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Abstract 

The great efforts spent in the maintenance of past diversity in genebanks are 

rationalized by the potential role of plant genetic resources in future crop 
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improvement – a concept whose practical implementation has fallen short of 

expectations. Here, we implement genomics-informed parent selection to 

expedite pre-breeding without discriminating against non-adapted germplasm. 

We collect dense genetic profiles for a large winter wheat collection and 

evaluate grain yield and resistance to yellow rust in representative coresets. 

Genomic prediction within and across genebanks identified the best parents 

for PGR x elite derived crosses that outyielded current elite cultivars in 

multiple field trials.  

 

Main 

Genebanks around the world are committed to maintain permanently plant genetic 

resources (PGR), some of which have not been grown on farmer’s field for a century 

or, in the case of crop-wild relatives, have never been used as crops at all1. PGR 

underperform dramatically in current agricultural environments2. Most of them, for 

example, succumb to pathogens currently at large, preventing an un-biased 

assessment of their breeding value3. Pre-breeders have often ended up in choosing 

“exotic” genotypes too closely related to the elite genepool or with the inadvertent 

loss of novel haplotypes by selection in the field4,5. We and others6,7 have bemoaned 

the disconnect between genebank management and breeding resulting from a lack of 

effective and generally applicable strategies to identify valuable germplasm as 

donors in pre-breeding programs. 

In recent years, genomic approaches have showcased the potential of exotic 

germplasm for plant breeding4,5,8. Pan-genomes9, rapid gene cloning and targeted 

enrichment sequencing10 have accelerated the isolation of resistance genes, 

including those from crop-wild relatives. However, their durable deployment requires 
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either complex pyramiding schemes or transgenic methods11 under tight regulation in 

many countries. Moreover, resistance gene breeding takes advantage of a 

comparatively simple genetic architecture where single, easily transferable major 

genes confer large genetic gains12. After the Green Revolution13, reductionist 

approaches to further increase grain yield per se, a genetically complex trait with high 

genotype-by-environment interaction, have been counter-productive in practice14,15. 

A combination of genebank genomics (genome-wide marker profiles for entire 

genebank collections) and genomic prediction (inference of phenotype from 

genotype) has been proposed as one way forward to characterize and prioritize 

genebank accessions for pre-breeding16. The missing link is the accurate 

phenotyping of a training set from which the breeding value of thousands of 

accessions can be predicted. We have proposed a hybrid strategy, in which 

agronomic performance is not scored in the PGR itself (“per se”), but in a hybrid ‘Elite 

x PGR’ background to negate the masking effect of a lack of agronomic adaption of 

germplasm preserved ex situ or locally abandoned3. However, the high cost of large-

scale cross-fertilization in inbreeding crops17 and the low heritability estimated in a 

hybrid context, left reasonable doubts as to whether phenotypic evaluation in a panel, 

small enough to be tractable for hybrid production, can inform genomic prediction of 

breeding in thousands of accessions. Here, we report on the implementation and 

evaluation of our strategy in winter wheat, the most important food crop in Europe.  

 

Results 

Genetic structure of a global winter wheat collection 

The universe of genetic and phenotypic diversity from which we selected parents for 

pre-breeding traces back to 7,651 wheat accessions from the German Federal ex situ 

Genebank (Supplementary Table 1). Genotypic characterization was performed on 
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genotypes descended from single spikes to reduce the effect of heterogeneity within 

accessions. Genotyping-by-sequencing (GBS) of this panel (henceforth the “IPK 

collection”) together with 325 European elite cultivars yielded 69,356 bi-allelic single-

nucleotide polymorphism (SNP) markers with less than 10% missing genotype calls 

(Supplementary Table 2). A very small fraction of accessions (0.2 %) turned out to 

be mis-classified tetraploid wheats (confirmed by flow cytometric ploidy analysis and 

the most recent passport records), illustrating the value of genome-wide marker 

profiles for the curation of genebank collections8,18,19 (Supplementary Tables 3 and 

4 and Supplementary Figs. 1 and 2). Consistent with previous large-scale genebank 

genomics efforts18,19, duplicates abound in the IPK collection: 37 % of accessions 

were highly similar (> 99 %) to at least one other accession (Supplementary Table 

5).  

We intersected our GBS-based variant calls with high-density SNP genotyping data 

of 2,608 winter wheat accessions from the French national genebank20 (the “INRAE 

collection”), yielding 895 shared variants. A high correlation of distance measures (r = 

0.82, Mantel p-value < 0.01) indicates that rather few common markers can still 

accurately capture population structure (Supplementary Table 6). Seventeen 

percent of INRAE accessions had a close (> 99 % identity) match to at least one IPK 

accession (Supplementary Table 7). By contrast, 434 INRAE accessions did not 

match to any IPK accessions (Supplementary Table 8), while vice versa, 2,161 IPK 

accessions lacked counterparts in the INRAE collection (Supplementary Table 9). 

These observations reinforce calls to action demanding across-genebank curation 

efforts informed by genomics (https://agent-project.eu/). 

A joint principal component analysis (PCA) revealed that both genebanks largely 

covered the same diversity space (Fig. 1a). A PCA highlighted two major germplasm 

groups, corresponding to accessions of European and Asian origin, respectively (Fig. 
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1b,c). Southern European accessions occupied an intermediate position. 

Interestingly, wheats from Western Europe and Eastern Europe were well separated 

in the diversity space. Most accessions from the Americas were descended from the 

Eastern European genepool. Genetic differentiation as measured by FST was 

consistent with the patterns evident from the PCA (Fig. 1d). The pronounced genetic 

divergence (FST = 0.376) between European elite cultivars and the more diverse 

Asian germplasm (Fig. 1e) makes it likely that the targeted use of Asian accessions 

in European wheat breeding may reap the same rewards as an exchange of alleles 

in the opposite direction21. 

Definition of trait-customized core collections 

After a thorough inspection of patterns of diversity, we aimed at singling out 

genotypes that would stand a high chance of increasing crop performance when 

crossed with current elite varieties. The first trait we focused on is resistance to 

yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Supplementary Tables 

10-12). As expected, the vast majority of genebank accessions (91.6 %) was more 

susceptible to naturally occurring YR than elite cultivars (Supplementary Figs. 3 and 

4). Solely focusing on highly resistant accessions incurs the risk of enriching for 

alleles from the modern European genepool already deployed by breeders to the 

detriment of resistance-conferring alleles contributed by non-adapted landraces from 

other genepools (Supplementary Tables 13 and 14). Based on preliminary data, we 

compiled a “trait-customized” core collection (T3C) of diverse accessions with 150 

genotypes resistant to YR and 50 closely related susceptible genotypes to strike a 

balance between power in association mapping, allelic richness and coverage of the 

diversity space (see Supplementary Note and Supplementary Fig. 5). The same 

strategy was applied to address the problem for two other important diseases: leaf 
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rust and powdery mildew. The three T3Cs together with a coreset of 200 diverse elite 

cultivars were intensively tested relying on natural and artificial YR infections in 

multiple field trials, which provided a very high trait heritability (Supplementary 

Tables 15-17). Whole genome re-sequencing data (3-fold coverage) was generated 

for 263 genotypes of the three T3Cs and 191 elite cultivars (Supplementary Table 

15). Read mapping and SNP calling against the Chinese Spring Reference22 

provided a dataset of 2,788,918 SNPs with less than 10% missing calls, which was 

then used to perform genome-wide association scan (GWAS) analysis and 

genomics-informed parent selection (GiPS) for resistance breeding (see results after 

the next section).  

Atlas of footprints of selection in the European elite pool 

Genome scans for regions under selection can reveal loci targeted by breeders as 

well as wider regions which are in linkage to selected loci with reduced haplotype 

diversity23. To find genomic footprints of selection in European winter wheat, we 

expanded our whole genome shotgun data with diversity from 183 additional 

accessions and 131 modern German breeding lines. According to their 

acquisition/release years, a total 760 genotypes constitute roughly a historic time 

course (Supplementary Table 18): 255 genotypes predating the Green Revolution 

(PreGreen), 212 varieties released between 1971 and 2000 (OldCV), and 293 recent 

genotypes bred after 2000 (NewCV). A scan for high cross population composite 

likelihood ratios (XP-CLR)24 revealed 1,304, 1,201, and 1,001 selective sweep 

regions between PreGreen-and-OldCV, OldCV-and-NewCV, and PreGreen-and-

NewCV combinations, respectively (Supplementary Table 19). Several selective 

sweep regions (XP-CLR score ≥ 40) were co-located with known disease resistance 

loci (Fig. 2a) such as Lr10 on chromosome 1AS25 and Yr17 on chromosome 
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2AS26,27. The latter, introgressed from Aegilops ventricosa9, illustrates how alien 

introgressions have been successfully used in wheat breeding28 and stimulated a 

systematic scan for the presence of alien chromatin in our historic panel. To this end, 

we employed approaches based on k-mers and read depth (Fig. 2b,c, see Online 

Methods). We detected seven previously described9,23 introgressions on 

chromosomes 2A, 4A, 1B, 2B, 2D, 3D, and 7D (Supplementary Table 20). 

Moreover, we found evidence for hitherto unknown alien introgressions on 

chromosomes 1D, 2D and 5B. We compared the potentially novel introgressed 

haplotypes with published genomes of wheat wild relatives9, but were not able to 

unravel their origins. Elite cultivars being currently grown in Europe may harbor 

multiple independent introgressions (Fig. 2d), with up to six introgressions in modern 

cultivars such as ‘Anapolis’ and ‘Memory’ (Supplementary Table 21). Strikingly, the 

frequency of all introgressions has increased in recent decades (Fig. 2e), with the 

notable exceptions of 1D and the 1BS-1RS whole-arm introgression dating back to 

the 1920s29. Despite conferring multiple disease resistances30,31 and abiotic stress 

tolerance32, the appeal of 1BS-1RS to breeders may have waned due to new 

pathotypes that overcame resistances31,33, or because of its negative effects on 

bread-making quality34. This clearly illustrates how the popularity of introgressions is 

tightly linked to their overall net value for breeders. 

Genome-wide association mapping for yellow rust 

GWAS is used to detect markers and haplotypes linked to agronomic traits and, in 

the best case, can provide candidate gene resolution35. Pan-genomic infrastructures, 

however, may be needed to obtain the full gene complement content under GWAS 

peaks, in particular as families of the major classes of candidate resistance genes 

are subjected to abundant structural variation36,37. To deal with a possible 
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overcorrection of associations due to genetic differentiation between elite cultivars 

and accessions (Fig. 3a,b), GWAS was conducted at three different levels: whole 

set, only elite cultivars and only T3C accessions. In this way, association scans for 

YR detected 684, 194, and 29 significantly [-log10(p-value) > 5.97] associated SNPs 

in the whole set, T3C accessions and elite cultivars population, respectively (Fig. 3c-

e and Supplementary Table 22). Some associated regions were co-located with 

known, but not yet cloned resistance genes loci such as Yr17 (2AS)26,27 and Yr75 

(7AL)38, which have been widely deployed in elite cultivars (Fig. 3c-e and 

Supplementary Table 23). We observed long haplotype blocks under GWAS peaks 

in elite cultivars, which can likely be attributed to intense and effective selection by 

breeders for major genes (Supplementary Fig. 6), and which complicate the 

prioritization of candidate genes. By contrast, linkage disequilibrium decays in 

general much faster around GWAS peaks detected in PGR (Supplementary Table 

24), possibly increasing mapping resolution once pan-genome assemblies of 

resistant haplotypes become available. 

To understand the contribution of structural variation to the genetic architecture of 

disease resistances, we conducted k-mer GWAS, which uses the presence-absence 

state of short sequence fragments of fixed length (k-mers) as a proxy for structural 

variants (see Online Methods). The most highly associated k-mers, when mapped to 

the Chinese Spring genome, were co-located with peak regions identified in SNP-

GWAS (Supplementary Fig. 7). A notable exception was the 2AS (Yr17) peak, 

which was much less prominent in the SNP-GWAS, likely because of shortcomings 

of the reference-based SNP calling with highly diverse alien haplotypes. Importantly, 

142 of 533 significantly associated k-mers were absent from the wheat pan-genome 

assemblies9 (Supplementary Table 25). Genome assemblies of accessions 
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harboring these k-mers (Supplementary Table 26) and the resistant haplotypes they 

represent are priority targets for expanding the wheat YR resistance atlas39 and the 

global wheat pan-genome infrastructure. 

GWAS peaks that do not correspond to known resistance genes may tag 

beneficial haplotypes from landraces that have not yet been deployed by breeders. 

However, resistance-conferring alleles for SNPs underlying associations on 

chromosomes 5A, 5B, 6D, 7B and one additional SNP on the unassigned 

chromosome were nearly fixed (allele frequency > 98%) in elite cultivars (Fig. 3c-e 

and Supplementary Table 22), suggesting that these putative resistance loci, 

despite their importance in breeding, have not been scrutinized in prior genetic 

studies. Resistance-conferring alleles private to PGR were found for 606 associated 

SNPs on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3B, 4A, 5B, 6A, 6B and 7D, plus one 

SNP mapping to sequences not assigned to chromosomes (Fig. 3c-e and 

Supplementary Table 22). Taken together, these loci point to 30 resistance-

conferring haplotypes absent from elite cultivars (Supplementary Fig. 8 and 

Supplementary Table 27). Genotypes carrying such resistance-conferring 

haplotypes at a single locus, but otherwise having a susceptible genomic background 

are approximately equivalent to near-isogenic lines (NIL) and as such will be good 

starting points for genetic and functional characterization. A haplotype analysis for all 

GWAS peaks indicated that such NIL proxies are rare among PGR: on average, the 

23 potential donors carry 24 from a total of 66 resistance-conferring haplotypes, while 

more than half the donors carry more than one potential source of novel resistances 

(Supplementary Table 27). By contrast, promising donors for breeding programs 

carrying many resistance-conferring alleles are easy to pick (Supplementary Table 

28). A notable example is the Iranian landrace TRI 5804 bearing 28 of the 30 

possible novel resistance-conferring alleles. 
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Genomics-informed parent selection (GiPS) 

The widespread use of alien introgressions has proven that beneficial genes and 

haplotypes from PGR can be identified and deployed effectively. The perseverance 

and good luck of pre-breeders in over-coming crossing barriers may have played a 

large role in the success of crop-wild relative introgressions in wheat breeding23. Can 

the same be achieved with (new)crop-(old)crop introgressions? The overwhelming 

number of possible combinations between fully interfertile landraces and elite 

varieties of bread wheat, and the known lack of adaption to diverse agroecological 

conditions of most genotypes makes “random crosses and hoping for the best” a pre-

breeding strategy with poor returns1. As an alternative approach less reliant on 

fortuity, we implemented a pre-breeding strategy based on wheat hybrids3 that 

predicts the respecting breeding value of PGR from a small training set of crosses 

(Fig. 4). To overcome the strong yield penalties suffered by non-adapted landraces 

(Fig. 4a-b), we estimated breeding values of first-generation ‘Elite�PGR’ hybrids. 

Seven-hundred seven IPK accessions (Supplementary Table 29), pre-selected for 

high pollen shedding and synchronized flowering time, but retaining molecular 

diversity (Fig. 4d and Supplementary Table 30), served as pollinators for 36 

different elite cultivars in an incomplete factorial mating design to obtain 1,427 

Elite�PGR hybrids (Supplementary Fig. 9). Multi-environment field trials established 

the high heritability of grain yield in such hybrids (Supplementary Tables 31 and 

32). As expected, hybrids outperformed their PGR parents by a considerable margin 

(�̂������ � �̂��	 = 1.33 Mg/ha, -log10(p-value) = 50.2, Fig. 4b). Per se performance of 

PGR was only weakly correlated with breeding value estimates (r = 0.22, p-value < 

0.01), vindicating the expenses of hybrid seed production. We proceeded by 

developing ‘Elite�PGR’ populations with PGR parents picked from the highest 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


yielding (1st decile) accessions according to their estimated breeding value in a 

hybrid background. After two-stage selection for appropriate height and good health, 

a substantial proportion (40%) of PGR-derived F3:4 families already outyielded the 

oldest (released in 2007) cultivar check in our yield trials (Fig. 4c, Supplementary 

Tables 33 and 34). Among the 10% superior families, TRI 4589 - an Uruguayan 

accession from the late 1950s - was the second most frequent PGR in the tested 

pedigrees, which suggests that even before breeding selection our strategy can 

highlight the contribution to future yield increases by abandoned, non-adapted PGR. 

The yield of the best family exceeded the average yield of check cultivars by 0.3 

Mg/ha (4.4% improvement). The current annual genetic gain in wheat breeding in 

Germany is 0.7-1.2%40, indicating that our strategy achieved an impressive 

contribution to wheat improvement in less than one breeding cycle. 

A remaining uncertainty of our approach is whether our training set, whose size is 

constrained by the cost of hybrid seed production, is large enough to fuel robust 

genomic predictions. If so, the pool of possible donors – all accessions with yield 

predictions from cheap markers – would be greatly enlarged. We use genomic 

prediction to infer the breeding values for the entire IPK collection based on 29,844 

SNP markers and using 597 PGR estimates from the hybrid context as a training set 

(Fig. 4d-f). The cross-validated prediction accuracy was high (0.66±0.12, Fig. 4e). 

Within the 10% superior fraction of the IPK genebank (> 6.84 Mg/ha), most predicted 

material (85.8%) has not been phenotyped and only 12.8% of these fully predicted 

high-yielders had standard errors (SE) as low as the average SE of the training set 

(Fig. 4f, Supplementary Table 35). High-yielding, highly reliable donors were 

predominantly from Europe (78.8% of 151 donors), followed by the Americas (4%) 

and Iran (1.3%) (Supplementary Table 36). Most these donors (66.2%) were 
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acquired by the genebank before 1980, supporting our hypothesis that GiPS can 

contribute to rescuing exotic and past crop diversity. 

Next, we predicted breeding values across the IPK and INRAE genebanks using 

IPK-PGR as training set (Supplementary Fig. 10, Supplementary Tables 37 and 

38). The small number of shared markers affected the cross-validated prediction 

accuracy only mildly (0.60±0.13, Supplementary Fig. 10b). Out of 111 predicted 

high-yielding accessions with good statistical support, only six (5.4%) belonged to the 

INRAE collection (Supplementary Fig. 10c and Supplementary Table 38). All these 

INRAE donors originated in Europe, which is also the most common (71.1%) 

continent of origin for winter wheats stored at the INRAE genebank20. Importantly, 

none of these identified INRAE donors was part of INRAE’s unique diversity 

(Supplementary Table 8), which highlights that reliable predictions are only obtained 

within the diversity sampling space covered by the training set16. Among INRAE 

donors, five were registered as cultivars before 1970 and one of them even during 

the 1910s. In summary, GiPS can expedite the pre-breeding for a highly complex, 

and economically most relevant trait, grain yield, without discriminating against non-

adapted germplasm. 

 

Discussion 

The challenges associated with the use of genebank material in breeding and 

agriculture has been recognized for a long time1. We implemented a generally 

applicable strategy to close the gap between genebank management and pre-

breeding. We have established the feasibility of selecting high-yielding donors from a 

small training set with yield records and dense marker data for a much larger 

universe of genebank accessions. The linchpin of GiPS are statistically robust yield 

estimates from early-generation Elite x PGR hybrids, which underpinned the 
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statistically robust and meaningful inference of breeding values from a training set of 

hundreds of genotypes in thousands of accessions, even across genebanks. It goes 

without saying that all steps, selection of coresets, genomic prediction, and cross-

referencing between genebanks, are dependent on genebank genomics6 and 

ultimately cheap genome sequencing. Unable to select donors only based on their 

marker profiles, two breeders’ professional life times would have been spent, if not 

wasted, in producing and trialing 7,000 ‘PGR x Elite’ hybrids. 

Our analysis of current elite cultivars has shown that breeders did a good job by 

pyramiding large-effect resistance loci. In the absence of yield penalties linked to 

alien chromatin, breeders should go doing so41. Recent gene isolation efforts have 

focused on wheat wild relatives, notably its diploid wild D-genome progenitor, 

Aegilops tauschii42. Our genome-wide association has shown that also bread wheat 

proper harbors resistance genes, which after their isolation and functional 

characterization may become part of transgene cassettes. In contrast to Ae. tauschii, 

wheat landraces have a base-level adaptation to agricultural habitats that will likely 

facilitate the recombination of their haplotypes in breeding programs under 

jurisdictions unfavorable to genetic transformation. 

Plant health is key to crop performance. Luckily, genetic architecture of plant 

resistance is relatively less-complex, with the main challenges being the pathogens 

overcoming major-effect genes deployed in isolation28,43. GiPS is a perfect 

complement to resistance gene stacking. Our results for grain yield, arguably the 

genetically most complex of traits, illustrate that the informed selection of donors is 

possible even if a complex genetic architecture and pervasive genotype-by-

environment interaction prevent singling out causal genetic factors.  

 

Methods  
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Plant material and defined seed for IPK-PGR 

The winter wheat plants in the current work trace back to 9,145 PGR from the IPK-

genebank and 337 diverse approved elite cultivars (cultivars panel) plus 131 diverse 

elite inbred lines (breeder’s panel). Their passport data regarding acquisition (PGR) 

and release (elite cultivars) year, geographic origin, as well as growth habit is 

presented in Supplementary Table 1. Origins were further grouped into 14 different 

macrogeographic regions according to Balfourier et al.20. Passport data for PGR 

registered as TRI number were accessed via the Genebank Information System44 

(GBIS) in extended MCPD-format. Passports of PGR from the B number register and 

of elites were compiled from various databases and publication sources. A total of 55 

different geographic origins were reported for PGR, with Germany (14.2%), followed 

by Italy (8.1%), countries of the former Soviet Union (6.5%) and the USA (6.3%) 

being the most common origins. Europe is the most common macrogeographic 

region for PGR (60.6%), with the greatest proportion (38.3% of European PGR) 

coming from Western Europe. South Asia and North America are represented by 

9.5% and 6.6% of PGR, respectively. Most PGR (97.8%) were acquired before the 

2000s, with the oldest one tracing back to 1927 and the newest acquisitions to 2007. 

The cultivar panel was almost entirely composed of winter types (95.5%) plus some 

facultative or spring types. Breeders or commercial owners can be traced to ten 

different European countries, with most cultivars released by Germany (47.2%), 

followed by Great Britain (15.4%), France (14.2%), and Poland (9.8%). Cultivar 

release dates ranged from 1975 to 2018, with most cultivars (82.5%) released from 

2000 onwards. ‘Monopol’, the oldest cultivar, was released in Germany during 1975 

and is still grown today for its high milling and baking quality (https://ig-

pflanzenzucht.de/sorte/monopol/). The panel’s most recent material corresponds to 
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the German cultivar ‘Informer’ released in 2018. The German inbred lines belonging 

to the breeder’s panel were sampled from 4 breeding companies in the first half of 

2010s45,46. 

Within the single-row multiplication plots, one representative ear was bagged for 

homogeneous plots, while up to two ears were selected for clearly non-homogenous 

PGR. Seeds from isolated ears were harvested separately from the rest of the plot 

and further propagated using an ear-to-row method. Plant material from isolated ears 

is referred to as SSD-PGR to differentiate them from the accessions (PGR). A digital 

object identifier (DOI) was assigned to each SSD-PGR whose PGR donor was 

registered in GBIS (Supplementary Table 39). Seeds for the elite cultivars were 

sourced from local markets, while the breeder panel was supplied by four German-

based breeding companies45,46.  

Library Preparation and sequencing  

For DNA extraction, ten seeds of one genotype were grown in the greenhouse and a 

single, approximately 10 cm leaf was harvested from a 10-days-old seedling. DNA 

extraction was performed using a silica-membrane technology (NucleoSpin® 96 

Plant II) as described by the manufacturer (Machery-Nagel). A total of 7,745 SSD-

PGR and 325 genotypes from the cultivars panel were characterized using GBS 

following the protocol for digestion with two restriction enzymes47,48. For this, DNA 

samples were simultaneously digested with PstI and MspI (New England Biolabs) 

and ligated with adapters containing sample-specific barcode sequences. Later, the 

processed barcoded DNA samples were pooled into groups of 540 genotypes in 

equimolar amount to form a GBS library. Single-end sequencing (1 X 107 cycles) 

was performed on Illumina Hiseq-2500 or NovaSeq 6000 system using custom 

sequencing primers according to manufacturer’s instructions (Illumina). WGS was 
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carried out on 263 diverse SSD-PGR from the T3Cs plus 191 diverse genotypes from 

the cultivar panel (Supplementary Note), and for the 131 elite lines of the breeder’s 

panel. The SSD-PGR fraction was extended with further WGS data for 183 PGR from 

the GenDiv-Project. WGS libraries were prepared using the Nextera DNA Flex 

Library Prep according to the manufacturer’s (Illumina) instructions. Libraries were 

pooled in an equimolar manner. The multiplexed pool was quantified by qPCR and 

sequenced (paired-end, 2 x 151 cycles and 10 bp for the index reads) using a 

NovaSeq 6000 device (Illumina) at 3-fold coverage.  

Read processing and Variant calling 

For GBS, the adapter sequences and low-quality bases from raw reads were trimmed 

using cutadapt (v1.16)49 with a minimum read length of 30 bp. Adapter and quality 

trimming was further confirmed by using FastQC50. The high-quality reads were 

aligned against the hexaploid wheat reference genome assembly cv. Chinese Spring 

(RefSeq v1.0)22 using BWA-MEM (v0.7.17)51 with default parameters. The output 

was converted to binary alignment map (BAM) format using SAMtools (v1.9)52 and 

then sorting was performed using NovoSort (v3.06.05). Variant calling was performed 

using the mpileup and call functions from SAMtools (v1.9) and BCFtools (v1.8)52. The 

software was run with -DV parameter for SAMtools mpileup and minimum read 

quality (q) cutoff of 20. The bi-allelic SNPs were further filtered with minimum QUAL ≥ 

40, minimum read depth for homozygous call ≥ 2, and minimum read depth for 

heterozygous calls ≥ 4 using a custom awk script. The vcf files were imported into the 

R statistical environment53 (v3.4.3) and converted to GDS format for further 

processing using seqArray54. 

For WGS, variant calling was performed as mentioned above except that 

minimap255 was used for read alignment. The minimap2 was run with genome index 
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size of 50Gb and keeping other parameters to default. The bi-allelic SNPs with 

minimum QUAL ≥ 40, minimum read depth for homozygous call ≥ 1, and minimum 

read depth for heterozygous calls ≥ 2 were imported into the R statistical environment 

and filtered as mentioned above. All post-filtering criteria regarding missing values, 

homozygous and heterozygous calls, of GBS and WGS-SNP data used in the 

different analyses are summarized in Supplementary Table 2. 

Genetic diversity within the IPK collection 

PCA was performed using the snpgdsPCA() function of SNPRelate56, which 

implements a FastPCA algorithm57. The population structure analysis was carried out 

using model-based clustering approach implemented in ADMIXTURE58. The software 

was run for different K values from 2 to 15 with 10-fold cross-validations (CV) and 

500 bootstrap replicates. Fst between populations were calculated using vcftools59. 

Furthermore, the identity-by-state (IBS) analysis was performed using the 

snpgdsIBSNum function in the R statistical environment. The proportion of pairwise 

difference (PPD) between two samples was calculated using the formula: 

IBS0/(IBS0+IBS2). All pairs with PPD value ≤ 0.01 were selected and clustering 

based on PPD values was performed to identify nearly identical samples (duplicates) 

using the R package igraph60 for graph operations. 

Comparison of genetic diversity between IPK and INRAE genebanks 

A sample of 2,608 PGR from the INRAE winter wheat collection was previously 

genotyped20 using a high-density Affymetrix Axiom SNP array61. To compare 

diversity between IPK and INRAE genebanks, SNPs from the array were mapped to 

RefSeq v1.0 and their positions extracted. With a threshold for missing values (< 

50%) in GBS-SNPs from the IPK collection, a total of 895 SNPs were retained in the 
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merged data set. PPD values were not only used to identify duplicates between 

genebanks but additionally, to detect diversity unique to each genebank. An 

accession was considered as unique to its genebank when its minimum genetic 

distance to all accessions of the other genebank was greater than the 95% quantile 

of distances within the IPK collection. 

Introgression identification and tracing the history 

A k-mer-, i.e. unique sequence of n bases, based approach was used to describe the 

genotypes for previously known introgressions6. The sequences of introgressed 

regions were extracted from the chromosome scale assembly of respective 

genotypes9. The KMC tool (v3.0)62 was used to identify 71 bp unique k-mers from 

each introgressed sequence separately. The 71 bp k-mers were also identified from 

RefSeq v1.0. The k-mers from each introgressed region were subtracted from 

RefSeq v1.0 k-mers using the KMC tool to identify unique and specific k-mers for 

each introgressed region. The k-mers were then compared with quality-checked short 

reads for each genotype, and reads carrying k-mers were counted. The proportion of 

reads for each introgressed region was plotted against the total number of reads to 

identify genotypes with introgressions. 

To identify new introgressions, the BAM files generated during the variant calling 

process were used. The trimmed reads from Chinese Spring were also mapped 

against RefSeq v1.0 and a BAM file was generated. From the BAM file for each 

genotype, the number of reads in the 500Kb window were calculated. Reads from 

each window were first normalized to sequencing coverage and then to the number 

of reads from the same window for Chinese Spring. The logarithm of normalized 

count was plotted to create a genome-wide coverage plot.  
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Nucleotide diversity and selective sweep study 

To identify regions under selection, the WGS nucleotide diversity was examined 

within populations defined by their release/acquisition periods: 255 genotypes from 

the Green Revolution (PreGreen), 212 varieties released between 1971 and 2000 

(OldCV), and 293 recent genotypes bred after 2000 (NewCV). Nucleotide diversity 

analysis was carried out for all possible pairwise population combinations. 

Normalized XP-CLR24 scores for each combination were ordered in descending order 

and the top 0.1% intervals were interpreted as regions under selection (selective 

sweep). Regions that were 10Kb adjacent were merged. Nucleotide diversity 

analyses were conducted using pixy63 with a 10Kb window and a step size of 100 bp, 

while leaving all other parameters at default. 

Phenotyping for yellow rust resistance 

YR screenings were based on naturally occurring infections for 7,684 PGR along with 

80 elite checks in 12 unbalanced, replicated field experiments considering 1,428-

1,697 entries each (for further details see Supplementary Table 10). On average, 

each PGR was tested in 2.4 experiments, with almost all (99.4%) tested in at least 2 

different experiments. Elite checks were used to increase the connectivity between 

experiments, with each check being present in 5.1 experiments on average, while 

four checks were present in all experiments. Field experiments were conducted 

between harvest years 2015-2020 considering locations Gatersleben and 

Schackstedt. An alpha lattice design with two complete replications divided into 

incomplete-blocks was used to account for uncontrolled spatial variation in each field 

experiment. Following the official protocols of the German Federal Plant Variety 

Office64, an ordinal scale from 1 to 9 was used to score infections, where one stands 

for minimal symptoms and nine indicates extensive disease symptoms. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


With the goal of finding new sources of disease resistance in PGR that are 

lacking in elite breeding, T3C for three leaf diseases were assembled 

(Supplementary Note). Briefly, we used preliminary phenotypic data and performed 

an unbalanced two-tailed selection to enrich the fraction of resistant genotypes while 

selecting susceptible genotypes such that the association between population 

structure and the trait under consideration is minimized. The complete set consisted 

of 200 genotypes from the cultivars panel and 600 SSD-PGR from the three T3Cs 

(Supplementary Table 15).  

YR screenings were then performed for the diverse elite cultivars and the T3Cs 

in an additional set of 7 balanced experiments (further details in Supplementary 

Table 16). Briefly, experiments were conducted during harvest years 2019 and 2020 

in locations Gatersleben, Quedlinburg, Wetze and Rosenthal. The two experiments in 

Gatersleben relied on natural infections while the other five were artificially 

inoculated. The percentage of YR infection from the experiment in Quedlinburg was 

transformed into a 1-9 scale as specified in Supplementary Table 40. For the other 

six experiments, infection was scored using the 1-9 ordinal scale as previously 

outlined.  

Estimating breeding value for grain yield in a hybrid background 

Individual PGR often lack some major loci for adaptation to modern agricultural 

practices. This masks their breeding value when evaluated in yield trials. As a rapid 

adaptation strategy, it has been proposed to estimate the breeding values of PGR in 

hybrid backgrounds when crossed with elite cultivars3. This strategy was 

implemented in five consecutive years for a total of 760 PGR (year 1 PGR, year 2-5 

SSD-PGR) by crossing each of them as male parents with up to 14 elite cultivars, 

with an average of 2.1 per PGR. To ensure a sufficient quantity of hybrid seed, PGR 
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were selected based on their pollination capability. The details of how hybrid seed 

production was carried out and also the phenotyping of series one to three have 

been described in detail previously65,66. Across-series, a total of 22 unbalanced field 

experiments were conducted to evaluate grain yield of 1,925 hybrids, along with a set 

of 518 parental lines and 40 checks to improve connectivity between series. 

Unbalanced experiments span together harvest years 2016-2020 and seven different 

German locations. Details of the experimental designs for each experiment series 

can be found in Supplementary Table 31.  

Using breeding value estimates of PGR for an informed parent selection 

Based on the field trials conducted in the first year, we embarked on a pre-breeding 

program that used the estimated breeding values for grain yield as a tool for PGR 

parent selection. We applied stringent selection with a superior fraction of 10% and 

developed segregating populations using two- (Elite1×PGR) and three-way crosses 

(Elite2× [Elite1×PGR]). The segregating progeny were genetically fixed by two 

generations of selfing. Simultaneously, we performed two-stage selection based on 

visual assessment of single plants, followed by rows focusing on the traits plant 

height and leaf health. In 2020, 85 advanced F3:4 families were evaluated for yield 

under conventional local agricultural practices at two locations and considering 

eleven winter wheat cultivars approved for commercial use in Germany during the 

last one and a half decades as checks (Supplementary Table 33). Among checks, 

the French cultivar ‘Arezzo’ (released in 2007) was the oldest one while the German 

variety ‘Informer’ (released in 2018) was the most recent cultivar (Supplementary 

Table 1). In these experiments as well as for the 22 unbalanced field experiments 

with ‘Elite�PGR’ hybrids, plots were mechanically harvested while grain yield was 

expressed in Mg/ha on a 140 g H2O per harvested kg moisture basis. 
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Phenotypic data analyses of yellow rust screenings 

Outlier detection, BLUEs and variance components for single replicated experiments 

were obtained using equation (4) of the Supplementary Note. Regarding 

unbalanced experiments (Supplementary Table 10), the YR infection per plot in 

Gatersleben during 2019 was the maximum value among early and late scorings for 

these analyses, while the unreplicated Schackstedt experiment from 2019 was only 

considered for analyses across-experiments. Variance components and BLUEs 

across unbalanced experiments were obtained in an integrated outlier-corrected 

dataset using equation (5) of the Supplementary Note. For the elite cultivars plus 

T3Cs (Supplementary Table 16), each YR scoring date was analyzed separately 

and the unreplicated data from Quedlinburg were corrected by subtracting the 

incomplete-block means. Later, the maximum outlier-and-design-effects-corrected 

value among early and late scorings was selected entry-wise in each experiment and 

integrated across-experiments. Across-experiments BLUEs and variance 

components for the elite cultivars plus T3Cs were obtained through the following 

mixed model: 

�
� � � � �� � 	
 � 

�,      (1) 

where �
� is the YR infection value for the �-th genotype in the �-th experiment, � 

corresponds to the general mean, �� denotes the effect of the �-th experiment, 	
 

indicates the effect of the �-th genotype, while 

� is the error term of the model 

confounded with the genotype � experiment interaction. Assumptions for BLUEs and 

variance components computation are outlined in the Supplementary Note. A 

pooled error variance (
��
) was obtained by averaging error variance estimates of 

single experiments analyses. Later, the variance estimate of experiment � genotype 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


interactions (
����
 ) was obtained as 
����
 � 
������
 � ���
�

�.����������
, where 
������
  is the error 

variance estimate from equation (1) and �.������������ is the average number of replicates 

across experiments. Estimated variance components were used to compute 

heritatabilities for single and across-experiments according to equations (6) and (7), 

respectively (Supplementary Note).  

Estimating breeding value for grain yield of PGR 

Previously published procedures for data curation and estimation of genotypic effects 

corrected for experimental design effects using linear mixed models were 

implemented65,66. The basic model included the effects of genotypes and incomplete-

blocks in addition to other experiment-specific (trials and/or replications) design 

effects (Supplementary Table 31). All data were checked series-wise for outliers 

using Method 4 "Bonferroni-Holm with rescaled residuals standardized to mean 

absolute deviation" described by Bernal-Vasquez et al.67. Outliers were removed and 

the linear mixed model described above was refitted to obtain estimates of genotypes 

in each experiment, which were adjusted for the effects of experimental designs and 

served as input to subsequent analyses. In a next step, 161 hybrids with low seed 

purity were discarded from the integrated analyses. Adjusted means for genotypes 

from the 22 experiments were used in a linear mixed model including effects of 

groups - i.e., genotypes belonging to either checks, lines, or hybrids -, experiments, 

lines, breeding values of PGR and elite lines, i.e. the general combining ability 

effects, their interaction effects with experiments, specific combining abilities effects 

and errors. Assuming all model effects excepting group means as random, variance 

components and PGR breeding values were estimated. Variance estimates were 

subsequently used to compute the broad-sense heritability of the hybrid yield 
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performance as specified in Zhao et al.66, while a narrow-sense heritability of the 

PGR contribution to yield in the hybrid context was obtained as follows:  

�
 � ���	
�
�

���	
�
� �

�
�	
���
�

�.������������ 
�

�
�	

�

�.��������������
�
�

�

�.������������ � �.������������

,    (2) 

where 
�����


  is the variance estimate of the general combining abilities of male 

parents, 
�������

  denotes the variance of interactions between male combining 

abilities and experiments, 
����
  indicates the variance of specific combining abilities 

between parents, 
��
 corresponds to the error variance, while �. ������������, �. �
���������� and 

�. �
���������� are the average number of experiments, crossing females and replications.  

Genome-wide association study (GWAS) 

Unimputed GBS-SNPs were used to compute a kinship matrix as 2 � ��–���, where 

� denotes an n×n all-ones matrix and �� is a Rogers’ distance68 matrix calculated as 

stated in the Supplementary Note. Unimputed WGS data were used to conduct 

GWAS for YR. GWAS was performed using a standard linear mixed model69 that 

corrects for population stratification by fitting a polygenic effect for the genotypes, 

with covariance modeled using the previously estimated kinship matrix. For genome-

wide multiple test correction, the nominal significance level 0.05 was divided by the 

number of independent markers (����)70.  

In addition, we implemented a GWAS approach which potentially captures 

structural variation denoted as k-mer based GWAS71. Briefly, KMC tool (3.1.1)62 was 

used to identify 31 bp k-mer from quality trimmed sequencing reads from each 

genotype. Only k-mer supported by at least 2 reads were considered. k-mer from all 

the genotypes were combined to generate a non-redundant k-mer set. The non-

redundant k-mer sequences were searched in each genotype and a k-mer presence-
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absence matrix was generated which served as a genotype matrix in GWAS. To 

reduce computational burden of GWAS for billions of k-mers, we selected the first top 

10 million k-mers based on the T2 statistic as implemented in the kmers_gwas.py 

script71. Afterwards, GWAS was conducted for this reduced set of k-mers as stated 

before for SNP-based GWAS but using a Bonferroni significant threshold for multiple-

test correction. The k-mers were mapped against reference genome sequences 

using BWA-MEM and only uniquely mapped k-mers were extracted. The linear mixed 

models of phenotypic analyses as well as GWAS were fitted using the average 

information matrix algorithm for restricted maximum likelihood (REML) computation 

as implemented in ASReml-R (3.0)72. 

Genome-wide predictions 

Genomic best-linear unbiased prediction (GBLUP) was performed with an 

additive genomic relationship matrix according to the first VanRaden method73. 

Predictions were obtained for the 7,745 SSD-PGR as well as for the INRAE-PGR by 

using a training set of IPK-PGR having both phenotypic and genotypic data. Missing 

values still present after filtering were imputed using the locus mean. In addition, the 

standard error (SE) of prediction for each genotype   was calculated as !�� �

"
��
 # $��

, where 
��
 is the genomic-estimated error variance and $��

 is the   

diagonal element of the lower-right quadrant from the generalized-inverse of the left-

hand-side coefficient matrix according to Henderson74. The expected prediction 

accuracy was estimated through five-fold cross-validation within the training set and 

was defined as the Pearson correlation coefficient between predicted and observed 

values divided afterwards by √�
. Mixed model equations for genomic prediction 

were computed using REML as implemented in the R-package rrBLUP75. All 
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computational methods related to phenotypic analyses, GWAS, and genomic 

prediction were implemented within R statistical environment53 (v3.6.1).  

 

References 

1. McCouch, S. et al. Mobilizing crop biodiversity. Mol. Plant 13, 1341–1344 
(2020). 

2. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting 
agrochemical input levels. Nat. Plants 5, 706-714 (2019). 

3. Longin, C. F. H. & Reif, J. C. Redesigning the exploitation of wheat genetic 
resources. Trends Plant Sci. 19, 631–636 (2014). 

4. Mayer, M. et al. Discovery of beneficial haplotypes for complex traits in maize 
landraces. Nat. Commun. 11, 4954 (2020). 

5. Singh, S. et al. Direct introgression of untapped diversity into elite wheat lines. 
Nat Food 2, 819–827 (2021) 

6. Mascher, M. et al. Genebank genomics bridges the gap between the 
conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076-1081 
(2019). 

7. Halewood, M. et al. Plant genetic resources for food and agriculture: 
opportunities and challenges emerging from the science and information 
technology revolution. New Phytol. 217, 1407-1419 (2018). 

8. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals 
consequences and opportunities of selection footprints. Nat. Commun. 11, 
4572 (2020). 

9. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern 
breeding. Nature 588, 277-283 (2020). 

10. Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence 
capture and association genetics. Nat. Biotechnol. 37, 139-143 (2019). 

11. Sánchez-Martín, J. et al. Wheat Pm4 resistance to powdery mildew is 
controlled by alternative splice variants encoding chimeric proteins. Nat. Plants 
7, 327-341 (2021). 

12. Nelson, R., Wiesner-Hanks, T., Wisser. R. & Balint-Kurti, P. Navigating 
complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21-33 
(2018). 

13. Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third 
International Wheat Genetics Symposium 1–36 (1968). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Zhai, H. et al. A novel allele of TaGW2-A1 is located in a finely mapped QTL 
that increases grain weight but decreases grain number in wheat (Triticum 
aestivum L.). Theor. Appl. Genet. 131, 539–553 (2018).  

15. Ramírez-Mora, I. et al. The da1 mutation in wheat increases grain size under 
ambient and elevated CO2 but not grain yield due to trade-off between grain 
size and grain number. Plant-Env. Interact. 2, 61–73 (2021). 

16. Yu, X. et al. Genomic prediction contributing to a promising global strategy to 
turbocharge gene banks. Nat. Plants 2, 16150 (2016). 

17. Whitford, R. et al. Hybrid breeding in wheat: technologies to improve hybrid 
wheat seed production. J. Exp. Bot. 64, 5411-5428 (2013). 

18. Singh, N., et al. Efficient curation of genebanks using next generation 
sequencing reveals substantial duplication of germplasm accessions. Sci. 
Rep. 9, 650 (2019). 

19. Milner, S. G. et al. Genebank genomics highlights the diversity of a global 
barley collection. Nat. Genet. 51, 319–326 (2019). 

20.  Balfourier, F. et al. Worldwide phylogeography and history of wheat genetic 
diversity. Sci. Adv. 5, eaav0536 (2019).  

21. Cheng, H. et al. Frequent intra- and inter-species introgression shapes the 
landscape of genetic variation in bread wheat. Genome Biol. 20, 136 (2019). 

22. The International Wheat Genome Sequencing Consortium. Shifting the limits 
in wheat research and breeding using a fully annotated reference genome. 
Science 361, eaar7191 (2018). 

23. Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal 
instability in shaping the bread wheat genome. Nat. Plants 7, 172-183 (2021). 

24. Racimo, F. Testing for ancient selection using cross-population allele 
frequency differentiation. Genetics 202, 733-750 (2016). 

25. Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene 
Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. 
Acad. Sci. USA 100, 15253-15258 (2003). 

26. Bariana, H. S. & McIntosh, R. A. Cytogenetic studies in wheat. XV. Location of 
rust resistance genes in VPM1 and their genetic linkage with other disease 
resistance genes in chromosome 2A. Genome 36, 476-482 (1993). 

27. Coriton, O. et al. Double dose efficiency of the yellow rust resistance gene 
Yr17 in bread wheat lines. Plant Breed. 139, 263–271 (2020). 

28. Ali S. et al. Yellow Rust Epidemics Worldwide Were Caused by Pathogen 
Races from Divergent Genetic Lineages. Front. Plant. Sci. 8, 1057 (2017). 

29.  Rabinovich, S. V. Importance of wheat-rye translocations for breeding modern 
cultivar of Triticum aestivum L.. Euphytica 100, 323–340 (1998). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


30.  Mago, R. et al. Identification and mapping of molecular markers linked to rust 
resistance genes located on chromosome 1RS of rye using wheat-rye 
translocation lines. Theor. Appl. Genet. 104, 1317–1324 (2002). 

31.  Heun, M. & Friebe, B. Introgression of powdery mildew resistance from rye 
into wheat. Phytopathology 80, 242–245 (1990). 

32.  Howell, T. et al. Mapping a region within the 1RS.1BL translocation in common 
wheat affecting grain yield and canopy water status. Theor. Appl. 
Genet. 127, 2695–2709 (2014). 

33. Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of 
virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. 
sp. tritici in Uganda. Plant Dis. 84, 203 (2000). 

34. Martin, D. J. & Stewart, B. G. Dough stickiness in rye-derived wheat cultivars. 
Euphytica 51, 77–86 (1990). 

35. Pang, Y. et al. High-Resolution Genome-wide Association Study Identifies 
Genomic Regions and Candidate Genes for Important Agronomic Traits in 
Wheat. Mol. Plant 13, 1311–1327 (2020). 

36. Dolatabadian, A. et al. Characterization of disease resistance genes in the 
Brassica napus pangenome reveals significant structural variation. Plant 
Biotechnol. J. 18, 969–982 (2019). 

37. Nsabiyera, V. et al. Fine mapping of Lr49 using 90K SNP chip array and flow 
sorted chromosome sequencing in wheat. Front. Plant Sci. 10, 1787 (2019). 

38. Kanwal, M. et al. An adult plant stripe rust resistance gene maps on 
chromosome 7A of Australian wheat cultivar Axe. Theor. Appl. 
Genet. 134, 2213–2220 (2021). 

39. Hafeez, A. N. et al. Creation and Judicious Application of a Wheat Resistance 
Gene Atlas. Mol. Plant 14, 1053–1070 (2021). 

40. Laidig, F., Piepho, H. P., Drobek, T. & Meyer, U. Genetic and non-genetic 
long-term trends of 12 different crops in German official variety performance 
trials and on-farm yield trends. Theor. Appl. Genet. 127, 2599–2617 (2014). 

41. Feuillet, C., Langridge, P. & Waugh, R. Cereal breeding takes a walk on the 
wild side. Trends Genet. 24, 24–32 (2008). 

42. Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies 
targets for bread wheat improvement. Nat Biotechnol (2021). 

43. Saunders, D. G. O., Pretorius, Z. A. & Hovmøller, M. S. Tackling the re-
emergence of wheat stem rust in Western Europe. Commun. Biol. 2, 51 
(2019). 

44. Oppermann, M., Weise, S., Dittmann, C. & Knüpffer, H. GBIS: the information 
system of the German Genebank. Database 2015, bav021 (2015) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


45. Longin, C. F. H. et al. Hybrid wheat: quantitative genetic parameters and 
consequences for the design of breeding programs. Theor. Appl. Genet. 126, 
2791-2801 (2013). 

46. Würschum, T. et al. Population structure, genetic diversity and linkage 
disequilibrium in elite winter wheat assessed with SNP and SSR markers. 
Theor. Appl. Genet. 126, 1477-1486 (2013). 

47. Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of 
high-density genetic maps for barley and wheat using a novel two-enzyme 
genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012). 

48. Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-
generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014). 

49. Martin, M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet. journal 17, 10-12 (2011). 

50. Bittencourt, S. A. FastQC: a Quality Control Tool for High Throughput 
Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
(2010). 

51. Li, H. Aligning sequence reads, clone sequences and assembly contigs with 
BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013). 

52. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 
25, 2078–2079 (2009). 

53. R Development Core Team. R: A Language and Environment for Statistical 
Computing. (R Foundation for Statistical Computing, Vienna, 2020). 

54. Zheng, X. et al. SeqArray—a storage-efficient high-performance data format 
for WGS variant calls. Bioinformatics 33, 2251-2257 (2017). 

55. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 
34, 3094-3100 (2018). 

56. Zheng, X. et al. A high-performance computing toolset for relatedness and 
principal component analysis of SNP data. Bioinformatics 28, 3326-3328 
(2012). 

57. Galinsky, K. J. et al. Fast principal-component analysis reveals convergent 
evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456-472 
(2016). 

58. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of 
ancestry in unrelated individuals. Genome Res. 19, 1655-1664 (2009). 

59. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 
2156-2158 (2011). 

60. Csardi, G. & Nepusz, T. The igraph software package for complex network 
research. InterJournal 1695, 1-9 (2006) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


61.  Rimbert, H. et al. High throughput SNP discovery and genotyping in hexaploid 
wheat. PLoS ONE 13, e0186329 (2018). 

62. Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-
mer statistics. Bioinformatics 33, 2759-2761 (2017). 

63. Korunes, K. L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity 
and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–
1368 (2021). 

64. Bundessortenamt. Richtlinien für die Durchführung von landwirtschaftlichen 
Wertprüfungen und Sortenversuchen. 
http://www.bundessortenamt.de/internet30/fileadmin/Files/PDF/Richtlinie_LW2
000.pdf (2000). 

65. Boeven, P.H. et al. Negative dominance and dominance-by-dominance 
epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Sci. 
Adv. 6, eaay4897 (2020). 

66. Zhao, Y. et al. Unlocking big data doubled the accuracy in predicting the grain 
yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021). 

67. Bernal-Vasquez, A.-M., Utz, H.-F. & Piepho, H.-P. Outlier detection methods 
for generalized lattices: a case study on the transition from ANOVA to REML. 
Theor. Appl. Genet. 129, 787-804 (2016). 

68. Rogers, J. S. Measures of genetic similarity and genetic distance. Studies in 
Genetics 7, 145–153 (1972) 

69. Yu, J. et al. A unified mixed-model method for association mapping that 
accounts for multiple levels of relatedness. Nat. Genet. 38, 203-208 (2006). 

70. Gao, X. Y., Stamier, J. & Martin, E. R. A multiple testing correction method for 
genetic association studies using correlated single nucleotide polymorphisms. 
Genet. Epidemiol. 32, 361-369 (2008). 

71. Voichek, Y. & Weigel, D. Identifying genetic variants underlying phenotypic 
variation in plants without complete genomes. Nat. Genet. 52, 534-540 (2020). 

72. Butler D., Cullis B., Gilmour A., Gogel B. ASReml–R Reference Manual. 
Brisbane: The State of Queensland, Department of Primary Industries and 
Fisheries. https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/ASReml-R-
3-Reference-Manual.pdf (2009). 

73. VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy 
Sci. 91, 4414-4423 (2008). 

74. Henderson, C. R. Best linear unbiased estimation and prediction under a 
selection model. Biometrics 31, 423–447 (1975).  

75. Endelman, J. B. Ridge regression and other kernels for genomic selection with 
R package rrBLUP. Plant Genome 4, 250–255 (2011).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

This research work was mainly funded by the German Federal Ministry of Education 

and Research under the frame of the Project GeneBank2.0 (grant no. 

FKZ031B0184B and FKZ031B0184A). Additional financial support was provded by 

the German Federal Ministry of Food and Agriculture under the frame of the GenDiv-

Project (grant no. 2814603813). Authors are very thankful to Dr. Andreas Börner for 

providing seeds of the B catalog. Authors would like to also thank Christoph Martin, 

Jelena Perovic, Johannes Schneider, Sonja Gentz, Andrea Kunze, Martina Kühne, 

Lena Gaczensky and Martin Koch for their valuable technical support in field 

activities, as well as Susanne König, Jacqueline Pohl, Ines Walde and Manuela 

Knauft for their technical assistance in producing GBS and WGS data. Authors 

additionally thank Jens Bauernfeind, Thomas Münch and Heiko Miehe for 

administration of the IT infrastructure as well as Anne Fiebig, Danuta Schüler and 

Daniel Arend for their support in the data publication. 

Author contributions 

J.C.R., M.M., N.S. and V.K. developed the concept. M.O. and S.W. provided 

passport information of the TRI catalog of genebank accessions as well as DOIs for 

their derived progenies. S.K. provided DNA for GBS and A.H. and N.S. produced 

sequencing raw reads. A.H. and N.S. obtained high quality DNA samples and 

generated WGS raw reads. A.W.S., N.Philipp, U.B., A.S., N.Pfeiffer., P.H.G.B. and 

J.S. conducted YR resistance screenings. N.Philipp, P.H.G.B. and C.F.H.L. produced 

seed and conducted yield trials for hybrids. N.Philipp, M.R. and J.C.R. produced, 

selected and yield-tested PGR-derived families. J.F. confirmed wheat ploidy level 

through fluorometry. A.W.S., Y.Z., N.Philipp and M.R. analyzed and curated 

phenotypic data. S.M.K. processed sequencing reads, integrated INRAE and IPK 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


genomic data, generated SNP and k-mer matrices and performed diversity, selective 

sweep as well as introgression analyses. A.W.S. integrated genomic and phenotypic 

data, selected T3Cs and performed genomic prediction. F.L. performed GWAS for 

YR and selected donors with the support of J.C.R., A.W.S. and M.M.. Y.J., Y.Z. and 

M.M. provided statistical support. M.L. and U.S. facilitated the data management, the 

sequence and variation data submission to public repositories. A.W.S., S.M.K., F.L., 

M.M. and J.C.R. wrote the manuscript with the input of all other co-authors. 

 

Competing interests 

All authors declare no conflict of interest. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472759
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure captions 

Fig. 1. Genetic diversity within and between genebanks.   

a, Principal component analysis (PCA) representing the diversity space of 2,608 

winter wheat accessions from INRAE (blue color) onto which 7,745 IPK genebank 

samples (red color) and 325 European elite cultivars (Elite) were projected. b, PCA 

plot depicting genetic diversity harvored by IPK genebank accessions and elite 

cultivars. The IPK accessions are colored based on different geographic regions: 

WEU/NEU, western/northern Europe; EEU, Eastern Europe; SEU, Southern Europe; 

SAS/EAS, Southern/Eastern Asia; WAS, Western Asia; NAM/SAM, North/South 

America. Samples from underrepresented regions are presented in gray. c, The 

same data as in (b) are shown, but samples are colored by their assignments to 

subpopulations defined by ADMIXTURE (k=5). Samples with ancestry coefficients 

<0.7 are shown in grey. Subpopulations 1-5 were mostly conformed (> 50% known 

origins) by genotypes from EEU, SEU, WEU/NEU, WEU/NEU (mostly Germany) and 

SAS/EAS, respectively. d, Fixation index (F
st
) between subpopulations defined by 

ADMIXTURE. e, Distributions of similarity within subpopulations. The density of 

pairwise identity-by-state values is plotted. 
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Fig. 2. Tracing the history of introgression breeding.  

a, Circos plot of normalized XP-CLR scores for contrasts between three different 

historic periods: PreGreen (before 1970), OldCV (1971-2000) and NewCV (2001-

Present). The regions under selection are highlighted with stars. Inner circle: 

PreGreen vs OldCV (red stars); middle circle: OldCV vs NewCV (blue stars); outer 

circle: PreGreen vs NewCV (green stars). b, Detection of introgressions by 

measuring the abundance of diagnostic k-mers. The relative frequency of k-mers 

specific to the Ae. ventricosa introgression on chromosome 2A are shown for plant 

genetic resources (PGR) and elite lines. The introgression is more frequent in the 

elite panel. c, Drops in read depth (log
2
-fold changes compared to Chinese Spring) 

are indicative of introgressions. Read depth in 100 kb along six chromosomes is 

shown for one putative introgression carrier. Most introgressions occur in distal 

regions. d, Number of putative introgressions detected in 318 diverse elite lines and 

442 diverse PGR samples. e, Frequencies of selected introgressions according to the 

three different historic periods. The number of varieties per period are indicated in 

brackets [ ]. 
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Fig. 3. Deep mining plant genetic resources (PGR) of the IPK genebank for new 

sources of resistance against yellow rust (YR) not yet used in winter wheat 

breeding. 

a, Molecular diversity potrayed by the first two principal components (PC) from 

genotyping-by-sequencing variants and covered by the mined panel: 191 diverse 

elite cultivars, 199 diverse PGR [YR(R) plus 50YR(S)] from a YR trait-customized 

core collection (T3C) selected for resistant PGR enrichment and minimized 

population structure, plus 64 diverse PGR from T3Cs for other diseases. b, YR score 

(1 = fully resistant, 9 = fully susceptible) of the mined panels based on intensive field 

phenotyping. Diamonds indicate the average of distributions, while numbers in 

brackets [ ] in (a) and (b) indicate the number of datapoints for each category. 

Genomic regions harboring loci associated to YR resistance as revealed by whole 

genome sequencing and association mapping in (c) the whole panel (elites + T3Cs 

PGR), (d) only elites and (e) only T3Cs PGR. Physical positions are according to the 

Chinese Spring v1.0 reference. Significance thresholds are denoted with blue 

horizontal dashed lines. Positions of known YR resistance loci are indicated with 

lemon green vertical dashed lines and triangles, while green triangles denote hitherto 

not known resistance loci with resistance conferring alleles almost fixed in elites. 

Regions harboring new sources of resistance and fully contributed by PGR are 

shown with orange dashed lines and triangles. 
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Fig. 4. Uncovering the yield breeding value (BV) of plant genetic resources 

(PGR) for pre-breeding through ‘Elite×PGR’ hybrids and genomic prediction.  

a, Disease susceptibility (left) and lodging (right) mask the yield BV of wheat PGR, 

but these limitations are overcome in Elite × PGR (F
1
) hybrids, where PGR 

contribution to yield can be revealed. b, Parenting effect of elite cultivars on the yield 

(Mg/ha) of PGR observed in Elite×PGR hybrids. c, Yields of modern check cultivars 

as well as 85 F3:4 lines derived from two- (Elite1×PGR) and three-way 

(Elite
2
×[Elite

1
×PGR]) crosses with PGR parents selected for their high yield BV 

estimates. The performance of the oldest check and the average of checks are 

indicated with orange and blue vertical dashed lines, respectively. d, Molecular 

diversity stored at the IPK genebank as potrayed by the first two principal 

components (PC) from genotyping-by-sequencing variants and covered by yield BV 

estimates (green). These estimates were the training set for genomic prediction 

(GBLUP) of untested PGR (orange) using 29,844 SNP markers. e, Prediction 

accuracy of GBLUP in 1000 cross-validation (CV) runs. f, Yield BV genomic 

predictions and their standard errors (SE) for the IPK winter wheat collection. The 

vertical dashed line indicates the 10% superior yielding predictions while the 

horizontal one is the average SE of the training set. Red diamonds in (b) and (e) 

indicate the averages, while the numbers in brackets [ ] in (b) and (d) indicate the 

number of datapoints for each category. 
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