th percentiles. All statistical analyses were performed using Instat software
465 (Graphpad Prism 8.4.3). For each trait, normality was assessed visually from a QQ plot and then

466 a parametric t-test was performed. To visualize the relationship between two traits, a linear
467 regression was performed. R^2 heatmaps were generated using python's SciPy and Seaborn
468 modules. R^2 values were obtained by performing an independent linear regression on each pair
469 of variables.

470

471 **Acknowledgements**

472 The authors are grateful to Julia Pasquale for assistance with behavioral analysis, as well as Peter
473 Lewis and Arthur Lopatto for assistance with fish care. This work was supported by an NIGMS U-
474 RISE award (T34GM136486) to ACK an NIGMS R01 (1R01GM127872) to ACK and an NSF-
475 EDGE award to JEK and ERD (1923372).

476 **References**

477 Alié, A., L. Devos, J. Torres-Paz, L. Prunier, F. Boulet *et al.*, 2018 Developmental evolution of
478 the forebrain in cavefish: from natural variations in neuropeptides to behavior. *eLife*.
479 Atukorala, A. D. S., and T. A. Franz-Odendaal, 2018 Genetic linkage between altered tooth and
480 eye development in lens-ablated *Astyanax mexicanus*. *Developmental Biology* 441: 235–
481 241.
482 Bilandžija, H., L. Abraham, L. Ma, K. J. Renner, and W. R. Jeffery, 2018 Behavioural changes
483 controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish.
484 *Proceedings of the Royal Society B: Biological Sciences* 16: 1878.
485 Bilandžija, H., L. Ma, A. Parkhurst, and W. Jeffery, 2013 A potential benefit of albinism in
486 *Astyanax* cavefish: downregulation of the *oca2* gene increases tyrosine and catecholamine
487 levels as an alternative to melanin synthesis. *Plos One* 8: e80823.
488 Borowsky, R., 2018 Cavefishes. *Current Biology* 28: R60–64.
489 Culver, D. C., and T. Pipan, 2009 *The Biology of Caves and Other Subterranean Habitats*.
490 Oxford University Press, USA.
491 Duboué, E. R. E. R., A. C. C. A. C. Keene, and R. L. R. L. R. L. Borowsky, 2011 Evolutionary
492 convergence on sleep loss in cavefish populations. *Current Biology* 21: 671–676.
493 Elliott, W. R., 2016 Cave Biodiversity and Ecology of the Sierra de El Abra Region, pp. 59–76 in
494 *Biology and Evolution of the Mexican Cavefish*,
495 Espinasa, L., J. Bibliowicz, W. R. Jeffery, and S. Rétaux, 2014 Enhanced prey capture skills in
496 *Astyanax* cavefish larvae are independent from eye loss. *EvoDevo* 5:.
497 Espinasa, L., N. Bonaroti, J. Wong, K. Pottin, E. Queinnec *et al.*, 2017 Contrasting feeding
498 habits of post-larval and adult *Astyanax* cavefish. *Subterranean Biology* 21: 1–17.
499 Gross, J. B., 2012 The complex origin of *Astyanax* cavefish. *BMC Evol. Biol.* 12: 105
500 doi:10.1186/1471-2148-12-105.
501 Gross, J. B., A. J. Krutzler, and B. M. Carlson, 2014 Complex craniofacial changes in blind
502 cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. *Genetics*
503 196: 1303–1319.
504 Halpern, M. E., J. Rhee, M. G. Goll, C. M. Akitake, M. Parsons *et al.*, 2008 Gal4/UAS transgenic
505 tools and their application to zebrafish. *Zebrafish* 5: 97–110.
506 Herman, A., Y. Brandvain, J. Weagley, W. R. Jeffery, A. C. Keene *et al.*, 2018 The role of gene
507 flow in rapid and repeated evolution of cave-related traits in Mexican tetra, *Astyanax*
508 *mexicanus*. *Molecular Ecology* 22: 4397–4416.
509 Hinaux, H., K. Pottin, H. Chalhoub, S. Père, Y. Elipot *et al.*, 2011 A Developmental Staging
510 Table for *Astyanax mexicanus* Surface Fish and Pacho 'n Cavefish. *Zebrafish* 8: 155–165.
511 Holzman, R., S. Perkol-Finkel, and G. Zilman, 2014 Mexican blind cavefish use mouth suction
512 to detect obstacles. *The Journal of experimental biology* 217: 1955–1962.
513 Jaggard, J. B., E. Lloyd, A. Yuiska, A. Patch, Y. Fily *et al.*, 2020 Cavefish brain atlases reveal
514 functional and anatomical convergence across independently evolved populations. *Science*
515 *Advances* 6:.
516 Jaggard, J., E. Lloyd, A. Yuiska, A. Patch, Y. Fily *et al.*, 2019 Cavefish brain atlases reveal
517 functional and anatomical convergence across independently evolved populations. *bioRxiv*
518 (in press at *Sci Advances*) 832543.

519 Jaggard, J. J., B. G. B. Robinson, B. A. B. Stahl, I. Oh, P. Masek *et al.*, 2017 The lateral line
520 confers evolutionarily derived sleep loss in the Mexican cavefish. *Journal of Experimental*
521 *Biology* in press:
522 Jeffery, W. R., 2020 *Astyanax* surface and cave fish morphs. *EvoDevo* 11:.
523 Jeffery, W. R., 2001 Cavefish as a model system in evolutionary developmental biology.
524 *Developmental biology* 231: 1–12.
525 Jeffery, W. R., 2008 Emerging model systems in evo-devo: cavefish and microevolution of
526 development. *Evolution & development* 10: 265–272.
527 Jeffery, W. R., 2009 Regressive evolution in *Astyanax* cavefish. *Annual review of genetics* 43:
528 25–47.
529 Keene, A. C., and L. Appelbaum, 2019 *Sleep in Fish Models*.
530 Keene, A. C., and E. R. Duboue, 2018 The origins and evolution of sleep. *The Journal of*
531 *Experimental Biology*.
532 Keene, A. C., M. Yoshizawa, and S. E. McGaugh, 2015 *Biology and Evolution of the Mexican*
533 *Cavefish*.
534 Klaassen, H., Y. Wang, K. Adamski, N. Rohner, and J. E. Kowalko, 2018 CRISPR mutagenesis
535 confirms the role of oca2 in melanin pigmentation in *Astyanax mexicanus*. *Developmental*
536 *Biology* 441: 313–318.
537 Kocher, T. D., 2004 Adaptive evolution and explosive speciation: The cichlid fish model. *Nature*
538 *Reviews Genetics* 5: 288–298.
539 Kowalko, J., 2020 Utilizing the blind cavefish *Astyanax mexicanus* to understand the genetic
540 basis of behavioral evolution. *The Journal of experimental biology* 223:.
541 Kowalko, J. E., N. Rohner, S. B. Rompani, B. K. Peterson, T. A. Linden *et al.*, 2013 Loss of
542 schooling behavior in cavefish through sight-dependent and sight-independent
543 mechanisms. *Current Biology* 23: 1874–1883.
544 Krishnan, J., and N. Rohner, 2017 Cavefish and the basis for eye loss. *Philosophical*
545 *transactions of the Royal Society of London. Series B, Biological sciences* 372:.
546 Leinonen, T., J. M. Cano, and J. Merilä, 2011 Genetics of body shape and armour variation in
547 threespine sticklebacks. *Journal of Evolutionary Biology* 24: 206–218.
548 Lloyd, E., C. Olive, B. A. Stahl, J. B. Jaggard, P. Amaral *et al.*, 2018 Evolutionary shift towards
549 lateral line dependent prey capture behavior in the blind Mexican cavefish. *Developmental*
550 *Biology*.
551 Loomis, C., R. Peuß, J. Jaggard, Y. Wang, S. Mckinney *et al.*, 2019 An adult brain atlas reveals
552 broad neuroanatomical changes in independently evolved populations of Mexican cavefish.
553 *BioRxiv*.
554 Ma, L., W. R. Jeffery, J. J. Essner, and J. E. Kowalko, 2015 Genome editing using TALENs in
555 blind Mexican cavefish, *Astyanax mexicanus*. *PLoS ONE* 10:.
556 McCormick, M. I., E. P. Fakan, and M. M. Palacios, 2019 Habitat degradation and predators
557 have independent trait-mediated effects on prey. *Scientific Reports* 9: 15705.
558 McGaugh, S. S. E., J. B. B. Gross, B. Aken, M. Blin, R. Borowsky *et al.*, 2014 The cavefish
559 genome reveals candidate genes for eye loss. *Nature communications* 5: 5307.
560 McGaugh, S. E., J. E. Kowalko, E. Duboué, P. Lewis, T. A. Franz-Odendaal *et al.*, 2020 Dark
561 world rises: The emergence of cavefish as a model for the study of evolution, development,

562 behavior, and disease. *Journal of Experimental Zoology Part B: Molecular and*
563 *Developmental Evolution* 334: 397–404.

564 Mitchell, R. W., W. H. Russell, and W. R. Elliott, 1977 *Mexican eyeless characin fishes, genus*
565 *Astyanax: Environment, distribution, and evolution.* (C. Mackey & G. E. Barnett, Eds.).
566 Texas Tech Press, Texas.

567 O'Gorman, M., S. Thakur, G. Imrie, R. L. Moran, S. Choy *et al.*, 2021 Pleiotropic function of the
568 oca2 gene underlies the evolution of sleep loss and albinism in cavefish. *Current biology* :
569 CB 31: 3694-3701.e4.

570 O'Gorman, M., S. Thakur, G. Imrie, R. Moran, E. Duboue *et al.*, 2020 Pleiotropic function of the
571 oca2 gene underlies the evolution of sleep loss and albinism in cavefish. *BioRxiv* 10.1101:
572 314278.

573 O'Quin, K., and S. E. McGaugh, 2016 Mapping the Genetic Basis of Troglomorphy in *Astyanax*:
574 How Far We Have Come and Where Do We Go from Here?, pp. 111–135 in *Biology and*
575 *Evolution of the Mexican Cavefish*,.

576 Paz, A., B. McDole, J. Kowalko, E. Duboue, and A. Keene, 2020 Evolution of the acoustic
577 startle response of Mexican cavefish. *J Exp Zool B Mol Dev Evol* 334: 474–485.

578 Peichel, C. L., and D. A. Marques, 2017 The genetic and molecular architecture of phenotypic
579 diversity in sticklebacks. *Philosophical Transactions of the Royal Society B: Biological*
580 *Sciences* 372: 20150486.

581 Pottin, K., H. Hinaux, and S. Rétaux, 2011 Restoring eye size in *Astyanax mexicanus* blind
582 cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres.
583 *Development* (Cambridge, England) 138: 2467–76.

584 Poulson, T. L., 2001 Morphological and physiological correlates of evolutionary reduction of
585 metabolic rate among amblyopsid cave fishes. *Environmental Biology of Fishes* 62: 239–
586 249.

587 Powder, K. E., and R. C. Albertson, 2016 Cichlid fishes as a model to understand normal and
588 clinical craniofacial variation. *Developmental Biology* 415: 338–346.

589 Protas, M. E., C. Hersey, D. Kochanek, Y. Zhou, H. Wilkens *et al.*, 2006 Genetic analysis of
590 cavefish reveals molecular convergence in the evolution of albinism. *Nature genetics* 38:
591 107–111.

592 Protas, M., I. Tabansky, M. Conrad, J. B. Gross, O. Vidal *et al.*, 2008 Multi-trait evolution in a
593 cave fish, *Astyanax mexicanus*. *Evolution and Development* 10: 196–209.

594 Rose, S., 2007 *The Richness of Life: The Essential Stephen Jay Gould* (1st, Ed.). W. W. Norton
595 & Company.

596 Salzburger, W., 2018 Understanding explosive diversification through cichlid fish genomics.
597 *Nature Reviews Genetics* 19: 705–717.

598 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair *et al.*, 2012 Fiji: an open-
599 source platform for biological-image analysis. *Nat Methods* 9: 676–682.

600 Sifuentes-Romero, I., E. Ferrufino, S. Thakur, L. A. Laboissonniere, M. Solomon *et al.*, 2020
601 Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental
602 mechanisms in independently evolved populations. *Journal of experimental zoology. Part*
603 *B, Molecular and developmental evolution* 334: 423–437.

604 Stahl, B. A., J. B. Jaggard, J. S. R. Chin, J. E. Kowalko, A. C. Keene *et al.*, 2019 Manipulation of
605 gene function in Mexican cavefish. *Journal of Visualized Experiments* 146: doi:
606 10.3791/59093.

607 Stern, D., 2013 The genetic causes of convergent evolution. *Nature Reviews Genetics* 14: 751–
608 764.

609 Strecker, U., V. H. Faúndez, and H. Wilkens, 2004 Phylogeography of surface and cave
610 *Astyanax* (Teleostei) from Central and North America based on cytochrome b sequence
611 data. *Molecular Phylogenetics and Evolution* 33: 469–481.

612 Tian, R., D. Yin, Y. Liu, I. Seim, S. Xu *et al.*, 2017 Adaptive Evolution of Energy Metabolism-
613 Related Genes in Hypoxia-Tolerant Mammals. *Frontiers in Genetics* 8: 205.

614 Varatharasan, N., R. P. Croll, and T. Franz-Odendaal, 2009 Taste bud development and
615 patterning in sighted and blind morphs of *Astyanax mexicanus*. *Developmental Dynamics*
616 238: 3056–3064.

617 Warren, W. C., T. E. Boggs, R. Borowsky, B. M. Carlson, E. Ferrufino *et al.*, 2021 A
618 chromosome-level genome of *Astyanax mexicanus* surface fish for comparing population-
619 specific genetic differences contributing to trait evolution. *Nature communications* 12: 1447.

620 Yamamoto, Y., M. S. Byerly, W. R. Jackman, and W. R. Jeffery, 2009 Pleiotropic functions of
621 embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss
622 during cavefish evolution. *Developmental Biology* 330: 200–211.

623 Yoshizawa, M., 2015 Behaviors of cavefish offer insight into developmental evolution. *Molecular
624 Reproduction and Development* 82: 268–280.

625 Yoshizawa, M., Š. Gorički, D. Soares, and W. R. Jeffery, 2010 Evolution of a behavioral shift
626 mediated by superficial neuromasts helps cavefish find food in darkness. *Current Biology*
627 20: 1631–1636.

628 Yoshizawa, M., Y. Yamamoto, K. E. O’Quin, and W. R. Jeffery, 2012 Evolution of an adaptive
629 behavior and its sensory receptors promotes eye regression in blind cavefish. *BMC biology*
630 10: 108.

631

632

633

634 **Figure Legends:**

635 **Figure 1. Morphological differences between purebred surface and Pachón cavefish**
636 **populations. A,B)** Dorsal image of surface (A) and Pachón cavefish (B). Scale bars denote 1mm.
637 **C)** Jaw width is significantly greater in cavefish compared to surface fish (t-test: $t_{59}=16.48$,
638 $P<0.0001$). **D)** Eye size is significantly greater in surface fish (t-test: $t_{59}=33.80$, $P<0.0001$). **E)**
639 Length is significantly greater in cavefish compared to surface fish (t-test: $t_{59}=11.55$, $P<0.0001$).
640 For each trait, the median (center line) as well as 25th and 75th percentiles (top and bottom lines)
641 are shown. Circles represent values from individual fish. *** denotes $P<0.001$.

642

643 **Figure 2. Behavioral variation in surface and cavefish A)** Diagram of prey capture apparatus.
644 Videos were used to extract strike angle (red) and strike distance (blue) between *Artemia* and the
645 head of the fish. **B)** Strike angle is significantly greater in cavefish than surface fish (t-test:
646 $t_{41}=3.006$, $P<0.0045$). **C)** Strike distance in surface fish is significantly greater than in cavefish (t-
647 test: $t_{41}=2.209$, $P<0.0328$). **D)** Image of startle reflex set up. Plate sits on a mini-shaker (black) to
648 induce a startle. Videos were used to extract angular speed and peak angle (red). Grey arrow
649 denotes head orientation at the initiation of the startle stimulus. **E)** Angular speed in surface fish
650 is significantly greater than in cavefish (t-test: $t_{27}=3.629$, $P<0.0012$). **F)** Peak angle in surface fish
651 is greater, approaching significance, than cavefish (t-test: $t_{27}=1.928$, $P<0.0645$). **G)** Image of
652 locomotor assay where fish were recorded in individual wells for 1-hr and to analyze total
653 locomotor activity and time in the center of the well (grey area). **H)** Time spent in the center in
654 surface fish is significantly greater than cavefish (t-test: $t_{37}=4.710$, $P<0.0013$) **I)** Total distance in
655 surface fish is significantly less than in cavefish. (t-test: $t_{37}=6.506$, $P<0.0001$). For each trait, the
656 median (center line) as well as 25th and 75th percentiles (dotted lines) are shown. Circles represent
657 values from individual fish. * denotes $P<0.05$, ** denotes $P<0.01$; *** denotes $P<0.001$.

658

659 **Figure 3. Morphological traits in F2 hybrid offspring. A)** Cross-breeding process between
660 purebred Surface (silver) and Pachón (albino) to produce F1 progeny, and F1 crosses to produce
661 F2 hybrids used for study. **B)** Heat map of the correlations between morphological traits in F2
662 offspring (R^2 values shown). **C)** Eye size does not differ between pigmented and albino individuals
663 (t-test: $t_{121}=1.856$, $P<0.0659$). **D)** Linear regression between jaw width and eye size reveals a
664 significant association ($F_{1,121}=9.076$, $P<0.0032$). **E)** Linear regression between head width and
665 jaw width reveals a significant association ($F_{1,121}=137.5$, $P<0.0001$). Albino individuals are
666 depicted as red squares, while pigmented individuals are depicted as black circles.

667

668 **Figure 4. Relationship between behavioral traits within F2 hybrids. A)** Schematic for
669 behavioral analysis where individual F2 fish were tested for locomotor activity, escape reflex, and
670 then prey capture in succession. **B)** Heat map of the correlations between behavioral traits in F2
671 offspring (R^2 values shown). **C)** Peak angle of the escape reflex is associated with angular speed
672 ($F_{1,45}=17.31$, $P<0.0001$). **D)** Peak angle during the escape reflex is not associated with feeding
673 strike angle ($F_{1,44}=0.0231$, $P<0.8799$). Albino individuals are depicted as red squares, while
674 pigmented individuals are depicted as black circles.

675

676 **Figure 5. Comparison between morphological and behavioral traits within F2 hybrid**
677 **offspring. A)** Heat map of the correlations between morphological and behavioral traits in F2
678 offspring (R^2 values shown). **B)** Total distance is significantly greater in albino (A) than in
679 pigmented (P) individuals (t-test: $t_{125}=2.636$, $P<0.0095$). **C)** Time in the center does not differ
680 between pigmented and albino individuals (t-test: $t_{125}=0.8155$, $P<0.4163$). For each trait, the
681 median (center line) as well as 25th and 75th percentiles (dotted lines) are shown. **D)** Standard
682 length and angular speed are significantly correlated in F2 hybrid individuals ($R^2=0.1989$). **E)**
683 There is a significant association between peak angle and head length in F2 individuals
684 ($R^2=0.1072$). Albino individuals are depicted as red squares, while pigmented individuals are
685 depicted as black circles. ** denotes $P<0.01$.

686 **Supplemental Figure Legends**

687

688 **Supplementary Figure 1: Landmarks used for morphometric analysis.** Each line depicts a
689 measurement used for morphometric analysis in surface fish (top) and Pachón cavefish (bottom).
690 Both dorsal (right) and side views were imaged for each individual fish and used for quantification.

691

692 **Supplementary Figure 2: Quantification of anatomical differences between surface fish**
693 **and Pachón cavefish.** **A**) Height is significantly greater in cavefish compared to surface fish (t-
694 test: $t_{59}=6.710$, $P<0.0001$). **B**) Head length is significantly greater in cavefish compared to surface
695 fish (t-test: $t_{59}=14.65$, $P<0.0001$). **C**) Head width is significantly greater in cavefish compared to
696 surface fish (t-test: $t_{59}=15.37$, $P<0.0001$) **D**) Dorsal eye size is significantly reduced in cavefish
697 compared to surface (t-test: $t_{59}=36.49$, $P<0.0001$). **E**) There is no difference in average fin length
698 between surface fish and cavefish (t-test: $t_{59}=1.422$, $P<0.1603$). For each trait, the median (center
699 line) as well as 25th and 75th percentiles (dotted lines) are shown. Circles represent values from
700 individual fish. *** denotes $P<0.001$.

701

702 **Supplementary Figure 3: Quantification of normalized anatomical differences between**
703 **surface fish and Pachón cavefish.** **A**) Normalized jaw width is significantly greater in cavefish
704 compared to surface fish (t-test: $t_{59}=11.26$, $P<0.0001$). **B**) Normalized eye size is significantly
705 reduced in cavefish compared to surface fish (t-test: $t_{59}=49.76$, $P<0.0001$). **C**) Normalized height
706 is significantly reduced in cavefish compared to surface (t-test: $t_{59}=6.971$, $P<0.0001$). **D**)
707 Normalized head length is significantly greater in cavefish compared to surface (t-test:
708 $t_{59}=9.817$, $P<0.0001$). **E**) Normalized head width is significantly greater in cavefish compared to
709 surface fish (t-test: $t_{59}=7.634$, $P<0.0001$). **F**) Normalized dorsal eye size is significantly reduced
710 in cavefish compared to surface (t-test: $t_{59}=62.14$, $P<0.0001$). **G**) Normalized average fin length
711 is significant reduced in cavefish compared to surface (t-test: $t_{59}=6.563$, $P<0.0001$). For each trait,
712 the median (center line) as well as 25th and 75th percentiles (dotted lines) are shown. Circles
713 represent values from individual fish. *** denotes $P<0.001$.

714

715 **Supplementary Figure 4: Pairwise correlations between traits in surface and cave fish.** For
716 each pairwise comparison, R^2 values are shown. **A-B**) Heat map of the correlations between
717 morphological traits in **(A)** cave and **(B)** surface fish. **C-D**) Heat map of the correlations between
718 behavioral traits in **(C)** cave and **(D)** surface fish. **E-F**) Heat map of the correlations between
719 morphological and behavioral traits in **(E)** cave and **(F)** surface fish.

720

721 **Supplementary Figure 5: Quantification of anatomical differences between pigmented and**
722 **albino F2 hybrid offspring. A)** Length does not differ between pigmented and albino individuals
723 (t-test: $t_{121}=0.3415$, $P<0.7334$). **B)** Jaw width does not differ between pigmented and albino
724 individuals (t-test: $t_{121}=0.7447$, $P<0.4579$). **C)** Height does not differ between pigmented and
725 albino individuals (t-test: $t_{121}=0.8388$, $P<0.4032$). **D)** Head length does not differ between
726 pigmented and albino individuals (t-test: $t_{121}=0.3090$, $P<0.7578$). **E)** Head width does not differ
727 between pigmented and albino individuals (t-test: $t_{121}=1.265$, $P<0.2084$). **F)** Dorsal eye size does
728 not differ between pigmented and albino individuals (t-test: $t_{121}=1.780$, $P<0.0775$). **G)** Average fin
729 length does not differ between pigmented and albino individuals (t-test: $t_{121}=0.8878$, $P<0.3764$).
730 **H)** Normalized eye size is significantly reduced in albino compared to pigmented hybrid offspring
731 (t-test: $t_{121}=2.107$, $P<0.0372$). For each trait, the median (center line) as well as 25th and 75th
732 percentiles (dotted lines) are shown. Albino individuals are depicted as red squares, while
733 pigmented individuals are depicted as black circles.

734

735 **Supplementary Figure 6: Quantification of behavioral differences between pigmented and**
736 **albino F2 hybrid offspring. A)** Strike angle does not differ between pigmented and albino
737 individuals (t-test: $t_{116}=0.0488$, $P<0.9611$). **B)** Strike distance does not differ between pigmented
738 and albino individuals (t-test: $t_{116}=0.0182$, $P<0.9855$). **C)** Angular speed does not differ between
739 pigmented and albino individuals (t-test: $t_{45}=0.0852$, $P<0.9325$). **D)** Peak angle does not differ
740 between pigmented and albino individuals (t-test: $t_{45}=1.354$, $P<0.1826$). For each trait, the median
741 (center line) as well as 25th and 75th percentiles (dotted lines) are shown. Albino individuals are
742 depicted as red squares, while pigmented individuals are depicted as black circles.