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Abstract

The great efforts spent in the maintenance of past diversity in genebanks are

rationalized by the potential role of plant genetic resources in future crop
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improvement — a concept whose practical implementation has fallen short of
expectations. Here, we implement genomics-informed parent selection to
expedite pre-breeding without discriminating against non-adapted germplasm.
We collect dense genetic profiles for a large winter wheat collection and
evaluate grain yield and resistance to yellow rust in representative coresets.
Genomic prediction within and across genebanks identified the best parents
for PGR x elite derived crosses that outyielded current elite cultivars in

multiple field trials.

Main

Genebanks around the world are committed to maintain permanently plant genetic
resources (PGR), some of which have not been grown on farmer’s field for a century
or, in the case of crop-wild relatives, have never been used as crops at all'. PGR
underperform dramatically in current agricultural environments®. Most of them, for
example, succumb to pathogens currently at large, preventing an un-biased
assessment of their breeding value®. Pre-breeders have often ended up in choosing
“exotic” genotypes too closely related to the elite genepool or with the inadvertent
loss of novel haplotypes by selection in the field*°. We and others®’ have bemoaned
the disconnect between genebank management and breeding resulting from a lack of
effective and generally applicable strategies to identify valuable germplasm as

donors in pre-breeding programs.

In recent years, genomic approaches have showcased the potential of exotic
germplasm for plant breeding*>®. Pan-genomes®, rapid gene cloning and targeted
enrichment sequencing'® have accelerated the isolation of resistance genes,

including those from crop-wild relatives. However, their durable deployment requires
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either complex pyramiding schemes or transgenic methods™* under tight regulation in
many countries. Moreover, resistance gene breeding takes advantage of a
comparatively simple genetic architecture where single, easily transferable major
genes confer large genetic gains'®. After the Green Revolution'®, reductionist
approaches to further increase grain yield per se, a genetically complex trait with high

genotype-by-environment interaction, have been counter-productive in practice™**°.

A combination of genebank genomics (genome-wide marker profiles for entire
genebank collections) and genomic prediction (inference of phenotype from
genotype) has been proposed as one way forward to characterize and prioritize
genebank accessions for pre-breeding'®. The missing link is the accurate
phenotyping of a training set from which the breeding value of thousands of
accessions can be predicted. We have proposed a hybrid strategy, in which
agronomic performance is not scored in the PGR itself (“per se”), but in a hybrid ‘Elite
x PGR’ background to negate the masking effect of a lack of agronomic adaption of
germplasm preserved ex situ or locally abandoned®. However, the high cost of large-
scale cross-fertilization in inbreeding crops'’ and the low heritability estimated in a
hybrid context, left reasonable doubts as to whether phenotypic evaluation in a panel,
small enough to be tractable for hybrid production, can inform genomic prediction of
breeding in thousands of accessions. Here, we report on the implementation and

evaluation of our strategy in winter wheat, the most important food crop in Europe.

Results

Genetic structure of a global winter wheat collection

The universe of genetic and phenotypic diversity from which we selected parents for
pre-breeding traces back to 7,651 wheat accessions from the German Federal ex situ

Genebank (Supplementary Table 1). Genotypic characterization was performed on
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genotypes descended from single spikes to reduce the effect of heterogeneity within
accessions. Genotyping-by-sequencing (GBS) of this panel (henceforth the “IPK
collection”) together with 325 European elite cultivars yielded 69,356 bi-allelic single-
nucleotide polymorphism (SNP) markers with less than 10% missing genotype calls
(Supplementary Table 2). A very small fraction of accessions (0.2 %) turned out to
be mis-classified tetraploid wheats (confirmed by flow cytometric ploidy analysis and
the most recent passport records), illustrating the value of genome-wide marker

profiles for the curation of genebank collections®*®*?

(Supplementary Tables 3 and
4 and Supplementary Figs. 1 and 2). Consistent with previous large-scale genebank
genomics efforts®®*®, duplicates abound in the IPK collection: 37 % of accessions
were highly similar (> 99 %) to at least one other accession (Supplementary Table
5).

We intersected our GBS-based variant calls with high-density SNP genotyping data
of 2,608 winter wheat accessions from the French national genebank® (the “INRAE
collection”), yielding 895 shared variants. A high correlation of distance measures (r =
0.82, Mantel p-value < 0.01) indicates that rather few common markers can still
accurately capture population structure (Supplementary Table 6). Seventeen
percent of INRAE accessions had a close (> 99 % identity) match to at least one IPK
accession (Supplementary Table 7). By contrast, 434 INRAE accessions did not
match to any IPK accessions (Supplementary Table 8), while vice versa, 2,161 IPK
accessions lacked counterparts in the INRAE collection (Supplementary Table 9).
These observations reinforce calls to action demanding across-genebank curation
efforts informed by genomics (https://agent-project.eu/).

A joint principal component analysis (PCA) revealed that both genebanks largely

covered the same diversity space (Fig. 1a). A PCA highlighted two major germplasm

groups, corresponding to accessions of European and Asian origin, respectively (Fig.
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1b,c). Southern European accessions occupied an intermediate position.
Interestingly, wheats from Western Europe and Eastern Europe were well separated
in the diversity space. Most accessions from the Americas were descended from the
Eastern European genepool. Genetic differentiation as measured by Fsr was
consistent with the patterns evident from the PCA (Fig. 1d). The pronounced genetic
divergence (Fst = 0.376) between European elite cultivars and the more diverse
Asian germplasm (Fig. 1e) makes it likely that the targeted use of Asian accessions
in European wheat breeding may reap the same rewards as an exchange of alleles

in the opposite direction.
Definition of trait-customized core collections

After a thorough inspection of patterns of diversity, we aimed at singling out
genotypes that would stand a high chance of increasing crop performance when
crossed with current elite varieties. The first trait we focused on is resistance to
yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Supplementary Tables
10-12). As expected, the vast majority of genebank accessions (91.6 %) was more
susceptible to naturally occurring YR than elite cultivars (Supplementary Figs. 3 and
4). Solely focusing on highly resistant accessions incurs the risk of enriching for
alleles from the modern European genepool already deployed by breeders to the
detriment of resistance-conferring alleles contributed by non-adapted landraces from
other genepools (Supplementary Tables 13 and 14). Based on preliminary data, we
compiled a “trait-customized” core collection (T3C) of diverse accessions with 150
genotypes resistant to YR and 50 closely related susceptible genotypes to strike a
balance between power in association mapping, allelic richness and coverage of the
diversity space (see Supplementary Note and Supplementary Fig. 5). The same

strategy was applied to address the problem for two other important diseases: leaf
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rust and powdery mildew. The three T3Cs together with a coreset of 200 diverse elite
cultivars were intensively tested relying on natural and artificial YR infections in
multiple field trials, which provided a very high trait heritability (Supplementary
Tables 15-17). Whole genome re-sequencing data (3-fold coverage) was generated
for 263 genotypes of the three T3Cs and 191 elite cultivars (Supplementary Table
15). Read mapping and SNP calling against the Chinese Spring Reference?
provided a dataset of 2,788,918 SNPs with less than 10% missing calls, which was
then used to perform genome-wide association scan (GWAS) analysis and
genomics-informed parent selection (GiPS) for resistance breeding (see results after

the next section).
Atlas of footprints of selection in the European elite pool

Genome scans for regions under selection can reveal loci targeted by breeders as
well as wider regions which are in linkage to selected loci with reduced haplotype
diversity®®. To find genomic footprints of selection in European winter wheat, we
expanded our whole genome shotgun data with diversity from 183 additional
accessions and 131 modern German breeding lines. According to their
acquisition/release years, a total 760 genotypes constitute roughly a historic time
course (Supplementary Table 18): 255 genotypes predating the Green Revolution
(PreGreen), 212 varieties released between 1971 and 2000 (OIdCV), and 293 recent
genotypes bred after 2000 (NewCV). A scan for high cross population composite
likelihood ratios (XP-CLR)** revealed 1,304, 1,201, and 1,001 selective sweep
regions between PreGreen-and-OldCV, OIldCV-and-NewCV, and PreGreen-and-
NewCV combinations, respectively (Supplementary Table 19). Several selective
sweep regions (XP-CLR score = 40) were co-located with known disease resistance

loci (Fig. 2a) such as Lrl0 on chromosome 1AS® and Yrl7 on chromosome
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2AS??’_ The latter, introgressed from Aegilops ventricosa®, illustrates how alien
introgressions have been successfully used in wheat breeding®® and stimulated a
systematic scan for the presence of alien chromatin in our historic panel. To this end,
we employed approaches based on k-mers and read depth (Fig. 2b,c, see Online
Methods). We detected seven previously described®® introgressions on
chromosomes 2A, 4A, 1B, 2B, 2D, 3D, and 7D (Supplementary Table 20).
Moreover, we found evidence for hitherto unknown alien introgressions on
chromosomes 1D, 2D and 5B. We compared the potentially novel introgressed
haplotypes with published genomes of wheat wild relatives®, but were not able to
unravel their origins. Elite cultivars being currently grown in Europe may harbor
multiple independent introgressions (Fig. 2d), with up to six introgressions in modern
cultivars such as ‘Anapolis’ and ‘Memory’ (Supplementary Table 21). Strikingly, the
frequency of all introgressions has increased in recent decades (Fig. 2e), with the
notable exceptions of 1D and the 1BS-1RS whole-arm introgression dating back to

30,31

the 1920s*°. Despite conferring multiple disease resistances and abiotic stress

tolerance®, the appeal of 1BS-1RS to breeders may have waned due to new

pathotypes that overcame resistances>*?

, or because of its negative effects on
bread-making quality®. This clearly illustrates how the popularity of introgressions is

tightly linked to their overall net value for breeders.
Genome-wide association mapping for yellow rust

GWAS is used to detect markers and haplotypes linked to agronomic traits and, in
the best case, can provide candidate gene resolution®. Pan-genomic infrastructures,
however, may be needed to obtain the full gene complement content under GWAS
peaks, in particular as families of the major classes of candidate resistance genes

36,37

are subjected to abundant structural variation To deal with a possible
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overcorrection of associations due to genetic differentiation between elite cultivars
and accessions (Fig. 3a,b), GWAS was conducted at three different levels: whole
set, only elite cultivars and only T3C accessions. In this way, association scans for
YR detected 684, 194, and 29 significantly [-logio(p-value) > 5.97] associated SNPs
in the whole set, T3C accessions and elite cultivars population, respectively (Fig. 3c-
e and Supplementary Table 22). Some associated regions were co-located with
known, but not yet cloned resistance genes loci such as Yrl7 (2AS)*?” and Yr75
(7AL)*®, which have been widely deployed in elite cultivars (Fig. 3c-e and
Supplementary Table 23). We observed long haplotype blocks under GWAS peaks
in elite cultivars, which can likely be attributed to intense and effective selection by
breeders for major genes (Supplementary Fig. 6), and which complicate the
prioritization of candidate genes. By contrast, linkage disequilibrium decays in
general much faster around GWAS peaks detected in PGR (Supplementary Table
24), possibly increasing mapping resolution once pan-genome assemblies of

resistant haplotypes become available.

To understand the contribution of structural variation to the genetic architecture of
disease resistances, we conducted k-mer GWAS, which uses the presence-absence
state of short sequence fragments of fixed length (k-mers) as a proxy for structural
variants (see Online Methods). The most highly associated k-mers, when mapped to
the Chinese Spring genome, were co-located with peak regions identified in SNP-
GWAS (Supplementary Fig. 7). A notable exception was the 2AS (Yrl7) peak,
which was much less prominent in the SNP-GWAS, likely because of shortcomings
of the reference-based SNP calling with highly diverse alien haplotypes. Importantly,
142 of 533 significantly associated k-mers were absent from the wheat pan-genome

assemblies® (Supplementary Table 25). Genome assemblies of accessions
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harboring these k-mers (Supplementary Table 26) and the resistant haplotypes they
represent are priority targets for expanding the wheat YR resistance atlas®® and the
global wheat pan-genome infrastructure.

GWAS peaks that do not correspond to known resistance genes may tag
beneficial haplotypes from landraces that have not yet been deployed by breeders.
However, resistance-conferring alleles for SNPs underlying associations on
chromosomes 5A, 5B, 6D, 7B and one additional SNP on the unassigned
chromosome were nearly fixed (allele frequency > 98%) in elite cultivars (Fig. 3c-e
and Supplementary Table 22), suggesting that these putative resistance loci,
despite their importance in breeding, have not been scrutinized in prior genetic
studies. Resistance-conferring alleles private to PGR were found for 606 associated
SNPs on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3B, 4A, 5B, 6A, 6B and 7D, plus one
SNP mapping to sequences not assigned to chromosomes (Fig. 3c-e and
Supplementary Table 22). Taken together, these loci point to 30 resistance-
conferring haplotypes absent from elite cultivars (Supplementary Fig. 8 and
Supplementary Table 27). Genotypes carrying such resistance-conferring
haplotypes at a single locus, but otherwise having a susceptible genomic background
are approximately equivalent to near-isogenic lines (NIL) and as such will be good
starting points for genetic and functional characterization. A haplotype analysis for all
GWAS peaks indicated that such NIL proxies are rare among PGR: on average, the
23 potential donors carry 24 from a total of 66 resistance-conferring haplotypes, while
more than half the donors carry more than one potential source of novel resistances
(Supplementary Table 27). By contrast, promising donors for breeding programs
carrying many resistance-conferring alleles are easy to pick (Supplementary Table
28). A notable example is the Iranian landrace TRI 5804 bearing 28 of the 30

possible novel resistance-conferring alleles.


https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472759; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Genomics-informed parent selection (GiPS)

The widespread use of alien introgressions has proven that beneficial genes and
haplotypes from PGR can be identified and deployed effectively. The perseverance
and good luck of pre-breeders in over-coming crossing barriers may have played a
large role in the success of crop-wild relative introgressions in wheat breeding®. Can
the same be achieved with (new)crop-(old)crop introgressions? The overwhelming
number of possible combinations between fully interfertile landraces and elite
varieties of bread wheat, and the known lack of adaption to diverse agroecological
conditions of most genotypes makes “random crosses and hoping for the best” a pre-
breeding strategy with poor returns®. As an alternative approach less reliant on
fortuity, we implemented a pre-breeding strategy based on wheat hybrids® that
predicts the respecting breeding value of PGR from a small training set of crosses
(Fig. 4). To overcome the strong yield penalties suffered by non-adapted landraces
(Fig. 4a-b), we estimated breeding values of first-generation ‘ElitexPGR’ hybrids.
Seven-hundred seven IPK accessions (Supplementary Table 29), pre-selected for
high pollen shedding and synchronized flowering time, but retaining molecular
diversity (Fig. 4d and Supplementary Table 30), served as pollinators for 36
different elite cultivars in an incomplete factorial mating design to obtain 1,427
ElitexPGR hybrids (Supplementary Fig. 9). Multi-environment field trials established
the high heritability of grain yield in such hybrids (Supplementary Tables 31 and
32). As expected, hybrids outperformed their PGR parents by a considerable margin
(Arybria — fipgr = 1.33 Mg/ha, -logio(p-value) = 50.2, Fig. 4b). Per se performance of
PGR was only weakly correlated with breeding value estimates (r = 0.22, p-value <
0.01), vindicating the expenses of hybrid seed production. We proceeded by

developing ‘ElitexPGR’ populations with PGR parents picked from the highest
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yielding (1% decile) accessions according to their estimated breeding value in a
hybrid background. After two-stage selection for appropriate height and good health,
a substantial proportion (40%) of PGR-derived F3., families already outyielded the
oldest (released in 2007) cultivar check in our yield trials (Fig. 4c, Supplementary
Tables 33 and 34). Among the 10% superior families, TRI 4589 - an Uruguayan
accession from the late 1950s - was the second most frequent PGR in the tested
pedigrees, which suggests that even before breeding selection our strategy can
highlight the contribution to future yield increases by abandoned, non-adapted PGR.
The yield of the best family exceeded the average yield of check cultivars by 0.3
Mg/ha (4.4% improvement). The current annual genetic gain in wheat breeding in
Germany is 0.7-1.2%", indicating that our strategy achieved an impressive
contribution to wheat improvement in less than one breeding cycle.

A remaining uncertainty of our approach is whether our training set, whose size is
constrained by the cost of hybrid seed production, is large enough to fuel robust
genomic predictions. If so, the pool of possible donors — all accessions with yield
predictions from cheap markers — would be greatly enlarged. We use genomic
prediction to infer the breeding values for the entire IPK collection based on 29,844
SNP markers and using 597 PGR estimates from the hybrid context as a training set
(Fig. 4d-f). The cross-validated prediction accuracy was high (0.66+0.12, Fig. 4e).
Within the 10% superior fraction of the IPK genebank (> 6.84 Mg/ha), most predicted
material (85.8%) has not been phenotyped and only 12.8% of these fully predicted
high-yielders had standard errors (SE) as low as the average SE of the training set
(Fig. 4f, Supplementary Table 35). High-yielding, highly reliable donors were
predominantly from Europe (78.8% of 151 donors), followed by the Americas (4%)

and Iran (1.3%) (Supplementary Table 36). Most these donors (66.2%) were
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acquired by the genebank before 1980, supporting our hypothesis that GiPS can
contribute to rescuing exotic and past crop diversity.

Next, we predicted breeding values across the IPK and INRAE genebanks using
IPK-PGR as training set (Supplementary Fig. 10, Supplementary Tables 37 and
38). The small number of shared markers affected the cross-validated prediction
accuracy only mildly (0.60+0.13, Supplementary Fig. 10b). Out of 111 predicted
high-yielding accessions with good statistical support, only six (5.4%) belonged to the
INRAE collection (Supplementary Fig. 10c and Supplementary Table 38). All these
INRAE donors originated in Europe, which is also the most common (71.1%)
continent of origin for winter wheats stored at the INRAE genebank®. Importantly,
none of these identified INRAE donors was part of INRAE's unique diversity
(Supplementary Table 8), which highlights that reliable predictions are only obtained
within the diversity sampling space covered by the training set'®. Among INRAE
donors, five were registered as cultivars before 1970 and one of them even during
the 1910s. In summary, GiPS can expedite the pre-breeding for a highly complex,
and economically most relevant trait, grain yield, without discriminating against non-

adapted germplasm.

Discussion

The challenges associated with the use of genebank material in breeding and
agriculture has been recognized for a long time'. We implemented a generally
applicable strategy to close the gap between genebank management and pre-
breeding. We have established the feasibility of selecting high-yielding donors from a
small training set with yield records and dense marker data for a much larger
universe of genebank accessions. The linchpin of GiPS are statistically robust yield

estimates from early-generation Elite x PGR hybrids, which underpinned the
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statistically robust and meaningful inference of breeding values from a training set of
hundreds of genotypes in thousands of accessions, even across genebanks. It goes
without saying that all steps, selection of coresets, genomic prediction, and cross-
referencing between genebanks, are dependent on genebank genomics® and
ultimately cheap genome sequencing. Unable to select donors only based on their
marker profiles, two breeders’ professional life times would have been spent, if not
wasted, in producing and trialing 7,000 ‘PGR x Elite’ hybrids.

Our analysis of current elite cultivars has shown that breeders did a good job by
pyramiding large-effect resistance loci. In the absence of yield penalties linked to
alien chromatin, breeders should go doing so*. Recent gene isolation efforts have
focused on wheat wild relatives, notably its diploid wild D-genome progenitor,
Aegilops tauschii*?. Our genome-wide association has shown that also bread wheat
proper harbors resistance genes, which after their isolation and functional
characterization may become part of transgene cassettes. In contrast to Ae. tauschii,
wheat landraces have a base-level adaptation to agricultural habitats that will likely
facilitate the recombination of their haplotypes in breeding programs under
jurisdictions unfavorable to genetic transformation.

Plant health is key to crop performance. Luckily, genetic architecture of plant
resistance is relatively less-complex, with the main challenges being the pathogens

overcoming major-effect genes deployed in isolation®*3,

GIPS is a perfect
complement to resistance gene stacking. Our results for grain yield, arguably the
genetically most complex of traits, illustrate that the informed selection of donors is

possible even if a complex genetic architecture and pervasive genotype-by-

environment interaction prevent singling out causal genetic factors.

Methods
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Plant material and defined seed for IPK-PGR

The winter wheat plants in the current work trace back to 9,145 PGR from the IPK-
genebank and 337 diverse approved elite cultivars (cultivars panel) plus 131 diverse
elite inbred lines (breeder’'s panel). Their passport data regarding acquisition (PGR)
and release (elite cultivars) year, geographic origin, as well as growth habit is
presented in Supplementary Table 1. Origins were further grouped into 14 different
macrogeographic regions according to Balfourier et al.?°. Passport data for PGR
registered as TRl number were accessed via the Genebank Information System**
(GBIS) in extended MCPD-format. Passports of PGR from the B number register and
of elites were compiled from various databases and publication sources. A total of 55
different geographic origins were reported for PGR, with Germany (14.2%), followed
by Italy (8.1%), countries of the former Soviet Union (6.5%) and the USA (6.3%)
being the most common origins. Europe is the most common macrogeographic
region for PGR (60.6%), with the greatest proportion (38.3% of European PGR)
coming from Western Europe. South Asia and North America are represented by
9.5% and 6.6% of PGR, respectively. Most PGR (97.8%) were acquired before the
2000s, with the oldest one tracing back to 1927 and the newest acquisitions to 2007.
The cultivar panel was almost entirely composed of winter types (95.5%) plus some
facultative or spring types. Breeders or commercial owners can be traced to ten
different European countries, with most cultivars released by Germany (47.2%),
followed by Great Britain (15.4%), France (14.2%), and Poland (9.8%). Cultivar
release dates ranged from 1975 to 2018, with most cultivars (82.5%) released from
2000 onwards. ‘Monopol’, the oldest cultivar, was released in Germany during 1975
and is still grown today for its high milling and baking quality (https:/ig-

pflanzenzucht.de/sorte/monopol/). The panel’'s most recent material corresponds to
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the German cultivar ‘Informer’ released in 2018. The German inbred lines belonging
to the breeder’s panel were sampled from 4 breeding companies in the first half of
2010s**°.

Within the single-row multiplication plots, one representative ear was bagged for
homogeneous plots, while up to two ears were selected for clearly non-homogenous
PGR. Seeds from isolated ears were harvested separately from the rest of the plot
and further propagated using an ear-to-row method. Plant material from isolated ears
is referred to as SSD-PGR to differentiate them from the accessions (PGR). A digital
object identifier (DOI) was assigned to each SSD-PGR whose PGR donor was
registered in GBIS (Supplementary Table 39). Seeds for the elite cultivars were
sourced from local markets, while the breeder panel was supplied by four German-

based breeding companies*>*°.

Library Preparation and sequencing

For DNA extraction, ten seeds of one genotype were grown in the greenhouse and a
single, approximately 10 cm leaf was harvested from a 10-days-old seedling. DNA
extraction was performed using a silica-membrane technology (NucleoSpin® 96
Plant 1l) as described by the manufacturer (Machery-Nagel). A total of 7,745 SSD-
PGR and 325 genotypes from the cultivars panel were characterized using GBS
following the protocol for digestion with two restriction enzymes*"*. For this, DNA
samples were simultaneously digested with Pstl and Mspl (New England Biolabs)
and ligated with adapters containing sample-specific barcode sequences. Later, the
processed barcoded DNA samples were pooled into groups of 540 genotypes in
equimolar amount to form a GBS library. Single-end sequencing (1 X 107 cycles)
was performed on lllumina Hiseq-2500 or NovaSeq 6000 system using custom

sequencing primers according to manufacturer’s instructions (lllumina). WGS was
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carried out on 263 diverse SSD-PGR from the T3Cs plus 191 diverse genotypes from
the cultivar panel (Supplementary Note), and for the 131 elite lines of the breeder’s
panel. The SSD-PGR fraction was extended with further WGS data for 183 PGR from
the GenDiv-Project. WGS libraries were prepared using the Nextera DNA Flex
Library Prep according to the manufacturer’s (lllumina) instructions. Libraries were
pooled in an equimolar manner. The multiplexed pool was quantified by qPCR and
sequenced (paired-end, 2 x 151 cycles and 10 bp for the index reads) using a

NovaSeq 6000 device (lllumina) at 3-fold coverage.
Read processing and Variant calling

For GBS, the adapter sequences and low-quality bases from raw reads were trimmed
using cutadapt (v1.16)* with a minimum read length of 30 bp. Adapter and quality
trimming was further confirmed by using FastQC®. The high-quality reads were
aligned against the hexaploid wheat reference genome assembly cv. Chinese Spring
(RefSeq v1.0)* using BWA-MEM (v0.7.17)°* with default parameters. The output
was converted to binary alignment map (BAM) format using SAMtools (v1.9)*? and
then sorting was performed using NovoSort (v3.06.05). Variant calling was performed
using the mpileup and call functions from SAMtools (v1.9) and BCFtools (v1.8)%% The
software was run with -DV parameter for SAMtools mpileup and minimum read
quality (q) cutoff of 20. The bi-allelic SNPs were further filtered with minimum QUAL =
40, minimum read depth for homozygous call =2 2, and minimum read depth for
heterozygous calls = 4 using a custom awk script. The vcf files were imported into the
R statistical environment® (v3.4.3) and converted to GDS format for further
processing using segArray>”.

For WGS, variant calling was performed as mentioned above except that

minimap2® was used for read alignment. The minimap2 was run with genome index
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size of 50Gb and keeping other parameters to default. The bi-allelic SNPs with
minimum QUAL = 40, minimum read depth for homozygous call = 1, and minimum
read depth for heterozygous calls =2 2 were imported into the R statistical environment
and filtered as mentioned above. All post-filtering criteria regarding missing values,
homozygous and heterozygous calls, of GBS and WGS-SNP data used in the

different analyses are summarized in Supplementary Table 2.

Genetic diversity within the IPK collection

PCA was performed using the snpgdsPCA() function of SNPRelate®, which
implements a FastPCA algorithm®’. The population structure analysis was carried out
using model-based clustering approach implemented in ADMIXTURE®®. The software
was run for different K values from 2 to 15 with 10-fold cross-validations (CV) and
500 bootstrap replicates. Fst between populations were calculated using vcftools™.
Furthermore, the identity-by-state (IBS) analysis was performed using the
snpgdsIBSNum function in the R statistical environment. The proportion of pairwise
difference (PPD) between two samples was calculated using the formula:
IBSO/(IBS0+IBS2). All pairs with PPD value < 0.01 were selected and clustering
based on PPD values was performed to identify nearly identical samples (duplicates)

using the R package igraph® for graph operations.
Comparison of genetic diversity between IPK and INRAE genebanks

A sample of 2,608 PGR from the INRAE winter wheat collection was previously
genotyped® using a high-density Affymetrix Axiom SNP array®’. To compare
diversity between IPK and INRAE genebanks, SNPs from the array were mapped to
RefSeq v1.0 and their positions extracted. With a threshold for missing values (<

50%) in GBS-SNPs from the IPK collection, a total of 895 SNPs were retained in the
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merged data set. PPD values were not only used to identify duplicates between
genebanks but additionally, to detect diversity unique to each genebank. An
accession was considered as unigue to its genebank when its minimum genetic
distance to all accessions of the other genebank was greater than the 95% quantile

of distances within the IPK collection.
Introgression identification and tracing the history

A k-mer-, i.e. unique sequence of n bases, based approach was used to describe the
genotypes for previously known introgressions®. The sequences of introgressed
regions were extracted from the chromosome scale assembly of respective
genotypes®. The KMC tool (v3.0)°? was used to identify 71 bp unique k-mers from
each introgressed sequence separately. The 71 bp k-mers were also identified from
RefSeq v1.0. The k-mers from each introgressed region were subtracted from
RefSeq v1.0 k-mers using the KMC tool to identify unique and specific k-mers for
each introgressed region. The k-mers were then compared with quality-checked short
reads for each genotype, and reads carrying k-mers were counted. The proportion of
reads for each introgressed region was plotted against the total number of reads to
identify genotypes with introgressions.

To identify new introgressions, the BAM files generated during the variant calling
process were used. The trimmed reads from Chinese Spring were also mapped
against RefSeq v1.0 and a BAM file was generated. From the BAM file for each
genotype, the number of reads in the 500Kb window were calculated. Reads from
each window were first normalized to sequencing coverage and then to the number
of reads from the same window for Chinese Spring. The logarithm of normalized

count was plotted to create a genome-wide coverage plot.
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Nucleotide diversity and selective sweep study

To identify regions under selection, the WGS nucleotide diversity was examined
within populations defined by their release/acquisition periods: 255 genotypes from
the Green Revolution (PreGreen), 212 varieties released between 1971 and 2000
(OldCV), and 293 recent genotypes bred after 2000 (NewCV). Nucleotide diversity
analysis was carried out for all possible pairwise population combinations.
Normalized XP-CLR?* scores for each combination were ordered in descending order
and the top 0.1% intervals were interpreted as regions under selection (selective
sweep). Regions that were 10Kb adjacent were merged. Nucleotide diversity
analyses were conducted using pixy®® with a 10Kb window and a step size of 100 bp,

while leaving all other parameters at default.
Phenotyping for yellow rust resistance

YR screenings were based on naturally occurring infections for 7,684 PGR along with
80 elite checks in 12 unbalanced, replicated field experiments considering 1,428-
1,697 entries each (for further details see Supplementary Table 10). On average,
each PGR was tested in 2.4 experiments, with almost all (99.4%) tested in at least 2
different experiments. Elite checks were used to increase the connectivity between
experiments, with each check being present in 5.1 experiments on average, while
four checks were present in all experiments. Field experiments were conducted
between harvest years 2015-2020 considering locations Gatersleben and
Schackstedt. An alpha lattice design with two complete replications divided into
incomplete-blocks was used to account for uncontrolled spatial variation in each field
experiment. Following the official protocols of the German Federal Plant Variety
Office®, an ordinal scale from 1 to 9 was used to score infections, where one stands

for minimal symptoms and nine indicates extensive disease symptoms.
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With the goal of finding new sources of disease resistance in PGR that are
lacking in elite breeding, T3C for three leaf diseases were assembled
(Supplementary Note). Briefly, we used preliminary phenotypic data and performed
an unbalanced two-tailed selection to enrich the fraction of resistant genotypes while
selecting susceptible genotypes such that the association between population
structure and the trait under consideration is minimized. The complete set consisted
of 200 genotypes from the cultivars panel and 600 SSD-PGR from the three T3Cs
(Supplementary Table 15).

YR screenings were then performed for the diverse elite cultivars and the T3Cs
in an additional set of 7 balanced experiments (further details in Supplementary
Table 16). Briefly, experiments were conducted during harvest years 2019 and 2020
in locations Gatersleben, Quedlinburg, Wetze and Rosenthal. The two experiments in
Gatersleben relied on natural infections while the other five were artificially
inoculated. The percentage of YR infection from the experiment in Quedlinburg was
transformed into a 1-9 scale as specified in Supplementary Table 40. For the other
six experiments, infection was scored using the 1-9 ordinal scale as previously

outlined.
Estimating breeding value for grain yield in a hybrid background

Individual PGR often lack some major loci for adaptation to modern agricultural
practices. This masks their breeding value when evaluated in yield trials. As a rapid
adaptation strategy, it has been proposed to estimate the breeding values of PGR in
hybrid backgrounds when crossed with elite cultivars®. This strategy was
implemented in five consecutive years for a total of 760 PGR (year 1 PGR, year 2-5
SSD-PGR) by crossing each of them as male parents with up to 14 elite cultivars,

with an average of 2.1 per PGR. To ensure a sufficient quantity of hybrid seed, PGR
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were selected based on their pollination capability. The details of how hybrid seed
production was carried out and also the phenotyping of series one to three have
been described in detail previously®®®°. Across-series, a total of 22 unbalanced field
experiments were conducted to evaluate grain yield of 1,925 hybrids, along with a set
of 518 parental lines and 40 checks to improve connectivity between series.
Unbalanced experiments span together harvest years 2016-2020 and seven different
German locations. Details of the experimental designs for each experiment series

can be found in Supplementary Table 31.
Using breeding value estimates of PGR for an informed parent selection

Based on the field trials conducted in the first year, we embarked on a pre-breeding
program that used the estimated breeding values for grain yield as a tool for PGR
parent selection. We applied stringent selection with a superior fraction of 10% and
developed segregating populations using two- (Elite;xPGR) and three-way crosses
(Eliteox [Elite;xPGR]). The segregating progeny were genetically fixed by two
generations of selfing. Simultaneously, we performed two-stage selection based on
visual assessment of single plants, followed by rows focusing on the traits plant
height and leaf health. In 2020, 85 advanced Fs.4 families were evaluated for yield
under conventional local agricultural practices at two locations and considering
eleven winter wheat cultivars approved for commercial use in Germany during the
last one and a half decades as checks (Supplementary Table 33). Among checks,
the French cultivar ‘Arezzo’ (released in 2007) was the oldest one while the German
variety ‘Informer’ (released in 2018) was the most recent cultivar (Supplementary
Table 1). In these experiments as well as for the 22 unbalanced field experiments
with ‘ElitexPGR’ hybrids, plots were mechanically harvested while grain yield was

expressed in Mg/ha on a 140 g H20 per harvested kg moisture basis.


https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472759; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Phenotypic data analyses of yellow rust screenings

Ouitlier detection, BLUEs and variance components for single replicated experiments
were obtained using equation (4) of the Supplementary Note. Regarding
unbalanced experiments (Supplementary Table 10), the YR infection per plot in
Gatersleben during 2019 was the maximum value among early and late scorings for
these analyses, while the unreplicated Schackstedt experiment from 2019 was only
considered for analyses across-experiments. Variance components and BLUEs
across unbalanced experiments were obtained in an integrated outlier-corrected
dataset using equation (5) of the Supplementary Note. For the elite cultivars plus
T3Cs (Supplementary Table 16), each YR scoring date was analyzed separately
and the unreplicated data from Quedlinburg were corrected by subtracting the
incomplete-block means. Later, the maximum outlier-and-design-effects-corrected
value among early and late scorings was selected entry-wise in each experiment and
integrated  across-experiments.  Across-experiments BLUEs and variance
components for the elite cultivars plus T3Cs were obtained through the following

mixed model:

Ve = u+ L+ g, + ey, (1)

where y,,; is the YR infection value for the k-th genotype in the I-th experiment, u
corresponds to the general mean, L; denotes the effect of the [-th experiment, g,
indicates the effect of the k-th genotype, while e;; is the error term of the model
confounded with the genotype x experiment interaction. Assumptions for BLUESs and
variance components computation are outlined in the Supplementary Note. A
pooled error variance (62) was obtained by averaging error variance estimates of

single experiments analyses. Later, the variance estimate of experiment x genotype


https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472759; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

=2
e

o A2 ;
b where Gz, is the error

~

interactions (67.;) was obtained as 62, = 6Zror

variance estimate from equation (1) and N.Rep is the average number of replicates
across experiments. Estimated variance components were used to compute
heritatabilities for single and across-experiments according to equations (6) and (7),

respectively (Supplementary Note).
Estimating breeding value for grain yield of PGR

Previously published procedures for data curation and estimation of genotypic effects
corrected for experimental design effects using linear mixed models were
implemented®®. The basic model included the effects of genotypes and incomplete-
blocks in addition to other experiment-specific (trials and/or replications) design
effects (Supplementary Table 31). All data were checked series-wise for outliers
using Method 4 "Bonferroni-Holm with rescaled residuals standardized to mean

.57 Outliers were removed and

absolute deviation" described by Bernal-Vasquez et a
the linear mixed model described above was refitted to obtain estimates of genotypes
in each experiment, which were adjusted for the effects of experimental designs and
served as input to subsequent analyses. In a next step, 161 hybrids with low seed
purity were discarded from the integrated analyses. Adjusted means for genotypes
from the 22 experiments were used in a linear mixed model including effects of
groups - i.e., genotypes belonging to either checks, lines, or hybrids -, experiments,
lines, breeding values of PGR and elite lines, i.e. the general combining ability
effects, their interaction effects with experiments, specific combining abilities effects
and errors. Assuming all model effects excepting group means as random, variance

components and PGR breeding values were estimated. Variance estimates were

subsequently used to compute the broad-sense heritability of the hybrid yield
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performance as specified in Zhao et al.?®®, while a narrow-sense heritability of the

PGR contribution to yield in the hybrid context was obtained as follows:

Béca
hZ = 32 AZM > , (2)
52 + GCApgXL : ISCA : i
GCAp™ NExp ' NFem' N.ExpxN-Rep

where 6GZCAM is the variance estimate of the general combining abilities of male
parents, 64ca,x. denotes the variance of interactions between male combining

abilities and experiments, 6%, indicates the variance of specific combining abilities

between parents, 62 corresponds to the error variance, while N.Exp, N.Fem and

N. Rep are the average number of experiments, crossing females and replications.
Genome-wide association study (GWAS)

Unimputed GBS-SNPs were used to compute a kinship matrix as 2 X (J- RD), where
J denotes an nxn all-ones matrix and RD is a Rogers’ distance®® matrix calculated as
stated in the Supplementary Note. Unimputed WGS data were used to conduct
GWAS for YR. GWAS was performed using a standard linear mixed model® that
corrects for population stratification by fitting a polygenic effect for the genotypes,
with covariance modeled using the previously estimated kinship matrix. For genome-
wide multiple test correction, the nominal significance level 0.05 was divided by the
number of independent markers (Meff)m.

In addition, we implemented a GWAS approach which potentially captures
structural variation denoted as k-mer based GWAS™. Briefly, KMC tool (3.1.1)% was
used to identify 31 bp k-mer from quality trimmed sequencing reads from each
genotype. Only k-mer supported by at least 2 reads were considered. k-mer from all
the genotypes were combined to generate a non-redundant k-mer set. The non-

redundant k-mer sequences were searched in each genotype and a k-mer presence-


https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472759; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

absence matrix was generated which served as a genotype matrix in GWAS. To
reduce computational burden of GWAS for billions of k-mers, we selected the first top
10 million k-mers based on the T? statistic as implemented in the kmers_gwas.py
script’. Afterwards, GWAS was conducted for this reduced set of k-mers as stated
before for SNP-based GWAS but using a Bonferroni significant threshold for multiple-
test correction. The k-mers were mapped against reference genome sequences
using BWA-MEM and only uniquely mapped k-mers were extracted. The linear mixed
models of phenotypic analyses as well as GWAS were fitted using the average
information matrix algorithm for restricted maximum likelihood (REML) computation

as implemented in ASReml-R (3.0)"2.

Genome-wide predictions

Genomic best-linear unbiased prediction (GBLUP) was performed with an
additive genomic relationship matrix according to the first VanRaden method”.
Predictions were obtained for the 7,745 SSD-PGR as well as for the INRAE-PGR by
using a training set of IPK-PGR having both phenotypic and genotypic data. Missing
values still present after filtering were imputed using the locus mean. In addition, the

standard error (SE) of prediction for each genotype i was calculated as SE; =
/662*(352, where 62 is the genomic-estimated error variance and C3* is the i

diagonal element of the lower-right quadrant from the generalized-inverse of the left-
hand-side coefficient matrix according to Henderson’®. The expected prediction
accuracy was estimated through five-fold cross-validation within the training set and
was defined as the Pearson correlation coefficient between predicted and observed
values divided afterwards by vhZ. Mixed model equations for genomic prediction

were computed using REML as implemented in the R-package rrBLUP™. All
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computational methods related to phenotypic analyses, GWAS, and genomic

prediction were implemented within R statistical environment™ (v3.6.1).
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Figure captions

Fig. 1. Genetic diversity within and between genebanks.

a, Principal component analysis (PCA) representing the diversity space of 2,608
winter wheat accessions from INRAE (blue color) onto which 7,745 IPK genebank
samples (red color) and 325 European elite cultivars (Elite) were projected. b, PCA
plot depicting genetic diversity harvored by IPK genebank accessions and elite
cultivars. The IPK accessions are colored based on different geographic regions:
WEU/NEU, western/northern Europe; EEU, Eastern Europe; SEU, Southern Europe;
SAS/EAS, Southern/Eastern Asia; WAS, Western Asia; NAM/SAM, North/South
America. Samples from underrepresented regions are presented in gray. ¢, The
same data as in (b) are shown, but samples are colored by their assignments to
subpopulations defined by ADMIXTURE (k=5). Samples with ancestry coefficients
<0.7 are shown in grey. Subpopulations 1-5 were mostly conformed (> 50% known
origins) by genotypes from EEU, SEU, WEU/NEU, WEU/NEU (mostly Germany) and

SASIEAS, respectively. d, Fixation index (F_) between subpopulations defined by

ADMIXTURE. e, Distributions of similarity within subpopulations. The density of

pairwise identity-by-state values is plotted.


https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472759; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 2. Tracing the history of introgression breeding.

a, Circos plot of normalized XP-CLR scores for contrasts between three different
historic periods: PreGreen (before 1970), OldCV (1971-2000) and NewCV (2001-
Present). The regions under selection are highlighted with stars. Inner circle:
PreGreen vs OIdCV (red stars); middle circle: OIdCV vs NewCV (blue stars); outer
circle: PreGreen vs NewCV (green stars). b, Detection of introgressions by
measuring the abundance of diagnostic k-mers. The relative frequency of k-mers
specific to the Ae. ventricosa introgression on chromosome 2A are shown for plant
genetic resources (PGR) and elite lines. The introgression is more frequent in the

elite panel. c, Drops in read depth (log,-fold changes compared to Chinese Spring)

are indicative of introgressions. Read depth in 100 kb along six chromosomes is
shown for one putative introgression carrier. Most introgressions occur in distal
regions. d, Number of putative introgressions detected in 318 diverse elite lines and
442 diverse PGR samples. e, Frequencies of selected introgressions according to the
three different historic periods. The number of varieties per period are indicated in

brackets [ ].
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Fig. 3. Deep mining plant genetic resources (PGR) of the IPK genebank for new
sources of resistance against yellow rust (YR) not yet used in winter wheat
breeding.

a, Molecular diversity potrayed by the first two principal components (PC) from
genotyping-by-sequencing variants and covered by the mined panel: 191 diverse
elite cultivars, 199 diverse PGR [YR(R) plus 50YR(S)] from a YR trait-customized
core collection (T3C) selected for resistant PGR enrichment and minimized
population structure, plus 64 diverse PGR from T3Cs for other diseases. b, YR score
(1 = fully resistant, 9 = fully susceptible) of the mined panels based on intensive field
phenotyping. Diamonds indicate the average of distributions, while numbers in
brackets [ ] in (a) and (b) indicate the number of datapoints for each category.
Genomic regions harboring loci associated to YR resistance as revealed by whole
genome sequencing and association mapping in (c) the whole panel (elites + T3Cs
PGR), (d) only elites and (e) only T3Cs PGR. Physical positions are according to the
Chinese Spring v1.0 reference. Significance thresholds are denoted with blue
horizontal dashed lines. Positions of known YR resistance loci are indicated with
lemon green vertical dashed lines and triangles, while green triangles denote hitherto
not known resistance loci with resistance conferring alleles almost fixed in elites.
Regions harboring new sources of resistance and fully contributed by PGR are

shown with orange dashed lines and triangles.
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Fig. 4. Uncovering the yield breeding value (BV) of plant genetic resources
(PGR) for pre-breeding through ‘ElitexPGR’ hybrids and genomic prediction.
a, Disease susceptibility (left) and lodging (right) mask the yield BV of wheat PGR,

but these limitations are overcome in Elite x PGR (F,) hybrids, where PGR

contribution to yield can be revealed. b, Parenting effect of elite cultivars on the yield
(Mg/ha) of PGR observed in ElitexPGR hybrids. c, Yields of modern check cultivars

as well as 85 F,, lines derived from two- (Elite,xPGR) and three-way
(Elite,x[Elite, xPGRY]) crosses with PGR parents selected for their high yield BV

estimates. The performance of the oldest check and the average of checks are
indicated with orange and blue vertical dashed lines, respectively. d, Molecular
diversity stored at the IPK genebank as potrayed by the first two principal
components (PC) from genotyping-by-sequencing variants and covered by yield BV
estimates (green). These estimates were the training set for genomic prediction
(GBLUP) of untested PGR (orange) using 29,844 SNP markers. e, Prediction
accuracy of GBLUP in 1000 cross-validation (CV) runs. f, Yield BV genomic
predictions and their standard errors (SE) for the IPK winter wheat collection. The
vertical dashed line indicates the 10% superior yielding predictions while the
horizontal one is the average SE of the training set. Red diamonds in (b) and (e)
indicate the averages, while the numbers in brackets [ ] in (b) and (d) indicate the

number of datapoints for each category.
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