

Leptomeningeal Enhancement in Multiple Sclerosis and Other Neurological Diseases: A Systematic Review and Meta-Analysis

Benjamin V. Ineichen, MD, PhD^{1,2*}; Charidimos Tsagkas^{1,3,4*}, MD, PhD; Martina Absinta, MD, PhD^{5,6};
Daniel S. Reich, MD, PhD¹

Affiliations

¹ Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States.

² Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.

³ Neurologic Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.

⁴ Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland

⁵ Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁶ Vita-Salute San Raffaele University, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

*Contributed equally

Address

National Institutes of Health (NIH)
Building 10, Room 5C205
10 Center Drive
Bethesda, MD 20892-4128

Corresponding author

Benjamin V. Ineichen
National Institutes of Health (NIH)
Building 10, Room 5C205
10 Center Drive
Bethesda, MD 20892-4128

ineichen@protonmail.ch

+41 76 391 04 01

OrCID: 0000-0003-1362-4819

Funding

BVI was supported by the *Forschungskredit* from the University of Zurich. CT was supported by the Swiss National Science Foundation (Grant number: 320030_156860), the Stiftung zur Förderung der gastroenterologischen und allgemeinen klinischen Forschung, as well as from the University of Basel (Grant numbers: 3MS1020 and 3MS1049). MA is supported by the Conrad N. Hilton Foundation (Marylin Hilton Bridging Award for Physician-Scientists, grant #17313), the Roche Foundation for Independent Research, the Cariplio Foundation (grant #1677) and the FRRB Early Career Award (grant #1750327). The study was partially supported by the Intramural Research Program of NINDS, NIH.

Meta-data

Section	Words
Introduction	278
Materials and Methods	461
Results	2453
Discussion	1263
Total	4455
References	60
Abstract	300

Keywords

multiple sclerosis, leptomeningeal enhancement, leptomeningeal inflammation, magnetic resonance imaging, systematic review, meta-analysis

Acknowledgements

We thank Irene Cortese, Govind Nair, Avindra Nath, and Bryan Smith for facilitating MRI acquisition. We also thank the Intramural Research Program of National Institute of Neurological Disorders and Stroke for financial support.

Summary statement

Our systematic review and meta-analysis synthesize leptomeningeal enhancement proportions across a comprehensive panel of neurological diseases, including multiple sclerosis, and assesses its prognostic value in multiple sclerosis.

Summary data

- Leptomeningeal enhancement (LME) is a nonspecific imaging feature present across many neurological disorders, including neoplasm, infection, and primary neuroinflammation.
- The presence of LME is associated with worse clinical and imaging outcomes in multiple sclerosis, justifying its ascertainment in clinical practice.
- Neuroinflammatory animal models can be used to further investigate the pathophysiology of LME, including its pathological tissue signature and/or its association with cortical pathology.

Glossary

CIS, clinically isolated syndrome; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; EDSS, Expanded Disability Status Scale; FLAIR, fluid-attenuated inversion recovery; Gd, gadolinium; LME, Leptomeningeal enhancement; MRI, magnetic resonance imaging; MS, multiple sclerosis (RR, relapsing-remitting); NMOSD, neuromyelitis optica spectrum disorder.

Abstract

Background: The lack of systematic evidence on leptomeningeal enhancement (LME) on MRI in neurological diseases, including multiple sclerosis (MS), hampers its interpretation in clinical routine and research settings.

Purpose: To perform a systematic review and meta-analysis of MRI LME in MS and other neurological diseases.

Materials and Methods: In a comprehensive literature search in Medline, Scopus, and Embase, out of 2292 publications, 459 records assessing LME in neurological diseases were eligible for qualitative synthesis. Of these, 135 were included in a random-effects model meta-analysis with subgroup analyses for MS.

Results: Of eligible publications, 161 investigated LME in neoplastic neurological (n=2392), 91 in neuroinfectious (n=1890), and 75 in primary neuroinflammatory diseases (n=4038). The LME-proportions for these disease classes were 0.47 [95%-CI: 0.37–0.57], 0.59 [95%-CI: 0.47–0.69], and 0.26 [95%-CI: 0.20–0.35], respectively. In a subgroup analysis comprising 1605 MS cases, LME proportion was 0.30 [95%-CI 0.21–0.42] with lower proportions in relapsing-remitting (0.19 [95%-CI 0.13–0.27]) compared to progressive MS (0.39 [95%-CI 0.30–0.49], $p=0.002$) and higher proportions in studies imaging at 7T (0.79 [95%-CI 0.64–0.89]) compared to lower field strengths (0.21 [95%-CI 0.15–0.29], $p<0.001$). LME in MS was associated with longer disease duration (mean difference 2.2 years [95%-CI 0.2–4.2], $p=0.03$), higher Expanded Disability Status Scale (mean difference 0.6 points [95%-CI 0.2–1.0], $p=0.006$), higher T1 (mean difference 1.6ml [95%-CI 0.1–3.0], $p=0.04$) and T2 lesion load (mean difference 5.9ml [95%-CI 3.2–8.6], $p<0.001$), and lower cortical volume (mean difference -21.3ml [95%-CI -34.7–7.9], $p=0.002$).

Conclusions: Our study provides high-grade evidence for the substantial presence of LME in MS and a comprehensive panel of other neurological diseases. Our data could facilitate differential diagnosis of

LME in clinical settings. Additionally, our meta-analysis corroborates that LME is associated with key clinical and imaging features of MS.

PROSPERO No: CRD42021235026.

Introduction

Abnormal meningeal contrast enhancement may take two distinct forms: pachymeningeal enhancement, referring to dural-arachnoidal enhancement, which follows the contour of the inner table of the skull and includes intradural veins and sinuses; and leptomeningeal enhancement (LME), which follows the pia-arachnoid abutting the cortical surface and extending into the sulci. LME is often caused by neoplastic or infectious processes. However, LME is also gaining increased attention as a putative imaging biomarker of meningeal inflammation in neuroinflammatory diseases, including MS and neurosarcoidosis (**Figure 1**).⁽¹⁾

Because LME can be present in a wide variety of neurological diseases,⁽²⁾ differential diagnostic considerations are paramount for proper patient workup. However, there is a lack of systematic evidence on LME proportions in MS and other neurological diseases. Furthermore, a wide variety of methodological approaches to imaging LME has been published,^(3, 4) impeding the implementation of an appropriate imaging protocol for sensitive LME detection. With respect to MS, several studies have presented conflicting findings regarding the association of LME with clinical and imaging parameters,⁽⁵⁾ such that high-level evidence would benefit clinicians and researchers.

Based on these shortcomings, we set out to systematically summarize the available evidence on LME in neurological diseases with a focus on MS. This study had the following goals: (1) synthesize data on LME proportions in neurological diseases, including potentially distinct LME features such as phenotype or temporal evolution; (2) qualitatively and quantitatively summarize the potential association of LME with clinical and imaging features in MS; (3) propose an appropriate imaging protocol to detect LME in clinical and research practice; (4) summarize the data on pathological correlates of LME in neuroinflammation; (5) summarize the available evidence on LME in animal models of neuroinflammation.

Materials and Methods

We registered the study protocol in the International prospective register of systematic reviews (PROSPERO, CRD42021235026, <https://www.crd.york.ac.uk/PROSPERO/>) and used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Guidelines for reporting. (6)

Search strategy

We searched for original studies published in full up to February 2, 2021, in PubMed, Scopus, and Ovid EMBASE. See **Table S1** for the search string in each of these databases.

Inclusion and exclusion criteria

We included publications on human or animal data that reported on any outcome related to leptomeningeal inflammation on magnetic resonance imaging (MRI) in any neurological diseases. Case reports were also included in the systematic review. Exclusion criteria: conference abstracts, non-English articles, and publications that reiterated previously reported quantitative data. Reviews were excluded but retained as potential sources of additional records.

Study selection and data extraction

Titles and abstracts of studies were screened for their relevance in the web-based application Rayyan by two reviewers (CT and BVI), followed by full-text screening.(7) Subsequently, the following data were extracted: title, authors, publication year, study design, neurological disease, and number of subjects per group. For studies with ≥ 10 subjects, MRI sequences/field strength, LME location (spinal cord, convexities, basal, cerebellar, brainstem), main study findings (in narrative manner), pattern of LME (for example, nodular or linear), temporal dynamics of LME, and proportions of LME in experimental and control groups were also extracted.

Quality assessment

The quality of each study with ≥ 10 included subjects was assessed against predefined criteria by two reviewers (CT and BVI) using the Newcastle-Ottawa scale for evaluating risk of bias in nonrandomized studies.(8) Discrepancies were resolved by discussion.

Data synthesis and analysis

Only diseases/disease classes with ≥ 2 publications describing ≥ 10 adult subjects each were included in the meta-analysis, and only summary-level data were used. As primary outcome, log-transformed proportions of LME were used. A random-effects model was fitted to the data. The amount of heterogeneity (T^2), was estimated using the DerSimonian-Laird estimator.(9) In addition, the Q-test for heterogeneity (10) and the I^2 statistic (11) are reported.

For subgroup analyses of clinical and imaging outcomes in MS, the analysis was carried out using the log-transformed proportions or mean difference as the outcome measure. Subgroup analyses were computed for MS to assess the proportion of LME in clinical MS phenotypes when ≥ 3 studies were available. Subgroup analyses in MS for clinical and imaging outcomes were computed when ≥ 3 studies reported at least mean, variance, and n for LME+ and LME- groups on respective outcomes.

A two-tailed P value <0.05 was considered statistically significant.

Publication bias

The rank correlation test and the regression test, using the standard error of the observed outcomes as predictor, were used to check for funnel plot asymmetry. The analysis was carried out using R (version 3.6.1) with the *meta* and *metafor* packages (version 2.4.0).(12)

Results

1. Eligible publications

In total, 2292 original publications were retrieved from our comprehensive database search and an additional 10 publications from reference lists of reviews on related topics. After abstract and title screening, 1089 studies were eligible for full-text search. After screening the full text of these studies, 458 articles (35% of deduplicated references) were included for qualitative synthesis and 135 articles (10%) for quantitative synthesis (Figure S1).

2. General study characteristics

2.1. Included publications

Of the eligible publications, 144 investigated LME in neoplastic neurological diseases (2392 subjects including 183 children), 91 in infectious neurological diseases (1890 subjects including 48 children), and 76 in primary neuroinflammatory diseases (4038 subjects including 11 children). Additionally, 147 publications assessed LME in neurological diseases that did not belong to mentioned categories (1961 subjects including 762 children). We also included 5 publications in animal models of neurological diseases (mouse experimental autoimmune encephalomyelitis [EAE] model, bacterial meningitis in rats, bacterial CNS infection in a dog, subarachnoid diverticulum in a cat).

2.2. Risk of bias assessment

Most studies showed a low risk of bias for the selection domain (that is, whether patients and controls were defined according to acknowledged diagnostic criteria); see Table S2 and S3. Many studies did not report on adjusting their statistical analyses for subject age, sex, or other potential confounders (comparability domain), thus potentially inducing biases.

3. Leptomeningeal enhancement in neuroinflammatory diseases including multiple sclerosis

3.1. Primary neuroinflammatory diseases overall

3.1.1. Diseases

Studies reporting on LME in neuroinflammatory diseases were in neurosarcoidosis (20 publications), MS (17 publications), MOG-antibody diseases/encephalitis (8 publications), neuromyelitis optica spectrum disorder (NMOSD) (8 publications), primary angiitis of the CNS (6 publications), Susac syndrome (5 publications), NMDA-receptor encephalitis (4 publications), Behçet syndrome (1 publication), and GFAP astrocytopathy (1 publication).

3.1.2. LME pattern

21 studies did not report on the LME pattern, whereas the remaining studies reported on different LME patterns. The pattern of LME has most extensively been described in MS in 12 publications, mostly as either nodular and/or laminar/spread-and-fill.(13-19) Similar LME patterns have been described in Susac syndrome (20) and neurosarcoidosis.(21, 22) A spreading/laminar phenotype has been described in NMOSD,(23-25) NMDA-receptor encephalitis,(26) and GFAP astrocytopathy.(27)

3.1.3. MRI acquisition of LME

Most studies employed a postcontrast T2w-FLAIR sequence to visualize LME (19 publications) followed by a postcontrast T1w sequence (6 publications). 11 studies did not report the sequences used to detect LME.

3.1.4. Meta-analysis

A meta-analysis of LME in primary neuroinflammatory diseases, including a total of 2284 patients, showed an overall proportion of 0.26 [95%-CI: 0.20–0.35] with substantial heterogeneity across stud-

ies ($I^2=90\%$, $p<0.001$) (Figure 2). NMOSD had the lowest proportion of LME with 0.06 [95%-CI 0.02–0.23], and neurosarcoidosis had the highest LME proportion with 0.41 [95%-CI 0.13–0.52].

3.2. Multiple sclerosis

3.2.1. LME proportion in MS and subgroups

Two studies from 2015 first described LME in MS.(2, 28) These and subsequent studies comprised 1605 MS patients, 303 non-MS controls, and 126 healthy controls (Table 1).

The overall proportion of LME in MS was 0.30 [95%-CI 0.21–0.42] (Figure 3). However, LME proportions in MS patients with a relapsing-remitting clinical phenotype (0.19 [95%-CI 0.13–0.27]; 7 publications) and CIS patients (0.06 [95%-CI 0.02–0.20]; 3 publications) were significantly lower compared to progressive MS patients (0.39 [95%-CI 0.30–0.49], $p=0.002$ and $p=0.003$, respectively; 6 publications).

3.2.2. MRI acquisition of LME

14 studies acquired MRI at 3T (or complementing 1.5T) and 3 studies at 7T.(13, 16, 18) In a meta subgroup-analysis with the B_0 magnetic field strength as moderator, LME proportions were higher in studies imaging at 7T (0.79 [95%-CI 0.64–0.89]; 3 publications) compared to studies imaging at 1.5/3T (0.21 [95%-CI 0.15–0.29], $p<0.001$; 11 publications) (Figure 4).

All 17 studies investigating LME in MS employed both a postcontrast 3D T2w-FLAIR and a postcontrast 3D T1w sequence to detect LME. Of note, 1 study acquired 2D scans instead of 3D, showing the lowest LME proportion among all MS studies (< 0.01, 1/112 cases).(28) Of note, it has been shown that 3D T2w-FLAIR can have higher sensitivity to detect gadolinium enhancement compared to T1w imaging, particularly for superficial enhancement.(29) The acquisition of the 3D T2w-FLAIR sequence was mostly 10 minutes after Gd-injection, with two studies reporting either earlier (3 minutes)(20) or later acquisition (up to 54 minutes).(15) It is noteworthy that latter study suggested that individual LME foci might have different enhancement kinetics and thus different peak en-

hancement time points, and that differences in LME detection between scanner types could be due to differences in 3D T2w-FLAIR sequences.

One study found lower sensitivity for LME detection using T1w sequences compared to T2w-FLAIR.(19) One study compared LME detection on 3D T2w-FLAIR postcontrast images in native space (method 1), on pre- and postcontrast 3D T2w-FLAIR images in native space (method 2), and on pre-/postcontrast 3D T2w-FLAIR co-registered and subtracted images (method 3).(3) In total, 51 (20%) MS cases showed LME using method 1; 39 (15%) using method 2; and 39 (15%) using method 3. The mean time to analyze the 3D T2w-FLAIR images was lower with method 2 compared to the other 2 methods.

3.2.3. LME phenotypes

Overall, two configurations of LME have been described, albeit with inhomogeneous nomenclature: nodular and “spread-fill” (subsuming linear, laminar, and plate-like). Most studies described these two phenotypes (12/17 publications).(2, 13-20, 30) 1 early publication with a very low LME proportion of <0.01 exclusively described a nodular LME phenotype.(28) 5 publications did not declare the LME pattern.

The prevalence of these patterns varied considerably between studies: 4 publications observed higher frequencies of nodular LME: 60% (vs. spread 40%),(18) 54% (vs. 13% linear and 31% plate-like),(19) 80% (vs. linear and plate-like),(17) and 89% (vs. 11% filling-like).(14) Two publications described higher frequencies of linear/spread-fill LME: 59–61% for spread-fill sulcal or gyral (vs. nodular)(13) and 76% spread-fill (vs. 15% nodular).(16) The latter study observed simultaneous presence of both LME phenotypes in 38% of MS cases.

3.2.4. Temporal evolution of LME

Eleven studies did not include longitudinal MRI data and did thus not assess temporal evolution of LME. The remaining 6 studies consistently reported mostly stable LME foci over several years. One

study with a follow-up period of up to 5.5 years reported that 85% of LME foci remained stable and that only 6 new LME foci were detected over this observation period (in 4 of 299 MS patients).(30) Similar high percentages of stable LME foci have been observed in other studies: 75% stable over 24 months (and 2 new LME foci in 2/120 patients),(31) 90% stable over 18 months (and 14 new LME foci),(14) 100% stable over 24 weeks (32), and 73–100% stable over 24 months (33). The last study also included non-LME enhancement patterns and found that subarachnoid nodular and spread/fill LME patterns persisted less often than dural or vessel wall foci, and that MS patients with EDSS progression showed more persistent LME foci.

3.2.6. Association of LME with clinical and imaging parameters

Three studies found an association between LME and age and/or disease duration (14, 19, 30), which was not confirmed for disease duration by 1 study.(3) An association between LME and Expanded Disability Status Scale (EDSS) was described in 3 studies (3, 19, 30) but was not confirmed in 1 study after adjusting for age.(14) MS relapse rate was not associated with LME in 2 studies.(17, 19)

Five studies assessed the association between LME and T1 or T2 lesion volume. Three studies found such an association,(3, 17, 18) whereas 2 did not.(14, 16) Six studies consistently reported lower cortical gray matter volume and/or thickness in MS cases with LME.(13, 16-19, 34) Two studies assessed the association of LME with cortical MS lesions at 7T; one of these studies found no such association (13) while the other did.(18) Both studies found an association of LME with subcortical gray matter MS lesions (thalamic and hippocampal, respectively).

In view of the inconsistency regarding the association of LME with clinical and imaging parameters in MS, we assessed these effects in a meta-analysis (for all outcomes reported in ≥ 3 publications). In this analysis, the presence of LME was associated with longer disease duration (mean difference 2.2 years [95%-CI 0.2–4.2], $p=0.03$, **Figure 5A**) and higher EDSS (mean difference 0.6 EDSS points [95%-CI 0.2–1.0], $p=0.006$, **Figure 5B**). Additionally, MS cases with LME showed higher T1 lesion volume (mean difference 1.5 ml [95%-CI 0.1–3.0], $p=0.04$, **Figure 5C**), higher T2 lesion volume (mean differ-

ence 5.9 ml [95%-CI 3.2–8.6], p<0.001, **Figure 5D**), and lower cortical volume (mean difference -21.3 ml [95%-CI -34.7--7.89], p=0.002, **Figure 5E**).

3.2.7. Histopathological validation of LME

One study performed histopathological validation of three LME foci in two progressive MS cases.(30) The gyri adjacent to the LME foci were affected by confluent cortical demyelination and/or subpial cortical demyelination. Leptomeningeal perivascular inflammation, including T cells, B cells, and macrophages, was detected in these areas.

3.2.7. LME in MS animal models

We included two studies that assessed LME in mouse EAE using postcontrast T2w-FLAIR. The first study employing 9.4T MRI found that all 13 inoculated mice showed LME foci, compared to none of the control mice.(35) Peak LME intensity was at 10 days post induction and correlated with weight loss and clinical symptoms. In a histopathological analysis, LME foci were associated with high density of Iba-1 positive microglia cells as well as T and B cells, which were absent in control mice. Another recent study also employing mouse EAE and MRI at 11.7T with pathological correlation showed that mice treated with a Bruton tyrosine kinase-inhibitor (evobrutinib) had a reduced number of LME foci, while anti-CD20 therapy had no effect on LME.(36) The pathological tissue substrate showed that this corresponded to a reduction in B cells within regions of meningeal inflammation as well as reduced astrocytosis in the adjacent cortex. Interestingly, myeloid cell infiltrates seemed to persist despite B cell depletion.

3.2.5. Therapeutic impact on LME

Four studies assessed the impact of drug treatment on LME resolution. One study found similar LME persistence rates in MS patients with/without disease-modifying therapy (DMT).(33) Another study assessing the efficacy of dimethyl fumarate or teriflunomide on LME reported no differences in LME resolution between treatment groups (8 of 12 patients showed stable LME, and 2 patients developed

new LME).(31) One study assessing intrathecal rituximab treatment in 15 progressive MS patients observed stable LME foci in all patients over the 24-week follow-up period.(32) In contrast to these studies with relatively small sample size and consequently lower statistical power, one study including 241 MS patients observed resolution of LME in 2 patients after high-dose steroid treatment within 6 months follow-up.(15)

4. Leptomeningeal enhancement in other neurological diseases

4.1. Infectious CNS diseases

4.1.1. Diseases

Studies reported on LME in infectious (encephalo-)meningitis caused by various pathogens: bacterial (36 publications: tuberculosis, *Bacillus anthracis*/Anthrax, *Borrelia*, *Clostridium*, *E. coli*, group B streptococcus, *Listeria*), parasitic (20 publications, among them *Angiostrongylus cantonensis*, amoeba, *Cryptococcus*, Toxocariasis, and Toxoplasmosis), viral (18 publications: HIV, HTLV, SARS-CoV-2, Epstein-Barr virus, Murray Valley encephalitis, tick-borne encephalitis virus, Nipah virus, respiratory viruses [various strains], West Nile virus, and Enterovirus), and fungal (14 publications: *Candida*, *Coccidioides*, *Blastomyces*, and *Histoplasma*).

4.1.2. LME pattern

32 studies did not report on the LME pattern, while 4 studies did (2 spread, 2 nodular). 33 studies did not report on the LME evolution over follow-up, while 3 studies reported LME increase with clinical worsening, and 1 study in cryptococcal meningitis reported LME resolution with clinical improvement.(37)

4.1.3. Imaging

Most studies employed a postcontrast T1w sequence to visualize LME (16 publications), followed by T2w-FLAIR (7 publications). 11 studies did not report which sequences were used for LME detection.

4.1.4. Meta-analysis

A meta-analysis on LME in infectious diseases, including a total of 831 cases, showed an overall proportion of 0.59 [95%-CI: 0.47–0.69] with substantial heterogeneity across studies ($I^2=86\%$, $p<0.01$) (Figure 6). COVID-19 had the lowest proportion of LME with 0.24 [95%-CI 0.13–0.41].

4.2. Neoplastic CNS diseases

4.2.1. Diseases

Studies reporting on LME in neoplastic CNS diseases were caused by primary CNS tumors (92 publications: CNS lymphoma, choroid plexus papilloma, meningioma, germinoma, lipoma, primitive neuroectodermal tumors (PNET), diffuse leptomeningeal glioneuronal tumor, midline glioma, hemangioblastoma, glioblastoma/high-grade astrocytoma, Hodgkin lymphoma, xanthogranuloma, medulloblastoma, melanoma, oligodendrogioma, pilocytic astrocytoma, anaplastic astrocytoma, and giant cell astrocytoma), leptomeningeal metastases (47 publications: metastases from breast cancer, acute myeloid leukemia, rhabdomyosarcoma, gastric cancer, lung adenocarcinoma, small-cell lung cancer, pancreatic cancer, melanoma, Waldenstrom macroglobulinemia [Bing-Neel syndrome], and multiple myeloma), and hereditary tumor syndromes (5 publications: von Hippel-Lindau syndrome, Klippel-Trenaunay-Weber syndrome, and tuberous sclerosis).

4.2.2. LME pattern

28 studies did not report on the LME pattern, while 8 studies did (3 spread, 3 nodular, 2 laminar/linear). 33 studies did not report on LME evolution over follow-up, while 1 study in glioblastoma reported persistent LME at follow-up MRI (up to two years later). (38)

4.2.3. Imaging

Most studies employed a postcontrast T1w sequence to visualize LME (18 publications) followed by a postcontrast T2w-FLAIR (6 publications). 14 studies did not report which sequences were used for LME detection.

4.2.4. Meta-analysis

A meta-analysis on LME in neoplastic diseases, including a total of 1393 cases, showed an overall proportion of 0.47 [95%-CI: 0.37–0.57] with substantial heterogeneity across studies ($I^2=90\%$, $p<0.01$) (Figure 7). CNS leukemia had the lowest proportion of LME with 0.24 [95%-CI 0.13–0.39]. Bing-Neel syndrome (Waldenstrom macroglobulinemia) showed the highest proportion of LME with 0.74 [95%-CI 0.60–0.84].

4.3. Other neurological diseases including vascular diseases

4.3.1. Diseases

Of 147 publications, the most notable neurological diseases not belonging to the classes above were: rheumatoid arthritis with meningitis (16 publications), Sturge-Weber syndrome (16 publications), familial leptomeningeal amyloidosis/polyneuropathy (11 publications), ischemic (reversible cerebral vasoconstriction syndrome, stroke, post interventional revascularization, severe carotid stenosis, 11 publications), cerebral amyloid angiopathy (7 publications), epileptic seizures (6 publications), Moyamoya disease (6 publications), intoxications/drug-induced LME (abrin, ibuprofen, ipilimumab, propofol [in children], tacrolimus; 5 publications), hemophagocytic lymphohistiocytosis (4 publications), posterior reversible encephalopathy syndrome (PRES) (4 publications), Rosai-Dorfman disease (3 publications), hepatic encephalopathy (3 publications), Sjogren syndrome (2 publications), traumatic brain injury (2 publications).

4.3.2. Meta-analysis

A meta-analysis on diseases with ≥ 2 publications and ≥ 10 subjects per study, including a total of 187 cases, showed an LME proportion of 0.31 [95%-CI 0.16–0.52] in cerebral amyloid angiopathy and 0.69 [95%-CI 0.27–0.93] in reversible cerebral vasoconstriction syndrome (**Figure 8A**).^(39, 40)

5. Leptomeningeal enhancement in healthy controls

LME has also been reported in healthy control subjects (6 publications). A meta-analysis of 4 publications, including a total of 163 individuals, corroborated the presence of LME in this group, albeit at a low overall proportion of around 0.06 [95%-CI 0.03–0.11] (**Figure 8B**). In addition to the low proportions of LME, it has been shown in 2 publications that none of the LME-positive control subjects had more than 1 LME focus.^(13, 18) In another publication, the 2 LME-positive controls exclusively presented with more than one nodular LME foci.⁽⁴¹⁾

Discussion

Main findings

This study aims to provide systematic evidence on LME proportion in neurological diseases, including MS, and to determine whether the role of LME as a prognostic biomarker for MS is substantiated in the literature. Overall, primary neuroinflammatory diseases showed lower LME proportion (0.26 [95%-CI: 0.20–0.35]) compared to neoplastic (0.47 [95%-CI: 0.37–0.57]) or infectious neurological diseases (0.59 [95%-CI: 0.47–0.69]). Additionally, the presence of LME was associated with worse clinical and imaging parameters in MS, that is, on average MS patients with LME had 2 years longer disease duration ($p=0.03$), higher EDSS by 0.7 points ($p=0.006$), 21 ml less cortical volume ($p=0.002$), 5.9 ml more T2 lesion volume ($p<0.001$), and 1.6 ml more T1 lesion volume ($p=0.04$) compared to MS patients without LME. Finally, based on a few histopathological validation studies in MS and neuroinflammatory animal models, LME corresponds to meningeal inflammatory infiltrates as well as microglial activation in the adjacent cortex. However, the evidence supporting the association of LME with cortical MS pathology remains conflicting.

Findings in the context of existing evidence

A wide variety of disorders may present with LME, including neoplastic and infectious neurological diseases, making LME a highly nonspecific imaging finding. However, proportions of LME have considerable ranges across different neurological diseases. High LME proportions (on the order of 0.75), have been observed in Bing-Neel syndrome (a rare complication of Waldenstrom's macroglobulinemia) (42, 43) and infectious meningitis. (44-46) Interestingly, a subset of smaller studies employing ultrahigh-field (7T) static magnetic field strengths also found proportions of LME around 0.8 in MS,(13, 16, 18) which may indicate a need for higher static magnetic field strengths to facilitate LME detection.

Other notable diseases with LME include ischemic neurological diseases, such as reversible cerebral vasoconstriction syndrome (proportion around 0.7) (39, 40) and stroke (not included in the meta-analysis).(47-49) The presence of LME in brain ischemia also suggests a relevant role of the leptomeningeal compartment in its pathogenesis. Here, LME on post-contrast T2w-FLAIR has been attributed to early blood-brain-barrier disruption,(47) also being associated with hemorrhagic transformation and worse clinical outcomes.(47) Furthermore, poor leptomeningeal collateral flow has been associated with worse clinical outcome in acute stroke.(50) Finally, also COVID-19 has been reported to present with LME, albeit with low proportions around 0.25.(51-53)

Several primary neuroinflammatory diseases can also present with LME, among them neurosarcoidosis (proportion around 0.4), MS (0.3), primary angiitis of the CNS (0.2), NMOSD (0.06), and Susac's syndrome (not included in the meta-analysis).(54) Of note, in MS, LME proportions seem to vary among clinical phenotypes, with relapsing-remitting having lower proportions than progressive MS (0.2 vs. 0.4). However, overall longer disease duration in progressive MS could be a confounding factor.

Our meta-analysis substantiates the role of LME as prognostic biomarker in MS. The presence of LME was associated with worse physical disability and higher lesion burden as well as lower cortical volumes — the latter being also associated with worse clinical MS outcomes (reviewed in (55)). With this, our study highlights the relevance of including LME in routine clinical imaging. Along these lines, ultrahigh-field imaging at 7T might substantially improve the sensitivity to detect LME in MS in the clinical setting, as shown by our meta-analysis.

One major remaining question about LME is its underlying tissue signature. In neoplastic and infectious CNS diseases, LME likely corresponds to increased local blood supply and/or extravasation of gadolinium. However, in neuroinflammatory diseases, the pathological substrate of LME is much less clear. Based on limited EAE and MS histopathology data, LME corresponds to meningeal inflammatory infiltrates and/or tertiary lymphoid follicles (reviewed in (1)).(30, 36) Despite conflicting evidence

as to whether LME is spatially associated with cortical pathology in MS,(5) there has been a consistent association of LME with low cortical volumes across studies, also substantiated by our meta-analysis. This indicates that the pathology underlying LME could exert a diffusely deleterious effect on cortical gray matter.

Different LME patterns have been described in MS (41) and, to a much lesser extent, in other neuroinflammatory diseases such as Susac syndrome,(20) neurosarcoidosis,(21, 22) and NMOSD.(23-25). LME patterns were very rarely reported in non-inflammatory neurological diseases, mostly as diffuse LME in neoplastic neurological diseases.(56) In MS, the prevalence of different LME patterns, their nomenclature as well as their association to clinical measures were highly inconsistent among studies. Nevertheless, different LME patterns could represent distinct pathophysiological features, also emphasized by the observation that healthy controls may present with nodular but not non-nodular LME.(41) With this, more data and a more stringent nomenclature is needed to describe LME phenotypes and their potential association to clinical disability and disease phenotypes. Regarding nomenclature, we favor the convention of nodular versus linear LME.

It is interesting that LME has also been observed in healthy controls, albeit at low proportions (0.06).(18, 30, 57, 58) The etiology of LME foci in healthy subjects is still a matter of debate. However, one potential cause could be minor traumatic brain injuries. It should be emphasized that LME foci can be very subtle and can easily be misinterpreted on MRI. Hence, several imaging pitfalls for LME should be taken into account, among them: gadolinium leakage of indeterminate biological significance, enhancement related to slow blood flow of cortical veins, or anatomic structures as well as imaging artifacts.(15)

Finally, data from clinical studies do not suggest a therapeutic effect of DMTs on LME in MS. However, most of these studies have a small sample size and might thus be insufficiently powered to detect a potential therapeutic effect. In addition, newer DMTs such as Bruton tyrosine kinase inhibitors (59) have not been assessed in this regard, even though these drugs led to a resolution of LME in one

rodent study employing a neuroinflammatory model.(36). Hence, more data is needed on potential therapeutic impact of DMT on LME resolution. However — in our opinion — LME should still be routinely assessed in MS patients in order to enhance the knowledge and experience of radiologists and referring neurologists on this matter.(60)

Limitations

Our study has some limitations: First, a wide variety of imaging methods have been employed to detect LME, for which we only partially corrected our analysis (e.g., static magnetic field strengths). Notably, the use of either T1w or T2w-FLAIR postcontrast sequences was not considered, with the latter generally having higher sensitivity to detect LME.(4, 19) This could have led to an underestimation of LME proportions in studies acquiring T1w sequences. However, studies in neoplastic and infectious neurological diseases with mostly bulk LME mainly employed T1w sequences, potentially counterbalancing this effect. Along these lines, we also point out that a substantial number of studies did not report on which MRI sequences they employed (T1w versus T2w-FLAIR). Second, for assessing the prognostic value of LME, we pooled studies with various methodological backgrounds for summary estimates. Nonetheless, the outcome measures reported were surprisingly uniform, even allowing for the use of mean differences in our meta-analysis.

Conclusions

Our study provides systematic evidence for LME proportions in a comprehensive panel of neurological diseases, including MS. This high-level evidence also corroborates the prognostic value of LME in MS, supporting the inclusion of LME as a standard imaging feature in clinical MS imaging. Furthermore, this systematic review indicates that future LME studies will need to control for static magnetic field strength, type of 3D T2w-FLAIR sequence, scanner type, timing of acquisition, prior steroid administration as well as exclusion of LME imaging mimicks. More evidence on the pathological substrate of LME and on its potential association with cortical pathology in

neuroinflammation is needed to further improve our understanding for this MRI feature and to strengthen its role in the clinical and research settings.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflict of interest related to this study.

Data sharing statement

Data available from the authors upon request.

Code availability

R code for meta-analysis available upon request.

References

1. Zurawski J, Lassmann H, Bakshi R. Use of Magnetic Resonance Imaging to Visualize Leptomeningeal Inflammation in Patients With Multiple Sclerosis: A Review. *JAMA neurology* 2017;74(1):100-109. doi: 10.1001/jamaneurol.2016.4237
2. Absinta M, Cortese ICM, Vuolo L, Nair G, De Alwis MP, Ohayon J, Meani A, Martinelli V, Scotti R, Falini A, Smith BR, Nath A, Jacobson S, Filippi M, Reich DS. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. *Neurology* 2017;88(15):1439-1444.
3. Zivadinov R, Ramasamy DP, Hagemeyer J, Kolb C, Bergsland N, Schweser F, Dwyer MG, Weinstock-Guttman B, Hojnacki D. Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. *AM J NEURORADIOOL* 2018;39(4):642-647.
4. Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. *Radiology* 2000;217(1):50-53.
5. Absinta M, Ontaneda D. Controversial association between leptomeningeal enhancement and demyelinated cortical lesions in multiple sclerosis. SAGE Publications Sage UK: London, England, 2020.
6. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Systematic reviews* 2015;4(1):1.
7. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. *Systematic reviews* 2016;5(1):210.
8. Wells GA, Tugwell P, O'Connell D, Welch V, Peterson J, Shea B, Losos M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. 2015.
9. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled clinical trials* 1986;7(3):177-188.
10. Cochran WG. The combination of estimates from different experiments. *Biometrics* 1954;10(1):101-129.
11. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Statistics in medicine* 2002;21(11):1539-1558. doi: 10.1002/sim.1186
12. Viechtbauer W. Conducting meta-analyses in R with the metafor package. *Journal of statistical software* 2010;36(3):1-48.
13. Ighani M, Jonas S, Izbudak I, Choi S, Lema-Dopico A, Hua J, O'Connor EE, Harrison DM. No association between cortical lesions and leptomeningeal enhancement on 7-Tesla MRI in multiple sclerosis. *Multiple Sclerosis Journal* 2020;26(2):165-176.
14. Hildesheim FE, Ramasamy DP, Bergsland N, Jakimovski D, Dwyer MG, Hojnacki D, Lizarraga AA, Kolb C, Eckert S, Weinstock-Guttman B, Zivadinov R. Leptomeningeal, dura mater and meningeal vessel wall enhancements in multiple sclerosis. *Multiple sclerosis and related disorders* 2020;47:102653. doi: 10.1016/j.msard.2020.102653.
15. Titelbaum DS, Engisch R, Schwartz ED, Napoli SQ, Sloane JA, Samaan S, Katz JD, Lathi ES. Leptomeningeal Enhancement on 3D-FLAIR MRI in Multiple Sclerosis: Systematic Observations in Clinical Practice. *Journal of Neuroimaging* 2020;30(6):917-929.
16. Harrison DM, Wang KY, Fiol J, Naunton K, Royal W, III, Hua J, Izbudak I. Leptomeningeal Enhancement at 7T in Multiple Sclerosis: Frequency, Morphology, and Relationship to Cortical Volume. *Journal of Neuroimaging* 2017;27(5):461-468.
17. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeyer J, Bergsland N, Polak P, Benedict RHB, Hojnacki D, Weinstock-Guttman B. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. *Multiple Sclerosis* 2017;23(10):1336-1345.
18. Zurawski J, Tauhid S, Chu R, Khalid F, Healy BC, Weiner HL, Bakshi R. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. *Multiple Sclerosis Journal* 2020;26(2):177-187.

19. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, Verbitskaya E, Trofimova T, Krasnov V, Shumilina M, Skoromets A, Evdoshenko E. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis. *Neurol Res Int* 2017;2017.
20. Coulette S, Lecler A, Saragoussi E, Zuber K, Savatovsky J, Deschamps R, Gout O, Sabben C, Aboab J, Affortit A, Charbonneau F, Obadia M. Diagnosis and prediction of relapses in susac syndrome: A new use for MR postcontrast FLAIR leptomeningeal enhancement. *AM J NEURORADIOL* 2019;40(7):1184-1190.
21. O'Connell K, Williams L, Jones J, McCabe DJH, Murphy D, Killeen R, Tubridy N, O'Riordan S, McGuigan C. Neurosarcoidosis: clinical presentations and changing treatment patterns in an Irish Caucasian population. *Irish journal of medical science* 2017;186(3):759-766. doi: 10.1007/s11845-016-1539-y. Epub 2017 Jan 18.
22. Junger SS, Stern BJ, Levine SR, Sipos E, Marti-Masso JF. Intramedullary spinal sarcoidosis: Clinical and magnetic resonance imaging characteristics. *Neurology* 1993;43(2):333-337.
23. Asgari N, Flanagan EP, Fujihara K, Kim HJ, Skejoe HP, Wuerfel J, Kuroda H, Kim SH, Maillart E, Marignier R, Pittock SJ, Paul F, Weinshenker BG. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. *Neurol Neuroimmunol Neuroinflamm* 2017;4(4).
24. Fan Y, Shan F, Lin SP, Long Y, Liang B, Gao C, Gao Q. Dynamic change in magnetic resonance imaging of patients with neuromyelitis optica. *Int J Neurosci* 2016;126(5):448-454.
25. long Y, Chen M, Zhang B, Gao C, Zheng Y, Xie L, Gao Q, Yin J. Brain gadolinium enhancement along the ventricular and leptomeningeal regions in patients with aquaporin-4 antibodies in cerebral spinal fluid. *J Neuroimmunol* 2014;269(1):62-67.
26. Neo S, Yeo T, Chen Z, Ngiam NHW, Lim ET, Tan K, Lim TCC. Acute radiological features facilitate diagnosis and prognosis of anti-N-methyl-d-aspartate receptor (NMDAR) and anti-voltage-gated potassium channel (VGKC) encephalitis in adults. *Journal of the neurological sciences* 2020;419:117216. doi: 10.1016/j.jns.2020.117216. Epub 2020 Nov 4.
27. Dubey D, Hinson S, Zekeridou A, Flanagan E, Pittock S, Basal E, Drubach D, Lachance D, Lennon V, McKeon A. Autoimmune GFAP astrocytopathy: Prospective evaluation of 90 patients in 1 year. *Neurology* 2018;90(15).
28. Eisele P, Griebe M, Szabo K, Wolf ME, Alonso A, Engelhardt B, Hennerici MG, Gass A. Investigation of leptomeningeal enhancement in MS: a postcontrast FLAIR MRI study. *Neurology* 2015;84(8):770-775. doi: 10.1212/WNL.0000000000001286
29. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. *Radiology* 1999;211(1):257-263. doi: 10.1148/radiology.211.1.r99mr25257
30. Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC, Ohayon J, Fenton K, Reyes-Mantilla MI, Maric D, Calabresi PA, Butman JA, Pardo CA, Reich DS. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. *Neurology* 2015;85(1):18-28. doi: 10.1212/WNL.0000000000001587
31. Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Lizarraga AA, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of teriflunomide and dimethyl fumarate on cortical atrophy and leptomeningeal inflammation in multiple sclerosis: A retrospective, observational, case-control pilot study. *Journal of Clinical Medicine* 2019;8(3).
32. Bhargava P, Wicken C, Smith MD, Strowd RE, Cortese I, Reich DS, Calabresi PA, Mowry EM. Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. *Mult Scler Relat Disord* 2019;30:136-140.
33. Jonas SN, Izbudak I, Frazier AA, Harrison DM. Longitudinal persistence of meningeal enhancement on postcontrast 7T 3D-FLAIR MRI in multiple sclerosis. *American Journal of Neuroradiology* 2018;39(10):1799-1805.
34. Bergsland N, Ramasamy D, Tavazzi E, Hojnacki D, Weinstock-Guttman B, Zivadinov R. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing-remitting multiple sclerosis: A cross-sectional MRI study. *AM J NEURORADIOL* 2019;40(4):620-625.

35. Pol S, Schweser F, Bertolino N, Preda M, Sveinsson M, Sudyn M, Babek N, Zivadinov R. Characterization of leptomeningeal inflammation in rodent experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. *Exp Neurol* 2019;314:82-90.
36. Bhargava P, Kim S, Reyes AA, Grenningloh R, Boschert U, Absinta M, Pardo C, Zijl PV, Zhang J, Calabresi PA. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. *Brain : a journal of neurology* 2021. doi: 10.1093/brain/awab045
37. Sarkis RA, Mays M, Isada C, Ahmed M. MRI findings in cryptococcal meningitis of the non-HIV population. *Neurologist* 2015;19(2):40-45.
38. Kim H, Lim DH, Kim TG, Lee JI, Nam DH, Seol HJ, Kong DS, Choi JW, Suh YL, Kim ST. Leptomeningeal enhancement on preoperative brain MRI in patients with glioblastoma and its clinical impact. *Asia-Pac J Clin Oncol* 2018;14(5):e366-e373.
39. Itsekson Hayosh Z, Tsarfati G, Greenberg G, Sharon M, Bakon M, Wohl A, Chapman J, Orion D. Early FLAIR enhancement in reversible cerebral vasoconstriction syndrome. *European Journal of Neurology* 2020;27:126.
40. Wu CH, Lirng JF, Ling YH, Wang YF, Wu HM, Fuh JL, Lin PC, Wang SJ, Chen SP. Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood–Brain Barrier Leakage. *Annals of Neurology* 2021;89(1):111-124.
41. Harrison DM, Wang KY, Fiol J, Naunton K, Royal W, 3rd, Hua J, Izbudak I. Leptomeningeal Enhancement at 7T in Multiple Sclerosis: Frequency, Morphology, and Relationship to Cortical Volume. *Journal of neuroimaging : official journal of the American Society of Neuroimaging* 2017;27(5):461-468. doi: 10.1111/jon.12444
42. Itchaki G, Paludo J, Palomba ML, Varettoni M, Talaulikar D, Chavez JC, Buske C, Tedeschi A, Simpson D, Tam CS, Issa S, Ansell SM, Treon SP, Castillo JJ. Ibrutinib for the treatment of bing-neel syndrome. *Blood* 2018;132.
43. Castillo JJ, D'Sa S, Lunn MP, Minnema MC, Tedeschi A, Lansigan F, Palomba ML, Varettoni M, Garcia-Sanz R, Nayak L, Treon SP. Bing-neel syndrome: A multi-institutional retrospective study. *Hematological Oncology* 2015;33:168.
44. Ahmad A, Azad S, Azad R. Differentiation of leptomeningeal and vascular enhancement on post-contrast FLAIR MRI sequence: Role in early detection of infectious meningitis. *J Clin Diagn Res* 2015;9(1):TC08-TC12.
45. Kralik SF, Kukreja MK, Paldino MJ, Desai NK, Vallejo JG. Comparison of CSF and MRI Findings among Neonates and Infants with *E coli* or Group B Streptococcal Meningitis. *AM J NEURORADIOOL* 2019;40(8):1413-1417.
46. Soni N, Kumar S, Shimle A, Ora M, Bathla G, Mishra P. Cerebrovascular complications in tuberculous meningitis—A magnetic resonance imaging study in 90 patients from a tertiary care hospital. *Neuroradiology Journal* 2020;33(1):3-16.
47. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood–brain barrier disruption in human focal brain ischemia. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society* 2004;56(4):468-477.
48. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. *Stroke* 2004;35(11_suppl_1):2659-2661.
49. Henning EC, Latour LL, Warach S. Verification of enhancement of the CSF space, not parenchyma, in acute stroke patients with early blood-brain barrier disruption. *Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism* 2008;28(5):882-886. doi: 10.1038/sj.jcbfm.9600598
50. Menon BK, O'brien B, Bivard A, Spratt NJ, Demchuk AM, Miteff F, Lu X, Levi C, Parsons MW. Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. *Journal of Cerebral Blood Flow & Metabolism* 2013;33(3):365-371.
51. Klironomos S, Tzortzakakis A, Kits A, Öhberg C, Kollia E, Ahoromazdae A, Almqvist H, Aspelin Å, Martin H, Ouellette R, Al-Saadi J, Hasselberg M, Haghgou M, Pedersen M, Petersson S, Finnsson J, Lundberg J, Falk Delgado A, Granberg T. Nervous System Involvement in Coronavirus Disease 2019.

Results from a Retrospective Consecutive Neuroimaging Cohort. *Radiology* 2020;297(3):E324-e334. doi: 10.1148/radiol.2020202791. Epub 2020 Jul 30.

52. Kremer S, Lersy F, Anheim M, Merdji H, Schenck M, Oesterlé H, Bolognini F, Messie J, Khalil A, Gaudemer A, Carré S, Alleg M, Lecocq C, Schmitt E, Anxionnat R, Zhu F, Jager L, Nesser P, Mbä YT, Hmeydia G, Benzakoun J, Oppenheim C, Ferré JC, Maamar A, Carsin-Nicol B, Comby PO, Ricolfi F, Thouant P, Boutet C, Fabre X, Forestier G, de Beaurepaire I, Bornet G, Desal H, Boulouis G, Berge J, Kazémi A, Pyatigorskaya N, Lecler A, Saleme S, Edjlali-Goujon M, Kerleroux B, Constans JM, Zorn PE, Mathieu M, Baloglu S, Ardellier FD, Willaume T, Brisset JC, Caillard S, Collange O, Mertes PM, Schneider F, Fafi-Kremer S, Ohana M, Meziani F, Meyer N, Helms J, Cotton F. Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study. *Neurology* 2020;95(13):e1868-e1882.

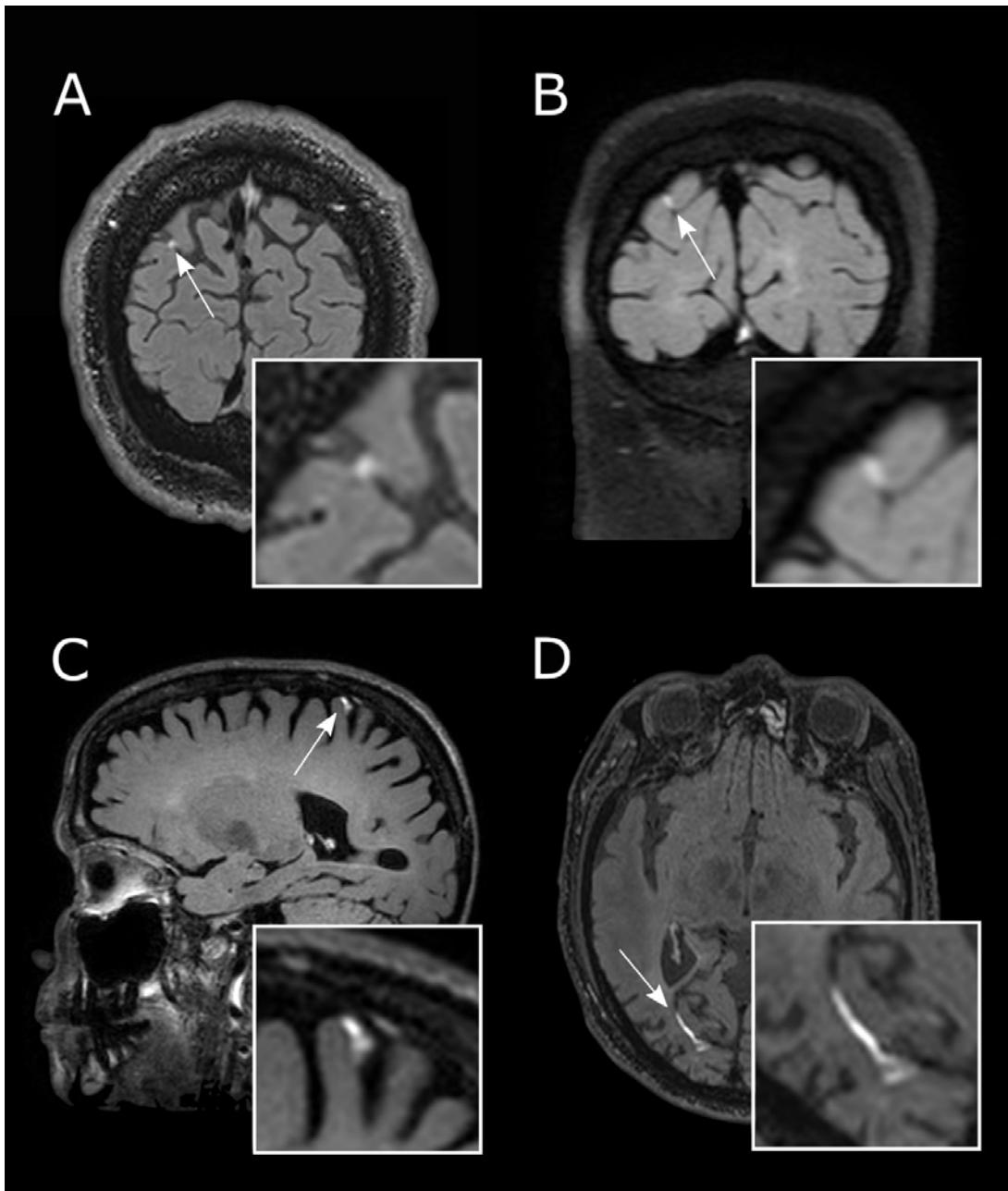
53. Lersy F, Benotmane I, Helms J, Collange O, Schenck M, Brisset JC, Chammas A, Willaume T, Lefebvre N, Solis M, Hansmann Y, Fabacher T, Caillard S, Mertes PM, Pottecher J, Schneider F, Meziani F, Fafi-Kremer S, Kremer S. Cerebrospinal fluid features in COVID-19 patients with neurologic manifestations: correlation with brain MRI findings in 58 patients. *The Journal of infectious diseases* 2020.

54. Susac JO, Murtagh FR, Egan RA, Berger JR, Bakshi R, Lincoff N, Gean AD, Galetta SL, Fox RJ, Costello FE, Lee AG, Clark J, Layzer RB, Daroff RB. MRI findings in Susac's syndrome. *Neurology* 2003;61(12):1783-1787.

55. Calabrese M, Maglizzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. *Nature reviews Neuroscience* 2015;16(3):147-158. doi: 10.1038/nrn3900

56. Schluterman KO, Fassas AB-T, Van Hemert RL, Harik SI. Multiple myeloma invasion of the central nervous system. *Archives of neurology* 2004;61(9):1423-1429.

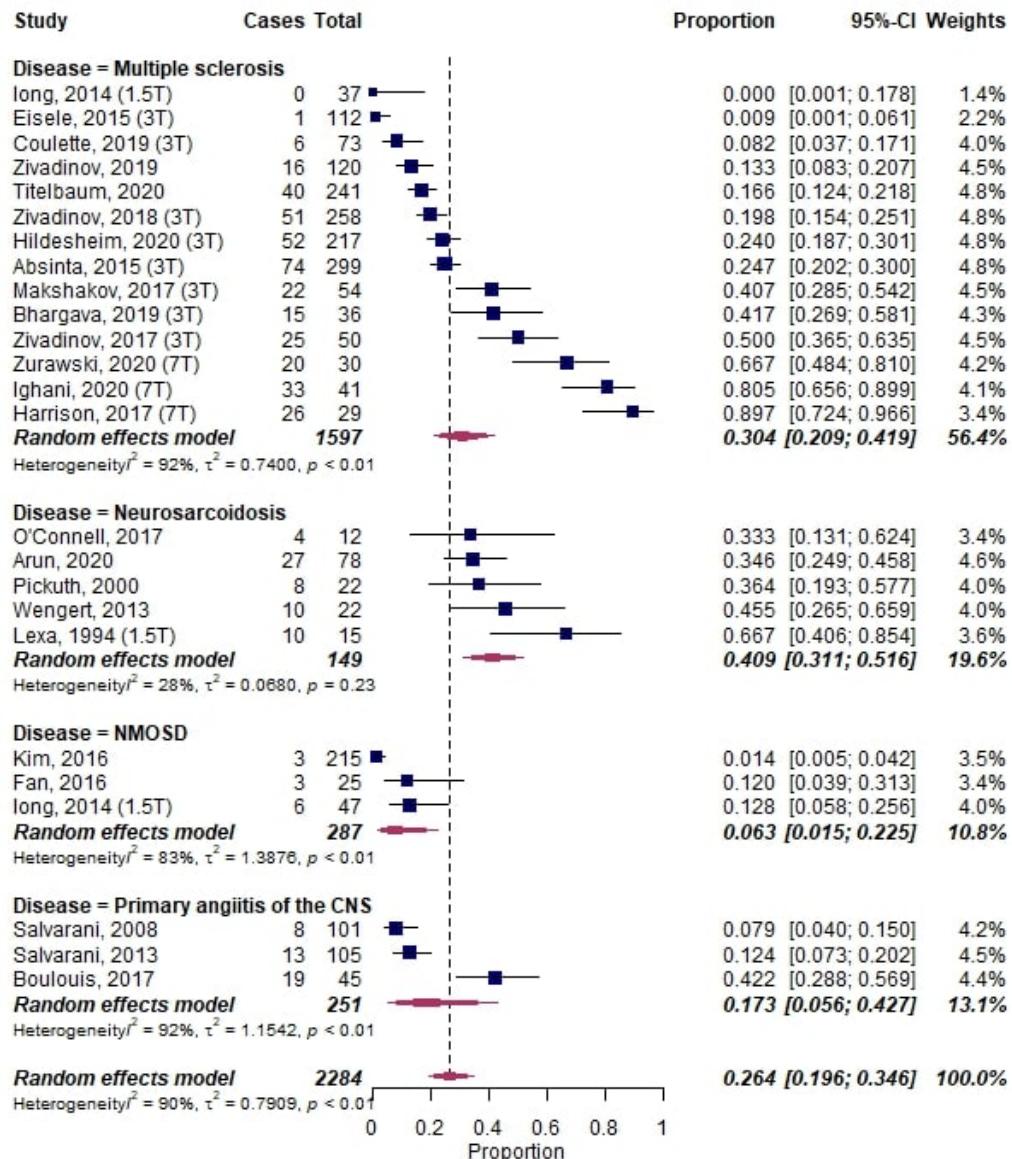
57. Absinta M, Cortese IC, Vuolo L, Nair G, de Alwis MP, Ohayon J, Meani A, Martinelli V, Scotti R, Falini A, Smith BR, Nath A, Jacobson S, Filippi M, Reich DS. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. *Neurology* 2017;88(15):1439-1444. doi: 10.1212/WNL.0000000000003820


58. Sommer NN, Pons Lucas R, Coppenrath E, Kooijman H, Galiè F, Hesse N, Sommer WH, Treitl KM, Saam T, Froelich MF. Contrast-enhanced modified 3D T1-weighted TSE black-blood imaging can improve detection of infectious and neoplastic meningitis. *Eur Radiol* 2020;30(2):866-876.

59. Sellebjerg F, Weber MS. Targeting B cells in multiple sclerosis. *Current opinion in neurology* 2021;34(3):295-302. doi: 10.1097/WCO.0000000000000938

60. Okar SV, Reich DS. Routine Gadolinium Use for MRI Follow-up of Multiple Sclerosis: Point—The Role of Leptomeningeal Enhancement. *American Journal of Roentgenology* 2021.

Figures


Figure 1: Leptomeningeal enhancement (LME) across the spectrum of neurological diseases.

Leptomeningeal enhancement (LME, white arrows) can be detected using post-gadolinium fluid-attenuated inversion recovery (FLAIR) T2-weighted magnetic resonance imaging and can be present in viral diseases such as HIV (A, at 3T), in primary neuroinflammatory diseases such as Susac syn-

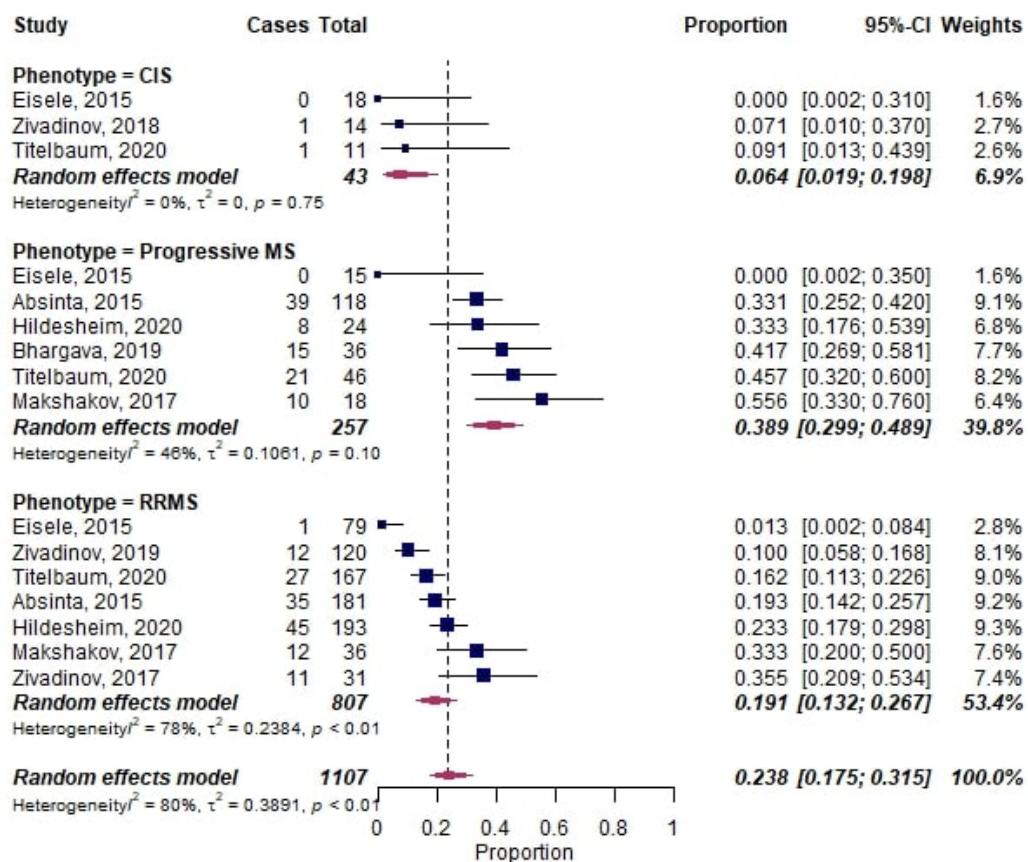

drome (B, at 3T) and multiple sclerosis (C, at 7T), and in aseptic meningitis (natalizumab-induced) (D, at 3T).

Figure 2: Forest plot of leptomeningeal enhancement (LME) proportions in primary neuroinflammatory diseases.

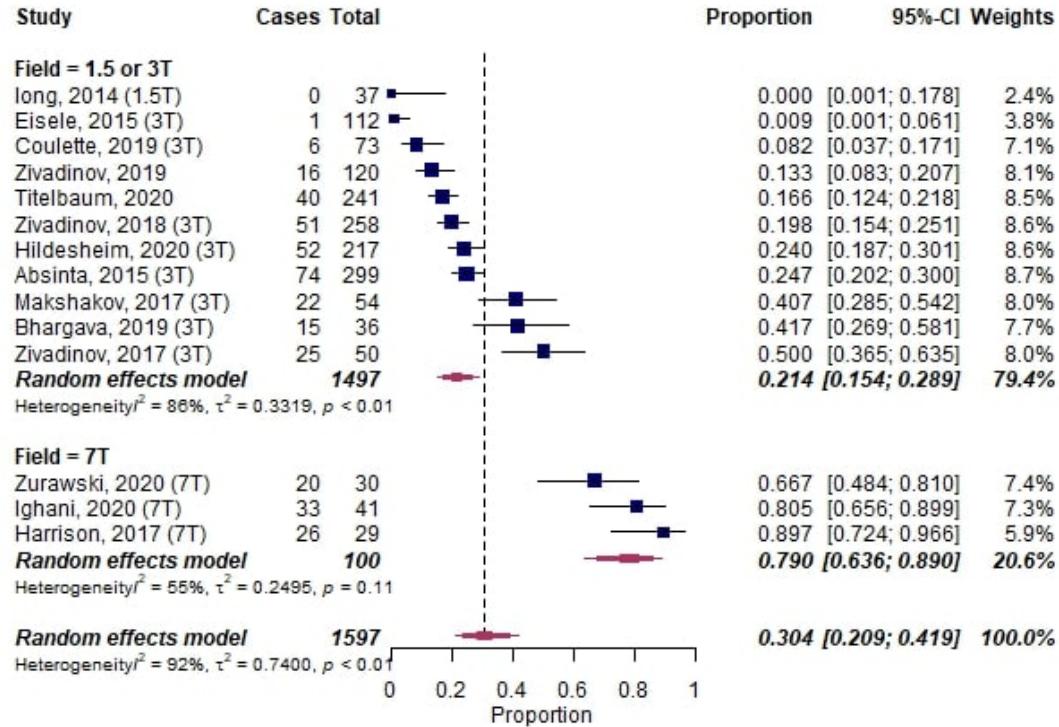
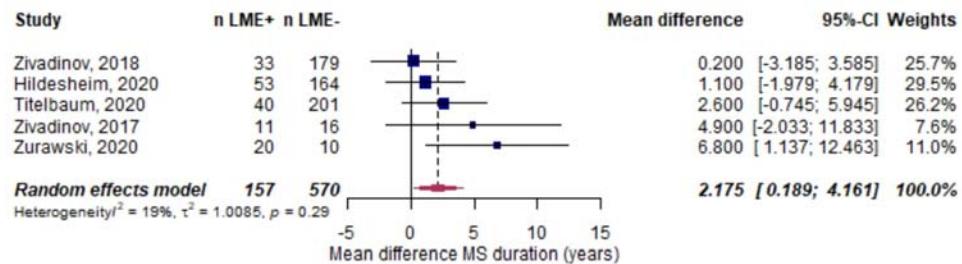

Pooled analyses of studies comparing the proportion of LME on MRI in neuroinflammatory diseases, stratified by diseases. Static magnetic field strength for MRI acquisition for respective studies are listed in brackets if reported. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: CNS, central nervous system; CI, confidence interval; NMOSD, neuromyelitis optica spectrum disorder.

Figure 3: Forest plot of leptomeningeal enhancement (LME) proportions in multiple sclerosis (MS).

Pooled analyses of studies comparing the proportion of LME on MRI in MS, stratified by clinical phenotype. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: *CI* confidence interval; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis.


Figure 4: Forest plot of leptomeningeal enhancement (LME) proportions in multiple sclerosis (MS) with B_0 magnetic field strength as moderator.

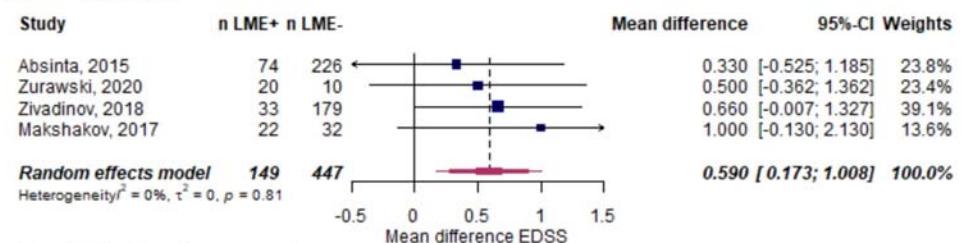
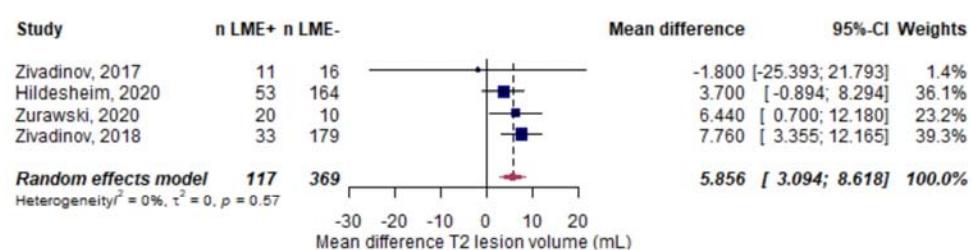
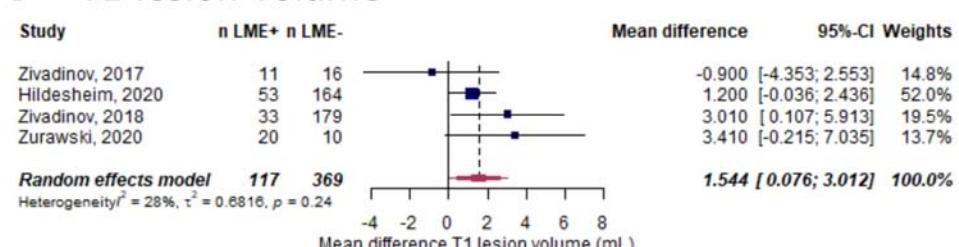
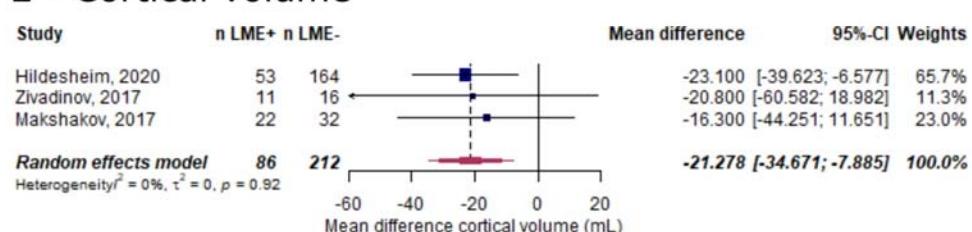

Pooled analyses of studies comparing the proportion of LME on MRI in MS, stratified by magnetic field strength. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: *CI* confidence interval.

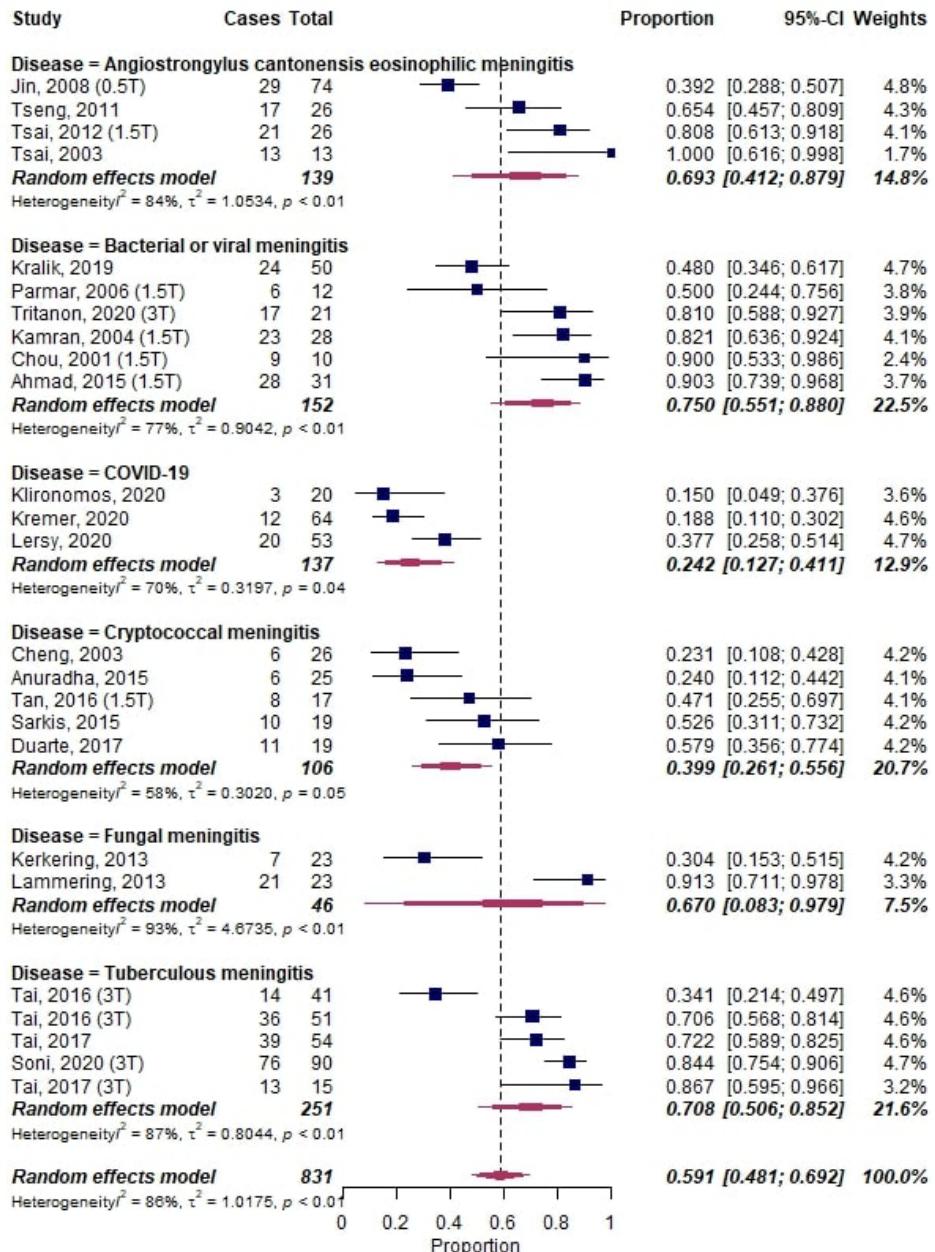
Figure 5: Forest plot for subgroup analysis for the association between LME and clinical and imaging outcomes in MS.


A - Disease duration


B - EDSS


C - T2 lesion volume

D - T1 lesion volume



E - Cortical volume

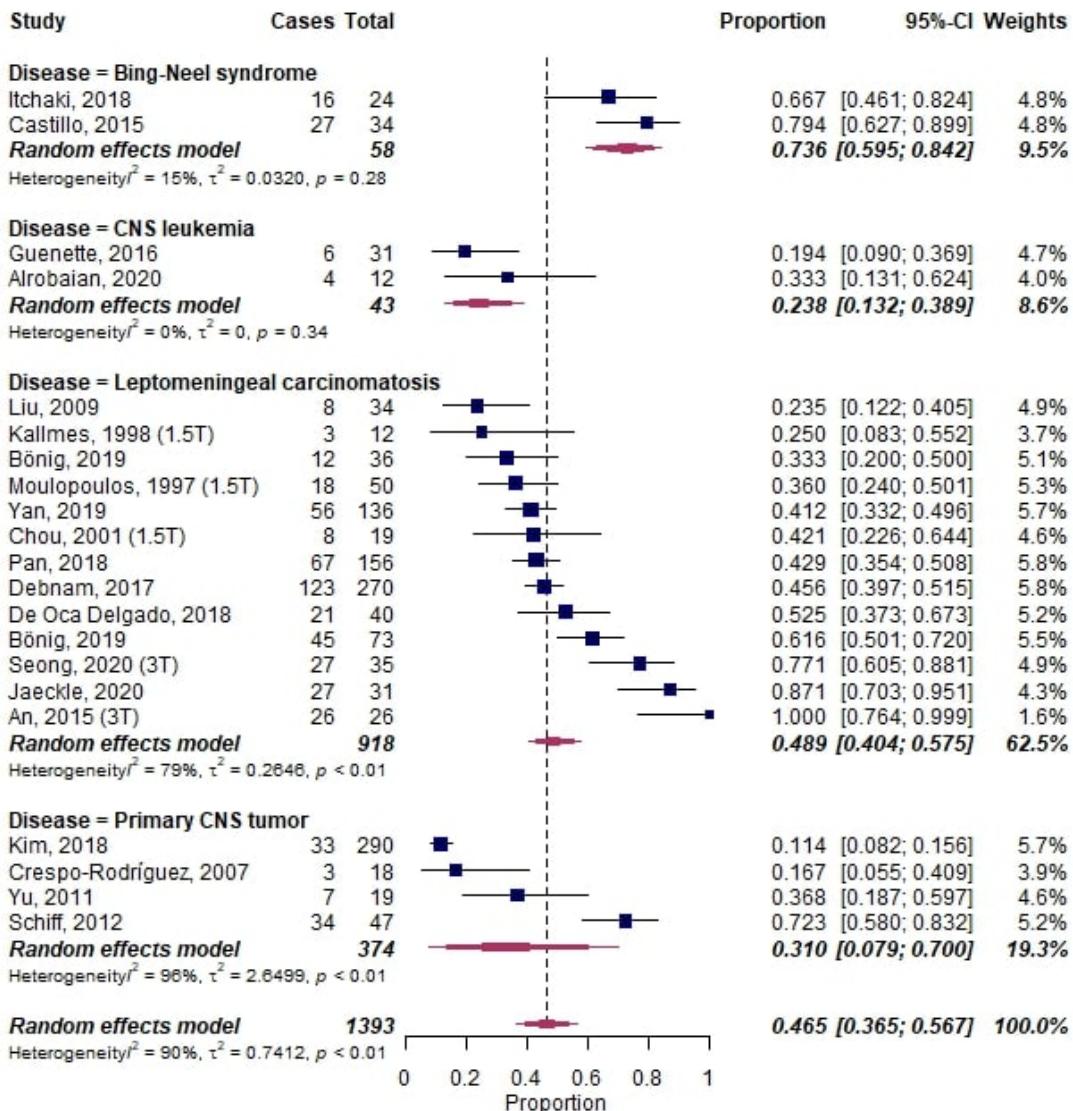
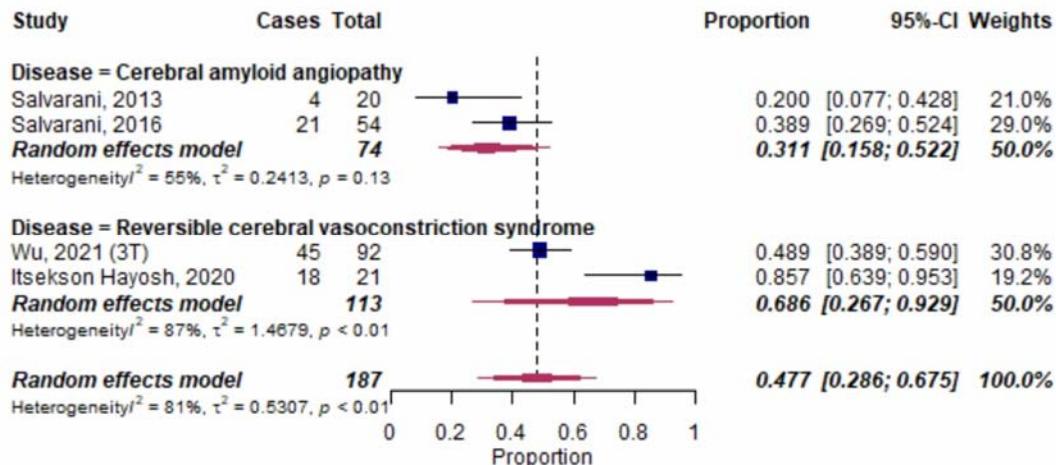

Pooled analyses of studies comparing the mean differences of clinical and imaging outcomes between LME-positive and LME-negative MS cases (A, disease duration [years]; B, EDSS [in EDSS points]; C, T1 lesion volume [in mL]; D, T2 lesion volume [in mL]; E, cortical gray matter volume [in mL]). Mean differences were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: CI confidence interval; EDSS, Expanded Disability Status Scale; LME, leptomeningeal enhancement.

Figure 6: Forest plot of leptomeningeal enhancement (LME) proportions in infectious neurological diseases.

Pooled analyses of studies comparing the proportion of LME on MRI in infectious neurological diseases. Static magnetic field strength for MRI acquisition for respective studies are listed in brackets if reported. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: CI confidence interval.


Figure 7: Forest plot of leptomeningeal enhancement (LME) proportions in neoplastic neurological diseases.

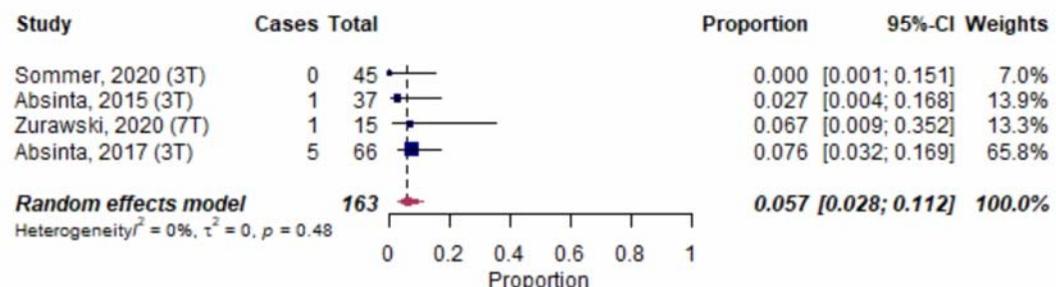
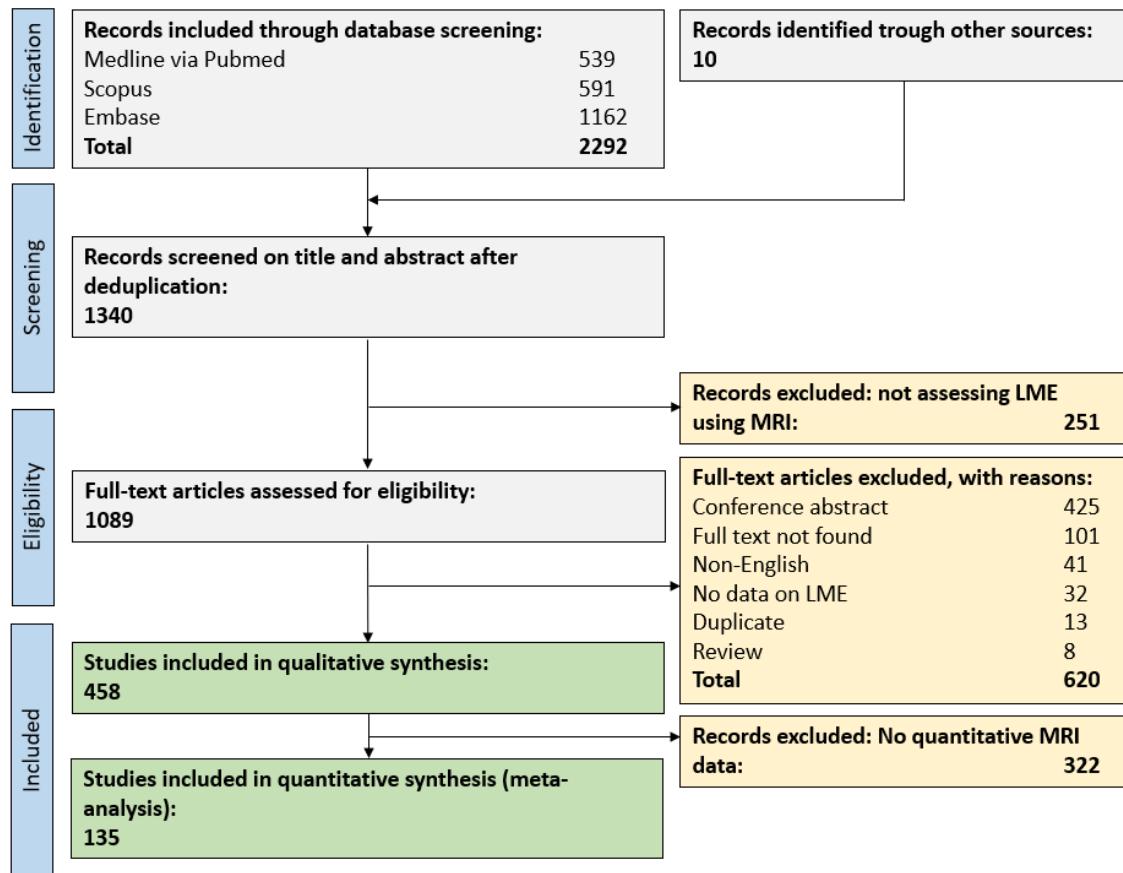

Pooled analyses of studies comparing the proportion of LME on MRI in infectious neurological diseases. Static magnetic field strength for MRI acquisition for respective studies are listed in brackets if reported. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: CI confidence interval; CNS, central nervous system.

Figure 8: Forest plot of leptomeningeal enhancement (LME) proportions in neurological diseases not classified into the other groups and in healthy controls.

A


B

Pooled analyses of studies comparing the proportion of LME on MRI in other neurological diseases (A) and in healthy control subjects (B). Static magnetic field strength for MRI acquisition for respective studies are listed in brackets if reported. Proportions for LME were extracted and pooled using the random effects DerSimonian-Laird method. Abbreviations: CI confidence interval.

Supplementary figure

Figure S1: Flow chart for study inclusion.

Tables

Table 1: Synopsis of studies assessing leptomeningeal enhancement (LME) in multiple sclerosis (MS).

Study	n	Controls	Location	MRI field	MRI sequence	Pattern	Main findings
Eisele, 2015	112	5 stroke	Convexities	3T	Pc. 2D T2w-FLAIR (at least 10 min delay), pc. 2D T1w	Nodular	<p>Only 1/112 patient (<1%) showed evidence of LME in the right temporal lobe. This patient also showed 6 parenchymal contrast-enhancing lesions.</p> <p><u>Association of LME with imaging/clinical parameters:</u> N/A</p> <p><u>Temporal dynamics of LME:</u> N/A</p>
Absinta, 2015	171 RRMS, 74 PPMS, 44 SPMS, 10 CIS	37 HC	N/A	3T in vivo, 7T postmortem	Pc. 3D T2w FLAIR (at least 10 min delay), pc. 3D T1w	Laminar, nodular	<p>Focal LME was detected in the leptomeningeal compartment in 74 of 299 MS cases (25%) and in only 1 of 37 neurologically healthy controls (2.7%). Progressive MS showed around twice as much enhancement (39/118 cases, 33%) compared to relapsing-remitting MS (35/181, 19%).</p> <p><u>Association of LME with imaging/clinical parameters:</u> Median age, disease duration, and EDSS were higher in LME+ MS patients compared to LME- patients. Relapsing or progressive phenotype were not associated with presence of LME. Whole brain and cortical volumes were lower in LME+ MS patients, but no difference for white matter lesions or white matter lesion volume. No association of LME with oligoclonal bands. Correlative histopathology showed perivascular lymphocytic and mono-nuclear infiltration in the enhancing areas in association with adjacent subpial cortical demyelination.</p> <p><u>Temporal dynamics of LME:</u> Most LME foci (53/62, 85%) remained stable in shape and size throughout the evaluation period (up to 5.5 years). 1 LME focus disappeared; 6 new foci were detected in 4 patients.</p>

Harrison, 2017	21 RRMS, 4 SPMS, 4 PPMS	3 HC	Convexities	7T	Pc. 3D T2w-MPFLAIR (20 min delay), pc. 3D T1w MP2RAGE (3 min delay)	Spread/fill (76% of subjects) and nodular (15% of subjects). Both types occurred simultaneously in 38% of patients.	<p>LME on postcontrast 7T MPFLAIR is more prevalent than prior reports at 3T. T1w MP2RAGE images were consulted to exclude leptomeningeal vessels.</p> <p>Of note, no instances of spread/fill foci were seen in healthy controls. However, 2/3 healthy controls had nodular LME (normal variant?).</p> <p><u>Association of LME with imaging/clinical parameters:</u> Spread/fill foci were associated with reduced cortical gray matter volumes. There were no differences in WM lesion, cerebral WM volume, thalamus, caudate, or putamen volume in those with and without spread/fill LME foci.</p> <p><u>Temporal dynamics of LME:</u> N/A</p>
Absinta, 2017	299 MS patients (same as in Absinta, 2015),	189 non-MS, 66 HC	Convexities, infratentorial	3T	Pc. 3D T2w FLAIR (at least 10 min delay), pc. 3D T1w	Nodular or linear	<p>LME was observed in 56/254 non-MS patients (22%) compared to 74/299 (25%) of MS patients. LME was around 4-fold more common in non-MS inflammatory neurologic diseases (18/51 cases, 35%) than in noninflammatory neurologic diseases (3/38, 8%) and healthy volunteers (5/66, 8%). The highest prevalence of LME was detected in HTLV infections (17/38 cases, 45%), particularly in the setting of HTLV-associated myelopathy (14/25 cases, 56%). LME was also frequently detected in HIV infection (13/61 cases, 21%).</p> <p><u>Association of LME with imaging/clinical parameters:</u> Unlike in MS, LME was not associated with lower brain and cortical volumes in non-MS inflammatory neurologic conditions, including HTLV and HIV infection.</p> <p><u>Temporal dynamics of LME:</u> N/A</p>
Makshakov, 2017	54	0 (35%)	Convexities (Mainly sulcal (65%) and less brain surface (35%)	3T	Pc. 3D T2w-FLAIR (after T1w), pc. 3D T1w (lower sens for LME detection than T2w-FLAIR)	Linear (13%), plate-like (31%), nodular (54%)	<p>LME was detected in 41% of MS patients.</p> <p><u>Association of LME with imaging/clinical parameters:</u> LME+ patients had longer disease duration and higher EDSS score, but an equal relapse rate. No association of LME with higher frequency of contrast-enhancing lesions. LME+ patients had lower cortical volume, the total grey matter volume as well as total ventricular volume. No difference in oligoclonal bands or kappa-FLC.</p>

							<u>Temporal dynamics of LME:</u> N/A
Xia, 2017	100 first-degree relatives of MS	0	N/A	3T	Pc. 3D T2w FLAIR (at least 10 min delay), pc. 3D T1w	N/A	Higher-risk asymptomatic family members of patients with MS are more likely to have early subclinical manifestations of MS and deserve further monitoring. A subset of participants harboured LME, consistent with the hypothesis that these subjects are at higher risk for developing MS. <u>Association of LME with imaging/clinical parameters:</u> N/A <u>Temporal dynamics of LME:</u> N/A
Zivadinov, 2017	27 RRMS, 23 SPMS		Convexities (mainly surface (79%) and less sulcal (21%))	3T	Pc. 3D T2w-FLAIR (10 min delay), pc. 2D FLAIR (after Gd-injection), pc. 2D T1w	Most of the LME foci were nodular (49, 80%), linear, plate-like	In total, 25/50 MS patients (50%) showed LME at the 5-year follow-up. Of note, No LME foci were detected on 2D T2w-FLAIR or 2D T1w sequences. <u>Association of LME with imaging/clinical parameters:</u> SPMS presented with significantly more LME foci (12, 85.7%) compared to RRMS (2, 18.2%). LME+ MS patients had greater percentage decrease in total GM (-3.6% vs -2%) and cortical (-3.4% vs -1.8%) volumes and greater percentage increase in ventricular cerebrospinal fluid volume (22.8% vs 9.9%) over the follow-up compared to LME- MS patients. SPMS patients with LME showed higher T1 lesion volume increase compared to patients without LME. No difference in annual relapse rate or DMT. <u>Temporal dynamics of LME:</u> N/A
Jonas, 2018	21 RRMS, 7 SPMS, 3 PPMS		Convexities, mostly frontoparietal	7T	Pc. 3D MP2RAGE (3 min delay), pc. MPFLAIR (20 min delay)	Subarachnoid spread/fill or nodular, vessel wall, dural (also including non-LME enhancement patterns)	2-year follow up study. At baseline, 284 LME foci among 31 MS patients are reported., 25/50 MS patients (50%) showed LME at the 5-year follow-up. Of note, No LME foci were detected on 2D T2w-FLAIR or 2D T1w sequences. <u>Association of LME with imaging/clinical parameters:</u> No difference in the total number/proportion of longitudinally persistent LME foci between those on or off treatment or between pro-

							gressive versus relapsing MS. More persistent LME foci were present in EDSS progressors compared to non-EDSS progressors (median, 12; range 1–15 versus median, 7.5; range 1–24).
Zivadinov, 2018	212 RRMS, 32 SPMS, 14 CIS	0	Convexities	3T	Pc. 3D T2w-FLAIR (10 min delay; native, subtracted, or co-registered)	N/A	<p>Temporal dynamics of LME: In total, 15 additional LME foci developed within the follow-up period. LME patterns were: 6 subarachnoid spread/fill, 4 subarachnoid nodular, 2 vesselwall, and 3 dural foci.</p> <p>Study compared LME detection on 3D T2w-FLAIR postcontrast images in native space (method 1), on pre- and postcontrast 3D T2w-FLAIR images in native space (method 2), and on pre-/postcontrast 3D T2w-FLAIR co-registered and subtracted images (method 3). In total, 51 (20%) patients with MS showed LME using method 1; 39 (15%) using method 2; and 39 (15%), The mean time to analyze the 3D T2w-FLAIR images was lower with method 2 compared to the other 2 methods.</p> <p>Association of LME with imaging/clinical parameters: Higher T1 and T2 lesion volume in LME+ MS patients. Similar volume of contrast-enhancing lesions between LME+ and LME- patients. LME+ patients had higher EDSS and age but similar MS disease duration.</p> <p>Temporal dynamics of LME: N/A</p>
Bergsland, 2019	43 RRMS, 15 SPMS	0	N/A	3T	Pc. 3D T2w-FLAIR (10 min delay), Pc. 3D T1w	N/A	<p>Focal LME is associated with reduced thickness of the adjacent cortex in patients with RRMS, but not in those with secondary-progressive MS.</p> <p>Association of LME with imaging/clinical parameters: See above.</p> <p>Temporal dynamics of LME: N/A</p>
Bhargava, 2019	36 progressive MS	0	N/A	3T	Pc. 3D T2w-FLAIR (10 min delay), Pc. 3D T1w	N/A	<p>Study assessed safety of intrathecal rituximab on progressive MS and its potential effect on LME. Out of 36 screened patients, 15 had LME (42%). LME frequency did not change following intrathecal rituximab treatment.</p> <p>Association of LME with imaging/clinical parameters:</p>

							N/A
Coulette, 2019	73 MS	9 Susac	Convexities (MS), Cerebellar (Susac)	3T	Pc. 3D T2w-FLAIR (3 min delay), Pc. 3D T1w	2 nodular, 4 linear	<p><u>Temporal dynamics of LME:</u> There was no change in the number or shape of LME during the 24-week follow-up period. There was no appearance of new LME over the course of the study.</p> <p>Susac syndrome patients were more likely to present with LME: 5/9 (56%) versus 6/73 (8%) in the MS group.</p> <p><u>Association of LME with imaging/clinical parameters:</u> N/A</p> <p><u>Temporal dynamics of LME:</u> No evolution data on MS.</p>
Zivadinov, 2019	120 RRMS	0 N/A		3T	Pc. 3D T2w-FLAIR (10 min delay), pc. 3D T1w	N/A	<p>No significant difference in LME between teriflunomide or dimethylfumarate treated patients. 12 out of 120 patients with LME (10%).</p> <p><u>Association of LME with imaging/clinical parameters:</u> N/A</p> <p><u>Temporal dynamics of LME:</u> Out of 8 dimethylfumarate-treated patients who presented with LME at baseline, 6 continued to show the same LME foci at 12 and 24 months, one other patient under dimethylfumarate developed a new LME focus over the follow-up. Of 4 teriflunomide-treated patients who presented with LME foci at baseline, 2 patients continued to present the same LME foci at follow-up, whereas one patient treated with teriflunomide developed a new LME focus over the follow-up</p>
Bonnan, 2020	1 prog MS	0	Convexities	3T	Pc. 3D T2w-FLAIR	laminar	<p>Spontaneously remitting LME focus in 1 SPMS patient.</p> <p><u>Association of LME with imaging/clinical parameters:</u> LME focus was associated with adjacent cortical thinning.</p> <p><u>Temporal dynamics of LME:</u> Disappearance of focus at 3 and 9 months follow-up.</p>
Hildesheim,	193 RRMS,	0	Convexities	3T	Pc. 3D T2w-	Nodular (89%),	Fifty-three out of 217 MS patients (24%) had at least one LME focus.

2020	24 progressive MS				FLAIR (10 min delay, subtraction), Pc. 3D T1w	filling-like (11%)	<p><u>Association of LME with imaging/clinical parameters:</u> No difference in LME between relapsing and progressive MS (23% vs. 33%). No difference in EDSS between LME+ and LME- MS patients when adjusted for age. LME+ MS patients showed higher CSF volume and more contrast-enhancing lesions compared to LME- patients at baseline. LME frequency was associated with higher age. LME was not associated with clinical or imaging markers of MS severity (T1 and T2 lesion volume).</p> <p><u>Temporal dynamics of LME:</u> analyzed for persistence over 18 months follow-up. Of the 76 LME foci at baseline, 68 foci (90%) remained stable in shape and size. 8 LME foci resolved during the follow-up interval, a total of 14 LME foci were newly detected.</p>
Ighani, 2020	31 RRMS, 5 SPMS, 5 PPMS	5 HC	N/A	7T	Pc. 3D T2w-MPFLAIR (unclear delay), pc. 3D MP2-RAGE T1w	Nodular, spread/fill-sulcal (59%), spread/fill-gyral (61%), spread/fill-infratentorial	<p>33/41 MS patients had LME (81%) and 27 had > 1 LME focus. One LME focus was found in 3/5 healthy controls (60%), one subject with a nodular LME and two cases with one spread/fill-sulcal LME each. None of the control subjects had >1 LME focus.</p> <p><u>Association of LME with imaging/clinical parameters:</u> There was an association between spread/fill-sulcal LME and hippocampal lesion count in RRMS. Participants with RRMS had no correlation with cortical lesions, but significant correlations were detected between LME and hippocampal lesion count, normalized cortical gray matter volume, and mean cortical thickness. WM lesion volume was greater in patients with >1 focus of spread/fill-sulcal LME compared to those with 1 focus.</p> <p><u>Temporal dynamics of LME:</u> N/A</p>
Titelbaum, 2020	241	100 non-MS	Convexities, rarely cerebellar	1.5T (most patients), 3T	Pc. 3D T2w-FLAIR (delay 7 – 54 min)	Nodular, curvilinear	<p>A total of 16.6% (40/241) of MS patients had LME compared to 8% (8/100) in non-MS patients. There was no association with MS subtype, therapy, or disease activity. General Electric's version of 3D T2w-FLAIR (29%) was greater than with Siemens' 3D T2w-FLAIR (12%) at 1.5T. LME kinetics were heterogeneous, even within patients, without uniform optimal time for acquisition.</p> <p>Of note, Imaging pitfalls fell into three categories: contrast leakage of</p>

							uncertain medical significance; enhancements related to cortical veins/anatomic structures; and imaging artifacts
Zurawski, 2020	30 RRMS	15 HC	Convexities	7T	Pc. 3D T2w-FLAIR (10 min delay), pc. 3D MP2RAGE T1w	nodular only n=12 (60%), any spread n=8 (40%)	<p><u>Association of LME with imaging/clinical parameters:</u> N/A</p> <p><u>Temporal dynamics of LME:</u> LME foci were overall persistent over the observation period (0.5 – 6 months) but resolved in 2 patients following high-dose steroids.</p> <p>Two thirds of MS patients had LME. Patients had a mean of 2.7 (\pm 1.5) LME foci.</p> <p><u>Association of LME with imaging/clinical parameters:</u> LME+ patients had longer disease duration, a sixfold higher cortical lesion volume, and a higher T1/T2 lesion volume compared to LME- patients. The number of LME foci correlated with cortical and thalamic lesions.</p> <p>Patients with spread LME significantly higher cortical lesion volumes.</p> <p><u>Temporal dynamics of LME:</u> N/A</p>

Studies are in chronological and alphabetical order. Abbreviations: *FLAIR*, fluid-attenuated inversion recovery (*MP*, magnetization-prepared); *HC*, healthy control; *LME*, leptomeningeal enhancement; *MS*, multiple sclerosis (*RR* relapsing-remitting, *SP*, secondary progressive; *PP*, primary progressive); *pc*, post-contrast.

Supplementary data

Supplementary search string

In alphabetical order

1. Absinta M, Cortese ICM, Vuolo L, Nair G, Ohayon J, Meani A, Martinelli V, Scottf R, Falini A, Smith BR, Nath A, Jacobson S, Filippi M, Reich DS. Prevalence of leptomeningeal contrast enhancement in multiple sclerosis versus other chronic neuroinflammatory diseases. *Neurology* 2017;88(16).
2. Agarwal A, Kapur G, Altinok D. Childhood posterior reversible encephalopathy syndrome: Magnetic resonance imaging findings with emphasis on increased leptomeningeal FLAIR signal. *Neuroradiology Journal* 2015;28(6):638-643.
3. Aghajanova L, Jaffe RB, Herndon CN. Infiltrative neurosarcoidosis presenting as secondary amenorrhea: Case report and review of the literature. *Obstet Gynecol Surv* 2013;68(6):482-488.
4. Aguilar-Amat MJ, Abenza-Abildúa MJ, Vivancos F, Rodríguez De Rivera FJ, Morales-Bastos C, Gandía-Gonzalez ML, Pérez-Zamarrón A, Arpa J. Rheumatoid meningitis mimicking progressive supranuclear palsy. *Neurologist* 2011;17(3):136-140.
5. Aguilera D, Flamini R, Mazewski C, Schniederjan M, Hayes L, Boydston W, Castellino RC, MacDonald TJ. Response of subependymal giant cell astrocytoma with spinal cord metastasis to everolimus. *J Pediatr Hematol Oncol* 2014;36(7):e448-e451.
6. Ahmad A, Azad S, Azad R. Differentiation of leptomeningeal and vascular enhancement on post-contrast FLAIR MRI sequence: Role in early detection of infectious meningitis. *J Clin Diagn Res* 2015;9(1):TC08-TC12.
7. Ahn SJ, Lim JA, Moon JS, Sun-Woo JS, Byun JI, Kim TJ, Jun JS, Park BS, Shin HR, Jang YH, Lee ST, Jung KH, Park KI, Lee SK, Chu K. Screening of respiratory virus PCR panel in adults with CNS infection: Seoul neuroinfection registry. *Annals of Neurology* 2016;80:S185-S186.
8. Al Malik YM. Isolated neurosarcoidosis mimicking multiple sclerosis. *Neurosciences* 2020;25(5):406-411.
9. Allmendinger AM, Viswanadhan N, Klufas RA, Hsu L. Diffuse cauda equina enhancement in a middle aged male with Susac syndrome and symptomatic cauda equina syndrome. *Journal of the Neurological Sciences* 2013;333(1):25-28.
10. Alonso A, Eisele P, Ebert AD, Griebe M, Engelhardt B, Szabo K, Hennerici MG, Gass A. Leptomeningeal contrast enhancement and blood-CSF barrier dysfunction in aseptic meningitis. *Neurol Neuroimmunol Neuroinflamm* 2015;2(6).
11. Alrobaian MA, Henderson AD. Neuro-Ophthalmic Manifestations of Acute Leukemia. *Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society* 2020.

12. Amador N, Scheithauer BW, Giannini C, Raffel C. Acute cerebellitis presenting as tumor: Report of two cases. *J NEUROSURG* 2007;107(1):57-61.
13. Amano E, Machida A, Kanazawa N, Iizuka T. Cerebrospinal fluid MOG-antibodies in anti-NMDA receptor encephalitis with leptomeningeal enhancement. *Neurol Sci* 2020;41(9):2635-2638.
14. Amaral D, Gomes T, Santos Silva R, Rocha H, Tavares M, Sampaio M, Leao M. Longitudinally extensive transverse myelitis due to a rare infectious cause. *Sinapse* 2015;15(1):156.
15. An YJ, Cho HR, Kim TM, Keam B, Kim JW, Wen H, Park CK, Lee SH, Im SA, Kim JE, Choi SH, Park S. An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients. *Int J Cancer* 2015;136(1):162-171.
16. Anderson TL, Carr CM, Kaufmann TJ. Central nervous system imaging findings of hemophagocytic syndrome. *CLIN IMAGING* 2015;39(6):1090-1094.
17. Andica C, Hagiwara A, Hori M, Haruyama T, Fujita S, Maekawa T, Kamagata K, Yoshida MT, Suzuki M, Sugano H, Arai H, Aoki S. Aberrant myelination in patients with Sturge-Weber syndrome analyzed using synthetic quantitative magnetic resonance imaging. *Neuroradiology* 2019;61(9):1055-1066.
18. Anuradha S, Singh M, Kaur R, Rajeshwari K. Cryptococcal meningitis in people living with hiv (PLHIV): A comparative analysis of the diagnostic tests. *Arch Clin Microbiol* 2015;6(2).
19. Appleton JP, Hayton T, Williams A. Pilocytic astrocytoma: A case of not so benign intracranial hypertension. *Journal of Neurology, Neurosurgery and Psychiatry* 2015;86(11).
20. Armao DM, Stone J, Castillo M, Mitchell KM, Bouldin TW, Suzuki K. Diffuse leptomeningeal oligodendroliomatosis: Radiologic/pathologic correlation. *AM J NEURORADIOL* 2000;21(6):1122-1126.
21. Armstrong-Javors A, Krishnamoorthy K. HaNDL Syndrome: Case Report and Literature Review. *J Child Neurol* 2019;34(3):161-167.
22. Arulrajah S, Ertan G, M. Comi A, Tekes A, L. Lin D, A.G.M. Huisman T. MRI with diffusion-weighted imaging in children and young adults with simultaneous supra- and infratentorial manifestations of Sturge-Weber syndrome. *J Neuroradiol* 2010;37(1):51-59.
23. Arun T, Pattison L, Palace J. Distinguishing neurosarcoidosis from multiple sclerosis based on CSF analysis: A retrospective study. *Neurology* 2020;94(24):e2545-e2554.
24. Asgari N, Flanagan EP, Fujihara K, Kim HJ, Skejoe HP, Wuerfel J, Kuroda H, Kim SH, Maillart E, Marignier R, Pittock SJ, Paul F, Weinshenker BG. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. *Neurol Neuroimmunol Neuroinflamm* 2017;4(4).
25. Avila JD, Bucelli RC. Nodular Leptomeningeal Enhancement in Neurosarcoidosis: Before and After Treatment. *Neurohospitalist* 2017;7(4):Np1-np2. doi: 10.1177/1941874416684457. Epub 2016 Dec 18.
26. Bajema KL, Dalesandro MF, Fredricks DN, Ramchandani M. Disseminated coccidioidomycosis presenting with intramedullary spinal cord abscesses: Management challenges. *Med Mycol Case Rep* 2017;15:1-4.

27. Bakshi R, Mechtler LL, Patel MJ, Lindsay BD, Messinger S, Gibbons KJ. Spinal leptomeningeal hemangioblastomatosis in von Hippel-Lindau disease: Magnetic resonance and pathological findings. *Journal of Neuroimaging* 1997;7(4):242-244.
28. Bank AM, Bianchi MT, Mukerji SS. Winged scapula secondary to neuroborreliosis. *Annals of Neurology* 2016;80:S220.
29. Bar C, Pedespan JM, Boccara O, Garcelon N, Levy R, Grévent D, Boddaert N, Nababout R. Early magnetic resonance imaging to detect presymptomatic leptomeningeal angioma in children with suspected Sturge-Weber syndrome. *Developmental Medicine and Child Neurology* 2020;62(2):227-233.
30. Baumann M, Birnbacher R, Koch J, Strobl R, Rostásy K. Uncommon manifestations of neuroborreliosis in children. *European Journal of Paediatric Neurology* 2010;14(3):274-277.
31. Behringer J, Ryan M, Miller M, Jaju A. Magnetic resonance imaging findings in a patient with cryopyrin-associated periodic syndrome: A rare hereditary multi-system inflammatory disorder. *Neuroradiology Journal* 2019;32(6):420-425.
32. Bergsland N, Ramasamy D, Tavazzi E, Hojnacki D, Weinstock-Guttman B, Zivadinov R. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing-remitting multiple sclerosis: A cross-sectional MRI study. *AM J NEURORADIOOL* 2019;40(4):620-625.
33. Bhardwaj S, Khasani S, Benasher D, Stein EG, Meghal T, Jacoby N, Huang YJ. Paraneoplastic Cerebellar Degeneration in Nasopharyngeal Carcinoma: a Unique Association. *Cerebellum* 2019;18(6):1126-1129.
34. Bhargava P, Wicken C, Smith MD, Strowd RE, Cortese I, Reich DS, Calabresi PA, Mowry EM. Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. *Mult Scler Relat Disord* 2019;30:136-140.
35. Bönig L, Möhn N, Ahlbrecht J, Wurster U, Raab P, Puppe W, Sühs KW, Stangel M, Skripuletz T, Schwenkenbecher P. Leptomeningeal metastasis: The role of cerebrospinal fluid diagnostics. *Front Neurol* 2019;10.
36. Bonnan M, Money P, Desblache P, Marasescu R, Puvilland LM, Demasles S, Dahan C, Krim E, Tucholka A, Doyle S, Barroso B. Focal cortical atrophy following transient meningeal enhancement in a progressive multiple sclerosis. *Neurol Sci* 2020.
37. Boulouis G, De Boysson H, Zuber M, Guillemin L, Meary E, Costalat V, Pagnoux C, Naggara O, on behalf of the French Vasculitis G. Primary Angitis of the Central Nervous System: Magnetic Resonance Imaging Spectrum of Parenchymal, Meningeal, and Vascular Lesions at Baseline. *Stroke* 2017;48(5):1248-1255.
38. Brooks CA, Bonura A, Beran RG. T2-hyperintense, non-gadolinium-enhancing, diffusion-restricted symmetrical curvilinear lesion of the anterior pons: a rare radiological pattern of leptomeningeal metastatic disease secondary to likely lung adenocarcinoma. *BMJ case reports* 2021;14(1). doi: 10.1136/bcr-2020-236265.

39. Brown DA, Whealy MA, Van Gompel JJ, Williams LN, Klaas JP. Diagnostic dilemma in primary Blastomyces dermatitidis meningitis: Role of neurosurgical biopsy. *Case Rep Neurol* 2015;7(1):63-70.
40. Budhram A, Kunchok AC, Flanagan EP. Unilateral Leptomeningeal Enhancement in Myelin Oligodendrocyte Glycoprotein Immunoglobulin G-Associated Disease. *JAMA Neurol* 2020;77(5):648-649.
41. Buonsenso D, Focarelli B, Valentini P, Onesimo R. IVIG treatment for VZV-related acute inflammatory polyneuropathy in a child. *BMJ Case Rep* 2012.
42. Byrd SE, Reyes-Mugica M, Darling CF, Chou P, Tomita T. MR of leptomeningeal melanosis in children. *Eur J Radiol* 1995;20(2):93-99.
43. Caneparo D, Lucetti C, Nuti A, Cipriani G, Tessa C, Fazzi P, Bonuccelli U. A case of sarcoidosis presenting as a non-specific intramedullary lesion. *European Journal of Neurology* 2007;14(3):346-349.
44. Carroll RD, Leigh EC, Curtis Z, Thorpe A, Ballengee J, Pacioles T. A Case of Leptomeningeal Carcinomatosis from Aggressive Metastatic Prostate Cancer. *Case Rep Oncol* 2019;12(1):311-316.
45. Castillo JJ, D'Sa S, Lunn MP, Minnema MC, Tedeschi A, Lansigan F, Palomba ML, Varettoni M, Garcia-Sanz R, Nayak L, Treon SP. Bing-Neel syndrome: A multi-institutional retrospective study. *Hematological Oncology* 2015;33:168.
46. Cavazzana I, Taraborelli M, Fredi M, Tincani A, Franceschini F. Aseptic meningitis occurring during anti-TNF-alpha therapy in rheumatoid arthritis and ankylosing spondylitis. *Clin Exp Rheumatol* 2014;32(5):732-734.
47. Celli P, Acqui M, Trillò G, Ramundo EO, D'Andrea G, Roperto R, Ferrante L. Primary leptomeningeal melanomatosis: Early leptomeningeal enhancement on MRI. *J Neurosurg Sci* 2001;45(4):235-240.
48. Chellathurai A, Vaidya JS, Kathirvelu G, Alagappan P. Primary diffuse leptomeningeal oligodendrogliomatosis: A case report and literature review. *Indian J Radiol Imaging* 2016;26(3):337-341.
49. Chen R, Tao C, You C, Ju Y. Fast-developing fatal diffuse leptomeningeal dissemination of a pineal germinoma in a young child: a case report and literature review. *Br J Neurosurg* 2018.
50. Chen W, Kong Z, Fu J, Zhao D, Wang R, Ma W, Wang Y. Diffuse leptomeningeal glioneuronal tumour (DLGNT) with hydrocephalus as an initial symptom: a case-based update. *Child's Nervous System* 2020;36(3):459-468.
51. Cheng YC, Lirng JF, Chang FC, Wang SJ, Fuh JL, Chen SS, Mu-Huo Teng M, Chang CY. Radiological manifestations of cryptococcal infection in central nervous system. *J Chin Med Assoc* 2003;66(1):19-26.
52. Cheung M, Fang B, Lee R. Optic neuropathy as the first sign of central nervous system relapse in acute myeloid leukaemia: MRI findings and its diagnostic challenge. *BMJ Case Rep* 2019;12(6).

53. Cho AH, Suh DC, Kim GE, Kim JS, Lee DH, Kwon SU, Park SM, Kang DW. MRI evidence of reperfusion injury associated with neurological deficits after carotid revascularization procedures. *European Journal of Neurology* 2009;16(9):1066-1069.
54. Choi E, Lewis AL, Takei H, Ro JY. Leptomeningeal carcinomatosis as initial presentation in adenocarcinoma of lung with signet ring cell features: An autopsy case report. *Int J Clin Exp Pathol* 2012;5(9):972-976.
55. Choi JH, Cho JW, Lee JH, Lee SW, Kim HJ, Choi KD. Obstructive hydrocephalus due to CNS toxocariasis. *Journal of the Neurological Sciences* 2013;329(1):59-61.
56. Choi SY, Kim JW, Ko JW, Lee YS, Chang YP. Patterns of ischemic injury on brain images in neonatal group b streptococcal meningitis. *Korean J Pediatr* 2018;61(8):245-252.
57. Chou CP, Lai PH, Chen WL, Pan HB, Chen C, Yang CF. Intracranial Meningeal Carcinomatosis and Non-neoplastic Meningeal Diseases: Evaluation with Contrast-Enhanced MR Imaging. *CHIN J RADIOL* 2001;26(2):51-60.
58. Chou YL, Loh JK, Hwang SL. Surgery of spinal cord pilocytic astrocytoma complicated by leptomeningeal dissemination to the brain and spine and rapid progression. *Formosan J Surg* 2013;46(2):65-69.
59. Chowdhry V, Kumar N, Lachance DH, Salomao DR, Luthra HS. An unusual presentation of rheumatoid meningitis. *Journal of Neuroimaging* 2005;15(3):286-288.
60. Chung PW, Park KY. Leptomeningeal enhancement in patients with moyamoya disease: Correlation with perfusion imaging. *Neurology* 2009;72(21):1872-1873.
61. Cianfoni A, Caulo M, Cerase A, Della Marca G, Falcone C, Di Lella GM, Gaudino S, Edwards J, Colosimo C. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities. *Eur J Radiol* 2013;82(11):1964-1972.
62. Cianfoni A, Falcone C, Faustini F, Lauriola L, Imbesi S, Della Marca G, Zoli A, Colosimo C. Rheumatoid leptomeningitis: magnetic resonance imaging and pathologic findings-a case report. *Journal of neuroimaging : official journal of the American Society of Neuroimaging* 2010;20(2):192-194. doi: 10.1111/j.1552-6569.2008.00299.x. Epub 2009 Mar 6.
63. Cihangiroglu M, Hartker FW, Mojtabadi S, Ramsey RG. Intracranial vasculitis and multiple abscesses in a pregnant woman. *Journal of Neuroimaging* 2001;11(3):340-342.
64. Cornips EM, Cox KE, Creytens DH, Granzen B, Weber JW, Ter Laak-Poort MP. Solitary juvenile xanthogranuloma of the temporal muscle and bone penetrating the dura mater in a 2-month-old boy. *Journal of neurosurgery Pediatrics* 2009;4(6):588-591. doi: 10.3171/2009.7.PEDS09230.
65. Cory RC, Clayman DA, Faillace WJ, McKee SW, Gama CH. Clinical and radiologic findings in progressive facial hemiatrophy (Parry-Romberg syndrome). *AM J NEURORADIOL* 1997;18(4):751-757.
66. Coulette S, Lecler A, Saragoussi E, Zuber K, Savatovsky J, Deschamps R, Gout O, Sabben C, Aboab J, Affortit A, Charbonneau F, Obadia M. Diagnosis and prediction of relapses in susac syndrome: A

new use for MR postcontrast FLAIR leptomeningeal enhancement. *AM J NEURORADIOOL* 2019;40(7):1184-1190.

67. Crespo-Rodríguez AM, Smirniotopoulos JG, Rushing EJ. MR and CT imaging of 24 pleomorphic xanthoastrocytomas (PXA) and a review of the literature. *Neuroradiology* 2007;49(4):307-315.

68. Crete RN, Gallmann W, Karis JP, Ross J. Spinal coccidioidomycosis: MR imaging findings in 41 patients. *AM J NEURORADIOOL* 2018;39(11):2148-2153.

69. Crowell EL, Pfeiffer ML, Kamdar AA, Koenig MK, Wittenberg SE, Supsupin EP, Adesina OOO. Idiopathic Central Nervous System Inflammatory Disease in the Setting of HLA-B27 Uveitis. *Ocul Immunol Inflamm* 2019;27(6):912-917.

70. Crowley RS, Lembke A, Horouptian DS. Isolated meningeal vasculopathy associated with Clostridium septicum infection. *Neurology* 1997;48(1):265-267.

71. Cushing SL, Ishak G, Perkins JA, Rubinstein JT. Gorham-stout syndrome of the petrous apex causing chronic cerebrospinal fluid Leak. *Otol Neurotol* 2010;31(5):789-792.

72. Damek DM. Leptomeningeal enhancement in a 58-year-old woman. *ONCOLOGY* 2014;28(5).

73. Damek DM, Kleinschmidt-DeMasters BK. The imaging and neuropathological effects of bevacizumab (Avastin) in patients with leptomeningeal carcinomatosis. *Neuro-Oncology* 2009;11(5):643.

74. De Oca Delgado MM, Díaz BC, Zambrano JS, Juárez VG, Martínez MSL, Martínez EC, Méndez-Padilla JA, Pérez SM, Moreno IR, Aceves AG, Aguilar AG. The comparative treatment of intraventricular chemotherapy by Ommaya reservoir vs. Lumbar puncture in patients with leptomeningeal carcinomatosis. *Front Oncol* 2018;8.

75. Debnam JM, Mayer RR, Chi TL, Ketonen L, Weinberg JS, Wei W, Groves MD, Guha-Thakurta N. Most common sites on MRI of intracranial neoplastic leptomeningeal disease. *Journal of Clinical Neuroscience* 2017;45:252-256.

76. Demaerel P, Wilms G, Van Lierde S, Delanote J, Baert AL. Lyme disease in childhood presenting as primary leptomeningeal enhancement without parenchymal findings on MR. *AM J NEURORADIOOL* 1994;15(2):302-304.

77. Deuble M, Aquilina C, Norton R. Neurologic melioidosis. *American Journal of Tropical Medicine and Hygiene* 2013;89(3):535-539.

78. D'Haene N, Coen N, Neugroschl C, Balériaux D, Salmon I. Leptomeningeal dissemination of low-grade intramedullary gliomas: About one case and review. *Clin Neurol Neurosurg* 2009;111(4):390-394.

79. Di Bonaventura C, Fattouch J, Izzi F, Francia A, Quarato PP, Scopetta C, Serrao M, Ricci S, Giallonardo AT, Manfredi M. Sturge-weber syndrome (sws): Electroclinical and neuroradiological features. *Ital J Neurol Sci* 1999;20(5):344-345.

80. Dimou J, Tsui A, Maartens NF, King JA. Primary diffuse leptomeningeal gliosarcomatosis with a sphenoid/sellar mass: confirmation of the ectopic glial tissue theory? *Journal of clinical neuroscience*

: official journal of the Neurosurgical Society of Australasia 2011;18(5):702-704. doi: 10.1016/j.jocn.2010.09.006. Epub 2011 Feb 26.

81. Dobson R, Doshi A, Massey L, Crowe L, Wood R, Vundavalli S, Hughes E, Lunn M, Plant G, Wickremaratchi M. See no evil, hear no evil, speak no evil... Keep it a SICRET. *Journal of Neurology, Neurosurgery and Psychiatry* 2014;85(10):A9.

82. Dörner L, Fritsch MJ, Hugo HH, Mehdorn HM. Primary diffuse leptomeningeal gliomatosis in a 2-year-old girl. *Surg Neurol* 2009;71(6):713-719.

83. Duarte SBL, Oshima MM, Mesquita J, do Nascimento FBP, de Azevedo PC, Reis F. Magnetic resonance imaging findings in central nervous system cryptococcosis: comparison between immunocompetent and immunocompromised patients. *Radiologia brasileira* 2017;50(6):359-365. doi: 10.1590/0100-3984.2016.0017.

84. Dubey D, Hinson S, Zekerdou A, Flanagan E, Pittock S, Basal E, Drubach D, Lachance D, Lennon V, McKeon A. Autoimmune GFAP astrocytopathy: Prospective evaluation of 90 patients in 1 year. *Neurology* 2018;90(15).

85. Dunning KK, Wudhikarn K, Safo AO, Holman CJ, McKenna RW, Pambuccian SE. Adrenal extranodal NK/T-cell lymphoma diagnosed by fine-needle aspiration and cerebrospinal fluid cytology and immunophenotyping: A case report. *Diagn Cytopathol* 2009;37(9):686-695.

86. Eichberg DG, Achua JK, Locatelli E, Shah AH, Komotar RJ, Ghods AJ. Primary Diffuse Leptomeningeal Melanomatosis: Case Report and Review of the Literature. *World Neurosurg* 2019;122:648-655.

87. Eid AJ, Leever JD, Husmann K. Compartmentalized *Histoplasma capsulatum* Infection of the Central Nervous System. Case reports in infectious diseases 2015;2015:581415. doi: 10.1155/2015/581415. Epub 2015 Jun 14.

88. Eiden S, Beck C, Venhoff N, Elsheikh S, Ihorst G, Urbach H, Meckel S. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: Prospective comparison of wholebrain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. *PLoS ONE* 2019;14(3).

89. Eisele P, Griebe M, Szabo K, Wolf ME, Alonso A, Engelhardt B, Hennerici MG, Gass A. Investigation of leptomeningeal enhancement in MS: A postcontrast FLAIR MRI study. *Neurology* 2015;84(8):770-775.

90. El Beltagi A, Abdelhady M, Barakat N, Alkailani Y, Jr., Aboughalia H. Vogt-Koyanagi-Harada Disease: A Case Report With Distinct Brain MRI Enhancement Patterns. *Cureus* 2020;12(9):e10391. doi: 10.7759/cureus.10391.

91. El Beltagi AH, El-Sheikh A, El-Saif R, Norbash A. Ivy sign in mildly symptomatic β -thalassemia intermedia, with development of moyamoya disease. *Neuroradiology Journal* 2014;27(1):23-28.

92. Engisch R, Titelbaum DS, Chilver-Stainer L, Kellner-Weldon F. Susac's syndrome: Leptomeningeal enhancement on 3D FLAIR MRI. *Multiple Sclerosis* 2016;22(7):972-974.

93. Evans AL, Widjaja E, Connolly DJ, Griffiths PD. Cerebral perfusion abnormalities in children with Sturge-Weber syndrome shown by dynamic contrast bolus magnetic resonance perfusion imaging. *Pediatrics* 2006;117(6):2119-2125. doi: 10.1542/peds.2005-1815.
94. Fadakar N, Ghaemmaghami S, Masoompour SM, Shirazi Yeganeh B, Akbari A, Hooshmandi S, Ostovan VR. A First Case of Acute Cerebellitis Associated with Coronavirus Disease (COVID-19): a Case Report and Literature Review. *Cerebellum* 2020;19(6):911-914.
95. Fan K, Zhu H, Xu H, Mao P, Yuan L, Deng H. The identification of a transthyretin variant p.D38G in a Chinese family with early-onset leptomeningeal amyloidosis. *Journal of Neurology* 2019;266(1):232-241.
96. Fan Y, Shan F, Lin SP, Long Y, Liang B, Gao C, Gao Q. Dynamic change in magnetic resonance imaging of patients with neuromyelitis optica. *Int J Neurosci* 2016;126(5):448-454.
97. Fels C, Riegel A, Javaheripour-Otto K, Obenauer S. Neurosarcoidosis: Findings in MRI. *CLIN IMAGING* 2004;28(3):166-169.
98. Fitzgerald RT, Osorio J, Panigrahy A, Mazariegos GV, Zuccoli G. Isolated leptomeningeal enhancement in tacrolimus-associated posterior reversible encephalopathy syndrome. *Pediatr Neurol* 2013;48(1):76-78.
99. Florence A, Zwemer E. The "gold" standard? A 4-year-old boy with somnolence and focal weakness. *Pediatrics* 2018;142(1).
100. Foo WC, Desjardins A, Cummings TJ. Primary intracerebral Hodgkin lymphoma with recurrence. *Clinical Neuropathology* 2011;30(2):75-79.
101. Foreid H, Barroso C, Carvalho H, Morgado C, Roque L, Pimentel J. A 22-year-old man with intracranial hypertension and impaired sensation over the perineum and left foot. *Brain Pathol* 2009;19(4):735-738.
102. Fouladi M, Heideman R, Langston JW, Kun LE, Thompson SJ, Gajjar A. Infectious meningitis mimicking recurrent medulloblastoma on magnetic resonance imaging. *J NEUROSURG* 1999;91(3):499-502.
103. Franco-Paredes C, Martin K. Extranodal Rosai-Dorfman disease involving the meninges. *South Med J* 2002;95(9):1101-1102.
104. Fujimura M, Kumabe T, Jokura H, Shirane R, Yoshimoto T, Tominaga T. Intractable vomiting as an early clinical symptom of cerebrospinal fluid seeding to the fourth ventricle in patients with high-grade astrocytoma. *J Neuro-Oncol* 2004;66(1):209-216.
105. Gaa J, Weidauer S. Unusual differential diagnosis of leptomeningeal enhancement: Moyamoya disease. *Journal of Neurology, Neurosurgery and Psychiatry* 2004;75(8):1170.
106. Garcia CA, El-Ali A, Rath TJ, Contis LC, Gorantla V, Drappatz J, Davar D. Neurologic immune-related adverse events associated with adjuvant ipilimumab: Report of two cases. *J Immunother Cancer* 2018;6(1).

107. Garoon RB, Foroozan R, Vaphiades MS. Don't drink in the valley. *Surv Ophthalmol* 2017;62(3):383-386.
108. Garuba HA. Left atrial-esophageal fistula following ablation for atrial fibrillation. *Journal of the American College of Cardiology* 2014;63(12):A659.
109. George P, Ramiro JI, Gomes JA, Newey CR, Bhimraj A. Central Nervous System Fungal Infection-Related Stroke: A Descriptive Study of Mold and Yeast-Associated Ischemic Stroke. *J Stroke Cerebrovasc Dis* 2020;29(6).
110. Gerlach R, Kieslich M, Van de Nes J, Galow W, Seifert V. Supratentorial leptomeningeal metastasis of a medulloblastoma without cerebellar tumor recurrence. *Acta Neurochir* 2002;144(2):201-204.
111. Ghaffari L, Bal T. An unusual presentation of acute psychosis in an elderly patient with inflammatory cerebral amyloid angiopathy. *Neurology* 2020;94(15).
112. Giannantoni NM, Della Marca G, Vollono C. An Apparently Classical Case Report of Sturge-Weber Syndrome. *Clin EEG Neurosci* 2015;46(4):353-356.
113. Giorli E, Traverso E, Benedetti L, Zupo S, Del Sette B, Cerruti G, Godani M. Central nervous system involvement in mycosis fungoides: Relevance of tcr gene testing in cerebrospinal fluid. *SpringerPlus* 2014;3(1):1-4.
114. Goo HW, Weon YC. A spectrum of neuroradiological findings in children with haemophagocytic lymphohistiocytosis. *Pediatric Radiology* 2007;37(11):1110-1117.
115. Greene JJ, Naumann IC, Poulik JM, Nella KT, Weberling L, Harris JP, Matsuoka AJ. The Protean Neuropsychiatric and Vestibuloauditory Manifestations of Neurosarcoidosis. *Audiology & neuro-otology* 2017;22(4):205-217. doi: 10.1159/000481681. Epub 2017 Nov 23.
116. Gregory J, Chopra A. Wernicke encephalopathy in a non-alcoholic patient with metastatic cns lymphoma and new-onset occipital lobe seizures: A case report. *Journal of Neuropsychiatry and Clinical Neurosciences* 2011;23(2):25-26.
117. Grewal P, Hall JP, Jhaveri M, Dafer RM. Cerebral Vasculopathy and Spinal Arachnoiditis: Two Rare Complications of Ventriculitis Post Subarachnoid Hemorrhage. *Cureus* 2020;12(12):e12241. doi: 10.7759/cureus.12241.
118. Griffiths PD, Blaser S, Boodram MB, Armstrong D, Harwood-Nash D. Choroid plexus size in young children with Sturge-Weber syndrome. *AM J NEURORADIOOL* 1996;17(1):175-180.
119. Griffiths PD, Coley SC, Romanowski CA, Hodgson T, Wilkinson ID. Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. *AJNR American journal of neuroradiology* 2003;24(4):719-723.
120. Grose D, Linger M, Tinni S, Sahathevan R. Rheumatoid meningitis: A rare cause of unilateral pachymeningitis. *BMJ Case Rep* 2019;12(4).
121. Gru AA, Fulling K, Perry A. A 39 year-old man with a cerebellar mass and pancytopenia. *Brain Pathol* 2012;22(2):251-254.

122. Guandalini M, Butler A, Mandelstam S. Spectrum of imaging appearances in Australian children with central nervous system haemophagocytic lymphohistiocytosis. *Developmental Medicine and Child Neurology* 2012;54:95.
123. Guenette JP, Tirumani SH, Keraliya AR, Shinagare AB, Ramaiya NH, Jagannathan JP. MRI findings in patients with leukemia and positive CSF cytology: A single-institution 5-year experience. *AM J ROENTGENOL* 2016;207(6):1278-1282.
124. Guo RM, Li QL, Zhong LR, Guo Y, Jiao J, Chen SQ, Wang J, Zhang Y. Brain MRI findings in acute hepatic encephalopathy in liver transplant recipients. *Acta Neurol Belg* 2018;118(2):251-258.
125. Gupta K, Banerjee A, Saggar K, Ahluwalia A, Saggar K. A prospective study of magnetic resonance imaging patterns of central nervous system infections in pediatric age group and young adults and their clinico-biochemical correlation. *J Pediatr Neurosci* 2016;11(1):46-51.
126. Haddad N, Roussel B, Pelcovits A, Rizvi S. Optic neuritis, encephalitis and leptomeningeal enhancement in a patient with anti-MOG antibodies: A case study. *Mult Scler Relat Disord* 2019;34:14-16.
127. Haikal A, Attachapianich T, Myers K, Schmidt P, Anis A. A Rare Case of Central Nervous System Vasculitis in a Patient with Perinuclear Antineutrophil Cytoplasmic Antibodies-associated Interstitial Lung Disease. *Cureus* 2020;12(2):e7144. doi: 10.7759/cureus.7144.
128. Hamdan N, Billon Grand R, Moreau J, Thines L. Cryptococcal meningitis in an immunocompetent patient with obstructive hydrocephalus: A case report. *Neurochirurgie* 2018;64(4):324-326.
129. Harrison DM, Wang KY, Fiol J, Naunton K, Royal W, III, Hua J, Izbudak I. Leptomeningeal Enhancement at 7T in Multiple Sclerosis: Frequency, Morphology, and Relationship to Cortical Volume. *Journal of Neuroimaging* 2017;27(5):461-468.
130. Harrison NS, Kishore S, Majithia V. Rheumatoid meningitis: Successful remission with rituximab. *BMJ Case Rep* 2018;11(1).
131. Hashimoto Y, Kobayashi Z, Kotera M. Leptomeningeal enhancement in acute cerebellitis associated with epstein-barr virus. *Intern Med* 2008;47(4):331-332.
132. Hedrera-Fernández A, Papandreou A, Chong WKC, Bhate S. An unusual presentation of Listeria meningitis in an immunocompetent child with selective spinal grey matter involvement. *European Journal of Paediatric Neurology* 2015;19:S73.
133. Henegar MM, Moran CJ, Silbergeld DL. Early postoperative magnetic resonance imaging following nonneoplastic cortical resection. *J NEUROSURG* 1996;84(2):174-179.
134. Higuera-Ortiz V, Reynoso A, Ruiz N, Delgado-Hernández RD, Gómez-Garza G, Flores-Suárez LF. Pachymeningitis in granulomatosis with polyangiitis: case series with earlier onset in younger patients and literature review. *Clin Rheumatol* 2017;36(4):919-924.
135. Hildesheim FE, Ramasamy DP, Bergsland N, Jakimovski D, Dwyer MG, Hojnacki D, Lizarraga AA, Kolb C, Eckert S, Weinstock-Guttman B, Zivadinov R. Leptomeningeal, dura mater and meningeal

vessel wall enhancements in multiple sclerosis. *Multiple sclerosis and related disorders* 2020;47:102653. doi: 10.1016/j.msard.2020.102653.

136. Hill MD, Mackenzie I, Mason WP. Radiation-induced glioma presenting as diffuse leptomeningeal gliomatosis: A case report. *J Neuro-Oncol* 2001;55(2):113-116.

137. Hirai T, Ando Y, Yamura M, Kitajima M, Hayashida Y, Korogi Y, Yamashita T, Yamashita Y. Transthyretin-related familial amyloid polyneuropathy: Evaluation of CSF enhancement on Serial T1-weighted and fluid-attenuated inversion recovery images following intravenous contrast administration. *AM J NEURORADIOL* 2005;26(8):2043-2048.

138. Ho CY, Vandenbussche CJ, Huppman AR, Chaudhry R, Ali SZ. Cytomorphologic and clinicoradiologic analysis of primary nonhematologic central nervous system tumors with positive cerebrospinal fluid. *Cancer Cytho* 2015;123(2):123-135.

139. Hodge MH, Williams RL, Fukui MB. Neurosarcoidosis presenting as acute infarction on diffusion-weighted MR imaging: summary of radiologic findings. *AJNR American journal of neuroradiology* 2007;28(1):84-86.

140. Hodges J, Matsumoto J, Jaeger N, Wispeley B. Gradenigo's Syndrome and Bacterial Meningitis in a Patient with a Petrous Apex Cholesterol Granuloma. *Case reports in infectious diseases* 2020;2020:8822053. doi: 10.1155/2020/8822053. eCollection 2020.

141. Hoey C, Nye G, Fadda A, Bradshaw J, Barker EN. Subarachnoid diverticulum associated with feline infectious peritonitis in a Siberian cat. *J Feline Med Surg Open Rep* 2020;6(2).

142. Høglund RA, Myro AZ, Zarnovicky S, Holmøy T. A young woman with seizures, visual impairment, and paralysis. *Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke* 2019;139(11). doi: 10.4045/tidsskr.19.0122. Print 2019 Aug 20.

143. Hong D, Seo HS, Lee YH, Kim KJ, Suh SI, Jung JM. Leptomeningeal enhancement on magnetic resonance imaging as a predictor of hemodynamic insufficiency. *J COMPUT ASSISTED TOMOGRA* 2015;39(3):307-312.

144. Horowitz BZ, Castelli R, Hughes A, Hendrickson RG, Johnson RC, Thomas JD. Massive fatal overdose of abrin with progressive encephalopathy(). Clinical toxicology (Philadelphia, Pa) 2020;58(5):417-420. doi: 10.1080/15563650.2019.1655150. Epub 2019 Aug 28.

145. Hossain FA, Marquez HJ, Veltkamp DL, Xie SQ, Klesse LJ, Timmons CF, Pfeifer CM. CT and MRI findings in leptomeningeal melanocytosis. *Radiol Case Rep* 2020;15(3):186-189.

146. Hsu HL, Chen CJ. Extensive cerebrospinal fluid enhancement following gadolinium chelate administration: Possible pathogenesis. *Acta Radiol* 2005;46(5):523-527.

147. Hsu WL, Guo JH, Hung YY, Cho DY, Chen DC. Multiple myeloma with intracranial and spinal intradural metastasis: A case report. *BioMedicine* 2020;10(3):45-49.

148. Huang YC, Lin KH, Tsao WL. Listeria Meningitis in a Patient with Regular Vital Diet and Proton Pump Inhibitor. *Tzu Chi Med J* 2009;21(2):178-180.

149. Ighani M, Jonas S, Izbudak I, Choi S, Lema-Dopico A, Hua J, O'Connor EE, Harrison DM. No association between cortical lesions and leptomeningeal enhancement on 7-Tesla MRI in multiple sclerosis. *Multiple Sclerosis Journal* 2020;26(2):165-176.
150. Ikeda K, Takazawa T, Ito H, Ishikawa Y, Miura K, Yoshii Y, Kawabe K, Iwasaki Y. Rheumatoid Leptomeningitis: Radiological alteration of cerebral hypoperfusion and subarachnoid lesions. *Intern Med* 2010;49(17):1911-1916.
151. Imam YZ, Ahmedullah HS, Akhtar N, Chacko KC, Kamran S, Al Alousi F, Alsuwaidi Z, Almaslmani M, Al Khal AL, Deleu D. Adult tuberculous meningitis in Qatar: a descriptive retrospective study from its referral center. *European neurology* 2015;73(1):90-97. doi: 10.1159/000368894. Epub 2014 Nov 18.
152. Ionita C, Wasay M, Balos L, Bakshi R. MR Imaging in Toxoplasmosis Encephalitis after Bone Marrow Transplantation: Paucity of Enhancement despite Fulminant Disease. *AM J NEURORADIOOL* 2004;25(2):270-273.
153. Isgro J, Babineau S, Gandica R, Starr AJ, Imundo LF, Eichenfield AH. Recurrent meningoencephalitis and hyponatremia in childhood neurosarcoidosis. *Pediatric Rheumatology* 2012;10.
154. Ishige S, Iwadate Y, Ishikura H, Saeki N. Primary diffuse leptomeningeal gliomatosis followed with serial magnetic resonance images. *Neuropathology* 2007;27(3):290-294.
155. Itchaki G, Paludo J, Palomba ML, Varetoni M, Talaulikar D, Chavez JC, Buske C, Tedeschi A, Simpson D, Tam CS, Issa S, Ansell SM, Treon SP, Castillo JJ. Ibrutinib for the treatment of bing-neel syndrome. *Blood* 2018;132.
156. Itsekson Hayosh Z, Tsarfati G, Greenberg G, Sharon M, Bakon M, Wohl A, Chapman J, Orion D. Early FLAIR enhancement in reversible cerebral vasoconstriction syndrome. *European Journal of Neurology* 2020;27:126.
157. Jabeen SA, Chowdary AH, Kandadai RM, Uppin MS, Meena AK, Borgohain R, Sundaram C. Primary diffuse leptomeningeal gliomatosis: An autopsy case report. *Annals of Indian Academy of Neurology* 2014;17(2):227-230.
158. Jacobs RE, McNeill K, Volpicelli FM, Warltier K, Iturrate E, Okamura C, Adler N, Smith J, Sigmund A, Mednick A, Wertheimer B, Hochman K. Treatment of Leptomeningeal Carcinomatosis in a Patient With Metastatic Cholangiocarcinoma. *ACG case reports journal* 2014;2(1):39-41. doi: 10.14309/crj.2014.78. eCollection 2014 Oct.
159. Jaeckle KA, Dixon JG, Anderson SK, Moreno-Aspitia A, Colon-Otero G, Hebenstreit K, Patel TA, Reddy SL, Perez EA. Intra-CSF topotecan in treatment of breast cancer patients with leptomeningeal metastases. *Cancer Med* 2020;9(21):7935-7942.
160. Jakchairoongruang K, Khakoo Y, Beckwith M, Barkovich AJ. New insights into neurocutaneous melanosis. *Pediatric Radiology* 2018;48(12):1786-1796.

161. Jang S, Suh SI, Ha SM, Byeon JH, Eun BL, Lee YH, Seo HS, Eun SH, Seol HY. Enterovirus 71-related encephalomyelitis: Usual and unusual magnetic resonance imaging findings. *Neuroradiology* 2012;54(3):239-245.
162. Jearanaisilp S, Sangruji T, Danchaivijitr C, Danchaivijitr N. Neoplastic meningitis: A retrospective review of clinical presentations, radiological and cerebrospinal fluid findings. *J Med Assoc Thailand* 2014;97(8):870-877.
163. Jin EH, Ma Q, Ma DQ, He W, Ji AP, Yin CH. Magnetic resonance imaging of eosinophilic meningoencephalitis caused by *Angiostrongylus cantonensis* following eating freshwater snails. *Chin Med J* 2008;121(1):67-72.
164. Jin K, Sato S, Takahashi T, Nakazaki H, Date Y, Nakazato M, Tominaga T, Itoyama Y, Ikeda S. Familial leptomeningeal amyloidosis with a transthyretin variant Asp18Gly representing repeated subarachnoid haemorrhages with superficial siderosis. *Journal of neurology, neurosurgery, and psychiatry* 2004;75(10):1463-1466. doi: 10.1136/jnnp.2003.029942.
165. Jinhu Y, Jianping D, Jun M, Hui S, Yepeng F. Metastasis of a histologically benign choroid plexus papilloma: Case report and review of the literature. *J Neuro-Oncol* 2007;83(1):47-52.
166. Joshi S, Masiak A, Zdrojewski Z. Rheumatoid arthritis with pachymeningitis - A case presentation and review of the literature. *Reumatologia* 2020;58(2):116-122.
167. Jun B, Fraunfelder FW. Atypical Optic Neuritis After Inactivated Influenza Vaccination. *Neuro-Ophthalmology* 2018;42(2):105-108.
168. Jung YJ, Chang MC. Bacterial meningitis and cauda equina syndrome after trans-sacral epiduroscopic laser decompression: A case report. *Medicine* 2019;98(11).
169. Junger SS, Stern BJ, Levine SR, Sipos E, Marti-Masso JF. Intramedullary spinal sarcoidosis: Clinical and magnetic resonance imaging characteristics. *Neurology* 1993;43(2):333-337.
170. Kalidindi N, Torres CH, Michaud J, Zwicker JC. Primitive neuroectodermal tumor presenting with diffuse leptomeningeal involvement in a 55-year-old woman: A case report and brief summary of current diagnostic tests and treatment. *Case Rep Oncol* 2014;7(2):471-477.
171. Kallmes DF, Gray L, Glass JP. High-dose gadolinium-enhanced MRI for diagnosis of meningeal metastases. *Neuroradiology* 1998;40(1):23-26.
172. Kamiya-Matsuoka C, Liao B, Gong Y, Tremont- Lukats IW. Primary natural killer/T-cell lymphoma presenting as leptomeningeal disease. *Journal of Neurology* 2014;261:S184.
173. Kamran S, Bener AB, Alper D, Bakshi R. Role of Fluid-Attenuated Inversion Recovery in the Diagnosis of Meningitis: Comparison with Contrast-Enhanced Magnetic Resonance Imaging. *J COMPUT ASSISTED TOMOGR* 2004;28(1):68-72.
174. Karikari IO, Thomas KK, Lagoo A, Cummings TJ, George TM. Primary cerebral ALK-1-positive anaplastic large cell lymphoma in a child: Case report and literature review. *Pediatr Neurosurg* 2007;43(6):516-521.

175. Karlowee V, Kolakshyapati M, Amatya VJ, Takayasu T, Nosaka R, Sugiyama K, Kurisu K, Yamasaki F. Diffuse leptomeningeal glioneuronal tumor (DLGNT) mimicking Whipple's disease: a case report and literature review. *Child's Nervous System* 2017;33(8):1411-1414.
176. Kashiwagi N, Hirabuki N, Morino H, Taki T, Yoshida W, Nakamura H. Primary solitary intracranial melanoma in the sylvian fissure: MR demonstration. *Eur Radiol* 2002;12:S7-S10.
177. Kerkering TM, Grifasi ML, Baffoe-Bonnie AW, Bansal E, Garner DC, Smith JA, Demicco DD, Schleupner CJ, Aldoghaither RA, Savaliya VA. Early clinical observations in prospectively followed patients with fungal meningitis related to contaminated epidural steroid injections. *Ann Intern Med* 2013;158(3):154-161.
178. Kim CH, Shin JE, Kim HJ, Lee KY. Bilateral internal auditory canal metastasis of non-small cell lung cancer. *Cancer Res Treat* 2015;47(1):110-114.
179. Kim CU, Pearce WA. Metastatic breast carcinoma involving the optic disc. *Am J Ophthalmol Case Rep* 2020;18.
180. Kim H, Lim DH, Kim TG, Lee JI, Nam DH, Seol HJ, Kong DS, Choi JW, Suh YL, Kim ST. Leptomeningeal enhancement on preoperative brain MRI in patients with glioblastoma and its clinical impact. *Asia-Pac J Clin Oncol* 2018;14(5):e366-e373.
181. Kim HJ, Jun WB, Lee SH, Rho MH. CT and MR findings of anthrax meningoencephalitis: report of two cases and review of the literature. *AJNR American journal of neuroradiology* 2001;22(7):1303-1305.
182. Kim HJ, Lee SA, Kim HW, Kim SJ, Jeon SB, Koo YS. The timelines of MRI findings related to outcomes in adult patients with new-onset refractory status epilepticus. *Epilepsia* 2020;61(8):1735-1748.
183. Kim HR, Suh YL, Kim JW, Lee JI. Disseminated hemangioblastomatosis of the central nervous system without von hippel-lindau disease: A case report. *J Korean Med Sci* 2009;24(4):755-759.
184. Kim HY, Park JH, Oh HE, Han HJ, Shin DI, Kim MH. A case of rheumatoid meningitis: Pathologic and magnetic resonance imaging findings. *Neurol Sci* 2011;32(6):1191-1194.
185. Kim JH, Jang WY, Jung TY, Moon KS, Jung S, Lee KH, Kim IY. Magnetic Resonance Imaging Features in Solitary Cerebral Langerhans Cell Histiocytosis: Case Report and Review of Literature. *World Neurosurg* 2018;116:333-336.
186. Kim JP, Park BJ, Lim YJ. Papillary meningioma with leptomeningeal seeding. *J Korean Neurosurg Soc* 2011;49(2):124-127.
187. Kim K, Kim J. Cryopyrine-associated periodic syndrome in Korean children: Clinical characteristics. *European Journal of Pediatrics* 2016;175(11):1619.
188. Kim KY, Kim SY, Park SE, Lee J, Lee H, Lee S, Kim JG. The first report on clinical manifestation of cryopyrin-associated periodic syndrome in Korean Children. *Pediatr Infect Vaccine* 2018;25(3):113-122.

189. Kim MM, Yum MS, Choi HW, Ko TS, Im HJ, Seo JJ, Koh KN. Central nervous system (CNS) involvement is a critical prognostic factor for hemophagocytic lymphohistiocytosis. *Korean J Hematol* 2012;47(4):273-280.
190. Kim S, Boschert U, Grenningloh R, Bhargava P. The bruton's tyrosine kinase inhibitor evobrutinib ameliorates meningeal inflammation in experimental autoimmune encephalomyelitis (EAE). *Neurology* 2020;94(15).
191. Kim SY, Kim W, Kim SH, Huh SY, Hyun JW, Jeong IH, Park MS, Cho JY, Shin HY, Kim SM, Rha JH, Lee SH, Kim HJ. Involvement of cerebral cortex in anti-aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder patients. *Multiple Sclerosis* 2014;20(1):353-354.
192. Kim W, Lee JE, Kim SH, Huh SY, Hyun JW, Jeong IH, Park MS, Cho JY, Lee SH, Lee KS, Kim HJ. Cerebral cortex involvement in neuromyelitis optica spectrum disorder. *J Clin Neurol* 2016;12(2):188-193.
193. Kinger N, Hoch MJ, Shu HG, Weinberg BD. Glioblastoma with brainstem leptomeningeal pseudoprogression following radiation therapy. *Radiology case reports* 2019;14(5):613-617. doi: 10.1016/j.radcr.2019.02.015. eCollection 2019 May.
194. Kioumehr F, Dadsetan MR, Feldman N, Mathison G, Moosavi H, Rooholamini SA, Verma RC. Postcontrast mri of cranial meninges: Leptomeningitis versus pachymeningitis. *J COMPUT ASSISTED TOMOGRA* 1995;19(5):713-720.
195. Kitajima M, Korogi Y, Yamura M, Ikushima I, Hayashida Y, Ando Y, Uchino M, Yamashita Y. Familial amyloid polyneuropathy: Hypertrophy of ligaments supporting the spinal cord. *AM J NEURORADIOL* 2004;25(9):1599-1602.
196. Kittichanteera S, Apiwattanakul M. Meningitis as early manifestation of anti-NMDAR encephalitis. *Neurol Asia* 2014;19(4):413-415.
197. Kliromanos S, Tzortzakakis A, Kits A, Öhberg C, Kollia E, Ahoromazda A, Almqvist H, Aspelin Å, Martin H, Ouellette R, Al-Saadi J, Hasselberg M, Haghgou M, Pedersen M, Petersson S, Finnsson J, Lundberg J, Falk Delgado A, Granberg T. Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort. *Radiology* 2020;297(3):E324-e334. doi: 10.1148/radiol.2020202791. Epub 2020 Jul 30.
198. Knox MK, Ménard C, Mason WP. Leptomeningeal gliomatosis as the initial presentation of gliomatosis cerebri. *J Neuro-Oncol* 2010;100(1):145-149.
199. Ko JK, Lee SW, Choi CH. Moyamoya-like vasculopathy in neurosarcoidosis. *J Korean Neurosurg Soc* 2009;45(1):50-52.
200. Komiyama M, Nakajima H, Nishikawa M, Yasui T, Kitano S, Sakamoto H. Leptomeningeal contrast enhancement in moyamoya: Its potential role in postoperative assessment of circulation through the bypass. *Neuroradiology* 2001;43(1):17-23.
201. Koning MT, Brik T, Hagenbeek R, van den Wijngaard I. A case of fulminant Epstein-Barr virus encephalitis in an immune-competent adult. *Journal of NeuroVirology* 2019;25(3):422-425.

202. Kosker M, Sener D, Kilic O, Hasiloglu ZI, Islak C, Kafadar A, Batur S, Oz B, Cokugras H, Akcakaya N, Camcioglu Y. Primary diffuse leptomeningeal gliomatosis mimicking tuberculous meningitis. *J Child Neurol* 2014;29(12):NP171-NP175.

203. Kothare SV, Chu CC, VanLandingham K, Richards KC, Hosford DA, Radtke RA. Migratory leptomeningeal inflammation with relapsing polychondritis. *Neurology* 1998;51(2):614-617.

204. Kralik SF, Kukreja MK, Paldino MJ, Desai NK, Vallejo JG. Comparison of CSF and MRI Findings among Neonates and Infants with *E coli* or Group B Streptococcal Meningitis. *AM J NEURORADIOOL* 2019;40(8):1413-1417.

205. Kremer S, Lersy F, Anheim M, Merdji H, Schenck M, Oesterlé H, Bolognini F, Messie J, Khalil A, Gaudemer A, Carré S, Alleg M, Lecocq C, Schmitt E, Anxionnat R, Zhu F, Jager L, Nesser P, Mba YT, Hmeydia G, Benzakoun J, Oppenheim C, Ferré JC, Maamar A, Carsin-Nicol B, Comby PO, Ricolfi F, Thouant P, Boutet C, Fabre X, Forestier G, de Beaurepaire I, Bornet G, Desal H, Boulouis G, Berge J, Kazémi A, Pyatigorskaya N, Lecler A, Saleme S, Edjlali-Goujon M, Kerleroux B, Constans JM, Zorn PE, Mathieu M, Baloglu S, Ardellier FD, Willaume T, Brisset JC, Caillard S, Collange O, Mertes PM, Schneider F, Fafi-Kremer S, Ohana M, Meziani F, Meyer N, Helms J, Cotton F. Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study. *Neurology* 2020;95(13):e1868-e1882.

206. Kremer S, Schmitt E, Klein O, Vignal JP, Moret C, Kahane P, Arzimanoglou A. Leptomeningeal enhancement and enlarged choroid plexus simulating the appearance of Sturge-Weber disease in a child with tuberous sclerosis. *Epilepsia* 2005;46(4):595-596.

207. Kumar D, Sheoran RK, Bansal SK, Arora OP. Revisiting the CNS tuberculosis with emphasis on giant tuberculomas and introducing the outer RIM excrescence sign. *Neuroradiology Journal* 2010;23:271-272.

208. Kumar S, Kumar S, Surya M, Mahajan A, Sharma S. To compare diagnostic ability of contrast-enhanced three-dimensional T1-SPACE with three-dimensional fluid-attenuated inversion recovery and three-dimensional T1-magnetization prepared rapid gradient echo magnetic resonance sequences in patients of meningitis. *J Neurosci Rural Pract* 2019;10(1):48-53.

209. Kunchok A, Flanagan EP, Krecke KN, Chen JJ, Caceres JA, Dominick J, Ferguson I, Kinkel R, Probasco JC, Ruvalcaba M, Santoro JD, Sieloff K, Timothy J, Weinshenker BG, McKeon A, Pittock SJ. MOG-IgG1 and co-existence of neuronal autoantibodies. *Multiple Sclerosis Journal* 2020.

210. Kurne A, Karabudak R, Karadag O, Yalcin-Cakmakli G, Karli-Oguz K, Yavuz K, Calgüneri M, Topcuoglu MA. An unusual central nervous system involvement in rheumatoid arthritis: combination of pachymeningitis and cerebral vasculitis. *Rheumatology international* 2009;29(11):1349-1353. doi: 10.1007/s00296-008-0810-6. Epub 2008 Dec 18.

211. Lammering JC, Iv M, Gupta N, Pandit R, Patel MR. Imaging spectrum of CNS coccidioidomycosis: Prevalence and significance of concurrent brain and spinal disease. *AM J ROENTGENOL* 2013;200(6):1334-1346.

212. Lang LG, Griffin JF, Levine JM, Breitschwerdt EB. Magnetic resonance imaging lesions in the central nervous system of a dog with caninemonocytic ehrlichiosis. *Case Rep Vet Med* 2011;2011.

213. Lang R, Stokes W, Lemaire J, Johnson A, Conly J. A case report of *Coccidioides posadasii* meningoencephalitis in an immunocompetent host. *BMC Infectious Diseases* 2019;19(1).
214. Lansberg MG, O'Brien MW, Norbush AM, Moseley ME, Morrell M, Albers GW. MRI abnormalities associated with partial status epilepticus. *Neurology* 1999;52(5):1021-1027.
215. Lattanzi S, Cagnetti C, Di Bella P, Scarpelli M, Silvestrini M, Provinciali L. Leptomeningeal inflammation in rheumatoid arthritis. *Neurology(R) neuroimmunology & neuroinflammation* 2014;1(4):e43. doi: 10.1212/NXI.0000000000000043. eCollection 2014 Dec.
216. Lau D, Lin J, Park P. Cranial nerve III palsy resulting from intracranial hypotension caused by cerebrospinal fluid leak after paraspinal tumor resection: Etiology and treatment options. *Spine J* 2011;11(4):e10-e13.
217. Lau HL, De Lima Corvino DF, Guerra FM, Jr., Malik AM, Lichtenberger PN, Gultekin SH, Ritter JM, Roy S, Ali IKM, Cope JR, Post MJD, Gonzales Zamora JA. Granulomatous amoebic encephalitis caused by *Acanthamoeba* in a patient with AIDS: a challenging diagnosis. *Acta Clinica Belgica: International Journal of Clinical and Laboratory Medicine* 2019.
218. Le Rhun E, Devos P, Boulanger T, Smits M, Brandsma D, Rudà R, Furtner J, Hempel JM, Postma TJ, Roth P, Snijders TJ, Winkler F, Winklhofer S, Castellano A, Hattingen E, Capellades J, Gorlia T, Van den Bent M, Wen PY, Bendszus M, Weller M. The RANO Leptomeningeal Metastasis Group proposal to assess response to treatment: lack of feasibility and clinical utility and a revised proposal. *Neuro-oncology* 2019;21(5):648-658. doi: 10.1093/neuonc/noz024.
219. Le TA, Simon S, Gilhotra J, Hissaria P. Vogt-Koyanagi-Harada syndrome presenting with bilateral optic disc swelling and leptomeningeal enhancement. *BMJ case reports* 2019;12(5). doi: 10.1136/bcr-2019-229719.
220. LeBlang SD, Falcone S, Quencer RM. Enhancing meningeal blood vessels masquerading as leptomeningeal spread of tumor in obstructive hydrocephalus. *AM J NEURORADIOOL* 1995;16(8):1742-1744.
221. Lee EJ, Kim KK, Lee EK, Lee JE. Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging. *Clin Radiol* 2016;71(12):1240-1247.
222. Lee JH, Na DG, Choi KH, Kim KJ, Ryoo JW, Lee SY, Suh YL. Subcortical low intensity on MR images of meningitis, viral encephalitis, and leptomeningeal metastasis. *AM J NEURORADIOOL* 2002;23(4):535-542.
223. Lee JK, Ko HC, Choi JG, Lee YS, Son BC. A Case of Diffuse Leptomeningeal Glioneuronal Tumor Misdiagnosed as Chronic Tuberculous Meningitis without Brain Biopsy. *Case reports in neurological medicine* 2018;2018:1391943. doi: 10.1155/2018/1391943. eCollection 2018.
224. Lee JS, Park JK, Kim SH, Jeong SY, Kim BS, Choi G, Lee MS, Ko SY, Hwang IK. Usefulness of contrast enhanced FLAIR imaging for predicting the severity of meningitis. *Journal of Neurology* 2014;261(4):817-822.

225. Lee W, Chang KH, Choe G, Chi JG, Chung CK, Kim IH, Han MH, Park SW, Shin SJ, Koh YH. MR imaging features of clear-cell meningioma with diffuse leptomeningeal seeding. *AM J NEURORADIOOL* 2000;21(1):130-132.

226. Lee Y, Kim JS, Kim JY. Cervical meningomyelitis after lumbar epidural steroid injection. *Ann Rehabil Med* 2015;39(3):504-507.

227. Lerner EJ, Bilaniuk LT. Bruton-type (congenital x-linked) agammaglobulinemia: MR imaging of unusual intracranial complications. *AM J NEURORADIOOL* 1992;13(3):976-980.

228. Lersy F, Benotmane I, Helms J, Collange O, Schenck M, Brisset JC, Chammas A, Willaume T, Lefebvre N, Solis M, Hansmann Y, Fabacher T, Caillard S, Mertes PM, Pottecher J, Schneider F, Meziani F, Fafi-Kremer S, Kremer S. Cerebrospinal fluid features in COVID-19 patients with neurologic manifestations: correlation with brain MRI findings in 58 patients. *The Journal of infectious diseases* 2020.

229. Lexa FJ, Grossman RI. MR of sarcoidosis in the head and spine: Spectrum of manifestations and radiographic response to steroid therapy. *AM J NEURORADIOOL* 1994;15(5):973-982.

230. Li Y, Funk C, Dawkins D, Simpson D, Yu JJ, Boly M, Ahmed A. Leptomeningeal Enhancement Is Associated with Transient Neurologic Deficits after Flow Diversion of Intracranial Aneurysms. *World neurosurgery* 2018;120:e94-e99. doi: 10.1016/j.wneu.2018.07.188. Epub 2018 Aug 16.

231. Liang JW, Zhang W, Sarlin J, Boniece I. Case of Cerebral Amyloid Angiopathy-Related Inflammation - Is the Absence of Cerebral Microbleeds A Good Prognostic Sign? *J Stroke Cerebrovasc Dis* 2015;24(11):e319-e322.

232. Lim CCT, Sitoh YY, Hui F, Lee KE, Ang BSP, Lim E, Lim WEH, Oh HML, Tambyah PA, Wong JSL, Tan CB, Chee TSG. Nipah viral encephalitis or Japanese encephalitis? MR findings in a new zoonotic disease. *AM J NEURORADIOOL* 2000;21(3):455-461.

233. Lim PP, Ramdas J, Miller MA, Schuerch C, Wu G. A Rare Initial Presentation of Primary Diffuse Leptomeningeal PNET in a 10-Year-Old-Male. *S D Med* 2017;70(12):543-545.

234. Lin DD, Barker PB, Hatfield LA, Comi AM. Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge-Weber syndrome: correlation with neurological symptoms. *Journal of magnetic resonance imaging : JMRI* 2006;24(2):274-281. doi: 10.1002/jmri.20627.

235. Lin DD, Barker PB, Kraut MA, Comi A. Early characteristics of Sturge-Weber syndrome shown by perfusion MR imaging and proton MR spectroscopic imaging. *AJNR American journal of neuroradiology* 2003;24(9):1912-1915.

236. Liu J, Jia H, Yang Y, Dai W, Su X, Zhao G. Cerebrospinal fluid cytology and clinical analysis of 34 cases with leptomeningeal carcinomatosis. *J Int Med Res* 2009;37(6):1913-1920.

237. Liu JK, Turner RD, Luciano MG, Krishnaney AA. Circumferential intrathecal ossification in oculoleptomeningeal amyloidosis. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia* 2015;22(4):769-771. doi: 10.1016/j.jocn.2014.10.021. Epub 2015 Jan 24.

238. Liu WM, Lin CH. A reversible stroke-like splenial lesion in viral encephalopathy. *Acta Neurol Taiwan* 2013;22(3):117-121.

239. Lohman BD, Gustafson CA, McKinney AM, Sarikaya B, Silbert SC. MR imaging of Vogt-Koyanagi-Harada syndrome with leptomeningeal enhancement. *AM J NEURORADIOOL* 2011;32(9):E169-E171.

240. long Y, Chen M, Zhang B, Gao C, Zheng Y, Xie L, Gao Q, Yin J. Brain gadolinium enhancement along the ventricular and leptomeningeal regions in patients with aquaporin-4 antibodies in cerebral spinal fluid. *J Neuroimmunol* 2014;269(1):62-67.

241. Loree J, Mehta V, Bhargava R. Cranial magnetic resonance imaging findings of leptomeningeal contrast enhancement after pediatric posterior fossa tumor resection and its significance. *Journal of neurosurgery Pediatrics* 2010;6(1):87-91. doi: 10.3171/2010.4.PEDS1058.

242. Lovett A, McKee K, Prasad S. Clinical reasoning: A 49-year-old man with progressive numbness, weakness, and evidence of leptomeningeal enhancement. *Neurology* 2018;90(1):E90-E93.

243. Lu CJ, Sun Y, Huang KM. Leptomeningeal enhancement after carotid stenting. *Stroke* 2000;31(9):2274-2275; author reply 2276-2277. doi: 10.1161/01.str.31.9.2266-j.

244. Lucey BP, Tihan T, Pomper MG, Olivi A, Laterra J. Spinal meningioma causing diffuse leptomeningeal enhancement. *Neurology* 2003;60(2):350-351.

245. Lyle MR, Dolia JN, Fratkin J, Nichols TA, Herrington BL. Newly Identified Characteristics and Suggestions for Diagnosis and Treatment of Diffuse Leptomeningeal Glioneuronal/Neuroepithelial Tumors: A Case Report and Review of the Literature. *Child neurology open* 2015;2(1):2329048x14567531. doi: 10.1177/2329048X14567531. eCollection 2015 Jan-Mar.

246. Lyons JL, Gireesh ED, Trivedi JB, Robert Bell W, Cettomai D, Smith BR, Karram S, Chang T, Tochen L, Zhang SX, McCall CM, Pearce DT, Carroll KC, Chen L, Ratchford JN, Harrison DM, Ostrow LW, Stevens RD. Fatal exserohilum meningitis and central nervous system vasculitis after cervical epidural methylprednisolone injection. *Ann Intern Med* 2012;157(11):835-836.

247. Ma C, Liu M, Mu N, Li J, Li L, Jiang R. Efficacy of afatinib for pulmonary adenocarcinoma with leptomeningeal metastases harboring an epidermal growth factor receptor complex mutation (exon 19del+K754E): A case report. *Medicine (Baltimore)* 2020;99(43):e22851.

248. Machida K, Tojo K, Naito KS, Gono T, Nakata Y, Ikeda S. Cortical petechial hemorrhage, subarachnoid hemorrhage and corticosteroid-responsive leukoencephalopathy in a patient with cerebral amyloid angiopathy. *Amyloid* 2008;15(1):60-64. doi: 10.1080/13506120701815589.

249. Machida K, Tsuchiya-Suzuki A, Sano K, Arima K, Saito Y, Kametani F, Ikeda S. Postmortem findings in a patient with cerebral amyloid angiopathy actively treated with corticosteroid. *Amyloid* 2012;19(1):47-52. doi: 10.3109/13506129.2011.648288. Epub 2012 Feb 1.

250. Maeda M, Tsuchida C. 'Ivy sign' on fluid-attenuated inversion-recovery images in childhood moyamoya disease. *AM J NEURORADIOOL* 1999;20(10):1836-1838.

251. Magaki S, Chang E, Hammond RR, Yang I, Mackenzie IR, Chou BT, Choi SI, Jen JC, Pope WB, Bell DA, Vinters HV. Two cases of rheumatoid meningitis. *Neuropathology* 2016;36(1):93-102. doi: 10.1111/neup.12238. Epub 2015 Sep 8.
252. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, Verbitskaya E, Trofimova T, Krasnov V, Shumilina M, Skoromets A, Evdoshenko E. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis. *Neurol Res Int* 2017;2017.
253. Manrique L, Lamichhane D. An unusual presentation of rheumatoid meningitis in the pre-clinical period of rheumatoid arthritis. *Neurology* 2020;94(15).
254. Mansoor S, Juhardeen H, Alnajjar A, Abaalkhail F, Al-Kattan W, Alsebayel M, Al Hamoudi W, Elsiesy H. Hyponatremia as the initial presentation of cryptococcal meningitis after liver transplantation. *Hepat Mon* 2015;15(9):1-3.
255. Marchesini N, Soda C, Ricci UM, Pinna G, Alessandrini F, Ghimerton C, Bernasconi R, Paolino G, Teli M. Giant intradural extramedullary spinal ependymoma, a rare arachnoiditis-mimicking condition: case report and literature review. *Br J Neurosurg* 2019.
256. Marcrom S, Foreman PM, McDonald A, Riley K, Guthrie BL, Markert JM, Willey CD, Bredel M, Fiveash JB. Focal management of large brain metastases and risk of leptomeningeal disease. *International Journal of Radiation Oncology Biology Physics* 2017;99(2):S172-S173.
257. Marjelund S, Tikkakoski T, Tuisku S, Räisänen S. Magnetic Resonance Imaging Findings and Outcome in Severe Tick-Borne Encephalitis. Report of Four Cases and Review of the Literature. *Acta Radiol* 2004;45(1):88-94.
258. Mathews MS, Bota DA, Kim RC, Hasso AN, Linskey ME. Primary leptomeningeal plasmablastic lymphoma. *J Neuro-Oncol* 2011;104(3):835-838.
259. Mathieu F, Morgan E, So J, Munoz DG, Mason W, Kongkham P. Oculoleptomeningeal Amyloidosis Secondary to the Rare Transthyretin c.381T>G (p.Ile127Met) Mutation. *World Neurosurg* 2018;111:190-193.
260. McClelland 3rd S, Charnas LR, SantaCruz KS, Garner HP, Lam CH. Progressive brainstem compression in an infant with neurocutaneous melanosis and Dandy-Walker complex following ventriculoperitoneal shunt placement for hydrocephalus. Case report. *J NEUROSURG* 2007;107(6):500-503.
261. McColgan P, Viegas S, Gandhi S, Bull K, Tudor R, Sheikh F, Pinney J, Fontana M, Rowczenio D, Gillmore JD, Gilbertson JA, Whelan CJ, Shah S, Jaunmuktane Z, Holton JL, Schott JM, Werring DJ, Hawkins PN, Reilly MM. Oculoleptomeningeal Amyloidosis associated with transthyretin Leu12Pro in an African patient. *Journal of Neurology* 2015;262(1):228-234.
262. McKenna MC, Vaughan D, Birmingham N, Cronin S. Rheumatoid arthritis presenting as rheumatoid meningitis. *BMJ Case Rep* 2019;12(1).

263. McKinney AM, Chacko Achanaril A, Knoll B, Nascene DR, Gawande RS. Pseudo-leptomeningeal contrast enhancement at 3T in pediatric patients sedated by propofol. *AM J NEURORADIOOL* 2018;39(9):1739-1744.

264. Mentzel HJ, Dieckmann A, Fitzek C, Brandl U, Reichenbach JR, Kaiser WA. Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography. *Pediatric Radiology* 2005;35(1):85-90.

265. Merchant TE, Davis BJ, Sheldon JM, Leibel SA. Radiation therapy for relapsed CNS germinoma after primary chemotherapy. *Journal of Clinical Oncology* 1998;16(1):204-209.

266. Merlin E, Chabrier S, Verkarre V, Cramer E, Delabesse E, Stéphan JL. Primary leptomeningeal ALK+ lymphoma in a 13-year-old child. *J Pediatr Hematol Oncol* 2008;30(12):963-967.

267. Minchom A, Chan S, Melia W, Shah R. An unusual case of pancreatic cancer with leptomeningeal infiltration. *J Gastrointest Cancer* 2010;41(2):107-109.

268. Mitsuhashi S, Yazaki M, Tokuda T, Yamamoto K, Ikeda S. MRI analysis on a patient with the V30M mutation is characteristic of leptomeningeal amyloid. *Amyloid* 2004;11(4):265-267. doi: 10.1080/13506120400000749.

269. Mittal K, Kaushik JS, Kaur G, Aamir M, Sharma S. Unusual presentation of Sturge-Weber syndrome: Progressive megalencephaly with bilateral cutaneous and cortical involvement. *Annals of Indian Academy of Neurology* 2014;17(2):207-208.

270. Mohan A, Kumar A, Dhillon SS. Seizures after a bronchoscopy: A cautionary tale with sarcoidosis. *American Journal of Respiratory and Critical Care Medicine* 2014;189.

271. Mohseni SH, Skejoe HPB, Wuerfel J, Paul F, Reindl M, Jarius S, Asgari N. Leptomeningeal and Intraparenchymal Blood Barrier Disruption in a MOG-IgG-Positive Patient. *Case reports in neurological medicine* 2018;2018:1365175. doi: 10.1155/2018/1365175. eCollection 2018.

272. Moon JH, Kim SH, Kim EH, Kang SG, Chang JH. Primary diffuse leptomeningeal gliosarcomatosis. *Brain tumor research and treatment* 2015;3(1):34-38. doi: 10.14791/btrt.2015.3.1.34. Epub 2015 Apr 29.

273. Morana G, Mancardi MM, Baglietto MG, Rossi A. Focal leptomeningeal enhancement and corticopial calcifications underlying a parietal convexity lipoma: A rare association of findings in 2 pediatric epileptic patients. *J Child Neurol* 2011;26(5):634-637.

274. Moreira DC, Macy ME, Cost CR, Greffe BS, Garrington TP. Central Nervous System Involvement of Rhabdomyosarcoma: A Single Institution Experience. *J Pediatr Hematol Oncol* 2019;41(2):152-154.

275. Motoyama Y, Ogi S, Nabeshima S. Pontine glioblastoma multiforme initially presenting with leptomeningeal gliomatosis. *Neurol Med-Chir* 2002;42(7):309-313.

276. Moulopoulos LA, Kumar AJ, Leeds NE. A second look at unenhanced spinal magnetic resonance imaging of malignant leptomeningeal disease. *CLIN IMAGING* 1997;21(4):252-259.

277. Muçaj S, Ugurel MS, Dedushi K, Ramadani N, Jerliu N. Role of MRI in diagnosis of ruptured intracranial dermoid cyst. *Acta Inform Med* 2017;25(2):141-144.

278. Mukaino A, Kinoshita I, Asai M, Toriyama F, Nakata R, Motomura M, Matsuo T, Hayashi T. A case of meningeal disseminated sarcoidosis with marked hypoglycorrachia in the CSF. *Clin Neurol* 2013;53(5):367-371.

279. Nagabushana D, Shah R, Pendharkar H, Agrawal A, Kulkarni GB, Rajendran S, Alladi S, Mahadevan A. MOG antibody seropositive aseptic meningitis: A new clinical phenotype. *J Neuroimmunol* 2019;333.

280. Najem CE, Springer J, Prayson R, Culver DA, Fernandez J, Tavee J, Hajj-Ali RA. Intra cranial granulomatous disease in common variable immunodeficiency: Case series and review of the literature. *Semin Arthritis Rheum* 2018;47(6):890-896.

281. Nakagawa K, Sheikh SI, Snuderl M, Frosch MP, Greenberg SM. A new Thr49Pro transthyretin gene mutation associated with leptomeningeal amyloidosis. *Journal of the Neurological Sciences* 2008;272(1):186-190.

282. Nakagawa K, Sorond FA, Ropper AH. Ultra-early magnetic resonance imaging findings of eclampsia. *Arch Neurol* 2008;65(7):974-976.

283. Nakamura M, Iwasaki Y, Takahashi T, Kaneko K, Nakashima I, Kunieda T, Kaneko S, Kusaka H. A case of MOG antibody-positive bilateral optic neuritis and meningoanglionitis following a genital herpes simplex virus infection. *Mult Scler Relat Disord* 2017;17:148-150.

284. Navarro RE, Golub D, Hill T, McQuinn MW, William C, Zagzag D, Hidalgo ET. Pediatric midline H3K27M-mutant tumor with disseminated leptomeningeal disease and glioneuronal features: case report and literature review. *Child's Nervous System* 2020.

285. Negishi C, Sze G. Vasculitis presenting as primary leptomeningeal enhancement with minimal parenchymal findings. *AM J NEURORADIOOL* 1993;14(1):26-28.

286. Neo S, Yeo T, Chen Z, Ngiam NHW, Lim ET, Tan K, Lim TCC. Acute radiological features facilitate diagnosis and prognosis of anti-N-methyl-d-aspartate receptor (NMDAR) and anti-voltage-gated potassium channel (VGKC) encephalitis in adults. *Journal of the neurological sciences* 2020;419:117216. doi: 10.1016/j.jns.2020.117216. Epub 2020 Nov 4.

287. Nishida T, Hattori T, Yuasa T. A case of probable cerebral amyloid angiopathy preceded by symmetrical diffusion-weighted imaging lesions. *Neurology and Clinical Neuroscience* 2019;7(5):285-287.

288. Nouh A, Borys E, Gierut AK, Biller J. Amyloid-beta related angiitis of the central nervous system: Case report and topic review. *Front Neurol* 2014;5.

289. O'Connell K, Williams L, Jones J, McCabe DJH, Murphy D, Killeen R, Tubridy N, O'Riordan S, McGuigan C. Neurosarcoidosis: clinical presentations and changing treatment patterns in an Irish Caucasian population. *Irish journal of medical science* 2017;186(3):759-766. doi: 10.1007/s11845-016-1539-y. Epub 2017 Jan 18.

290. O'Donohoe TJ, McNeill P. Diffuse leptomeningeal enhancement in a patient with rapidly progressive dementia. *Journal of Clinical Neuroscience* 2019;70:240-241.

291. Ogul H, Pirimoglu B, Kantarci M. Unusual MRI findings in a girl with acute hepatic encephalopathy: leptomeningeal enhancement and cortical laminar necrosis. *Acta Neurol Belg* 2015;115(4):697-698.

292. Oh SY, Lee SJ, Lee J, Lee S, Kim SH, Kwon HC, Lee GW, Kang JH, Hwang IG, Jang JS, Lim HY, Park YS, Kang WK, Kim HJ. Gastric leptomeningeal carcinomatosis: Multi-center retrospective analysis of 54 cases. *World J Gastroenterol* 2009;15(40):5086-5090.

293. Ohta T, Tanaka H, Kuroiwa T. Diffuse leptomeningeal enhancement, "ivy sign," in magnetic resonance images of moyamoya disease in childhood: Case report. *Neurosurgery* 1995;37(5):1009-1012.

294. Oliveira CR, Morrise MC, Mistrot JG, Cantey JB, Doern CD, Sánchez PJ. Brain magnetic resonance imaging of infants with bacterial meningitis. *J Pediatr* 2014;165(1):134-139.

295. Olsan AD, Milburn JM, Baumgarten KL, Durham HL. Leptomeningeal enhancement in a patient with proven West Nile virus infection. *AM J ROENTGENOL* 2003;181(2):591-592.

296. Omar AT, II, Bagnas MAC, Del Rosario-Blasco KAR, Diestro JDB, Khu KJO. Shunt Surgery for Neurocutaneous Melanosis with Hydrocephalus: Case Report and Review of the Literature. *World Neurosurg* 2018;120:583-589.e583.

297. Omar NB, Chagoya G, Elsayed GA, Litovsky SH, Hackney JR, Fisher WS. Cerebellar talcosis following posterior reversible encephalopathy syndrome in an intravenous methamphetamine abuser. *Surgical neurology international* 2021;12:2. doi: 10.25259/SNI_616_2020. eCollection 2021.

298. Ozkavukcu E, Tuncay Z, Selçuk F, Erden I. An unusual case of neurobrucellosis presenting with unilateral abducens nerve palsy: clinical and MRI findings. *Diagnostic and interventional radiology* (Ankara, Turkey) 2009;15(4):236-238. doi: 10.4261/1305-3825.DIR.1604-07.1. Epub 2009 Oct 27.

299. Ozturk K, McKinney AM. The Spectrum of MR Imaging Patterns Suggestive of Pediatric Posterior Reversible Encephalopathy Syndrome in Children With Cerebral X-Linked Adrenoleukodystrophy. *Journal of Neuroimaging* 2020;30(6):930-935.

300. Pan Z, Yang G, He H, Yuan T, Wang Y, Li Y, Shi W, Gao P, Dong L, Zhao G. Leptomeningeal metastasis from solid tumors: Clinical features and its diagnostic implication. *Sci Rep* 2018;8(1).

301. Park JC, Ahn JH, Chang IB, Oh JK, Kim JH, Song JH. A Case of Unusual Presentation of Contrast-induced Encephalopathy after Cerebral Angiography Using Iodixanol. *Journal of cerebrovascular and endovascular neurosurgery* 2017;19(3):184-188. doi: 10.7461/jcen.2017.19.3.184. Epub 2017 Sep 30.

302. Park JS, Park H, Park S, Kim SJ, Seol HJ, Ko YH. Primary central nervous system ALK positive anaplastic large cell lymphoma with predominantly leptomeningeal involvement in an adult. *Yonsei Med J* 2013;54(3):791-796.

303. Park M, Huh SY. Optic neuritis in a patient with bickerstaff's brainstem encephalitis. *Journal of the Peripheral Nervous System* 2016;21(3):200.

304. Parker N, Forge J, Lalich D. Leptomeningeal Carcinomatosis: A Case Report of Metastatic Triple-negative Breast Adenocarcinoma. *Cureus* 2019;11(3):e4278. doi: 10.7759/cureus.4278.

305. Parmar H, Sitoh YY, Anand P, Chua V, Hui F. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases. *Eur J Radiol* 2006;58(1):89-95.
306. Parsons AM, Aslam F, Grill MF, Aksamit AJ, Goodman BP. Rheumatoid Meningitis: Clinical Characteristics, Diagnostic Evaluation, and Treatment. *Neurohospitalist* 2020;10(2):88-94.
307. Pektezel MY, Konuskan B, Sonmez FM, Oguz KK, Anlar B. Pediatric headache and neuroimaging: experience of two tertiary centers. *Child's Nervous System* 2020;36(1):173-177.
308. Pervaiz AM, Tariq R, Bangash SA, Lal Y. Murine Typhus Presenting with Acute Psychosis and Disseminated Intravascular Coagulation: A Case Report. *Cureus* 2019;11(4):e4450. doi: 10.7759/cureus.4450.
309. Petraglia AF, Davick JJ, Mandell JW, Lapides DA. Rosai-Dorfman Disease: A Less Common Cause of Leptomeningeal and Nerve Root Enhancement. *Neurohospitalist* 2020;10(4):309-313.
310. Petrus LV, Lois JF, Lo WWM. Iatrogenically induced cortical blindness associated with leptomeningeal enhancement. *AM J NEURORADIOL* 1998;19(8):1522-1524.
311. Pham C, Bennett I, Jithoo R. Cryptococcal meningitis causing obstructive hydrocephalus in a patient on fingolimod. *BMJ Case Rep* 2017;2017.
312. Pickuth D, Spielmann RP, Heywang-Köbrunner SH. Role of radiology in the diagnosis of neurosarcoidosis. *Eur Radiol* 2000;10(6):941-944.
313. Pino-Lopez L, Wenz H, Böhme J, Maros M, Schlichtenbrede F, Groden C, Förster A. Contrast-enhanced fat-suppressed FLAIR for the characterization of leptomeningeal inflammation in optic neuritis. *Multiple Sclerosis Journal* 2019;25(6):792-800.
314. Pirini MG, Mascalchi M, Salvi F, Tassinari CA, Zanella L, Bacchini P, Bertoni F, D'Errico A, Corti B, Grigioni WF. Primary diffuse meningeal melanomatosis: Radiologic-pathologic correlation. *AM J NEURORADIOL* 2003;24(1):115-118.
315. Pol S, Schweser F, Bertolino N, Preda M, Sveinsson M, Sudyn M, Babek N, Zivadinov R. Characterization of leptomeningeal inflammation in rodent experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. *Exp Neurol* 2019;314:82-90.
316. Porto L, Kieslich M, Bartels M, Schwabe D, Zanella FE, Du Mesnil R. Leptomeningeal metastases in pediatrics: magnetic resonance image manifestations and correlation with cerebral spinal fluid cytology. *Pediatrics international : official journal of the Japan Pediatric Society* 2010;52(4):541-546. doi: 10.1111/j.1442-200X.2010.03171.x.
317. Puerta Roldán P, Santa-María López V, Morales La Madrid A, Cruz O, Muchart J, Thomas C, Guillén Quesada A. Vanishing diffuse leptomeningeal contrast enhancement in an infant with choroid plexus papilloma. *Acta Neurochir* 2019;161(2):351-354.
318. Putta SL, Weisholtz D, Milligan TA. Occipital seizures and subcortical T2 hypointensity in the setting of hyperglycemia. *Epilepsy Behav Case Report* 2014;2(1):96-99.

319. Qin Z, Kim J, Valencia D, Hamoodi L, Neltner J, Sizemore T, Lightfoot R, Jr. Rheumatoid meningitis: A case report and review of the literature. *Neurology Clinical practice* 2020;10(1):73-83. doi: 10.1212/CPJ.0000000000000678.

320. Raheja A, Eli IM, Bowers CA, Palmer CA, Couldwell WT. Primary Intracranial Epidermoid Carcinoma with Diffuse Leptomeningeal Carcinomatosis: Report of Two Cases. *World Neurosurg* 2016;88:692.e699-692.e616.

321. Rahmig J, Grey A, Berning M, Schaefer J, Lesser M, Reichmann H, Puetz V, Barlinn K, Siepmann T. Disseminated inflammation of the central nervous system associated with acute hepatitis E: a case report. *BMC Neurol* 2020;20(1).

322. Rehm D, Schneider J, Heininger U, André M, Tacke U. Acute hemiparesis revealing neuroborreliosis in a 3-year-old boy. *Neuropediatrics* 2015;46.

323. Reynolds N, Assaker R, Louis E, Lejeune JP. Leptomeningeal hemangioblastomatosis in a case of von Hippel-Lindau disease: case report. *Neurosurgery* 2003;52(5):1212-1215; discussion 1215-1216.

324. Rico R, Perez Y, Ninneman M, Ashkin D, Schmid A. Steroid resistant TB associated CNS vasculitis: A case report. *American Journal of Respiratory and Critical Care Medicine* 2019;199(9).

325. Rinaldo L, Brown D, Lanzino G, Parney IF. Outcomes following cerebrospinal fluid shunting in high-grade glioma patients. *J NEUROSURG* 2018;129(4):984-996.

326. River Y, Schwartz A, Gomori JM, Soffer D, Siegal T. Clinical significance of diffuse dural enhancement detected by magnetic resonance imaging. *J NEUROSURG* 1996;85(5):777-783.

327. Rodgers B, Bhalla V, Zhang D, El Atrouni W, Wang F, Sundararajan J, Lin J. Bilateral inflammatory myofibroblastic tumor mastoiditis. *Head Neck* 2015;37(11):E142-E145.

328. Rodriguez Alvarez M, Rodriguez Valencia LM, Seidman R, Acharya A, Espina N, Ravindran N, Mishan D, Mesa CJ, Espinoza LR, McFarlane IM. Rheumatoid meningitis and infection in absence of rheumatoid arthritis history: review of 31 cases. *Clin Rheumatol* 2020;39(12):3833-3845.

329. Rodriguez C, Strowd RE, Grier DD. Anaplastic myeloma arising from myeloma: Successful management of two diseases in an individual. *Blood* 2017;130.

330. Rodriguez FJ, Perry A, Rosenblum MK, Krawitz S, Cohen KJ, Lin D, Mosier S, Lin MT, Eberhart CG, Burger PC. Disseminated oligodendroglial-like leptomeningeal tumor of childhood: A distinctive clinicopathologic entity. *Acta Neuropathol* 2012;124(5):627-641.

331. Rodriguez J, Hussein O, Riel-Romero RM, Gonzalez-Toledo E, Kalra AA, Minagar A. A rare case of neuromyelitis optica in childhood associated with leptomeningeal enhancement and lumbosacral myeloradiculitis. *Neurology* 2016;86(16).

332. Roe RH, Fisher Y, Eagle RC, Jr., Fine HF, Cunningham ET, Jr. Oculoleptomeningeal amyloidosis in a patient with a TTR Val30Gly mutation in the transthyretin gene. *Ophthalmology* 2007;114(11):e33-37. doi: 10.1016/j.ophtha.2007.07.007.

333. Roelofs K, Shaikh F, Astle W, Gallie BL, Soliman SE. Incidental neuroblastoma with bilateral retinoblastoma: what are the chances? *Ophthalmic Genet* 2018;39(3):410-413.

334. Rogers LR, Lorusso P, Nadler P, Malik G, Shields A, Kaelin W. Erlotinib therapy for central nervous system hemangioblastomatosis associated with von Hippel-Lindau disease: A case report. *J Neuro-Oncol* 2011;101(2):307-310.

335. Rossi R, Valeria Saddi M. Subacute aseptic meningitis as neurological manifestation of primary Sjögren's syndrome. *Clin Neurol Neurosurg* 2006;108(7):688-691.

336. Rucker JC, Bioussse V, Newman NJ. Leptomeningeal enhancement and venous abnormalities in granulomatous angiitis of the central nervous system. *J Neuro-Ophthalmol* 2003;23(2):148-150.

337. Ruppert B, Welsh CT, Hannah J, Giglio P, Rumboldt Z, Johnson I, Fortney J, Jenrette JM, Patel S, Scheithauer BW. Glioneuronal tumor with neuropil-like islands of the spinal cord with diffuse leptomeningeal neuraxis dissemination. *J Neuro-Oncol* 2011;104(2):529-533.

338. Sabater AL, Sadaba LM, De Nova E. Ocular symptoms secondary to meningeal carcinomatosis in a patient with lung adenocarcinoma: A case report. *BMC Ophthalmol* 2012;12(1).

339. Safi F, Dedent AM, Boulos A, Prasad J, Al-Natour M, Assaly R. Posterior reversible encephalopathy syndrome secondary to cerebrospinal fluid leak. *American Journal of Respiratory and Critical Care Medicine* 2014;189.

340. Sagiuchi T, Ishii K, Utsuki S, Asano Y, Tsukahara S, Kan S, Fujii K, Hayakawa K. Increased uptake of technetium-99m-hexamethylpropyleneamine oxime related to primary leptomeningeal melanoma. *AM J NEURORADIOOL* 2002;23(8):1404-1406.

341. Saltijeral SN, Grosu HB, De La Garza H, O'Brien B, Iliescu G. Leptomeningeal Enhancement due to Neurosarcoidosis Mimicking Malignancy. *Case Rep Med* 2020;2020.

342. Salvarani C, Brown RD, Jr., Calamia KT, Christianson TJ, Huston J, 3rd, Meschia JF, Giannini C, Miller DV, Hunder GG. Primary central nervous system vasculitis with prominent leptomeningeal enhancement: a subset with a benign outcome. *Arthritis and rheumatism* 2008;58(2):595-603. doi: 10.1002/art.23300.

343. Salvarani C, Brown RD, Christianson TJH, Huston J, Ansell SM, Giannini C, Hunder GG. Primary central nervous system vasculitis associated with lymphoma. *Neurology* 2018;90(10):e847-e855.

344. Salvarani C, Hunder GG, Morris JM, Brown RD, Jr., Christianson T, Giannini C. A β -related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. *Neurology* 2013;81(18):1596-1603. doi: 10.1212/WNL.0b013e3182a9f545. Epub 2013 Sep 27.

345. Salvarani C, Morris JM, Giannini C, Brown RD, Christianson T, Hunder GG. Imaging Findings of Cerebral Amyloid Angiopathy, A β -Related Angiitis (ABRA), and Cerebral Amyloid Angiopathy-Related Inflammation. *Medicine* 2016;95(20).

346. Sancho-Saldaña A, Lambea-Gil Á, Capabio Liesa JL, Barrena Caballo MR, Garay MH, Celada DR, Serrano-Ponz M. Guillain-Barré syndrome associated with leptomeningeal enhancement following SARS-CoV-2 infection. *Clin Med J R Coll Phys Lond* 2020;20(4):E93-E94.

347. Saporta I, Chennamadhavuni A, Dolan MJ. Atrioesophageal fistula: A rare complication of radiofrequency ablation. *Wisconsin Medical Journal* 2017;116(2):84-86.

348. Saracino D, D'Armiento F, Napolitano M, Ayala F, Di Iorio G, Puoti G. A case of Köhlmeier-Degos disease with dramatic neurological involvement. *Clinical Neuropathology* 2017;36(3):143.

349. Sarkis RA, Mays M, Isada C, Ahmed M. MRI findings in cryptococcal meningitis of the non-HIV population. *Neurologist* 2015;19(2):40-45.

350. Scala M, Morana G, Milanaccio C, Pavanello M, Nozza P, Garrè ML. Atypical choroid plexus papilloma: Spontaneous resolution of diffuse leptomeningeal contrast enhancement after primary tumor removal in 2 pediatric cases. *J Neurosurg Pediatr* 2017;20(3):284-288.

351. Schiff D, Taylor JW, Flanagan E, O'Neill BP, Siegal T, Omuro A, Baehring J, Gonzalez-Aguilar A, Chamberlain M, Nishikawa R. Presentation, diagnostics and treatment of primary leptomeningeal lymphoma: An international primary CNS lymphoma collaborative group series. *Neuro-Oncology* 2012;14:iii9.

352. Schluterman KO, Fassas AB, Van Hemert RL, Harik SI. Multiple myeloma invasion of the central nervous system. *Archives of neurology* 2004;61(9):1423-1429. doi: 10.1001/archneur.61.9.1423.

353. Schumacher DJ, Tien RD, Friedman H. Gadolinium enhancement of the leptomeninges caused by hydrocephalus: A potential mimic of leptomeningeal metastasis. *AM J NEURORADIOOL* 1994;15(4):639-641.

354. Sell M, Mitrovics T, Sander BC. Primary nodular meningeal glioma mimicking metastatic tumor of the cerebellum with diffuse infra- and supratentorial leptomeningeal spread. *Clinical Neuropathology* 2000;19(3):126-130.

355. Seong M, Park S, Kim ST, Park SG, Kim YK, Kim HJ, Ahn MJ. Diagnostic accuracy of MR imaging of patients with leptomeningeal seeding from lung adenocarcinoma based on 2017 RANO proposal: added value of contrast-enhanced 2D axial T2 FLAIR. *J Neuro-Oncol* 2020;149(2):367-372.

356. Serra SM, Dabdoub CB, Da Cunha AH, Salazar B, Lima TP, Azevedo-Filho HC. Disseminated glioneuronal tumor with neuropil-like islands of the spinal cord: A distinctive entity. *World Neurosurg* 2013;80(5):655.e651-655.e655.

357. Shapiro RH, Chang AL. Urgent radiotherapy is effective in the treatment of metastatic medulloblastoma causing symptomatic brainstem edema. *Pediatric Blood and Cancer* 2011;57(6):1077-1080.

358. Shen W, Zhang Y, Zhou C, Shen Y. Bilateral symmetrical deep gray matter involvement and leptomeningeal enhancement in a child with MOG-IgG-associated encephalomyelitis. *BMC Neurol* 2021;21(1).

359. Shi B, Jiang W, He M, Sun H, Sun X, Yang Y, Yao J, Wu L, Huang D. Aseptic meningitis as an atypical manifestation of neuromyelitis optica spectrum disorder flare. *Mult Scler Relat Disord* 2020;41.

360. Shin RK, Moonis G, Imbesi SG. Transient focal leptomeningeal enhancement in Sturge-Weber syndrome. *Journal of Neuroimaging* 2002;12(3):270-272.

361. Singh A, Kesavadas C, Radhakrishnan M, Santhosh K, Nair M, Menon G, Radhakrishnan VV. Primary diffuse leptomeningeal gliomatosis. *J Neuroradiol* 2009;36(1):52-56.

362. Singh SN, Bhatt TC, Kumar S, Chauhan V, Pandey A. A case of cervical spine tuberculosis in an infant. *J Clin Diagn Res* 2016;10(1):TD03-TD05.

363. Sirachainan N, Visudtibhan A, Tuntiyatorn L, Pakakasama S, Chuansumrit A, Hongeng S. Favorable response of intraomaya topotecan for leptomeningeal metastasis of neuroblastoma after intra-venous route failure. *Pediatric Blood and Cancer* 2008;50(1):169-172.

364. Smith JH, Dhamija R, Moseley BD, Sandroni P, Lucchinetti CF, Lennon VA, Kantarci OH. N-methyl-D-aspartate receptor autoimmune encephalitis presenting with opsoclonus-myoclonus: Treatment response to plasmapheresis. *Arch Neurol* 2011;68(8):1069-1072.

365. Smith R, Hadjivassiliou M, Hoggard N, Kuet KP, Kilding R, Akil M. An unusual case of inflammatory meningitis in a young man with systemic lupus erythematosus. *Lupus* 2018;27(11):1864-1866.

366. Sohail A, Smibert OC, Snell G, Paraskeva M, Jenney A. Cryptococcal infection in lung transplant recipients: A 5-year retrospective review at an Australian transplant center. *Transplant Infect Dis* 2018;20(6).

367. Somja J, Boly M, Sadzot B, Moonen G, Deprez M. Primary diffuse leptomeningeal gliomatosis: An autopsy case and review of the literature. *Acta Neurol Belg* 2010;110(4):325-333.

368. Sommer NN, Pons Lucas R, Coppenrath E, Kooijman H, Galiè F, Hesse N, Sommer WH, Treitl KM, Saam T, Froelich MF. Contrast-enhanced modified 3D T1-weighted TSE black-blood imaging can improve detection of infectious and neoplastic meningitis. *Eur Radiol* 2020;30(2):866-876.

369. Song MW, Montovano M, Kubiak A, Khalid S, Ellner J. Puffy Tumor: Intracranial Extension Not Requiring Neurosurgical Intervention. *Cureus* 2020;12(8):e10106. doi: 10.7759/cureus.10106.

370. Soni N, Bathla G, Pillenahalli Maheshwarappa R. Imaging findings in spinal sarcoidosis: a report of 18 cases and review of the current literature. *Neuroradiology Journal* 2019;32(1):17-28.

371. Soni N, Kumar S, Shimle A, Ora M, Bathla G, Mishra P. Cerebrovascular complications in tuberculous meningitis—A magnetic resonance imaging study in 90 patients from a tertiary care hospital. *Neuroradiology Journal* 2020;33(1):3-16.

372. Soo MS, Tien RD, Gray L, Andrews PI, Friedman H. Mesenrhombencephalitis: MR findings in nine patients. *AM J ROENTGENOL* 1993;160(5):1089-1093.

373. Spagnolo F, Nozzoli C, Rini A, La Spada S, De Marco V, Passarella B. Neurological Involvement in the Course of Scleromyxedema: A Case Report. *J Stroke Cerebrovasc Dis* 2016;25(9):e148-e150.

374. Speers DJ, Flexman J, Blyth CC, Rooban N, Raby E, Ramaseshan G, Benson S, Smith DW. Clinical and radiological predictors of outcome for murray valley encephalitis. *American Journal of Tropical Medicine and Hygiene* 2013;88(3):481-489.

375. Spencer TS, Campellone JV, Maldonado I, Huang N, Usmani Q, Reginato AJ. Clinical and magnetic resonance imaging manifestations of neurosarcoidosis. *Semin Arthritis Rheum* 2005;34(4):649-661.

376. Storch K, Schriever V, Hahn G, Sell K, Smitka M, Suttorp M, von der Hagen M, Schallner J. Acquired sensorimotor polyneuropathy in an adolescent boy with primary intracranial sarcoma. *European Journal of Paediatric Neurology* 2019;23(4):662-667.

377. Sublett JM, Davenport C, Eisenbrock H, Dalal S, Jaffar Kazmi SA, Kershenovich A. Pediatric Primary Diffuse Leptomeningeal Primitive Neuroectodermal Tumor: A Case Report and Literature Review. *Pediatr Neurosurg* 2017;52(2):114-121.

378. Suh HB, Kim H, Kim HJ. Hashimoto's encephalopathy with unusual MRI findings mimicking meningoencephalitis: A case report and literature review. *J Kor Soc Radiol* 2020;81(2):453-458.

379. Sun H, Sun X, Huang D, Wu L, Yu S. Cerebral cortex impairment in neuromyelitis optica spectrum disorder: A case report and literature review. *Mult Scler Relat Disord* 2019;32:9-12.

380. Sun H, Wu L. Teaching NeurolImages: Cortical damage with leptomeningeal enhancement in neuromyelitis optica spectrum disorder. *Neurology* 2018;91(11):e1087-e1088.

381. Susac JO, Murtagh FR, Egan RA, Berger JR, Bakshi R, Lincoff N, Gean AD, Galetta SL, Fox RJ, Costello FE, Lee AG, Clark J, Layzer RB, Daroff RB. MRI findings in Susac's syndrome. *Neurology* 2003;61(12):1783-1787.

382. Tahir M, Peseski AM, Jordan SJ. Case Report: *Candida dubliniensis* as a Cause of Chronic Meningitis. *Front Neurol* 2020;11.

383. Tai MLS, Mohd Nor H, Rahmat K, Viswanathan S, Abdul Kadir KA, Ramli N, Abu Bakar FK, Mohd Zain NR, Abdullah S, Yap JF, Shaheed A, Ng BS, Rafia MH, Tan CT. Neuroimaging findings are sensitive and specific in diagnosis of tuberculous meningitis. *Neurol Asia* 2017;22(1):15-23.

384. Tai MLS, Nor HM, Kadir KAA, Viswanathan S, Rahmat K, Zain NRM, Ong KG, Rafia MH, Tan CT. Paradoxical manifestation is common in HIV-negative tuberculous meningitis. *Medicine* 2016;95(1).

385. Tai MLS, Nor HM, Viswanathan S, Rahmat K, Mohd Zain NR, Pow ZY, Ong LS, Rafia MH, Tan CT. Spinal tuberculous disease is common in tuberculous meningitis. *Neurol Asia* 2017;22(4):313-323.

386. Tai MLS, Tan HY, Yong YK, Shankar EM, Viswanathan S, Nor HM, Rahmat K, Yap JF, Ng BS, Tan CT. Role of cytokines in the assessment of clinical outcome and neuroimaging findings in patients with tuberculous meningitis. *Neurol Asia* 2017;22(3):209-220.

387. Tai MLS, Viswanathan S, Rahmat K, Chong HT, Goh WZ, Yeow EKM, Toh TH, Tan CT. Tuberculous optochiasmatic arachnoiditis and optochiasmatic tuberculoma in Malaysia. *Neurol Asia* 2018;23(4):319-325.

388. Tai MLS, Viswanathan S, Rahmat K, Nor HM, Kadir KAA, Goh KJ, Ramli N, Bakar FKA, Zain NRM, Yap JF, Ong BH, Rafia MH, Tan CT. Cerebral infarction pattern in tuberculous meningitis. *Sci Rep* 2016;6.

389. Takagi M, Oku H, Kida T, Akioka T, Ikeda T. Case of Primary Leptomeningeal Lymphoma Presenting with Papilloedema and Characteristics of Pseudotumor Syndrome. *Neuro-Ophthalmology* 2017;41(3):149-153.

390. Tallant A, Selig D, Wanko SO, Roswarski J. First-line ibrutinib for Bing-Neel syndrome. *BMJ Case Rep* 2018;2018.

391. Tan AP. CAR T-cell therapy-related neurotoxicity in paediatric acute lymphocytic leukaemia. *Pediatric Blood and Cancer* 2020;67(11).

392. Tan ZR, Long XY, Li GL, Zhou JX, Long L. Spectrum of neuroimaging findings in cryptococcal meningitis in immunocompetent patients in China — A series of 18 cases. *Journal of the Neurological Sciences* 2016;368:132-137.

393. Tauziede-Espariat A, De Paula AM, Pages M, Laquerriere A, Caietta E, Delpont B, Viennet G, De Bustos EM, Moulin T, Barnerias C, Vauleon E, Grill J, Chiforeanu D, Vasiljevic A, Varlet P. Primary leptomeningeal gliomatosis in children and adults: A morphological and molecular comparative study with literature review. *Clinical Neurosurgery* 2016;78(3):343-352.

394. Tauziede-Espariat A, Polivka M, Chabriat H, Bouazza S, Sene D, Adle-Biassette H. A case report of meningeal Rosai-Dorfman disease associated with IgG4-related disease. *Clinical Neuropathology* 2015;34(6):343-349.

395. Thitiwichienlert S, Tangpagasit W, Sabsanhor S, Patarajierapun P. Immunoglobulin G4-related ophthalmic disease: A case report. *J Med Assoc Thailand* 2020;103(7):719-724.

396. Thomas B, Krishnamoorthy T, Kapilamoorthy TR. Contrast enhanced FLAIR imaging in ibuprofen induced aseptic meningitis. *Eur J Radiol Extra* 2006;60(3):97-99.

397. Thongpooswan S, Chapagain B, Bandagi S. A Rare Case of Neuromyelitis Optica Spectrum Disorder in Patient with Sjogren's Syndrome. *Case reports in rheumatology* 2014;2014:158165. doi: 10.1155/2014/158165. Epub 2014 Nov 19.

398. Thongpooswan S, Chyn E, Alfishawy M, Restrepo E, Berman C, Ahmed K, Muralidharan S. Polyradiculopathy and gastroparesis due to cytomegalovirus infection in AIDS: A case report and review of literature. *Am J Case Rep* 2015;16:801-804.

399. Thurnher MM, Post MJ, Jinkins JR. MRI of infections and neoplasms of the spine and spinal cord in 55 patients with AIDS. *Neuroradiology* 2000;42(8):551-563. doi: 10.1007/s002340000344.

400. Tien RD, Cardenas CA, Rajagopalan S. Pleomorphic xanthoastrocytoma of the brain: MR findings in six patients. *AM J ROENTGENOL* 1992;159(6):1287-1290.

401. Titelbaum DS, Engisch R, Schwartz ED, Napoli SQ, Sloane JA, Samaan S, Katz JD, Lathi ES. Leptomeningeal Enhancement on 3D-FLAIR MRI in Multiple Sclerosis: Systematic Observations in Clinical Practice. *Journal of Neuroimaging* 2020;30(6):917-929.

402. Togashi S, Maruya J, Abe H, Nishimaki K, Ouchi H, Hara K, Tokairin T, Nishiyama K, Shimizu H. Endoscopic Management for Recurrent Hydrocephalus Associated with Neurosarcoidosis. *World Neurosurg* 2020;144:121-124.

403. Tortori-Donati P, Fondelli MP, Rossi A, Bava GL. Intracranial contrast-enhancing masses in infants with capillary haemangioma of the head and neck: Intracranial capillary haemangioma? *Neuroradiology* 1999;41(5):369-375.

404. Tosaka M, Tamura M, Oriuchi N, Horikoshi M, Joshi T, Sugawara K, Kobayashi S, Kohga H, Yoshida T, Sasaki T. Cerebrospinal fluid immunocytochemical analysis and neuroimaging in the diagnosis of primary leptomeningeal melanoma: Case report. *J NEUROSURG* 2001;94(3):528-532.

405. Trinh VT, Medina-Flores R, Chohan MO. Leptomeningeal carcinomatosis as primary manifestation of pancreatic cancer. *Journal of Clinical Neuroscience* 2016;30:124-127.

406. Tritanon O, Boonsang W, Panyaping T. Infectious leptomeningitis: Diagnostic value of contrast-enhanced 3D fluid-attenuated inversion recovery with fat suppression, contrast-enhanced 3D spoiled gradient-echo high resolution T1-weighted and contrast-enhanced T1-weighted images correlated with CSF analysis. *J Med Assoc Thailand* 2020;103(4):365-372.

407. Tsai HC, Liu YC, Kunin CM, Lai PH, Lee SS, Chen YS, Wann SR, Lin WR, Huang CK, Ger LP, Lin HH, Yen MY. Eosinophilic meningitis caused by *Angiostrongylus cantonensis* associated with eating raw snails: correlation of brain magnetic resonance imaging scans with clinical findings. *The American journal of tropical medicine and hygiene* 2003;68(3):281-285.

408. Tsai HC, Tseng YT, Yen CM, Chen ER, Sy CL, Lee SSJ, Wann SR, Chen YS. Brain magnetic resonance imaging abnormalities in eosinophilic meningitis caused by *angiostrongylus cantonensis* infection. *Vector Borne Zoonotic Dis* 2012;12(2):161-166.

409. Tsai JP, Sheu JJ, Hsieh K. Unusual magnetic resonance imaging abnormality in nonketotic hyperglycemia - Related epilepsy partialis continua. *Annals of Indian Academy of Neurology* 2018;21(3):225-227.

410. Tseng YT, Tsai HC, Sy CL, Lee SS, Wann SR, Wang YH, Chen JK, Wu KS, Chen YS. Clinical manifestations of eosinophilic meningitis caused by *Angiostrongylus cantonensis*: 18 years' experience in a medical center in southern Taiwan. *Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi* 2011;44(5):382-389. doi: 10.1016/j.jmii.2011.01.034. Epub 2011 Jan 20.

411. Udani V, Pujar S, Munot P, Maheshwari S, Mehta N. Natural history and magnetic resonance imaging follow-up in 9 sturge-weber syndrome patients and clinical correlation. *J Child Neurol* 2007;22(4):479-483.

412. Uddin A, Chicken W, Elamass M, Alkistawi F, Singh S, Abdalla Al-zawi AS. Isolated Leptomeningeal Metastasis of Breast Cancer during Neoadjuvant Chemotherapy. *European Journal of Surgical Oncology* 2019;45(11):2219.

413. Urban PP, Hertkorn C, Schattenberg JM, Gawehn J, Hägele S, Wunsch M, Altland K. Leptomeningeal familial amyloidosis: A rare differential diagnosis of leptomeningeal enhancement in MRI. *J Neurol* 2006;253(9):1238-1240. doi: 10.1007/s00415-006-0169-0. Epub 2006 Sep 21.

414. Uro-Coste E, Ssi-Yan-Kai G, Guilbeau-Frugier C, Boetto S, Bertozzi AI, Sevely A, Lolmede K, Delisle MB. Desmoplastic infantile astrocytoma with benign histological phenotype and multiple intracranial localizations at presentation. *J Neuro-Oncol* 2010;98(1):143-149.

415. Vahabi Z, Sikaroodi H, Abdi S, Hashemi A. Chronic meningitis as the first presentation of sarcoidosis: an uncommon finding. *Iranian journal of neurology* 2011;10(1):29-31.

416. Vargas TC, Thomas RL, Erickson JC. Leptomeningeal enhancement in a patient with progressive cranial neuropathies and lumbosacral radiculopathies. *JAMA Neurol* 2016;73(3):345-346.

417. Vassilyadi M, Michaud J. Hydrocephalus as the initial presentation of a spinal cord astrocytoma associated with leptomeningeal spread. *Pediatr Neurosurg* 2005;41(1):29-34.

418. Verhelst H, Van Coster R. Neuroradiologic findings in a young patient with characteristics of Sturge-Weber syndrome and Klippel-Trenaunay syndrome. *J Child Neurol* 2005;20(11):911-913.

419. Verma R, Patil TB, Lalla R. Pituitary apoplexy syndrome as the manifestation of intracranial tuberculoma. *BMJ Case Rep* 2014.

420. Villar del Saz S, Sued O, Falco V, Agüero F, Crespo M, Pumarola T, Curran A, Gatell JM, Pahissa A, Miro JM, Ribera E. Acute meningoencephalitis due to human immunodeficiency virus type 1 infection in 13 patients: Clinical description and follow-up. *Journal of NeuroVirology* 2008;14(6):474-479.

421. Wagemakers A, Ang CW, Hagen F, Bot JCJ, Bomers MK, Visser MC, Van Dijk K. Case report: Chronic relapsing cryptococcal meningitis in a patient with low mannose-binding lectin and a low naïve CD4 cell count. *BMC Infectious Diseases* 2019;19(1).

422. Wagemakers M, Verhagen W, Borne B, Venderink D, Wauters C, Strobbe L. Bilateral profound hearing loss due to meningeal carcinomatosis. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia* 2005;12(3):315-318. doi: 10.1016/j.jocn.2004.07.012.

423. Wagner S, Lanfermann H, Eichner G, Gufler H. Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: Impact of time-dependent changes in lesion morphology on MRI. *Neuro-Oncology* 2017;19(4):586-594.

424. Wengert O, Rothenfusser-Korber E, Vollrath B, Bohner G, Scheibe F, Otto C, Hofmann J, Angstwurm K, Ruprecht K. Neurosarcoidosis: Correlation of cerebrospinal fluid findings with diffuse leptomeningeal gadolinium enhancement on MRI and clinical disease activity. *Journal of the Neurological Sciences* 2013;335(1):124-130.

425. Whitehead MT, Vezina G. Osseous intramedullary signal alteration and enhancement in Sturge-Weber syndrome: an early diagnostic clue. *Neuroradiology* 2015;57(4):395-400.

426. Widjaja E, Connolly DJ, Gatscher S, McMullen J, Griffiths PD. Spurious leptomeningeal enhancement on immediate post-operative MRI for paediatric brain tumours. *Pediatric radiology* 2005;35(3):334-338. doi: 10.1007/s00247-004-1318-1. Epub 2004 Nov 13.

427. Wiesmann M, Koedel U, Brückmann H, Pfister HW. Experimental bacterial meningitis in rats: Demonstration of hydrocephalus and meningeal enhancement by magnetic resonance imaging. *Neurol Res* 2002;24(3):307-310.

428. Wilkinson ID, Griffiths PD, Hoggard N, Cleveland TJ, Gaines PA, Macdonald S, McKevitt F, Venables GS. Short-term changes in cerebral microhemodynamics after carotid stenting. *AM J NEURORADIOL* 2003;24(8):1501-1507.

429. Wilkinson ID, Griffiths PD, Hoggard N, Cleveland TJ, Gaines PA, Venables GS. Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging. *Stroke* 2000;31(4):848-851.

430. Williams Iii DW, Elster AD. Cranial CT and MR in the klippel-trenaunay-weber syndrome. *AM J NEURORADIOL* 1992;13(1):291-294.

431. Wilson N, Pohl D, Michaud J, Doja A, Miller E. MRI and clinicopathological correlation of childhood primary central nervous system angiitis. *Clin Radiol* 2016;71(11):1160-1167.

432. Wolf ME, Eisele P, Schweizer Y, Alonso A, Gass A, Hennerici MG, Szabo K. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI. *Case Rep Neurol* 2016;8(1):10-15.

433. Wu CH, Lirng JF, Ling YH, Wang YF, Wu HM, Fuh JL, Lin PC, Wang SJ, Chen SP. Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood–Brain Barrier Leakage. *Annals of Neurology* 2021;89(1):111-124.

434. Wu JW, Chen ST. A rare case of central nervous system tuberculosis presenting as transient splenial lesion: Case report and literature review. *Neurology* 2017;88(16).

435. Wylie KM, Blanco-Guzman M, Wylie TN, Lawrence SJ, Ghobadi A, Dipersio JF, Storch GA. High-throughput sequencing of cerebrospinal fluid for diagnosis of chronic *Propionibacterium acnes* meningitis in an allogeneic stem cell transplant recipient. *Transplant Infect Dis* 2016;18(2):227-233.

436. Xia Z, Steele SU, Bakshi A, Clarkson SR, White CC, Schindler MK, Nair G, Dewey BE, Price LR, Ohayon J, Chibnik LB, Cortese ICM, De Jager PL, Reich DS. Assessment of early evidence of multiple sclerosis in a prospective study of asymptomatic high-risk family members. *JAMA Neurol* 2017;74(3):293-300.

437. Xiang XM, Evans R, Lovera J, Rao R. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease Presenting as Recurrent and Migrating Focal Cortical Encephalitis. *Child Neurology Open* 2020;7.

438. Yamahiro A, Lau KH, Peaper DR, Villanueva M. Meningitis Caused by *Candida Dubliniensis* in a Patient with Cirrhosis: A Case Report and Review of the Literature. *Mycopathologia* 2016;181(7):589-593.

439. Yan W, Jing W, An N, Tian Y, Guo D, Kong L, Zhu H, Yu J. The clinical characteristic and prognostic factors of leptomeningeal metastasis in patients with non-small-cell lung cancer-a retrospective study from one single cancer institute. *Cancer Med* 2019;8(6):2769-2776.

440. Yang J, Moon S, Kwon M, Huh K, Jung CW. A case of tuberculosis meningitis after allogeneic hematopoietic stem cell transplantation for relapsed Acute Myeloid Leukemia. *Transplant Infect Dis* 2020.

441. Yeh S, Bazzaz S, Foroozan R. Transient cortical blindness with leptomeningeal enhancement after attempted peripherally inserted central venous catheter placement. *Arch Ophthalmol* 2005;123(5):700-702.

442. Yeo JM, MacArthur D, Davis J, Scott I, Gran B. An Unusual Cause of Cranial Dural Thickening. *Case reports in neurological medicine* 2020;2020:8877738. doi: 10.1155/2020/8877738. eCollection 2020.

443. Yıldırım H, Kabakus N, Koc M, Murat A, Inceköy Girgin F. Meningoencephalitis due to anthrax: CT and MR findings. *Pediatric radiology* 2006;36(11):1190-1193. doi: 10.1007/s00247-006-0275-2. Epub 2006 Aug 12.

444. Yomo S, Tada T, Hirayama S, Tachibana N, Otani M, Tanaka Y, Hongo K. A case report and review of the literature. *J Neuro-Oncol* 2007;81(2):209-216.

445. Yoon BN, Kim SJ, Lim MJ, Han JY, Lee KW, Sung JJ, Ha CK, Choi SH. Neuro-Behçet's Disease Presenting as Hypertrophic Pachymeningitis. *Experimental neurobiology* 2015;24(3):252-255. doi: 10.5607/en.2015.24.3.252. Epub 2015 Sep 22.

446. Yoshitomi M, Uchikado H, Hattori G, Sugita Y, Morioka M. Endoscopic biopsy for the diagnosis of neurosarcoidosis at the fourth ventricle outlet with hydrocephalus. *Surg Neurol Int* 2015;6:S633-S636.

447. Young BD, Levine JM, Fosgate GT, de Lahunta A, Flegel T, Matiasek K, Miller A, Silver G, Sharp N, Greer K, Schatzberg SJ. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. *Journal of Veterinary Internal Medicine* 2009;23(3):527-535.

448. Young S, Ross P, Marcum J. Unresponsiveness leptomeningeal enhancement: An old problem and a new diagnosis. *Critical Care Medicine* 2019;47(1).

449. Yu S, He L, Zhuang X, Luo B. Pleomorphic xanthoastrocytoma: MR imaging findings in 19 patients. *Acta Radiol* 2011;52(2):223-228.

450. Zheng RL, Lv H, Zhang W, Yu MX, Yuan Y. Rheumatoid leptomeningitis: a case report and literature review. *Beijing Da Xue Xue Bao* 2006;38(3):324-325.

451. Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Lizarraga AA, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of teriflunomide and dimethyl fumarate on cortical atrophy and leptomeningeal inflammation in multiple sclerosis: A retrospective, observational, case-control pilot study. *Journal of Clinical Medicine* 2019;8(3).

452. Zivadinov R, Ramasamy DP, Hagemeier J, Kolb C, Bergsland N, Schweser F, Dwyer MG, Weinstock-Guttman B, Hojnacki D. Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. *AM J NEURORADIOOL* 2018;39(4):642-647.

453. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, Bergsland N, Polak P, Benedict RHB, Hojnacki D, Weinstock-Guttman B. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. *Multiple Sclerosis* 2017;23(10):1336-1345.

454. Zou H, Pan KH, Pan HY, Huang DS, Zheng MH. Cerebral hemorrhage due to tuberculosis meningitis: A rare case report and literature review. *Oncotarget* 2015;6(42):45005-45009.

455. Zubair AS, Landreneau M, Witsch J, Fulbright RK, Huttner A, Sheth KN, Hwang DY. A Critically Ill Patient With Central Nervous System Tuberculosis and Negative Initial Workup. *Front Neurol* 2020;11.

456. Zukas A, Hays M, Schiff D. Two cases of rare intraspinal poorly differentiated neuroendocrine tumor with excellent responses to radiation therapy. *Neuro-Oncology* 2015;17:v205-v206.

457. Zurawski J, Tauhid S, Chu R, Khalid F, Healy BC, Weiner HL, Bakshi R. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. *Multiple Sclerosis Journal* 2020;26(2):177-187.

Supplementary tables

Table S1: Predefined systematic search strings in PubMed Ovid EMBASE and Web of Science. Last search 2nd of February, 2021.

Databases	Studies produced	Search string
<u>Pubmed via Medline:</u>	539	Leptomeningeal Enhancement OR Leptomeningeal Contrast Enhancement OR Leptomeningeal Inflammation OR pericortical enhancement
<u>Scopus:</u>	591	Leptomeningeal Enhancement OR Leptomeningeal Contrast Enhancement OR Leptomeningeal Inflammation OR pericortical enhancement
<u>Web of Science:</u>	1162	Leptomeningeal Enhancement OR Leptomeningeal Contrast Enhancement OR Leptomeningeal Inflammation OR pericortical enhancement

Table S1: Risk of bias assessment of the included studies with 10 or more included human subjects according to the Newcastle-Ottawa scale for nonrandomized studies. S1-S4: Selection domain (only S1-S3 for cohort studies, case series and retrospective studies), C1a and C1b: comparability domain, E1-E2: exposure domain. In alphabetical order and sorted for disease class.

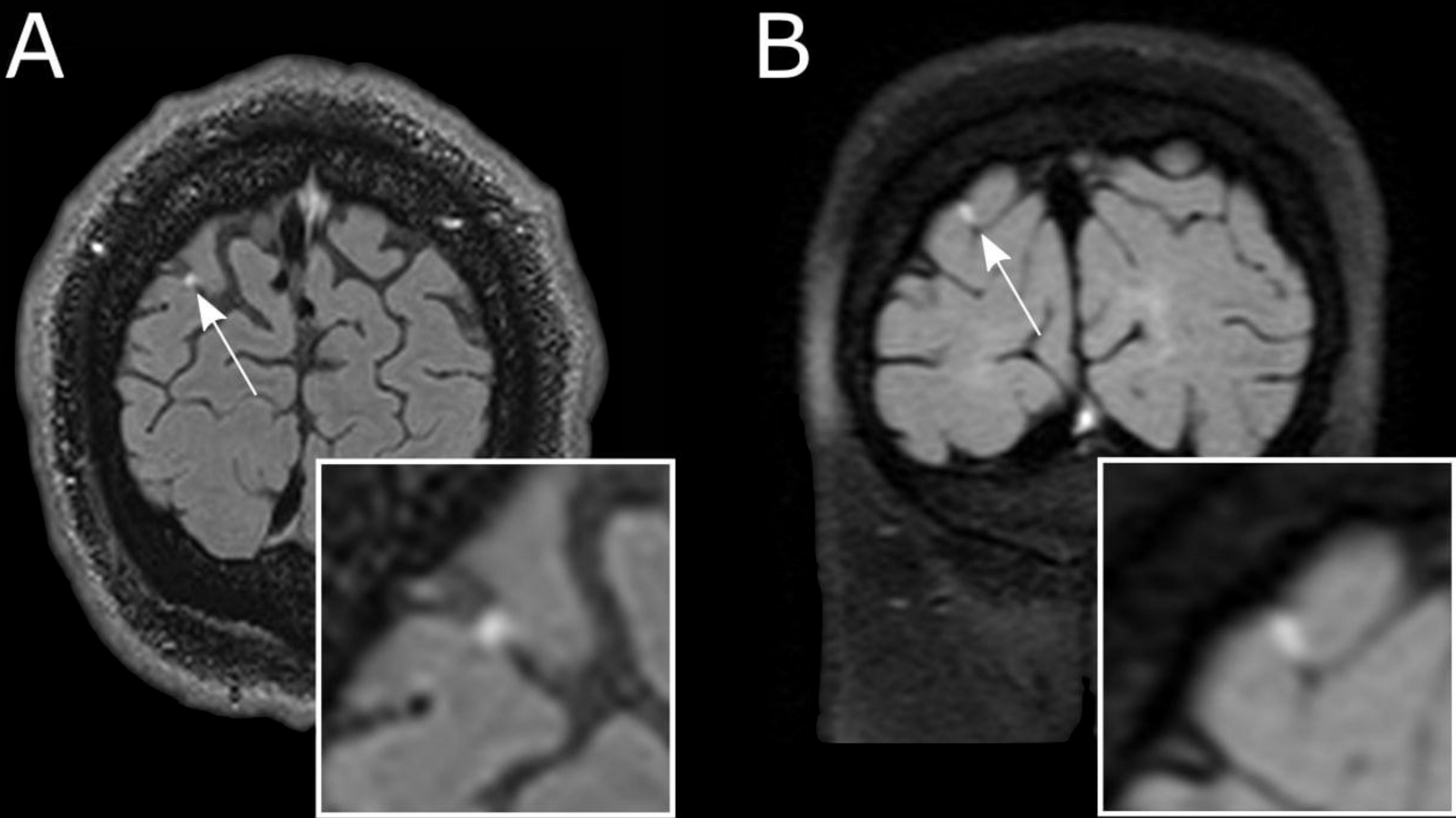
Author, year	Title	Type	S1	S2	S3	S4	C1a	C1b	E1	E2
Ahmad, 2015	Differentiation of leptomeningeal and vascular enhancement on post-contrast FLAIR MRI sequence: Role in early detection of infectious meningitis	Infectious	*	*	N/A	*	*	-	-	N/A
Anuradha, 2015	Cryptococcal meningitis in people living with hiv (PLHIV): A comparative analysis of the diagnostic tests	Infectious	*	*	N/A	-	-	-	N/A	N/A
Cheng, 2003	Radiological manifestations of cryptococcal infection in central nervous system	Infectious	*	*	N/A	-	-	-	N/A	N/A
Crete, 2018	Spinal coccidioidomycosis: MR imaging findings in 41 patients	Infectious	*	*	N/A	-	*	*	N/A	N/A
Deuble, 2013	Neurologic melioidosis	Infectious	*	*	N/A	*	*	-	N/A	N/A
Duarte, 2017	Magnetic resonance imaging findings in central nervous system cryptococcosis: comparison between immunocompetent and immunocompromised patients	Infectious	*	*	N/A	-	-	-	N/A	N/A
Gupta, 2016	A prospective study of magnetic resonance imaging patterns of central nervous system infections in pediatric age group and young adults and their clinico-biochemical correlation	Infectious	*	*	N/A	*	-	-	N/A	N/A
Imam, 2015	Adult tuberculous meningitis in Qatar: a descriptive retrospective study from its referral center	Infectious	*	*	N/A	-	N/A	-	*	N/A
Jin, 2008	Magnetic resonance imaging of eosinophilic meningoencephalitis caused by <i>Angiostrongylus cantonensis</i> following eating freshwater snails	Infectious	*	*	N/A	*	-	-	N/A	N/A
Kamran, 2004	Role of Fluid-Attenuated Inversion Recovery in the Diagnosis of Meningitis: Comparison with Contrast-Enhanced Magnetic Resonance Imaging	Infectious	*	*	-	*	*	*	N/A	N/A
Kerkering, 2013	Early clinical observations in prospectively followed patients with fungal meningitis related to contaminated epidural steroid injections	Infectious	*	*	N/A	-	-	-	N/A	N/A
Klironomos, 2020	Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort	Infectious	*	*	N/A	*	*	-	N/A	N/A
Kralik, 2019	Comparison of CSF and MRI Findings among Neonates and Infants with E coli or Group B Streptococcal Meningitis	Infectious	*	*	N/A	*	-	-	N/A	N/A
Kremer, 2020	Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study	Infectious	*	*	N/A	*	*	*	N/A	N/A

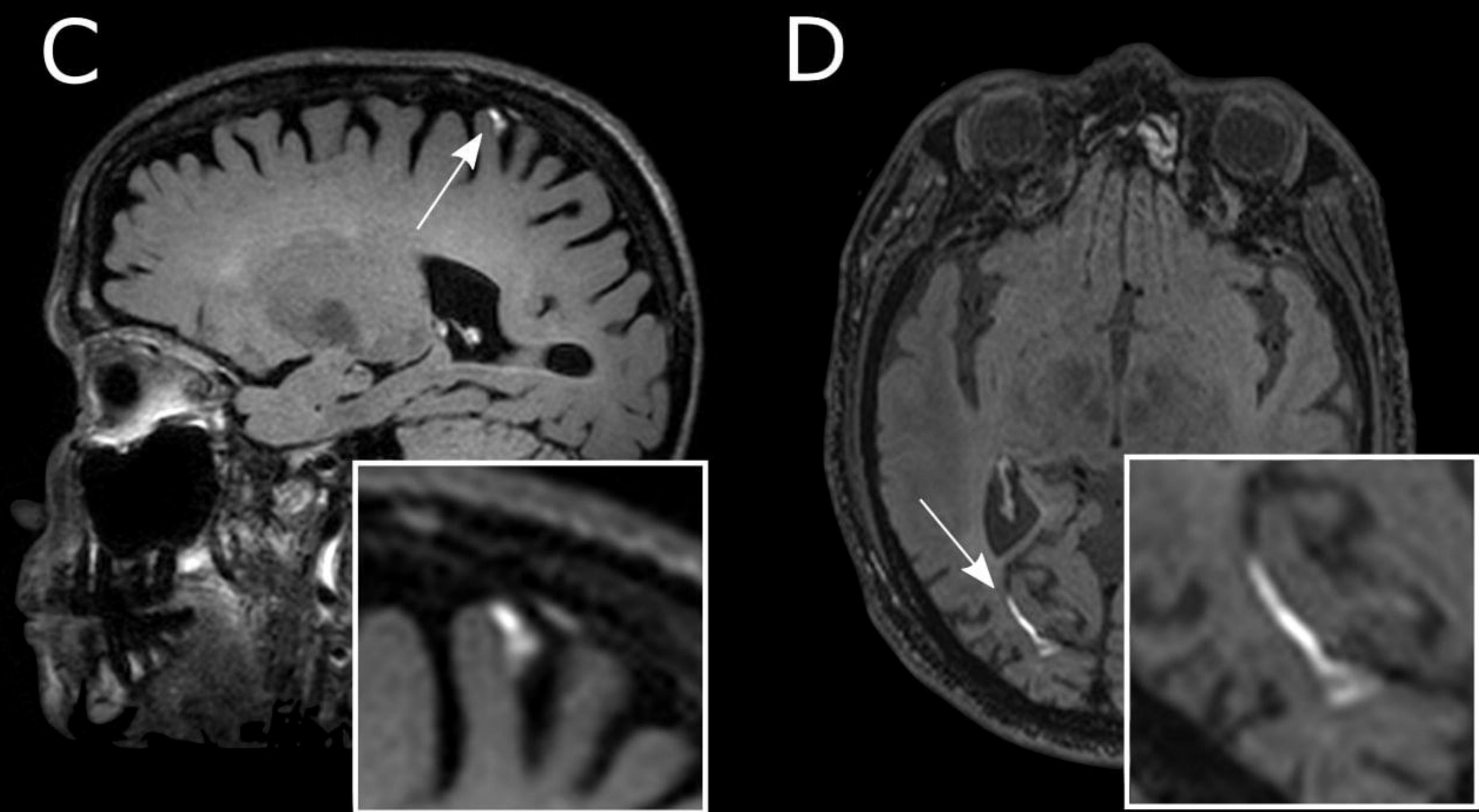
Kumar, 2010	Revisiting the CNS tuberculosis with emphasis on giant tuberculomas and introducing the outer RIM excrescence sign	Infectious	-	-	N/A	-	-	-	N/A	N/A
Lammering, 2013	Imaging spectrum of CNS coccidioidomycosis: Prevalence and significance of concurrent brain and spinal disease	Infectious	*	*	N/A	-	-	-	N/A	N/A
Lersy, 2020	Cerebrospinal fluid features in COVID-19 patients with neurologic manifestations: correlation with brain MRI findings in 58 patients	Infectious	*	*	N/A	-	-	-	N/A	N/A
Oliveira, 2014	Brain magnetic resonance imaging of infants with bacterial meningitis	Infectious	*	*	N/A	-	-	-	N/A	N/A
Parmar, 2006	Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases	Infectious	*	*	*	*	-	-	N/A	N/A
Sarkis, 2015	MRI findings in cryptococcal meningitis of the non-HIV population	Infectious	-	*	N/A	-	-	-	N/A	N/A
Soni, 2020	Cerebrovascular complications in tuberculous meningitis—A magnetic resonance imaging study in 90 patients from a tertiary care hospital	Infectious	*	*	N/A	*	-	-	N/A	N/A
Speers, 2013	Clinical and radiological predictors of outcome for murray valley encephalitis	Infectious	*	*	N/A	*	-	-	N/A	N/A
Tai, 2016	Cerebral infarction pattern in tuberculous meningitis	Infectious	*	*	N/A	*	-	-	N/A	N/A
Tai, 2016	Paradoxical manifestation is common in HIV-negative tuberculous meningitis	Infectious	*	*	N/A	*	*	-	N/A	N/A
Tai, 2017	Neuroimaging findings are sensitive and specific in diagnosis of tuberculous meningitis	Infectious	*	*	N/A	*	*	-	N/A	N/A
Tai, 2017	Role of cytokines in the assessment of clinical outcome and neuroimaging findings in patients with tuberculous meningitis	Infectious	*	*	N/A	-	-	-	N/A	N/A
Tai, 2017	Spinal tuberculous disease is common in tuberculous meningitis	Infectious	*	*	N/A	*	*	-	N/A	N/A
Tai, 2018	Tuberculous optochiasmatic arachnoiditis and optochiasmatic tuberculoma in Malaysia	Infectious	*	*	N/A	*	*	-	N/A	N/A
Tan, 2016	Spectrum of neuroimaging findings in cryptococcal meningitis in immunocompetent patients in China — A series of 18 cases	Infectious	*	*	N/A	*	-	-	N/A	N/A
Thurnher, 2000	MRI of infections and neoplasms of the spine and spinal cord in 55 patients with AIDS	Infectious	*	*	N/A	*	*	-	N/A	N/A
Tritanon, 2020	Infectious leptomeningitis: Diagnostic value of contrast-enhanced 3D fluid-attenuated inversion recovery with fat suppression, contrast-enhanced 3D spoiled gradient-echo high resolution T1-weighted and contrast-enhanced T1-weighted images correlated with CSF analysis	Infectious	*	*	N/A	*	-	-	N/A	N/A
Tsai, 2003	Eosinophilic meningitis caused by <i>Angiostrongylus cantonensis</i> associated with eating raw snails: correlation of brain magnetic resonance imaging scans with clinical findings	Infectious	*	*	N/A	-	-	-	N/A	N/A
Tsai, 2012	Brain magnetic resonance imaging abnormalities in eosinophilic meningitis caused by <i>angiostrongylus</i>	Infectious	*	*	N/A	-	-	-	N/A	N/A

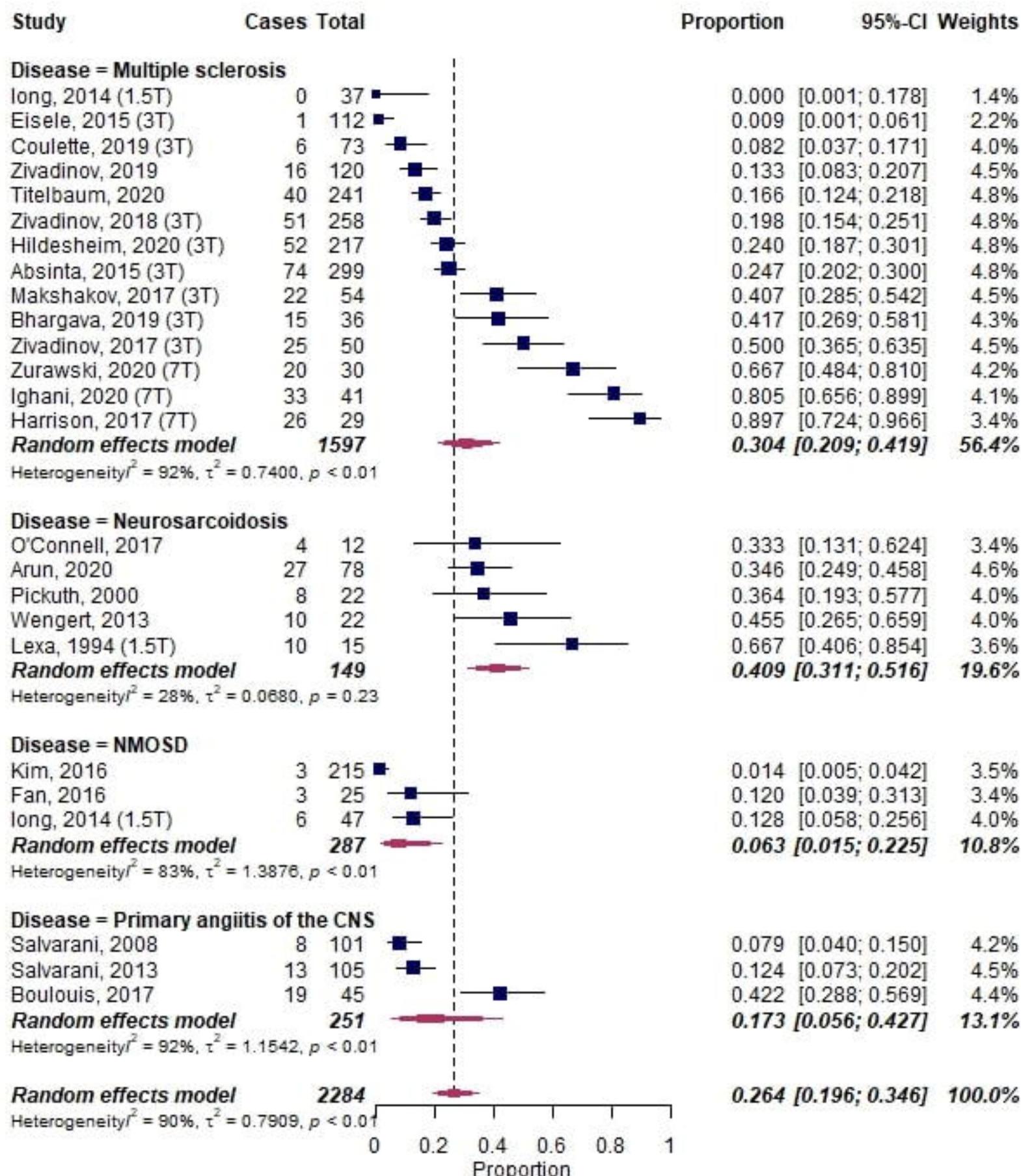
	cantonensis infection											
Tseng, 2011	Clinical manifestations of eosinophilic meningitis caused by <i>Angiostrongylus cantonensis</i> : 18 years' experience in a medical center in southern Taiwan	Infectious	*	*	N/A	-	-	-	N/A	N/A		
Guo, 2018	Brain MRI findings in acute hepatic encephalopathy in liver transplant recipients	Metabolic	*	*	N/A	-	-	*	N/A	N/A		
Alrobaian, 2020	Neuro-Ophthalmic Manifestations of Acute Leukemia	Neoplastic	*	*	N/A	*	*	-	N/A	N/A		
An, 2015	An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients	Neoplastic	*	*	*	*	*	-	N/A	N/A		
Andica, 2019	Aberrant myelination in patients with Sturge-Weber syndrome analyzed using synthetic quantitative magnetic resonance imaging	Neoplastic	*	*	N/A	*	N/A	-	N/A	N/A		
Arulrajah, 2010	MRI with diffusion-weighted imaging in children and young adults with simultaneous supra- and infratentorial manifestations of Sturge-Weber syndrome	Neoplastic	*	*	N/A	*	*	-	N/A	N/A		
Bar, 2020	Early magnetic resonance imaging to detect presymptomatic leptomeningeal angioma in children with suspected Sturge-Weber syndrome	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Bönig, 2019	Leptomeningeal metastasis: The role of cerebrospinal fluid diagnostics	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Castillo, 2015	Bing-Neel syndrome: A multi-institutional retrospective study	Neoplastic	*	*	N/A	-	-	-	N/A	N/A		
Chou, 2001	Intracranial Meningeal Carcinomatosis and Non-neoplastic Meningeal Diseases: Evaluation with Contrast-Enhanced MR Imaging	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Crespo-Rodríguez, 2007	MR and CT imaging of 24 pleomorphic xanthoastrocytomas (PXA) and a review of the literature	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
De Oca Delgado, 2018	The comparative treatment of intraventricular chemotherapy by Ommaya reservoir vs. Lumbar puncture in patients with leptomeningeal carcinomatosis	Neoplastic	*	*	N/A	-	-	-	N/A	N/A		
Debnam, 2017	Most common sites on MRI of intracranial neoplastic leptomeningeal disease	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Griffiths, 1996	Choroid plexus size in young children with Sturge-Weber syndrome	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Griffiths, 2003	Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children	Neoplastic	*	*	N/A	*	-	-	N/A	N/A		
Guenette, 2016	MRI findings in patients with leukemia and positive CSF cytology: A single-institution 5-year experience	Neoplastic	*	*	N/A	*	*	-	N/A	N/A		
Ho, 2015	Cytomorphologic and clinicoradiologic analysis of primary nonhematologic central nervous system tumors with positive cerebrospinal fluid	Neoplastic	*	*	N/A	-	-	-	N/A	N/A		
Itchaki, 2018	Ibrutinib for the treatment of bing-neel syndrome	Neoplastic	*	-	-	N/A	-	-	N/A	N/A		

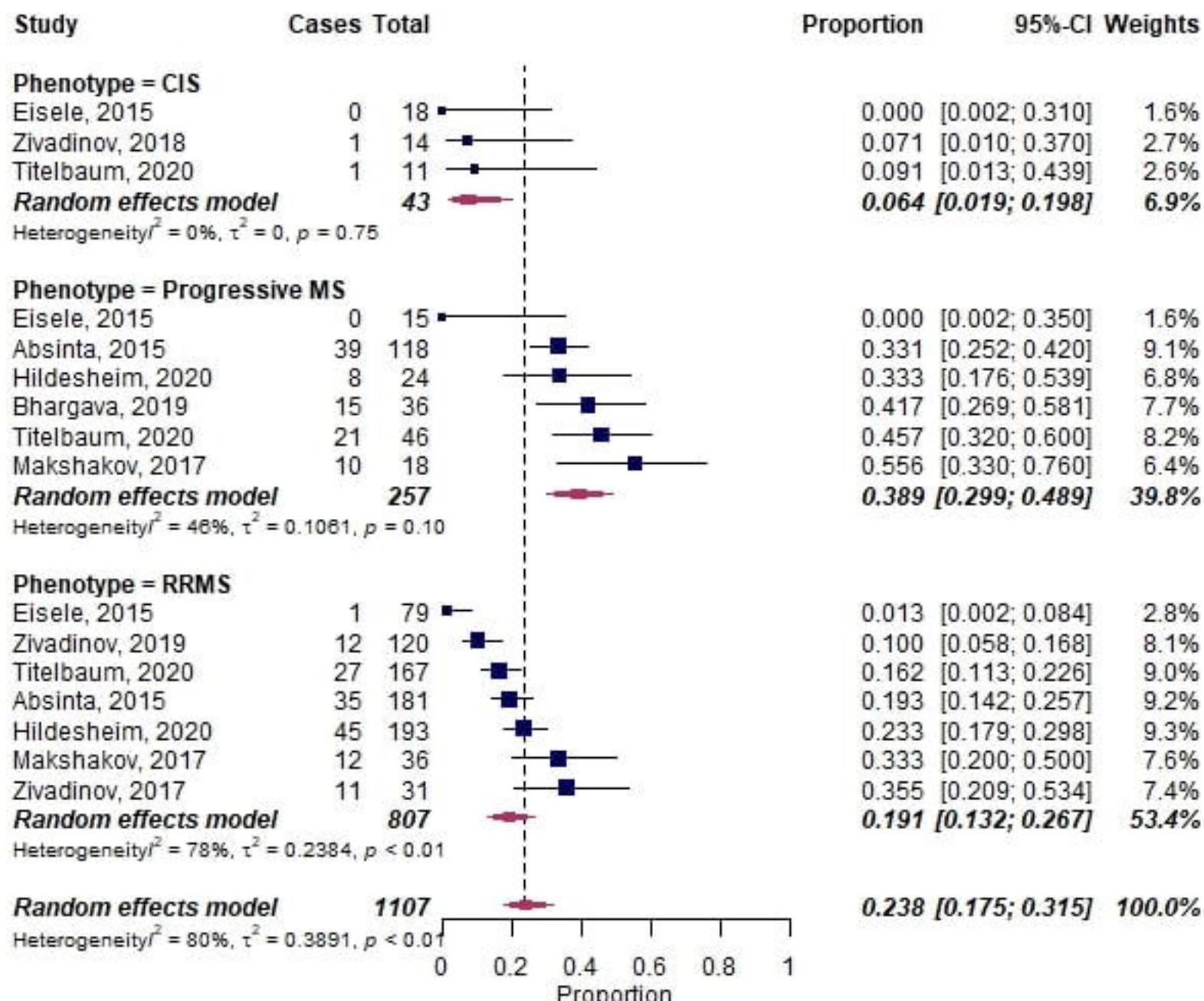
Jaeckle, 2020	Intra-CSF topotecan in treatment of breast cancer patients with leptomeningeal metastases	Neoplastic	*	*	N/A	-	-	-	N/A	N/A
Kallmes, 1998	High-dose gadolinium-enhanced MRI for diagnosis of meningeal metastases	Neoplastic	*	*	*	N/A	*	-	N/A	N/A
Kim, 2018	Leptomeningeal enhancement on preoperative brain MRI in patients with glioblastoma and its clinical impact	Neoplastic	*	*	N/A	*	-	-	N/A	N/A
Le Rhun, 2019	The RANO Leptomeningeal Metastasis Group proposal to assess response to treatment: lack of feasibility and clinical utility and a revised proposal	Neoplastic	-	*	N/A	*	*	*	N/A	N/A
Liu, 2009	Cerebrospinal fluid cytology and clinical analysis of 34 cases with leptomeningeal carcinomatosis	Neoplastic	*	*	N/A	-	-	-	N/A	N/A
Marcrom, 2017	Focal management of large brain metastases and risk of leptomeningeal disease	Neoplastic	*	*	*	N/A	*	-	N/A	N/A
Moulopoulos, 1997	A second look at unenhanced spinal magnetic resonance imaging of malignant leptomeningeal disease	Neoplastic	-	-	N/A	*	*	-	N/A	N/A
Oh, 2009	Gastric leptomeningeal carcinomatosis: Multi-center retrospective analysis of 54 cases	Neoplastic	*	-	*	N/A	*	-	N/A	N/A
Pan, 2018	Leptomeningeal metastasis from solid tumors: Clinical features and its diagnostic implication	Neoplastic	*	*	N/A	*	-	-	N/A	N/A
Porto, 2010	Leptomeningeal metastases in pediatrics: magnetic resonance image manifestations and correlation with cerebral spinal fluid cytology	Neoplastic	*	*	N/A	*	-	-	N/A	N/A
Rinaldo, 2018	Outcomes following cerebrospinal fluid shunting in high-grade glioma patients	Neoplastic	*	*	N/A	*	-	-	N/A	N/A
River, 1996	Clinical significance of diffuse dural enhancement detected by magnetic resonance imaging	Neoplastic	*	*	N/A	-	-	-	N/A	N/A
Rodriguez, 2012	Disseminated oligodendroglial-like leptomeningeal tumor of childhood: A distinctive clinicopathologic entity	Neoplastic	*	*	N/A	-	-	-	N/A	N/A
Salvarani, 2018	Primary central nervous system vasculitis associated with lymphoma	Neoplastic	*	*	*	-	*	*	N/A	N/A
Schiff, 2012	Presentation, diagnostics and treatment of primary leptomeningeal lymphoma: An international primary cns lymphoma collaborative group series	Neoplastic	*	*	N/A	-	-	-	N/A	N/A
Schluterman, 2004	Multiple myeloma invasion of the central nervous system	Neoplastic	*	*	N/A	-	*	-	N/A	N/A
Seong, 2020	Diagnostic accuracy of MR imaging of patients with leptomeningeal seeding from lung adenocarcinoma based on 2017 RANO proposal: added value of contrast-enhanced 2D axial T2 FLAIR	Neoplastic	*	*	N/A	*	-	-	N/A	N/A
Sommer, 2020	Contrast-enhanced modified 3D T1-weighted TSE black-blood imaging can improve detection of infectious and neoplastic meningitis	Neoplastic	*	*	N/A	*	*	-	N/A	N/A
Wagner, 2017	Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: Impact of time-dependent changes in lesion morphology on MRI	Neoplastic	*	*	N/A	*	*	-	N/A	N/A
Whitehead, 2015	Osseous intramedullary signal alteration and enhancement in Sturge-Weber syndrome: an early diagnostic clue	Neoplastic	*	*	N/A	*	-	-	N/A	N/A

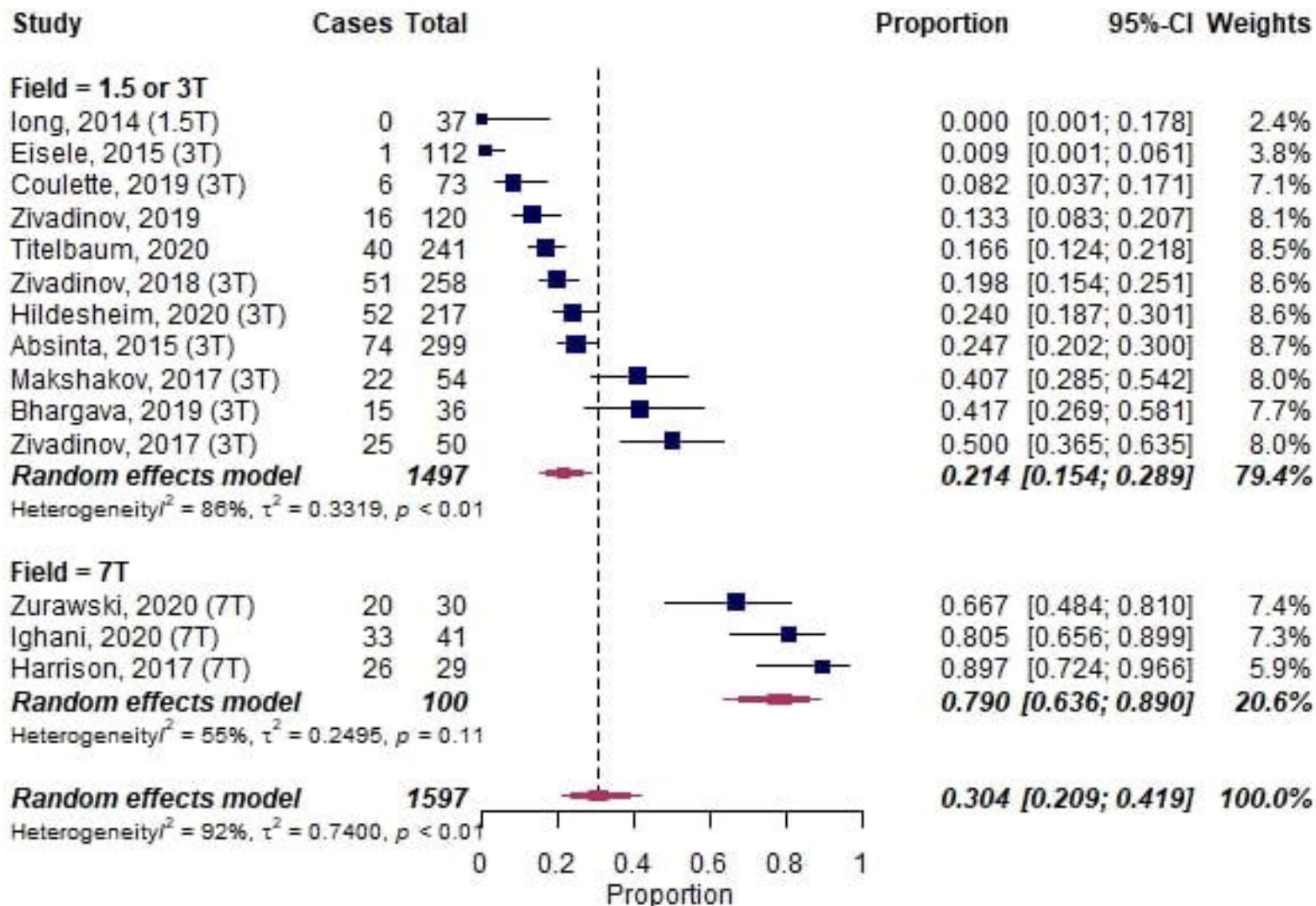
Yan, 2019	The clinical characteristic and prognostic factors of leptomeningeal metastasis in patients with non-small-cell lung cancer-a retrospective study from one single cancer institute	Neoplastic	*	*	N/A	-	-	-	-	N/A	N/A		
Yeom, 2013	Distinctive MRI features of pediatric medulloblastoma subtypes	Neoplastic	*	*	N/A	*	-	-	-	N/A	N/A		
Yu, 2011	Pleomorphic xanthoastrocytoma: MR imaging findings in 19 patients	Neoplastic	*	*	N/A	*	-	-	-	N/A	N/A		
Agarwal, 2015	Childhood posterior reversible encephalopathy syndrome: Magnetic resonance imaging findings with emphasis on increased leptomeningeal FLAIR signal	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Alonso, 2015	Leptomeningeal contrast enhancement and blood-CSF barrier dysfunction in aseptic meningitis	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Arun, 2020	Distinguishing neurosarcoidosis from multiple sclerosis based on CSF analysis: A retrospective study	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Blevins, 2003	Oculo-leptomeningeal amyloidosis in a large kindred with a new transthyretin variant Tyr69His	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Cianfoni, 2013	Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities	Other	*	*	N/A	*	*	-	-	N/A	N/A		
George, 2020	Central Nervous System Fungal Infection-Related Stroke: A Descriptive Study of Mold and Yeast-Associated Ischemic Stroke	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Henegar, 1996	Early postoperative magnetic resonance imaging following nonneoplastic cortical resection	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Higuera-Ortiz, 2017	Pachymeningitis in granulomatosis with polyangiitis: case series with earlier onset in younger patients and literature review	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Hong, 2015	Leptomeningeal enhancement on magnetic resonance imaging as a predictor of hemodynamic insufficiency	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Itsekson Hayosh, 2020	Early Fluid Attenuation Inversion Recovery Sulcal Contrast Enhancement Correlates with Severity of Reversible Cerebral Vasoconstriction Syndrome	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Jakchairoongruang, 2018	New insights into neurocutaneous melanosis	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Junger, 1993	Intramedullary spinal sarcoidosis: Clinical and magnetic resonance imaging characteristics	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Kim, 2012	Central nervous system (CNS) involvement is a critical prognostic factor for hemophagocytic lymphohistiocytosis	Other	*	*	N/A	-	-	-	-	N/A	N/A		
Kim, 2020	The timelines of MRI findings related to outcomes in adult patients with new-onset refractory status epilepticus	Other	*	*	N/A	*	*	*	*	N/A	N/A		
Kioumehr, 1995	Postcontrast mri of cranial meninges: Leptomeningitis versus pachymeningitis	Other	*	*	N/A	*	-	-	-	N/A	N/A		
Komiyama, 2001	Leptomeningeal contrast enhancement in moyamoya: Its potential role in postoperative assessment of circulation through the bypass	Other	*	*	*	*	-	-	-	N/A	N/A		


Kumar, 2019	To compare diagnostic ability of contrast-enhanced three-dimensional T1-SPACE with three-dimensional fluid-attenuated inversion recovery and three-dimensional T1-magnetization prepared rapid gradient echo magnetic resonance sequences in patients of meningitis	Other	*	*	N/A	*	*	-	N/A	N/A					
Lee, 2002	Subcortical low intensity on MR images of meningitis, viral encephalitis, and leptomeningeal metastasis	Other	*	*	N/A	*	*	-	N/A	N/A					
Lee, 2014	Usefulness of contrast enhanced FLAIR imaging for predicting the severity of meningitis	Other	*	*	N/A	*	*	-	N/A	N/A					
Lee, 2016	Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging	Other	*	*	N/A	*	-	-	N/A	N/A					
Lexa, 1994	MR of sarcoidosis in the head and spine: Spectrum of manifestations and radiographic response to steroid therapy	Other	*	*	N/A	*	-	-	N/A	N/A					
Li, 2018	Leptomeningeal Enhancement Is Associated with Transient Neurologic Deficits after Flow Diversion of Intracranial Aneurysms	Other	*	*	N/A	*	-	-	N/A	N/A					
Lu, 2000	Leptomeningeal enhancement after carotid stenting	Other	*	*	N/A	*	-	*	N/A	N/A					
McKinney, 2018	Pseudo-leptomeningeal contrast enhancement at 3T in pediatric patients sedated by propofol	Other	-	*	N/A	*	*	-	N/A	N/A					
O'Connell, 2017	Neurosarcoidosis: clinical presentations and changing treatment patterns in an Irish Caucasian population	Other	*	*	N/A	*	*	-	N/A	N/A					
Parsons, 2020	Rheumatoid Meningitis: Clinical Characteristics, Diagnostic Evaluation, and Treatment	Other	*	-	N/A	-	-	-	N/A	N/A					
Pektezel, 2020	Pediatric headache and neuroimaging: experience of two tertiary centers	Other	*	*	N/A	-	-	-	N/A	N/A					
Pickuth, 2000	Role of radiology in the diagnosis of neurosarcoidosis	Other	*	-	N/A	*	*	-	N/A	N/A					
Salvarani, 2016	Imaging Findings of Cerebral Amyloid Angiopathy, A β -Related Angitis (ABRA), and Cerebral Amyloid Angiopathy-Related Inflammation	Other	*	*	N/A	-	-	-	N/A	N/A					
Soni, 2019	Imaging findings in spinal sarcoidosis: a report of 18 cases and review of the current literature	Other	*	*	*	N/A	*	-	N/A	N/A					
Spencer, 2005	Clinical and magnetic resonance imaging manifestations of neurosarcoidosis	Other	*	*	N/A	*	-	-	N/A	N/A					
Wengert, 2013	Neurosarcoidosis: Correlation of cerebrospinal fluid findings with diffuse leptomeningeal gadolinium enhancement on MRI and clinical disease activity	Other	*	*	N/A	*	-	-	N/A	N/A					
Wilkinson, 2003	Short-term changes in cerebral microhemodynamics after carotid stenting	Other	*	-	N/A	*	*	-	N/A	N/A					
Wilkinson, 2000	Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging	Other	*	-	N/A	*	*	-	N/A	N/A					
Wu, 2021	Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood-Brain Barrier Leakage	Other	*	*	*	*	-	-	N/A	N/A					

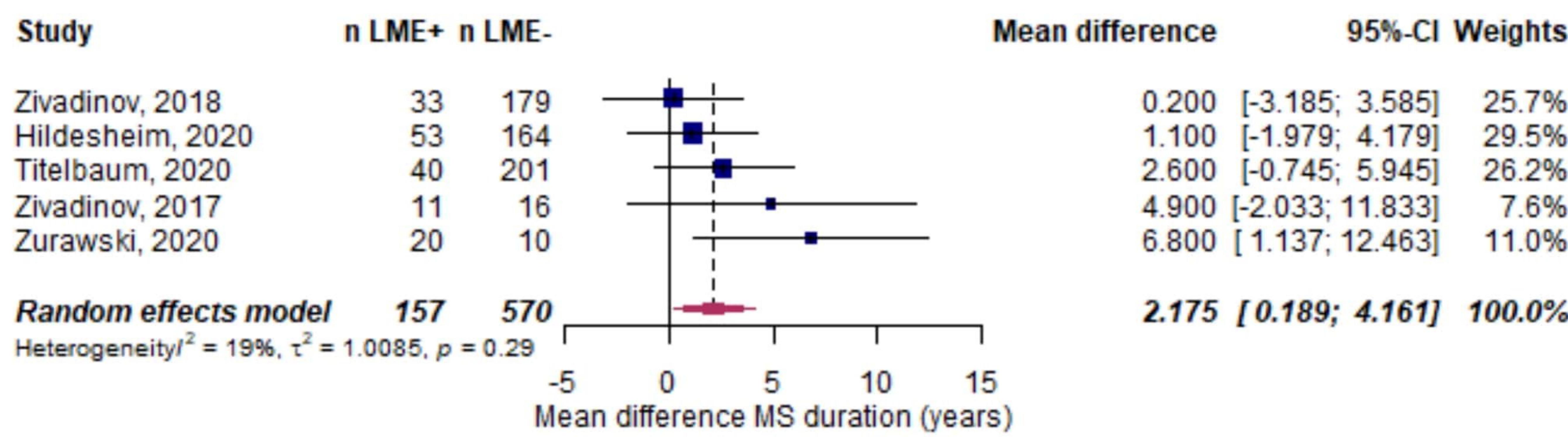

	and anti-voltage-gated potassium channel (VGKC) encephalitis in adults										
Pino-Lopez, 2019	Contrast-enhanced fat-suppressed FLAIR for the characterization of leptomeningeal inflammation in optic neuritis	Neuroinflammatory	*	*	N/A	*	-	-	N/A	N/A	
Salvarani, 2008	Primary central nervous system vasculitis with prominent leptomeningeal enhancement: a subset with a benign outcome	Neuroinflammatory	*	*	N/A	-	-	-	N/A	N/A	
Salvarani, 2013	AB ₃ -related angiitis: comparison with CAA without inflammation and primary CNS vasculitis	Neuroinflammatory	*	*	N/A	-	-	-	N/A	N/A	
Susac, 2003	MRI findings in Susac's syndrome	Neuroinflammatory	-	-	N/A	*	-	-	N/A	N/A	
Titelbaum, 2020	Leptomeningeal Enhancement on 3D-FLAIR MRI in Multiple Sclerosis: Systematic Observations in Clinical Practice	Neuroinflammatory	*	*	*	*	*	*	N/A	N/A	
Xia, 2017	Assessment of early evidence of multiple sclerosis in a prospective study of asymptomatic high-risk family members	Neuroinflammatory	*	*	N/A	*	N/A	N/A	N/A	N/A	
Zivadinov, 2017	Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study	Neuroinflammatory	*	*	N/A	*	-	-	N/A	N/A	
Zivadinov, 2018	Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis	Neuroinflammatory	*	*	N/A	*	*	-	N/A	N/A	
Zivadinov, 2019	Effect of teriflunomide and dimethyl fumarate on cortical atrophy and leptomeningeal inflammation in multiple sclerosis: A retrospective, observational, case-control pilot study	Neuroinflammatory	*	*	N/A	*	*	*	N/A	N/A	
Zurawski, 2020	7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions	Neuroinflammatory	*	*	*	*	*	*	*	*	

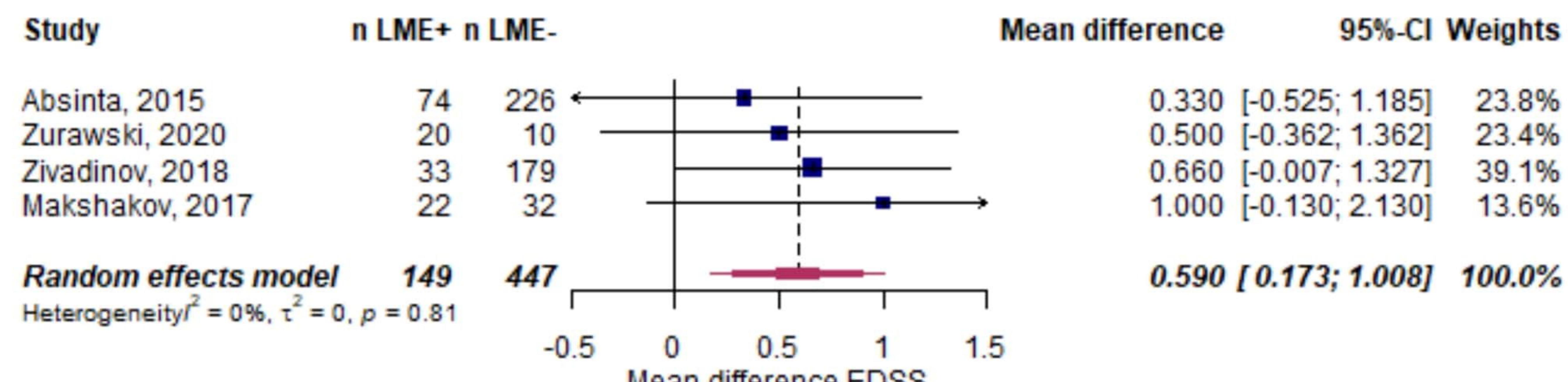

Table S3: Risk of bias assessment of the included animal studies according to the risk of bias assessment checklist for good research practice and whether a study was in accordance with the ARRIVE guidelines. A, in accordance with ARRIVE guidelines; B, blinding; C, conflict of interest; R, randomization; S, prior sample size calculation; W, animal welfare statement.

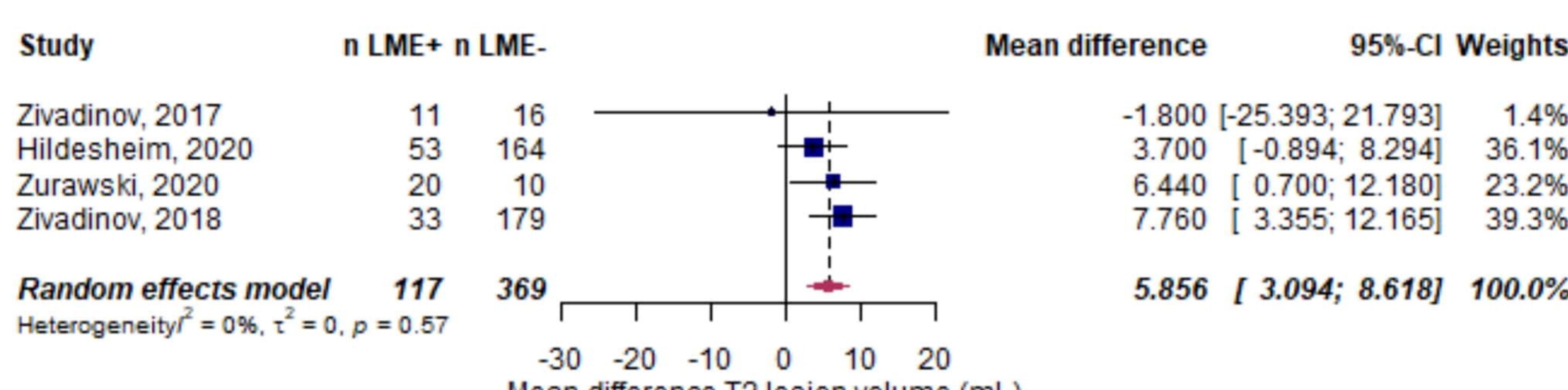

Author, year	Title	Type	R	B	S	W	C	A
Pol, 2019	Characterization of leptomeningeal inflammation in rodent experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis	Neuroinflammatory	-	-	-	*	*	*
Wiesmann, 2002	Experimental bacterial meningitis in rats: Demonstration of hydrocephalus and meningeal enhancement by magnetic resonance imaging	Infectious	*	*	-	-	-	*
Young, 2009	Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs	Other	-	-	-	-	*	*

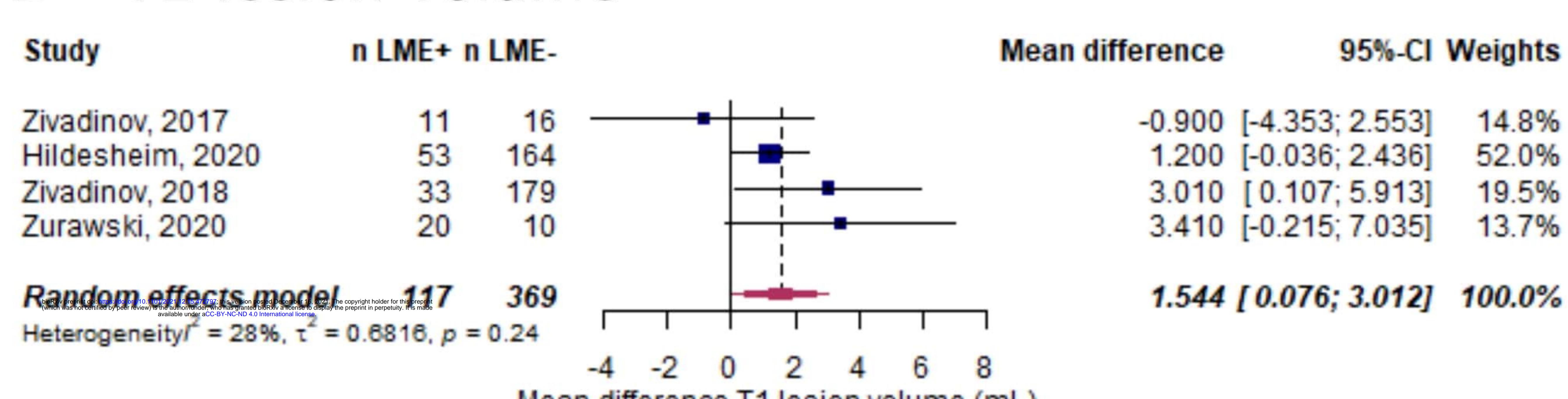


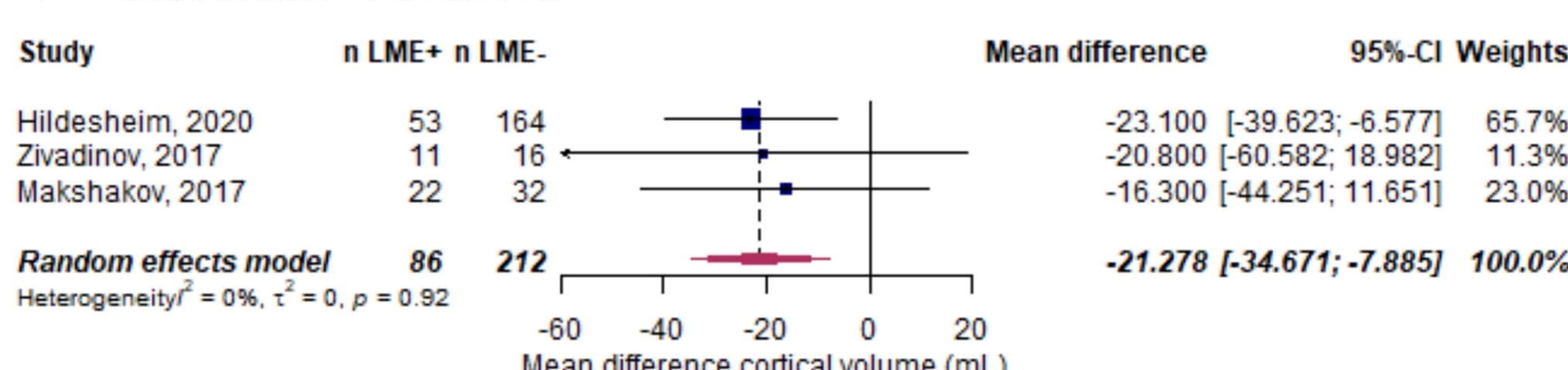
<https://doi.org/10.1101/2021.12.15.472797>
CC-BY-NC-ND 4.0 International license

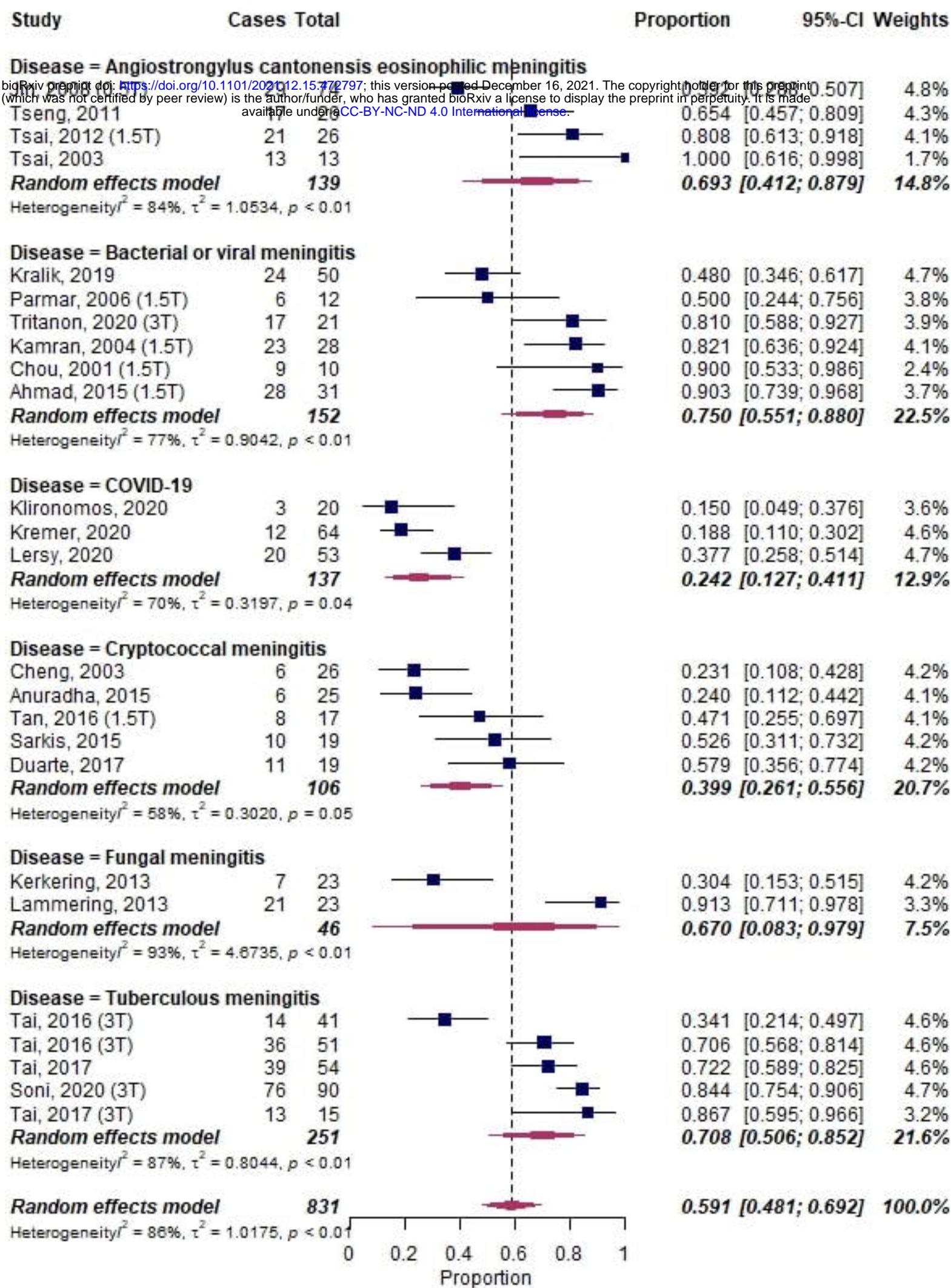


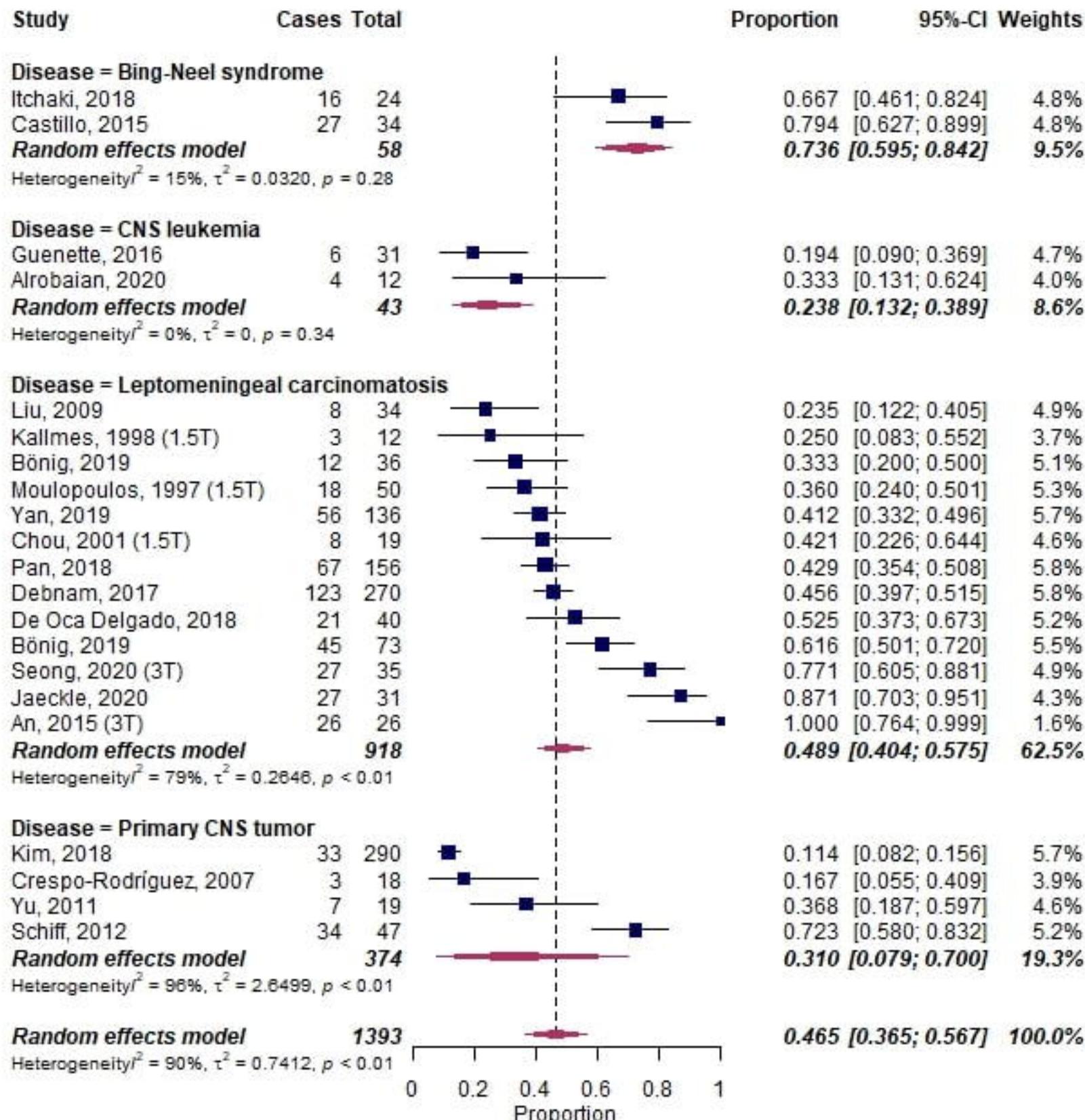


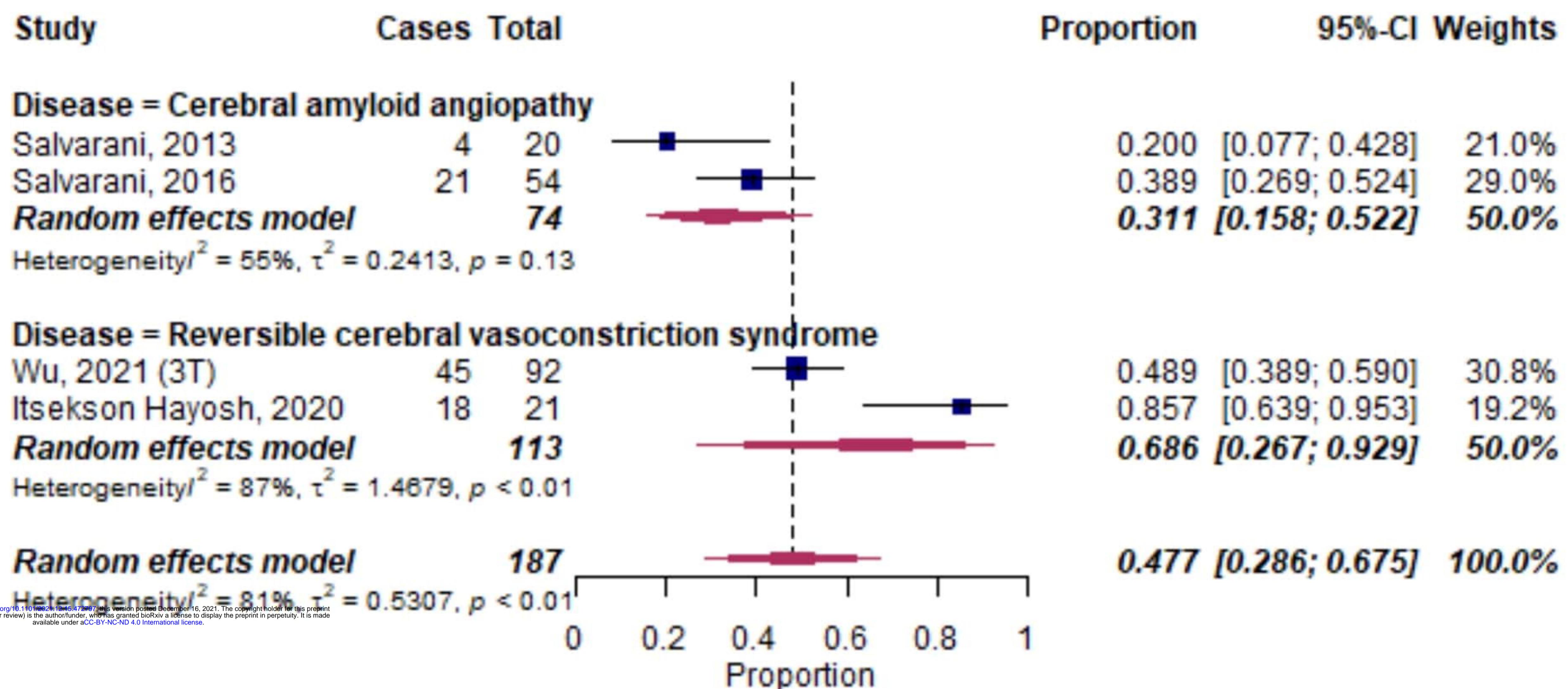

A - Disease duration


B - EDSS


C - T2 lesion volume




D - T1 lesion volume



E - Cortical volume

A**B**